|
|
|
#ifdef __MINGW64_VERSION_MAJOR
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <wchar.h>
|
|
|
|
typedef _sigset_t sigset_t;
|
|
|
|
#endif
|
|
|
|
#include <winsock2.h>
|
|
|
|
#include <ws2tcpip.h>
|
|
|
|
|
|
|
|
/* MinGW-w64 reports to have flockfile, but it does not actually have it. */
|
|
|
|
#ifdef __MINGW64_VERSION_MAJOR
|
|
|
|
#undef _POSIX_THREAD_SAFE_FUNCTIONS
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* things that are not available in header files
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef int uid_t;
|
|
|
|
typedef int socklen_t;
|
|
|
|
#ifndef __MINGW64_VERSION_MAJOR
|
|
|
|
typedef int pid_t;
|
|
|
|
#define hstrerror strerror
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define S_IFLNK 0120000 /* Symbolic link */
|
|
|
|
#define S_ISLNK(x) (((x) & S_IFMT) == S_IFLNK)
|
|
|
|
#define S_ISSOCK(x) 0
|
|
|
|
|
|
|
|
#ifndef S_IRWXG
|
|
|
|
#define S_IRGRP 0
|
|
|
|
#define S_IWGRP 0
|
|
|
|
#define S_IXGRP 0
|
|
|
|
#define S_IRWXG (S_IRGRP | S_IWGRP | S_IXGRP)
|
|
|
|
#endif
|
|
|
|
#ifndef S_IRWXO
|
|
|
|
#define S_IROTH 0
|
|
|
|
#define S_IWOTH 0
|
|
|
|
#define S_IXOTH 0
|
|
|
|
#define S_IRWXO (S_IROTH | S_IWOTH | S_IXOTH)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define S_ISUID 0004000
|
|
|
|
#define S_ISGID 0002000
|
|
|
|
#define S_ISVTX 0001000
|
|
|
|
|
|
|
|
#define WIFEXITED(x) 1
|
|
|
|
#define WIFSIGNALED(x) 0
|
|
|
|
#define WEXITSTATUS(x) ((x) & 0xff)
|
|
|
|
#define WTERMSIG(x) SIGTERM
|
|
|
|
|
|
|
|
#ifndef EWOULDBLOCK
|
|
|
|
#define EWOULDBLOCK EAGAIN
|
|
|
|
#endif
|
|
|
|
#ifndef ELOOP
|
|
|
|
#define ELOOP EMLINK
|
|
|
|
#endif
|
|
|
|
#define SHUT_WR SD_SEND
|
|
|
|
|
|
|
|
#define SIGHUP 1
|
|
|
|
#define SIGQUIT 3
|
|
|
|
#define SIGKILL 9
|
|
|
|
#define SIGPIPE 13
|
|
|
|
#define SIGALRM 14
|
|
|
|
#define SIGCHLD 17
|
|
|
|
|
|
|
|
#define F_GETFD 1
|
|
|
|
#define F_SETFD 2
|
|
|
|
#define FD_CLOEXEC 0x1
|
|
|
|
|
|
|
|
#ifndef EAFNOSUPPORT
|
|
|
|
#define EAFNOSUPPORT WSAEAFNOSUPPORT
|
|
|
|
#endif
|
|
|
|
#ifndef ECONNABORTED
|
|
|
|
#define ECONNABORTED WSAECONNABORTED
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct passwd {
|
|
|
|
char *pw_name;
|
|
|
|
char *pw_gecos;
|
|
|
|
char *pw_dir;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef void (__cdecl *sig_handler_t)(int);
|
|
|
|
struct sigaction {
|
|
|
|
sig_handler_t sa_handler;
|
|
|
|
unsigned sa_flags;
|
|
|
|
};
|
|
|
|
#define SA_RESTART 0
|
|
|
|
|
|
|
|
struct itimerval {
|
|
|
|
struct timeval it_value, it_interval;
|
|
|
|
};
|
|
|
|
#define ITIMER_REAL 0
|
|
|
|
|
|
|
|
struct utsname {
|
|
|
|
char sysname[16];
|
|
|
|
char nodename[1];
|
|
|
|
char release[16];
|
|
|
|
char version[16];
|
|
|
|
char machine[1];
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sanitize preprocessor namespace polluted by Windows headers defining
|
|
|
|
* macros which collide with git local versions
|
|
|
|
*/
|
|
|
|
#undef HELP_COMMAND /* from winuser.h */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* trivial stubs
|
|
|
|
*/
|
|
|
|
|
|
|
|
static inline int readlink(const char *path, char *buf, size_t bufsiz)
|
|
|
|
{ errno = ENOSYS; return -1; }
|
|
|
|
static inline int symlink(const char *oldpath, const char *newpath)
|
|
|
|
{ errno = ENOSYS; return -1; }
|
|
|
|
static inline int fchmod(int fildes, mode_t mode)
|
|
|
|
{ errno = ENOSYS; return -1; }
|
|
|
|
#ifndef __MINGW64_VERSION_MAJOR
|
|
|
|
static inline pid_t fork(void)
|
|
|
|
{ errno = ENOSYS; return -1; }
|
|
|
|
#endif
|
|
|
|
static inline unsigned int alarm(unsigned int seconds)
|
|
|
|
{ return 0; }
|
|
|
|
static inline int fsync(int fd)
|
|
|
|
{ return _commit(fd); }
|
|
|
|
static inline void sync(void)
|
|
|
|
{}
|
|
|
|
static inline uid_t getuid(void)
|
|
|
|
{ return 1; }
|
|
|
|
static inline struct passwd *getpwnam(const char *name)
|
|
|
|
{ return NULL; }
|
|
|
|
static inline int fcntl(int fd, int cmd, ...)
|
|
|
|
{
|
|
|
|
if (cmd == F_GETFD || cmd == F_SETFD)
|
|
|
|
return 0;
|
|
|
|
errno = EINVAL;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/* bash cannot reliably detect negative return codes as failure */
|
|
|
|
#define exit(code) exit((code) & 0xff)
|
|
|
|
#define sigemptyset(x) (void)0
|
|
|
|
static inline int sigaddset(sigset_t *set, int signum)
|
|
|
|
{ return 0; }
|
|
|
|
#define SIG_BLOCK 0
|
|
|
|
#define SIG_UNBLOCK 0
|
|
|
|
static inline int sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
|
|
|
|
{ return 0; }
|
|
|
|
static inline pid_t getppid(void)
|
|
|
|
{ return 1; }
|
|
|
|
static inline pid_t getpgid(pid_t pid)
|
|
|
|
{ return pid == 0 ? getpid() : pid; }
|
|
|
|
static inline pid_t tcgetpgrp(int fd)
|
|
|
|
{ return getpid(); }
|
|
|
|
|
|
|
|
/*
|
|
|
|
* simple adaptors
|
|
|
|
*/
|
|
|
|
|
|
|
|
int mingw_mkdir(const char *path, int mode);
|
|
|
|
#define mkdir mingw_mkdir
|
|
|
|
|
|
|
|
#define WNOHANG 1
|
|
|
|
pid_t waitpid(pid_t pid, int *status, int options);
|
|
|
|
|
|
|
|
#define kill mingw_kill
|
|
|
|
int mingw_kill(pid_t pid, int sig);
|
|
|
|
|
|
|
|
#ifndef NO_OPENSSL
|
|
|
|
#include <openssl/ssl.h>
|
|
|
|
static inline int mingw_SSL_set_fd(SSL *ssl, int fd)
|
|
|
|
{
|
|
|
|
return SSL_set_fd(ssl, _get_osfhandle(fd));
|
|
|
|
}
|
|
|
|
#define SSL_set_fd mingw_SSL_set_fd
|
|
|
|
|
|
|
|
static inline int mingw_SSL_set_rfd(SSL *ssl, int fd)
|
|
|
|
{
|
|
|
|
return SSL_set_rfd(ssl, _get_osfhandle(fd));
|
|
|
|
}
|
|
|
|
#define SSL_set_rfd mingw_SSL_set_rfd
|
|
|
|
|
|
|
|
static inline int mingw_SSL_set_wfd(SSL *ssl, int fd)
|
|
|
|
{
|
|
|
|
return SSL_set_wfd(ssl, _get_osfhandle(fd));
|
|
|
|
}
|
|
|
|
#define SSL_set_wfd mingw_SSL_set_wfd
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* implementations of missing functions
|
|
|
|
*/
|
|
|
|
|
Windows: A pipe() replacement whose ends are not inherited to children.
On Unix the idiom to use a pipe is as follows:
pipe(fd);
pid = fork();
if (!pid) {
dup2(fd[1], 1);
close(fd[1]);
close(fd[0]);
...
}
close(fd[1]);
i.e. the child process closes the both pipe ends after duplicating one
to the file descriptors where they are needed.
On Windows, which does not have fork(), we never have an opportunity to
(1) duplicate a pipe end in the child, (2) close unused pipe ends. Instead,
we must use this idiom:
save1 = dup(1);
pipe(fd);
dup2(fd[1], 1);
spawn(...);
dup2(save1, 1);
close(fd[1]);
i.e. save away the descriptor at the destination slot, replace by the pipe
end, spawn process, restore the saved file.
But there is a problem: Notice that the child did not only inherit the
dup2()ed descriptor, but also *both* original pipe ends. Although the one
end that was dup()ed could be closed before the spawn(), we cannot close
the other end - the child inherits it, no matter what.
The solution is to generate non-inheritable pipes. At the first glance,
this looks strange: The purpose of pipes is usually to be inherited to
child processes. But notice that in the course of actions as outlined
above, the pipe descriptor that we want to inherit to the child is
dup2()ed, and as it so happens, Windows's dup2() creates inheritable
duplicates.
Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at>
17 years ago
|
|
|
int pipe(int filedes[2]);
|
|
|
|
unsigned int sleep (unsigned int seconds);
|
|
|
|
int mkstemp(char *template);
|
|
|
|
int gettimeofday(struct timeval *tv, void *tz);
|
|
|
|
#ifndef __MINGW64_VERSION_MAJOR
|
|
|
|
struct tm *gmtime_r(const time_t *timep, struct tm *result);
|
|
|
|
struct tm *localtime_r(const time_t *timep, struct tm *result);
|
|
|
|
#endif
|
|
|
|
int getpagesize(void); /* defined in MinGW's libgcc.a */
|
|
|
|
struct passwd *getpwuid(uid_t uid);
|
|
|
|
int setitimer(int type, struct itimerval *in, struct itimerval *out);
|
|
|
|
int sigaction(int sig, struct sigaction *in, struct sigaction *out);
|
|
|
|
int link(const char *oldpath, const char *newpath);
|
|
|
|
int uname(struct utsname *buf);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* replacements of existing functions
|
|
|
|
*/
|
|
|
|
|
|
|
|
int mingw_unlink(const char *pathname);
|
|
|
|
#define unlink mingw_unlink
|
|
|
|
|
|
|
|
int mingw_rmdir(const char *path);
|
|
|
|
#define rmdir mingw_rmdir
|
|
|
|
|
|
|
|
int mingw_open (const char *filename, int oflags, ...);
|
|
|
|
#define open mingw_open
|
|
|
|
|
|
|
|
int mingw_fgetc(FILE *stream);
|
|
|
|
#define fgetc mingw_fgetc
|
|
|
|
|
|
|
|
FILE *mingw_fopen (const char *filename, const char *otype);
|
|
|
|
#define fopen mingw_fopen
|
|
|
|
|
|
|
|
FILE *mingw_freopen (const char *filename, const char *otype, FILE *stream);
|
|
|
|
#define freopen mingw_freopen
|
|
|
|
|
|
|
|
int mingw_fflush(FILE *stream);
|
|
|
|
#define fflush mingw_fflush
|
|
|
|
|
|
|
|
ssize_t mingw_write(int fd, const void *buf, size_t len);
|
|
|
|
#define write mingw_write
|
|
|
|
|
|
|
|
int mingw_access(const char *filename, int mode);
|
|
|
|
#undef access
|
|
|
|
#define access mingw_access
|
|
|
|
|
|
|
|
int mingw_chdir(const char *dirname);
|
|
|
|
#define chdir mingw_chdir
|
|
|
|
|
|
|
|
int mingw_chmod(const char *filename, int mode);
|
|
|
|
#define chmod mingw_chmod
|
|
|
|
|
|
|
|
char *mingw_mktemp(char *template);
|
|
|
|
#define mktemp mingw_mktemp
|
|
|
|
|
|
|
|
char *mingw_getcwd(char *pointer, int len);
|
|
|
|
#define getcwd mingw_getcwd
|
|
|
|
|
|
|
|
char *mingw_getenv(const char *name);
|
|
|
|
#define getenv mingw_getenv
|
|
|
|
int mingw_putenv(const char *namevalue);
|
|
|
|
#define putenv mingw_putenv
|
|
|
|
#define unsetenv mingw_putenv
|
|
|
|
|
|
|
|
int mingw_gethostname(char *host, int namelen);
|
|
|
|
#define gethostname mingw_gethostname
|
|
|
|
|
|
|
|
struct hostent *mingw_gethostbyname(const char *host);
|
|
|
|
#define gethostbyname mingw_gethostbyname
|
|
|
|
|
|
|
|
void mingw_freeaddrinfo(struct addrinfo *res);
|
|
|
|
#define freeaddrinfo mingw_freeaddrinfo
|
|
|
|
|
|
|
|
int mingw_getaddrinfo(const char *node, const char *service,
|
|
|
|
const struct addrinfo *hints, struct addrinfo **res);
|
|
|
|
#define getaddrinfo mingw_getaddrinfo
|
|
|
|
|
|
|
|
int mingw_getnameinfo(const struct sockaddr *sa, socklen_t salen,
|
|
|
|
char *host, DWORD hostlen, char *serv, DWORD servlen,
|
|
|
|
int flags);
|
|
|
|
#define getnameinfo mingw_getnameinfo
|
|
|
|
|
|
|
|
int mingw_socket(int domain, int type, int protocol);
|
|
|
|
#define socket mingw_socket
|
|
|
|
|
|
|
|
int mingw_connect(int sockfd, struct sockaddr *sa, size_t sz);
|
|
|
|
#define connect mingw_connect
|
|
|
|
|
|
|
|
int mingw_bind(int sockfd, struct sockaddr *sa, size_t sz);
|
|
|
|
#define bind mingw_bind
|
|
|
|
|
|
|
|
int mingw_setsockopt(int sockfd, int lvl, int optname, void *optval, int optlen);
|
|
|
|
#define setsockopt mingw_setsockopt
|
|
|
|
|
|
|
|
int mingw_shutdown(int sockfd, int how);
|
|
|
|
#define shutdown mingw_shutdown
|
|
|
|
|
|
|
|
int mingw_listen(int sockfd, int backlog);
|
|
|
|
#define listen mingw_listen
|
|
|
|
|
|
|
|
int mingw_accept(int sockfd, struct sockaddr *sa, socklen_t *sz);
|
|
|
|
#define accept mingw_accept
|
|
|
|
|
|
|
|
int mingw_rename(const char*, const char*);
|
|
|
|
#define rename mingw_rename
|
|
|
|
|
|
|
|
#if defined(USE_WIN32_MMAP) || defined(_MSC_VER)
|
|
|
|
int mingw_getpagesize(void);
|
|
|
|
#define getpagesize mingw_getpagesize
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct rlimit {
|
|
|
|
unsigned int rlim_cur;
|
|
|
|
};
|
|
|
|
#define RLIMIT_NOFILE 0
|
|
|
|
|
|
|
|
static inline int getrlimit(int resource, struct rlimit *rlp)
|
|
|
|
{
|
|
|
|
if (resource != RLIMIT_NOFILE) {
|
|
|
|
errno = EINVAL;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
rlp->rlim_cur = 2048;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
MSVC: fix stat definition hell
In msvc.h, there's a couple of stat related functions defined diffently
from mingw.h. When we remove these definitions, the only problem we get is
"warning C4005: '_stati64' : macro redefinition" for this line in mingw.h:
#define _stati64(x,y) mingw_stat(x,y)
The reason is that as of MSVCR80.dll (distributed with MSVC 2005), the
original _stati64 family of functions was renamed to _stat32i64, and the
former function names became macros (pointing to the appropriate function
based on the definition of _USE_32BIT_TIME_T).
Defining _stati64 works on MinGW because MinGW by default compiles against
the MSVCRT.DLL that is part of Windows (i.e. _stati64 is a function rather
than a macro).
Note: MinGW *can* compile for newer MSVC runtime versions, and MSVC
apparently can also compile for the Windows MSVCRT.DLL via the DDK (see
http://www.syndicateofideas.com/posts/fighting-the-msvcrt-dll-hell ).
Remove the stat definitions from msvc.h, as they are not compiler related.
In mingw.h, determine the runtime version in use from the definitions of
_stati64 and _USE_32BIT_TIME_T, and define stat() accordingly.
This also fixes that stat() in MSVC builds still resolves to mingw_lstat()
instead of mingw_stat().
Signed-off-by: Karsten Blees <blees@dcon.de>
Acked-by: Sebastian Schuberth <sschuberth@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
12 years ago
|
|
|
/*
|
|
|
|
* Use mingw specific stat()/lstat()/fstat() implementations on Windows.
|
|
|
|
*/
|
|
|
|
#ifndef __MINGW64_VERSION_MAJOR
|
|
|
|
#define off_t off64_t
|
|
|
|
#define lseek _lseeki64
|
|
|
|
#endif
|
MSVC: fix stat definition hell
In msvc.h, there's a couple of stat related functions defined diffently
from mingw.h. When we remove these definitions, the only problem we get is
"warning C4005: '_stati64' : macro redefinition" for this line in mingw.h:
#define _stati64(x,y) mingw_stat(x,y)
The reason is that as of MSVCR80.dll (distributed with MSVC 2005), the
original _stati64 family of functions was renamed to _stat32i64, and the
former function names became macros (pointing to the appropriate function
based on the definition of _USE_32BIT_TIME_T).
Defining _stati64 works on MinGW because MinGW by default compiles against
the MSVCRT.DLL that is part of Windows (i.e. _stati64 is a function rather
than a macro).
Note: MinGW *can* compile for newer MSVC runtime versions, and MSVC
apparently can also compile for the Windows MSVCRT.DLL via the DDK (see
http://www.syndicateofideas.com/posts/fighting-the-msvcrt-dll-hell ).
Remove the stat definitions from msvc.h, as they are not compiler related.
In mingw.h, determine the runtime version in use from the definitions of
_stati64 and _USE_32BIT_TIME_T, and define stat() accordingly.
This also fixes that stat() in MSVC builds still resolves to mingw_lstat()
instead of mingw_stat().
Signed-off-by: Karsten Blees <blees@dcon.de>
Acked-by: Sebastian Schuberth <sschuberth@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
12 years ago
|
|
|
|
|
|
|
/* use struct stat with 64 bit st_size */
|
|
|
|
#ifdef stat
|
|
|
|
#undef stat
|
|
|
|
#endif
|
|
|
|
#define stat _stati64
|
|
|
|
int mingw_lstat(const char *file_name, struct stat *buf);
|
|
|
|
int mingw_stat(const char *file_name, struct stat *buf);
|
|
|
|
int mingw_fstat(int fd, struct stat *buf);
|
|
|
|
#ifdef fstat
|
|
|
|
#undef fstat
|
|
|
|
#endif
|
|
|
|
#define fstat mingw_fstat
|
|
|
|
#ifdef lstat
|
|
|
|
#undef lstat
|
|
|
|
#endif
|
|
|
|
#define lstat mingw_lstat
|
MSVC: fix stat definition hell
In msvc.h, there's a couple of stat related functions defined diffently
from mingw.h. When we remove these definitions, the only problem we get is
"warning C4005: '_stati64' : macro redefinition" for this line in mingw.h:
#define _stati64(x,y) mingw_stat(x,y)
The reason is that as of MSVCR80.dll (distributed with MSVC 2005), the
original _stati64 family of functions was renamed to _stat32i64, and the
former function names became macros (pointing to the appropriate function
based on the definition of _USE_32BIT_TIME_T).
Defining _stati64 works on MinGW because MinGW by default compiles against
the MSVCRT.DLL that is part of Windows (i.e. _stati64 is a function rather
than a macro).
Note: MinGW *can* compile for newer MSVC runtime versions, and MSVC
apparently can also compile for the Windows MSVCRT.DLL via the DDK (see
http://www.syndicateofideas.com/posts/fighting-the-msvcrt-dll-hell ).
Remove the stat definitions from msvc.h, as they are not compiler related.
In mingw.h, determine the runtime version in use from the definitions of
_stati64 and _USE_32BIT_TIME_T, and define stat() accordingly.
This also fixes that stat() in MSVC builds still resolves to mingw_lstat()
instead of mingw_stat().
Signed-off-by: Karsten Blees <blees@dcon.de>
Acked-by: Sebastian Schuberth <sschuberth@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
12 years ago
|
|
|
|
|
|
|
#ifndef _stati64
|
|
|
|
# define _stati64(x,y) mingw_stat(x,y)
|
|
|
|
#elif defined (_USE_32BIT_TIME_T)
|
|
|
|
# define _stat32i64(x,y) mingw_stat(x,y)
|
|
|
|
#else
|
|
|
|
# define _stat64(x,y) mingw_stat(x,y)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
int mingw_utime(const char *file_name, const struct utimbuf *times);
|
|
|
|
#define utime mingw_utime
|
|
|
|
|
Windows: avoid the "dup dance" when spawning a child process
When stdin, stdout, or stderr must be redirected for a child process that
on Windows is spawned using one of the spawn() functions of Microsoft's
C runtime, then there is no choice other than to
1. make a backup copy of fd 0,1,2 with dup
2. dup2 the redirection source fd into 0,1,2
3. spawn
4. dup2 the backup back into 0,1,2
5. close the backup copy and the redirection source
We used this idiom as well -- but we are not using the spawn() functions
anymore!
Instead, we have our own implementation. We had hardcoded that stdin,
stdout, and stderr of the child process were inherited from the parent's
fds 0, 1, and 2. But we can actually specify any fd.
With this patch, the fds to inherit are passed from start_command()'s
WIN32 section to our spawn implementation. This way, we can avoid the
backup copies of the fds.
The backup copies were a bug waiting to surface: The OS handles underlying
the dup()ed fds were inherited by the child process (but were not
associated with a file descriptor in the child). Consequently, the file or
pipe represented by the OS handle remained open even after the backup copy
was closed in the parent process until the child exited.
Since our implementation of pipe() creates non-inheritable OS handles, we
still dup() file descriptors in start_command() because dup() happens to
create inheritable duplicates. (A nice side effect is that the fd cleanup
in start_command is the same for Windows and Unix and remains unchanged.)
Signed-off-by: Johannes Sixt <j6t@kdbg.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
15 years ago
|
|
|
pid_t mingw_spawnvpe(const char *cmd, const char **argv, char **env,
|
|
|
|
const char *dir,
|
Windows: avoid the "dup dance" when spawning a child process
When stdin, stdout, or stderr must be redirected for a child process that
on Windows is spawned using one of the spawn() functions of Microsoft's
C runtime, then there is no choice other than to
1. make a backup copy of fd 0,1,2 with dup
2. dup2 the redirection source fd into 0,1,2
3. spawn
4. dup2 the backup back into 0,1,2
5. close the backup copy and the redirection source
We used this idiom as well -- but we are not using the spawn() functions
anymore!
Instead, we have our own implementation. We had hardcoded that stdin,
stdout, and stderr of the child process were inherited from the parent's
fds 0, 1, and 2. But we can actually specify any fd.
With this patch, the fds to inherit are passed from start_command()'s
WIN32 section to our spawn implementation. This way, we can avoid the
backup copies of the fds.
The backup copies were a bug waiting to surface: The OS handles underlying
the dup()ed fds were inherited by the child process (but were not
associated with a file descriptor in the child). Consequently, the file or
pipe represented by the OS handle remained open even after the backup copy
was closed in the parent process until the child exited.
Since our implementation of pipe() creates non-inheritable OS handles, we
still dup() file descriptors in start_command() because dup() happens to
create inheritable duplicates. (A nice side effect is that the fd cleanup
in start_command is the same for Windows and Unix and remains unchanged.)
Signed-off-by: Johannes Sixt <j6t@kdbg.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
15 years ago
|
|
|
int fhin, int fhout, int fherr);
|
|
|
|
int mingw_execvp(const char *cmd, char *const *argv);
|
|
|
|
#define execvp mingw_execvp
|
|
|
|
int mingw_execv(const char *cmd, char *const *argv);
|
|
|
|
#define execv mingw_execv
|
|
|
|
|
|
|
|
static inline unsigned int git_ntohl(unsigned int x)
|
|
|
|
{ return (unsigned int)ntohl(x); }
|
|
|
|
#define ntohl git_ntohl
|
|
|
|
|
|
|
|
sig_handler_t mingw_signal(int sig, sig_handler_t handler);
|
|
|
|
#define signal mingw_signal
|
|
|
|
|
|
|
|
int mingw_raise(int sig);
|
|
|
|
#define raise mingw_raise
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ANSI emulation wrappers
|
|
|
|
*/
|
|
|
|
|
Win32: Thread-safe windows console output
Winansi.c has many static variables that are accessed and modified from
the [v][f]printf / fputs functions overridden in the file. This may cause
multi threaded git commands that print to the console to produce corrupted
output or even crash.
Additionally, winansi.c doesn't override all functions that can be used to
print to the console (e.g. fwrite, write, fputc are missing), so that ANSI
escapes don't work properly for some git commands (e.g. git-grep).
Instead of doing ANSI emulation in just a few wrapped functions on top of
the IO API, let's plug into the IO system and take advantage of the thread
safety inherent to the IO system.
Redirect stdout and stderr to a pipe if they point to the console. A
background thread reads from the pipe, handles ANSI escape sequences and
UTF-8 to UTF-16 conversion, then writes to the console.
The pipe-based stdout and stderr replacements must be set to unbuffered, as
MSVCRT doesn't support line buffering and fully buffered streams are
inappropriate for console output.
Due to the byte-oriented pipe, ANSI escape sequences and multi-byte UTF-8
sequences can no longer be expected to arrive in one piece. Replace the
string-based ansi_emulate() with a simple stateful parser (this also fixes
colored diff hunk headers, which were broken as of commit 2efcc977).
Override isatty to return true for the pipes redirecting to the console.
Exec/spawn obtain the original console handle to pass to the next process
via winansi_get_osfhandle().
All other overrides are gone, the default stdio implementations work as
expected with the piped stdout/stderr descriptors.
Global variables are either initialized on startup (single threaded) or
exclusively modified by the background thread. Threads communicate through
the pipe, no further synchronization is necessary.
The background thread is terminated by disonnecting the pipe after flushing
the stdio and pipe buffers. This doesn't work for anonymous pipes (created
via CreatePipe), as DisconnectNamedPipe only works on the read end, which
discards remaining data. Thus we have to setup the pipe manually, with the
write end beeing the server (opened with CreateNamedPipe) and the read end
the client (opened with CreateFile).
Limitations: doesn't track reopened or duped file descriptors, i.e.:
- fdopen(1/2) returns fully buffered streams
- dup(1/2), dup2(1/2) returns normal pipe descriptors (i.e. isatty() =
false, winansi_get_osfhandle won't return the original console handle)
Currently, only the git-format-patch command uses xfdopen(xdup(1)) (see
"realstdout" in builtin/log.c), but works well with these limitations.
Many thanks to Atsushi Nakagawa <atnak@chejz.com> for suggesting and
reviewing the thread-exit-mechanism.
Signed-off-by: Karsten Blees <blees@dcon.de>
Signed-off-by: Stepan Kasal <kasal@ucw.cz>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
13 years ago
|
|
|
void winansi_init(void);
|
|
|
|
HANDLE winansi_get_osfhandle(int fd);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* git specific compatibility
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define has_dos_drive_prefix(path) \
|
|
|
|
(isalpha(*(path)) && (path)[1] == ':' ? 2 : 0)
|
|
|
|
int mingw_skip_dos_drive_prefix(char **path);
|
|
|
|
#define skip_dos_drive_prefix mingw_skip_dos_drive_prefix
|
|
|
|
#define is_dir_sep(c) ((c) == '/' || (c) == '\\')
|
|
|
|
static inline char *mingw_find_last_dir_sep(const char *path)
|
|
|
|
{
|
|
|
|
char *ret = NULL;
|
|
|
|
for (; *path; ++path)
|
|
|
|
if (is_dir_sep(*path))
|
|
|
|
ret = (char *)path;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
static inline void convert_slashes(char *path)
|
|
|
|
{
|
|
|
|
for (; *path; path++)
|
|
|
|
if (*path == '\\')
|
|
|
|
*path = '/';
|
|
|
|
}
|
|
|
|
#define find_last_dir_sep mingw_find_last_dir_sep
|
|
|
|
int mingw_offset_1st_component(const char *path);
|
|
|
|
#define offset_1st_component mingw_offset_1st_component
|
|
|
|
#define PATH_SEP ';'
|
|
|
|
#if !defined(__MINGW64_VERSION_MAJOR) && (!defined(_MSC_VER) || _MSC_VER < 1800)
|
|
|
|
#define PRIuMAX "I64u"
|
|
|
|
#define PRId64 "I64d"
|
|
|
|
#else
|
|
|
|
#include <inttypes.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void mingw_open_html(const char *path);
|
|
|
|
#define open_html mingw_open_html
|
|
|
|
|
|
|
|
void mingw_mark_as_git_dir(const char *dir);
|
|
|
|
#define mark_as_git_dir mingw_mark_as_git_dir
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Converts UTF-8 encoded string to UTF-16LE.
|
|
|
|
*
|
|
|
|
* To support repositories with legacy-encoded file names, invalid UTF-8 bytes
|
|
|
|
* 0xa0 - 0xff are converted to corresponding printable Unicode chars \u00a0 -
|
|
|
|
* \u00ff, and invalid UTF-8 bytes 0x80 - 0x9f (which would make non-printable
|
|
|
|
* Unicode) are converted to hex-code.
|
|
|
|
*
|
|
|
|
* Lead-bytes not followed by an appropriate number of trail-bytes, over-long
|
|
|
|
* encodings and 4-byte encodings > \u10ffff are detected as invalid UTF-8.
|
|
|
|
*
|
|
|
|
* Maximum space requirement for the target buffer is two wide chars per UTF-8
|
|
|
|
* char (((strlen(utf) * 2) + 1) [* sizeof(wchar_t)]).
|
|
|
|
*
|
|
|
|
* The maximum space is needed only if the entire input string consists of
|
|
|
|
* invalid UTF-8 bytes in range 0x80-0x9f, as per the following table:
|
|
|
|
*
|
|
|
|
* | | UTF-8 | UTF-16 |
|
|
|
|
* Code point | UTF-8 sequence | bytes | words | ratio
|
|
|
|
* --------------+-------------------+-------+--------+-------
|
|
|
|
* 000000-00007f | 0-7f | 1 | 1 | 1
|
|
|
|
* 000080-0007ff | c2-df + 80-bf | 2 | 1 | 0.5
|
|
|
|
* 000800-00ffff | e0-ef + 2 * 80-bf | 3 | 1 | 0.33
|
|
|
|
* 010000-10ffff | f0-f4 + 3 * 80-bf | 4 | 2 (a) | 0.5
|
|
|
|
* invalid | 80-9f | 1 | 2 (b) | 2
|
|
|
|
* invalid | a0-ff | 1 | 1 | 1
|
|
|
|
*
|
|
|
|
* (a) encoded as UTF-16 surrogate pair
|
|
|
|
* (b) encoded as two hex digits
|
|
|
|
*
|
|
|
|
* Note that, while the UTF-8 encoding scheme can be extended to 5-byte, 6-byte
|
|
|
|
* or even indefinite-byte sequences, the largest valid code point \u10ffff
|
|
|
|
* encodes as only 4 UTF-8 bytes.
|
|
|
|
*
|
|
|
|
* Parameters:
|
|
|
|
* wcs: wide char target buffer
|
|
|
|
* utf: string to convert
|
|
|
|
* wcslen: size of target buffer (in wchar_t's)
|
|
|
|
* utflen: size of string to convert, or -1 if 0-terminated
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* length of converted string (_wcslen(wcs)), or -1 on failure
|
|
|
|
*
|
|
|
|
* Errors:
|
|
|
|
* EINVAL: one of the input parameters is invalid (e.g. NULL)
|
|
|
|
* ERANGE: the output buffer is too small
|
|
|
|
*/
|
|
|
|
int xutftowcsn(wchar_t *wcs, const char *utf, size_t wcslen, int utflen);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Simplified variant of xutftowcsn, assumes input string is \0-terminated.
|
|
|
|
*/
|
|
|
|
static inline int xutftowcs(wchar_t *wcs, const char *utf, size_t wcslen)
|
|
|
|
{
|
|
|
|
return xutftowcsn(wcs, utf, wcslen, -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Simplified file system specific variant of xutftowcsn, assumes output
|
|
|
|
* buffer size is MAX_PATH wide chars and input string is \0-terminated,
|
|
|
|
* fails with ENAMETOOLONG if input string is too long.
|
|
|
|
*/
|
|
|
|
static inline int xutftowcs_path(wchar_t *wcs, const char *utf)
|
|
|
|
{
|
|
|
|
int result = xutftowcsn(wcs, utf, MAX_PATH, -1);
|
|
|
|
if (result < 0 && errno == ERANGE)
|
|
|
|
errno = ENAMETOOLONG;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Converts UTF-16LE encoded string to UTF-8.
|
|
|
|
*
|
|
|
|
* Maximum space requirement for the target buffer is three UTF-8 chars per
|
|
|
|
* wide char ((_wcslen(wcs) * 3) + 1).
|
|
|
|
*
|
|
|
|
* The maximum space is needed only if the entire input string consists of
|
|
|
|
* UTF-16 words in range 0x0800-0xd7ff or 0xe000-0xffff (i.e. \u0800-\uffff
|
|
|
|
* modulo surrogate pairs), as per the following table:
|
|
|
|
*
|
|
|
|
* | | UTF-16 | UTF-8 |
|
|
|
|
* Code point | UTF-16 sequence | words | bytes | ratio
|
|
|
|
* --------------+-----------------------+--------+-------+-------
|
|
|
|
* 000000-00007f | 0000-007f | 1 | 1 | 1
|
|
|
|
* 000080-0007ff | 0080-07ff | 1 | 2 | 2
|
|
|
|
* 000800-00ffff | 0800-d7ff / e000-ffff | 1 | 3 | 3
|
|
|
|
* 010000-10ffff | d800-dbff + dc00-dfff | 2 | 4 | 2
|
|
|
|
*
|
|
|
|
* Note that invalid code points > 10ffff cannot be represented in UTF-16.
|
|
|
|
*
|
|
|
|
* Parameters:
|
|
|
|
* utf: target buffer
|
|
|
|
* wcs: wide string to convert
|
|
|
|
* utflen: size of target buffer
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* length of converted string, or -1 on failure
|
|
|
|
*
|
|
|
|
* Errors:
|
|
|
|
* EINVAL: one of the input parameters is invalid (e.g. NULL)
|
|
|
|
* ERANGE: the output buffer is too small
|
|
|
|
*/
|
|
|
|
int xwcstoutf(char *utf, const wchar_t *wcs, size_t utflen);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A critical section used in the implementation of the spawn
|
|
|
|
* functions (mingw_spawnv[p]e()) and waitpid(). Intialised in
|
|
|
|
* the replacement main() macro below.
|
|
|
|
*/
|
|
|
|
extern CRITICAL_SECTION pinfo_cs;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A replacement of main() that adds win32 specific initialization.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void mingw_startup();
|
|
|
|
#define main(c,v) dummy_decl_mingw_main(); \
|
|
|
|
static int mingw_main(c,v); \
|
|
|
|
int main(int argc, char **argv) \
|
|
|
|
{ \
|
|
|
|
mingw_startup(); \
|
|
|
|
return mingw_main(__argc, (void *)__argv); \
|
|
|
|
} \
|
|
|
|
static int mingw_main(c,v)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used by Pthread API implementation for Windows
|
|
|
|
*/
|
|
|
|
extern int err_win_to_posix(DWORD winerr);
|