You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

642 lines
15 KiB

#include "cache.h"
#include "tree-walk.h"
#include "unpack-trees.h"
#include "dir.h"
#include "tree.h"
static const char *get_mode(const char *str, unsigned int *modep)
{
unsigned char c;
unsigned int mode = 0;
if (*str == ' ')
return NULL;
while ((c = *str++) != ' ') {
if (c < '0' || c > '7')
return NULL;
mode = (mode << 3) + (c - '0');
}
*modep = mode;
return str;
}
static void decode_tree_entry(struct tree_desc *desc, const char *buf, unsigned long size)
{
const char *path;
unsigned int mode, len;
if (size < 24 || buf[size - 21])
die("corrupt tree file");
path = get_mode(buf, &mode);
if (!path || !*path)
die("corrupt tree file");
len = strlen(path) + 1;
/* Initialize the descriptor entry */
desc->entry.path = path;
desc->entry.mode = mode;
desc->entry.sha1 = (const unsigned char *)(path + len);
}
void init_tree_desc(struct tree_desc *desc, const void *buffer, unsigned long size)
{
desc->buffer = buffer;
desc->size = size;
if (size)
decode_tree_entry(desc, buffer, size);
}
void *fill_tree_descriptor(struct tree_desc *desc, const unsigned char *sha1)
{
unsigned long size = 0;
void *buf = NULL;
if (sha1) {
buf = read_object_with_reference(sha1, tree_type, &size, NULL);
if (!buf)
die("unable to read tree %s", sha1_to_hex(sha1));
}
init_tree_desc(desc, buf, size);
return buf;
}
static void entry_clear(struct name_entry *a)
{
memset(a, 0, sizeof(*a));
}
static void entry_extract(struct tree_desc *t, struct name_entry *a)
{
*a = t->entry;
}
void update_tree_entry(struct tree_desc *desc)
{
const void *buf = desc->buffer;
const unsigned char *end = desc->entry.sha1 + 20;
unsigned long size = desc->size;
unsigned long len = end - (const unsigned char *)buf;
if (size < len)
die("corrupt tree file");
buf = end;
size -= len;
desc->buffer = buf;
desc->size = size;
if (size)
decode_tree_entry(desc, buf, size);
}
tree_entry(): new tree-walking helper function This adds a "tree_entry()" function that combines the common operation of doing a "tree_entry_extract()" + "update_tree_entry()". It also has a simplified calling convention, designed for simple loops that traverse over a whole tree: the arguments are pointers to the tree descriptor and a name_entry structure to fill in, and it returns a boolean "true" if there was an entry left to be gotten in the tree. This allows tree traversal with struct tree_desc desc; struct name_entry entry; desc.buf = tree->buffer; desc.size = tree->size; while (tree_entry(&desc, &entry) { ... use "entry.{path, sha1, mode, pathlen}" ... } which is not only shorter than writing it out in full, it's hopefully less error prone too. [ It's actually a tad faster too - we don't need to recalculate the entry pathlength in both extract and update, but need to do it only once. Also, some callers can avoid doing a "strlen()" on the result, since it's returned as part of the name_entry structure. However, by now we're talking just 1% speedup on "git-rev-list --objects --all", and we're definitely at the point where tree walking is no longer the issue any more. ] NOTE! Not everybody wants to use this new helper function, since some of the tree walkers very much on purpose do the descriptor update separately from the entry extraction. So the "extract + update" sequence still remains as the core sequence, this is just a simplified interface. We should probably add a silly two-line inline helper function for initializing the descriptor from the "struct tree" too, just to cut down on the noise from that common "desc" initializer. Signed-off-by: Linus Torvalds <torvalds@osdl.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
int tree_entry(struct tree_desc *desc, struct name_entry *entry)
{
if (!desc->size)
tree_entry(): new tree-walking helper function This adds a "tree_entry()" function that combines the common operation of doing a "tree_entry_extract()" + "update_tree_entry()". It also has a simplified calling convention, designed for simple loops that traverse over a whole tree: the arguments are pointers to the tree descriptor and a name_entry structure to fill in, and it returns a boolean "true" if there was an entry left to be gotten in the tree. This allows tree traversal with struct tree_desc desc; struct name_entry entry; desc.buf = tree->buffer; desc.size = tree->size; while (tree_entry(&desc, &entry) { ... use "entry.{path, sha1, mode, pathlen}" ... } which is not only shorter than writing it out in full, it's hopefully less error prone too. [ It's actually a tad faster too - we don't need to recalculate the entry pathlength in both extract and update, but need to do it only once. Also, some callers can avoid doing a "strlen()" on the result, since it's returned as part of the name_entry structure. However, by now we're talking just 1% speedup on "git-rev-list --objects --all", and we're definitely at the point where tree walking is no longer the issue any more. ] NOTE! Not everybody wants to use this new helper function, since some of the tree walkers very much on purpose do the descriptor update separately from the entry extraction. So the "extract + update" sequence still remains as the core sequence, this is just a simplified interface. We should probably add a silly two-line inline helper function for initializing the descriptor from the "struct tree" too, just to cut down on the noise from that common "desc" initializer. Signed-off-by: Linus Torvalds <torvalds@osdl.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
return 0;
*entry = desc->entry;
update_tree_entry(desc);
tree_entry(): new tree-walking helper function This adds a "tree_entry()" function that combines the common operation of doing a "tree_entry_extract()" + "update_tree_entry()". It also has a simplified calling convention, designed for simple loops that traverse over a whole tree: the arguments are pointers to the tree descriptor and a name_entry structure to fill in, and it returns a boolean "true" if there was an entry left to be gotten in the tree. This allows tree traversal with struct tree_desc desc; struct name_entry entry; desc.buf = tree->buffer; desc.size = tree->size; while (tree_entry(&desc, &entry) { ... use "entry.{path, sha1, mode, pathlen}" ... } which is not only shorter than writing it out in full, it's hopefully less error prone too. [ It's actually a tad faster too - we don't need to recalculate the entry pathlength in both extract and update, but need to do it only once. Also, some callers can avoid doing a "strlen()" on the result, since it's returned as part of the name_entry structure. However, by now we're talking just 1% speedup on "git-rev-list --objects --all", and we're definitely at the point where tree walking is no longer the issue any more. ] NOTE! Not everybody wants to use this new helper function, since some of the tree walkers very much on purpose do the descriptor update separately from the entry extraction. So the "extract + update" sequence still remains as the core sequence, this is just a simplified interface. We should probably add a silly two-line inline helper function for initializing the descriptor from the "struct tree" too, just to cut down on the noise from that common "desc" initializer. Signed-off-by: Linus Torvalds <torvalds@osdl.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
return 1;
}
void setup_traverse_info(struct traverse_info *info, const char *base)
{
int pathlen = strlen(base);
static struct traverse_info dummy;
memset(info, 0, sizeof(*info));
if (pathlen && base[pathlen-1] == '/')
pathlen--;
info->pathlen = pathlen ? pathlen + 1 : 0;
info->name.path = base;
info->name.sha1 = (void *)(base + pathlen + 1);
if (pathlen)
info->prev = &dummy;
}
char *make_traverse_path(char *path, const struct traverse_info *info, const struct name_entry *n)
{
int len = tree_entry_len(n->path, n->sha1);
int pathlen = info->pathlen;
path[pathlen + len] = 0;
for (;;) {
memcpy(path + pathlen, n->path, len);
if (!pathlen)
break;
path[--pathlen] = '/';
n = &info->name;
len = tree_entry_len(n->path, n->sha1);
info = info->prev;
pathlen -= len;
}
return path;
}
struct tree_desc_skip {
struct tree_desc_skip *prev;
const void *ptr;
};
struct tree_desc_x {
struct tree_desc d;
struct tree_desc_skip *skip;
};
static int name_compare(const char *a, int a_len,
const char *b, int b_len)
{
int len = (a_len < b_len) ? a_len : b_len;
int cmp = memcmp(a, b, len);
if (cmp)
return cmp;
return (a_len - b_len);
}
static int check_entry_match(const char *a, int a_len, const char *b, int b_len)
{
/*
* The caller wants to pick *a* from a tree or nothing.
* We are looking at *b* in a tree.
*
* (0) If a and b are the same name, we are trivially happy.
*
* There are three possibilities where *a* could be hiding
* behind *b*.
*
* (1) *a* == "t", *b* == "ab" i.e. *b* sorts earlier than *a* no
* matter what.
* (2) *a* == "t", *b* == "t-2" and "t" is a subtree in the tree;
* (3) *a* == "t-2", *b* == "t" and "t-2" is a blob in the tree.
*
* Otherwise we know *a* won't appear in the tree without
* scanning further.
*/
int cmp = name_compare(a, a_len, b, b_len);
/* Most common case first -- reading sync'd trees */
if (!cmp)
return cmp;
if (0 < cmp) {
/* a comes after b; it does not matter if it is case (3)
if (b_len < a_len && !memcmp(a, b, b_len) && a[b_len] < '/')
return 1;
*/
return 1; /* keep looking */
}
/* b comes after a; are we looking at case (2)? */
if (a_len < b_len && !memcmp(a, b, a_len) && b[a_len] < '/')
return 1; /* keep looking */
return -1; /* a cannot appear in the tree */
}
/*
* From the extended tree_desc, extract the first name entry, while
* paying attention to the candidate "first" name. Most importantly,
* when looking for an entry, if there are entries that sorts earlier
* in the tree object representation than that name, skip them and
* process the named entry first. We will remember that we haven't
* processed the first entry yet, and in the later call skip the
* entry we processed early when update_extended_entry() is called.
*
* E.g. if the underlying tree object has these entries:
*
* blob "t-1"
* blob "t-2"
* tree "t"
* blob "t=1"
*
* and the "first" asks for "t", remember that we still need to
* process "t-1" and "t-2" but extract "t". After processing the
* entry "t" from this call, the caller will let us know by calling
* update_extended_entry() that we can remember "t" has been processed
* already.
*/
static void extended_entry_extract(struct tree_desc_x *t,
struct name_entry *a,
const char *first,
int first_len)
{
const char *path;
int len;
struct tree_desc probe;
struct tree_desc_skip *skip;
/*
* Extract the first entry from the tree_desc, but skip the
* ones that we already returned in earlier rounds.
*/
while (1) {
if (!t->d.size) {
entry_clear(a);
break; /* not found */
}
entry_extract(&t->d, a);
for (skip = t->skip; skip; skip = skip->prev)
if (a->path == skip->ptr)
break; /* found */
if (!skip)
break;
/* We have processed this entry already. */
update_tree_entry(&t->d);
}
if (!first || !a->path)
return;
/*
* The caller wants "first" from this tree, or nothing.
*/
path = a->path;
len = tree_entry_len(a->path, a->sha1);
switch (check_entry_match(first, first_len, path, len)) {
case -1:
entry_clear(a);
case 0:
return;
default:
break;
}
/*
* We need to look-ahead -- we suspect that a subtree whose
* name is "first" may be hiding behind the current entry "path".
*/
probe = t->d;
while (probe.size) {
entry_extract(&probe, a);
path = a->path;
len = tree_entry_len(a->path, a->sha1);
switch (check_entry_match(first, first_len, path, len)) {
case -1:
entry_clear(a);
case 0:
return;
default:
update_tree_entry(&probe);
break;
}
/* keep looking */
}
entry_clear(a);
}
static void update_extended_entry(struct tree_desc_x *t, struct name_entry *a)
{
if (t->d.entry.path == a->path) {
update_tree_entry(&t->d);
} else {
/* we have returned this entry early */
struct tree_desc_skip *skip = xmalloc(sizeof(*skip));
skip->ptr = a->path;
skip->prev = t->skip;
t->skip = skip;
}
}
static void free_extended_entry(struct tree_desc_x *t)
{
struct tree_desc_skip *p, *s;
for (s = t->skip; s; s = p) {
p = s->prev;
free(s);
}
}
int traverse_trees(int n, struct tree_desc *t, struct traverse_info *info)
{
int ret = 0;
int error = 0;
struct name_entry *entry = xmalloc(n*sizeof(*entry));
int i;
struct tree_desc_x *tx = xcalloc(n, sizeof(*tx));
for (i = 0; i < n; i++)
tx[i].d = t[i];
for (;;) {
unsigned long mask, dirmask;
const char *first = NULL;
int first_len = 0;
struct name_entry *e;
int len;
for (i = 0; i < n; i++) {
e = entry + i;
extended_entry_extract(tx + i, e, NULL, 0);
}
/*
* A tree may have "t-2" at the current location even
* though it may have "t" that is a subtree behind it,
* and another tree may return "t". We want to grab
* all "t" from all trees to match in such a case.
*/
for (i = 0; i < n; i++) {
e = entry + i;
if (!e->path)
continue;
len = tree_entry_len(e->path, e->sha1);
if (!first) {
first = e->path;
first_len = len;
continue;
}
if (name_compare(e->path, len, first, first_len) < 0) {
first = e->path;
first_len = len;
}
}
if (first) {
for (i = 0; i < n; i++) {
e = entry + i;
extended_entry_extract(tx + i, e, first, first_len);
/* Cull the ones that are not the earliest */
if (!e->path)
continue;
len = tree_entry_len(e->path, e->sha1);
if (name_compare(e->path, len, first, first_len))
entry_clear(e);
}
}
/* Now we have in entry[i] the earliest name from the trees */
mask = 0;
dirmask = 0;
for (i = 0; i < n; i++) {
if (!entry[i].path)
continue;
mask |= 1ul << i;
if (S_ISDIR(entry[i].mode))
dirmask |= 1ul << i;
}
if (!mask)
break;
ret = info->fn(n, mask, dirmask, entry, info);
if (ret < 0) {
error = ret;
if (!info->show_all_errors)
break;
}
mask &= ret;
ret = 0;
for (i = 0; i < n; i++)
if (mask & (1ul << i))
update_extended_entry(tx + i, entry + i);
}
free(entry);
for (i = 0; i < n; i++)
free_extended_entry(tx + i);
free(tx);
return error;
}
static int find_tree_entry(struct tree_desc *t, const char *name, unsigned char *result, unsigned *mode)
{
int namelen = strlen(name);
while (t->size) {
const char *entry;
const unsigned char *sha1;
int entrylen, cmp;
sha1 = tree_entry_extract(t, &entry, mode);
update_tree_entry(t);
entrylen = tree_entry_len(entry, sha1);
if (entrylen > namelen)
continue;
cmp = memcmp(name, entry, entrylen);
if (cmp > 0)
continue;
if (cmp < 0)
break;
if (entrylen == namelen) {
hashcpy(result, sha1);
return 0;
}
if (name[entrylen] != '/')
continue;
if (!S_ISDIR(*mode))
break;
if (++entrylen == namelen) {
hashcpy(result, sha1);
return 0;
}
return get_tree_entry(sha1, name + entrylen, result, mode);
}
return -1;
}
int get_tree_entry(const unsigned char *tree_sha1, const char *name, unsigned char *sha1, unsigned *mode)
{
int retval;
void *tree;
unsigned long size;
struct tree_desc t;
unsigned char root[20];
tree = read_object_with_reference(tree_sha1, tree_type, &size, root);
if (!tree)
return -1;
if (name[0] == '\0') {
hashcpy(sha1, root);
free(tree);
return 0;
}
init_tree_desc(&t, tree, size);
retval = find_tree_entry(&t, name, sha1, mode);
free(tree);
return retval;
}
static int match_entry(const struct name_entry *entry, int pathlen,
const char *match, int matchlen,
int *never_interesting)
{
int m = -1; /* signals that we haven't called strncmp() */
if (*never_interesting) {
/*
* We have not seen any match that sorts later
* than the current path.
*/
/*
* Does match sort strictly earlier than path
* with their common parts?
*/
m = strncmp(match, entry->path,
(matchlen < pathlen) ? matchlen : pathlen);
if (m < 0)
return 0;
/*
* If we come here even once, that means there is at
* least one pathspec that would sort equal to or
* later than the path we are currently looking at.
* In other words, if we have never reached this point
* after iterating all pathspecs, it means all
* pathspecs are either outside of base, or inside the
* base but sorts strictly earlier than the current
* one. In either case, they will never match the
* subsequent entries. In such a case, we initialized
* the variable to -1 and that is what will be
* returned, allowing the caller to terminate early.
*/
*never_interesting = 0;
}
if (pathlen > matchlen)
return 0;
if (matchlen > pathlen) {
if (match[pathlen] != '/')
return 0;
if (!S_ISDIR(entry->mode))
return 0;
}
if (m == -1)
/*
* we cheated and did not do strncmp(), so we do
* that here.
*/
m = strncmp(match, entry->path, pathlen);
/*
* If common part matched earlier then it is a hit,
* because we rejected the case where path is not a
* leading directory and is shorter than match.
*/
if (!m)
return 1;
return 0;
}
static int match_dir_prefix(const char *base, int baselen,
const char *match, int matchlen)
{
if (strncmp(base, match, matchlen))
return 0;
/*
* If the base is a subdirectory of a path which
* was specified, all of them are interesting.
*/
if (!matchlen ||
base[matchlen] == '/' ||
match[matchlen - 1] == '/')
return 1;
/* Just a random prefix match */
return 0;
}
/*
* Is a tree entry interesting given the pathspec we have?
*
* Pre-condition: either baselen == base_offset (i.e. empty path)
* or base[baselen-1] == '/' (i.e. with trailing slash).
*
* Return:
* - 2 for "yes, and all subsequent entries will be"
* - 1 for yes
* - zero for no
* - negative for "no, and no subsequent entries will be either"
*/
int tree_entry_interesting(const struct name_entry *entry,
struct strbuf *base, int base_offset,
const struct pathspec *ps)
{
int i;
int pathlen, baselen = base->len - base_offset;
int never_interesting = ps->has_wildcard ? 0 : -1;
if (!ps->nr) {
if (!ps->recursive || ps->max_depth == -1)
return 2;
return !!within_depth(base->buf + base_offset, baselen,
!!S_ISDIR(entry->mode),
ps->max_depth);
}
pathlen = tree_entry_len(entry->path, entry->sha1);
for (i = ps->nr - 1; i >= 0; i--) {
const struct pathspec_item *item = ps->items+i;
const char *match = item->match;
const char *base_str = base->buf + base_offset;
int matchlen = item->len;
if (baselen >= matchlen) {
/* If it doesn't match, move along... */
if (!match_dir_prefix(base_str, baselen, match, matchlen))
goto match_wildcards;
if (!ps->recursive || ps->max_depth == -1)
return 2;
return !!within_depth(base_str + matchlen + 1,
baselen - matchlen - 1,
!!S_ISDIR(entry->mode),
ps->max_depth);
}
/* Does the base match? */
if (!strncmp(base_str, match, baselen)) {
if (match_entry(entry, pathlen,
match + baselen, matchlen - baselen,
&never_interesting))
return 1;
if (ps->items[i].has_wildcard) {
if (!fnmatch(match + baselen, entry->path, 0))
return 1;
/*
* Match all directories. We'll try to
* match files later on.
*/
if (ps->recursive && S_ISDIR(entry->mode))
return 1;
}
continue;
}
match_wildcards:
if (!ps->items[i].has_wildcard)
continue;
/*
* Concatenate base and entry->path into one and do
* fnmatch() on it.
*/
strbuf_add(base, entry->path, pathlen);
if (!fnmatch(match, base->buf + base_offset, 0)) {
strbuf_setlen(base, base_offset + baselen);
return 1;
}
strbuf_setlen(base, base_offset + baselen);
/*
* Match all directories. We'll try to match files
* later on.
*/
if (ps->recursive && S_ISDIR(entry->mode))
return 1;
}
return never_interesting; /* No matches */
}