The vast majority of files including object-store.h did not need dir.h
nor khash.h. Split the header into two files, and let most just depend
upon object-store-ll.h, while letting the two callers that need it
depend on the full object-store.h.
After this patch:
$ git grep -h include..object-store | sort | uniq -c
2 #include "object-store.h"
129 #include "object-store-ll.h"
Diff best viewed with `--color-moved`.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When opening a MIDX bitmap, we the pack-bitmap machinery eagerly calls
`prepare_midx_pack()` on each of the packs contained in the MIDX. This
is done in order to populate the array of `struct packed_git *`s held by
the MIDX, which we need later on in `load_reverse_index()`, since it
calls `load_pack_revindex()` on each of the MIDX'd packs, and requires
that the caller provide a pointer to a `struct packed_git`.
When opening one of these packs fails, the pack-bitmap code will `die()`
indicating that it can't open one of the packs in the MIDX. This
indicates that the MIDX is somehow broken with respect to the current
state of the repository. When this is the case, we indeed cannot make
use of the MIDX bitmap to speed up reachability traversals.
However, it does not mean that we can't perform reachability traversals
at all. In other failure modes, that same function calls `warning()` and
then returns -1, indicating to its caller (`open_bitmap()`) that we
should either look for a pack bitmap if one is available, or perform
normal object traversal without using bitmaps at all.
There is no reason why this case should cause us to die. If we instead
continued (by jumping to `cleanup` as this patch does) and avoid using
bitmaps altogether, we may again try and query the MIDX, which will also
fail. But when trying to call `fill_midx_entry()` fails, it also returns
a signal of its failure, and prompts the caller to try and locate the
object elsewhere.
In other words, the normal object traversal machinery works fine in the
presence of a corrupt MIDX, so there is no reason that the MIDX bitmap
machinery should abort in that case when we could easily continue.
Note that we *could* in theory try again to load a MIDX bitmap after
calling `reprepare_packed_git()`. Even though the `prepare_packed_git()`
code is careful to avoid adding a pack that we already have,
`prepare_midx_pack()` is not. So if we got part of the way through
calling `prepare_midx_pack()` on a stale MIDX, and then tried again on a
fresh MIDX that contains some of the same packs, we would end up with a
loop through the `->next` pointer.
For now, let's do the simplest thing possible and fallback to the
non-bitmap code when we detect a stale MIDX so that the complete fix as
above can be implemented carefully.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When reachability bitmap coverage exists in a repository, Git will use a
different (and hopefully faster) traversal to compute revision walks.
Consider a set of positive and negative tips (which we'll refer to with
their standard bitmap parlance by "wants", and "haves"). In order to
figure out what objects exist between the tips, the existing traversal
in `prepare_bitmap_walk()` does something like:
1. Consider if we can even compute the set of objects with bitmaps,
and fall back to the usual traversal if we cannot. For example,
pathspec limiting traversals can't be computed using bitmaps (since
they don't know which objects are at which paths). The same is true
of certain kinds of non-trivial object filters.
2. If we can compute the traversal with bitmaps, partition the
(dereferenced) tips into two object lists, "haves", and "wants",
based on whether or not the objects have the UNINTERESTING flag,
respectively.
3. Fall back to the ordinary object traversal if either (a) there are
more than zero haves, none of which are in the bitmapped pack or
MIDX, or (b) there are no wants.
4. Construct a reachability bitmap for the "haves" side by walking
from the revision tips down to any existing bitmaps, OR-ing in any
bitmaps as they are found.
5. Then do the same for the "wants" side, stopping at any objects that
appear in the "haves" bitmap.
6. Filter the results if any object filter (that can be easily
computed with bitmaps alone) was given, and then return back to the
caller.
When there is good bitmap coverage relative to the traversal tips, this
walk is often significantly faster than an ordinary object traversal
because it can visit far fewer objects.
But in certain cases, it can be significantly *slower* than the usual
object traversal. Why? Because we need to compute complete bitmaps on
either side of the walk. If either one (or both) of the sides require
walking many (or all!) objects before they get to an existing bitmap,
the extra bitmap machinery is mostly or all overhead.
One of the benefits, however, is that even if the walk is slower, bitmap
traversals are guaranteed to provide an *exact* answer. Unlike the
traditional object traversal algorithm, which can over-count the results
by not opening trees for older commits, the bitmap walk builds an exact
reachability bitmap for either side, meaning the results are never
over-counted.
But producing non-exact results is OK for our traversal here (both in
the bitmap case and not), as long as the results are over-counted, not
under.
Relaxing the bitmap traversal to allow it to produce over-counted
results gives us the opportunity to make some significant improvements.
Instead of the above, the new algorithm only has to walk from the
*boundary* down to the nearest bitmap, instead of from each of the
UNINTERESTING tips.
The boundary-based approach still has degenerate cases, but we'll show
in a moment that it is often a significant improvement.
The new algorithm works as follows:
1. Build a (partial) bitmap of the haves side by first OR-ing any
bitmap(s) that already exist for UNINTERESTING commits between the
haves and the boundary.
2. For each commit along the boundary, add it as a fill-in traversal
tip (where the traversal terminates once an existing bitmap is
found), and perform fill-in traversal.
3. Build up a complete bitmap of the wants side as usual, stopping any
time we intersect the (partial) haves side.
4. Return the results.
And is more-or-less equivalent to using the *old* algorithm with this
invocation:
$ git rev-list --objects --use-bitmap-index $WANTS --not \
$(git rev-list --objects --boundary $WANTS --not $HAVES |
perl -lne 'print $1 if /^-(.*)/')
The new result performs significantly better in many cases, particularly
when the distance from the boundary commit(s) to an existing bitmap is
shorter than the distance from (all of) the have tips to the nearest
bitmapped commit.
Note that when using the old bitmap traversal algorithm, the results can
be *slower* than without bitmaps! Under the new algorithm, the result is
computed faster with bitmaps than without (at the cost of over-counting
the true number of objects in a similar fashion as the non-bitmap
traversal):
# (Computing the number of tagged objects not on any branches
# without bitmaps).
$ time git rev-list --count --objects --tags --not --branches
20
real 0m1.388s
user 0m1.092s
sys 0m0.296s
# (Computing the same query using the old bitmap traversal).
$ time git rev-list --count --objects --tags --not --branches --use-bitmap-index
19
real 0m22.709s
user 0m21.628s
sys 0m1.076s
# (this commit)
$ time git.compile rev-list --count --objects --tags --not --branches --use-bitmap-index
19
real 0m1.518s
user 0m1.234s
sys 0m0.284s
The new algorithm is still slower than not using bitmaps at all, but it
is nearly a 15-fold improvement over the existing traversal.
In a more realistic setting (using my local copy of git.git), I can
observe a similar (if more modest) speed-up:
$ argv="--count --objects --branches --not --tags"
hyperfine \
-n 'no bitmaps' "git.compile rev-list $argv" \
-n 'existing traversal' "git.compile rev-list --use-bitmap-index $argv" \
-n 'boundary traversal' "git.compile -c pack.useBitmapBoundaryTraversal=true rev-list --use-bitmap-index $argv"
Benchmark 1: no bitmaps
Time (mean ± σ): 124.6 ms ± 2.1 ms [User: 103.7 ms, System: 20.8 ms]
Range (min … max): 122.6 ms … 133.1 ms 22 runs
Benchmark 2: existing traversal
Time (mean ± σ): 368.6 ms ± 3.0 ms [User: 325.3 ms, System: 43.1 ms]
Range (min … max): 365.1 ms … 374.8 ms 10 runs
Benchmark 3: boundary traversal
Time (mean ± σ): 167.6 ms ± 0.9 ms [User: 139.5 ms, System: 27.9 ms]
Range (min … max): 166.1 ms … 169.2 ms 17 runs
Summary
'no bitmaps' ran
1.34 ± 0.02 times faster than 'boundary traversal'
2.96 ± 0.05 times faster than 'existing traversal'
Here, the new algorithm is also still slower than not using bitmaps, but
represents a more than 2-fold improvement over the existing traversal in
a more modest example.
Since this algorithm was originally written (nearly a year and a half
ago, at the time of writing), the bitmap lookup table shipped, making
the new algorithm's result more competitive. A few other future
directions for improving bitmap traversal times beyond not using bitmaps
at all:
- Decrease the cost to decompress and OR together many bitmaps
together (particularly when enumerating the uninteresting side of
the walk). Here we could explore more efficient bitmap storage
techniques, like Roaring+Run and/or use SIMD instructions to speed
up ORing them together.
- Store pseudo-merge bitmaps, which could allow us to OR together
fewer "summary" bitmaps (which would also help with the above).
Helped-by: Jeff King <peff@peff.net>
Helped-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
To prepare for the boundary-based bitmap walk to perform a fill-in
traversal using the boundary of either side as the tips, extract routine
used to perform fill-in traversal by `find_objects()` so that it can be
used in both places.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
If a filesystem-level corruption occurs in a .bitmap file, Git can react
poorly. This could take the form of a run-time error due to failing to
parse an EWAH bitmap or be more subtle such as returning the wrong set
of objects to a fetch or clone.
A natural first response to either of these kinds of errors is to run
'git fsck' to see if any files are corrupt. This currently ignores all
.bitmap files.
Add checks to 'git fsck' for all .bitmap files that are currently
associated with a multi-pack-index or pack file. Verify their checksums
using the hashfile API.
We iterate through all multi-pack-indexes and pack-files to be sure to
check all .bitmap files, not just the one that would be read by the
process. For example, a multi-pack-index bitmap overrules a pack-bitmap.
However, if the multi-pack-index is removed, the pack-bitmap may be
selected instead. Be thorough to include every file that could become
active in such a way. This includes checking files in alternates.
There is potential that we could extend this effort to check the
structure of the reachability bitmaps themselves, but it is very
expensive to do so. At minimum, it's as expensive as generating the
bitmaps in the first place, and that's assuming that we don't use the
trivial algorithm of verifying each bitmap individually. The trivial
algorithm will result in quadratic behavior (number of objects times
number of bitmapped commits) while the bitmap building operation
constructs a lattice of commits to build bitmaps incrementally and then
generate the final bitmaps from a subset of those commits.
If we were to extend 'git fsck' to check .bitmap file contents more
closely like this, then we would likely want to hide it behind an option
that signals the user is more willing to do expensive operations such as
this.
For testing, set up a repository with a pack-bitmap _and_ a
multi-pack-index bitmap. This requires some file movement to avoid
deleting the pack-bitmap during the repack that creates the
multi-pack-index bitmap. We can then verify that 'git fsck' is checking
all files, not just the "active" bitmap.
Signed-off-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The on-disk reverse index that allows mapping from the pack offset
to the object name for the object stored at the offset has been
enabled by default.
* tb/pack-revindex-on-disk:
t: invert `GIT_TEST_WRITE_REV_INDEX`
config: enable `pack.writeReverseIndex` by default
pack-revindex: introduce `pack.readReverseIndex`
pack-revindex: introduce GIT_TEST_REV_INDEX_DIE_ON_DISK
pack-revindex: make `load_pack_revindex` take a repository
t5325: mark as leak-free
pack-write.c: plug a leak in stage_tmp_packfiles()
Header clean-up.
* en/header-split-cache-h: (24 commits)
protocol.h: move definition of DEFAULT_GIT_PORT from cache.h
mailmap, quote: move declarations of global vars to correct unit
treewide: reduce includes of cache.h in other headers
treewide: remove double forward declaration of read_in_full
cache.h: remove unnecessary includes
treewide: remove cache.h inclusion due to pager.h changes
pager.h: move declarations for pager.c functions from cache.h
treewide: remove cache.h inclusion due to editor.h changes
editor: move editor-related functions and declarations into common file
treewide: remove cache.h inclusion due to object.h changes
object.h: move some inline functions and defines from cache.h
treewide: remove cache.h inclusion due to object-file.h changes
object-file.h: move declarations for object-file.c functions from cache.h
treewide: remove cache.h inclusion due to git-zlib changes
git-zlib: move declarations for git-zlib functions from cache.h
treewide: remove cache.h inclusion due to object-name.h changes
object-name.h: move declarations for object-name.c functions from cache.h
treewide: remove unnecessary cache.h inclusion
treewide: be explicit about dependence on mem-pool.h
treewide: be explicit about dependence on oid-array.h
...
While parsing a .rev file, we check the header information to be sure it
makes sense. This happens before doing any additional validation such as
a checksum or value check. In order to differentiate between a bad
header and a non-existent file, we need to update the API for loading a
reverse index.
Make load_pack_revindex_from_disk() non-static and specify that a
positive value means "the file does not exist" while other errors during
parsing are negative values. Since an invalid header prevents setting up
the structures we would use for further validations, we can stop at that
point.
The place where we can distinguish between a missing file and a corrupt
file is inside load_revindex_from_disk(), which is used both by pack
rev-indexes and multi-pack-index rev-indexes. Some tests in t5326
demonstrate that it is critical to take some conditions to allow
positive error signals.
Add tests that check the three header values.
Signed-off-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In a future commit, we will introduce a `pack.readReverseIndex`
configuration, which forces Git to generate the reverse index from
scratch instead of loading it from disk.
In order to avoid reading this configuration value more than once, we'll
use the `repo_settings` struct to lazily load this value.
In order to access the `struct repo_settings`, add a repository argument
to `load_pack_revindex`, and update all callers to pass the correct
instance (in all cases, `the_repository`).
In certain instances, a new function-local variable is introduced to
take the place of a `struct repository *` argument to the function
itself to avoid propagating the new parameter even further throughout
the tree.
Co-authored-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Acked-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Dozens of files made use of trace and trace2 functions, without
explicitly including trace.h or trace2.h. This made it more difficult
to find which files could remove a dependence on cache.h. Make C files
explicitly include trace.h or trace2.h if they are using them.
Signed-off-by: Elijah Newren <newren@gmail.com>
Acked-by: Calvin Wan <calvinwan@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Split key function and data structure definitions out of cache.h to
new header files and adjust the users.
* en/header-split-cleanup:
csum-file.h: remove unnecessary inclusion of cache.h
write-or-die.h: move declarations for write-or-die.c functions from cache.h
treewide: remove cache.h inclusion due to setup.h changes
setup.h: move declarations for setup.c functions from cache.h
treewide: remove cache.h inclusion due to environment.h changes
environment.h: move declarations for environment.c functions from cache.h
treewide: remove unnecessary includes of cache.h
wrapper.h: move declarations for wrapper.c functions from cache.h
path.h: move function declarations for path.c functions from cache.h
cache.h: remove expand_user_path()
abspath.h: move absolute path functions from cache.h
environment: move comment_line_char from cache.h
treewide: remove unnecessary cache.h inclusion from several sources
treewide: remove unnecessary inclusion of gettext.h
treewide: be explicit about dependence on gettext.h
treewide: remove unnecessary cache.h inclusion from a few headers
Assorted config API updates.
* ab/config-multi-and-nonbool:
for-each-repo: with bad config, don't conflate <path> and <cmd>
config API: add "string" version of *_value_multi(), fix segfaults
config API users: test for *_get_value_multi() segfaults
for-each-repo: error on bad --config
config API: have *_multi() return an "int" and take a "dest"
versioncmp.c: refactor config reading next commit
config API: add and use a "git_config_get()" family of functions
config tests: add "NULL" tests for *_get_value_multi()
config tests: cover blind spots in git_die_config() tests
Fix numerous and mostly long-standing segfaults in consumers of
the *_config_*value_multi() API. As discussed in the preceding commit
an empty key in the config syntax yields a "NULL" string, which these
users would give to strcmp() (or similar), resulting in segfaults.
As this change shows, most users users of the *_config_*value_multi()
API didn't really want such an an unsafe and low-level API, let's give
them something with the safety of git_config_get_string() instead.
This fix is similar to what the *_string() functions and others
acquired in[1] and [2]. Namely introducing and using a safer
"*_get_string_multi()" variant of the low-level "_*value_multi()"
function.
This fixes segfaults in code introduced in:
- d811c8e17c (versionsort: support reorder prerelease suffixes, 2015-02-26)
- c026557a37 (versioncmp: generalize version sort suffix reordering, 2016-12-08)
- a086f921a7 (submodule: decouple url and submodule interest, 2017-03-17)
- a6be5e6764 (log: add log.excludeDecoration config option, 2020-04-16)
- 92156291ca (log: add default decoration filter, 2022-08-05)
- 50a044f1e4 (gc: replace config subprocesses with API calls, 2022-09-27)
There are now two users ofthe low-level API:
- One in "builtin/for-each-repo.c", which we'll convert in a
subsequent commit.
- The "t/helper/test-config.c" code added in [3].
As seen in the preceding commit we need to give the
"t/helper/test-config.c" caller these "NULL" entries.
We could also alter the underlying git_configset_get_value_multi()
function to be "string safe", but doing so would leave no room for
other variants of "*_get_value_multi()" that coerce to other types.
Such coercion can't be built on the string version, since as we've
established "NULL" is a true value in the boolean context, but if we
coerced it to "" for use in a list of strings it'll be subsequently
coerced to "false" as a boolean.
The callback pattern being used here will make it easy to introduce
e.g. a "multi" variant which coerces its values to "bool", "int",
"path" etc.
1. 40ea4ed903 (Add config_error_nonbool() helper function,
2008-02-11)
2. 6c47d0e8f3 (config.c: guard config parser from value=NULL,
2008-02-11).
3. 4c715ebb96 (test-config: add tests for the config_set API,
2014-07-28)
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Have the "git_configset_get_value_multi()" function and its siblings
return an "int" and populate a "**dest" parameter like every other
git_configset_get_*()" in the API.
As we'll take advantage of in subsequent commits, this fixes a blind
spot in the API where it wasn't possible to tell whether a list was
empty from whether a config key existed. For now we don't make use of
those new return values, but faithfully convert existing API users.
Most of this is straightforward, commentary on cases that stand out:
- To ensure that we'll properly use the return values of this function
in the future we're using the "RESULT_MUST_BE_USED" macro introduced
in [1].
As git_die_config() now has to handle this return value let's have
it BUG() if it can't find the config entry. As tested for in a
preceding commit we can rely on getting the config list in
git_die_config().
- The loops after getting the "list" value in "builtin/gc.c" could
also make use of "unsorted_string_list_has_string()" instead of using
that loop, but let's leave that for now.
- In "versioncmp.c" we now use the return value of the functions,
instead of checking if the lists are still non-NULL.
1. 1e8697b5c4 (submodule--helper: check repo{_submodule,}_init()
return values, 2022-09-01),
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
With the change in the last commit to move several functions to
write-or-die.h, csum-file.h no longer needs to include cache.h.
However, removing that include forces several other C files, which
directly or indirectly dependend upon csum-file.h's inclusion of
cache.h, to now be more explicit about their dependencies.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Dozens of files made use of gettext functions, without explicitly
including gettext.h. This made it more difficult to find which files
could remove a dependence on cache.h. Make C files explicitly include
gettext.h if they are using it.
However, while compat/fsmonitor/fsm-ipc-darwin.c should also gain an
include of gettext.h, it was left out to avoid conflicting with an
in-flight topic.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
More work towards -Wunused.
* jk/unused-post-2.39-part2: (21 commits)
help: mark unused parameter in git_unknown_cmd_config()
run_processes_parallel: mark unused callback parameters
userformat_want_item(): mark unused parameter
for_each_commit_graft(): mark unused callback parameter
rewrite_parents(): mark unused callback parameter
fetch-pack: mark unused parameter in callback function
notes: mark unused callback parameters
prio-queue: mark unused parameters in comparison functions
for_each_object: mark unused callback parameters
list-objects: mark unused callback parameters
mark unused parameters in signal handlers
run-command: mark error routine parameters as unused
mark "pointless" data pointers in callbacks
ref-filter: mark unused callback parameters
http-backend: mark unused parameters in virtual functions
http-backend: mark argc/argv unused
object-name: mark unused parameters in disambiguate callbacks
serve: mark unused parameters in virtual functions
serve: use repository pointer to get config
ls-refs: drop config caching
...
Our graph-traversal functions take callbacks for showing commits and
objects, but not all callbacks need each parameter. Likewise for the
similar traverse_bitmap_commit_list(), which has a different interface
but serves the same purpose. And the include_check mechanism, which
passes along a void pointer which is not always used.
Mark the unused ones to to make -Wunused-parameter happy.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
This allows us to replace includes of cache.h with includes of the much
smaller alloc.h in many places. It does mean that we also need to add
includes of alloc.h in a number of C files.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When we find a midx bitmap, we do not bother checking for pack
bitmaps, since we can use only one. But since we will warn of unused
bitmaps via trace2, let's continue looking for pack bitmaps when
tracing is enabled.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
After opening a bitmap successfully, we try opening others only
because we want to report that other bitmap files are ignored in
the trace2 log. When trace2 is not enabled, we do not have to
do any of that.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In "open_midx_bitmap_1()" and "open_pack_bitmap_1()", when we find that
there are multiple bitmaps, we will only open the first one and then
leave warnings about the remaining pack information, the information
will contain the absolute path of the repository, for example in a
alternates usage scenario. So let's hide this kind of potentially
sensitive information in this commit.
Found-by: XingXin <moweng.xx@antgroup.com>
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
When trying to open a pack bitmap, we call open_pack_bitmap_1() in a
loop, during which it tries to open up the pack index corresponding
with each available pack.
It's likely that we'll end up relying on objects in that pack later
in the process (in which case we're doing the work of opening the
pack index optimistically), but not guaranteed.
For instance, consider a repository with a large number of small
packs, and one large pack with a bitmap. If we see that bitmap pack
last in our loop which calls open_pack_bitmap_1(), the current code
will have opened *all* pack index files in the repository. If the
request can be served out of the bitmapped pack alone, then the time
spent opening these idx files was wasted.S
Since open_pack_bitmap_1() calls is_pack_valid() later on (which in
turns calls open_pack_index() itself), we can just drop the earlier
call altogether.
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
The trace2 region around the call to lazy_bitmap_for_commit() in
bitmap_for_commit() was added in 28cd730680 (pack-bitmap: prepare to
read lookup table extension, 2022-08-14). While adding trace2 regions is
typically helpful for tracking performance, this method is called
possibly thousands of times as a commit walk explores commit history
looking for a matching bitmap. When trace2 output is enabled, this
region is emitted many times and performance is throttled by that
output.
For now, remove these regions entirely.
This is a critical path, and it would be valuable to measure that the
time spent in bitmap_for_commit() does not increase when using the
commit lookup table. The best way to do that would be to use a mechanism
that sums the time spent in a region and reports a single value at the
end of the process. This technique was introduced but not merged by [1]
so maybe this example presents some justification to revisit that
approach.
[1] https://lore.kernel.org/git/pull.1099.v2.git.1640720202.gitgitgadget@gmail.com/
To help with the 'git blame' output in this region, add a comment that
warns against adding a trace2 region. Delete a test from t5310 that used
that trace output to check that this lookup optimization was activated.
To create this kind of test again in the future, the stopwatch traces
mentioned earlier could be used as a signal that we activated this code
path.
Helpedy-by: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Earlier change teaches Git to write bitmap lookup table. But Git
does not know how to parse them.
Teach Git to parse the existing bitmap lookup table. The older
versions of Git are not affected by it. Those versions ignore the
lookup table.
Mentored-by: Taylor Blau <me@ttaylorr.com>
Co-Mentored-by: Kaartic Sivaraam <kaartic.sivaraam@gmail.com>
Signed-off-by: Abhradeep Chakraborty <chakrabortyabhradeep79@gmail.com>
Reviewed-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Tweak various messages that come from the pack-bitmap codepaths.
* tl/pack-bitmap-error-messages:
pack-bitmap.c: continue looping when first MIDX bitmap is found
pack-bitmap.c: using error() instead of silently returning -1
pack-bitmap.c: do not ignore error when opening a bitmap file
pack-bitmap.c: rename "idx_name" to "bitmap_name"
pack-bitmap.c: mark more strings for translations
pack-bitmap.c: fix formatting of error messages
In "open_midx_bitmap()", we do a loop with the MIDX(es) in repo, when
the first one has been found, then will break out by a "return"
directly.
But actually, it's better to continue the loop until we have visited
both the MIDX in our repository, as well as any alternates (along with
_their_ alternates, recursively).
The reason for this is, there may exist more than one MIDX file in
a repo. The "multi_pack_index" struct is actually designed as a singly
linked list, and if a MIDX file has been already opened successfully,
then the other MIDX files will be skipped and left with a warning
"ignoring extra bitmap file." to the output.
The discussion link of community:
https://public-inbox.org/git/YjzCTLLDCby+kJrZ@nand.local/
Helped-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In "open_pack_bitmap_1()" and "open_midx_bitmap_1()", it's better to
return error() instead of "-1" when some unexpected error occurs like
"stat bitmap file failed", "bitmap header is invalid" or "checksum
mismatch", etc.
There are places where we do not replace, such as when the bitmap
does not exist (no bitmap in repository is allowed) or when another
bitmap has already been opened (in which case it should be a warning
rather than an error).
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Calls to git_open() to open the pack bitmap file and
multi-pack bitmap file do not report any error when they
fail. These files are optional and it is not an error if
open failed due to ENOENT, but we shouldn't be ignoring
other kinds of errors.
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In "open_pack_bitmap_1()" and "open_midx_bitmap_1()" we use
a var named "idx_name" to represent the bitmap filename which
is computed by "midx_bitmap_filename()" or "pack_bitmap_filename()"
before we open it.
There may bring some confusion in this "idx_name" naming, which
might lead us to think of ".idx "or" multi-pack-index" files,
although bitmap is essentially can be understood as a kind of index,
let's define this name a little more accurate here.
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In pack-bitmap.c, some printed texts are translated, some are not.
Let's support the translations of the bitmap related output.
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
There are some text output issues in 'pack-bitmap.c', they exist in
die(), error() etc. This includes issues with capitalization the
first letter, newlines, error() instead of BUG(), and substitution
that don't have quotes around them.
Signed-off-by: Teng Long <dyroneteng@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The multi-pack-index code did not protect the packfile it is going
to depend on from getting removed while in use, which has been
corrected.
* tb/midx-race-in-pack-objects:
builtin/pack-objects.c: ensure pack validity from MIDX bitmap objects
builtin/pack-objects.c: ensure included `--stdin-packs` exist
builtin/pack-objects.c: avoid redundant NULL check
pack-bitmap.c: check preferred pack validity when opening MIDX bitmap
When pack-objects adds an entry to its packing list, it marks the
packfile and offset containing the object, which we may later use during
verbatim reuse (c.f., `write_reused_pack_verbatim()`).
If the packfile in question is deleted in the background (e.g., due to a
concurrent `git repack`), we'll die() as a result of calling use_pack(),
unless we have an open file descriptor on the pack itself. 4c08018204
(pack-objects: protect against disappearing packs, 2011-10-14) worked
around this by opening the pack ahead of time before recording it as a
valid source for reuse.
4c08018204's treatment meant that we could tolerate disappearing packs,
since it ensures we always have an open file descriptor on any pack that
we mark as a valid source for reuse. This tightens the race to only
happen when we need to close an open pack's file descriptor (c.f., the
caller of `packfile.c::get_max_fd_limit()`) _and_ that pack was deleted,
in which case we'll complain that a pack could not be accessed and
die().
The pack bitmap code does this, too, since prior to dc1daacdcc
(pack-bitmap: check pack validity when opening bitmap, 2021-07-23) it
was vulnerable to the same race.
The MIDX bitmap code does not do this, and is vulnerable to the same
race. Apply the same treatment as dc1daacdcc to the routine responsible
for opening the multi-pack bitmap's preferred pack to close this race.
This patch handles the "preferred" pack (c.f., the section
"multi-pack-index reverse indexes" in
Documentation/technical/pack-format.txt) specially, since pack-objects
depends on reusing exact chunks of that pack verbatim in
reuse_partial_packfile_from_bitmap(). So if that pack cannot be loaded,
the utility of a bitmap is significantly diminished.
Similar to dc1daacdcc, we could technically just add this check in
reuse_partial_packfile_from_bitmap(), since it's possible to use a MIDX
.bitmap without needing to open any of its packs. But it's simpler to do
the check as early as possible, covering all direct uses of the
preferred pack. Note that doing this check early requires us to call
prepare_midx_pack() early, too, so move the relevant part of that loop
from load_reverse_index() into open_midx_bitmap_1().
Subsequent patches handle the non-preferred packs in a slightly
different fashion.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Introduce and apply coccinelle rule to discourage an explicit
comparison between a pointer and NULL, and applies the clean-up to
the maintenance track.
* ep/maint-equals-null-cocci:
tree-wide: apply equals-null.cocci
tree-wide: apply equals-null.cocci
contrib/coccinnelle: add equals-null.cocci
Now that all consumers of traverse_commit_list_filtered() populate the
'filter' member of 'struct rev_info', we can drop that parameter from
the method prototype to simplify things. In addition, the only thing
different now between traverse_commit_list_filtered() and
traverse_commit_list() is the presence of the 'omitted' parameter, which
is only non-NULL for one caller. We can consolidate these two methods by
having one call the other and use the simpler form everywhere the
'omitted' parameter would be NULL.
Signed-off-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Now that all consumers of prepare_bitmap_walk() have populated the
'filter' member of 'struct rev_info', we can drop that extra parameter
from the method and access it directly from the 'struct rev_info'.
Signed-off-by: Derrick Stolee <derrickstolee@github.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When opening a MIDX/pack-bitmap, we call open_midx_bitmap_1() or
open_pack_bitmap_1() respectively in a loop over the set of MIDXs/packs.
By design, these functions are supposed to be called over every pack and
MIDX, since only one of them should have a valid bitmap.
Ordinarily we return '0' from these two functions in order to indicate
that we successfully loaded a bitmap To signal that we couldn't load a
bitmap corresponding to the MIDX/pack (either because one doesn't exist,
or because there was an error with loading it), we can return '-1'. In
either case, the callers each enumerate all MIDXs/packs to ensure that
at most one bitmap per-kind is present.
But when we fail to load a bitmap that does exist (for example, loading
a MIDX bitmap without finding a corresponding reverse index), we'll
return -1 but leave the 'midx' field non-NULL. So when we fallback to
loading a pack bitmap, we'll complain that the bitmap we're trying to
populate already is "opened", even though it isn't.
Rectify this by setting the '->pack' and '->midx' field back to NULL as
appropriate. Two tests are added: one to ensure that the MIDX-to-pack
bitmap fallback works, and another to ensure we still complain when
there are multiple pack bitmaps in a repository.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Reviewed-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
If prepare_bitmap_git() returns NULL (one easy-to-trigger cause being
that the repository does not have bitmaps at all), then we'll segfault
accessing bitmap_git->hashes:
$ t/helper/test-tool bitmap dump-hashes
Segmentation fault
We should treat this the same as a repository with bitmaps but no
name-hashes, and quietly produce an empty output. The later call to
free_bitmap_index() in the cleanup label is OK, as it treats a NULL
pointer as a noop.
This isn't a big deal in practice, as this function is intended for and
used only by test-tool. It's probably worth fixing to avoid confusion,
but not worth adding coverage for this to the test suite.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The function free_bitmap_index() is somewhat lax in what it frees. There
are two notable examples:
- While it does call kh_destroy_oid_map on the "bitmaps" map, which
maps commit OIDs to their corresponding bitmaps, the bitmaps
themselves are not freed. Note here that we recycle already-freed
ewah_bitmaps into a pool, but these are handled correctly by
ewah_pool_free().
- We never bother to free the extended index's "positions" map, which
we always allocate in load_bitmap().
Fix both of these.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
test_bitmap_walk() is used to implement `git rev-list --test-bitmap`,
which compares the result of the on-disk bitmaps with ones generated
on-the-fly during a revision walk.
In fa95666a40 (pack-bitmap.c: harden 'test_bitmap_walk()' to check type
bitmaps, 2021-08-24), we hardened those tests to also check the four
special type-level bitmaps, but never freed those bitmaps. We should
have, since each required an allocation when we EWAH-decompressed them.
Free those, plugging that leak, and also free the base (the scratch-pad
bitmap), too.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
To ask for the name of a MIDX and its corresponding .rev file, callers
invoke get_midx_filename() and get_midx_rev_filename(), respectively.
These both invoke xstrfmt(), allocating a chunk of memory which must be
freed later on.
This makes callers in pack-bitmap.c somewhat awkward. Specifically,
midx_bitmap_filename(), which is implemented like:
return xstrfmt("%s-%s.bitmap",
get_midx_filename(midx->object_dir),
hash_to_hex(get_midx_checksum(midx)));
this leaks the second argument to xstrfmt(), which itself was allocated
with xstrfmt(). This caller could assign both the result of
get_midx_filename() and the outer xstrfmt() to a temporary variable,
remembering to free() the former before returning. But that involves a
wasteful copy.
Instead, get_midx_filename() and get_midx_rev_filename() take a strbuf
as an output parameter. This way midx_bitmap_filename() can manipulate
and pass around a temporary buffer which it detaches back to its caller.
That allows us to implement the function without copying or open-coding
get_midx_filename() in a way that doesn't leak.
Update the other callers of get_midx_filename() and
get_midx_rev_filename() accordingly.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
"git repack" has been taught to generate multi-pack reachability
bitmaps.
* tb/repack-write-midx:
test-read-midx: fix leak of bitmap_index struct
builtin/repack.c: pass `--refs-snapshot` when writing bitmaps
builtin/repack.c: make largest pack preferred
builtin/repack.c: support writing a MIDX while repacking
builtin/repack.c: extract showing progress to a variable
builtin/repack.c: rename variables that deal with non-kept packs
builtin/repack.c: keep track of existing packs unconditionally
midx: preliminary support for `--refs-snapshot`
builtin/multi-pack-index.c: support `--stdin-packs` mode
midx: expose `write_midx_file_only()` publicly
When repacking into a geometric series and writing a multi-pack bitmap,
it is beneficial to have the largest resulting pack be the preferred
object source in the bitmap's MIDX, since selecting the large packs can
lead to fewer broken delta chains and better compression.
Teach 'git repack' to identify this pack and pass it to the MIDX write
machinery in order to mark it as preferred.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When an old bitmap exists while writing a new one, we load it and build
a "reposition" table which maps bit positions of objects from the old
bitmap to their respective positions in the new bitmap. This can help
when we encounter a commit which was selected in both the old and new
bitmap, since we only need to permute its bit (not recompute it from
scratch).
We do not, however, repurpose existing namehash values in the case of
the hash-cache extension. There has been thus far no good reason to do
so, since all of the namehash values for objects in the new bitmap would
be populated during the traversal that was just performed by
pack-objects when generating single-pack reachability bitmaps.
But this isn't the case for multi-pack bitmaps, which are written via
`git multi-pack-index write --bitmap` and do not perform any traversal.
In this case all namehash values are set to zero, but we don't even
bother to check the `pack.writeBitmapHashcache` option anyway, so it
fails to matter.
There are two approaches we could take to fill in non-zero hash-cache
values:
- have either the multi-pack-index builtin run its own
traversal to attempt to fill in some values, or let a hypothetical
caller (like `pack-objects` when `repack` eventually drives the
`multi-pack-index` builtin) fill in the values they found during
their traversal
- or copy any existing namehash values that were stored in an
existing bitmap to their corresponding positions in the new bitmap
In a system where a repository is generally repacked with `git repack
--geometric=<d>` and occasionally repacked with `git repack -a`, the
hash-cache coverage will tend towards all objects.
Since populating the hash-cache is additive (i.e., doing so only helps
our delta search), any intermediate lack of full coverage is just fine.
So let's start by just propagating any values from the existing
hash-cache if we see one.
The next patch will respect the `pack.writeBitmapHashcache` option while
writing MIDX bitmaps, and then test this new behavior.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The pack-bitmap writer code is about to learn how to propagate values
from an existing hash-cache. To prepare, teach the test-bitmap helper to
dump the values from a bitmap's hash-cache extension in order to test
those changes.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Starting in commit 0f533c7284 (pack-bitmap: read multi-pack bitmaps,
2021-08-31), we no longer look at the "struct bitmap_index" passed to
try_partial_reuse(). This is because we only handle verbatim reuse from
a single pack: either the pack whose bitmap we're looking at, or the
"preferred" pack of a midx bitmap. And thus the primary item we look at
is the "pack" parameter added by that same commit, and not the
bitmap_git->pack parameter (which would be NULL for a midx bitmap). It's
our caller, reuse_partial_packfile_from_bitmap(), which decides which
pack to use and passes it in to us.
Drop the unused parameter to prevent confusion.
Signed-off-by: Jeff King <peff@peff.net>
Reviewed-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We never look at the repository argument which is passed. This makes
sense, since the multi_pack_index struct already tells us everything we
need to access the files in its associated object directory.
Signed-off-by: Jeff King <peff@peff.net>
Reviewed-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
This prepares the code in pack-bitmap to interpret the new multi-pack
bitmaps described in Documentation/technical/bitmap-format.txt, which
mostly involves converting bit positions to accommodate looking them up
in a MIDX.
Note that there are currently no writers who write multi-pack bitmaps,
and that this will be implemented in the subsequent commit. Note also
that get_midx_checksum() and get_midx_filename() are made non-static so
they can be called from pack-bitmap.c.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
try_partial_reuse() is used to mark any bits in the beginning of a
bitmap whose objects can be reused verbatim from the pack they came
from.
Currently this function returns void, and signals nothing to the caller
when bits could not be reused. But multi-pack bitmaps would benefit from
having such a signal, because they may try to pass objects which are in
bounds, but from a pack other than the preferred one.
Any extra calls are noops because of a conditional in
reuse_partial_packfile_from_bitmap(), but those loop iterations can be
avoided by letting try_partial_reuse() indicate when it can't accept any
more bits for reuse, and then listening to that signal.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In a recent commit, pack-objects learned support for the
'pack.preferBitmapTips' configuration. This patch prepares the
multi-pack bitmap code to respect this configuration, too.
The yet-to-be implemented code will find that it is more efficient to
check whether each reference contains a prefix found in the configured
set of values rather than doing an additional traversal.
Implement a function 'bitmap_is_preferred_refname()' which will perform
that check. Its caller will be added in a subsequent patch.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A subsequent patch to support reading MIDX bitmaps will be less noisy
after extracting a generic function to fetch the nth OID contained in
the bitmap.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A subsequent patch to support reading MIDX bitmaps will be less noisy
after extracting a generic function to return how many objects are
contained in a bitmap.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The special `--test-bitmap` mode of `git rev-list` is used to compare
the result of an object traversal with a bitmap to check its integrity.
This mode does not, however, assert that the types of reachable objects
are stored correctly.
Harden this mode by teaching it to also check that each time an object's
bit is marked, the corresponding bit should be set in exactly one of the
type bitmaps (whose type matches the object's true type).
Co-authored-by: Jeff King <peff@peff.net>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A race between repacking and using pack bitmaps has been corrected.
* jk/check-pack-valid-before-opening-bitmap:
pack-bitmap: check pack validity when opening bitmap
When pack-objects adds an entry to its list of objects to pack, it may
mark the packfile and offset that contains the file, which we can later
use to output the object verbatim. If the packfile is deleted while we
are running (e.g., by another process running "git repack"), we may die
in use_pack() if the pack file cannot be opened.
We worked around this in 4c08018204 (pack-objects: protect against
disappearing packs, 2011-10-14) by making sure we can open the pack
before recording it as a source. This detects a pack which has already
disappeared while generating the packing list, and because we keep the
pack's file descriptor (or an mmap window) open, it means we can access
it later (unless you exceed core.packedgitlimit).
The bitmap code that was added later does not do this; it adds entries
to the packlist without checking that the packfile is still valid, and
is vulnerable to this race. It needs the same treatment as 4c08018204.
However, rather than add it in just that one spot, it makes more sense
to simply open and check the packfile when we open the bitmap.
Technically you can use the .bitmap without even looking in the .pack
file (e.g., if you are just printing a list of objects without accessing
them), but it's much simpler to do it early. That covers all later
direct uses of the pack (due to the cached descriptor) without having to
check each one directly. For example, in pack-objects we need to protect
the packlist entries, but we also access the pack directly as part of
the reuse_partial_pack_from_bitmap() feature. This patch covers both
cases.
There's no test here, because the problem is inherently racy. I
reproduced and verified the fix with this script:
rm -rf parent.git push.git fetch.git
push() {
(
cd push.git &&
echo content >>file &&
git add file &&
git commit -qm "change $1" &&
git push -q origin HEAD &&
echo "push $1..."
) &&
(
cd parent.git &&
git repack -ad -q &&
echo "repack $1..."
)
}
fetch() {
rm -rf fetch.git &&
git clone -q file://$PWD/parent.git fetch.git &&
echo "fetch $1..."
}
git init --bare parent.git &&
git --git-dir=parent.git config transfer.unpacklimit 1 &&
git clone parent.git push.git &&
(for i in `seq 1 1000`; do push $i || break; done) &
pusher=$!
(for i in `seq 1 1000`; do fetch $i || break; done) &
fetcher=$!
wait $fetcher
kill $pusher
That simulates a race between a client cloning and a push triggering a
repack on the server. Without this patch, it generally fails within a
couple hundred iterations with:
remote: fatal: packfile ./objects/pack/.tmp-1377349-pack-498afdec371232bdb99d1757872f5569331da61e.pack cannot be accessed
error: git upload-pack: git-pack-objects died with error.
fatal: git upload-pack: aborting due to possible repository corruption on the remote side.
remote: aborting due to possible repository corruption on the remote side.
fatal: early EOF
fatal: fetch-pack: invalid index-pack output
With this patch, it reliably runs through all thousand attempts.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The code that eventually became filter_bitmap_exclude_type() was
originally introduced in 4f3bd5606a (pack-bitmap: implement BLOB_NONE
filtering, 2020-02-14) to accelerate BLOB_NONE filters with bitmaps.
In 856e12c18a (pack-bitmap.c: make object filtering functions generic,
2020-05-04), it became filter_bitmap_exclude_type(). But not all of the
comments were updated to be agnostic to the provided type.
Remove the remaining comments which should have been updated in
856e12c18a to reflect the type-agnostic nature of the function.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
If an object is already mentioned in a reachability bitmap we are
building, then by definition so are all of the objects it can reach. We
have an optimization to stop traversing commits when we see they are
already in the bitmap, but we don't do the same for trees.
It's generally unavoidable to recurse into trees for commits not yet
covered by bitmaps (since most commits generally do have unique
top-level trees). But they usually have subtrees that are shared with
other commits (i.e., all of the subtrees the commit _didn't_ touch). And
some of those commits (and their trees) may be covered by the bitmap.
Usually this isn't _too_ big a deal, because we'll visit those subtrees
only once in total for the whole walk. But if you have a large number of
unbitmapped commits, and if your tree is big, then you may end up
opening a lot of sub-trees for no good reason.
We can use the same optimization we do for commits here: when we are
about to open a tree, see if it's in the bitmap (either the one we are
building, or the "seen" bitmap which covers the UNINTERESTING side of
the bitmap when doing a set-difference).
This works especially well because we'll visit all commits before
hitting any trees. So even in a history like:
A -- B
if "A" has a bitmap on disk but "B" doesn't, we'll already have OR-ed in
the results from A before looking at B's tree (so we really will only
look at trees touched by B).
For most repositories, the timings produced by p5310 are unspectacular.
Here's linux.git:
Test HEAD^ HEAD
--------------------------------------------------------------------
5310.4: simulated clone 6.00(5.90+0.10) 5.98(5.90+0.08) -0.3%
5310.5: simulated fetch 2.98(5.45+0.18) 2.85(5.31+0.18) -4.4%
5310.7: rev-list (commits) 0.32(0.29+0.03) 0.33(0.30+0.03) +3.1%
5310.8: rev-list (objects) 1.48(1.44+0.03) 1.49(1.44+0.05) +0.7%
Any improvement there is within the noise (the +3.1% on test 7 has to be
noise, since we are not recursing into trees, and thus the new code
isn't even run). The results for git.git are likewise uninteresting.
But here are numbers from some other real-world repositories (that are
not public). This one's tree is comparable in size to linux.git, but has
~16k refs (and so less complete bitmap coverage):
Test HEAD^ HEAD
-------------------------------------------------------------------------
5310.4: simulated clone 38.34(39.86+0.74) 33.95(35.53+0.76) -11.5%
5310.5: simulated fetch 2.29(6.31+0.35) 2.20(5.97+0.41) -3.9%
5310.7: rev-list (commits) 0.99(0.86+0.13) 0.96(0.85+0.11) -3.0%
5310.8: rev-list (objects) 11.32(11.04+0.27) 6.59(6.37+0.21) -41.8%
And here's another with a very large tree (~340k entries), and a fairly
large number of refs (~10k):
Test HEAD^ HEAD
-------------------------------------------------------------------------
5310.3: simulated clone 53.83(54.71+1.54) 39.77(40.76+1.50) -26.1%
5310.4: simulated fetch 19.91(20.11+0.56) 19.79(19.98+0.67) -0.6%
5310.6: rev-list (commits) 0.54(0.44+0.11) 0.51(0.43+0.07) -5.6%
5310.7: rev-list (objects) 24.32(23.59+0.73) 9.85(9.49+0.36) -59.5%
This patch provides substantial improvements in these larger cases, and
have any drawbacks for smaller ones (the cost of the bitmap check is
quite small compared to an actual tree traversal).
Note that we have to add a version of revision.c's include_check
callback which handles non-commits. We could possibly consolidate this
into a single callback for all objects types, as there's only one user
of the feature which would need converted (pack-bitmap.c:should_include).
That would in theory let us avoid duplicating any logic. But when I
tried it, the code ended up much worse to read, with lots of repeated
"if it's a commit do this, otherwise do that". Having two separate
callbacks splits that naturally, and matches the existing split of
show_commit/show_object callbacks.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
"git rev-list" learns the "--filter=object:type=<type>" option,
which can be used to exclude objects of the given kind from the
packfile generated by pack-objects.
* ps/rev-list-object-type-filter:
rev-list: allow filtering of provided items
pack-bitmap: implement combined filter
pack-bitmap: implement object type filter
list-objects: implement object type filter
list-objects: support filtering by tag and commit
list-objects: move tag processing into its own function
revision: mark commit parents as NOT_USER_GIVEN
uploadpack.txt: document implication of `uploadpackfilter.allow`
When the reachability bitmap is in effect, the "do not lose
recently created objects and those that are reachable from them"
safety to protect us from races were disabled by mistake, which has
been corrected.
* jk/prune-with-bitmap-fix:
prune: save reachable-from-recent objects with bitmaps
pack-bitmap: clean up include_check after use
When a bitmap walk has to traverse (to fill in non-bitmapped objects),
we use rev_info's include_check mechanism to let us stop the traversal
early. But after setting the function and its data parameter, we never
clean it up. This means that if the rev_info is used for a subsequent
traversal without bitmaps, it will unexpectedly call into our
include_check function (worse, it will do so pointing to a now-defunct
stack variable in include_check_data, likely resulting in a segfault).
There's no code which does this now, but it's an accident waiting to
happen. Let's clean up after ourselves in the bitmap code.
Reported-by: David Emett <dave@sp4m.net>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When providing an object filter, it is currently impossible to also
filter provided items. E.g. when executing `git rev-list HEAD` , the
commit this reference points to will be treated as user-provided and is
thus excluded from the filtering mechanism. This makes it harder than
necessary to properly use the new `--filter=object:type` filter given
that even if the user wants to only see blobs, he'll still see commits
of provided references.
Improve this by introducing a new `--filter-provided-objects` option
to the git-rev-parse(1) command. If given, then all user-provided
references will be subject to filtering.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When the user has multiple objects filters specified, then this is
internally represented by having a "combined" filter. These combined
filters aren't yet supported by bitmap indices and can thus not be
accelerated.
Fix this by implementing support for these combined filters. The
implementation is quite trivial: when there's a combined filter, we
simply recurse into `filter_bitmap()` for all of the sub-filters.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The preceding commit has added a new object filter for git-rev-list(1)
which allows to filter objects by type. Implement the equivalent filter
for packfile bitmaps so that we can answer these queries fast.
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A configuration variable has been added to force tips of certain
refs to be given a reachability bitmap.
* tb/pack-preferred-tips-to-give-bitmap:
builtin/pack-objects.c: respect 'pack.preferBitmapTips'
t/helper/test-bitmap.c: initial commit
pack-bitmap: add 'test_bitmap_commits()' helper
Optimize "rev-list --use-bitmap-index --objects" corner case that
uses negative tags as the stopping points.
* ps/pack-bitmap-optim:
pack-bitmap: avoid traversal of objects referenced by uninteresting tag
When writing a new pack with a bitmap, it is sometimes convenient to
indicate some reference prefixes which should receive priority when
selecting which commits to receive bitmaps.
A truly motivated caller could accomplish this by setting
'pack.islandCore', (since all commits in the core island are similarly
marked as preferred) but this requires callers to opt into using delta
islands, which they may or may not want to do.
Introduce a new multi-valued configuration, 'pack.preferBitmapTips' to
allow callers to specify a list of reference prefixes. All references
which have a prefix contained in 'pack.preferBitmapTips' will mark their
tips as "preferred" in the same way as commits are marked as preferred
for selection by 'pack.islandCore'.
The choice of the verb "prefer" is intentional: marking the NEEDS_BITMAP
flag on an object does *not* guarantee that that object will receive a
bitmap. It merely guarantees that that commit will receive a bitmap over
any *other* commit in the same window by bitmap_writer_select_commits().
The test this patch adds reflects this quirk, too. It only tests that
a commit (which didn't receive bitmaps by default) is selected for
bitmaps after changing the value of 'pack.preferBitmapTips' to include
it. Other commits may lose their bitmaps as a byproduct of how the
selection process works (bitmap_writer_select_commits() ignores the
remainder of a window after seeing a commit with the NEEDS_BITMAP flag).
This configuration will aide in selecting important references for
multi-pack bitmaps, since they do not respect the same pack.islandCore
configuration. (They could, but doing so may be confusing, since it is
packs--not bitmaps--which are influenced by the delta-islands
configuration).
In a fork network repository (one which lists all forks of a given
repository as remotes), for example, it is useful to set
pack.preferBitmapTips to 'refs/remotes/<root>/heads' and
'refs/remotes/<root>/tags', where '<root>' is an opaque identifier
referring to the repository which is at the base of the fork chain.
Suggested-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The next patch will add a 'bitmap' test-tool which prints the list of
commits that have bitmaps computed.
The test helper could implement this itself, but it would need access to
the 'bitmaps' field of the 'pack_bitmap' struct. To avoid exposing this
private detail, implement the entirety of the helper behind a
test_bitmap_commits() function in pack-bitmap.c.
There is some precedence for this with test_bitmap_walk() which is used
to implement the '--test-bitmap' flag in 'git rev-list' (and is also
implemented in pack-bitmap.c).
A caller will be added in the next patch.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When preparing the bitmap walk, we first establish the set of of have
and want objects by iterating over the set of pending objects: if an
object is marked as uninteresting, it's declared as an object we already
have, otherwise as an object we want. These two sets are then used to
compute which transitively referenced objects we need to obtain.
One special case here are tag objects: when a tag is requested, we
resolve it to its first not-tag object and add both resolved objects as
well as the tag itself into either the have or want set. Given that the
uninteresting-property always propagates to referenced objects, it is
clear that if the tag is uninteresting, so are its children and vice
versa. But we fail to propagate the flag, which effectively means that
referenced objects will always be interesting except for the case where
they have already been marked as uninteresting explicitly.
This mislabeling does not impact correctness: we now have it in our
"wants" set, and given that we later do an `AND NOT` of the bitmaps of
"wants" and "haves" sets it is clear that the result must be the same.
But we now start to needlessly traverse the tag's referenced objects in
case it is uninteresting, even though we know that each referenced
object will be uninteresting anyway. In the worst case, this can lead to
a complete graph walk just to establish that we do not care for any
object.
Fix the issue by propagating the `UNINTERESTING` flag to pointees of tag
objects and add a benchmark with negative revisions to p5310. This shows
some nice performance benefits, tested with linux.git:
Test HEAD~ HEAD
---------------------------------------------------------------------------------------------------------------
5310.3: repack to disk 193.18(181.46+16.42) 194.61(183.41+15.83) +0.7%
5310.4: simulated clone 25.93(24.88+1.05) 25.81(24.73+1.08) -0.5%
5310.5: simulated fetch 2.64(5.30+0.69) 2.59(5.16+0.65) -1.9%
5310.6: pack to file (bitmap) 58.75(57.56+6.30) 58.29(57.61+5.73) -0.8%
5310.7: rev-list (commits) 1.45(1.18+0.26) 1.46(1.22+0.24) +0.7%
5310.8: rev-list (objects) 15.35(14.22+1.13) 15.30(14.23+1.07) -0.3%
5310.9: rev-list with tag negated via --not --all (objects) 22.49(20.93+1.56) 0.11(0.09+0.01) -99.5%
5310.10: rev-list with negative tag (objects) 0.61(0.44+0.16) 0.51(0.35+0.16) -16.4%
5310.11: rev-list count with blob:none 12.15(11.19+0.96) 12.18(11.19+0.99) +0.2%
5310.12: rev-list count with blob:limit=1k 17.77(15.71+2.06) 17.75(15.63+2.12) -0.1%
5310.13: rev-list count with tree:0 1.69(1.31+0.38) 1.68(1.28+0.39) -0.6%
5310.14: simulated partial clone 20.14(19.15+0.98) 19.98(18.93+1.05) -0.8%
5310.16: clone (partial bitmap) 12.78(13.89+1.07) 12.72(13.99+1.01) -0.5%
5310.17: pack to file (partial bitmap) 42.07(45.44+2.72) 41.44(44.66+2.80) -1.5%
5310.18: rev-list with tree filter (partial bitmap) 0.44(0.29+0.15) 0.46(0.32+0.14) +4.5%
While most benchmarks are probably in the range of noise, the newly
added 5310.9 and 5310.10 benchmarks consistenly perform better.
Signed-off-by: Patrick Steinhardt <ps@pks.im>.
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Add and apply a semantic patch for converting code that open-codes
CALLOC_ARRAY to use it instead. It shortens the code and infers the
element size automatically.
Signed-off-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
It can sometimes be useful to see which refs are contributing to the
overall repository size (e.g., does some branch have a bunch of objects
not found elsewhere in history, which indicates that deleting it would
shrink the size of a clone).
You can find that out by generating a list of objects, getting their
sizes from cat-file, and then summing them, like:
git rev-list --objects --no-object-names main..branch
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
Though note that the caveats from git-cat-file(1) apply here. We "blame"
base objects more than their deltas, even though the relationship could
easily be flipped. Still, it can be a useful rough measure.
But one problem is that it's slow to run. Teaching rev-list to sum up
the sizes can be much faster for two reasons:
1. It skips all of the piping of object names and sizes.
2. If bitmaps are in use, for objects that are in the
bitmapped packfile we can skip the oid_object_info()
lookup entirely, and just ask the revindex for the
on-disk size.
This patch implements a --disk-usage option which produces the same
answer in a fraction of the time. Here are some timings using a clone of
torvalds/linux:
[rev-list piped to cat-file, no bitmaps]
$ time git rev-list --objects --no-object-names --all |
git cat-file --buffer --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m29.635s
user 0m38.003s
sys 0m1.093s
[internal, no bitmaps]
$ time git rev-list --disk-usage --objects --all
1459938510
real 0m31.262s
user 0m30.885s
sys 0m0.376s
Even though the wall-clock time is slightly worse due to parallelism,
notice the CPU savings between the two. We saved 21% of the CPU just by
avoiding the pipes.
But the real win is with bitmaps. If we use them without the new option:
[rev-list piped to cat-file, bitmaps]
$ time git rev-list --objects --no-object-names --all --use-bitmap-index |
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m6.244s
user 0m8.452s
sys 0m0.311s
then we're faster to generate the list of objects, but we still spend a
lot of time piping and looking things up. But if we do both together:
[internal, bitmaps]
$ time git rev-list --disk-usage --objects --all --use-bitmap-index
1459938510
real 0m0.219s
user 0m0.169s
sys 0m0.049s
then we get the same answer much faster.
For "--all", that answer will correspond closely to "du objects/pack",
of course. But we're actually checking reachability here, so we're still
fast when we ask for more interesting things:
$ time git rev-list --disk-usage --use-bitmap-index v5.0..v5.10
374798628
real 0m0.429s
user 0m0.356s
sys 0m0.072s
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Remove another instance of looking at the revindex directly by instead
calling 'pack_pos_to_index()'. Unlike other patches, this caller only
cares about the index position of each object in the loop.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Remove another instance of direct revindex manipulation by calling
'pack_pos_to_offset()' instead (the caller here does not care about the
index position of the object at position 'pos').
Note that we cannot just use the existing "offset" variable to store the
value we get from pack_pos_to_offset(). It is incremented by
unpack_object_header(), but we later need the original value. Since
we'll no longer have revindex->offset to read it from, we'll store that
in a separate variable ("header" since it points to the entry's header
bytes).
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Remove another caller that holds onto a 'struct revindex_entry' by
replacing the direct indexing with calls to 'pack_pos_to_offset()' and
'pack_pos_to_index()'.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Avoid storing the revindex entry directly, since this structure will
soon be removed from the public interface. Instead, store the offset and
index position by calling 'pack_pos_to_offset()' and
'pack_pos_to_index()', respectively.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Replace find_revindex_position() with its counterpart in the new API,
offset_to_pack_pos().
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
'find_objects()' currently needs to interact with the bitmaps khash
pretty closely. To make 'find_objects()' read a little more
straightforwardly, remove some of the khash-level details into a new
function that describes what it does: 'add_commit_to_bitmap()'.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A couple of callers within pack-bitmap.c duplicate logic to lookup a
given object id in the bitamps khash. Factor this out into a new
function, 'bitmap_for_commit()' to reduce some code duplication.
Make this new function non-static, since it will be used in later
commits from outside of pack-bitmap.c.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The on-disk bitmap format has a flag to mark a bitmap to be "reused".
This is a rather curious feature, and works like this:
- a run of pack-objects would decide to mark the last 80% of the
bitmaps it generates with the reuse flag
- the next time we generate bitmaps, we'd see those reuse flags from
the last run, and mark those commits as special:
- we'd be more likely to select those commits to get bitmaps in
the new output
- when generating the bitmap for a selected commit, we'd reuse the
old bitmap as-is (rearranging the bits to match the new pack, of
course)
However, neither of these behaviors particularly makes sense.
Just because a commit happened to be bitmapped last time does not make
it a good candidate for having a bitmap this time. In particular, we may
choose bitmaps based on how recent they are in history, or whether a ref
tip points to them, and those things will change. We're better off
re-considering fresh which commits are good candidates.
Reusing the existing bitmap _is_ a reasonable thing to do to save
computation. But only reusing exact bitmaps is a weak form of this. If
we have an old bitmap for A and now want a new bitmap for its child, we
should be able to compute that only by looking at trees and that are new
to the child. But this code would consider only exact reuse (which is
perhaps why it was eager to select those commits in the first place).
Furthermore, the recent switch to the reverse-edge algorithm for
generating bitmaps dropped this optimization entirely (and yet still
performs better).
So let's do a few cleanups:
- drop the whole "reusing bitmaps" phase of generating bitmaps. It's
not helping anything, and is mostly unused code (or worse, code that
is using CPU but not doing anything useful)
- drop the use of the on-disk reuse flag to select commits to bitmap
- stop setting the on-disk reuse flag in bitmaps we generate (since
nothing respects it anymore)
We will keep a few innards of the reuse code, which will help us
implement a more capable version of the "reuse" optimization:
- simplify rebuild_existing_bitmaps() into a function that only builds
the mapping of bits between the old and new orders, but doesn't
actually convert any bitmaps
- make rebuild_bitmap() public; we'll call it lazily to convert bitmaps
as we traverse (using the mapping created above)
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Before 'load_bitmap_entries_v1()' reads an actual EWAH bitmap, it should
check that it can safely do so by ensuring that there are at least 6
bytes available to be read (four for the commit's index position, and
then two more for the xor offset and flags, respectively).
Likewise, it should check that the commit index it read refers to a
legitimate object in the pack.
The first fix catches a truncation bug that was exposed when testing,
and the second is purely precautionary.
There are some possible future improvements, not pursued here. They are:
- Computing the correct boundary of the bitmap itself in the caller
and ensuring that we don't read past it. This may or may not be
worth it, since in a truncation situation, all bets are off: (is the
trailer still there and the bitmap entries malformed, or is the
trailer truncated?). The best we can do is try to read what's there
as if it's correct data (and protect ourselves when it's obviously
bogus).
- Avoid the magic "6" by teaching read_be32() and read_u8() (both of
which are custom helpers for this function) to check sizes before
advancing the pointers.
- Adding more tests in this area. Testing these truncation situations
are remarkably fragile to even subtle changes in the bitmap
generation. So, the resulting tests are likely to be quite brittle.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
You can use "git rev-list --test-bitmap HEAD" to check that bitmaps
produce the same answer we'd get from a regular traversal. But if we
detect an error, we only print "mismatch", and still exit with a
successful error code.
That makes the uses of --test-bitmap in the test suite (e.g., in t5310)
mostly pointless: even if we saw an error, the tests wouldn't notice.
Let's instead call die(), which will let these tests work as designed,
and alert us if the bitmaps are bogus.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A .bitmap file may have a "name hash cache" extension, which puts a
sequence of uint32_t values (one per object) at the end of the file.
When we see a flag indicating this extension, we blindly subtract the
appropriate number of bytes from our available length. However, if the
.bitmap file is too short, we'll underflow our length variable and wrap
around, thinking we have a very large length. This can lead to reading
out-of-bounds bytes while loading individual ewah bitmaps.
We can fix this by checking the number of available bytes when we parse
the header. The existing "truncated bitmap" test is now split into two
tests: one where we don't have this extension at all (and hence actually
do try to read a truncated ewah bitmap) and one where we realize
up-front that we can't even fit in the cache structure. We'll check
stderr in each case to make sure we hit the error we're expecting.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When we parse a .bitmap header, we first check that we have enough bytes
to make a valid header. We do that based on sizeof(struct
bitmap_disk_header). However, as of 0f4d6cada8 (pack-bitmap: make bitmap
header handling hash agnostic, 2019-02-19), that struct oversizes its
checksum member to GIT_MAX_RAWSZ. That means we need to adjust for the
difference between that constant and the size of the actual hash we're
using. That commit adjusted the code which moves our pointer forward,
but forgot to update the size check.
This meant we were overly strict about the header size (requiring room
for a 32-byte worst-case hash, when sha1 is only 20 bytes). But in
practice it didn't matter because bitmap files tend to have at least 12
bytes of actual data anyway, so it was unlikely for a valid file to be
caught by this.
Let's fix it by pulling the header size into a separate variable and
using it in both spots. That fixes the bug and simplifies the code to make
it harder to have a mismatch like this in the future. It will also come
in handy in the next patch for more bounds checking.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Sometimes a bitmap traversal still has to walk some commits manually,
because those commits aren't included in the bitmap packfile (e.g., due
to a push or commit since the last full repack). If we're given an
object filter, we don't pass it down to this traversal. It's not
necessary for correctness because the bitmap code has its own filters to
post-process the bitmap result (which it must, to filter out the objects
that _are_ mentioned in the bitmapped packfile).
And with blob filters, there was no performance reason to pass along
those filters, either. The fill-in traversal could omit them from the
result, but it wouldn't save us any time to do so, since we'd still have
to walk each tree entry to see if it's a blob or not.
But now that we support tree filters, there's opportunity for savings. A
tree:depth=0 filter means we can avoid accessing trees entirely, since
we know we won't them (or any of the subtrees or blobs they point to).
The new test in p5310 shows this off (the "partial bitmap" state is one
where HEAD~100 and its ancestors are all in a bitmapped pack, but
HEAD~100..HEAD are not). Here are the results (run against linux.git):
Test HEAD^ HEAD
-------------------------------------------------------------------------------------------------
[...]
5310.16: rev-list with tree filter (partial bitmap) 0.19(0.17+0.02) 0.03(0.02+0.01) -84.2%
The absolute number of savings isn't _huge_, but keep in mind that we
only omitted 100 first-parent links (in the version of linux.git here,
that's 894 actual commits). In a more pathological case, we might have a
much larger proportion of non-bitmapped commits. I didn't bother
creating such a case in the perf script because the setup is expensive,
and this is plenty to show the savings as a percentage.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In the previous patch, we made it easy to define other filters that
exclude all objects of a certain type. Use that in order to implement
bitmap-level filtering for the '--filter=tree:<n>' filter when 'n' is
equal to 0.
The general case is not helped by bitmaps, since for values of 'n > 0',
the object filtering machinery requires a full-blown tree traversal in
order to determine the depth of a given tree. Caching this is
non-obvious, too, since the same tree object can have a different depth
depending on the context (e.g., a tree was moved up in the directory
hierarchy between two commits).
But, the 'n = 0' case can be helped, and this patch does so. Running
p5310.11 in this tree and on master with the kernel, we can see that
this case is helped substantially:
Test master this tree
--------------------------------------------------------------------------------
5310.11: rev-list count with tree:0 10.68(10.39+0.27) 0.06(0.04+0.01) -99.4%
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In 4f3bd5606a (pack-bitmap: implement BLOB_NONE filtering, 2020-02-14),
filtering support for bitmaps was added for the 'LOFC_BLOB_NONE' filter.
In the future, we would like to add support for filters that behave as
if they exclude a certain type of object, for e.g., the tree depth
filter with depth 0.
To prepare for this, make some of the functions used for filtering more
generic, such as 'find_tip_blobs' and 'filter_bitmap_blob_none' so that
they can work over arbitrary object types.
To that end, create 'find_tip_objects' and
'filter_bitmap_exclude_type', and redefine the aforementioned functions
in terms of those.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Code cleanup to use "struct object_id" more by replacing use of
"char *sha1"
* jk/nth-packed-object-id:
packfile: drop nth_packed_object_sha1()
packed_object_info(): use object_id internally for delta base
packed_object_info(): use object_id for returning delta base
pack-check: push oid lookup into loop
pack-check: convert "internal error" die to a BUG()
pack-bitmap: use object_id when loading on-disk bitmaps
pack-objects: use object_id struct in pack-reuse code
pack-objects: convert oe_set_delta_ext() to use object_id
pack-objects: read delta base oid into object_id struct
nth_packed_object_oid(): use customary integer return
The object reachability bitmap machinery and the partial cloning
machinery were not prepared to work well together, because some
object-filtering criteria that partial clones use inherently rely
on object traversal, but the bitmap machinery is an optimization
to bypass that object traversal. There however are some cases
where they can work together, and they were taught about them.
* jk/object-filter-with-bitmap:
rev-list --count: comment on the use of count_right++
pack-objects: support filters with bitmaps
pack-bitmap: implement BLOB_LIMIT filtering
pack-bitmap: implement BLOB_NONE filtering
bitmap: add bitmap_unset() function
rev-list: use bitmap filters for traversal
pack-bitmap: basic noop bitmap filter infrastructure
rev-list: allow commit-only bitmap traversals
t5310: factor out bitmap traversal comparison
rev-list: allow bitmaps when counting objects
rev-list: make --count work with --objects
rev-list: factor out bitmap-optimized routines
pack-bitmap: refuse to do a bitmap traversal with pathspecs
rev-list: fallback to non-bitmap traversal when filtering
pack-bitmap: fix leak of haves/wants object lists
pack-bitmap: factor out type iterator initialization
A pack bitmap file contains the index position of the commit for each
bitmap, which we then translate into an object id via
nth_packed_object_sha1(). In preparation for that function going away,
we can switch to the more type-safe nth_packed_object_id().
Note that even though the result ends up in an object_id this does incur
an extra copy of the hash (into our temporary object_id, and then into
the final malloc'd stored_bitmap struct). This shouldn't make any
measurable difference. If it did, we could avoid this copy _and_ the
copy of the rest of the items by allocating the stored_bitmap struct
beforehand and reading directly into it from the bitmap file. Or better
still, if this is a bottleneck, we could introduce an on-disk index to
the bitmap file so we don't have to read every single entry to use just
one of them. So it's not worth worrying about micro-optimizing out this
one hash copy.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Our nth_packed_object_sha1() function returns NULL for error. So when we
wrapped it with nth_packed_object_oid(), we kept the same semantics. But
it's a bit funny, because the caller actually passes in an out
parameter, and the pointer we return is just that same struct they
passed to us (or NULL).
It's not too terrible, but it does make the interface a little
non-idiomatic. Let's switch to our usual "0 for success, negative for
error" return value. Most callers either don't check it, or are
trivially converted. The one that requires the biggest change is
actually improved, as we can ditch an extra aliased pointer variable.
Since we are changing the interface in a subtle way that the compiler
wouldn't catch, let's also change the name to catch any topics in
flight. We can drop the 'o' and make it nth_packed_object_id(). That's
slightly shorter, but also less redundant since the 'o' stands for
"object" already.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>