Branch:
maint
main
maint
master
next
seen
todo
gitgui-0.10.0
gitgui-0.10.1
gitgui-0.10.2
gitgui-0.11.0
gitgui-0.12.0
gitgui-0.13.0
gitgui-0.14.0
gitgui-0.15.0
gitgui-0.16.0
gitgui-0.17.0
gitgui-0.18.0
gitgui-0.19.0
gitgui-0.20.0
gitgui-0.21.0
gitgui-0.6.0
gitgui-0.6.1
gitgui-0.6.2
gitgui-0.6.3
gitgui-0.6.4
gitgui-0.6.5
gitgui-0.7.0
gitgui-0.7.0-rc1
gitgui-0.7.1
gitgui-0.7.2
gitgui-0.7.3
gitgui-0.7.4
gitgui-0.7.5
gitgui-0.8.0
gitgui-0.8.1
gitgui-0.8.2
gitgui-0.8.3
gitgui-0.8.4
gitgui-0.9.0
gitgui-0.9.1
gitgui-0.9.2
gitgui-0.9.3
junio-gpg-pub
v0.99
v0.99.1
v0.99.2
v0.99.3
v0.99.4
v0.99.5
v0.99.6
v0.99.7
v0.99.7a
v0.99.7b
v0.99.7c
v0.99.7d
v0.99.8
v0.99.8a
v0.99.8b
v0.99.8c
v0.99.8d
v0.99.8e
v0.99.8f
v0.99.8g
v0.99.9
v0.99.9a
v0.99.9b
v0.99.9c
v0.99.9d
v0.99.9e
v0.99.9f
v0.99.9g
v0.99.9h
v0.99.9i
v0.99.9j
v0.99.9k
v0.99.9l
v0.99.9m
v0.99.9n
v1.0.0
v1.0.0a
v1.0.0b
v1.0.1
v1.0.10
v1.0.11
v1.0.12
v1.0.13
v1.0.2
v1.0.3
v1.0.4
v1.0.5
v1.0.6
v1.0.7
v1.0.8
v1.0.9
v1.0rc1
v1.0rc2
v1.0rc3
v1.0rc4
v1.0rc5
v1.0rc6
v1.1.0
v1.1.1
v1.1.2
v1.1.3
v1.1.4
v1.1.5
v1.1.6
v1.2.0
v1.2.1
v1.2.2
v1.2.3
v1.2.4
v1.2.5
v1.2.6
v1.3.0
v1.3.0-rc1
v1.3.0-rc2
v1.3.0-rc3
v1.3.0-rc4
v1.3.1
v1.3.2
v1.3.3
v1.4.0
v1.4.0-rc1
v1.4.0-rc2
v1.4.1
v1.4.1-rc1
v1.4.1-rc2
v1.4.1.1
v1.4.2
v1.4.2-rc1
v1.4.2-rc2
v1.4.2-rc3
v1.4.2-rc4
v1.4.2.1
v1.4.2.2
v1.4.2.3
v1.4.2.4
v1.4.3
v1.4.3-rc1
v1.4.3-rc2
v1.4.3-rc3
v1.4.3.1
v1.4.3.2
v1.4.3.3
v1.4.3.4
v1.4.3.5
v1.4.4
v1.4.4-rc1
v1.4.4-rc2
v1.4.4.1
v1.4.4.2
v1.4.4.3
v1.4.4.4
v1.4.4.5
v1.5.0
v1.5.0-rc0
v1.5.0-rc1
v1.5.0-rc2
v1.5.0-rc3
v1.5.0-rc4
v1.5.0.1
v1.5.0.2
v1.5.0.3
v1.5.0.4
v1.5.0.5
v1.5.0.6
v1.5.0.7
v1.5.1
v1.5.1-rc1
v1.5.1-rc2
v1.5.1-rc3
v1.5.1.1
v1.5.1.2
v1.5.1.3
v1.5.1.4
v1.5.1.5
v1.5.1.6
v1.5.2
v1.5.2-rc0
v1.5.2-rc1
v1.5.2-rc2
v1.5.2-rc3
v1.5.2.1
v1.5.2.2
v1.5.2.3
v1.5.2.4
v1.5.2.5
v1.5.3
v1.5.3-rc0
v1.5.3-rc1
v1.5.3-rc2
v1.5.3-rc3
v1.5.3-rc4
v1.5.3-rc5
v1.5.3-rc6
v1.5.3-rc7
v1.5.3.1
v1.5.3.2
v1.5.3.3
v1.5.3.4
v1.5.3.5
v1.5.3.6
v1.5.3.7
v1.5.3.8
v1.5.4
v1.5.4-rc0
v1.5.4-rc1
v1.5.4-rc2
v1.5.4-rc3
v1.5.4-rc4
v1.5.4-rc5
v1.5.4.1
v1.5.4.2
v1.5.4.3
v1.5.4.4
v1.5.4.5
v1.5.4.6
v1.5.4.7
v1.5.5
v1.5.5-rc0
v1.5.5-rc1
v1.5.5-rc2
v1.5.5-rc3
v1.5.5.1
v1.5.5.2
v1.5.5.3
v1.5.5.4
v1.5.5.5
v1.5.5.6
v1.5.6
v1.5.6-rc0
v1.5.6-rc1
v1.5.6-rc2
v1.5.6-rc3
v1.5.6.1
v1.5.6.2
v1.5.6.3
v1.5.6.4
v1.5.6.5
v1.5.6.6
v1.6.0
v1.6.0-rc0
v1.6.0-rc1
v1.6.0-rc2
v1.6.0-rc3
v1.6.0.1
v1.6.0.2
v1.6.0.3
v1.6.0.4
v1.6.0.5
v1.6.0.6
v1.6.1
v1.6.1-rc1
v1.6.1-rc2
v1.6.1-rc3
v1.6.1-rc4
v1.6.1.1
v1.6.1.2
v1.6.1.3
v1.6.1.4
v1.6.2
v1.6.2-rc0
v1.6.2-rc1
v1.6.2-rc2
v1.6.2.1
v1.6.2.2
v1.6.2.3
v1.6.2.4
v1.6.2.5
v1.6.3
v1.6.3-rc0
v1.6.3-rc1
v1.6.3-rc2
v1.6.3-rc3
v1.6.3-rc4
v1.6.3.1
v1.6.3.2
v1.6.3.3
v1.6.3.4
v1.6.4
v1.6.4-rc0
v1.6.4-rc1
v1.6.4-rc2
v1.6.4-rc3
v1.6.4.1
v1.6.4.2
v1.6.4.3
v1.6.4.4
v1.6.4.5
v1.6.5
v1.6.5-rc0
v1.6.5-rc1
v1.6.5-rc2
v1.6.5-rc3
v1.6.5.1
v1.6.5.2
v1.6.5.3
v1.6.5.4
v1.6.5.5
v1.6.5.6
v1.6.5.7
v1.6.5.8
v1.6.5.9
v1.6.6
v1.6.6-rc0
v1.6.6-rc1
v1.6.6-rc2
v1.6.6-rc3
v1.6.6-rc4
v1.6.6.1
v1.6.6.2
v1.6.6.3
v1.7.0
v1.7.0-rc0
v1.7.0-rc1
v1.7.0-rc2
v1.7.0.1
v1.7.0.2
v1.7.0.3
v1.7.0.4
v1.7.0.5
v1.7.0.6
v1.7.0.7
v1.7.0.8
v1.7.0.9
v1.7.1
v1.7.1-rc0
v1.7.1-rc1
v1.7.1-rc2
v1.7.1.1
v1.7.1.2
v1.7.1.3
v1.7.1.4
v1.7.10
v1.7.10-rc0
v1.7.10-rc1
v1.7.10-rc2
v1.7.10-rc3
v1.7.10-rc4
v1.7.10.1
v1.7.10.2
v1.7.10.3
v1.7.10.4
v1.7.10.5
v1.7.11
v1.7.11-rc0
v1.7.11-rc1
v1.7.11-rc2
v1.7.11-rc3
v1.7.11.1
v1.7.11.2
v1.7.11.3
v1.7.11.4
v1.7.11.5
v1.7.11.6
v1.7.11.7
v1.7.12
v1.7.12-rc0
v1.7.12-rc1
v1.7.12-rc2
v1.7.12-rc3
v1.7.12.1
v1.7.12.2
v1.7.12.3
v1.7.12.4
v1.7.2
v1.7.2-rc0
v1.7.2-rc1
v1.7.2-rc2
v1.7.2-rc3
v1.7.2.1
v1.7.2.2
v1.7.2.3
v1.7.2.4
v1.7.2.5
v1.7.3
v1.7.3-rc0
v1.7.3-rc1
v1.7.3-rc2
v1.7.3.1
v1.7.3.2
v1.7.3.3
v1.7.3.4
v1.7.3.5
v1.7.4
v1.7.4-rc0
v1.7.4-rc1
v1.7.4-rc2
v1.7.4-rc3
v1.7.4.1
v1.7.4.2
v1.7.4.3
v1.7.4.4
v1.7.4.5
v1.7.5
v1.7.5-rc0
v1.7.5-rc1
v1.7.5-rc2
v1.7.5-rc3
v1.7.5.1
v1.7.5.2
v1.7.5.3
v1.7.5.4
v1.7.6
v1.7.6-rc0
v1.7.6-rc1
v1.7.6-rc2
v1.7.6-rc3
v1.7.6.1
v1.7.6.2
v1.7.6.3
v1.7.6.4
v1.7.6.5
v1.7.6.6
v1.7.7
v1.7.7-rc0
v1.7.7-rc1
v1.7.7-rc2
v1.7.7-rc3
v1.7.7.1
v1.7.7.2
v1.7.7.3
v1.7.7.4
v1.7.7.5
v1.7.7.6
v1.7.7.7
v1.7.8
v1.7.8-rc0
v1.7.8-rc1
v1.7.8-rc2
v1.7.8-rc3
v1.7.8-rc4
v1.7.8.1
v1.7.8.2
v1.7.8.3
v1.7.8.4
v1.7.8.5
v1.7.8.6
v1.7.9
v1.7.9-rc0
v1.7.9-rc1
v1.7.9-rc2
v1.7.9.1
v1.7.9.2
v1.7.9.3
v1.7.9.4
v1.7.9.5
v1.7.9.6
v1.7.9.7
v1.8.0
v1.8.0-rc0
v1.8.0-rc1
v1.8.0-rc2
v1.8.0-rc3
v1.8.0.1
v1.8.0.2
v1.8.0.3
v1.8.1
v1.8.1-rc0
v1.8.1-rc1
v1.8.1-rc2
v1.8.1-rc3
v1.8.1.1
v1.8.1.2
v1.8.1.3
v1.8.1.4
v1.8.1.5
v1.8.1.6
v1.8.2
v1.8.2-rc0
v1.8.2-rc1
v1.8.2-rc2
v1.8.2-rc3
v1.8.2.1
v1.8.2.2
v1.8.2.3
v1.8.3
v1.8.3-rc0
v1.8.3-rc1
v1.8.3-rc2
v1.8.3-rc3
v1.8.3.1
v1.8.3.2
v1.8.3.3
v1.8.3.4
v1.8.4
v1.8.4-rc0
v1.8.4-rc1
v1.8.4-rc2
v1.8.4-rc3
v1.8.4-rc4
v1.8.4.1
v1.8.4.2
v1.8.4.3
v1.8.4.4
v1.8.4.5
v1.8.5
v1.8.5-rc0
v1.8.5-rc1
v1.8.5-rc2
v1.8.5-rc3
v1.8.5.1
v1.8.5.2
v1.8.5.3
v1.8.5.4
v1.8.5.5
v1.8.5.6
v1.9-rc0
v1.9-rc1
v1.9-rc2
v1.9.0
v1.9.0-rc3
v1.9.1
v1.9.2
v1.9.3
v1.9.4
v1.9.5
v2.0.0
v2.0.0-rc0
v2.0.0-rc1
v2.0.0-rc2
v2.0.0-rc3
v2.0.0-rc4
v2.0.1
v2.0.2
v2.0.3
v2.0.4
v2.0.5
v2.1.0
v2.1.0-rc0
v2.1.0-rc1
v2.1.0-rc2
v2.1.1
v2.1.2
v2.1.3
v2.1.4
v2.10.0
v2.10.0-rc0
v2.10.0-rc1
v2.10.0-rc2
v2.10.1
v2.10.2
v2.10.3
v2.10.4
v2.10.5
v2.11.0
v2.11.0-rc0
v2.11.0-rc1
v2.11.0-rc2
v2.11.0-rc3
v2.11.1
v2.11.2
v2.11.3
v2.11.4
v2.12.0
v2.12.0-rc0
v2.12.0-rc1
v2.12.0-rc2
v2.12.1
v2.12.2
v2.12.3
v2.12.4
v2.12.5
v2.13.0
v2.13.0-rc0
v2.13.0-rc1
v2.13.0-rc2
v2.13.1
v2.13.2
v2.13.3
v2.13.4
v2.13.5
v2.13.6
v2.13.7
v2.14.0
v2.14.0-rc0
v2.14.0-rc1
v2.14.1
v2.14.2
v2.14.3
v2.14.4
v2.14.5
v2.14.6
v2.15.0
v2.15.0-rc0
v2.15.0-rc1
v2.15.0-rc2
v2.15.1
v2.15.2
v2.15.3
v2.15.4
v2.16.0
v2.16.0-rc0
v2.16.0-rc1
v2.16.0-rc2
v2.16.1
v2.16.2
v2.16.3
v2.16.4
v2.16.5
v2.16.6
v2.17.0
v2.17.0-rc0
v2.17.0-rc1
v2.17.0-rc2
v2.17.1
v2.17.2
v2.17.3
v2.17.4
v2.17.5
v2.17.6
v2.18.0
v2.18.0-rc0
v2.18.0-rc1
v2.18.0-rc2
v2.18.1
v2.18.2
v2.18.3
v2.18.4
v2.18.5
v2.19.0
v2.19.0-rc0
v2.19.0-rc1
v2.19.0-rc2
v2.19.1
v2.19.2
v2.19.3
v2.19.4
v2.19.5
v2.19.6
v2.2.0
v2.2.0-rc0
v2.2.0-rc1
v2.2.0-rc2
v2.2.0-rc3
v2.2.1
v2.2.2
v2.2.3
v2.20.0
v2.20.0-rc0
v2.20.0-rc1
v2.20.0-rc2
v2.20.1
v2.20.2
v2.20.3
v2.20.4
v2.20.5
v2.21.0
v2.21.0-rc0
v2.21.0-rc1
v2.21.0-rc2
v2.21.1
v2.21.2
v2.21.3
v2.21.4
v2.22.0
v2.22.0-rc0
v2.22.0-rc1
v2.22.0-rc2
v2.22.0-rc3
v2.22.1
v2.22.2
v2.22.3
v2.22.4
v2.22.5
v2.23.0
v2.23.0-rc0
v2.23.0-rc1
v2.23.0-rc2
v2.23.1
v2.23.2
v2.23.3
v2.23.4
v2.24.0
v2.24.0-rc0
v2.24.0-rc1
v2.24.0-rc2
v2.24.1
v2.24.2
v2.24.3
v2.24.4
v2.25.0
v2.25.0-rc0
v2.25.0-rc1
v2.25.0-rc2
v2.25.1
v2.25.2
v2.25.3
v2.25.4
v2.25.5
v2.26.0
v2.26.0-rc0
v2.26.0-rc1
v2.26.0-rc2
v2.26.1
v2.26.2
v2.26.3
v2.27.0
v2.27.0-rc0
v2.27.0-rc1
v2.27.0-rc2
v2.27.1
v2.28.0
v2.28.0-rc0
v2.28.0-rc1
v2.28.0-rc2
v2.28.1
v2.29.0
v2.29.0-rc0
v2.29.0-rc1
v2.29.0-rc2
v2.29.1
v2.29.2
v2.29.3
v2.3.0
v2.3.0-rc0
v2.3.0-rc1
v2.3.0-rc2
v2.3.1
v2.3.10
v2.3.2
v2.3.3
v2.3.4
v2.3.5
v2.3.6
v2.3.7
v2.3.8
v2.3.9
v2.30.0
v2.30.0-rc0
v2.30.0-rc1
v2.30.0-rc2
v2.30.1
v2.30.2
v2.30.3
v2.30.4
v2.30.5
v2.30.6
v2.30.7
v2.30.8
v2.30.9
v2.31.0
v2.31.0-rc0
v2.31.0-rc1
v2.31.0-rc2
v2.31.1
v2.31.2
v2.31.3
v2.31.4
v2.31.5
v2.31.6
v2.31.7
v2.31.8
v2.32.0
v2.32.0-rc0
v2.32.0-rc1
v2.32.0-rc2
v2.32.0-rc3
v2.32.1
v2.32.2
v2.32.3
v2.32.4
v2.32.5
v2.32.6
v2.32.7
v2.33.0
v2.33.0-rc0
v2.33.0-rc1
v2.33.0-rc2
v2.33.1
v2.33.2
v2.33.3
v2.33.4
v2.33.5
v2.33.6
v2.33.7
v2.33.8
v2.34.0
v2.34.0-rc0
v2.34.0-rc1
v2.34.0-rc2
v2.34.1
v2.34.2
v2.34.3
v2.34.4
v2.34.5
v2.34.6
v2.34.7
v2.34.8
v2.35.0
v2.35.0-rc0
v2.35.0-rc1
v2.35.0-rc2
v2.35.1
v2.35.2
v2.35.3
v2.35.4
v2.35.5
v2.35.6
v2.35.7
v2.35.8
v2.36.0
v2.36.0-rc0
v2.36.0-rc1
v2.36.0-rc2
v2.36.1
v2.36.2
v2.36.3
v2.36.4
v2.36.5
v2.36.6
v2.37.0
v2.37.0-rc0
v2.37.0-rc1
v2.37.0-rc2
v2.37.1
v2.37.2
v2.37.3
v2.37.4
v2.37.5
v2.37.6
v2.37.7
v2.38.0
v2.38.0-rc0
v2.38.0-rc1
v2.38.0-rc2
v2.38.1
v2.38.2
v2.38.3
v2.38.4
v2.38.5
v2.39.0
v2.39.0-rc0
v2.39.0-rc1
v2.39.0-rc2
v2.39.1
v2.39.2
v2.39.3
v2.4.0
v2.4.0-rc0
v2.4.0-rc1
v2.4.0-rc2
v2.4.0-rc3
v2.4.1
v2.4.10
v2.4.11
v2.4.12
v2.4.2
v2.4.3
v2.4.4
v2.4.5
v2.4.6
v2.4.7
v2.4.8
v2.4.9
v2.40.0
v2.40.0-rc0
v2.40.0-rc1
v2.40.0-rc2
v2.40.1
v2.41.0
v2.41.0-rc0
v2.41.0-rc1
v2.41.0-rc2
v2.5.0
v2.5.0-rc0
v2.5.0-rc1
v2.5.0-rc2
v2.5.0-rc3
v2.5.1
v2.5.2
v2.5.3
v2.5.4
v2.5.5
v2.5.6
v2.6.0
v2.6.0-rc0
v2.6.0-rc1
v2.6.0-rc2
v2.6.0-rc3
v2.6.1
v2.6.2
v2.6.3
v2.6.4
v2.6.5
v2.6.6
v2.6.7
v2.7.0
v2.7.0-rc0
v2.7.0-rc1
v2.7.0-rc2
v2.7.0-rc3
v2.7.1
v2.7.2
v2.7.3
v2.7.4
v2.7.5
v2.7.6
v2.8.0
v2.8.0-rc0
v2.8.0-rc1
v2.8.0-rc2
v2.8.0-rc3
v2.8.0-rc4
v2.8.1
v2.8.2
v2.8.3
v2.8.4
v2.8.5
v2.8.6
v2.9.0
v2.9.0-rc0
v2.9.0-rc1
v2.9.0-rc2
v2.9.1
v2.9.2
v2.9.3
v2.9.4
v2.9.5
${ noResults }
110 Commits (maint)
Author | SHA1 | Message | Date |
---|---|---|---|
![]() |
0ba05cf2e0 |
repo_read_object_file(): stop wrapping read_object_file_extended()
The only caller of read_object_file_extended() is the thin wrapper of repo_read_object_file(). Instead of wrapping, let's just rename the inner function and let people call it directly. This cleans up the namespace and reduces confusion. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
2 years ago |
![]() |
7be13f5f74 |
read_object_file_extended(): drop lookup_replace option
Our sole caller always passes in "1", so we can just drop the parameter entirely. Anybody who doesn't want this behavior could easily call oid_object_info_extended() themselves, as we're just a thin wrapper around it. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
2 years ago |
![]() |
b25562e63f |
object-file: inline calls to read_object()
Since read_object() is these days just a thin wrapper around oid_object_info_extended(), and since it only has two callers, let's just inline those calls. This has a few positive outcomes: - it's a net reduction in source code lines - even though the callers end up with a few extra lines, they're now more flexible and can use object_info flags directly. So no more need to convert die_if_corrupt between parameter/flag, and we can ask for lookup replacement with a flag rather than doing it ourselves. - there's one fewer function in an already crowded namespace (e.g., the difference between read_object() and read_object_file() was not immediately obvious; now we only have one of them). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
2 years ago |
![]() |
9e59b38c88 |
object-file: emit corruption errors when detected
Instead of relying on errno being preserved across function calls, teach
do_oid_object_info_extended() to itself report object corruption when
it first detects it. There are 3 types of corruption being detected:
- when a replacement object is missing
- when a loose object is corrupt
- when a packed object is corrupt and the object cannot be read
in another way
Note that in the RHS of this patch's diff, a check for ENOENT that was
introduced in
|
2 years ago |
![]() |
acd6f0d973 |
object-file: remove OBJECT_INFO_IGNORE_LOOSE
Its last user was removed in
|
2 years ago |
![]() |
5cf88fd8b0 |
git-compat-util.h: use "UNUSED", not "UNUSED(var)"
As reported in [1] the "UNUSED(var)" macro introduced in
2174b8c75de (Merge branch 'jk/unused-annotation' into next,
2022-08-24) breaks coccinelle's parsing of our sources in files where
it occurs.
Let's instead partially go with the approach suggested in [2] of
making this not take an argument. As noted in [1] "coccinelle" will
ignore such tokens in argument lists that it doesn't know about, and
it's less of a surprise to syntax highlighters.
This undoes the "help us notice when a parameter marked as unused is
actually use" part of
|
3 years ago |
![]() |
02c3c59e62 |
hashmap: mark unused callback parameters
Hashmap comparison functions must conform to a particular callback interface, but many don't use all of their parameters. Especially the void cmp_data pointer, but some do not use keydata either (because they can easily form a full struct to pass when doing lookups). Let's mark these to make -Wunused-parameter happy. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
2b6070ac4c |
object-file.c: add "stream_loose_object()" to handle large object
If we want unpack and write a loose object using "write_loose_object", we have to feed it with a buffer with the same size of the object, which will consume lots of memory and may cause OOM. This can be improved by feeding data to "stream_loose_object()" in a stream. Add a new function "stream_loose_object()", which is a stream version of "write_loose_object()" but with a low memory footprint. We will use this function to unpack large blob object in later commit. Another difference with "write_loose_object()" is that we have no chance to run "write_object_file_prepare()" to calculate the oid in advance. In "write_loose_object()", we know the oid and we can write the temporary file in the same directory as the final object, but for an object with an undetermined oid, we don't know the exact directory for the object. Still, we need to save the temporary file we're preparing somewhere. We'll do that in the top-level ".git/objects/" directory (or whatever "GIT_OBJECT_DIRECTORY" is set to). Once we've streamed it we'll know the OID, and will move it to its canonical path. "freshen_packed_object()" or "freshen_loose_object()" will be called inside "stream_loose_object()" after obtaining the "oid". After the temporary file is written, we wants to mark the object to recent and we may find that where indeed is already the object. We should remove the temporary and do not leave a new copy of the object. Helped-by: René Scharfe <l.s.r@web.de> Helped-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Helped-by: Jiang Xin <zhiyou.jx@alibaba-inc.com> Signed-off-by: Han Xin <chiyutianyi@gmail.com> Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
b757353676 |
builtin/pack-objects.c: --cruft without expiration
Teach `pack-objects` how to generate a cruft pack when no objects are dropped (i.e., `--cruft-expiration=never`). Later patches will teach `pack-objects` how to generate a cruft pack that prunes objects. When generating a cruft pack which does not prune objects, we want to collect all unreachable objects into a single pack (noting and updating their mtimes as we accumulate them). Ordinary use will pass the result of a `git repack -A` as a kept pack, so when this patch says "kept pack", readers should think "reachable objects". Generating a non-expiring cruft packs works as follows: - Callers provide a list of every pack they know about, and indicate which packs are about to be removed. - All packs which are going to be removed (we'll call these the redundant ones) are marked as kept in-core. Any packs the caller did not mention (but are known to the `pack-objects` process) are also marked as kept in-core. Packs not mentioned by the caller are assumed to be unknown to them, i.e., they entered the repository after the caller decided which packs should be kept and which should be discarded. Since we do not want to include objects in these "unknown" packs (because we don't know which of their objects are or aren't reachable), these are also marked as kept in-core. - Then, we enumerate all objects in the repository, and add them to our packing list if they do not appear in an in-core kept pack. This results in a new cruft pack which contains all known objects that aren't included in the kept packs. When the kept pack is the result of `git repack -A`, the resulting pack contains all unreachable objects. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
94cd775a6c |
pack-mtimes: support reading .mtimes files
To store the individual mtimes of objects in a cruft pack, introduce a new `.mtimes` format that can optionally accompany a single pack in the repository. The format is defined in Documentation/technical/pack-format.txt, and stores a 4-byte network order timestamp for each object in name (index) order. This patch prepares for cruft packs by defining the `.mtimes` format, and introducing a basic API that callers can use to read out individual mtimes. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
89ef49b30c |
object-store.h: remove unused has_sha1_file*()
These macros were last used in |
3 years ago |
![]() |
44439c1c58 |
object-file API: have hash_object_file() take "enum object_type"
Change the hash_object_file() function to take an "enum object_type". Since a preceding commit all of its callers are passing either "{commit,tree,blob,tag}_type", or the result of a call to type_name(), the parse_object() caller that would pass NULL is now using stream_object_signature(). Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
0ff7b4f976 |
object API: rename hash_object_file_literally() to write_*()
Before
|
3 years ago |
![]() |
c80d226a04 |
object-file API: have write_object_file() take "enum object_type"
Change the write_object_file() function to take an "enum object_type" instead of a "const char *type". Its callers either passed {commit,tree,blob,tag}_type and can pass the corresponding OBJ_* type instead, or were hardcoding strings like "blob". This avoids the back & forth fragility where the callers of write_object_file() would have the enum type, and convert it themselves via type_name(). We do have to now do that conversion ourselves before calling write_object_file_prepare(), but those codepaths will be similarly adjusted in subsequent commits. Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
b04cdea46c |
object-file API: add a format_object_header() function
Add a convenience function to wrap the xsnprintf() command that generates loose object headers. This code was copy/pasted in various parts of the codebase, let's define it in one place and re-use it from there. All except one caller of it had a valid "enum object_type" for us, it's only write_object_file_prepare() which might need to deal with "git hash-object --literally" and a potential garbage type. Let's have the primary API use an "enum object_type", and define a *_literally() function that can take an arbitrary "const char *" for the type. See [1] for the discussion that prompted this patch, i.e. new code in object-file.c that wanted to copy/paste the xsnprintf() invocation. In the case of fast-import.c the callers unfortunately need to cast back & forth between "unsigned char *" and "char *", since format_object_header() ad encode_in_pack_object_header() take different signedness. 1. https://lore.kernel.org/git/211213.86bl1l9bfz.gmgdl@evledraar.gmail.com/ Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Jiang Xin <zhiyou.jx@alibaba-inc.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
63e05f9056 |
object-file API: return "void", not "int" from hash_object_file()
The hash_object_file() function added in
|
3 years ago |
![]() |
ecd81dfc79 |
tmp-objdir: disable ref updates when replacing the primary odb
When creating a subprocess with a temporary ODB, we set the GIT_QUARANTINE_ENVIRONMENT env var to tell child Git processes not to update refs, since the tmp-objdir may go away. Introduce a similar mechanism for in-process temporary ODBs when we call tmp_objdir_replace_primary_odb. Now both mechanisms set the disable_ref_updates flag on the odb, which is queried by the ref_transaction_prepare function. Peff's test case [1] was invoking ref updates via the cachetextconv setting. That particular code silently does nothing when a ref update is forbidden. See the call to notes_cache_put in fill_textconv where errors are ignored. [1] https://lore.kernel.org/git/YVOn3hDsb5pnxR53@coredump.intra.peff.net/ Reported-by: Jeff King <peff@peff.net> Signed-off-by: Neeraj Singh <neerajsi@microsoft.com> Reviewed-by: Elijah Newren <newren@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
b3cecf49ea |
tmp-objdir: new API for creating temporary writable databases
The tmp_objdir API provides the ability to create temporary object directories, but was designed with the goal of having subprocesses access these object stores, followed by the main process migrating objects from it to the main object store or just deleting it. The subprocesses would view it as their primary datastore and write to it. Here we add the tmp_objdir_replace_primary_odb function that replaces the current process's writable "main" object directory with the specified one. The previous main object directory is restored in either tmp_objdir_migrate or tmp_objdir_destroy. For the --remerge-diff usecase, add a new `will_destroy` flag in `struct object_database` to mark ephemeral object databases that do not require fsync durability. Add 'git prune' support for removing temporary object databases, and make sure that they have a name starting with tmp_ and containing an operation-specific name. Based-on-patch-by: Elijah Newren <newren@gmail.com> Signed-off-by: Neeraj Singh <neerajsi@microsoft.com> Reviewed-by: Elijah Newren <newren@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
4ef91a2d79 |
commit: fix duplication regression in permission error output
Fix a regression in the error output emitted when .git/objects can't be written to. Before |
3 years ago |
![]() |
96e41f58fe |
fsck: report invalid object type-path combinations
Improve the error that's emitted in cases where we find a loose object we parse, but which isn't at the location we expect it to be. Before this change we'd prefix the error with a not-a-OID derived from the path at which the object was found, due to an emergent behavior in how we'd end up with an "OID" in these codepaths. Now we'll instead say what object we hashed, and what path it was found at. Before this patch series e.g.: $ git hash-object --stdin -w -t blob </dev/null |
3 years ago |
![]() |
31deb28f5e |
fsck: don't hard die on invalid object types
Change the error fsck emits on invalid object types, such as:
$ git hash-object --stdin -w -t garbage --literally </dev/null
<OID>
From the very ungraceful error of:
$ git fsck
fatal: invalid object type
$
To:
$ git fsck
error: <OID>: object is of unknown type 'garbage': <OID_PATH>
[ other fsck output ]
We'll still exit with non-zero, but now we'll finish the rest of the
traversal. The tests that's being added here asserts that we'll still
complain about other fsck issues (e.g. an unrelated dangling blob).
To do this we need to pass down the "OBJECT_INFO_ALLOW_UNKNOWN_TYPE"
flag from read_loose_object() through to parse_loose_header(). Since
the read_loose_object() function is only used in builtin/fsck.c we can
simply change it to accept a "struct object_info" (which contains the
OBJECT_INFO_ALLOW_UNKNOWN_TYPE in its flags). See
|
3 years ago |
![]() |
9865b6e6a4 |
*.[ch] *_INIT macros: use { 0 } for a "zero out" idiom
In C it isn't required to specify that all members of a struct are zero'd out to 0, NULL or '\0', just providing a "{ 0 }" will accomplish that. Let's also change code that provided N zero'd fields to just provide one, and change e.g. "{ NULL }" to "{ 0 }" for consistency. I.e. even if the first member is a pointer let's use "0" instead of "NULL". The point of using "0" consistently is to pick one, and to not have the reader wonder why we're not using the same pattern everywhere. Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
3 years ago |
![]() |
09ef66179b |
packfile: use oidset for bad objects
Store the object ID of broken pack entries in an oidset instead of keeping only their hashes in an unsorted array. The resulting code is shorter and easier to read. It also handles the (hopefully) very rare case of having a high number of bad objects better. Helped-by: Jeff King <peff@peff.net> Signed-off-by: René Scharfe <l.s.r@web.de> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
4 years ago |
![]() |
f57a739691 |
midx: avoid opening multiple MIDXs when writing
Opening multiple instance of the same MIDX can lead to problems like two separate packed_git structures which represent the same pack being added to the repository's object store. The above scenario can happen because prepare_midx_pack() checks if `m->packs[pack_int_id]` is NULL in order to determine if a pack has been opened and installed in the repository before. But a caller can construct two copies of the same MIDX by calling get_multi_pack_index() and load_multi_pack_index() since the former manipulates the object store directly but the latter is a lower-level routine which allocates a new MIDX for each call. So if prepare_midx_pack() is called on multiple MIDXs with the same pack_int_id, then that pack will be installed twice in the object store's packed_git pointer. This can lead to problems in, for e.g., the pack-bitmap code, which does something like the following (in pack-bitmap.c:open_pack_bitmap()): struct bitmap_index *bitmap_git = ...; for (p = get_all_packs(r); p; p = p->next) { if (open_pack_bitmap_1(bitmap_git, p) == 0) ret = 0; } which is a problem if two copies of the same pack exist in the packed_git list because pack-bitmap.c:open_pack_bitmap_1() contains a conditional like the following: if (bitmap_git->pack || bitmap_git->midx) { /* ignore extra bitmap file; we can only handle one */ warning("ignoring extra bitmap file: %s", packfile->pack_name); close(fd); return -1; } Avoid this scenario by not letting write_midx_internal() open a MIDX that isn't also pointed at by the object store. So long as this is the case, other routines should prefer to open MIDXs with get_multi_pack_index() or reprepare_packed_git() instead of creating instances on their own. Because get_multi_pack_index() returns `r->object_store->multi_pack_index` if it is non-NULL, we'll only have one instance of a MIDX open at one time, avoiding these problems. To encourage this, drop the `struct multi_pack_index *` parameter from `write_midx_internal()`, and rely instead on the `object_dir` to find (or initialize) the correct MIDX instance. Likewise, replace the call to `close_midx()` with `close_object_store()`, since we're about to replace the MIDX with a new one and should invalidate the object store's memory of any MIDX that might have existed beforehand. Note that this now forbids passing object directories that don't belong to alternate repositories over `--object-dir`, since before we would have happily opened a MIDX in any directory, but now restrict ourselves to only those reachable by `r->objects->multi_pack_index` (and alternate MIDXs that we can see by walking the `next` pointer). As far as I can tell, supporting arbitrary directories with `--object-dir` was a historical accident, since even the documentation says `<alt>` when referring to the value passed to this option. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
4 years ago |
![]() |
a241878ac7 |
object-store.h: teach for_each_packed_object to ignore kept packs
The next patch will reimplement a function that wants to iterate over packed objects while ignoring packs which are marked as kept (either in-core or on-disk). Teach for_each_packed_object() to ignore all objects from those packs by adding a new flag for each of the "kept" states that a pack can be in. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
4 years ago |
![]() |
dd3c8a72a2 |
object-store: avoid extra ';' from KHASH_INIT
|
4 years ago |
![]() |
92d8ed8ac1 |
oidtree: a crit-bit tree for odb_loose_cache
This saves 8K per `struct object_directory', meaning it saves around 800MB in my case involving 100K alternates (half or more of those alternates are unlikely to hold loose objects). This is implemented in two parts: a generic, allocation-free `cbtree' and the `oidtree' wrapper on top of it. The latter provides allocation using alloc_state as a memory pool to improve locality and reduce free(3) overhead. Unlike oid-array, the crit-bit tree does not require sorting. Performance is bound by the key length, for oidtree that is fixed at sizeof(struct object_id). There's no need to have 256 oidtrees to mitigate the O(n log n) overhead like we did with oid-array. Being a prefix trie, it is natively suited for expanding short object IDs via prefix-limited iteration in `find_short_object_filename'. On my busy workstation, p4205 performance seems to be roughly unchanged (+/-8%). Startup with 100K total alternates with no loose objects seems around 10-20% faster on a hot cache. (800MB in memory savings means more memory for the kernel FS cache). The generic cbtree implementation does impose some extra overhead for oidtree in that it uses memcmp(3) on "struct object_id" so it wastes cycles comparing 12 extra bytes on SHA-1 repositories. I've not yet explored reducing this overhead, but I expect there are many places in our code base where we'd want to investigate this. More information on crit-bit trees: https://cr.yp.to/critbit.html Signed-off-by: Eric Wong <e@80x24.org> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
4 years ago |
![]() |
33f379eee6 |
make object_directory.loose_objects_subdir_seen a bitmap
There's no point in using 8 bits per-directory when 1 bit will do. This saves us 224 bytes per object directory, which ends up being 22MB when dealing with 100K alternates. Signed-off-by: Eric Wong <e@80x24.org> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
4 years ago |
![]() |
cf2dc1c238 |
speed up alt_odb_usable() with many alternates
With many alternates, the duplicate check in alt_odb_usable() wastes many cycles doing repeated fspathcmp() on every existing alternate. Use a khash to speed up lookups by odb->path. Since the kh_put_* API uses the supplied key without duplicating it, we also take advantage of it to replace both xstrdup() and strbuf_release() in link_alt_odb_entry() with strbuf_detach() to avoid the allocation and copy. In a test repository with 50K alternates and each of those 50K alternates having one alternate each (for a total of 100K total alternates); this speeds up lookup of a non-existent blob from over 16 minutes to roughly 2.7 seconds on my busy workstation. Note: all underlying git object directories were small and unpacked with only loose objects and no packs. Having to load packs increases times significantly. Signed-off-by: Eric Wong <e@80x24.org> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
4 years ago |
![]() |
20b031fede |
packfile: add kept-pack cache for find_kept_pack_entry()
In a recent patch we added a function 'find_kept_pack_entry()' to look
for an object only among kept packs.
While this function avoids doing any lookup work in non-kept packs, it
is still linear in the number of packs, since we have to traverse the
linked list of packs once per object. Let's cache a reduced version of
that list to save us time.
Note that this cache will last the lifetime of the program. We could
invalidate it on reprepare_packed_git(), but there's not much point in
being rigorous here:
- we might already fail to notice new .keep packs showing up after the
program starts. We only reprepare_packed_git() when we fail to find
an object. But adding a new pack won't cause that to happen.
Somebody repacking could add a new pack and delete an old one, but
most of the time we'd have a descriptor or mmap open to the old
pack anyway, so we might not even notice.
- in pack-objects we already cache the .keep state at startup, since
|
4 years ago |
![]() |
2f4ba2a867 |
packfile: prepare for the existence of '*.rev' files
Specify the format of the on-disk reverse index 'pack-*.rev' file, as well as prepare the code for the existence of such files. The reverse index maps from pack relative positions (i.e., an index into the array of object which is sorted by their offsets within the packfile) to their position within the 'pack-*.idx' file. Today, this is done by building up a list of (off_t, uint32_t) tuples for each object (the off_t corresponding to that object's offset, and the uint32_t corresponding to its position in the index). To convert between pack and index position quickly, this array of tuples is radix sorted based on its offset. This has two major drawbacks: First, the in-memory cost scales linearly with the number of objects in a pack. Each 'struct revindex_entry' is sizeof(off_t) + sizeof(uint32_t) + padding bytes for a total of 16. To observe this, force Git to load the reverse index by, for e.g., running 'git cat-file --batch-check="%(objectsize:disk)"'. When asking for a single object in a fresh clone of the kernel, Git needs to allocate 120+ MB of memory in order to hold the reverse index in memory. Second, the cost to sort also scales with the size of the pack. Luckily, this is a linear function since 'load_pack_revindex()' uses a radix sort, but this cost still must be paid once per pack per process. As an example, it takes ~60x longer to print the _size_ of an object as it does to print that entire object's _contents_: Benchmark #1: git.compile cat-file --batch <obj Time (mean ± σ): 3.4 ms ± 0.1 ms [User: 3.3 ms, System: 2.1 ms] Range (min … max): 3.2 ms … 3.7 ms 726 runs Benchmark #2: git.compile cat-file --batch-check="%(objectsize:disk)" <obj Time (mean ± σ): 210.3 ms ± 8.9 ms [User: 188.2 ms, System: 23.2 ms] Range (min … max): 193.7 ms … 224.4 ms 13 runs Instead, avoid computing and sorting the revindex once per process by writing it to a file when the pack itself is generated. The format is relatively straightforward. It contains an array of uint32_t's, the length of which is equal to the number of objects in the pack. The ith entry in this table contains the index position of the ith object in the pack, where "ith object in the pack" is determined by pack offset. One thing that the on-disk format does _not_ contain is the full (up to) eight-byte offset corresponding to each object. This is something that the in-memory revindex contains (it stores an off_t in 'struct revindex_entry' along with the same uint32_t that the on-disk format has). Omit it in the on-disk format, since knowing the index position for some object is sufficient to get a constant-time lookup in the pack-*.idx file to ask for an object's offset within the pack. This trades off between the on-disk size of the 'pack-*.rev' file for runtime to chase down the offset for some object. Even though the lookup is constant time, the constant is heavier, since it can potentially involve two pointer walks in v2 indexes (one to access the 4-byte offset table, and potentially a second to access the double wide offset table). Consider trying to map an object's pack offset to a relative position within that pack. In a cold-cache scenario, more page faults occur while switching between binary searching through the reverse index and searching through the *.idx file for an object's offset. Sure enough, with a cold cache (writing '3' into '/proc/sys/vm/drop_caches' after 'sync'ing), printing out the entire object's contents is still marginally faster than printing its size: Benchmark #1: git.compile cat-file --batch-check="%(objectsize:disk)" <obj >/dev/null Time (mean ± σ): 22.6 ms ± 0.5 ms [User: 2.4 ms, System: 7.9 ms] Range (min … max): 21.4 ms … 23.5 ms 41 runs Benchmark #2: git.compile cat-file --batch <obj >/dev/null Time (mean ± σ): 17.2 ms ± 0.7 ms [User: 2.8 ms, System: 5.5 ms] Range (min … max): 15.6 ms … 18.2 ms 45 runs (Numbers taken in the kernel after cheating and using the next patch to generate a reverse index). There are a couple of approaches to improve cold cache performance not pursued here: - We could include the object offsets in the reverse index format. Predictably, this does result in fewer page faults, but it triples the size of the file, while simultaneously duplicating a ton of data already available in the .idx file. (This was the original way I implemented the format, and it did show `--batch-check='%(objectsize:disk)'` winning out against `--batch`.) On the other hand, this increase in size also results in a large block-cache footprint, which could potentially hurt other workloads. - We could store the mapping from pack to index position in more cache-friendly way, like constructing a binary search tree from the table and writing the values in breadth-first order. This would result in much better locality, but the price you pay is trading O(1) lookup in 'pack_pos_to_index()' for an O(log n) one (since you can no longer directly index the table). So, neither of these approaches are taken here. (Thankfully, the format is versioned, so we are free to pursue these in the future.) But, cold cache performance likely isn't interesting outside of one-off cases like asking for the size of an object directly. In real-world usage, Git is often performing many operations in the revindex (i.e., asking about many objects rather than a single one). The trade-off is worth it, since we will avoid the vast majority of the cost of generating the revindex that the extra pointer chase will look like noise in the following patch's benchmarks. This patch describes the format and prepares callers (like in pack-revindex.c) to be able to read *.rev files once they exist. An implementation of the writer will appear in the next patch, and callers will gradually begin to start using the writer in the patches that follow after that. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
4 years ago |
![]() |
1d8d9cb620 |
sha1-file: introduce no-lazy-fetch has_object()
There have been a few bugs wherein Git fetches missing objects whenever the existence of an object is checked, even though it does not need to perform such a fetch. To resolve these bugs, we could look at all the places that has_object_file() (or a similar function) is used. As a first step, introduce a new function has_object() that checks for the existence of an object, with a default behavior of not fetching if the object is missing and the repository is a partial clone. As we verify each has_object_file() (or similar) usage, we can replace it with has_object(), and we will know that we are done when we can delete has_object_file() (and the other similar functions). Also, the new function has_object() has more appropriate defaults: besides not fetching, it also does not recheck packed storage. Signed-off-by: Jonathan Tan <jonathantanmy@google.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
5 years ago |
![]() |
629dffc461 |
packfile: compute and use the index CRC offset
Both v2 pack index files and the v3 format specified as part of the NewHash work have similar data starting at the CRC table. Much of the existing code wants to read either this table or the offset entries following it, and in doing so computes the offset each time. In order to share as much code between v2 and v3, compute the offset of the CRC table and store it when the pack is opened. Use this value to compute offsets to not only the CRC table, but to the offset entries beyond it. Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
5 years ago |
![]() |
fe299ec5ae |
oid_array: rename source file from sha1-array
We renamed the actual data structure in |
5 years ago |
![]() |
b99b6bcc57 |
packed_object_info(): use object_id for returning delta base
If a caller sets the object_info.delta_base_sha1 to a non-NULL pointer, we'll write the oid of the object's delta base to it. But we can increase our type safety by switching this to a real object_id struct. All of our callers are just pointing into the hash member of an object_id anyway, so there's no inconvenience. Note that we do still keep it as a pointer-to-struct, because the NULL sentinel value tells us whether the caller is even interested in the information. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
5 years ago |
![]() |
2dcde20e1c |
sha1-file: pass git_hash_algo to hash_object_file()
Allow hash_object_file() to work on arbitrary repos by introducing a git_hash_algo parameter. Change callers which have a struct repository pointer in their scope to pass on the git_hash_algo from the said repo. For all other callers, pass on the_hash_algo, which was already being used internally at hash_object_file(). This functionality will be used in the following patch to make check_object_signature() be able to work on arbitrary repos (which, in turn, will be used to fix an inconsistency at object.c:parse_object()). Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
5 years ago |
![]() |
31877c9aec |
object-store: allow threaded access to object reading
Allow object reading to be performed by multiple threads protecting it with an internal lock, the obj_read_mutex. The lock usage can be toggled with enable_obj_read_lock() and disable_obj_read_lock(). Currently, the functions which can be safely called in parallel are: read_object_file_extended(), repo_read_object_file(), read_object_file(), read_object_with_reference(), read_object(), oid_object_info() and oid_object_info_extended(). It's also possible to use obj_read_lock() and obj_read_unlock() to protect other sections that cannot execute in parallel with object reading. Probably there are many spots in the functions listed above that could be executed unlocked (and thus, in parallel). But, for now, we are most interested in allowing parallel access to zlib inflation. This is one of the sections where object reading spends most of the time in (e.g. up to one-third of git-grep's execution time in the chromium repo corresponds to inflation) and it's already thread-safe. So, to take advantage of that, the obj_read_mutex is released when calling git_inflate() and re-acquired right after, for every calling spot in oid_object_info_extended()'s call chain. We may refine this lock to also exploit other possible parallel spots in the future, but for now, threaded zlib inflation should already give great speedups for threaded object reading callers. Note that add_delta_base_cache() was also modified to skip adding already present entries to the cache. This wasn't possible before, but it would be now, with the parallel inflation. Take for example the following situation, where two threads - A and B - are executing the code at unpack_entry(): 1. Thread A is performing the decompression of a base O (which is not yet in the cache) at PHASE II. Thread B is simultaneously trying to unpack O, but just starting at PHASE I. 2. Since O is not yet in the cache, B will go to PHASE II to also perform the decompression. 3. When they finish decompressing, one of them will get the object reading mutex and go to PHASE III while the other waits for the mutex. Let’s say A got the mutex first. 4. Thread A will add O to the cache, go throughout the rest of PHASE III and return. 5. Thread B gets the mutex, also add O to the cache (if the check wasn't there) and returns. Finally, it is also important to highlight that the object reading lock can only ensure thread-safety in the mentioned functions thanks to two complementary mechanisms: the use of 'struct raw_object_store's replace_mutex, which guards sections in the object reading machinery that would otherwise be thread-unsafe; and the 'struct pack_window's inuse_cnt, which protects window reading operations (such as the one performed during the inflation of a packed object), allowing them to execute without the acquisition of the obj_read_mutex. Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
5 years ago |
![]() |
b1fc9da1c8 |
replace-object: make replace operations thread-safe
replace-object functions are very close to being thread-safe: the only current racy section is the lazy initialization at prepare_replace_object(). The following patches will protect some object reading operations to be called threaded, but before that, replace functions must be protected. To do so, add a mutex to struct raw_object_store and acquire it before lazy initializing the replace_map. This won't cause any noticeable performance drop as the mutex will no longer be used after the replace_map is initialized. Later, when the replace functions are called in parallel, thread debuggers might point our use of the added replace_map_initialized flag as a data race. However, as this boolean variable is initialized as false and it's only updated once, there's no real harm. It's perfectly fine if the value is updated right after a thread read it in replace-map.h:lookup_replace_object() (there'll only be a performance penalty for the affected threads at that moment). We could cease the debugger warning protecting the variable reading at the said function. However, this would negatively affect performance for all threads calling it, at any time, so it's not really worthy since the warning doesn't represent a real problem. Instead, to make sure we don't get false positives (at ThreadSanitizer, at least) an entry for the respective function is added to .tsan-suppressions. Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
5 years ago |
![]() |
60440d72db |
sha1-file: document how to use pretend_object_file
Like in-memory alternates, pretend_object_file contains a trap for the unwary: careless callers can use it to create references to an object that does not exist in the on-disk object store. Add a comment documenting how to use the function without risking such problems. The only current caller is blame, which uses pretend_object_file to create an in-memory commit representing the working tree state. Noticed during a discussion of how to safely use this function in operations like "git merge" which, unlike blame, are not read-only. Inspired-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
5 years ago |
![]() |
9c8a294a1a |
sha1-file: remove OBJECT_INFO_SKIP_CACHED
In a partial clone, if a user provides the hash of the empty tree ("git mktree </dev/null" - for SHA-1, this is 4b825d...) to a command which requires that that object be parsed, for example: git diff-tree 4b825d <a non-empty tree> then Git will lazily fetch the empty tree, unnecessarily, because parsing of that object invokes repo_has_object_file(), which does not special-case the empty tree. Instead, teach repo_has_object_file() to consult find_cached_object() (which handles the empty tree), thus bringing it in line with the rest of the object-store-accessing functions. A cost is that repo_has_object_file() will now need to oideq upon each invocation, but that is trivial compared to the filesystem lookup or the pack index search required anyway. (And if find_cached_object() needs to do more because of previous invocations to pretend_object_file(), all the more reason to be consistent in whether we present cached objects.) As a historical note, the function now known as repo_read_object_file() was taught the empty tree in |
5 years ago |
![]() |
ec48540fe8 |
packfile.c: speed up loading lots of packfiles
When loading packfiles on start-up, we traverse the internal packfile list once per file to avoid reloading packfiles that have already been loaded. This check runs in quadratic time, so for poorly maintained repos with a large number of packfiles, it can be pretty slow. Add a hashmap containing the packfile names as we load them so that the average runtime cost of checking for already-loaded packs becomes constant. Add a perf test to p5303 to show speed-up. The existing p5303 test runtimes are dominated by other factors and do not show an appreciable speed-up. The new test in p5303 clearly exposes a speed-up in bad cases. In this test we create 10,000 packfiles and measure the start-up time of git rev-parse, which does little else besides load in the packs. Here are the numbers for the new p5303 test: Test HEAD^ HEAD --------------------------------------------------------------------- 5303.12: load 10,000 packs 1.03(0.92+0.10) 0.12(0.02+0.09) -88.3% Signed-off-by: Colin Stolley <cstolley@runbox.com> Helped-by: Jeff King <peff@peff.net> [jc: squashed the change to call hashmap in install_packed_git() by peff] Signed-off-by: Junio C Hamano <gitster@pobox.com> |
5 years ago |
![]() |
709dfa6990 |
object-store.h: move for_each_alternate_ref() from transport.h
There's nothing inherently transport-related about enumerating the alternate ref tips. The code has lived in transport.[ch] because the only use so far had been advertising available tips during transport. But it could be used for more, and a future patch will teach rev-list to access these refs. Let's move it alongside the other alt-odb code, declaring it in object-store.h with the implementation in sha1-file.c. This lets us drop the inclusion of transport.h from receive-pack, which perhaps shows how it was misplaced (though receive-pack is about transporting objects, transport.h is mostly about the client side). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
6 years ago |
![]() |
31f5256c82 |
sha1-file: split OBJECT_INFO_FOR_PREFETCH
The OBJECT_INFO_FOR_PREFETCH bitflag was added to sha1-file.c in
|
6 years ago |
![]() |
af96fe3392 |
midx: add packs to packed_git linked list
The multi-pack-index allows searching for objects across multiple packs using one object list. The original design gains many of these performance benefits by keeping the packs in the multi-pack-index out of the packed_git list. Unfortunately, this has one major drawback. If the multi-pack-index covers thousands of packs, and a command loads many of those packs, then we can hit the limit for open file descriptors. The close_one_pack() method is used to limit this resource, but it only looks at the packed_git list, and uses an LRU cache to prevent thrashing. Instead of complicating this close_one_pack() logic to include direct references to the multi-pack-index, simply add the packs opened by the multi-pack-index to the packed_git list. This immediately solves the file-descriptor limit problem, but requires some extra steps to avoid performance issues or other problems: 1. Create a multi_pack_index bit in the packed_git struct that is one if and only if the pack was loaded from a multi-pack-index. 2. Skip packs with the multi_pack_index bit when doing object lookups and abbreviations. These algorithms already check the multi-pack-index before the packed_git struct. This has a very small performance hit, as we need to walk more packed_git structs. This is acceptable, since these operations run binary search on the other packs, so this walk-and-ignore logic is very fast by comparison. 3. When closing a multi-pack-index file, do not close its packs, as those packs will be closed using close_all_packs(). In some cases, such as 'git repack', we run 'close_midx()' without also closing the packs, so we need to un-set the multi_pack_index bit in those packs. This is necessary, and caught by running t6501-freshen-objects.sh with GIT_TEST_MULTI_PACK_INDEX=1. To manually test this change, I inserted trace2 logging into close_pack_fd() and set pack_max_fds to 10, then ran 'git rev-list --all --objects' on a copy of the Git repo with 300+ pack-files and a multi-pack-index. The logs verified the packs are closed as we read them beyond the file descriptor limit. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
6 years ago |
![]() |
ad6dad0996 |
*.[ch]: manually align parameter lists
In previous patches, extern was mechanically removed from function declarations without care to formatting, causing parameter lists to be misaligned. Manually format changed sections such that the parameter lists should be realigned. Viewing this patch with 'git diff -w' should produce no output. Signed-off-by: Denton Liu <liu.denton@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
6 years ago |
![]() |
554544276a |
*.[ch]: remove extern from function declarations using spatch
There has been a push to remove extern from function declarations. Remove some instances of "extern" for function declarations which are caught by Coccinelle. Note that Coccinelle has some difficulty with processing functions with `__attribute__` or varargs so some `extern` declarations are left behind to be dealt with in a future patch. This was the Coccinelle patch used: @@ type T; identifier f; @@ - extern T f(...); and it was run with: $ git ls-files \*.{c,h} | grep -v ^compat/ | xargs spatch --sp-file contrib/coccinelle/noextern.cocci --in-place Files under `compat/` are intentionally excluded as some are directly copied from external sources and we should avoid churning them as much as possible. Signed-off-by: Denton Liu <liu.denton@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
6 years ago |
![]() |
0f4a4fb1c4 |
sha1-file: support OBJECT_INFO_FOR_PREFETCH
Teach oid_object_info_extended() to support a new flag that inhibits fetching of missing objects. This is equivalent to setting fetch_is_missing to 0, calling oid_object_info_extended(), then setting fetch_if_missing to whatever it was before. Update unpack-trees.c to use this new flag instead of repeatedly setting fetch_if_missing. This new flag complicates things slightly in that there are now 2 ways to do the same thing. But this eliminates the need to repeatedly set a global variable, and more importantly, allows prefetching to be done in parallel (in the future); hence, this patch. Signed-off-by: Jonathan Tan <jonathantanmy@google.com> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
6 years ago |
![]() |
538b152324 |
object-store: rename and expand packed_git's sha1 member
This member is used to represent the pack checksum of the pack in question. Expand this member to be GIT_MAX_RAWSZ bytes in length so it works with longer hashes and rename it to be "hash" instead of "sha1". This transformation was made with a change to the definition and the following semantic patch: @@ struct packed_git *E1; @@ - E1->sha1 + E1->hash @@ struct packed_git E1; @@ - E1.sha1 + E1.hash Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
6 years ago |
![]() |
5d3679ee02 |
sha1-file: drop has_sha1_file()
There are no callers left of has_sha1_file() or its with_flags() variant. Let's drop them, and convert has_object_file() from a wrapper into the "real" function. Ironically, the sha1 variant was just copying into an object_id internally, so the resulting code is actually shorter! We can also drop the coccinelle rules for catching has_sha1_file() callers. Since the function no longer exists, the compiler will do that for us. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
6 years ago |
![]() |
8be88dbcb1 |
object-store: retire odb_load_loose_cache()
Inline odb_load_loose_cache() into its only remaining caller, odb_loose_cache(). The latter offers a nicer interface for loading the cache, as it doesn't require callers to deal with fanout directory numbers directly. Signed-off-by: Rene Scharfe <l.s.r@web.de> Signed-off-by: Junio C Hamano <gitster@pobox.com> |
6 years ago |