--- src/basemath/buch2.c.orig 2024-09-28 01:04:41.000000000 -0600 +++ src/basemath/buch2.c 2024-09-30 10:48:13.738487696 -0600 @@ -1172,7 +1172,7 @@ getfu(GEN nf, GEN *ptA, GEN *ptU, long p } static void -err_units() { pari_err_PREC("makeunits [cannot get units, use bnfinit(,1)]"); } +err_units(void) { pari_err_PREC("makeunits [cannot get units, use bnfinit(,1)]"); } /* bound for log2 |sigma(u)|, sigma complex embedding, u fundamental unit * attached to bnf_get_logfu */ --- src/basemath/mftrace.c.orig 2024-09-28 01:04:41.000000000 -0600 +++ src/basemath/mftrace.c 2024-09-30 10:48:13.739487683 -0600 @@ -631,7 +631,7 @@ mfcharGL(GEN G, GEN L) return mkvec4(G, L, o, polcyclo(ord,vt)); } static GEN -mfchartrivial() +mfchartrivial(void) { return mfcharGL(znstar0(gen_1,1), cgetg(1,t_COL)); } /* convert a generic character into an 'mfchar' */ static GEN @@ -1741,7 +1741,7 @@ mfcoef(GEN F, long n) } static GEN -paramconst() { return tagparams(t_MF_CONST, mkNK(1,0,mfchartrivial())); } +paramconst(void) { return tagparams(t_MF_CONST, mkNK(1,0,mfchartrivial())); } static GEN mftrivial(void) { retmkvec2(paramconst(), cgetg(1,t_VEC)); } static GEN --- src/basemath/modsym.c.orig 2024-09-28 00:31:21.000000000 -0600 +++ src/basemath/modsym.c 2024-09-30 10:48:52.328984449 -0600 @@ -1406,11 +1406,11 @@ indices_backward(GEN W, GEN C) /*[0,-1;1,-1]*/ static GEN -mkTAU() +mkTAU(void) { retmkmat22(gen_0,gen_m1, gen_1,gen_m1); } /* S */ static GEN -mkS() +mkS(void) { retmkmat22(gen_0,gen_1, gen_m1,gen_0); } /* N = integer > 1. Returns data describing Delta_0 = Z[P^1(Q)]_0 seen as * a Gamma_0(N) - module. */ --- src/modules/mpqs.c.orig 2024-09-28 00:31:21.000000000 -0600 +++ src/modules/mpqs.c 2024-09-30 10:48:13.741487657 -0600 @@ -1501,7 +1501,7 @@ mpqs_solve_linear_system(mpqs_handle_t * /** MAIN ENTRY POINT AND DRIVER ROUTINE **/ /*********************************************************************/ static void -toolarge() +toolarge(void) { pari_warn(warner, "MPQS: number too big to be factored with MPQS,\n\tgiving up"); } /* Factors N using the self-initializing multipolynomial quadratic sieve