|
|
|
@ -450,58 +450,6 @@ static int get_sha1_1(const char *name, int len, unsigned char *sha1)
@@ -450,58 +450,6 @@ static int get_sha1_1(const char *name, int len, unsigned char *sha1)
|
|
|
|
|
return get_short_sha1(name, len, sha1, 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int get_tree_entry(const unsigned char *, const char *, unsigned char *, unsigned *); |
|
|
|
|
|
|
|
|
|
static int find_tree_entry(struct tree_desc *t, const char *name, unsigned char *result, unsigned *mode) |
|
|
|
|
{ |
|
|
|
|
int namelen = strlen(name); |
|
|
|
|
while (t->size) { |
|
|
|
|
const char *entry; |
|
|
|
|
const unsigned char *sha1; |
|
|
|
|
int entrylen, cmp; |
|
|
|
|
|
|
|
|
|
sha1 = tree_entry_extract(t, &entry, mode); |
|
|
|
|
update_tree_entry(t); |
|
|
|
|
entrylen = strlen(entry); |
|
|
|
|
if (entrylen > namelen) |
|
|
|
|
continue; |
|
|
|
|
cmp = memcmp(name, entry, entrylen); |
|
|
|
|
if (cmp > 0) |
|
|
|
|
continue; |
|
|
|
|
if (cmp < 0) |
|
|
|
|
break; |
|
|
|
|
if (entrylen == namelen) { |
|
|
|
|
memcpy(result, sha1, 20); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
if (name[entrylen] != '/') |
|
|
|
|
continue; |
|
|
|
|
if (!S_ISDIR(*mode)) |
|
|
|
|
break; |
|
|
|
|
if (++entrylen == namelen) { |
|
|
|
|
memcpy(result, sha1, 20); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
return get_tree_entry(sha1, name + entrylen, result, mode); |
|
|
|
|
} |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int get_tree_entry(const unsigned char *tree_sha1, const char *name, unsigned char *sha1, unsigned *mode) |
|
|
|
|
{ |
|
|
|
|
int retval; |
|
|
|
|
void *tree; |
|
|
|
|
struct tree_desc t; |
|
|
|
|
|
|
|
|
|
tree = read_object_with_reference(tree_sha1, tree_type, &t.size, NULL); |
|
|
|
|
if (!tree) |
|
|
|
|
return -1; |
|
|
|
|
t.buf = tree; |
|
|
|
|
retval = find_tree_entry(&t, name, sha1, mode); |
|
|
|
|
free(tree); |
|
|
|
|
return retval; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
* This is like "get_sha1_basic()", except it allows "sha1 expressions", |
|
|
|
|
* notably "xyz^" for "parent of xyz" |
|
|
|
|