
PostgreSQL 11.2 Documentation

The PostgreSQL Global Development Group

PostgreSQL 11.2 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2019 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2019 by the PostgreSQL Global Development Group.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and
without a written agreement is hereby granted, provided that the above copyright notice and this paragraph and the
following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents
Preface ... xxxii

1. What is PostgreSQL? .. xxxii
2. A Brief History of PostgreSQL ... xxxiii

2.1. The Berkeley POSTGRES Project ... xxxiii
2.2. Postgres95 ... xxxiii
2.3. PostgreSQL ... xxxiv

3. Conventions ... xxxiv
4. Further Information .. xxxv
5. Bug Reporting Guidelines .. xxxv

5.1. Identifying Bugs .. xxxv
5.2. What to Report ... xxxvi
5.3. Where to Report Bugs ... xxxviii

I. Tutorial .. 1
1. Getting Started .. 3

1.1. Installation ... 3
1.2. Architectural Fundamentals .. 3
1.3. Creating a Database .. 4
1.4. Accessing a Database .. 5

2. The SQL Language ... 8
2.1. Introduction ... 8
2.2. Concepts ... 8
2.3. Creating a New Table ... 9
2.4. Populating a Table With Rows .. 9
2.5. Querying a Table .. 10
2.6. Joins Between Tables .. 12
2.7. Aggregate Functions .. 14
2.8. Updates ... 16
2.9. Deletions ... 16

3. Advanced Features ... 18
3.1. Introduction .. 18
3.2. Views ... 18
3.3. Foreign Keys .. 18
3.4. Transactions ... 19
3.5. Window Functions .. 21
3.6. Inheritance ... 24
3.7. Conclusion ... 26

II. The SQL Language ... 27
4. SQL Syntax .. 35

4.1. Lexical Structure ... 35
4.2. Value Expressions ... 45
4.3. Calling Functions .. 59

5. Data Definition ... 63
5.1. Table Basics ... 63
5.2. Default Values .. 64
5.3. Constraints ... 65
5.4. System Columns ... 73
5.5. Modifying Tables .. 74
5.6. Privileges ... 77
5.7. Row Security Policies .. 78
5.8. Schemas .. 84
5.9. Inheritance ... 89

iii

PostgreSQL 11.2 Documentation

5.10. Table Partitioning .. 93
5.11. Foreign Data ... 105
5.12. Other Database Objects ... 106
5.13. Dependency Tracking ... 106

6. Data Manipulation ... 108
6.1. Inserting Data ... 108
6.2. Updating Data .. 109
6.3. Deleting Data ... 110
6.4. Returning Data From Modified Rows ... 110

7. Queries .. 112
7.1. Overview ... 112
7.2. Table Expressions .. 112
7.3. Select Lists ... 128
7.4. Combining Queries .. 130
7.5. Sorting Rows .. 130
7.6. LIMIT and OFFSET ... 131
7.7. VALUES Lists ... 132
7.8. WITH Queries (Common Table Expressions) .. 133

8. Data Types ... 139
8.1. Numeric Types ... 140
8.2. Monetary Types .. 145
8.3. Character Types .. 146
8.4. Binary Data Types ... 148
8.5. Date/Time Types ... 150
8.6. Boolean Type ... 160
8.7. Enumerated Types ... 161
8.8. Geometric Types ... 163
8.9. Network Address Types ... 166
8.10. Bit String Types .. 168
8.11. Text Search Types ... 169
8.12. UUID Type .. 172
8.13. XML Type ... 173
8.14. JSON Types ... 175
8.15. Arrays .. 182
8.16. Composite Types ... 192
8.17. Range Types ... 199
8.18. Domain Types ... 205
8.19. Object Identifier Types ... 205
8.20. pg_lsn Type .. 207
8.21. Pseudo-Types .. 207

9. Functions and Operators ... 209
9.1. Logical Operators .. 209
9.2. Comparison Functions and Operators .. 209
9.3. Mathematical Functions and Operators .. 212
9.4. String Functions and Operators .. 216
9.5. Binary String Functions and Operators .. 231
9.6. Bit String Functions and Operators ... 233
9.7. Pattern Matching ... 234
9.8. Data Type Formatting Functions .. 250
9.9. Date/Time Functions and Operators .. 258
9.10. Enum Support Functions ... 272
9.11. Geometric Functions and Operators .. 272
9.12. Network Address Functions and Operators ... 277
9.13. Text Search Functions and Operators .. 279

iv

PostgreSQL 11.2 Documentation

9.14. XML Functions ... 286
9.15. JSON Functions and Operators .. 300
9.16. Sequence Manipulation Functions ... 309
9.17. Conditional Expressions .. 311
9.18. Array Functions and Operators ... 314
9.19. Range Functions and Operators .. 317
9.20. Aggregate Functions ... 319
9.21. Window Functions ... 327
9.22. Subquery Expressions ... 329
9.23. Row and Array Comparisons ... 332
9.24. Set Returning Functions .. 335
9.25. System Information Functions .. 338
9.26. System Administration Functions ... 355
9.27. Trigger Functions .. 372
9.28. Event Trigger Functions .. 373

10. Type Conversion .. 376
10.1. Overview .. 376
10.2. Operators .. 377
10.3. Functions .. 381
10.4. Value Storage ... 385
10.5. UNION, CASE, and Related Constructs .. 386
10.6. SELECT Output Columns ... 388

11. Indexes ... 389
11.1. Introduction .. 389
11.2. Index Types .. 390
11.3. Multicolumn Indexes .. 392
11.4. Indexes and ORDER BY ... 393
11.5. Combining Multiple Indexes .. 394
11.6. Unique Indexes ... 395
11.7. Indexes on Expressions ... 395
11.8. Partial Indexes .. 396
11.9. Index-Only Scans and Covering Indexes .. 398
11.10. Operator Classes and Operator Families ... 401
11.11. Indexes and Collations .. 402
11.12. Examining Index Usage .. 403

12. Full Text Search .. 405
12.1. Introduction .. 405
12.2. Tables and Indexes .. 409
12.3. Controlling Text Search .. 411
12.4. Additional Features .. 419
12.5. Parsers ... 425
12.6. Dictionaries .. 426
12.7. Configuration Example ... 436
12.8. Testing and Debugging Text Search .. 438
12.9. GIN and GiST Index Types ... 443
12.10. psql Support .. 444
12.11. Limitations .. 447

13. Concurrency Control ... 448
13.1. Introduction .. 448
13.2. Transaction Isolation .. 448
13.3. Explicit Locking .. 454
13.4. Data Consistency Checks at the Application Level ... 460
13.5. Caveats .. 462
13.6. Locking and Indexes .. 462

v

PostgreSQL 11.2 Documentation

14. Performance Tips ... 463
14.1. Using EXPLAIN .. 463
14.2. Statistics Used by the Planner .. 475
14.3. Controlling the Planner with Explicit JOIN Clauses 479
14.4. Populating a Database .. 481
14.5. Non-Durable Settings ... 484

15. Parallel Query ... 485
15.1. How Parallel Query Works .. 485
15.2. When Can Parallel Query Be Used? .. 486
15.3. Parallel Plans .. 487
15.4. Parallel Safety ... 489

III. Server Administration ... 491
16. Installation from Source Code .. 498

16.1. Short Version .. 498
16.2. Requirements .. 498
16.3. Getting The Source .. 500
16.4. Installation Procedure ... 500
16.5. Post-Installation Setup .. 513
16.6. Supported Platforms ... 514
16.7. Platform-specific Notes ... 515

17. Installation from Source Code on Windows .. 523
17.1. Building with Visual C++ or the Microsoft Windows SDK 523

18. Server Setup and Operation ... 529
18.1. The PostgreSQL User Account .. 529
18.2. Creating a Database Cluster ... 529
18.3. Starting the Database Server .. 531
18.4. Managing Kernel Resources .. 534
18.5. Shutting Down the Server ... 544
18.6. Upgrading a PostgreSQL Cluster .. 545
18.7. Preventing Server Spoofing ... 548
18.8. Encryption Options .. 548
18.9. Secure TCP/IP Connections with SSL ... 549
18.10. Secure TCP/IP Connections with SSH Tunnels .. 553
18.11. Registering Event Log on Windows .. 554

19. Server Configuration ... 556
19.1. Setting Parameters ... 556
19.2. File Locations ... 560
19.3. Connections and Authentication ... 561
19.4. Resource Consumption ... 566
19.5. Write Ahead Log ... 573
19.6. Replication ... 579
19.7. Query Planning ... 584
19.8. Error Reporting and Logging ... 591
19.9. Run-time Statistics ... 601
19.10. Automatic Vacuuming .. 603
19.11. Client Connection Defaults .. 605
19.12. Lock Management .. 614
19.13. Version and Platform Compatibility .. 615
19.14. Error Handling .. 617
19.15. Preset Options ... 617
19.16. Customized Options ... 619
19.17. Developer Options ... 619
19.18. Short Options .. 623

20. Client Authentication .. 624

vi

PostgreSQL 11.2 Documentation

20.1. The pg_hba.conf File .. 624
20.2. User Name Maps ... 631
20.3. Authentication Methods .. 632
20.4. Trust Authentication ... 633
20.5. Password Authentication ... 633
20.6. GSSAPI Authentication .. 634
20.7. SSPI Authentication ... 635
20.8. Ident Authentication ... 636
20.9. Peer Authentication .. 637
20.10. LDAP Authentication ... 637
20.11. RADIUS Authentication .. 640
20.12. Certificate Authentication .. 641
20.13. PAM Authentication ... 642
20.14. BSD Authentication .. 642
20.15. Authentication Problems .. 643

21. Database Roles .. 644
21.1. Database Roles .. 644
21.2. Role Attributes .. 645
21.3. Role Membership .. 646
21.4. Dropping Roles ... 648
21.5. Default Roles .. 649
21.6. Function Security ... 650

22. Managing Databases ... 651
22.1. Overview .. 651
22.2. Creating a Database ... 651
22.3. Template Databases ... 652
22.4. Database Configuration ... 653
22.5. Destroying a Database .. 654
22.6. Tablespaces .. 654

23. Localization .. 657
23.1. Locale Support .. 657
23.2. Collation Support ... 659
23.3. Character Set Support ... 665

24. Routine Database Maintenance Tasks .. 673
24.1. Routine Vacuuming ... 673
24.2. Routine Reindexing .. 681
24.3. Log File Maintenance ... 681

25. Backup and Restore .. 683
25.1. SQL Dump ... 683
25.2. File System Level Backup ... 686
25.3. Continuous Archiving and Point-in-Time Recovery (PITR) 687

26. High Availability, Load Balancing, and Replication .. 700
26.1. Comparison of Different Solutions .. 700
26.2. Log-Shipping Standby Servers ... 703
26.3. Failover .. 713
26.4. Alternative Method for Log Shipping .. 713
26.5. Hot Standby .. 715

27. Recovery Configuration ... 723
27.1. Archive Recovery Settings .. 723
27.2. Recovery Target Settings .. 724
27.3. Standby Server Settings .. 725

28. Monitoring Database Activity ... 727
28.1. Standard Unix Tools .. 727
28.2. The Statistics Collector ... 728

vii

PostgreSQL 11.2 Documentation

28.3. Viewing Locks .. 761
28.4. Progress Reporting ... 761
28.5. Dynamic Tracing ... 763

29. Monitoring Disk Usage ... 774
29.1. Determining Disk Usage ... 774
29.2. Disk Full Failure ... 775

30. Reliability and the Write-Ahead Log ... 776
30.1. Reliability ... 776
30.2. Write-Ahead Logging (WAL) .. 778
30.3. Asynchronous Commit ... 778
30.4. WAL Configuration ... 780
30.5. WAL Internals .. 782

31. Logical Replication .. 784
31.1. Publication ... 784
31.2. Subscription .. 785
31.3. Conflicts .. 786
31.4. Restrictions ... 786
31.5. Architecture .. 787
31.6. Monitoring ... 788
31.7. Security .. 788
31.8. Configuration Settings .. 788
31.9. Quick Setup .. 789

32. Just-in-Time Compilation (JIT) ... 790
32.1. What is JIT compilation? .. 790
32.2. When to JIT? .. 790
32.3. Configuration .. 792
32.4. Extensibility .. 792

33. Regression Tests .. 794
33.1. Running the Tests .. 794
33.2. Test Evaluation ... 798
33.3. Variant Comparison Files .. 800
33.4. TAP Tests .. 801
33.5. Test Coverage Examination ... 801

IV. Client Interfaces ... 803
34. libpq - C Library .. 808

34.1. Database Connection Control Functions ... 808
34.2. Connection Status Functions .. 822
34.3. Command Execution Functions .. 828
34.4. Asynchronous Command Processing ... 845
34.5. Retrieving Query Results Row-By-Row ... 849
34.6. Canceling Queries in Progress .. 850
34.7. The Fast-Path Interface ... 851
34.8. Asynchronous Notification .. 852
34.9. Functions Associated with the COPY Command .. 853
34.10. Control Functions ... 857
34.11. Miscellaneous Functions .. 859
34.12. Notice Processing ... 862
34.13. Event System .. 863
34.14. Environment Variables .. 870
34.15. The Password File .. 872
34.16. The Connection Service File .. 872
34.17. LDAP Lookup of Connection Parameters ... 873
34.18. SSL Support .. 874
34.19. Behavior in Threaded Programs .. 878

viii

PostgreSQL 11.2 Documentation

34.20. Building libpq Programs .. 878
34.21. Example Programs ... 880

35. Large Objects .. 892
35.1. Introduction .. 892
35.2. Implementation Features ... 892
35.3. Client Interfaces .. 892
35.4. Server-side Functions ... 897
35.5. Example Program .. 898

36. ECPG - Embedded SQL in C ... 905
36.1. The Concept ... 905
36.2. Managing Database Connections .. 905
36.3. Running SQL Commands .. 908
36.4. Using Host Variables ... 911
36.5. Dynamic SQL ... 926
36.6. pgtypes Library ... 928
36.7. Using Descriptor Areas ... 943
36.8. Error Handling .. 956
36.9. Preprocessor Directives ... 964
36.10. Processing Embedded SQL Programs .. 966
36.11. Library Functions ... 967
36.12. Large Objects .. 968
36.13. C++ Applications ... 970
36.14. Embedded SQL Commands ... 973
36.15. Informix Compatibility Mode ... 998
36.16. Internals .. 1014

37. The Information Schema .. 1017
37.1. The Schema .. 1017
37.2. Data Types ... 1017
37.3. information_schema_catalog_name ... 1018
37.4. administrable_role_authorizations ... 1018
37.5. applicable_roles ... 1018
37.6. attributes ... 1019
37.7. character_sets ... 1022
37.8. check_constraint_routine_usage ... 1023
37.9. check_constraints ... 1024
37.10. collations ... 1024
37.11. collation_character_set_applicability 1025
37.12. column_domain_usage ... 1025
37.13. column_options ... 1026
37.14. column_privileges ... 1026
37.15. column_udt_usage ... 1027
37.16. columns ... 1027
37.17. constraint_column_usage ... 1032
37.18. constraint_table_usage ... 1032
37.19. data_type_privileges ... 1033
37.20. domain_constraints ... 1034
37.21. domain_udt_usage ... 1034
37.22. domains ... 1035
37.23. element_types ... 1038
37.24. enabled_roles ... 1040
37.25. foreign_data_wrapper_options ... 1041
37.26. foreign_data_wrappers ... 1041
37.27. foreign_server_options ... 1041
37.28. foreign_servers ... 1042

ix

PostgreSQL 11.2 Documentation

37.29. foreign_table_options ... 1042
37.30. foreign_tables ... 1043
37.31. key_column_usage ... 1043
37.32. parameters ... 1044
37.33. referential_constraints ... 1046
37.34. role_column_grants ... 1047
37.35. role_routine_grants ... 1048
37.36. role_table_grants ... 1049
37.37. role_udt_grants ... 1049
37.38. role_usage_grants ... 1050
37.39. routine_privileges ... 1051
37.40. routines ... 1051
37.41. schemata ... 1057
37.42. sequences ... 1057
37.43. sql_features ... 1058
37.44. sql_implementation_info ... 1059
37.45. sql_languages ... 1059
37.46. sql_packages ... 1060
37.47. sql_parts ... 1060
37.48. sql_sizing ... 1061
37.49. sql_sizing_profiles ... 1061
37.50. table_constraints ... 1062
37.51. table_privileges ... 1062
37.52. tables ... 1063
37.53. transforms ... 1064
37.54. triggered_update_columns ... 1065
37.55. triggers ... 1065
37.56. udt_privileges ... 1067
37.57. usage_privileges ... 1068
37.58. user_defined_types ... 1068
37.59. user_mapping_options ... 1070
37.60. user_mappings ... 1071
37.61. view_column_usage ... 1071
37.62. view_routine_usage ... 1072
37.63. view_table_usage ... 1072
37.64. views ... 1073

V. Server Programming .. 1075
38. Extending SQL .. 1081

38.1. How Extensibility Works .. 1081
38.2. The PostgreSQL Type System .. 1081
38.3. User-defined Functions ... 1083
38.4. User-defined Procedures .. 1083
38.5. Query Language (SQL) Functions ... 1084
38.6. Function Overloading ... 1100
38.7. Function Volatility Categories .. 1101
38.8. Procedural Language Functions .. 1103
38.9. Internal Functions .. 1103
38.10. C-Language Functions ... 1103
38.11. User-defined Aggregates .. 1125
38.12. User-defined Types ... 1133
38.13. User-defined Operators .. 1137
38.14. Operator Optimization Information .. 1138
38.15. Interfacing Extensions To Indexes ... 1142
38.16. Packaging Related Objects into an Extension ... 1155

x

PostgreSQL 11.2 Documentation

38.17. Extension Building Infrastructure .. 1163
39. Triggers .. 1167

39.1. Overview of Trigger Behavior .. 1167
39.2. Visibility of Data Changes ... 1170
39.3. Writing Trigger Functions in C .. 1170
39.4. A Complete Trigger Example ... 1173

40. Event Triggers ... 1177
40.1. Overview of Event Trigger Behavior ... 1177
40.2. Event Trigger Firing Matrix ... 1178
40.3. Writing Event Trigger Functions in C .. 1182
40.4. A Complete Event Trigger Example .. 1184
40.5. A Table Rewrite Event Trigger Example .. 1185

41. The Rule System .. 1187
41.1. The Query Tree ... 1187
41.2. Views and the Rule System ... 1189
41.3. Materialized Views ... 1196
41.4. Rules on INSERT, UPDATE, and DELETE ... 1199
41.5. Rules and Privileges ... 1210
41.6. Rules and Command Status ... 1212
41.7. Rules Versus Triggers ... 1213

42. Procedural Languages .. 1216
42.1. Installing Procedural Languages .. 1216

43. PL/pgSQL - SQL Procedural Language .. 1219
43.1. Overview .. 1219
43.2. Structure of PL/pgSQL ... 1220
43.3. Declarations .. 1222
43.4. Expressions ... 1228
43.5. Basic Statements .. 1228
43.6. Control Structures .. 1236
43.7. Cursors ... 1252
43.8. Transaction Management ... 1258
43.9. Errors and Messages ... 1259
43.10. Trigger Functions ... 1261
43.11. PL/pgSQL Under the Hood .. 1270
43.12. Tips for Developing in PL/pgSQL ... 1274
43.13. Porting from Oracle PL/SQL .. 1277

44. PL/Tcl - Tcl Procedural Language ... 1288
44.1. Overview .. 1288
44.2. PL/Tcl Functions and Arguments .. 1288
44.3. Data Values in PL/Tcl .. 1290
44.4. Global Data in PL/Tcl .. 1291
44.5. Database Access from PL/Tcl .. 1291
44.6. Trigger Functions in PL/Tcl ... 1294
44.7. Event Trigger Functions in PL/Tcl .. 1296
44.8. Error Handling in PL/Tcl .. 1296
44.9. Explicit Subtransactions in PL/Tcl .. 1297
44.10. Transaction Management ... 1298
44.11. PL/Tcl Configuration .. 1299
44.12. Tcl Procedure Names .. 1299

45. PL/Perl - Perl Procedural Language ... 1300
45.1. PL/Perl Functions and Arguments ... 1300
45.2. Data Values in PL/Perl ... 1304
45.3. Built-in Functions .. 1305
45.4. Global Values in PL/Perl ... 1310

xi

PostgreSQL 11.2 Documentation

45.5. Trusted and Untrusted PL/Perl .. 1311
45.6. PL/Perl Triggers .. 1312
45.7. PL/Perl Event Triggers .. 1314
45.8. PL/Perl Under the Hood .. 1314

46. PL/Python - Python Procedural Language ... 1317
46.1. Python 2 vs. Python 3 ... 1317
46.2. PL/Python Functions ... 1318
46.3. Data Values .. 1320
46.4. Sharing Data ... 1325
46.5. Anonymous Code Blocks .. 1325
46.6. Trigger Functions ... 1326
46.7. Database Access .. 1327
46.8. Explicit Subtransactions .. 1330
46.9. Transaction Management ... 1332
46.10. Utility Functions .. 1333
46.11. Environment Variables .. 1334

47. Server Programming Interface ... 1336
47.1. Interface Functions ... 1336
47.2. Interface Support Functions ... 1372
47.3. Memory Management ... 1381
47.4. Transaction Management ... 1391
47.5. Visibility of Data Changes ... 1394
47.6. Examples .. 1394

48. Background Worker Processes .. 1398
49. Logical Decoding ... 1402

49.1. Logical Decoding Examples ... 1402
49.2. Logical Decoding Concepts ... 1405
49.3. Streaming Replication Protocol Interface .. 1406
49.4. Logical Decoding SQL Interface ... 1406
49.5. System Catalogs Related to Logical Decoding ... 1406
49.6. Logical Decoding Output Plugins .. 1407
49.7. Logical Decoding Output Writers .. 1411
49.8. Synchronous Replication Support for Logical Decoding 1411

50. Replication Progress Tracking ... 1412
VI. Reference .. 1413

I. SQL Commands ... 1419
ABORT .. 1423
ALTER AGGREGATE ... 1424
ALTER COLLATION .. 1426
ALTER CONVERSION ... 1428
ALTER DATABASE ... 1430
ALTER DEFAULT PRIVILEGES .. 1433
ALTER DOMAIN ... 1436
ALTER EVENT TRIGGER ... 1440
ALTER EXTENSION .. 1441
ALTER FOREIGN DATA WRAPPER ... 1445
ALTER FOREIGN TABLE ... 1447
ALTER FUNCTION .. 1452
ALTER GROUP .. 1456
ALTER INDEX ... 1458
ALTER LANGUAGE .. 1461
ALTER LARGE OBJECT ... 1462
ALTER MATERIALIZED VIEW .. 1463
ALTER OPERATOR ... 1465

xii

PostgreSQL 11.2 Documentation

ALTER OPERATOR CLASS .. 1467
ALTER OPERATOR FAMILY .. 1469
ALTER POLICY ... 1473
ALTER PROCEDURE ... 1475
ALTER PUBLICATION ... 1478
ALTER ROLE .. 1480
ALTER ROUTINE .. 1484
ALTER RULE .. 1486
ALTER SCHEMA ... 1487
ALTER SEQUENCE .. 1488
ALTER SERVER .. 1491
ALTER STATISTICS .. 1493
ALTER SUBSCRIPTION ... 1494
ALTER SYSTEM .. 1496
ALTER TABLE .. 1498
ALTER TABLESPACE .. 1515
ALTER TEXT SEARCH CONFIGURATION .. 1517
ALTER TEXT SEARCH DICTIONARY ... 1519
ALTER TEXT SEARCH PARSER ... 1521
ALTER TEXT SEARCH TEMPLATE .. 1522
ALTER TRIGGER .. 1523
ALTER TYPE ... 1525
ALTER USER .. 1529
ALTER USER MAPPING .. 1530
ALTER VIEW .. 1532
ANALYZE ... 1534
BEGIN ... 1537
CALL .. 1539
CHECKPOINT .. 1540
CLOSE .. 1541
CLUSTER .. 1543
COMMENT .. 1546
COMMIT ... 1551
COMMIT PREPARED ... 1552
COPY .. 1553
CREATE ACCESS METHOD ... 1564
CREATE AGGREGATE .. 1565
CREATE CAST .. 1573
CREATE COLLATION .. 1578
CREATE CONVERSION ... 1581
CREATE DATABASE ... 1583
CREATE DOMAIN ... 1587
CREATE EVENT TRIGGER .. 1590
CREATE EXTENSION .. 1592
CREATE FOREIGN DATA WRAPPER ... 1595
CREATE FOREIGN TABLE .. 1597
CREATE FUNCTION .. 1601
CREATE GROUP ... 1609
CREATE INDEX .. 1610
CREATE LANGUAGE .. 1618
CREATE MATERIALIZED VIEW .. 1621
CREATE OPERATOR ... 1623
CREATE OPERATOR CLASS .. 1626
CREATE OPERATOR FAMILY ... 1629

xiii

PostgreSQL 11.2 Documentation

CREATE POLICY ... 1630
CREATE PROCEDURE ... 1636
CREATE PUBLICATION ... 1640
CREATE ROLE .. 1642
CREATE RULE .. 1647
CREATE SCHEMA ... 1650
CREATE SEQUENCE ... 1653
CREATE SERVER .. 1657
CREATE STATISTICS .. 1659
CREATE SUBSCRIPTION ... 1661
CREATE TABLE .. 1664
CREATE TABLE AS ... 1686
CREATE TABLESPACE .. 1689
CREATE TEXT SEARCH CONFIGURATION .. 1691
CREATE TEXT SEARCH DICTIONARY .. 1693
CREATE TEXT SEARCH PARSER .. 1695
CREATE TEXT SEARCH TEMPLATE .. 1697
CREATE TRANSFORM .. 1699
CREATE TRIGGER .. 1702
CREATE TYPE .. 1709
CREATE USER .. 1718
CREATE USER MAPPING .. 1719
CREATE VIEW .. 1721
DEALLOCATE ... 1726
DECLARE ... 1727
DELETE .. 1731
DISCARD .. 1734
DO .. 1736
DROP ACCESS METHOD ... 1738
DROP AGGREGATE .. 1739
DROP CAST .. 1741
DROP COLLATION .. 1742
DROP CONVERSION ... 1743
DROP DATABASE ... 1744
DROP DOMAIN ... 1745
DROP EVENT TRIGGER .. 1746
DROP EXTENSION .. 1747
DROP FOREIGN DATA WRAPPER ... 1749
DROP FOREIGN TABLE ... 1750
DROP FUNCTION .. 1751
DROP GROUP ... 1753
DROP INDEX .. 1754
DROP LANGUAGE .. 1756
DROP MATERIALIZED VIEW .. 1758
DROP OPERATOR ... 1759
DROP OPERATOR CLASS .. 1761
DROP OPERATOR FAMILY ... 1763
DROP OWNED .. 1765
DROP POLICY ... 1767
DROP PROCEDURE ... 1768
DROP PUBLICATION ... 1770
DROP ROLE .. 1771
DROP ROUTINE .. 1773
DROP RULE .. 1774

xiv

PostgreSQL 11.2 Documentation

DROP SCHEMA ... 1775
DROP SEQUENCE ... 1777
DROP SERVER .. 1778
DROP STATISTICS .. 1779
DROP SUBSCRIPTION ... 1780
DROP TABLE .. 1782
DROP TABLESPACE .. 1783
DROP TEXT SEARCH CONFIGURATION .. 1784
DROP TEXT SEARCH DICTIONARY .. 1785
DROP TEXT SEARCH PARSER .. 1786
DROP TEXT SEARCH TEMPLATE .. 1787
DROP TRANSFORM .. 1788
DROP TRIGGER .. 1790
DROP TYPE .. 1791
DROP USER .. 1792
DROP USER MAPPING .. 1793
DROP VIEW .. 1794
END .. 1795
EXECUTE .. 1796
EXPLAIN ... 1797
FETCH .. 1802
GRANT ... 1806
IMPORT FOREIGN SCHEMA .. 1814
INSERT ... 1816
LISTEN ... 1824
LOAD .. 1826
LOCK .. 1827
MOVE ... 1830
NOTIFY ... 1832
PREPARE .. 1835
PREPARE TRANSACTION .. 1838
REASSIGN OWNED ... 1840
REFRESH MATERIALIZED VIEW ... 1841
REINDEX .. 1843
RELEASE SAVEPOINT ... 1846
RESET ... 1848
REVOKE ... 1849
ROLLBACK ... 1853
ROLLBACK PREPARED ... 1854
ROLLBACK TO SAVEPOINT .. 1855
SAVEPOINT .. 1857
SECURITY LABEL ... 1859
SELECT ... 1862
SELECT INTO ... 1884
SET ... 1886
SET CONSTRAINTS ... 1889
SET ROLE ... 1891
SET SESSION AUTHORIZATION .. 1893
SET TRANSACTION .. 1895
SHOW ... 1898
START TRANSACTION .. 1900
TRUNCATE ... 1901
UNLISTEN ... 1904
UPDATE .. 1906

xv

PostgreSQL 11.2 Documentation

VACUUM .. 1911
VALUES .. 1914

II. PostgreSQL Client Applications ... 1917
clusterdb ... 1918
createdb .. 1921
createuser ... 1924
dropdb ... 1928
dropuser ... 1931
ecpg ... 1934
pg_basebackup .. 1936
pgbench .. 1944
pg_config ... 1961
pg_dump .. 1964
pg_dumpall ... 1977
pg_isready .. 1984
pg_receivewal ... 1986
pg_recvlogical ... 1990
pg_restore ... 1994
psql ... 2003
reindexdb .. 2045
vacuumdb ... 2048

III. PostgreSQL Server Applications ... 2052
initdb ... 2053
pg_archivecleanup .. 2058
pg_controldata ... 2060
pg_ctl ... 2061
pg_resetwal ... 2067
pg_rewind ... 2071
pg_test_fsync .. 2074
pg_test_timing ... 2075
pg_upgrade ... 2079
pg_verify_checksums .. 2087
pg_waldump ... 2088
postgres .. 2090
postmaster .. 2098

VII. Internals ... 2099
51. Overview of PostgreSQL Internals .. 2105

51.1. The Path of a Query ... 2105
51.2. How Connections are Established ... 2106
51.3. The Parser Stage .. 2106
51.4. The PostgreSQL Rule System .. 2107
51.5. Planner/Optimizer .. 2107
51.6. Executor ... 2109

52. System Catalogs ... 2110
52.1. Overview .. 2110
52.2. pg_aggregate ... 2112
52.3. pg_am ... 2114
52.4. pg_amop ... 2115
52.5. pg_amproc ... 2116
52.6. pg_attrdef ... 2116
52.7. pg_attribute ... 2117
52.8. pg_authid ... 2120
52.9. pg_auth_members ... 2122
52.10. pg_cast ... 2122

xvi

PostgreSQL 11.2 Documentation

52.11. pg_class ... 2123
52.12. pg_collation ... 2127
52.13. pg_constraint ... 2128
52.14. pg_conversion ... 2131
52.15. pg_database ... 2132
52.16. pg_db_role_setting ... 2134
52.17. pg_default_acl ... 2134
52.18. pg_depend ... 2135
52.19. pg_description ... 2136
52.20. pg_enum ... 2137
52.21. pg_event_trigger ... 2138
52.22. pg_extension ... 2138
52.23. pg_foreign_data_wrapper ... 2139
52.24. pg_foreign_server ... 2140
52.25. pg_foreign_table ... 2140
52.26. pg_index ... 2141
52.27. pg_inherits ... 2144
52.28. pg_init_privs ... 2144
52.29. pg_language ... 2145
52.30. pg_largeobject ... 2146
52.31. pg_largeobject_metadata ... 2147
52.32. pg_namespace ... 2147
52.33. pg_opclass ... 2147
52.34. pg_operator ... 2148
52.35. pg_opfamily ... 2149
52.36. pg_partitioned_table ... 2150
52.37. pg_pltemplate ... 2151
52.38. pg_policy ... 2152
52.39. pg_proc ... 2153
52.40. pg_publication ... 2157
52.41. pg_publication_rel ... 2158
52.42. pg_range ... 2158
52.43. pg_replication_origin ... 2158
52.44. pg_rewrite ... 2159
52.45. pg_seclabel ... 2160
52.46. pg_sequence ... 2160
52.47. pg_shdepend ... 2161
52.48. pg_shdescription ... 2162
52.49. pg_shseclabel ... 2163
52.50. pg_statistic ... 2163
52.51. pg_statistic_ext ... 2165
52.52. pg_subscription ... 2166
52.53. pg_subscription_rel ... 2167
52.54. pg_tablespace ... 2167
52.55. pg_transform ... 2168
52.56. pg_trigger ... 2169
52.57. pg_ts_config ... 2170
52.58. pg_ts_config_map ... 2171
52.59. pg_ts_dict ... 2171
52.60. pg_ts_parser ... 2172
52.61. pg_ts_template ... 2172
52.62. pg_type ... 2173
52.63. pg_user_mapping ... 2180
52.64. System Views .. 2180

xvii

PostgreSQL 11.2 Documentation

52.65. pg_available_extensions ... 2181
52.66. pg_available_extension_versions .. 2182
52.67. pg_config ... 2182
52.68. pg_cursors ... 2182
52.69. pg_file_settings ... 2183
52.70. pg_group ... 2184
52.71. pg_hba_file_rules ... 2184
52.72. pg_indexes ... 2185
52.73. pg_locks ... 2186
52.74. pg_matviews ... 2189
52.75. pg_policies ... 2189
52.76. pg_prepared_statements ... 2190
52.77. pg_prepared_xacts ... 2191
52.78. pg_publication_tables ... 2192
52.79. pg_replication_origin_status ... 2192
52.80. pg_replication_slots ... 2192
52.81. pg_roles ... 2194
52.82. pg_rules ... 2195
52.83. pg_seclabels ... 2195
52.84. pg_sequences ... 2196
52.85. pg_settings ... 2197
52.86. pg_shadow ... 2199
52.87. pg_stats ... 2200
52.88. pg_tables ... 2203
52.89. pg_timezone_abbrevs ... 2203
52.90. pg_timezone_names ... 2204
52.91. pg_user ... 2204
52.92. pg_user_mappings ... 2205
52.93. pg_views ... 2205

53. Frontend/Backend Protocol ... 2207
53.1. Overview .. 2207
53.2. Message Flow ... 2209
53.3. SASL Authentication .. 2221
53.4. Streaming Replication Protocol ... 2223
53.5. Logical Streaming Replication Protocol .. 2230
53.6. Message Data Types ... 2231
53.7. Message Formats ... 2231
53.8. Error and Notice Message Fields .. 2249
53.9. Logical Replication Message Formats .. 2251
53.10. Summary of Changes since Protocol 2.0 ... 2255

54. PostgreSQL Coding Conventions .. 2257
54.1. Formatting .. 2257
54.2. Reporting Errors Within the Server ... 2258
54.3. Error Message Style Guide .. 2261
54.4. Miscellaneous Coding Conventions ... 2265

55. Native Language Support ... 2267
55.1. For the Translator .. 2267
55.2. For the Programmer ... 2270

56. Writing A Procedural Language Handler .. 2273
57. Writing A Foreign Data Wrapper .. 2276

57.1. Foreign Data Wrapper Functions .. 2276
57.2. Foreign Data Wrapper Callback Routines ... 2276
57.3. Foreign Data Wrapper Helper Functions ... 2290
57.4. Foreign Data Wrapper Query Planning ... 2291

xviii

PostgreSQL 11.2 Documentation

57.5. Row Locking in Foreign Data Wrappers .. 2294
58. Writing A Table Sampling Method .. 2296

58.1. Sampling Method Support Functions ... 2297
59. Writing A Custom Scan Provider .. 2300

59.1. Creating Custom Scan Paths .. 2300
59.2. Creating Custom Scan Plans .. 2301
59.3. Executing Custom Scans ... 2302

60. Genetic Query Optimizer ... 2305
60.1. Query Handling as a Complex Optimization Problem 2305
60.2. Genetic Algorithms .. 2305
60.3. Genetic Query Optimization (GEQO) in PostgreSQL 2306
60.4. Further Reading ... 2307

61. Index Access Method Interface Definition ... 2309
61.1. Basic API Structure for Indexes .. 2309
61.2. Index Access Method Functions ... 2311
61.3. Index Scanning .. 2317
61.4. Index Locking Considerations .. 2318
61.5. Index Uniqueness Checks .. 2319
61.6. Index Cost Estimation Functions ... 2321

62. Generic WAL Records .. 2324
63. B-Tree Indexes ... 2326

63.1. Introduction ... 2326
63.2. Behavior of B-Tree Operator Classes ... 2326
63.3. B-Tree Support Functions .. 2327
63.4. Implementation .. 2328

64. GiST Indexes ... 2329
64.1. Introduction ... 2329
64.2. Built-in Operator Classes ... 2329
64.3. Extensibility .. 2330
64.4. Implementation .. 2339
64.5. Examples .. 2340

65. SP-GiST Indexes .. 2341
65.1. Introduction ... 2341
65.2. Built-in Operator Classes ... 2341
65.3. Extensibility .. 2342
65.4. Implementation .. 2350
65.5. Examples .. 2351

66. GIN Indexes .. 2352
66.1. Introduction ... 2352
66.2. Built-in Operator Classes ... 2352
66.3. Extensibility .. 2352
66.4. Implementation .. 2355
66.5. GIN Tips and Tricks ... 2356
66.6. Limitations .. 2357
66.7. Examples .. 2357

67. BRIN Indexes .. 2358
67.1. Introduction ... 2358
67.2. Built-in Operator Classes ... 2359
67.3. Extensibility .. 2360

68. Database Physical Storage .. 2364
68.1. Database File Layout .. 2364
68.2. TOAST .. 2366
68.3. Free Space Map ... 2369
68.4. Visibility Map ... 2369

xix

PostgreSQL 11.2 Documentation

68.5. The Initialization Fork .. 2370
68.6. Database Page Layout ... 2370

69. System Catalog Declarations and Initial Contents ... 2373
69.1. System Catalog Declaration Rules ... 2373
69.2. System Catalog Initial Data ... 2374
69.3. BKI File Format .. 2378
69.4. BKI Commands ... 2378
69.5. Structure of the Bootstrap BKI File ... 2379
69.6. BKI Example .. 2380

70. How the Planner Uses Statistics .. 2381
70.1. Row Estimation Examples ... 2381
70.2. Multivariate Statistics Examples ... 2387
70.3. Planner Statistics and Security .. 2389

VIII. Appendixes ... 2390
A. PostgreSQL Error Codes ... 2396
B. Date/Time Support ... 2405

B.1. Date/Time Input Interpretation ... 2405
B.2. Handling of Invalid or Ambiguous Timestamps .. 2406
B.3. Date/Time Key Words ... 2407
B.4. Date/Time Configuration Files ... 2408
B.5. History of Units .. 2409

C. SQL Key Words .. 2412
D. SQL Conformance ... 2436

D.1. Supported Features .. 2437
D.2. Unsupported Features .. 2454

E. Release Notes ... 2467
E.1. Release 11.2 ... 2467
E.2. Release 11.1 ... 2472
E.3. Release 11 ... 2475
E.4. Prior Releases ... 2495

F. Additional Supplied Modules ... 2496
F.1. adminpack .. 2497
F.2. amcheck ... 2498
F.3. auth_delay .. 2501
F.4. auto_explain ... 2501
F.5. bloom .. 2504
F.6. btree_gin .. 2507
F.7. btree_gist ... 2508
F.8. citext ... 2509
F.9. cube .. 2511
F.10. dblink .. 2517
F.11. dict_int ... 2549
F.12. dict_xsyn .. 2550
F.13. earthdistance ... 2551
F.14. file_fdw .. 2553
F.15. fuzzystrmatch .. 2555
F.16. hstore ... 2558
F.17. intagg .. 2565
F.18. intarray .. 2566
F.19. isn ... 2569
F.20. lo .. 2573
F.21. ltree ... 2574
F.22. pageinspect ... 2581
F.23. passwordcheck .. 2588

xx

PostgreSQL 11.2 Documentation

F.24. pg_buffercache .. 2589
F.25. pgcrypto ... 2591
F.26. pg_freespacemap .. 2602
F.27. pg_prewarm .. 2604
F.28. pgrowlocks ... 2605
F.29. pg_stat_statements ... 2606
F.30. pgstattuple .. 2611
F.31. pg_trgm .. 2616
F.32. pg_visibility .. 2622
F.33. postgres_fdw ... 2623
F.34. seg .. 2629
F.35. sepgsql ... 2632
F.36. spi ... 2640
F.37. sslinfo .. 2643
F.38. tablefunc .. 2645
F.39. tcn ... 2655
F.40. test_decoding .. 2656
F.41. tsm_system_rows ... 2657
F.42. tsm_system_time .. 2657
F.43. unaccent ... 2658
F.44. uuid-ossp .. 2660
F.45. xml2 .. 2662

G. Additional Supplied Programs ... 2667
G.1. Client Applications .. 2667
G.2. Server Applications ... 2674

H. External Projects ... 2679
H.1. Client Interfaces .. 2679
H.2. Administration Tools ... 2679
H.3. Procedural Languages .. 2680
H.4. Extensions ... 2680

I. The Source Code Repository .. 2681
I.1. Getting The Source via Git .. 2681

J. Documentation ... 2682
J.1. DocBook .. 2682
J.2. Tool Sets .. 2682
J.3. Building The Documentation .. 2684
J.4. Documentation Authoring .. 2686
J.5. Style Guide ... 2686

K. Acronyms ... 2689
Bibliography ... 2696
Index ... 2698

xxi

List of Figures
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTML ... 300
60.1. Structured Diagram of a Genetic Algorithm .. 2306

xxii

List of Tables
4.1. Backslash Escape Sequences ... 38
4.2. Operator Precedence (highest to lowest) .. 44
8.1. Data Types ... 139
8.2. Numeric Types ... 141
8.3. Monetary Types .. 145
8.4. Character Types .. 146
8.5. Special Character Types ... 148
8.6. Binary Data Types ... 148
8.7. bytea Literal Escaped Octets ... 149
8.8. bytea Output Escaped Octets .. 150
8.9. Date/Time Types ... 150
8.10. Date Input .. 152
8.11. Time Input ... 153
8.12. Time Zone Input ... 153
8.13. Special Date/Time Inputs .. 155
8.14. Date/Time Output Styles ... 155
8.15. Date Order Conventions .. 156
8.16. ISO 8601 Interval Unit Abbreviations ... 158
8.17. Interval Input .. 159
8.18. Interval Output Style Examples .. 160
8.19. Boolean Data Type .. 160
8.20. Geometric Types ... 163
8.21. Network Address Types .. 166
8.22. cidr Type Input Examples .. 167
8.23. JSON primitive types and corresponding PostgreSQL types ... 176
8.24. Object Identifier Types ... 206
8.25. Pseudo-Types .. 207
9.1. Comparison Operators .. 209
9.2. Comparison Predicates ... 210
9.3. Comparison Functions .. 212
9.4. Mathematical Operators .. 212
9.5. Mathematical Functions .. 213
9.6. Random Functions ... 215
9.7. Trigonometric Functions ... 216
9.8. SQL String Functions and Operators ... 216
9.9. Other String Functions ... 218
9.10. Built-in Conversions ... 225
9.11. SQL Binary String Functions and Operators ... 231
9.12. Other Binary String Functions ... 232
9.13. Bit String Operators ... 234
9.14. Regular Expression Match Operators ... 237
9.15. Regular Expression Atoms .. 241
9.16. Regular Expression Quantifiers .. 242
9.17. Regular Expression Constraints .. 243
9.18. Regular Expression Character-entry Escapes ... 244
9.19. Regular Expression Class-shorthand Escapes .. 245
9.20. Regular Expression Constraint Escapes .. 246
9.21. Regular Expression Back References ... 246
9.22. ARE Embedded-option Letters ... 247
9.23. Formatting Functions .. 250
9.24. Template Patterns for Date/Time Formatting .. 251

xxiii

PostgreSQL 11.2 Documentation

9.25. Template Pattern Modifiers for Date/Time Formatting .. 253
9.26. Template Patterns for Numeric Formatting ... 255
9.27. Template Pattern Modifiers for Numeric Formatting .. 256
9.28. to_char Examples .. 257
9.29. Date/Time Operators .. 258
9.30. Date/Time Functions .. 259
9.31. AT TIME ZONE Variants ... 269
9.32. Enum Support Functions ... 272
9.33. Geometric Operators .. 273
9.34. Geometric Functions .. 274
9.35. Geometric Type Conversion Functions .. 275
9.36. cidr and inet Operators ... 277
9.37. cidr and inet Functions ... 278
9.38. macaddr Functions .. 279
9.39. macaddr8 Functions .. 279
9.40. Text Search Operators .. 279
9.41. Text Search Functions .. 280
9.42. Text Search Debugging Functions .. 285
9.43. json and jsonb Operators ... 301
9.44. Additional jsonb Operators ... 301
9.45. JSON Creation Functions .. 303
9.46. JSON Processing Functions ... 304
9.47. Sequence Functions .. 309
9.48. Array Operators ... 314
9.49. Array Functions ... 315
9.50. Range Operators .. 318
9.51. Range Functions .. 319
9.52. General-Purpose Aggregate Functions ... 320
9.53. Aggregate Functions for Statistics ... 322
9.54. Ordered-Set Aggregate Functions ... 324
9.55. Hypothetical-Set Aggregate Functions ... 326
9.56. Grouping Operations .. 326
9.57. General-Purpose Window Functions .. 327
9.58. Series Generating Functions .. 335
9.59. Subscript Generating Functions .. 336
9.60. Session Information Functions ... 338
9.61. Access Privilege Inquiry Functions ... 341
9.62. Schema Visibility Inquiry Functions ... 344
9.63. System Catalog Information Functions .. 345
9.64. Index Column Properties ... 348
9.65. Index Properties .. 349
9.66. Index Access Method Properties ... 349
9.67. Object Information and Addressing Functions ... 350
9.68. Comment Information Functions .. 351
9.69. Transaction IDs and Snapshots ... 352
9.70. Snapshot Components .. 352
9.71. Committed transaction information ... 353
9.72. Control Data Functions ... 353
9.73. pg_control_checkpoint Columns .. 353
9.74. pg_control_system Columns .. 354
9.75. pg_control_init Columns .. 354
9.76. pg_control_recovery Columns .. 355
9.77. Configuration Settings Functions .. 355
9.78. Server Signaling Functions .. 356

xxiv

PostgreSQL 11.2 Documentation

9.79. Backup Control Functions ... 357
9.80. Recovery Information Functions ... 359
9.81. Recovery Control Functions .. 360
9.82. Snapshot Synchronization Functions ... 361
9.83. Replication SQL Functions .. 361
9.84. Database Object Size Functions ... 365
9.85. Database Object Location Functions ... 367
9.86. Collation Management Functions .. 368
9.87. Index Maintenance Functions ... 368
9.88. Generic File Access Functions ... 369
9.89. Advisory Lock Functions .. 370
9.90. Table Rewrite information ... 375
12.1. Default Parser's Token Types ... 425
13.1. Transaction Isolation Levels .. 449
13.2. Conflicting Lock Modes ... 456
13.3. Conflicting Row-level Locks ... 458
18.1. System V IPC Parameters ... 535
18.2. SSL Server File Usage ... 551
19.1. Message Severity Levels ... 595
19.2. Short Option Key .. 623
21.1. Default Roles .. 649
23.1. PostgreSQL Character Sets .. 666
23.2. Client/Server Character Set Conversions .. 669
26.1. High Availability, Load Balancing, and Replication Feature Matrix 702
28.1. Dynamic Statistics Views .. 729
28.2. Collected Statistics Views ... 730
28.3. pg_stat_activity View .. 732
28.4. wait_event Description .. 736
28.5. pg_stat_replication View .. 747
28.6. pg_stat_wal_receiver View .. 750
28.7. pg_stat_subscription View .. 751
28.8. pg_stat_ssl View .. 751
28.9. pg_stat_archiver View .. 752
28.10. pg_stat_bgwriter View ... 752
28.11. pg_stat_database View ... 753
28.12. pg_stat_database_conflicts View ... 755
28.13. pg_stat_all_tables View ... 755
28.14. pg_stat_all_indexes View ... 756
28.15. pg_statio_all_tables View ... 757
28.16. pg_statio_all_indexes View ... 758
28.17. pg_statio_all_sequences View ... 758
28.18. pg_stat_user_functions View ... 759
28.19. Additional Statistics Functions ... 759
28.20. Per-Backend Statistics Functions ... 760
28.21. pg_stat_progress_vacuum View ... 762
28.22. VACUUM phases .. 763
28.23. Built-in DTrace Probes ... 764
28.24. Defined Types Used in Probe Parameters ... 771
34.1. SSL Mode Descriptions .. 876
34.2. Libpq/Client SSL File Usage ... 877
35.1. SQL-oriented Large Object Functions ... 897
36.1. Mapping Between PostgreSQL Data Types and C Variable Types 914
36.2. Valid Input Formats for PGTYPESdate_from_asc .. 932
36.3. Valid Input Formats for PGTYPESdate_fmt_asc .. 935

xxv

PostgreSQL 11.2 Documentation

36.4. Valid Input Formats for rdefmtdate ... 935
36.5. Valid Input Formats for PGTYPEStimestamp_from_asc .. 936
37.1. information_schema_catalog_name Columns .. 1018
37.2. administrable_role_authorizations Columns .. 1018
37.3. applicable_roles Columns .. 1019
37.4. attributes Columns .. 1019
37.5. character_sets Columns .. 1023
37.6. check_constraint_routine_usage Columns .. 1023
37.7. check_constraints Columns .. 1024
37.8. collations Columns .. 1024
37.9. collation_character_set_applicability Columns 1025
37.10. column_domain_usage Columns .. 1025
37.11. column_options Columns .. 1026
37.12. column_privileges Columns .. 1026
37.13. column_udt_usage Columns .. 1027
37.14. columns Columns .. 1027
37.15. constraint_column_usage Columns .. 1032
37.16. constraint_table_usage Columns .. 1033
37.17. data_type_privileges Columns .. 1033
37.18. domain_constraints Columns .. 1034
37.19. domain_udt_usage Columns .. 1034
37.20. domains Columns .. 1035
37.21. element_types Columns .. 1038
37.22. enabled_roles Columns .. 1040
37.23. foreign_data_wrapper_options Columns .. 1041
37.24. foreign_data_wrappers Columns .. 1041
37.25. foreign_server_options Columns .. 1041
37.26. foreign_servers Columns .. 1042
37.27. foreign_table_options Columns .. 1042
37.28. foreign_tables Columns .. 1043
37.29. key_column_usage Columns .. 1043
37.30. parameters Columns .. 1044
37.31. referential_constraints Columns .. 1047
37.32. role_column_grants Columns .. 1047
37.33. role_routine_grants Columns .. 1048
37.34. role_table_grants Columns .. 1049
37.35. role_udt_grants Columns .. 1050
37.36. role_usage_grants Columns .. 1050
37.37. routine_privileges Columns .. 1051
37.38. routines Columns .. 1051
37.39. schemata Columns .. 1057
37.40. sequences Columns .. 1057
37.41. sql_features Columns .. 1058
37.42. sql_implementation_info Columns .. 1059
37.43. sql_languages Columns .. 1059
37.44. sql_packages Columns .. 1060
37.45. sql_parts Columns .. 1061
37.46. sql_sizing Columns .. 1061
37.47. sql_sizing_profiles Columns .. 1061
37.48. table_constraints Columns .. 1062
37.49. table_privileges Columns .. 1063
37.50. tables Columns .. 1063
37.51. transforms Columns .. 1064
37.52. triggered_update_columns Columns .. 1065

xxvi

PostgreSQL 11.2 Documentation

37.53. triggers Columns .. 1066
37.54. udt_privileges Columns .. 1067
37.55. usage_privileges Columns .. 1068
37.56. user_defined_types Columns .. 1069
37.57. user_mapping_options Columns .. 1070
37.58. user_mappings Columns .. 1071
37.59. view_column_usage Columns .. 1071
37.60. view_routine_usage Columns .. 1072
37.61. view_table_usage Columns .. 1073
37.62. views Columns .. 1073
38.1. Equivalent C Types for Built-in SQL Types ... 1106
38.2. B-tree Strategies .. 1143
38.3. Hash Strategies .. 1143
38.4. GiST Two-Dimensional “R-tree” Strategies .. 1143
38.5. SP-GiST Point Strategies ... 1144
38.6. GIN Array Strategies .. 1144
38.7. BRIN Minmax Strategies .. 1144
38.8. B-tree Support Functions ... 1145
38.9. Hash Support Functions .. 1145
38.10. GiST Support Functions .. 1146
38.11. SP-GiST Support Functions ... 1146
38.12. GIN Support Functions .. 1147
38.13. BRIN Support Functions ... 1147
40.1. Event Trigger Support by Command Tag ... 1178
43.1. Available Diagnostics Items ... 1235
43.2. Error Diagnostics Items ... 1250
240. Policies Applied by Command Type .. 1633
241. Automatic Variables .. 1952
242. pgbench Operators by increasing precedence ... 1953
243. pgbench Functions .. 1954
52.1. System Catalogs .. 2110
52.2. pg_aggregate Columns .. 2112
52.3. pg_am Columns .. 2114
52.4. pg_amop Columns .. 2115
52.5. pg_amproc Columns .. 2116
52.6. pg_attrdef Columns .. 2117
52.7. pg_attribute Columns .. 2117
52.8. pg_authid Columns .. 2121
52.9. pg_auth_members Columns .. 2122
52.10. pg_cast Columns .. 2122
52.11. pg_class Columns .. 2123
52.12. pg_collation Columns .. 2127
52.13. pg_constraint Columns .. 2129
52.14. pg_conversion Columns .. 2131
52.15. pg_database Columns .. 2132
52.16. pg_db_role_setting Columns .. 2134
52.17. pg_default_acl Columns .. 2134
52.18. pg_depend Columns .. 2135
52.19. pg_description Columns .. 2137
52.20. pg_enum Columns .. 2137
52.21. pg_event_trigger Columns .. 2138
52.22. pg_extension Columns .. 2138
52.23. pg_foreign_data_wrapper Columns .. 2139
52.24. pg_foreign_server Columns .. 2140

xxvii

PostgreSQL 11.2 Documentation

52.25. pg_foreign_table Columns .. 2141
52.26. pg_index Columns .. 2141
52.27. pg_inherits Columns .. 2144
52.28. pg_init_privs Columns .. 2145
52.29. pg_language Columns .. 2145
52.30. pg_largeobject Columns .. 2146
52.31. pg_largeobject_metadata Columns .. 2147
52.32. pg_namespace Columns .. 2147
52.33. pg_opclass Columns .. 2148
52.34. pg_operator Columns .. 2148
52.35. pg_opfamily Columns .. 2149
52.36. pg_partitioned_table Columns .. 2150
52.37. pg_pltemplate Columns .. 2151
52.38. pg_policy Columns .. 2152
52.39. pg_proc Columns .. 2153
52.40. pg_publication Columns .. 2157
52.41. pg_publication_rel Columns .. 2158
52.42. pg_range Columns .. 2158
52.43. pg_replication_origin Columns .. 2159
52.44. pg_rewrite Columns .. 2159
52.45. pg_seclabel Columns .. 2160
52.46. pg_sequence Columns .. 2160
52.47. pg_shdepend Columns .. 2161
52.48. pg_shdescription Columns .. 2162
52.49. pg_shseclabel Columns .. 2163
52.50. pg_statistic Columns .. 2164
52.51. pg_statistic_ext Columns .. 2165
52.52. pg_subscription Columns .. 2166
52.53. pg_subscription_rel Columns .. 2167
52.54. pg_tablespace Columns .. 2168
52.55. pg_transform Columns .. 2168
52.56. pg_trigger Columns .. 2169
52.57. pg_ts_config Columns .. 2171
52.58. pg_ts_config_map Columns .. 2171
52.59. pg_ts_dict Columns .. 2172
52.60. pg_ts_parser Columns .. 2172
52.61. pg_ts_template Columns .. 2173
52.62. pg_type Columns .. 2173
52.63. typcategory Codes .. 2179
52.64. pg_user_mapping Columns .. 2180
52.65. System Views .. 2180
52.66. pg_available_extensions Columns .. 2181
52.67. pg_available_extension_versions Columns ... 2182
52.68. pg_config Columns .. 2182
52.69. pg_cursors Columns .. 2183
52.70. pg_file_settings Columns .. 2184
52.71. pg_group Columns .. 2184
52.72. pg_hba_file_rules Columns .. 2185
52.73. pg_indexes Columns .. 2185
52.74. pg_locks Columns .. 2186
52.75. pg_matviews Columns .. 2189
52.76. pg_policies Columns .. 2190
52.77. pg_prepared_statements Columns .. 2190
52.78. pg_prepared_xacts Columns .. 2191

xxviii

PostgreSQL 11.2 Documentation

52.79. pg_publication_tables Columns .. 2192
52.80. pg_replication_origin_status Columns .. 2192
52.81. pg_replication_slots Columns .. 2192
52.82. pg_roles Columns .. 2194
52.83. pg_rules Columns .. 2195
52.84. pg_seclabels Columns .. 2195
52.85. pg_sequences Columns .. 2196
52.86. pg_settings Columns .. 2197
52.87. pg_shadow Columns .. 2200
52.88. pg_stats Columns .. 2200
52.89. pg_tables Columns .. 2203
52.90. pg_timezone_abbrevs Columns .. 2203
52.91. pg_timezone_names Columns .. 2204
52.92. pg_user Columns .. 2204
52.93. pg_user_mappings Columns .. 2205
52.94. pg_views Columns .. 2205
64.1. Built-in GiST Operator Classes .. 2329
65.1. Built-in SP-GiST Operator Classes .. 2341
66.1. Built-in GIN Operator Classes .. 2352
67.1. Built-in BRIN Operator Classes .. 2359
67.2. Function and Support Numbers for Minmax Operator Classes .. 2361
67.3. Function and Support Numbers for Inclusion Operator Classes 2361
68.1. Contents of PGDATA .. 2364
68.2. Page Layout .. 2370
68.3. PageHeaderData Layout .. 2371
68.4. HeapTupleHeaderData Layout .. 2372
A.1. PostgreSQL Error Codes .. 2396
B.1. Month Names ... 2407
B.2. Day of the Week Names .. 2407
B.3. Date/Time Field Modifiers .. 2408
C.1. SQL Key Words ... 2412
F.1. adminpack Functions .. 2497
F.2. Cube External Representations ... 2512
F.3. Cube Operators ... 2512
F.4. Cube Functions ... 2514
F.5. Cube-based Earthdistance Functions ... 2552
F.6. Point-based Earthdistance Operators ... 2553
F.7. hstore Operators .. 2559
F.8. hstore Functions .. 2560
F.9. intarray Functions .. 2567
F.10. intarray Operators ... 2567
F.11. isn Data Types .. 2569
F.12. isn Functions ... 2571
F.13. ltree Operators ... 2576
F.14. ltree Functions ... 2577
F.15. pg_buffercache Columns .. 2589
F.16. Supported Algorithms for crypt() ... 2592
F.17. Iteration Counts for crypt() ... 2593
F.18. Hash Algorithm Speeds .. 2593
F.19. Summary of Functionality with and without OpenSSL .. 2601
F.20. pgrowlocks Output Columns ... 2605
F.21. pg_stat_statements Columns .. 2607
F.22. pgstattuple Output Columns ... 2612
F.23. pgstattuple_approx Output Columns .. 2615

xxix

PostgreSQL 11.2 Documentation

F.24. pg_trgm Functions ... 2617
F.25. pg_trgm Operators ... 2618
F.26. seg External Representations .. 2630
F.27. Examples of Valid seg Input .. 2630
F.28. Seg GiST Operators ... 2631
F.29. Sepgsql Functions .. 2639
F.30. tablefunc Functions ... 2645
F.31. connectby Parameters ... 2653
F.32. Functions for UUID Generation ... 2660
F.33. Functions Returning UUID Constants .. 2661
F.34. Functions .. 2662
F.35. xpath_table Parameters ... 2664
H.1. Externally Maintained Client Interfaces ... 2679
H.2. Externally Maintained Procedural Languages ... 2680

xxx

List of Examples
8.1. Using the Character Types .. 147
8.2. Using the boolean Type .. 161
8.3. Using the Bit String Types ... 169
10.1. Factorial Operator Type Resolution ... 379
10.2. String Concatenation Operator Type Resolution .. 379
10.3. Absolute-Value and Negation Operator Type Resolution ... 379
10.4. Array Inclusion Operator Type Resolution ... 380
10.5. Custom Operator on a Domain Type ... 381
10.6. Rounding Function Argument Type Resolution ... 383
10.7. Variadic Function Resolution ... 383
10.8. Substring Function Type Resolution .. 384
10.9. character Storage Type Conversion ... 386
10.10. Type Resolution with Underspecified Types in a Union .. 387
10.11. Type Resolution in a Simple Union ... 387
10.12. Type Resolution in a Transposed Union ... 387
10.13. Type Resolution in a Nested Union ... 387
11.1. Setting up a Partial Index to Exclude Common Values ... 396
11.2. Setting up a Partial Index to Exclude Uninteresting Values .. 397
11.3. Setting up a Partial Unique Index ... 398
20.1. Example pg_hba.conf Entries ... 629
20.2. An Example pg_ident.conf File .. 632
34.1. libpq Example Program 1 .. 880
34.2. libpq Example Program 2 .. 883
34.3. libpq Example Program 3 .. 886
35.1. Large Objects with libpq Example Program .. 898
36.1. Example SQLDA Program .. 953
36.2. ECPG Program Accessing Large Objects ... 968
42.1. Manual Installation of PL/Perl .. 1217
43.1. Quoting Values In Dynamic Queries ... 1233
43.2. Exceptions with UPDATE/INSERT ... 1249
43.3. A PL/pgSQL Trigger Function ... 1263
43.4. A PL/pgSQL Trigger Function For Auditing ... 1264
43.5. A PL/pgSQL View Trigger Function For Auditing ... 1265
43.6. A PL/pgSQL Trigger Function For Maintaining A Summary Table 1266
43.7. Auditing with Transition Tables ... 1269
43.8. A PL/pgSQL Event Trigger Function .. 1270
43.9. Porting a Simple Function from PL/SQL to PL/pgSQL ... 1278
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1279
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to PL/
pgSQL ... 1280
43.12. Porting a Procedure from PL/SQL to PL/pgSQL .. 1282
F.1. Create a Foreign Table for PostgreSQL CSV Logs .. 2555

xxxi

Preface
This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

• Part I is an informal introduction for new users.

• Part II documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

• Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

• Part IV describes the programming interfaces for PostgreSQL client programs.

• Part V contains information for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

• Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

• Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?
PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.21, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

• complex queries
• foreign keys
• triggers
• updatable views
• transactional integrity
• multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

• data types
• functions
• operators
• aggregate functions

1 http://db.cs.berkeley.edu/postgres.html

xxxii

http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html

Preface

• index methods
• procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL
The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in [ston86], and the definition of the initial data model appeared in [rowe87]. The
design of the rule system at that time was described in [ston87a]. The rationale and architecture of the
storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to a few external users in June 1989. In response to a critique of the first rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix2, which is now owned by IBM3) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project4.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95
In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-source
descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2 https://www.ibm.com/analytics/informix
3 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

xxxiii

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

• A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This largely
superseded the old monitor program.

• A new front-end library, libpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

• The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL
By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions
The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (...) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should

xxxiv

Preface

not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information
Besides the documentation, that is, this book, there are other resources about PostgreSQL:

Wiki

The PostgreSQL wiki5 contains the project's FAQ6 (Frequently Asked Questions) list, TODO7 list,
and detailed information about many more topics.

Web Site

The PostgreSQL web site8 carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation
or through the mailing lists. Consider contributing your knowledge back. Read the mailing lists and
answer questions. If you learn something which is not in the documentation, write it up and contribute
it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines
When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some major
rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important things
on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs
Before you report a bug, please read and re-read the documentation to verify that you can really do whatever
it is you are trying. If it is not clear from the documentation whether you can do something or not, please

5 https://wiki.postgresql.org
6 https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
7 https://wiki.postgresql.org/wiki/Todo
8 https://www.postgresql.org

xxxv

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

report that too; it is a bug in the documentation. If it turns out that a program does something different
from what the documentation says, that is a bug. That might include, but is not limited to, the following
circumstances:

• A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

• A program produces the wrong output for any given input.

• A program refuses to accept valid input (as defined in the documentation).

• A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

• PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report
The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

• The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding CREATE
TABLE and INSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql frontend
that shows the problem. (Be sure to not have anything in your ~/.psqlrc start-up file.) An easy way
to create this file is to use pg_dump to dump out the table declarations and data needed to set the scene,
then add the problem query. You are encouraged to minimize the size of your example, but this is not
absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

xxxvi

Preface

• The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from
the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message. In
psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from
the server log, set the run-time parameter log_error_verbosity to verbose so that all details
are logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server's log output, this would be a good time to start doing so.

• The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it looks
OK and is exactly what we expected. We should not have to spend the time to decode the exact semantics
behind your commands. Especially refrain from merely saying that “This is not what SQL says/Oracle
does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all know how all
the other relational databases out there behave. (If your problem is a program crash, you can obviously
omit this item.)

• Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

• Anything you did at all differently from the installation instructions.

• The PostgreSQL version. You can run the command SELECT version(); to find out the version
of the server you are connected to. Most executable programs also support a --version option; at
least postgres --version and psql --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 11.2 we will almost certainly tell you to upgrade. There are many bug fixes
and improvements in each new release, so it is quite possible that a bug you have encountered in an
older release of PostgreSQL has already been fixed. We can only provide limited support for sites using
older releases of PostgreSQL; if you require more than we can provide, consider acquiring a commercial
support contract.

• Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have installation

xxxvii

Preface

problems then information about the toolchain on your machine (compiler, make, and so on) is also
necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article9

that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don't say “the server crashed” when you mean a single
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “psql”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs
In general, send bug reports to the bug report mailing list at
<pgsql-bugs@lists.postgresql.org>. You are requested to use a descriptive subject for your
email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site10. Entering a bug
report this way causes it to be mailed to the <pgsql-bugs@lists.postgresql.org> mailing list.

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql-bugs. Security issues can be reported privately to
<security@postgresql.org>.

Do not send bug reports to any of the user mailing lists, such as
<pgsql-sql@lists.postgresql.org> or
<pgsql-general@lists.postgresql.org>. These mailing lists are for answering user
questions, and their subscribers normally do not wish to receive bug reports. More importantly, they are
unlikely to fix them.

Also, please do not send reports to the developers' mailing list
<pgsql-hackers@lists.postgresql.org>. This list is for discussing the development of
PostgreSQL, and it would be nice if we could keep the bug reports separate. We might choose to take up
a discussion about your bug report on pgsql-hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing list
<pgsql-docs@lists.postgresql.org>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-hackers@lists.postgresql.org>, so we (and you) can work on porting PostgreSQL
to your platform.

9 https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https://www.postgresql.org/

xxxviii

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

xxxix

https://lists.postgresql.org/

Part I. Tutorial
Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL language to those who are new to any one of these aspects. We
only assume some general knowledge about how to use computers. No particular Unix or programming experience is
required. This part is mainly intended to give you some hands-on experience with important aspects of the PostgreSQL
system. It makes no attempt to be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more formal
knowledge of the SQL language, or Part IV for information about developing applications for PostgreSQL. Those who
set up and manage their own server should also read Part III.

Table of Contents
1. Getting Started .. 3

1.1. Installation ... 3
1.2. Architectural Fundamentals .. 3
1.3. Creating a Database .. 4
1.4. Accessing a Database .. 5

2. The SQL Language ... 8
2.1. Introduction ... 8
2.2. Concepts ... 8
2.3. Creating a New Table ... 9
2.4. Populating a Table With Rows .. 9
2.5. Querying a Table .. 10
2.6. Joins Between Tables .. 12
2.7. Aggregate Functions .. 14
2.8. Updates ... 16
2.9. Deletions ... 16

3. Advanced Features ... 18
3.1. Introduction ... 18
3.2. Views ... 18
3.3. Foreign Keys .. 18
3.4. Transactions ... 19
3.5. Window Functions .. 21
3.6. Inheritance ... 24
3.7. Conclusion ... 26

2

Chapter 1. Getting Started
1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to do. For
example, if the database server machine is a remote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT might also have
to be set. The bottom line is this: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals
Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the following
cooperating processes (programs):

• A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
called postgres.

• The user's client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process is
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of this is of course invisible to the user. We only mention it here for completeness.)

3

Getting Started

1.3. Creating a Database
The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to
 server: No such file or directory
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "joe"
 does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the -U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

4

Getting Started

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: database creation failed: ERROR: permission denied to
 create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as. 1

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 bytes in length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply
type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database
Once you have created a database, you can access it by:

• Running the PostgreSQL interactive terminal program, called psql, which allows you to interactively
enter, edit, and execute SQL commands.

• Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipulate a database. These possibilities are not covered in this tutorial.

• Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a database,
you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating system account.
As it happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started the server, and it also
happens that that user always has permission to create databases. Instead of logging in as that user you can also specify the -U option everywhere
to select a PostgreSQL user name to connect as.

5

Getting Started

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psql (11.2)
Type "help" for help.

mydb=>

 The last line could also be:

mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls. For
the purposes of this tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT version();
 version
--
 PostgreSQL 11.2 on x86_64-pc-linux-gnu, compiled by gcc (Debian
 4.9.2-10) 4.9.2, 64-bit
(1 row)

mydb=> SELECT current_date;
 date

 2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
 ?column?

 4
(1 row)

The psql program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:

6

Getting Started

mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

7

Chapter 2. The SQL Language

2.1. Introduction
This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including [melt93] and [date97]. You should be aware that some PostgreSQL
language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory src/
tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those files, first
change to that directory and run make:

$ cd/src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$ cd/tutorial
$ psql -s mydb

...

mydb=> \i basics.sql

The \i command reads in commands from the specified file. psql's -s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are
in the file basics.sql.

2.2. Concepts
 PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of a hierarchical database. A more modern development is the object-oriented database.

 Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

 Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

8

The SQL Language

2.3. Creating a New Table
You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

You can enter this into psql with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--”) introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char(N), varchar(N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-
defined data types. Consequently, type names are not key words in the syntax, except where required to
support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
 name varchar(80),
 location point
);

The point type is an example of a PostgreSQL-specific data type.

 Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows
The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25,
 '1994-11-27');

9

The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The date type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
 VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29');

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipitation
is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
 VALUES ('1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.

Please enter all the commands shown above so you have some data to work with in the following sections.

 You could also have used COPY to load large amounts of data from flat-text files. This is usually faster
because the COPY command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM '/home/user/weather.txt';

where the file name for the source file must be available on the machine running the backend process, not
the client, since the backend process reads the file directly. You can read more about the COPY command
in COPY.

2.5. Querying a Table
 To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here * is a shorthand for “all columns”. 1 So the same result would be had with:

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

10

The SQL Language

The output should be:

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 43 | 57 | 0 | 1994-11-29
 Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

 city | temp_avg | date
---------------+----------+------------
 San Francisco | 48 | 1994-11-27
 San Francisco | 50 | 1994-11-29
 Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
 WHERE city = 'San Francisco' AND prcp > 0.0;

Result:

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

 You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
 ORDER BY city;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 Hayward | 37 | 54 | | 1994-11-29
 San Francisco | 43 | 57 | 0 | 1994-11-29
 San Francisco | 46 | 50 | 0.25 | 1994-11-27

11

The SQL Language

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weather
 ORDER BY city, temp_lo;

 You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
 FROM weather;

 city

 Hayward
 San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY together: 2

SELECT DISTINCT city
 FROM weather
 ORDER BY city;

2.6. Joins Between Tables
Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time. A
query that accesses multiple rows of the same or different tables at one time is called a join query. As an
example, say you wish to list all the weather records together with the location of the associated city. To
do that, we need to compare the city column of each row of the weather table with the name column
of all rows in the cities table, and select the pairs of rows where these values match.

Note

This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
 FROM weather, cities
 WHERE city = name;

2 In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the rows and so
ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DISTINCT causes the
rows to be ordered.

12

The SQL Language

 city | temp_lo | temp_hi | prcp | date | name
 | location
---------------+---------+---------+------+------------
+---------------+-----------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
 | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco
 | (-194,53)
(2 rows)

Observe two things about the result set:

• There is no result row for the city of Hayward. This is because there is no matching entry in the cities
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly
how this can be fixed.

• There are two columns containing the city name. This is correct because the lists of columns from the
weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
 FROM weather, cities
 WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
 weather.prcp, weather.date, cities.location
 FROM weather, cities
 WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
 FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

 Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *

13

The SQL Language

 FROM weather LEFT OUTER JOIN cities ON (weather.city =
 cities.name);

 city | temp_lo | temp_hi | prcp | date | name
 | location
---------------+---------+---------+------+------------
+---------------+-----------
 Hayward | 37 | 54 | | 1994-11-29 |
 |
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
 | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco
 | (-194,53)
(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

 We can also join a table against itself. This is called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns
of all other weather rows. We can do this with the following query:

SELECT W1.city, W1.temp_lo AS low, W1.temp_hi AS high,
 W2.city, W2.temp_lo AS low, W2.temp_hi AS high
 FROM weather W1, weather W2
 WHERE W1.temp_lo < W2.temp_lo
 AND W1.temp_hi > W2.temp_hi;

 city | low | high | city | low | high
---------------+-----+------+---------------+-----+------
 San Francisco | 43 | 57 | San Francisco | 46 | 50
 Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as W1 and W2 to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
 FROM weather w, cities c
 WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions
Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

14

The SQL Language

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max(temp_lo) FROM weather;

 max

 46
(1 row)

 If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, as is often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
 WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

 city

 San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate separately
from what is happening in the outer query.

 Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
 FROM weather
 GROUP BY city;

 city | max
---------------+-----
 Hayward | 37
 San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
 FROM weather
 GROUP BY city
 HAVING max(temp_lo) < 40;

15

The SQL Language

 city | max
---------+-----
 Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_lo values below 40. Finally, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_lo)
 FROM weather
 WHERE city LIKE 'S%' -- 1

 GROUP BY city
 HAVING max(temp_lo) < 40;

1 The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates
You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
 SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
 WHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weather;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 41 | 55 | 0 | 1994-11-29
 Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

16

The SQL Language

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weather;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

17

Chapter 3. Advanced Features
3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management and
prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql
in the tutorial directory. This file also contains some sample data to load, which is not repeated here. (Refer
to Section 2.1 for how to use the file.)

3.2. Views
Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need
it. You can create a view over the query, which gives a name to the query that you can refer to like an
ordinary table:

CREATE VIEW myview AS
 SELECT city, temp_lo, temp_hi, prcp, date, location
 FROM weather, cities
 WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys
Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry in
the cities table. This is called maintaining the referential integrity of your data. In simplistic database
systems this would be implemented (if at all) by first looking at the cities table to check if a matching
record exists, and then inserting or rejecting the new weather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
 city varchar(80) primary key,
 location point
);

18

Advanced Features

CREATE TABLE weather (
 city varchar(80) references cities(city),
 temp_lo int,
 temp_hi int,
 prcp real,
 date date
);

Now try inserting an invalid record:

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key
 constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions
Transactions are a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00
 WHERE name = (SELECT branch_name FROM accounts WHERE name =
 'Alice');
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00
 WHERE name = (SELECT branch_name FROM accounts WHERE name =
 'Bob');

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank's officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure
to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need a guarantee that if something goes wrong
partway through the operation, none of the steps executed so far will take effect. Grouping the updates
into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of view of
other transactions, it either happens completely or not at all.

19

Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice versa. So
transactions must be all-or-nothing not only in terms of their permanent effect on the database, but also in
terms of their visibility as they happen. The updates made so far by an open transaction are invisible to other
transactions until the transaction completes, whereupon all the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
-- etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not issue
a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COMMIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a
transaction block.

Note

Some client libraries issue BEGIN and COMMIT commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back
to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

20

Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's account,
only to find later that we should have credited Wally's account. We could do it using savepoints like this:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Bob';
-- oops ... forget that and use Wally's account
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Wally';
COMMIT;

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block through
the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction block
that was put in aborted state by the system due to an error, short of rolling it back completely and starting
again.

3.5. Window Functions
A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his or
her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname)
 FROM empsalary;

 depname | empno | salary | avg
-----------+-------+--------+-----------------------
 develop | 11 | 5200 | 5020.0000000000000000
 develop | 7 | 4200 | 5020.0000000000000000
 develop | 9 | 4500 | 5020.0000000000000000
 develop | 8 | 6000 | 5020.0000000000000000
 develop | 10 | 5200 | 5020.0000000000000000
 personnel | 5 | 3500 | 3700.0000000000000000
 personnel | 2 | 3900 | 3700.0000000000000000
 sales | 3 | 4800 | 4866.6666666666666667
 sales | 1 | 5000 | 4866.6666666666666667
 sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the non-window

21

Advanced Features

avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name
and argument(s). This is what syntactically distinguishes it from a normal function or non-window
aggregate. The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTITION BY clause within OVER divides the rows into groups, or partitions,
that share the same values of the PARTITION BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.)
Here is an example:

SELECT depname, empno, salary,
 rank() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

 depname | empno | salary | rank
-----------+-------+--------+------
 develop | 8 | 6000 | 1
 develop | 10 | 5200 | 2
 develop | 11 | 5200 | 2
 develop | 9 | 4500 | 4
 develop | 7 | 4200 | 5
 personnel | 2 | 3900 | 1
 personnel | 5 | 3500 | 2
 sales | 1 | 5000 | 1
 sales | 4 | 4800 | 2
 sales | 3 | 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank for each distinct ORDER BY value in
the current row's partition, using the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways using different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is a single partition containing all rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists of
all rows from the start of the partition up through the current row, plus any following rows that are equal
to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rows in the partition. 1 Here is an example using sum:

1 There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

22

Advanced Features

SELECT salary, sum(salary) OVER () FROM empsalary;

 salary | sum
--------+-------
 5200 | 47100
 5000 | 47100
 3500 | 47100
 4800 | 47100
 3900 | 47100
 4200 | 47100
 4500 | 47100
 4800 | 47100
 6000 | 47100
 5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

 salary | sum
--------+-------
 3500 | 3500
 3900 | 7400
 4200 | 11600
 4500 | 16100
 4800 | 25700
 4800 | 25700
 5000 | 30700
 5200 | 41100
 5200 | 41100
 6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after non-window
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a sub-
select. For example:

SELECT depname, empno, salary, enroll_date
FROM

23

Advanced Features

 (SELECT depname, empno, salary, enroll_date,
 rank() OVER (PARTITION BY depname ORDER BY salary DESC,
 empno) AS pos
 FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a WINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
 FROM empsalary
 WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance
Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (
 name text,
 population real,
 altitude int, -- (in ft)
 state char(2)
);

CREATE TABLE non_capitals (
 name text,
 population real,
 altitude int -- (in ft)
);

CREATE VIEW cities AS
 SELECT name, population, altitude FROM capitals
 UNION
 SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one thing.

A better solution is this:

CREATE TABLE cities (

24

Advanced Features

 name text,
 population real,
 altitude int -- (in ft)
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
 FROM cities
 WHERE altitude > 500;

which returns:

 name | altitude
-----------+----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT name, altitude
 FROM ONLY cities
 WHERE altitude > 500;

 name | altitude
-----------+----------
 Las Vegas | 2174
 Mariposa | 1953
(2 rows)

Here the ONLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

25

Advanced Features

3.7. Conclusion
PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site2 for links to more
resources.

2 https://www.postgresql.org

26

https://www.postgresql.org
https://www.postgresql.org

Part II. The SQL Language
This part describes the use of the SQL language in PostgreSQL. We start with describing the general syntax of SQL,
then explain how to create the structures to hold data, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. The rest treats several aspects that are
important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full understanding of the
topics without having to refer forward too many times. The chapters are intended to be self-contained, so that advanced
users can read the chapters individually as they choose. The information in this part is presented in a narrative fashion
in topical units. Readers looking for a complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part I first. SQL commands are typically entered using the
PostgreSQL interactive terminal psql, but other programs that have similar functionality can be used as well.

Table of Contents
4. SQL Syntax .. 35

4.1. Lexical Structure ... 35
4.1.1. Identifiers and Key Words ... 35
4.1.2. Constants .. 37
4.1.3. Operators .. 42
4.1.4. Special Characters .. 42
4.1.5. Comments ... 43
4.1.6. Operator Precedence ... 43

4.2. Value Expressions ... 45
4.2.1. Column References ... 45
4.2.2. Positional Parameters .. 46
4.2.3. Subscripts .. 46
4.2.4. Field Selection ... 47
4.2.5. Operator Invocations ... 47
4.2.6. Function Calls .. 47
4.2.7. Aggregate Expressions .. 48
4.2.8. Window Function Calls ... 50
4.2.9. Type Casts .. 53
4.2.10. Collation Expressions .. 54
4.2.11. Scalar Subqueries .. 55
4.2.12. Array Constructors .. 55
4.2.13. Row Constructors ... 57
4.2.14. Expression Evaluation Rules ... 58

4.3. Calling Functions .. 59
4.3.1. Using Positional Notation .. 60
4.3.2. Using Named Notation .. 61
4.3.3. Using Mixed Notation ... 61

5. Data Definition ... 63
5.1. Table Basics ... 63
5.2. Default Values .. 64
5.3. Constraints ... 65

5.3.1. Check Constraints ... 65
5.3.2. Not-Null Constraints ... 67
5.3.3. Unique Constraints ... 68
5.3.4. Primary Keys ... 69
5.3.5. Foreign Keys ... 70
5.3.6. Exclusion Constraints .. 72

5.4. System Columns ... 73
5.5. Modifying Tables .. 74

5.5.1. Adding a Column ... 74
5.5.2. Removing a Column ... 75
5.5.3. Adding a Constraint .. 75
5.5.4. Removing a Constraint .. 76
5.5.5. Changing a Column's Default Value .. 76
5.5.6. Changing a Column's Data Type ... 76
5.5.7. Renaming a Column ... 77
5.5.8. Renaming a Table .. 77

5.6. Privileges ... 77
5.7. Row Security Policies .. 78
5.8. Schemas .. 84

5.8.1. Creating a Schema .. 85

28

The SQL Language

5.8.2. The Public Schema ... 86
5.8.3. The Schema Search Path ... 86
5.8.4. Schemas and Privileges ... 87
5.8.5. The System Catalog Schema .. 88
5.8.6. Usage Patterns ... 88
5.8.7. Portability ... 89

5.9. Inheritance ... 89
5.9.1. Caveats ... 92

5.10. Table Partitioning .. 93
5.10.1. Overview ... 93
5.10.2. Declarative Partitioning .. 94
5.10.3. Implementation Using Inheritance .. 98
5.10.4. Partition Pruning ... 103
5.10.5. Partitioning and Constraint Exclusion ... 104

5.11. Foreign Data ... 105
5.12. Other Database Objects .. 106
5.13. Dependency Tracking ... 106

6. Data Manipulation ... 108
6.1. Inserting Data ... 108
6.2. Updating Data .. 109
6.3. Deleting Data ... 110
6.4. Returning Data From Modified Rows ... 110

7. Queries .. 112
7.1. Overview ... 112
7.2. Table Expressions ... 112

7.2.1. The FROM Clause ... 113
7.2.2. The WHERE Clause ... 121
7.2.3. The GROUP BY and HAVING Clauses ... 123
7.2.4. GROUPING SETS, CUBE, and ROLLUP .. 125
7.2.5. Window Function Processing .. 127

7.3. Select Lists ... 128
7.3.1. Select-List Items ... 128
7.3.2. Column Labels ... 129
7.3.3. DISTINCT .. 129

7.4. Combining Queries .. 130
7.5. Sorting Rows .. 130
7.6. LIMIT and OFFSET ... 131
7.7. VALUES Lists ... 132
7.8. WITH Queries (Common Table Expressions) .. 133

7.8.1. SELECT in WITH ... 133
7.8.2. Data-Modifying Statements in WITH .. 137

8. Data Types ... 139
8.1. Numeric Types ... 140

8.1.1. Integer Types ... 141
8.1.2. Arbitrary Precision Numbers ... 141
8.1.3. Floating-Point Types ... 143
8.1.4. Serial Types ... 144

8.2. Monetary Types .. 145
8.3. Character Types .. 146
8.4. Binary Data Types ... 148

8.4.1. bytea Hex Format .. 148
8.4.2. bytea Escape Format ... 149

8.5. Date/Time Types ... 150
8.5.1. Date/Time Input ... 151

29

The SQL Language

8.5.2. Date/Time Output ... 155
8.5.3. Time Zones ... 156
8.5.4. Interval Input ... 157
8.5.5. Interval Output ... 160

8.6. Boolean Type ... 160
8.7. Enumerated Types ... 161

8.7.1. Declaration of Enumerated Types .. 161
8.7.2. Ordering .. 162
8.7.3. Type Safety ... 162
8.7.4. Implementation Details .. 163

8.8. Geometric Types ... 163
8.8.1. Points ... 164
8.8.2. Lines .. 164
8.8.3. Line Segments .. 164
8.8.4. Boxes ... 164
8.8.5. Paths ... 165
8.8.6. Polygons ... 165
8.8.7. Circles .. 165

8.9. Network Address Types ... 166
8.9.1. inet .. 166
8.9.2. cidr .. 166
8.9.3. inet vs. cidr .. 167
8.9.4. macaddr .. 167
8.9.5. macaddr8 .. 168

8.10. Bit String Types .. 168
8.11. Text Search Types ... 169

8.11.1. tsvector .. 169
8.11.2. tsquery .. 171

8.12. UUID Type .. 172
8.13. XML Type ... 173

8.13.1. Creating XML Values .. 173
8.13.2. Encoding Handling .. 174
8.13.3. Accessing XML Values .. 175

8.14. JSON Types ... 175
8.14.1. JSON Input and Output Syntax .. 176
8.14.2. Designing JSON documents effectively ... 177
8.14.3. jsonb Containment and Existence .. 178
8.14.4. jsonb Indexing ... 180
8.14.5. Transforms ... 182

8.15. Arrays .. 182
8.15.1. Declaration of Array Types ... 182
8.15.2. Array Value Input ... 183
8.15.3. Accessing Arrays .. 184
8.15.4. Modifying Arrays .. 187
8.15.5. Searching in Arrays ... 190
8.15.6. Array Input and Output Syntax .. 191

8.16. Composite Types ... 192
8.16.1. Declaration of Composite Types .. 192
8.16.2. Constructing Composite Values ... 193
8.16.3. Accessing Composite Types .. 194
8.16.4. Modifying Composite Types ... 195
8.16.5. Using Composite Types in Queries ... 195
8.16.6. Composite Type Input and Output Syntax .. 198

8.17. Range Types ... 199

30

The SQL Language

8.17.1. Built-in Range Types ... 199
8.17.2. Examples ... 199
8.17.3. Inclusive and Exclusive Bounds ... 200
8.17.4. Infinite (Unbounded) Ranges ... 200
8.17.5. Range Input/Output ... 200
8.17.6. Constructing Ranges .. 201
8.17.7. Discrete Range Types .. 202
8.17.8. Defining New Range Types .. 202
8.17.9. Indexing .. 203
8.17.10. Constraints on Ranges .. 204

8.18. Domain Types ... 205
8.19. Object Identifier Types ... 205
8.20. pg_lsn Type .. 207
8.21. Pseudo-Types .. 207

9. Functions and Operators ... 209
9.1. Logical Operators .. 209
9.2. Comparison Functions and Operators .. 209
9.3. Mathematical Functions and Operators .. 212
9.4. String Functions and Operators .. 216

9.4.1. format .. 229
9.5. Binary String Functions and Operators .. 231
9.6. Bit String Functions and Operators ... 233
9.7. Pattern Matching ... 234

9.7.1. LIKE .. 235
9.7.2. SIMILAR TO Regular Expressions ... 236
9.7.3. POSIX Regular Expressions ... 237

9.8. Data Type Formatting Functions .. 250
9.9. Date/Time Functions and Operators .. 258

9.9.1. EXTRACT, date_part .. 263
9.9.2. date_trunc .. 268
9.9.3. AT TIME ZONE .. 268
9.9.4. Current Date/Time .. 269
9.9.5. Delaying Execution ... 271

9.10. Enum Support Functions ... 272
9.11. Geometric Functions and Operators .. 272
9.12. Network Address Functions and Operators ... 277
9.13. Text Search Functions and Operators .. 279
9.14. XML Functions ... 286

9.14.1. Producing XML Content .. 286
9.14.2. XML Predicates .. 291
9.14.3. Processing XML ... 292
9.14.4. Mapping Tables to XML .. 297

9.15. JSON Functions and Operators .. 300
9.16. Sequence Manipulation Functions ... 309
9.17. Conditional Expressions .. 311

9.17.1. CASE .. 312
9.17.2. COALESCE .. 313
9.17.3. NULLIF .. 314
9.17.4. GREATEST and LEAST ... 314

9.18. Array Functions and Operators ... 314
9.19. Range Functions and Operators .. 317
9.20. Aggregate Functions ... 319
9.21. Window Functions ... 327
9.22. Subquery Expressions ... 329

31

The SQL Language

9.22.1. EXISTS .. 329
9.22.2. IN .. 329
9.22.3. NOT IN ... 330
9.22.4. ANY/SOME ... 331
9.22.5. ALL .. 331
9.22.6. Single-row Comparison .. 332

9.23. Row and Array Comparisons ... 332
9.23.1. IN .. 332
9.23.2. NOT IN ... 332
9.23.3. ANY/SOME (array) ... 333
9.23.4. ALL (array) .. 333
9.23.5. Row Constructor Comparison .. 333
9.23.6. Composite Type Comparison ... 334

9.24. Set Returning Functions .. 335
9.25. System Information Functions .. 338
9.26. System Administration Functions ... 355

9.26.1. Configuration Settings Functions .. 355
9.26.2. Server Signaling Functions ... 356
9.26.3. Backup Control Functions ... 356
9.26.4. Recovery Control Functions .. 359
9.26.5. Snapshot Synchronization Functions ... 360
9.26.6. Replication Functions ... 361
9.26.7. Database Object Management Functions .. 365
9.26.8. Index Maintenance Functions .. 368
9.26.9. Generic File Access Functions ... 369
9.26.10. Advisory Lock Functions .. 370

9.27. Trigger Functions .. 372
9.28. Event Trigger Functions .. 373

9.28.1. Capturing Changes at Command End .. 373
9.28.2. Processing Objects Dropped by a DDL Command 374
9.28.3. Handling a Table Rewrite Event .. 375

10. Type Conversion .. 376
10.1. Overview .. 376
10.2. Operators .. 377
10.3. Functions ... 381
10.4. Value Storage ... 385
10.5. UNION, CASE, and Related Constructs .. 386
10.6. SELECT Output Columns ... 388

11. Indexes ... 389
11.1. Introduction .. 389
11.2. Index Types .. 390
11.3. Multicolumn Indexes .. 392
11.4. Indexes and ORDER BY ... 393
11.5. Combining Multiple Indexes .. 394
11.6. Unique Indexes ... 395
11.7. Indexes on Expressions ... 395
11.8. Partial Indexes .. 396
11.9. Index-Only Scans and Covering Indexes .. 398
11.10. Operator Classes and Operator Families ... 401
11.11. Indexes and Collations .. 402
11.12. Examining Index Usage .. 403

12. Full Text Search .. 405
12.1. Introduction .. 405

12.1.1. What Is a Document? .. 406

32

The SQL Language

12.1.2. Basic Text Matching .. 407
12.1.3. Configurations .. 409

12.2. Tables and Indexes .. 409
12.2.1. Searching a Table .. 409
12.2.2. Creating Indexes ... 410

12.3. Controlling Text Search .. 411
12.3.1. Parsing Documents .. 412
12.3.2. Parsing Queries ... 413
12.3.3. Ranking Search Results .. 415
12.3.4. Highlighting Results .. 418

12.4. Additional Features .. 419
12.4.1. Manipulating Documents .. 419
12.4.2. Manipulating Queries ... 420
12.4.3. Triggers for Automatic Updates ... 423
12.4.4. Gathering Document Statistics ... 424

12.5. Parsers ... 425
12.6. Dictionaries .. 426

12.6.1. Stop Words .. 427
12.6.2. Simple Dictionary ... 428
12.6.3. Synonym Dictionary .. 429
12.6.4. Thesaurus Dictionary ... 431
12.6.5. Ispell Dictionary ... 434
12.6.6. Snowball Dictionary .. 436

12.7. Configuration Example ... 436
12.8. Testing and Debugging Text Search .. 438

12.8.1. Configuration Testing .. 438
12.8.2. Parser Testing ... 441
12.8.3. Dictionary Testing ... 442

12.9. GIN and GiST Index Types ... 443
12.10. psql Support .. 444
12.11. Limitations .. 447

13. Concurrency Control ... 448
13.1. Introduction .. 448
13.2. Transaction Isolation .. 448

13.2.1. Read Committed Isolation Level .. 449
13.2.2. Repeatable Read Isolation Level .. 451
13.2.3. Serializable Isolation Level ... 452

13.3. Explicit Locking .. 454
13.3.1. Table-level Locks .. 454
13.3.2. Row-level Locks ... 457
13.3.3. Page-level Locks ... 458
13.3.4. Deadlocks .. 458
13.3.5. Advisory Locks .. 459

13.4. Data Consistency Checks at the Application Level ... 460
13.4.1. Enforcing Consistency With Serializable Transactions 460
13.4.2. Enforcing Consistency With Explicit Blocking Locks 461

13.5. Caveats .. 462
13.6. Locking and Indexes .. 462

14. Performance Tips ... 463
14.1. Using EXPLAIN .. 463

14.1.1. EXPLAIN Basics .. 463
14.1.2. EXPLAIN ANALYZE .. 469
14.1.3. Caveats .. 474

14.2. Statistics Used by the Planner .. 475

33

The SQL Language

14.2.1. Single-Column Statistics ... 475
14.2.2. Extended Statistics .. 476

14.3. Controlling the Planner with Explicit JOIN Clauses .. 479
14.4. Populating a Database .. 481

14.4.1. Disable Autocommit .. 481
14.4.2. Use COPY .. 481
14.4.3. Remove Indexes .. 482
14.4.4. Remove Foreign Key Constraints ... 482
14.4.5. Increase maintenance_work_mem .. 482
14.4.6. Increase max_wal_size .. 482
14.4.7. Disable WAL Archival and Streaming Replication 482
14.4.8. Run ANALYZE Afterwards .. 483
14.4.9. Some Notes About pg_dump ... 483

14.5. Non-Durable Settings ... 484
15. Parallel Query ... 485

15.1. How Parallel Query Works .. 485
15.2. When Can Parallel Query Be Used? .. 486
15.3. Parallel Plans .. 487

15.3.1. Parallel Scans ... 487
15.3.2. Parallel Joins .. 487
15.3.3. Parallel Aggregation .. 488
15.3.4. Parallel Append .. 488
15.3.5. Parallel Plan Tips .. 489

15.4. Parallel Safety ... 489
15.4.1. Parallel Labeling for Functions and Aggregates .. 489

34

Chapter 4. SQL Syntax
This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure
SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command
are described in Part VI.

4.1.1. Identifiers and Key Words
Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard

35

SQL Syntax

will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

 The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in src/
include/pg_config_manual.h.

 Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

 There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise not
be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code points.
This variant starts with U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spaces in between, for example U&"foo". (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal
code point number. For example, the identifier "data" could be written as

U&"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

36

SQL Syntax

U&"d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single quotes,
not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If
you want to write portable applications you are advised to always quote a particular name or never quote it.)

4.1.2. Constants
There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

 A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
'This is a string'. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written as one constant. For example:

SELECT 'foo'
'bar';

is equivalent to:

SELECT 'foobar';

but:

SELECT 'foo' 'bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

37

SQL Syntax

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An escape
string constant is specified by writing the letter E (upper or lower case) just before the opening single
quote, e.g., E'foo'. (When continuing an escape string constant across lines, write E only before the
first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash escape
sequence, in which the combination of backslash and following character(s) represent a special byte value,
as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (o = 0 - 7) octal byte value

\xh, \xhh (h = 0 - 9, A - F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x = 0 - 9, A - F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \', in addition
to the normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. When the server encoding is UTF-8,
then the Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3, should
be used instead. (The alternative would be doing the UTF-8 encoding by hand and writing out the bytes,
which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the 4-digit
and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF8, they are first combined into a single
code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_strings is off, then PostgreSQL recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the
default is on, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to off, but it is better to migrate away from using backslash escapes. If you need to use
a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in string constants.

38

SQL Syntax

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary Unicode
characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for
example U&'foo'. (Note that this creates an ambiguity with the operator &. Use spaces around the
operator to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by
writing a backslash followed by the four-digit hexadecimal code point number or alternatively a backslash
followed by a plus sign followed by a six-digit hexadecimal code point number. For example, the string
'data' could be written as

U&'d\0061t\+000061'

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&'\0441\043B\043E\043D'

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&'d!0061t!+000061' UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into a single code point
that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne's horse” using dollar quoting:

39

SQL Syntax

$$Dianne's horse$$
$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped. Indeed,
no characters inside a dollar-quoted string are ever escaped: the string content is always written literally.
Backslashes are not special, and neither are dollar signs, unless they are part of a sequence matching the
opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

$function$
BEGIN
 RETURN ($1 ~ q[\t\r\n\v\\]q);
END;
$function$

Here, the sequence q[\t\r\n\v\\]q represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence does
not match the outer dollar quoting delimiter $function$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, so tagString contenttag is correct, but
TAGString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the inner
string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B'1001'. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X'1FF'. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

40

SQL Syntax

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42
3.5
4.
.001
5e2
1.925e-3

 A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if
its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain
decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL '1.23' -- string style
1.23::REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
'string'::type
CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called type. The result is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it
is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

41

SQL Syntax

typename ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
'string' syntax is that it does not work for array types; use :: or CAST() to specify the type of an
array constant.

The CAST() syntax conforms to SQL. The type 'string' syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with :: is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators
An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+ - * / < > = ~ ! @ # % ^ & | ` ?

There are a few restrictions on operator names, however:

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@, you cannot write X*@Y; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

4.1.4. Special Characters
Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

• A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

• Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

• Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

42

SQL Syntax

• Commas (,) are used in some syntactical constructs to separate the elements of a list.

• The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

• The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

• The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

• The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments
A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
 * with nesting: /* nested block comment */
 */

where the comment begins with /* and extends to the matching occurrence of */. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Operator Precedence
Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators. For
instance:

SELECT 5 ! - 6;

will be parsed as:

SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

43

SQL Syntax

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description

. left table/column name separator

:: left PostgreSQL-style typecast

[] left array element selection

+ - right unary plus, unary minus

^ left exponentiation

* / % left multiplication, division, modulo

+ - left addition, subtraction

(any other operator) left all other native and user-defined
operators

BETWEEN IN LIKE ILIKE
SIMILAR

range containment, set
membership, string matching

< > = <= >= <> comparison operators

IS ISNULL NOTNULL IS TRUE, IS FALSE, IS
NULL, IS DISTINCT FROM,
etc

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR().

Note

PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; IS tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you

44

SQL Syntax

are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator_precedence_warning turned on to see if any
warnings are logged.

4.2. Value Expressions
Value expressions are used in a variety of contexts, such as in the target list of the SELECT command, as
new column values in INSERT or UPDATE, or in search conditions in a number of commands. The result of
a value expression is sometimes called a scalar, to distinguish it from the result of a table expression (which
is a table). Value expressions are therefore also called scalar expressions (or even simply expressions).
The expression syntax allows the calculation of values from primitive parts using arithmetic, logical, set,
and other operations.

A value expression is one of the following:

• A constant or literal value

• A column reference

• A positional parameter reference, in the body of a function definition or prepared statement

• A subscripted expression

• A field selection expression

• An operator invocation

• A function call

• An aggregate expression

• A window function call

• A type cast

• A collation expression

• A scalar subquery

• An array constructor

• A row constructor

• Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do not
follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

45

SQL Syntax

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters
A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept(text) RETURNS dept
 AS $$ SELECT * FROM dept WHERE name = $1 $$
 LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts
If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression[lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

46

SQL Syntax

4.2.4. Field Selection
If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol).somefield
(mytable.compositecol).somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing .*:

(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations
There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR(schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls
The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

47

SQL Syntax

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col(table) and table.col are interchangeable. This behavior is not SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields”.
For more information see Section 8.16.5.

4.2.7. Aggregate Expressions
An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by_clause]) [FILTER
 (WHERE filter_clause)]
aggregate_name (ALL expression [, ...] [order_by_clause])
 [FILTER (WHERE filter_clause)]
aggregate_name (DISTINCT expression [, ...] [order_by_clause])
 [FILTER (WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate_name ([expression [, ...]]) WITHIN GROUP
 (order_by_clause) [FILTER (WHERE filter_clause)]

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter_clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form is
the same as the first, since ALL is the default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
fourth form invokes the aggregate once for each input row; since no particular input value is specified,
it is generally only useful for the count(*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

48

SQL Syntax

For example, count(*) yields the total number of input rows; count(f1) yields the number of input
rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number
of distinct non-null values of f1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, min produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and string_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order_by_clause can be used to specify the desired ordering. The order_by_clause has the
same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its expressions
are always just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;

not this:

SELECT string_agg(a ORDER BY a, ',') FROM table; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included
in the DISTINCT list.

Note

The ability to specify both DISTINCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There is
a subclass of aggregate functions called ordered-set aggregates for which an order_by_clause is
required, usually because the aggregate's computation is only sensible in terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an
ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order_by_clause are evaluated once per
input row just like regular aggregate arguments, sorted as per the order_by_clause's requirements,
and fed to the aggregate function as input arguments. (This is unlike the case for a non-WITHIN GROUP
order_by_clause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them from
the aggregated arguments listed in the order_by_clause. Unlike regular aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for

49

SQL Syntax

things like percentile fractions, which only make sense as a single value per aggregation calculation. The
direct argument list can be empty; in this case, write just () not (*). (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

 An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY income) FROM
 households;
 percentile_cont

 50489

which obtains the 50th percentile, or median, value of the income column from table households.
Here, 0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are
fed to the aggregate function; other rows are discarded. For example:

SELECT
 count(*) AS unfiltered,
 count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
 unfiltered | filtered
------------+----------
 10 | 4
(1 row)

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggregate
is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's arguments
(and filter_clause if any) contain only outer-level variables: the aggregate then belongs to the
nearest such outer level, and is evaluated over the rows of that query. The aggregate expression as a whole
is then an outer reference for the subquery it appears in, and acts as a constant over any one evaluation
of that subquery. The restriction about appearing only in the result list or HAVING clause applies with
respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls
A window function call represents the application of an aggregate-like function over some portion of the
rows selected by a query. Unlike non-window aggregate calls, this is not tied to grouping of the selected
rows into a single output row — each row remains separate in the query output. However the window
function has access to all the rows that would be part of the current row's group according to the grouping
specification (PARTITION BY list) of the window function call. The syntax of a window function call
is one of the following:

50

SQL Syntax

function_name ([expression [, expression ...]]) [FILTER
 (WHERE filter_clause)] OVER window_name
function_name ([expression [, expression ...]]) [FILTER
 (WHERE filter_clause)] OVER (window_definition)
function_name (*) [FILTER (WHERE filter_clause)]
 OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER
 (window_definition)

where window_definition has the syntax

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST
 | LAST }] [, ...]]
[frame_clause]

The optional frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end
 [frame_exclusion]

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query's WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax as
for defining a named window in the WINDOW clause; see the SELECT reference page for details. It's worth
pointing out that OVER wname is not exactly equivalent to OVER (wname ...); the latter implies
copying and modifying the window definition, and will be rejected if the referenced window specification
includes a frame clause.

The PARTITION BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except
that its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works

51

SQL Syntax

similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runs from the frame_start to the frame_end. If
frame_end is omitted, the end defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the
partition, and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with
the last row of the partition.

In RANGE or GROUPS mode, a frame_start of CURRENT ROW means the frame starts with the current
row's first peer row (a row that the window's ORDER BY clause sorts as equivalent to the current row),
while a frame_end of CURRENT ROW means the frame ends with the current row's last peer row. In
ROWS mode, CURRENT ROW simply means the current row.

In the offset PRECEDING and offset FOLLOWING frame options, the offset must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of the
offset depends on the frame mode:

• In ROWS mode, the offset must yield a non-null, non-negative integer, and the option means that the
frame starts or ends the specified number of rows before or after the current row.

• In GROUPS mode, the offset again must yield a non-null, non-negative integer, and the option means
that the frame starts or ends the specified number of peer groups before or after the current row's peer
group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering. (There must
be an ORDER BY clause in the window definition to use GROUPS mode.)

• In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
offset specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the offset expression varies
depending on the data type of the ordering column. For numeric ordering columns it is typically of the
same type as the ordering column, but for datetime ordering columns it is an interval. For example,
if the ordering column is of type date or timestamp, one could write RANGE BETWEEN '1 day'
PRECEDING AND '10 days' FOLLOWING. The offset is still required to be non-null and non-
negative, though the meaning of “non-negative” depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROWS and GROUPS mode, 0 PRECEDING and 0 FOLLOWING are equivalent to
CURRENT ROW. This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not
the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not
excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without ORDER

52

SQL Syntax

BY, this means all rows of the partition are included in the window frame, since all rows become peers
of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be
UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above list of
frame_start and frame_end options than the frame_start choice does — for example RANGE
BETWEEN CURRENT ROW AND offset PRECEDING is not allowed. But, for example, ROWS
BETWEEN 7 PRECEDING AND 8 PRECEDING is allowed, even though it would never select any rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are
fed to the window function; other rows are discarded. Only window functions that are aggregates accept
a FILTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count(*) OVER (PARTITION BY x ORDER BY y). The asterisk (*) is customarily
not used for window-specific functions. Window-specific functions do not allow DISTINCT or ORDER
BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

4.2.9. Type Casts
A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression::type

The CAST syntax conforms to SQL; the syntax with :: is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed for
any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply a
type cast in such cases. However, automatic casting is only done for casts that are marked “OK to apply
implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This restriction
is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:

typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent float8 can. Also, the names interval,

53

SQL Syntax

time, and timestamp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions
The COLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:

expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we wish to
affect. It doesn't matter which argument of the operator or function call the COLLATE clause is attached to,
because the collation that is applied by the operator or function is derived by considering all arguments, and
an explicit COLLATE clause will override the collations of all other arguments. (Attaching non-matching
COLLATE clauses to more than one argument, however, is an error. For more details see Section 23.2.)
Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';

But this is an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

54

SQL Syntax

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
type boolean.

4.2.11. Scalar Subqueries
A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state =
 states.name)
 FROM states;

4.2.12. Array Constructors
An array constructor is an expression that builds an array value using values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket]. For example:

SELECT ARRAY[1,2,3+4];
 array

 {1,2,7}
(1 row)

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
 array

 {1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the key
word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
 array

55

SQL Syntax

 {{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
 array
--
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
 array

 {}
(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
 array

 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
 array

 {{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element

56

SQL Syntax

type matching that of the subquery's output column. If the subquery's output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case all the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors
A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,'this is a test');

The key word ROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns f1 and f2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note

Before PostgreSQL 8.2, the .* syntax was not expanded in row constructors, so that writing
ROW(t.*, 42) created a two-field row whose first field was another row value. The new
behavior is usually more useful. If you need the old behavior of nested row values, write the inner
row value without .*, for instance ROW(t, 42).

By default, the value created by a ROW expression is of an anonymous record type. If necessary, it can be
cast to a named composite type — either the row type of a table, or a composite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE
 SQL;

-- No cast needed since only one getf1() exists
SELECT getf1(ROW(1,2.5,'this is a test'));
 getf1

 1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

57

SQL Syntax

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT $1.f1'
 LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(ROW(1,2.5,'this is a test'));
ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);
 getf1

 1
(1 row)

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS myrowtype));
 getf1

 11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,'this is a test') = ROW(1, 3, 'not the same');

SELECT ROW(table.*) IS NULL FROM table; -- detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules
The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

58

SQL Syntax

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 38.7, functions
and operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row in the table has x > 0 so that the ELSE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min(employees) > 0
 THEN avg(expenses / employees)
 END
 FROM departments;

The min() and avg() aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test
the result of min(). Instead, use a WHERE or FILTER clause to prevent problematic input rows from
reaching an aggregate function in the first place.

4.3. Calling Functions
PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters, since it
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name

59

SQL Syntax

and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be written
in the call at all. But this is particularly useful in named notation, since any combination of parameters can
be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper(a text, b text, uppercase
 boolean DEFAULT false)
RETURNS text
AS
$$
 SELECT CASE
 WHEN $3 THEN UPPER($1 || ' ' || $2)
 ELSE LOWER($1 || ' ' || $2)
 END;
$$
LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is
one optional parameter uppercase which defaults to false. The a and b inputs will be concatenated,
and forced to either upper or lower case depending on the uppercase parameter. The remaining details
of this function definition are not important here (see Chapter 38 for more information).

4.3.1. Using Positional Notation
Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

SELECT concat_lower_or_upper('Hello', 'World', true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper('Hello', 'World');
 concat_lower_or_upper

 hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have defaults.

60

SQL Syntax

4.3.2. Using Named Notation
In named notation, each argument's name is specified using => to separate it from the argument expression.
For example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World');
 concat_lower_or_upper

 hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase =>
 true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b =>
 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b :=
 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation
The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper('Hello', 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified
by name. In this example, that adds little except documentation. With a more complex function having

61

SQL Syntax

numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

62

Chapter 5. Data Definition
This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
table partitioning, views, functions, and triggers.

5.1. Table Basics
A table in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order
of the rows in a table. When a table is read, the rows will appear in an unspecified order, unless sorting
is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in a table. This is a consequence of
the mathematical model that underlies SQL but is usually not desirable. Later in this chapter we will see
how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are integer for whole numbers,
numeric for possibly fractional numbers, text for character strings, date for dates, time for time-
of-day values, and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
 first_column text,
 second_column integer
);

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (

63

Data Definition

 product_no integer,
 name text,
 price numeric
);

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values
A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know what
that value is. (Details about data manipulation commands are in Chapter 6.)

 If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric DEFAULT 9.99
);

64

Data Definition

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default of
CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
 product_no integer DEFAULT nextval('products_product_no_seq'),
 ...
);

where the nextval() function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (
 product_no SERIAL,
 ...
);

The SERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints
Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should probably
only accept positive values. But there is no standard data type that accepts only positive numbers. Another
issue is that you might want to constrain column data with respect to other columns or rows. For example,
in a table containing product information, there should be only one row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints
A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0)
);

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column thus
constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

65

Data Definition

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CONSTRAINT positive_price CHECK (price > 0)
);

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0),
 discounted_price numeric CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to
a particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could also
be written as:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

or even:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0 AND price > discounted_price)
);

66

Data Definition

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0),
 CONSTRAINT valid_discount CHECK (price > discounted_price)
);

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

5.3.2. Not-Null Constraints
A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric
);

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric NOT NULL CHECK (price > 0)
);

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

67

Data Definition

CREATE TABLE products (
 product_no integer NULL,
 name text NULL,
 price numeric NULL
);

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints
Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
 product_no integer UNIQUE,
 name text,
 price numeric
);

when written as a column constraint, and:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 UNIQUE (product_no)
);

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column names
separated by commas:

CREATE TABLE example (
 a integer,
 b integer,
 c integer,
 UNIQUE (a, c)
);

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

68

Data Definition

CREATE TABLE products (
 product_no integer CONSTRAINT must_be_different UNIQUE,
 name text,
 price numeric
);

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

5.3.4. Primary Keys
A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
 product_no integer UNIQUE NOT NULL,
 name text,
 price numeric
);

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
 a integer,
 b integer,
 c integer,
 PRIMARY KEY (a, c)
);

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.) Relational
database theory dictates that every table must have a primary key. This rule is not enforced by PostgreSQL,
but it is usually best to follow it.

69

Data Definition

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.3.5. Foreign Keys
A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

Let's also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products (product_no),
 quantity integer
);

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the referenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products,
 quantity integer
);

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
 a integer PRIMARY KEY,

70

Data Definition

 b integer,
 c integer,
 FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)
);

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 shipping_address text,
 ...
);

CREATE TABLE order_items (
 product_no integer REFERENCES products,
 order_id integer REFERENCES orders,
 quantity integer,
 PRIMARY KEY (product_no, order_id)
);

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have a few options:

• Disallow deleting a referenced product
• Delete the orders as well
• Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

71

Data Definition

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 shipping_address text,
 ...
);

CREATE TABLE order_items (
 product_no integer REFERENCES products ON DELETE RESTRICT,
 order_id integer REFERENCES orders ON DELETE CASCADE,
 quantity integer,
 PRIMARY KEY (product_no, order_id)
);

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later in
the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted,
row(s) referencing it should be automatically deleted as well. There are two other options: SET NULL
and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be set to nulls or
their default values, respectively, when the referenced row is deleted. Note that these do not excuse you
from observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of a referenced column will require a scan of the referencing
table for rows matching the old value, it is often a good idea to index the referencing columns too. Because
this is not always needed, and there are many choices available on how to index, declaration of a foreign
key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign key
constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints
Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
 c circle,

72

Data Definition

 EXCLUDE USING gist (c WITH &&)
);

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns
Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns; just know they exist.

oid

 The object identifier (object ID) of a row. This column is only present if the table was created using
WITH OIDS, or if the default_with_oids configuration variable was set at the time. This column is
of type oid (same name as the column); see Section 8.19 for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it's difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to
obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin

The command identifier (starting at zero) within the inserting transaction.

xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

ctid

The physical location of the row version within its table. Note that although the ctid can be used to
locate the row version very quickly, a row's ctid will change if it is updated or moved by VACUUM
FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are

73

Data Definition

unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

• A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the table
contains fewer than 232 (4 billion) rows, and in practice the table size had better be much less than that,
or performance might suffer.)

• OIDs should never be assumed to be unique across tables; use the combination of tableoid and row
OID if you need a database-wide identifier.

• Of course, the tables in question must be created WITH OIDS. As of PostgreSQL 8.1, WITHOUT OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 24 for
details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables
When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is already
filled with data, or if the table is referenced by other database objects (for instance a foreign key constraint).
Therefore PostgreSQL provides a family of commands to make modifications to existing tables. Note that
this is conceptually distinct from altering the data contained in the table: here we are interested in altering
the definition, or structure, of the table.

You can:

• Add columns
• Remove columns
• Add constraints
• Remove constraints
• Change default values
• Change column data types
• Rename columns
• Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column
To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

74

Data Definition

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <>
 '');

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Tip

Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So
if you intend to fill the column with mostly nondefault values, it's best to add the column with
no default, insert the correct values using UPDATE, and then add any desired default as described
below.

5.5.2. Removing a Column
To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint
To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES
 product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

75

Data Definition

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.5.4. Removing a Constraint
To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column's Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.

5.5.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.

76

Data Definition

It's often best to drop any constraints on the column before altering its type, and then add back suitably
modified constraints afterwards.

5.5.7. Renaming a Column
To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges
When an object is created, it is assigned an owner. The owner is normally the role that executed the creation
statement. For most kinds of objects, the initial state is that only the owner (or a superuser) can do anything
with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges
applicable to a particular object vary depending on the object's type (table, function, etc). For complete
information on the different types of privileges supported by PostgreSQL, refer to the GRANT reference
page. The following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 21.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
their own ordinary privileges, for example to make a table read-only for themselves as well as others.

77

Data Definition

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in turn to
others. If the grant option is subsequently revoked then all who received the privilege from that recipient
(directly or through a chain of grants) will lose the privilege. For details see the GRANT and REVOKE
reference pages.

5.7. Row Security Policies
In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted, updated,
or deleted by data modification commands. This feature is also known as Row-Level Security. By default,
tables do not have any policies, so that if a user has access privileges to a table according to the SQL
privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
all normal access to the table for selecting rows or modifying rows must be allowed by a row security
policy. (However, the table's owner is typically not subject to row security policies.) If no policy exists for
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned
to a given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that returns
a Boolean result. This expression will be evaluated for each row prior to any conditions or functions coming
from the user's query. (The only exceptions to this rule are leakproof functions, which are guaranteed to
not leak information; the optimizer may choose to apply such functions ahead of the row-security check.)
Rows for which the expression does not return true will not be processed. Separate expressions may be
specified to provide independent control over the rows which are visible and the rows which are allowed
to be modified. Policy expressions are run as part of the query and with the privileges of the user running
the query, although security-definer functions can be used to access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing a table. Table owners normally bypass row security as well, though a table owner can choose to
be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). This is similar to the rule that a given role
has the privileges of all roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

78

Data Definition

CREATE TABLE accounts (manager text, company text, contact_email
 text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
 USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or
DELETE existing rows belonging to a different manager) and to rows modified by a command (so rows
belonging to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name PUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
 USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are visible,
multiple policies can be combined. This pair of policies would allow all users to view all rows in the
users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
 FOR SELECT
 USING (true);
CREATE POLICY user_mod_policy ON users
 USING (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

-- Simple passwd-file based example
CREATE TABLE passwd (
 user_name text UNIQUE NOT NULL,
 pwhash text,
 uid int PRIMARY KEY,
 gid int NOT NULL,
 real_name text NOT NULL,
 home_phone text,
 extra_info text,
 home_dir text NOT NULL,

79

Data Definition

 shell text NOT NULL
);

CREATE ROLE admin; -- Administrator
CREATE ROLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Populate the table
INSERT INTO passwd VALUES
 ('admin','xxx',0,0,'Admin','111-222-3333',null,'/root','/bin/dash');
INSERT INTO passwd VALUES
 ('bob','xxx',1,1,'Bob','123-456-7890',null,'/home/bob','/bin/zsh');
INSERT INTO passwd VALUES
 ('alice','xxx',2,1,'Alice','098-765-4321',null,'/home/alice','/bin/
zsh');

-- Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK
 (true);
-- Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
-- Normal users can update their own records, but
-- limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
 USING (current_user = user_name)
 WITH CHECK (
 current_user = user_name AND
 shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/
tcsh')
);

-- Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
-- Users only get select access on public columns
GRANT SELECT
 (user_name, uid, gid, real_name, home_phone, extra_info, home_dir,
 shell)
 ON passwd TO public;
-- Allow users to update certain columns
GRANT UPDATE
 (pwhash, real_name, home_phone, extra_info, shell)
 ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
postgres=> set role admin;
SET

80

Data Definition

postgres=> table passwd;
 user_name | pwhash | uid | gid | real_name | home_phone |
 extra_info | home_dir | shell
-----------+--------+-----+-----+-----------+--------------
+------------+-------------+-----------
 admin | xxx | 0 | 0 | Admin | 111-222-3333 |
 | /root | /bin/dash
 bob | xxx | 1 | 1 | Bob | 123-456-7890 |
 | /home/bob | /bin/zsh
 alice | xxx | 2 | 1 | Alice | 098-765-4321 |
 | /home/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
postgres=> table passwd;
ERROR: permission denied for relation passwd
postgres=> select
 user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;
 user_name | real_name | home_phone | extra_info | home_dir |
 shell
-----------+-----------+--------------+------------+-------------
+-----------
 admin | Admin | 111-222-3333 | | /root | /
bin/dash
 bob | Bob | 123-456-7890 | | /home/bob | /
bin/zsh
 alice | Alice | 098-765-4321 | | /home/alice | /
bin/zsh
(3 rows)

postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for relation passwd
-- Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name =
 'admin';
UPDATE 0
postgres=> update passwd set shell = '/bin/xx';
ERROR: new row violates WITH CHECK OPTION for "passwd"
postgres=> delete from passwd;
ERROR: permission denied for relation passwd
postgres=> insert into passwd (user_name) values ('xxx');
ERROR: permission denied for relation passwd
-- Alice can change her own password; RLS silently prevents updating
 other rows
postgres=> update passwd set pwhash = 'abc';
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple policies
are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive

81

Data Definition

policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add a restrictive policy to require the administrator
to be connected over a local Unix socket to access the records of the passwd table:

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
 USING (pg_catalog.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current_user;
 current_user

 admin
(1 row)

=> select inet_client_addr();
 inet_client_addr

 127.0.0.1
(1 row)

=> SELECT current_user;
 current_user

 admin
(1 row)

=> TABLE passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info
 | home_dir | shell
-----------+--------+-----+-----+-----------+------------+------------
+----------+-------
(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references, always
bypass row security to ensure that data integrity is maintained. Care must be taken when developing
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when taking
a backup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to off. This does not in itself
bypass row security; what it does is throw an error if any query's results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTs, or functions that contain SELECTs, in the policy

82

Data Definition

expressions. Be aware however that such accesses can create race conditions that could allow information
leakage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
 group_name text NOT NULL);

INSERT INTO groups VALUES
 (1, 'low'),
 (2, 'medium'),
 (5, 'high');

GRANT ALL ON groups TO alice; -- alice is the administrator
GRANT SELECT ON groups TO public;

-- definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
 group_id int NOT NULL REFERENCES groups);

INSERT INTO users VALUES
 ('alice', 5),
 ('bob', 2),
 ('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
 group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
 ('barely secret', 1),
 ('slightly secret', 2),
 ('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-- a row should be visible to/updatable by users whose security
 group_id is
-- greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT
 USING (group_id <= (SELECT group_id FROM users WHERE user_name =
 current_user));
CREATE POLICY fp_u ON information FOR UPDATE
 USING (group_id <= (SELECT group_id FROM users WHERE user_name =
 current_user));

-- we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

83

Data Definition

BEGIN;
UPDATE users SET group_id = 1 WHERE user_name = 'mallory';
UPDATE information SET info = 'secret from mallory' WHERE group_id =
 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”.
That happens if her transaction reaches the information row just after alice's does. It blocks waiting
for alice's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE
clause. However, it does not fetch an updated row for the implicit SELECT from users, because that
sub-SELECT did not have FOR UPDATE; instead the users row is read with the snapshot taken at the
start of the query. Therefore, the policy expression tests the old value of mallory's privilege level and
allows her to see the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE
in sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here users) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT
could be embedded into a security definer function.) Also, heavy concurrent use of row share locks on
the referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an exclusive lock on the
referenced table when updating it, so that no concurrent transactions could be examining old row values.
Or one could just wait for all concurrent transactions to end after committing an update of the referenced
table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas
A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databases
in the same cluster; but the system can be configured to allow joe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain other
kinds of named objects, including data types, functions, and operators. The same object name can be used
in different schemas without conflict; for example, both schema1 and myschema can contain tables
named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects in any
of the schemas in the database they are connected to, if they have privileges to do so.

84

Data Definition

There are several reasons why one might want to use schemas:

• To allow many users to use one database without interfering with each other.

• To organize database objects into logical groups to make them more manageable.

• Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.8.1. Creating a Schema
To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
 ...
);

To drop a schema if it's empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

85

Data Definition

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema
In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);

and:

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path
Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to search_path effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create
objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

In the default setup this returns:

86

Data Definition

 search_path

 "$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:

SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it does
for table names. Data type and function names can be qualified in exactly the same way as table names. If
you need to write a qualified operator name in an expression, there is a special provision: you must write

OPERATOR(schema.operator)

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.8.4. Schemas and Privileges
By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

87

Data Definition

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects in
its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines from
Section 4.1.1.)

5.8.5. The System Catalog Schema
In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer a
conflict if some future version defines a system table named the same as your table. (With the default search
path, an unqualified reference to your table name would then be resolved as the system table instead.)
System tables will continue to follow the convention of having names beginning with pg_, so that they
will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.8.6. Usage Patterns
Schemas can be used to organize your data in many ways. There are a few usage patterns easily supported
by the default configuration, only one of which suffices when database users mistrust other database users:

• Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that
user. If affected users had logged in before this, consider auditing the public schema for objects named
like objects in schema pg_catalog. Recall that the default search path starts with $user, which
resolves to the user name. Therefore, if each user has a separate schema, they access their own schemas
by default.

• Remove the public schema from each user's default search path using ALTER ROLE user SET
search_path = "$user". Everyone retains the ability to create objects in the public schema,
but only qualified names will choose those objects. While qualified table references are fine, calls to
functions in the public schema will be unsafe or unreliable. Also, a user holding the CREATEROLE
privilege can undo this setting and issue arbitrary queries under the identity of users relying on the
setting. If you create functions or extensions in the public schema or grant CREATEROLE to users not
warranting this almost-superuser ability, use the first pattern instead.

• Remove the public schema from search_path in postgresql.conf. The ensuing user
experience matches the previous pattern. In addition to that pattern's implications for functions and
CREATEROLE, this trusts database owners like CREATEROLE. If you create functions or extensions in
the public schema or assign the CREATEROLE privilege, CREATEDB privilege or individual database
ownership to users not warranting almost-superuser access, use the first pattern instead.

• Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world. However,

88

Data Definition

any user can issue arbitrary queries under the identity of any user not electing to protect itself
individually. This pattern is acceptable only when the database has a single user or a few mutually-
trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schema name, or they can put the additional schemas into their search path, as they choose.

5.8.7. Portability
In the SQL standard, the notion of objects in the same schema being owned by different users does not exist.
Moreover, some implementations do not allow you to create schemas that have a different name than their
owner. In fact, the concepts of schema and user are nearly equivalent in a database system that implements
only the basic schema support specified in the standard. Therefore, many users consider qualified names
to really consist of user_name.table_name. This is how PostgreSQL will effectively behave if you
create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.9. Inheritance
PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that
it inherits from cities:

CREATE TABLE cities (
 name text,
 population float,
 altitude int -- in feet
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.

89

Data Definition

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
 FROM cities
 WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

 name | altitude
-----------+----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT name, altitude
 FROM ONLY cities
 WHERE altitude > 500;

 name | altitude
-----------+----------
 Las Vegas | 2174
 Mariposa | 1953

Here the ONLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are included:

SELECT name, altitude
 FROM cities*
 WHERE altitude > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is still supported
for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

 tableoid | name | altitude
----------+-----------+----------

90

Data Definition

 139793 | Las Vegas | 2174
 139793 | Mariposa | 1953
 139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

 relname | name | altitude
----------+-----------+----------
 cities | Las Vegas | 2174
 cities | Mariposa | 1953
 capitals | Madison | 845

Another way to get the same effect is to use the regclass alias type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES ('Albany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 41). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children,
unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged, columns
must have the same data types, else an error is raised. Inheritable check constraints and not-null constraints
are merged in a similar fashion. Thus, for example, a merged column will be marked not-null if any one
of the column definitions it came from is marked not-null. Check constraints are merged if they have the
same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause of
the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way can

91

Data Definition

have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the new
child table must already include columns with the same names and types as the columns of the parent. It
must also include check constraints with the same names and check expressions as those of the parent.
Similarly an inheritance link can be removed from a child using the NO INHERIT variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there
are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check constraints
of child tables be dropped or altered if they are inherited from any parent tables. If you wish to remove a
table and all of its descendants, one easy way is to drop the parent table with the CASCADE option (see
Section 5.13).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible when
using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as
well, when they are accessed through cities. This preserves the appearance that the data is (also) in
the parent table. But the capitals table could not be updated directly without an additional grant. In
a similar way, the parent table's row security policies (see Section 5.7) are applied to rows coming from
child tables during an inherited query. A child table's policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

5.9.1. Caveats
Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REINDEX, VACUUM) typically only work on individual, physical tables and
do not support recursing over inheritance hierarchies. The respective behavior of each individual command
is documented in its reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign key
constraints only apply to single tables, not to their inheritance children. This is true on both the referencing
and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

• If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

92

Data Definition

• Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

• Specifying that another table's column REFERENCES cities(name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care is
needed in deciding whether inheritance is useful for your application.

5.10. Table Partitioning
PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview
Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

• Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more likely
that the heavily-used parts of the indexes fit in memory.

• When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

• Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. Doing ALTER TABLE DETACH PARTITION or dropping
an individual partition using DROP TABLE is far faster than a bulk operation. These commands also
entirely avoid the VACUUM overhead caused by a bulk DELETE.

• Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

93

Data Definition

If your application needs to use other forms of partitioning not listed above, alternative methods such as
inheritance and UNION ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning
PostgreSQL offers a way to specify how to divide a table into pieces called partitions. The table that is
divided is referred to as a partitioned table. The specification consists of the partitioning method and a list
of columns or expressions to be used as the partition key.

All rows inserted into a partitioned table will be routed to one of the partitions based on the value of
the partition key. Each partition has a subset of the data defined by its partition bounds. The currently
supported partitioning methods are range, list, and hash.

Partitions may themselves be defined as partitioned tables, using what is called sub-partitioning. Partitions
may have their own indexes, constraints and default values, distinct from those of other partitions. See
CREATE TABLE for more details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible to
add a regular or partitioned table containing data as a partition of a partitioned table, or remove a partition
from a partitioned table turning it into a standalone table; see ALTER TABLE to learn more about the
ATTACH PARTITION and DETACH PARTITION sub-commands.

Individual partitions are linked to the partitioned table with inheritance behind-the-scenes; however, it
is not possible to use some of the generic features of inheritance (discussed below) with declaratively
partitioned tables or their partitions. For example, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can a regular table inherit from a partitioned table making the latter
its parent. That means partitioned tables and their partitions do not participate in inheritance with regular
tables. Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, all the normal rules of inheritance apply as described in Section 5.9 with some exceptions, most
notably:

• Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO INHERIT are not allowed to be created on partitioned tables.

• Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there are no
partitions. Once partitions exist, using ONLY will result in an error as adding or dropping constraints on
only the partitioned table, when partitions exist, is not supported. Instead, constraints on the partitions
themselves can be added and (if they are not present in the parent table) dropped.

• As a partitioned table does not have any data directly, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

• Partitions cannot have columns that are not present in the parent. It is not possible to specify columns
when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions after-the-
fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... ATTACH
PARTITION only if their columns exactly match the parent, including any oid column.

• You cannot drop the NOT NULL constraint on a partition's column if the constraint is present in the
parent table.

Partitions can also be foreign tables, although they have some limitations that normal tables do not; see
CREATE FOREIGN TABLE for more information.

Updating the partition key of a row might cause it to be moved into a different partition where this row
satisfies the partition bounds.

94

Data Definition

5.10.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day as well as ice cream sales in each region. Conceptually, we want a table like:

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
);

We know that most queries will access just the last week's, month's or quarter's data, since the main use of
this table will be to prepare online reports for management. To reduce the amount of old data that needs to
be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month's data. In this situation we can use partitioning to help us meet all of our
different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:

1. Create measurement table as a partitioned table by specifying the PARTITION BY clause, which
includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition
key.

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

You may decide to use multiple columns in the partition key for range partitioning, if desired. Of course,
this will often result in a larger number of partitions, each of which is individually smaller. On the other
hand, using fewer columns may lead to a coarser-grained partitioning criteria with smaller number of
partitions. A query accessing the partitioned table will have to scan fewer partitions if the conditions
involve some or all of these columns. For example, consider a table range partitioned using columns
lastname and firstname (in that order) as the partition key.

2. Create partitions. Each partition's definition must specify the bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's values
will overlap with those in one or more existing partitions will cause an error. Inserting data into the
parent table that does not map to one of the existing partitions will cause an error; an appropriate
partition must be added manually.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify a tablespace and storage parameters for each partition separately.

It is not necessary to create table constraints describing partition boundary condition for partitions.
Instead, partition constraints are generated implicitly from the partition bound specification whenever
there is need to refer to them.

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');

95

Data Definition

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
 FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');

...
CREATE TABLE measurement_y2007m11 PARTITION OF measurement
 FOR VALUES FROM ('2007-11-01') TO ('2007-12-01');

CREATE TABLE measurement_y2007m12 PARTITION OF measurement
 FOR VALUES FROM ('2007-12-01') TO ('2008-01-01')
 TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
 FOR VALUES FROM ('2008-01-01') TO ('2008-02-01')
 WITH (parallel_workers = 4)
 TABLESPACE fasttablespace;

To implement sub-partitioning, specify the PARTITION BY clause in the commands used to create
individual partitions, for example:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01')
 PARTITION BY RANGE (peaktemp);

After creating partitions of measurement_y2006m02, any data inserted into measurement
that is mapped to measurement_y2006m02 (or data that is directly inserted into
measurement_y2006m02, provided it satisfies its partition constraint) will be further redirected to
one of its partitions based on the peaktemp column. The partition key specified may overlap with
the parent's partition key, although care should be taken when specifying the bounds of a sub-partition
such that the set of data it accepts constitutes a subset of what the partition's own bounds allows; the
system does not try to check whether that's really the case.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This automatically
creates one index on each partition, and any partitions you create or attach later will also contain the
index.

CREATE INDEX ON measurement (logdate);

4. Ensure that the enable_partition_pruning configuration parameter is not disabled in
postgresql.conf. If it is, queries will not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table are not intended to remain static.
It is common to want to remove old partitions of data and periodically add new partitions for new data. One
of the most important advantages of partitioning is precisely that it allows this otherwise painful task to
be executed nearly instantaneously by manipulating the partition structure, rather than physically moving
large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:

96

Data Definition

DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn't have to individually delete every record.
Note however that the above command requires taking an ACCESS EXCLUSIVE lock on the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain access
to it as a table in its own right:

ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;

This allows further operations to be performed on the data before it is dropped. For example, this is often
a useful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful time to
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the partitioned
table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 PARTITION OF measurement
 FOR VALUES FROM ('2008-02-01') TO ('2008-03-01')
 TABLESPACE fasttablespace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to
it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
 (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
 TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE
 '2008-03-01');

\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
 FOR VALUES FROM ('2008-02-01') TO ('2008-03-01');

Before running the ATTACH PARTITION command, it is recommended to create a CHECK constraint on
the table to be attached describing the desired partition constraint. That way, the system will be able to skip
the scan to validate the implicit partition constraint. Without such a constraint, the table will be scanned
to validate the partition constraint while holding an ACCESS EXCLUSIVE lock on the parent table. One
may then drop the constraint after ATTACH PARTITION is finished, because it is no longer necessary.

5.10.2.3. Limitations

The following limitations apply to partitioned tables:

• There is no way to create an exclusion constraint spanning all partitions; it is only possible to constrain
each leaf partition individually.

97

Data Definition

• While primary keys are supported on partitioned tables, foreign keys referencing partitioned tables are
not supported. (Foreign key references from a partitioned table to some other table are supported.)

• When an UPDATE causes a row to move from one partition to another, there is a chance that another
concurrent UPDATE or DELETE will get a serialization failure error. Suppose session 1 is performing an
UPDATE on a partition key, and meanwhile a concurrent session 2 for which this row is visible performs
an UPDATE or DELETE operation on this row. In such case, session 2's UPDATE or DELETE, will detect
the row movement and raise a serialization failure error (which always returns with an SQLSTATE
code '40001'). Applications may wish to retry the transaction if this occurs. In the usual case where the
table is not partitioned, or where there is no row movement, session 2 would have identified the newly
updated row and carried out the UPDATE/DELETE on this new row version.

• BEFORE ROW triggers, if necessary, must be defined on individual partitions, not the partitioned table.

• Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned table is permanent, so must be its partitions and likewise if the partitioned table is temporary.
When using temporary relations, all members of the partition tree have to be from the same session.

5.10.3. Implementation Using Inheritance
While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using table
inheritance, which allows for several features not supported by declarative partitioning, such as:

• For declarative partitioning, partitions must have exactly the same set of columns as the partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

• Table inheritance allows for multiple inheritance.

• Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance allows
data to be divided in a manner of the user's choosing. (Note, however, that if constraint exclusion is
unable to prune child tables effectively, query performance might be poor.)

• Some operations require a stronger lock when using declarative partitioning than when using table
inheritance. For example, adding or removing a partition to or from a partitioned table requires taking
an ACCESS EXCLUSIVE lock on the parent table, whereas a SHARE UPDATE EXCLUSIVE lock
is enough in the case of regular inheritance.

5.10.3.1. Example

We use the same measurement table we used above. To implement partitioning using inheritance, use
the following steps:

1. Create the “master” table, from which all of the “child” tables will inherit. This table will contain no
data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. There is no point in defining any indexes or unique constraints on it, either. For our
example, the master table is the measurement table as originally defined.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not add
any columns to the set inherited from the master. Just as with declarative partitioning, these tables are
in every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
...

98

Data Definition

CREATE TABLE measurement_y2007m11 () INHERITS (measurement);
CREATE TABLE measurement_y2007m12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m01 () INHERITS (measurement);

3. Add non-overlapping table constraints to the child tables to define the allowed key values in each.

Typical examples would be:

CHECK (x = 1)
CHECK (county IN ('Oxfordshire', 'Buckinghamshire',
 'Warwickshire'))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which child table the key value 200 belongs in.

It would be better to instead create child tables as follows:

CREATE TABLE measurement_y2006m02 (
 CHECK (logdate >= DATE '2006-02-01' AND logdate < DATE
 '2006-03-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
 CHECK (logdate >= DATE '2006-03-01' AND logdate < DATE
 '2006-04-01')
) INHERITS (measurement);

...
CREATE TABLE measurement_y2007m11 (
 CHECK (logdate >= DATE '2007-11-01' AND logdate < DATE
 '2007-12-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2007m12 (
 CHECK (logdate >= DATE '2007-12-01' AND logdate < DATE
 '2008-01-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
 CHECK (logdate >= DATE '2008-01-01' AND logdate < DATE
 '2008-02-01')
) INHERITS (measurement);

4. For each child table, create an index on the key column(s), as well as any other indexes you might want.

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02
 (logdate);

99

Data Definition

CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03
 (logdate);
CREATE INDEX measurement_y2007m11_logdate ON measurement_y2007m11
 (logdate);
CREATE INDEX measurement_y2007m12_logdate ON measurement_y2007m12
 (logdate);
CREATE INDEX measurement_y2008m01_logdate ON measurement_y2008m01
 (logdate);

5. We want our application to be able to say INSERT INTO measurement ... and have the data be
redirected into the appropriate child table. We can arrange that by attaching a suitable trigger function to
the master table. If data will be added only to the latest child, we can use a very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger
 BEFORE INSERT ON measurement
 FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();

We must redefine the trigger function each month so that it always points to the current child table. The
trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 IF (NEW.logdate >= DATE '2006-02-01' AND
 NEW.logdate < DATE '2006-03-01') THEN
 INSERT INTO measurement_y2006m02 VALUES (NEW.*);
 ELSIF (NEW.logdate >= DATE '2006-03-01' AND
 NEW.logdate < DATE '2006-04-01') THEN
 INSERT INTO measurement_y2006m03 VALUES (NEW.*);
 ...
 ELSIF (NEW.logdate >= DATE '2008-01-01' AND
 NEW.logdate < DATE '2008-02-01') THEN
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Date out of range. Fix the
 measurement_insert_trigger() function!';
 END IF;
 RETURN NULL;
END;

100

Data Definition

$$
LANGUAGE plpgsql;

The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger's tests in the same order as in other parts of this example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead of
a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE
 (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01')
DO INSTEAD
 INSERT INTO measurement_y2006m02 VALUES (NEW.*);
...
CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE
 (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01')
DO INSTEAD
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however,
the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the master. COPY does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn't cover the insertion date; the data will silently go into the master table instead.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in postgresql.conf;
otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above example
we would be creating a new child table each month, so it might be wise to write a script that generates
the required DDL automatically.

5.10.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE measurement_y2006m02;

101

Data Definition

To remove the child table from the inheritance hierarchy table but retain access to it as a table in its own
right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

To add a new child table to handle new data, create an empty child table just as the original children were
created above:

CREATE TABLE measurement_y2008m02 (
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE
 '2008-03-01')
) INHERITS (measurement);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
queries on the parent table.

CREATE TABLE measurement_y2008m02
 (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS);
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE
 '2008-03-01');
\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.10.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

• There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates child tables and creates and/or modifies associated objects than to write
each by hand.

• The schemes shown here assume that the values of a row's key column(s) never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

• If you are using manual VACUUM or ANALYZE commands, don't forget that you need to run them on
each child table individually. A command like:

ANALYZE measurement;

will only process the master table.

• INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON
CONFLICT action is only taken in case of unique violations on the specified target relation, not its
child relations.

• Triggers or rules will be needed to route rows to the desired child table, unless the application is explicitly
aware of the partitioning scheme. Triggers may be complicated to write, and will be much slower than
the tuple routing performed internally by declarative partitioning.

102

Data Definition

5.10.4. Partition Pruning
Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enable_partition_pruning = on; -- the default
SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measurement table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that the
partition need not be scanned because it could not contain any rows meeting the query's WHERE clause.
When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they have
not. A typical unoptimized plan for this type of table setup is:

SET enable_partition_pruning = off;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE
 '2008-01-01';
 QUERY PLAN

 Aggregate (cost=188.76..188.77 rows=1 width=8)
 -> Append (cost=0.00..181.05 rows=3085 width=0)
 -> Seq Scan on measurement_y2006m02 (cost=0.00..33.12
 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2006m03 (cost=0.00..33.12
 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
...
 -> Seq Scan on measurement_y2007m11 (cost=0.00..33.12
 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2007m12 (cost=0.00..33.12
 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2008m01 (cost=0.00..33.12
 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable partition
pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enable_partition_pruning = on;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE
 '2008-01-01';
 QUERY PLAN

 Aggregate (cost=37.75..37.76 rows=1 width=8)

103

Data Definition

 -> Append (cost=0.00..36.21 rows=617 width=0)
 -> Seq Scan on measurement_y2008m01 (cost=0.00..33.12
 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether an
index needs to be created for a given partition depends on whether you expect that queries that scan the
partition will generally scan a large part of the partition or just a small part. An index will be helpful in
the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. This is useful as it can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time; for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery or using a parameterized value on the inner side of a
nested loop join. Partition pruning during execution can be performed at any of the following times:

• During initialization of the query plan. Partition pruning can be performed here for parameter values
which are known during the initialization phase of execution. Partitions which are pruned during this
stage will not show up in the query's EXPLAIN or EXPLAIN ANALYZE. It is possible to determine
the number of partitions which were removed during this phase by observing the “Subplans Removed”
property in the EXPLAIN output.

• During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values from
subqueries and values from execution-time parameters such as those from parameterized nested loop
joins. Since the value of these parameters may change many times during the execution of the query,
partition pruning is performed whenever one of the execution parameters being used by partition pruning
changes. Determining if partitions were pruned during this phase requires careful inspection of the
loops property in the EXPLAIN ANALYZE output. Subplans corresponding to different partitions may
have different values for it depending on how many times each of them was pruned during execution.
Some may be shown as (never executed) if they were pruned every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

Note

Currently, pruning of partitions during the planning of an UPDATE or DELETE command
is implemented using the constraint exclusion method (however, it is controlled by
the enable_partition_pruning rather than constraint_exclusion) — see the
following section for details and caveats that apply.

Also, execution-time partition pruning currently only occurs for the Append node type, not
MergeAppend.

Both of these behaviors are likely to be changed in a future release of PostgreSQL.

5.10.5. Partitioning and Constraint Exclusion
Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other purposes,
including with declarative partitioning.

104

Data Definition

Constraint exclusion works in a very similar way to partition pruning, except that it uses each table's CHECK
constraints — which gives it its name — whereas partition pruning uses the table's partition bounds, which
exist only in the case of declarative partitioning. Another difference is that constraint exclusion is only
applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declaratively-
partitioned tables, in addition to their internal partition bounds, constraint exclusion may be able to elide
additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor off, but an intermediate
setting called partition, which causes the technique to be applied only to queries that are likely to be
working on inheritance partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

• Constraint exclusion is only applied during query planning; unlike partition pruning, it cannot be applied
during query execution.

• Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

• Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-tree-
indexable operators, because only B-tree-indexable column(s) are allowed in the partition key.

• All constraints on all children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheritance
based partitioning will work well with up to perhaps a hundred child tables; don't try to use many
thousands of children.

5.11. Foreign Data
PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library that can
communicate with an external data source, hiding the details of connecting to the data source and obtaining
data from it. There are some foreign data wrappers available as contrib modules; see Appendix F. Other
kinds of foreign data wrappers might be found as third party products. If none of the existing foreign data
wrappers suit your needs, you can write your own; see Chapter 57.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of the remote data. A foreign
table can be used in queries just like a normal table, but a foreign table has no storage in the PostgreSQL
server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data from the external
source, or transmit data to the external source in the case of update commands.

105

Data Definition

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects
Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
give you a list here so that you are aware of what is possible:

• Views

• Functions, procedures, and operators

• Data types and domains

• Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking
When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we considered
in Section 5.3.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on
 table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In this
case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops there because
nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE will
do, run DROP without CASCADE and read the DETAIL output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRICT instead of

106

Data Definition

CASCADE to get the default behavior, which is to prevent dropping objects that any other objects depend
on.

Note

According to the SQL standard, specifying either RESTRICT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tab1, tab2 the existence of a foreign
key referencing tab1 from tab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function's externally-visible
properties, such as its argument and result types, but not dependencies that could only be known by
examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
 'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
 'SELECT note FROM my_colors WHERE color = $1'
 LANGUAGE SQL;

(See Section 38.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still valid
in some sense if the table is missing, though executing it would cause an error; creating a new table of the
same name would allow the function to work again.

107

Chapter 6. Data Manipulation
The previous chapter discussed how to create tables and other structures to hold your data. Now it is time
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data
When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column values.
For example, consider the products table from Chapter 5:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
this you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese',
 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99,
 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

108

Data Manipulation

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese',
 DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
 (1, 'Cheese', 9.99),
 (2, 'Bread', 1.99),
 (3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
 SELECT product_no, name, price FROM new_products
 WHERE release_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data
The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

109

Data Manipulation

Let's look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, c = 1 WHERE a > 0;

6.3. Deleting Data
So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify
the exact row. But you can also remove groups of rows matching a condition, or you can remove all rows
in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows
Sometimes it is useful to obtain data from modified rows while they are being manipulated. The INSERT,
UPDATE, and DELETE commands all have an optional RETURNING clause that supports this. Use of
RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNING *, which selects all columns of the target table in order.

110

Data Manipulation

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a serial column to provide unique identifiers,
RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary
 key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool')
 RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
 WHERE price <= 99.99
 RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
 WHERE obsoletion_date = 'today'
 RETURNING *;

If there are triggers (Chapter 39) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case for
RETURNING.

111

Chapter 7. Queries
The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview
The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression
 [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.
WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM table1;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from table1. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if table1 has columns named a, b, and c (and perhaps
others) you can make the following query:

SELECT a, b + c FROM table1;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM table1 is a simple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random();

7.2. Table Expressions
A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table

112

Queries

on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROM clause. All these transformations
produce a virtual table that provides the rows that are passed to the select list to compute the output rows
of the query.

7.2.1. The FROM Clause
The FROM Clause derives a table from one or more other tables given in a comma-separated table reference
list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery, a
JOIN construct, or complex combinations of these. If more than one table reference is listed in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below). The
result of the FROM list is an intermediate virtual table that can then be subject to transformations by the
WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly specify
that descendant tables are included. There is no real reason to use this syntax any more, because searching
descendant tables is now always the default behavior. However, it is supported for compatibility with older
releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

T1 join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types

Cross join

T1 CROSS JOIN T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in T1 followed by all columns in T2. If the tables have
N and M rows respectively, the joined table will have N * M rows.

113

Queries

FROM T1 CROSS JOIN T2 is equivalent to FROM T1 INNER JOIN T2 ON TRUE (see
below). It is also equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JOIN binds more tightly than comma. For example FROM T1 CROSS JOIN T2 INNER
JOIN T3 ON condition is not the same as FROM T1, T2 INNER JOIN T3 ON
condition because the condition can reference T1 in the first case but not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2
 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING
 (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

114

Queries

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list
of the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USING (a, b) produces the join condition ON T1.a
= T2.a AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JOIN ON produces all columns
from T1 followed by all columns from T2, JOIN USING produces one output column for each of
the listed column pairs (in the listed order), followed by any remaining columns from T1, followed
by any remaining columns from T2.

 Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the output
table. If there are no common column names, NATURAL JOIN behaves like JOIN ... ON TRUE,
producing a cross-product join.

Note

USING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to
either relation that cause a new matching column name to be present will cause the join to
combine that new column as well.

To put this together, assume we have tables t1:

 num | name
-----+------
 1 | a
 2 | b
 3 | c

and t2:

 num | value
-----+-------
 1 | xxx
 3 | yyy
 5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 1 | a | 3 | yyy
 1 | a | 5 | zzz
 2 | b | 1 | xxx
 2 | b | 3 | yyy

115

Queries

 2 | b | 5 | zzz
 3 | c | 1 | xxx
 3 | c | 3 | yyy
 3 | c | 5 | zzz
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 3 | c | 3 | yyy
(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
 num | name | value
-----+------+-------
 1 | a | xxx
 3 | c | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
 num | name | value
-----+------+-------
 1 | a | xxx
 3 | c | yyy
(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | 3 | yyy
(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
 num | name | value
-----+------+-------
 1 | a | xxx
 2 | b |
 3 | c | yyy
(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 3 | c | 3 | yyy
 | | 5 | zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------

116

Queries

 1 | a | 1 | xxx
 2 | b | |
 3 | c | 3 | yyy
 | | 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value =
 'xxx';
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num WHERE t2.value =
 'xxx';
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction placed
in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters a
lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias

or

FROM table_reference alias

The AS key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN
 another_fairly_long_name a ON s.id = a.num;

117

Queries

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id =
 child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the alias
b to the second instance of my_table, but the second statement assigns the alias to the result of the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table itself:

FROM table_reference [AS] alias (column1 [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table alias
name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM table1) AS alias_name

This example is equivalent to FROM table1 AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

118

Queries

FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
 AS names(first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in
the same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROWS FROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias
 [, ...])]]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY]
 [[AS] table_alias [(column_alias [, ...])]]

If the WITH ORDINALITY clause is specified, an additional column of type bigint will be added to
the function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default,
the ordinal column is called ordinality, but a different column name can be assigned to it using an
AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST(array_expression [, ...]) [WITH ORDINALITY]
 [[AS] table_alias [(column_alias [, ...])]]

If no table_alias is specified, the function name is used as the table name; in the case of a ROWS
FROM() construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is also
the same as the function name. For a function returning a composite type, the result columns get the names
of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

119

Queries

SELECT * FROM foo
 WHERE foosubid IN (
 SELECT foosubid
 FROM getfoo(foo.fooid) z
 WHERE z.fooid = foo.fooid
);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pseudo-type record.
When such a function is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ...])
 [, ...])

When not using the ROWS FROM() syntax, the column_definition list replaces the column alias
list that could otherwise be attached to the FROM item; the names in the column definitions serve as column
aliases. When using the ROWS FROM() syntax, a column_definition list can be attached to each
member function separately; or if there is only one member function and no WITH ORDINALITY clause,
a column_definition list can be written in place of a column alias list following ROWS FROM().

Consider this example:

SELECT *
 FROM dblink('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
 AS t1(proname name, prosrc text)
 WHERE proname LIKE 'bytea%';

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to
reference columns provided by preceding FROM items. (Without LATERAL, each subquery is evaluated
independently and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of
the FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items providing

120

Queries

the columns, the LATERAL item is evaluated using that row or row set's values of the columns. The
resulting row(s) are joined as usual with the rows they were computed from. This is repeated for each row
or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
 foo.bar_id) ss;

This is not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s) to
be joined. A common application is providing an argument value for a set-returning function. For example,
supposing that vertices(polygon) returns the set of vertices of a polygon, we could identify close-
together vertices of polygons stored in a table with:

SELECT p1.id, p2.id, v1, v2
FROM polygons p1, polygons p2,
 LATERAL vertices(p1.poly) v1,
 LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;

This query could also be written

SELECT p1.id, p2.id, v1, v2
FROM polygons p1 CROSS JOIN LATERAL vertices(p1.poly) v1,
 polygons p2 CROSS JOIN LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example,
if get_product_names() returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname
 ON true
WHERE pname IS NULL;

7.2.2. The WHERE Clause
The syntax of the WHERE Clause is

WHERE search_condition

121

Queries

where search_condition is any value expression (see Section 4.2) that returns a value of type
boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or in the JOIN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FROM clause. The ON or
USING clause of an outer join is not equivalent to a WHERE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 +
 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 =
 fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced

122

Queries

in the subqueries. Qualifying c1 as fdt.c1 is only necessary if c1 is also the name of a column in
the derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GROUP BY and HAVING Clauses
After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_list
 FROM ...
 [WHERE ...]
 GROUP BY grouping_column_reference
 [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each
set of rows having common values into one group row that represents all rows in the group. This is done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT * FROM test1;
 x | y
---+---
 a | 3
 c | 2
 b | 5
 a | 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;
 x

 a
 b
 c
(3 rows)

In the second query, we could not have written SELECT * FROM test1 GROUP BY x, because there
is no single value for the column y that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM test1 GROUP BY x;
 x | sum
---+-----
 a | 4
 b | 5
 c | 2
(3 rows)

123

Queries

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
 FROM products p LEFT JOIN sales s USING (product_id)
 GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list (but see below). The column s.units does not have to
be in the GROUP BY list since it is only used in an aggregate expression (sum(...)), which represents
the sales of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ...
 HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;
 x | sum
---+-----
 a | 4
 b | 5
(2 rows)

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < 'c';

124

Queries

 x | sum
---+-----
 a | 4
 b | 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS
 profit
 FROM products p LEFT JOIN sales s USING (product_id)
 WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
 GROUP BY product_id, p.name, p.price, p.cost
 HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same
is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP
More complex grouping operations than those described above are possible using the concept of grouping
sets. The data selected by the FROM and WHERE clauses is grouped separately by each specified grouping
set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM items_sold;
 brand | size | sales
-------+------+-------
 Foo | L | 10
 Foo | M | 20
 Bar | M | 15
 Bar | L | 5
(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING
 SETS ((brand), (size), ());
 brand | size | sum
-------+------+-----
 Foo | | 30
 Bar | | 20
 | L | 15
 | M | 35
 | | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows

125

Queries

are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for grouping
sets in which those columns do not appear. To distinguish which grouping a particular output row resulted
from, see Table 9.56.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form

ROLLUP (e1, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
 (e1, e2, e3, ...),
 ...
 (e1, e2),
 (e1),
 ()
)

This is commonly used for analysis over hierarchical data; e.g. total salary by department, division, and
company-wide total.

A clause of the form

CUBE (e1, e2, ...)

represents the given list and all of its possible subsets (i.e. the power set). Thus

CUBE (a, b, c)

is equivalent to

GROUPING SETS (
 (a, b, c),
 (a, b),
 (a, c),
 (a),
 (b, c),
 (b),
 (c),
 ()
)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))

126

Queries

is equivalent to

GROUPING SETS (
 (a, b, c, d),
 (a, b),
 (c, d),
 ()
)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPING SETS (
 (a, b, c, d),
 (a, b, c),
 (a),
 ()
)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside
a GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the
same as if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

GROUP BY GROUPING SETS (
 (a, b, c, d), (a, b, c, e),
 (a, b, d), (a, b, e),
 (a, c, d), (a, c, e),
 (a, d), (a, e)
)

Note

The construct (a, b) is normally recognized in expressions as a row constructor. Within the
GROUP BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a
list of expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW(a, b).

7.2.5. Window Function Processing

127

Queries

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if the
query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are the
group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in
a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does
not uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically
required between the passes of window function evaluations, and the sort is not guaranteed to preserve
ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTITION BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure
the results are sorted in a particular way.

7.3. Select Lists
As shown in the previous section, the table expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items
The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, c FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbl1.a, tbl2.a, tbl1.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbl2.a FROM ...

See Section 8.16.5 for more about the table_name.* notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row's values substituted
for any column references. But the expressions in the select list do not have to reference any columns in
the table expression of the FROM clause; they can be constant arithmetic expressions, for instance.

128

Queries

7.3.2. Column Labels
The entries in the select list can be assigned names for subsequent processing, such as for use in an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + c AS sum FROM ...

but this does:

SELECT a "value", b + c AS sum FROM ...

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT
After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list ...

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list ...

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the

129

Queries

output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries
The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

query1 and query2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

query1 UNION query2 UNION query3

which is executed as:

(query1 UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is
sometimes called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows
After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

130

Queries

SELECT select_list
 FROM table_expression
 ORDER BY sort_expression1 [ASC | DESC] [NULLS { FIRST | LAST }]
 [, sort_expression2 [ASC | DESC] [NULLS { FIRST |
 LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:

SELECT a, b FROM table1 ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to set the
sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller values
first, where “smaller” is defined in terms of the < operator. Similarly, descending order is determined with
the > operator. 1

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort as if larger than any non-null value;
that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x
DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that is,
it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM table1 ORDER BY sum + c; -- wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET
LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

1 Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

131

Queries

SELECT select_list
 FROM table_expression
 [ORDER BY ...]
 [LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a
NULL argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT
rows that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for
the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists
VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules as for UNION (see Section 10.5).

As an example:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL

132

Queries

SELECT 3, 'three';

By default, PostgreSQL assigns the names column1, column2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
so it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t
 (num,letter);
 num | letter
-----+--------
 1 | one
 2 | two
 3 | three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. WITH Queries (Common Table
Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH
The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example
is:

WITH regional_sales AS (
 SELECT region, SUM(amount) AS total_sales
 FROM orders
 GROUP BY region
), top_regions AS (
 SELECT region
 FROM regional_sales
 WHERE total_sales > (SELECT SUM(total_sales)/10 FROM
 regional_sales)
)
SELECT region,

133

Queries

 product,
 SUM(quantity) AS product_units,
 SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is
used in top_regions and the output of top_regions is used in the primary SELECT query. This
example could have been written without WITH, but we'd have needed two levels of nested sub-SELECTs.
It's a bit easier to follow this way.

 The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (
 VALUES (1)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and also place them in a temporary working
table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows
that duplicate any previous result row. Include all remaining rows in the result of the recursive
query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology chosen
by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

134

Queries

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example is
this query to find all the direct and indirect sub-parts of a product, given only a table that shows immediate
inclusions:

WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
 SELECT sub_part, part, quantity FROM parts WHERE part =
 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part, p.quantity
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider the following query
that searches a table graph using a link field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
 SELECT g.id, g.link, g.data, 1
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1
 FROM graph g, search_graph sg
 WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if the link relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns path
and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
 SELECT g.id, g.link, g.data, 1,
 ARRAY[g.id],
 false
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 path || g.id,
 g.id = ANY(path)
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

135

Queries

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fields f1 and f2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
 SELECT g.id, g.link, g.data, 1,
 ARRAY[ROW(g.f1, g.f2)],
 false
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 path || ROW(g.f1, g.f2),
 ROW(g.f1, g.f2) = ANY(path)
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Tip

Omit the ROW() syntax in the common case where only one field needs to be checked to recognize
a cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search order. You
can display the results in depth-first search order by making the outer query ORDER BY a “path”
column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t(n) AS (
 SELECT 1
 UNION ALL
 SELECT n+1 FROM t
)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL's implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try to
fetch all of the WITH query's output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling WITH queries. Thus, expensive

136

Queries

calculations that are needed in multiple places can be placed within a WITH query to avoid redundant work.
Another possible application is to prevent unwanted multiple evaluations of functions with side-effects.
However, the other side of this coin is that the optimizer is less able to push restrictions from the parent
query down into a WITH query than an ordinary subquery. The WITH query will generally be evaluated as
written, without suppression of rows that the parent query might discard afterwards. (But, as mentioned
above, evaluation might stop early if the reference(s) to the query demand only a limited number of rows.)

The examples above only show WITH being used with SELECT, but it can be attached in the same way to
INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in WITH
You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to
perform several different operations in the same query. An example is:

WITH moved_rows AS (
 DELETE FROM products
 WHERE
 "date" >= '2010-10-01' AND
 "date" < '2010-11-01'
 RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes
the specified rows from products, returning their contents by means of its RETURNING clause; and
then the primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-SELECT
within the INSERT. This is necessary because data-modifying statements are only allowed in WITH
clauses that are attached to the top-level statement. However, normal WITH visibility rules apply, so it is
possible to refer to the WITH statement's output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown in
the example above. It is the output of the RETURNING clause, not the target table of the data-modifying
statement, that forms the temporary table that can be referred to by the rest of the query. If a data-modifying
statement in WITH lacks a RETURNING clause, then it forms no temporary table and cannot be referred to
in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example
is:

WITH t AS (
 DELETE FROM foo
)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive WITH, for example:

137

Queries

WITH RECURSIVE included_parts(sub_part, part) AS (
 SELECT sub_part, part FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
DELETE FROM parts
 WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only
as far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query. Therefore,
when using data-modifying statements in WITH, the order in which the specified updates actually happen
is unpredictable. All the statements are executed with the same snapshot (see Chapter 13), so they cannot
“see” one another's effects on the target tables. This alleviates the effects of the unpredictability of the
actual order of row updates, and means that RETURNING data is the only way to communicate changes
between different WITH sub-statements and the main query. An example of this is that in

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also applies
to deleting a row that was already updated in the same statement: only the update is performed. Therefore
you should generally avoid trying to modify a single row twice in a single statement. In particular avoid
writing WITH sub-statements that could affect the same rows changed by the main statement or a sibling
sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

138

Chapter 8. Data Types
PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying
[(n)]

varchar [(n)] variable-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields]
[(p)]

time span

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

macaddr8 MAC (Media Access Control)
address (EUI-64 format)

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

139

Data Types

Name Aliases Description

path geometric path on a plane

pg_lsn PostgreSQL Log Sequence
Number

point geometric point on a plane

polygon closed geometric path on a plane

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial2 autoincrementing two-byte
integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without
time zone]

time of day (no time zone)

time [(p)] with time
zone

timetz time of day, including time zone

timestamp [(p)]
[without time zone]

date and time (no time zone)

timestamp [(p)] with
time zone

timestamptz date and time, including time zone

tsquery text search query

tsvector text search document

txid_snapshot user-level transaction ID snapshot

uuid universally unique identifier

xml XML data

Compatibility

The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date,
double precision, integer, interval, numeric, decimal, real, smallint,
time (with or without time zone), timestamp (with or without time zone), xml.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy when
compared to the original input.

8.1. Numeric Types
Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

140

Data Types

Table 8.2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for integer -2147483648 to
+2147483647

bigint 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807

decimal variable user-specified precision,
exact

up to 131072 digits
before the decimal point;
up to 16383 digits after
the decimal point

numeric variable user-specified precision,
exact

up to 131072 digits
before the decimal point;
up to 16383 digits after
the decimal point

real 4 bytes variable-precision,
inexact

6 decimal digits
precision

double precision 8 bytes variable-precision,
inexact

15 decimal digits
precision

smallserial 2 bytes small autoincrementing
integer

1 to 32767

serial 4 bytes autoincrementing integer 1 to 2147483647

bigserial 8 bytes large autoincrementing
integer

1 to
9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

8.1.1. Integer Types
The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers
The type numeric can store numbers with a very large number of digits. It is especially recommended for
storing monetary amounts and other quantities where exactness is required. Calculations with numeric
values yield exact results where possible, e.g. addition, subtraction, multiplication. However, calculations
on numeric values are very slow compared to the integer types, or to the floating-point types described
in the next section.

141

Data Types

We use the following terms below: The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC(precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERIC(precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar(n) than to char(n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = 'NaN'. On input,
the string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any other
numeric value (including NaN). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

142

Data Types

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the
real and double precision types round ties to the nearest even number. For example:

SELECT x,
 round(x::numeric) AS num_round,
 round(x::double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;
 x | num_round | dbl_round
------+-----------+-----------
 -3.5 | -4 | -4
 -2.5 | -3 | -2
 -1.5 | -2 | -2
 -0.5 | -1 | -0
 0.5 | 1 | 0
 1.5 | 2 | 2
 2.5 | 3 | 2
 3.5 | 4 | 4
(8 rows)

8.1.3. Floating-Point Types
The data types real and double precision are inexact, variable-precision numeric types. In
practice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor,
operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

• If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

• If you want to do complicated calculations with these types for anything important, especially if you rely
on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

• Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least
6 decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308
with a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

Note

The extra_float_digits setting controls the number of extra significant digits included when a
floating point value is converted to text for output. With the default value of 0, the output is the
same on every platform supported by PostgreSQL. Increasing it will produce output that more
accurately represents the stored value, but may be unportable.

143

Data Types

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
-Infinity
NaN

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”,
respectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will
probably not work as expected.) When writing these values as constants in an SQL command, you must
put quotes around them, for example UPDATE table SET x = '-Infinity'. On input, these
strings are recognized in a case-insensitive manner.

Note

IEEE754 specifies that NaN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notations float and float(p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float(1) to float(24) as selecting the real type, while float(25) to float(53) select
double precision. Values of p outside the allowed range draw an error. float with no precision
specified is taken to mean double precision.

Note

The assumption that real and double precision have exactly 24 and 53 bits in the mantissa
respectively is correct for IEEE-standard floating point implementations. On non-IEEE platforms
it might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

Note

This section describes a PostgreSQL-specific way to create an autoincrementing column. Another
way is to use the SQL-standard identity column feature, described at CREATE TABLE.

The data types smallserial, serial and bigserial are not true types, but merely a notational
convenience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported
by some other databases). In the current implementation, specifying:

CREATE TABLE tablename (
 colname SERIAL
);

is equivalent to specifying:

144

Data Types

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
 colname integer NOT NULL DEFAULT nextval('tablename_colname_seq')
);
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In most cases
you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by” the
column, so that it will be dropped if the column or table is dropped.

Note

Because smallserial, serial and bigserial are implemented using sequences, there
may be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value allocated from the sequence is still "used up" even if a row containing
that value is never successfully inserted into the table column. This may happen, for example, if
the inserting transaction rolls back. See nextval() in Section 9.16 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial
should be used if you anticipate the use of more than 231 identifiers over the lifetime of the table. The
type names smallserial and serial2 also work the same way, except that they create a smallint
column.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types
The money type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's lc_monetary setting. The range shown in the table assumes there
are two fractional digits. Input is accepted in a variety of formats, including integer and floating-point
literals, as well as typical currency formatting, such as '$1,000.00'. Output is generally in the latter
form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of lc_monetary. To avoid problems, before restoring a dump into a new
database make sure lc_monetary has the same or equivalent value as in the database that was dumped.

145

Data Types

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real
and double precision data types can be done by casting to numeric first, for example:

SELECT '12.34'::float8::numeric::money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric
before dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.)
When a money value is divided by another money value, the result is double precision (i.e., a pure
number, not money); the currency units cancel each other out in the division.

8.3. Character Types
Table 8.4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit

character(n), char(n) fixed-length, blank padded

text variable unlimited length

Table 8.4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character(n), where n is
a positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply
store the shorter string.

If one explicitly casts a value to character varying(n) or character(n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar(n) and char(n) are aliases for character varying(n) and
character(n), respectively. character without length specifier is equivalent to character(1).
If character varying is used without length specifier, the type accepts strings of any size. The latter
is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregarded when
comparing two values of type character. In collations where whitespace is significant, this behavior

146

Data Types

can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C" < E'a
\n'::CHAR(2) returns true, even though C locale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a character value to one of the other string types. Note
that trailing spaces are semantically significant in character varying and text values, and when
using pattern matching, that is LIKE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of character. Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the data type declaration is less than that. It wouldn't be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quite different. If you desire to store long strings with no specific upper limit, use text or character
varying without a length specifier, rather than making up an arbitrary length limit.)

Tip

There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character(n) has performance advantages in some
other database systems, there is no such advantage in PostgreSQL; in fact character(n) is
usually the slowest of the three because of its additional storage costs. In most situations text or
character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions. The database character set determines the character set used to
store textual values; for more information on character set support, refer to Section 23.3.

Example 8.1. Using the Character Types

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES ('ok');
SELECT a, char_length(a) FROM test1; -- 1

 a | char_length
------+-------------
 ok | 2

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES ('ok');
INSERT INTO test2 VALUES ('good ');
INSERT INTO test2 VALUES ('too long');
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES ('too long'::varchar(5)); -- explicit
 truncation
SELECT b, char_length(b) FROM test2;

 b | char_length
-------+-------------

147

Data Types

 ok | 2
 good | 5
 too l | 5

1 The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and
is therefore adjustable for special uses); the default maximum length might change in a future release. The
type "char" (note the quotes) is different from char(1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description

"char" 1 byte single-byte internal type

name 64 bytes internal type for object names

8.4. Binary Data Types
The bytea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual binary
string

variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and also
disallow any other octet values and sequences of octet values that are invalid according to the database's
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes”, whereas character strings are appropriate for
storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The
input format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format
The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first. The
entire string is preceded by the sequence \x (to distinguish it from the escape format). In some contexts,
the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input, the hexadecimal

148

Data Types

digits can be either upper or lower case, and whitespace is permitted between digit pairs (but not within
a digit pair nor in the starting \x sequence). The hex format is compatible with a wide range of external
applications and protocols, and it tends to be faster to convert than the escape format, so its use is preferred.

Example:

SELECT '\xDEADBEEF';

8.4.2. bytea Escape Format
The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practice it is usually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. Therefore, this
format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented by
double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative escape
sequences where applicable.

Table 8.7. bytea Literal Escaped Octets

Decimal Octet
Value

Description Escaped Input
Representation

Example Hex
Representation

0 zero octet '\000' SELECT
'\000'::bytea;

\x00

39 single quote '''' or '\047' SELECT
''''::bytea;

\x27

92 backslash '\\' or '\134' SELECT '\
\'::bytea;

\x5c

0 to 31 and 127 to
255

“non-printable”
octets

'\xxx' (octal
value)

SELECT
'\001'::bytea;

\x01

The requirement to escape non-printable octets varies depending on locale settings. In some instances you
can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, is that this is true for any string literal
in a SQL command. The generic string-literal parser consumes the outermost single quotes and reduces
any pair of single quotes to one data character. What the bytea input function sees is just one single
quote, which it treats as a plain data character. However, the bytea input function treats backslashes as
special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea_output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one backslash.
Most “printable” octets are output by their standard representation in the client character set, e.g.:

149

Data Types

SET bytea_output = 'escape';

SELECT 'abc \153\154\155 \052\251\124'::bytea;
 bytea

 abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. bytea Output Escaped Octets

Decimal Octet
Value

Description Escaped Output
Representation

Example Output Result

92 backslash \\ SELECT
'\134'::bytea;

\\

0 to 31 and 127 to
255

“non-printable”
octets

\xxx (octal value) SELECT
'\001'::bytea;

\001

32 to 126 “printable” octets client character set
representation

SELECT
'\176'::bytea;

~

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.5 for more information).

Table 8.9. Date/Time Types

Name Storage Size Description Low Value High Value Resolution

timestamp
[(p)]
[without
time zone]

8 bytes both date and
time (no time
zone)

4713 BC 294276 AD 1 microsecond

timestamp
[(p)]
with time
zone

8 bytes both date and
time, with time
zone

4713 BC 294276 AD 1 microsecond

date 4 bytes date (no time of
day)

4713 BC 5874897 AD 1 day

time
[(p)]
[without
time zone]

8 bytes time of day (no
date)

00:00:00 24:00:00 1 microsecond

time
[(p)]

12 bytes time of day (no
date), with time
zone

00:00:00+1459 24:00:00-1459 1 microsecond

150

Data Types

Name Storage Size Description Low Value High Value Resolution

with time
zone

interval [
fields]
[(p)]

16 bytes time interval -178000000
years

178000000
years

1 microsecond

Note

The SQL standard requires that writing just timestamp be equivalent to timestamp
without time zone, and PostgreSQL honors that behavior. timestamptz is accepted as
an abbreviation for timestamp with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from 0 to 6.

The interval type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp
without time zone, and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are
discouraged from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input
Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle

151

Data Types

parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for time, timestamp, and interval types, and can range from 0 to 6.
If no precision is specified in a constant specification, it defaults to the precision of the literal value (but
not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the date type.

Table 8.10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zone and time [(p)] with
time zone. time alone is equivalent to time without time zone.

152

Data Types

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8.11 and
Table 8.12.) If a time zone is specified in the input for time without time zone, it is silently ignored.
You can also specify a date but it will be ignored, except when you use a time zone name that involves
a daylight-savings rule, such as America/New_York. In this case specifying the date is required in
order to determine whether standard or daylight-savings time applies. The appropriate time zone offset is
recorded in the time with time zone value.

Table 8.11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value

04:05 PM same as 16:05; input hour must be <= 12

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation

2003-04-12 04:05:06 America/
New_York

time zone specified by full name

Table 8.12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)

America/New_York Full time zone name

PST8PDT POSIX-style time zone specification

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

153

Data Types

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according
to the standard,

TIMESTAMP '2004-10-19 10:23:54'

is a timestamp without time zone, while

TIMESTAMP '2004-10-19 10:23:54+02'

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as timestamp without time zone.
To ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time fields
in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal
Coordinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an
explicit time zone specified is converted to UTC using the appropriate offset for that time zone. If no
time zone is stated in the input string, then it is assumed to be in the time zone indicated by the system's
TimeZone parameter, and is converted to UTC using the offset for the timezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different time zone can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8.13. The
values infinity and -infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

154

Data Types

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

-infinity date, timestamp earlier than all other time stamps

now date, time, timestamp current transaction's start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See
Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output
The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the date and time types is generally
only the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only values in ISO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00
PST

Postgres original style Wed Dec 17 07:37:16
1997 PST

German regional style 17.12.1997 07:37:16.00
PST

Note

ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL accepts
that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8.15 shows examples.

155

Data Types

Table 8.15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/month/year 17/12/1997 15:37:16.00
CET

SQL, MDY month/day/year 12/17/1997 07:37:16.00
PST

Postgres, DMY day/month/year Wed 17 Dec 07:37:16
1997 PST

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresql.conf configuration file, or the PGDATESTYLE environment variable
on the server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format
date/time output.

8.5.3. Time Zones
Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the widely-used
IANA (Olson) time zone database for information about historical time zone rules. For times in the future,
the assumption is that the latest known rules for a given time zone will continue to be observed indefinitely
far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

• Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can vary
through the year with daylight-saving time boundaries.

• The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

• A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 52.90). PostgreSQL uses the widely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

• A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see

156

Data Types

Section 52.89). You cannot set the configuration parameters TimeZone or log_timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE
operator.

• In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation,
offset is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone
abbreviation, assumed to stand for one hour ahead of the given offset. For example, if EST5EDT were
not already a recognized zone name, it would be accepted and would be functionally equivalent to
United States East Coast time. In this syntax, a zone abbreviation can be a string of letters, or an arbitrary
string surrounded by angle brackets (<>). When a daylight-savings zone abbreviation is present, it is
assumed to be used according to the same daylight-savings transition rules used in the IANA time zone
database's posixrules entry. In a standard PostgreSQL installation, posixrules is the same as
US/Eastern, so that POSIX-style time zone specifications follow USA daylight-savings rules. If
needed, you can adjust this behavior by replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents
noon local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So
2014-06-04 12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies
noon Eastern Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect on
that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC
+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, as with the EST example above, this is not necessarily the same
as local civil time on that date.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBAR0 will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations
west of Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive timezone
offsets are east of Greenwich.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under .../share/timezone/ and .../share/timezonesets/ of the
installation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresql.conf, or in any of the other
standard ways described in Chapter 19. There are also some special ways to set it:

• The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

• The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

8.5.4. Interval Input

157

Data Types

interval values can be written using the following verbose syntax:

[@] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or
plurals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of
the different units are implicitly added with appropriate sign accounting. ago negates all the fields. This
syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, '1 12:59:10' is read the same as '1 day 12 hours 59 min 10 sec'. Also, a
combination of years and months can be specified with a dash; for example '200-10' is read the same
as '200 years 10 months'. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designators”
of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with designators
looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order, but
units smaller than a day must appear after T. In particular, the meaning of M depends on whether it is
before or after T.

Table 8.16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Y Years

M Months (in the date part)

W Weeks

D Days

H Hours

M Minutes (in the time part)

S Seconds

In the alternative format:

P [years-months-days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are given
as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1'
means 1 second. Also, field values “to the right” of the least significant field allowed by the fields

158

Data Types

specification are silently discarded. For example, writing INTERVAL '1 day 2:03:04' HOUR TO
MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading negative
sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04' applies
to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and
traditionally treats each field in the textual representation as independently signed, so that the hour/minute/
second part is considered positive in this example. If IntervalStyle is set to sql_standard then
a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise the
traditional PostgreSQL interpretation is used. To avoid ambiguity, it's recommended to attach an explicit
sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can
have fractional parts; for example '1.5 week' or '01:02:03.45'. Such input is converted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional number
of months or days, the fraction is added to the lower-order fields using the conversion factors 1 month =
30 days and 1 day = 24 hours. For example, '1.5 month' becomes 1 month and 15 days. Only seconds
will ever be shown as fractional on output.

Table 8.17 shows some examples of valid interval input.

Table 8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 seconds Traditional Postgres format: 1 year 2 months 3 days
4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same meaning
as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally interval values are stored as months, days, and seconds. This is done because the number of
days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is involved.
The months and days fields are integers while the seconds field can store fractions. Because intervals are
usually created from constant strings or timestamp subtraction, this storage method works well in most
cases, but can cause unexpected results:

SELECT EXTRACT(hours from '80 minutes'::interval);
 date_part

 1

SELECT EXTRACT(days from '80 hours'::interval);
 date_part

 0

Functions justify_days and justify_hours are available for adjusting days and hours that
overflow their normal ranges.

159

Data Types

8.5.5. Interval Output
The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8.18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval Day-Time Interval Mixed Interval

sql_standard 1-2 3 4:05:06 -1-2 +3 -4:05:06

postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06

postgres_verbose @ 1 year 2 mons @ 3 days 4 hours 5 mins
6 secs

@ 1 year 2 mons -3 days
4 hours 5 mins 6 secs ago

iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type
PostgreSQL provides the standard SQL type boolean; see Table 8.19. The boolean type can have
several states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

boolean 1 byte state of true or false

Valid literal values for the “true” state are:

TRUE
't'
'true'
'y'
'yes'
'on'
'1'

160

Data Types

For the “false” state, the following values can be used:

FALSE
'f'
'false'
'n'
'no'
'off'
'0'

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE are
the preferred (SQL-compliant) usage.

Example 8.2 shows that boolean values are output using the letters t and f.

Example 8.2. Using the boolean Type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, 'sic est');
INSERT INTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;
 a | b
---+---------
 t | sic est
 f | non est

SELECT * FROM test1 WHERE a;
 a | b
---+---------
 t | sic est

8.7. Enumerated Types
Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equivalent
to the enum types supported in a number of programming languages. An example of an enum type might
be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
 name text,
 current_mood mood
);

161

Data Types

INSERT INTO person VALUES ('Moe', 'happy');
SELECT * FROM person WHERE current_mood = 'happy';
 name | current_mood
------+--------------
 Moe | happy
(1 row)

8.7.2. Ordering
The ordering of the values in an enum type is the order in which the values were listed when the type
was created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

INSERT INTO person VALUES ('Larry', 'sad');
INSERT INTO person VALUES ('Curly', 'ok');
SELECT * FROM person WHERE current_mood > 'sad';
 name | current_mood
-------+--------------
 Moe | happy
 Curly | ok
(2 rows)

SELECT * FROM person WHERE current_mood > 'sad' ORDER BY current_mood;
 name | current_mood
-------+--------------
 Curly | ok
 Moe | happy
(2 rows)

SELECT name
FROM person
WHERE current_mood = (SELECT MIN(current_mood) FROM person);
 name

 Larry
(1 row)

8.7.3. Type Safety
Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM ('happy', 'very happy', 'ecstatic');
CREATE TABLE holidays (
 num_weeks integer,
 happiness happiness
);
INSERT INTO holidays(num_weeks,happiness) VALUES (4, 'happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (6, 'very happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (8, 'ecstatic');
INSERT INTO holidays(num_weeks,happiness) VALUES (2, 'sad');

162

Data Types

ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays
 WHERE person.current_mood = holidays.happiness;
ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
 WHERE person.current_mood::text = holidays.happiness::text;
 name | num_weeks
------+-----------
 Moe | 4
(1 row)

8.7.4. Implementation Details
Enum labels are case sensitive, so 'happy' is not the same as 'HAPPY'. White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new values
to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot be removed
from an enum type, nor can the sort ordering of such values be changed, short of dropping and re-creating
the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label is limited by the
NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types
Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL.

Table 8.20. Geometric Types

Name Storage Size Description Representation

point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line {A,B,C}

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to
polygon)

((x1,y1),...)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to
closed path)

((x1,y1),...)

163

Data Types

Name Storage Size Description Representation

circle 24 bytes Circle <(x,y),r> (center point
and radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points
Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x , y)
 x , y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines
Lines are represented by the linear equation Ax + By + C = 0, where A and B are not both zero. Values of
type line are input and output in the following form:

{ A, B, C }

Alternatively, any of the following forms can be used for input:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are two different points on the line.

8.8.3. Line Segments
Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
lseg are specified using any of the following syntaxes:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.4. Boxes

164

Data Types

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store the
upper right and lower left corners, in that order.

8.8.5. Paths
Paths are represented by lists of connected points. Paths can be open, where the first and last points in the
list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , ... , (xn , yn)]
((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([]) indicate
an open path, while parentheses (()) indicate a closed path. When the outermost parentheses are omitted,
as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons
Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.7. Circles

165

Data Types

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

< (x , y) , r >
((x , y) , r)
 (x , y) , r
 x , y , r

where (x,y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types
PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and networks

macaddr 6 bytes MAC addresses

macaddr8 8 bytes MAC addresses (EUI-64 format)

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet
The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If the
netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host. In IPv6,
the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to accept
only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for IPv4 and 128 for IPv6,
so the value represents just a single host. On display, the /y portion is suppressed if the netmask specifies
a single host.

8.9.2. cidr
The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where
address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask.
If y is omitted, it is calculated using assumptions from the older classful network numbering system, except
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

166

Data Types

Table 8.22. cidr Type Input Examples

cidr Input cidr Output abbrev(cidr)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25

192.168/24 192.168.0.0/24 192.168.0/24

192.168/25 192.168.0.0/25 192.168.0.0/25

192.168.1 192.168.1.0/24 192.168.1/24

192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64

2001:4f8:3:ba:2e0:81ff:fe22:d1f1/1282001:4f8:3:ba:2e0:81ff:fe22:d1f1/1282001:4f8:3:ba:2e0:81ff:fe22:d1f1

::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120

::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

8.9.3. inet vs. cidr
The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not. For example, 192.168.0.1/24 is valid for
inet but not for cidr.

Tip

If you do not like the output format for inet or cidr values, try the functions host, text,
and abbrev.

8.9.4. macaddr
The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

'08:00:2b:01:02:03'
'08-00-2b-01-02-03'
'08002b:010203'
'08002b-010203'
'0800.2b01.0203'
'0800-2b01-0203'
'08002b010203'

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through f. Output is always in the first of the forms shown.

167

Data Types

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-02-03
= 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant only for obsolete
network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal, and all accepted
formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. macaddr8
The macaddr8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC addresses given in 6
byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE, respectively.
Note that IPv6 uses a modified EUI-64 format where the 7th bit should be set to one after the conversion
from EUI-48. The function macaddr8_set7bit is provided to make this change. Generally speaking,
any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated consistently
by one of ':', '-' or '.', is accepted. The number of hex digits must be either 16 (8 bytes) or 12 (6
bytes). Leading and trailing whitespace is ignored. The following are examples of input formats that are
accepted:

'08:00:2b:01:02:03:04:05'
'08-00-2b-01-02-03-04-05'
'08002b:0102030405'
'08002b-0102030405'
'0800.2b01.0203.0405'
'0800-2b01-0203-0405'
'08002b01:02030405'
'08002b0102030405'

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through f. Output is always in the first of the forms shown. The last six input formats that are mentioned
above are not part of any standard. To convert a traditional 48 bit MAC address in EUI-48 format to
modified EUI-64 format to be included as the host portion of an IPv6 address, use macaddr8_set7bit
as shown:

SELECT macaddr8_set7bit('08:00:2b:01:02:03');

 macaddr8_set7bit

 0a:00:2b:ff:fe:01:02:03
(1 row)

8.10. Bit String Types
Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bit(n) and bit varying(n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit(1), while bit varying without a length
specification means unlimited length.

168

Data Types

Note

If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101', B'00');
INSERT INTO test VALUES (B'10', B'101');

ERROR: bit string length 2 does not match type bit(3)

INSERT INTO test VALUES (B'10'::bit(3), B'101');
SELECT * FROM test;

 a | b
-----+-----
 101 | 00
 100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types
PostgreSQL provides two data types that are designed to support full text search, which is the activity of
searching through a collection of natural-language documents to locate those that best match a query. The
tsvector type represents a document in a form optimized for text search; the tsquery type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1. tsvector
A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 tsvector
--
 'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'

169

Data Types

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the lexeme ' ' contains spaces$$::tsvector;
 tsvector

 ' ' 'contains' 'lexeme' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
 tsvector
--
 'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11
 rat:12'::tsvector;
 tsvector

 'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12
 'sat':4

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
 tsvector

 'a':1A 'cat':5 'fat':2B,4C

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the tsvector type itself does not perform any word normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

SELECT 'The Fat Rats'::tsvector;
 tsvector

 'Fat' 'Rats' 'The'

For most English-text-searching applications the above words would be considered non-normalized,
but tsvector doesn't care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

170

Data Types

SELECT to_tsvector('english', 'The Fat Rats');
 to_tsvector

 'fat':2 'rat':3

Again, see Chapter 12 for more detail.

8.11.2. tsquery
A tsquery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and ! (NOT), as well as the phrase search operator <-> (FOLLOWED BY).
There is also a variant <N> of the FOLLOWED BY operator, where N is an integer constant that specifies
the distance between the two lexemes being searched for. <-> is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <-> (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding the
least tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
 tsquery

 'fat' & 'rat'

SELECT 'fat & (rat | cat)'::tsquery;
 tsquery

 'fat' & ('rat' | 'cat')

SELECT 'fat & rat & ! cat'::tsquery;
 tsquery

 'fat' & 'rat' & !'cat'

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts them
to match only tsvector lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
 tsquery

 'fat':AB & 'cat'

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT 'super:*'::tsquery;
 tsquery

 'super':*

This query will match any word in a tsvector that begins with “super”.

171

Data Types

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the tsquery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
 to_tsquery

 'fat':AB & 'cat'

Note that to_tsquery will process prefixes in the same way as other words, which means this
comparison returns true:

SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*');
 ?column?

 t

because postgres gets stemmed to postgr:

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
 to_tsvector | to_tsquery
---------------+------------
 'postgradu':1 | 'postgr':*

which will match the stemmed form of postgraduate.

8.12. UUID Type
The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using the
same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness guarantee
than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12 digits, for a
total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four digits.
Examples are:

A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11}
a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380a11}

172

Data Types

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not include
any function for generating UUIDs, because no single algorithm is well suited for every application. The
uuid-ossp module provides functions that implement several standard algorithms. The pgcrypto module
also provides a generation function for random UUIDs. Alternatively, UUIDs could be generated by client
applications or other libraries invoked through a server-side function.

8.13. XML Type
The xml data type can be used to store XML data. Its advantage over storing XML data in a text field
is that it checks the input values for well-formedness, and there are support functions to perform type-safe
operations on it; see Section 9.14. Use of this data type requires the installation to have been built with
configure --with-libxml.

The xml type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by the production XMLDecl? content in the XML standard. Roughly,
this means that content fragments can have more than one top-level element or character node. The
expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml value is a full
document or only a content fragment.

8.13.1. Creating XML Values
To produce a value of type xml from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

Examples:

XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</
title><chapter>...</chapter></book>')
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>')

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml '<foo>bar</foo>'
'<foo>bar</foo>'::xml

can also be used.

The xml type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xml, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again,
according to the SQL standard, this is the only way to convert between type xml and character types, but
PostgreSQL also allows you to simply cast the value.

173

Data Types

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax

SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note

With the default XML option setting, you cannot directly cast character strings to type xml if they
contain a document type declaration, because the definition of XML content fragment does not
accept them. If you need to do that, either use XMLPARSE or change the XML option.

8.13.2. Encoding Handling
Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results to the
client (which is the normal mode), PostgreSQL converts all character data passed between the client and
the server and vice versa to the character encoding of the respective end; see Section 23.3. This includes
string representations of XML values, such as in the above examples. This would ordinarily mean that
encoding declarations contained in XML data can become invalid as the character data is converted to
other encodings while traveling between client and server, because the embedded encoding declaration is
not changed. To cope with this behavior, encoding declarations contained in character strings presented
for input to the xml type are ignored, and content is assumed to be in the current server encoding.
Consequently, for correct processing, character strings of XML data must be sent from the client in the
current client encoding. It is the responsibility of the client to either convert documents to the current client
encoding before sending them to the server, or to adjust the client encoding appropriately. On output,
values of type xml will not have an encoding declaration, and clients should assume all data is in the
current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in the
XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required by the
XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an encoding
declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it will be
omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the server encoding is
not UTF-8. This is known to be an issue for xmltable() and xpath() in particular.

174

Data Types

8.13.3. Accessing XML Values
The xml data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence of
this is that you cannot retrieve rows by comparing an xml column against a search value. XML values
should therefore typically be accompanied by a separate key field such as an ID. An alternative solution
for comparing XML values is to convert them to character strings first, but note that character string
comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xml data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include casting
the expression to a character string type and indexing that, or indexing an XPath expression. Of course,
the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

8.14. JSON Types
JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 71591. Such
data can also be stored as text, but the JSON data types have the advantage of enforcing that each stored
value is valid according to the JSON rules. There are also assorted JSON-specific functions and operators
available for data stored in these data types; see Section 9.15.

There are two JSON data types: json and jsonb. They accept almost identical sets of values as input. The
major practical difference is one of efficiency. The json data type stores an exact copy of the input text,
which processing functions must reparse on each execution; while jsonb data is stored in a decomposed
binary format that makes it slightly slower to input due to added conversion overhead, but significantly
faster to process, since no reparsing is needed. jsonb also supports indexing, which can be a significant
advantage.

Because the json type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast, jsonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys are
specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as jsonb, unless there are quite specialized
needs, such as legacy assumptions about ordering of object keys.

PostgreSQL allows only one character set encoding per database. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts
to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \uXXXX. In the input
function for the json type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digits follow \u). However, the input function
for jsonb is stricter: it disallows Unicode escapes for non-ASCII characters (those above U+007F)
unless the database encoding is UTF8. The jsonb type also rejects \u0000 (because that cannot be
represented in PostgreSQL's text type), and it insists that any use of Unicode surrogate pairs to designate

1 https://tools.ietf.org/html/rfc7159

175

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

Data Types

characters outside the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes are converted
to the equivalent ASCII or UTF8 character for storage; this includes folding surrogate pairs into a single
character.

Note

Many of the JSON processing functions described in Section 9.15 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errors just described even if their
input is of type json not jsonb. The fact that the json input function does not make these
checks may be considered a historical artifact, although it does allow for simple storage (without
processing) of JSON Unicode escapes in a non-UTF8 database encoding. In general, it is best to
avoid mixing Unicode escapes in JSON with a non-UTF8 database encoding, if possible.

When converting textual JSON input into jsonb, the primitive types described by RFC 7159 are
effectively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some
minor additional constraints on what constitutes valid jsonb data that do not apply to the json type, nor
to JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, jsonb will reject numbers that are outside the range of the PostgreSQL numeric data type,
while json will not. Such implementation-defined restrictions are permitted by RFC 7159. However, in
practice such problems are far more likely to occur in other implementations, as it is common to represent
JSON's number primitive type as IEEE 754 double precision floating point (which RFC 7159 explicitly
anticipates and allows for). When using JSON as an interchange format with such systems, the danger of
losing numeric precision compared to data originally stored by PostgreSQL should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive
types that do not apply to the corresponding PostgreSQL types.

Table 8.23. JSON primitive types and corresponding PostgreSQL types

JSON primitive type PostgreSQL type Notes

string text \u0000 is disallowed, as are
non-ASCII Unicode escapes if
database encoding is not UTF8

number numeric NaN and infinity values are
disallowed

boolean boolean Only lowercase true and false
spellings are accepted

null (none) SQL NULL is a different concept

8.14.1. JSON Input and Output Syntax
The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid json (or jsonb) expressions:

-- Simple scalar/primitive value
-- Primitive values can be numbers, quoted strings, true, false, or
 null
SELECT '5'::json;

176

Data Types

-- Array of zero or more elements (elements need not be of same type)
SELECT '[1, 2, "foo", null]'::json;

-- Object containing pairs of keys and values
-- Note that object keys must always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
json outputs the same text that was input, while jsonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
 json

 {"bar": "baz", "balance": 7.77, "active":false}
(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
 jsonb
--
 {"bar": "baz", "active": false, "balance": 7.77}
(1 row)

One semantically-insignificant detail worth noting is that in jsonb, numbers will be printed according to
the behavior of the underlying numeric type. In practice this means that numbers entered with E notation
will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
 json | jsonb
-----------------------+-------------------------
 {"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, jsonb will preserve trailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

8.14.2. Designing JSON documents effectively
Representing data as JSON can be considerably more flexible than the traditional relational data model,
which is compelling in environments where requirements are fluid. It is quite possible for both approaches
to co-exist and complement each other within the same application. However, even for applications where
maximal flexibility is desired, it is still recommended that JSON documents have a somewhat fixed
structure. The structure is typically unenforced (though enforcing some business rules declaratively is
possible), but having a predictable structure makes it easier to write queries that usefully summarize a set
of “documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in a table. Although storing large documents is practicable, keep in mind that any update acquires a row-
level lock on the whole row. Consider limiting JSON documents to a manageable size in order to decrease
lock contention among updating transactions. Ideally, JSON documents should each represent an atomic

177

Data Types

datum that business rules dictate cannot reasonably be further subdivided into smaller datums that could
be modified independently.

8.14.3. jsonb Containment and Existence
Testing containment is an important capability of jsonb. There is no parallel set of facilities for the
json type. Containment tests whether one jsonb document has contained within it another one. These
examples return true except as noted:

-- Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;

-- The array on the right side is contained within the one on the
 left:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;

-- Duplicate array elements don't matter either:
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb":
 true}'::jsonb @> '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a similar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;

-- Similarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb;
 -- yields false

-- A top-level key and an empty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs from
the containing object. But remember that the order of array elements is not significant when doing a
containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain a
primitive value:

-- This array contains the primitive string value:
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;

178

Data Types

-- This exception is not reciprocal -- non-containment is reported
 here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests whether
a string (given as a text value) appears as an object key or array element at the top level of the jsonb
value. These examples return true except as noted:

-- String exists as array element:
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- Object values are not considered:
SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

-- As with containment, existence must match at the top level:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false

-- A string is considered to exist if it matches a primitive JSON
 string:
SELECT '"foo"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many keys
or elements involved, because unlike arrays they are internally optimized for searching, and do not need
to be searched linearly.

Tip

Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. As an example, suppose that we have a doc column containing objects at the top level, with
most objects containing tags fields that contain arrays of sub-objects. This query finds entries
in which sub-objects containing both "term":"paris" and "term":"food" appear, while
ignoring any such keys outside the tags array:

SELECT doc->'site_name' FROM websites
 WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';

One could accomplish the same thing with, say,

SELECT doc->'site_name' FROM websites
 WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions are
documented in Section 9.15.

179

Data Types

8.14.4. jsonb Indexing
GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large number
of jsonb documents (datums). Two GIN “operator classes” are provided, offering different performance
and flexibility trade-offs.

The default GIN operator class for jsonb supports queries with top-level key-exists operators ?, ?&
and ?| operators and path/value-exists operator @>. (For details of the semantics that these operators
implement, see Table 9.44.) An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only. An
example of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service, with
a documented schema definition. A typical document is:

{
 "guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
 "name": "Angela Barton",
 "is_active": true,
 "company": "Magnafone",
 "address": "178 Howard Place, Gulf, Washington, 702",
 "registered": "2009-11-07T08:53:22 +08:00",
 "latitude": 19.793713,
 "longitude": 86.513373,
 "tags": [
 "enim",
 "aliquip",
 "qui"
]
}

We store these documents in a table named api, in a jsonb column named jdoc. If a GIN index is
created on this column, queries like the following can make use of the index:

-- Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company":
 "Magnafone"}';

However, the index could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column jdoc:

-- Find documents in which the key "tags" contains key or array
 element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ?
 'qui';

180

Data Types

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular items within the "tags" key is common, defining an index like this may be worthwhile:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));

Now, the WHERE clause jdoc -> 'tags' ? 'qui' will be recognized as an application of the
indexable operator ? to the indexed expression jdoc -> 'tags'. (More information on expression
indexes can be found in Section 11.7.)

Another approach to querying is to exploit containment, for example:

-- Find documents in which the key "tags" contains array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags":
 ["qui"]}';

A simple GIN index on the jdoc column can support this query. But note that such an index will store
copies of every key and value in the jdoc column, whereas the expression index of the previous example
stores only data found under the tags key. While the simple-index approach is far more flexible (since it
supports queries about any key), targeted expression indexes are likely to be smaller and faster to search
than a simple index.

Although the jsonb_path_ops operator class supports only queries with the @> operator, it has notable
performance advantages over the default operator class jsonb_ops. A jsonb_path_ops index is
usually much smaller than a jsonb_ops index over the same data, and the specificity of searches is better,
particularly when queries contain keys that appear frequently in the data. Therefore search operations
typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. 2 Basically, each jsonb_path_ops index item is a hash of the value
and the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item
would be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment
query looking for this structure would result in an extremely specific index search; but there is no way
at all to find out whether foo appears as a key. On the other hand, a jsonb_ops index would create
three index items representing foo, bar, and baz separately; then to do the containment query, it would
look for rows containing all three of these items. While GIN indexes can perform such an AND search
fairly efficiently, it will still be less specific and slower than the equivalent jsonb_path_ops search,
especially if there are a very large number of rows containing any single one of the three index items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON
structures not containing any values, such as {"a": {}}. If a search for documents containing such
a structure is requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is
therefore ill-suited for applications that often perform such searches.

jsonb also supports btree and hash indexes. These are usually useful only if it's important to check
equality of complete JSON documents. The btree ordering for jsonb datums is seldom of great interest,
but for completeness it is:

Object > Array > Boolean > Number > String > Null

Object with n pairs > object with n - 1 pairs

2 For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values
within objects.

181

Data Types

Array with n elements > array with n - 1 elements

Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored before
longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

element-1, element-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying PostgreSQL
data type. Strings are compared using the default database collation.

8.14.5. Transforms
Additional extensions are available that implement transforms for the jsonb type for different procedural
languages.

The extensions for PL/Perl are called jsonb_plperl and jsonb_plperlu. If you use them, jsonb
values are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extensions for PL/Python are called jsonb_plpythonu, jsonb_plpython2u, and
jsonb_plpython3u (see Section 46.1 for the PL/Python naming convention). If you use them, jsonb
values are mapped to Python dictionaries, lists, and scalars, as appropriate.

8.15. Arrays
PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type, enum type, composite type, range type, or domain can be created.

8.15.1. Declaration of Array Types
To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
 name text,
 pay_by_quarter integer[],
 schedule text[][]
);

As shown, an array data type is named by appending square brackets ([]) to the data type name of the array
elements. The above command will create a table named sal_emp with a column of type text (name),
a one-dimensional array of type integer (pay_by_quarter), which represents the employee's salary
by quarter, and a two-dimensional array of text (schedule), which represents the employee's weekly
schedule.

182

Data Types

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
 squares integer[3][3]
);

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the same
as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a
particular element type are all considered to be of the same type, regardless of size or number of
dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quarter could have been defined as:

 pay_by_quarter integer ARRAY[4],

Or, if no array size is to be specified:

 pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input
To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

'{ val1 delim val2 delim ... }'

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the standard
data types provided in the PostgreSQL distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of
an array constant is:

'{{1,2,3},{4,5,6},{7,8,9}}'

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed in
Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion routine.
An explicit type specification might be necessary.)

183

Data Types

Now we can show some INSERT statements:

INSERT INTO sal_emp
 VALUES ('Bill',
 '{10000, 10000, 10000, 10000}',
 '{{"meeting", "lunch"}, {"training", "presentation"}}');

INSERT INTO sal_emp
 VALUES ('Carol',
 '{20000, 25000, 25000, 25000}',
 '{{"breakfast", "consulting"}, {"meeting", "lunch"}}');

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;
 name | pay_by_quarter | schedule
-------+---------------------------
+---
 Bill | {10000,10000,10000,10000} | {{meeting,lunch},
{training,presentation}}
 Carol | {20000,25000,25000,25000} | {{breakfast,consulting},
{meeting,lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
 VALUES ('Bill',
 '{10000, 10000, 10000, 10000}',
 '{{"meeting", "lunch"}, {"meeting"}}');
ERROR: multidimensional arrays must have array expressions with
 matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
 VALUES ('Bill',
 ARRAY[10000, 10000, 10000, 10000],
 ARRAY[['meeting', 'lunch'], ['training', 'presentation']]);

INSERT INTO sal_emp
 VALUES ('Carol',
 ARRAY[20000, 25000, 25000, 25000],
 ARRAY[['breakfast', 'consulting'], ['meeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

184

Data Types

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

 name

 Carol
(1 row)

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-based
numbering convention for arrays, that is, an array of n elements starts with array[1] and ends with
array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

 pay_by_quarter

 10000
 25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by writing
lower-bound:upper-bound for one or more array dimensions. For example, this query retrieves the
first item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting},{training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified. For
example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting,lunch},{training,presentation}}
(1 row)

To avoid confusion with the non-slice case, it's best to use slice syntax for all dimensions, e.g., [1:2]
[1:1], not [2][1:1].

It is possible to omit the lower-bound and/or upper-bound of a slice specifier; the missing bound
is replaced by the lower or upper limit of the array's subscripts. For example:

185

Data Types

SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{lunch},{presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting},{training}}
(1 row)

An array subscript expression will return null if either the array itself or any of the subscript expressions are
null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error). For
example, if schedule currently has the dimensions [1:3][1:2] then referencing schedule[3]
[3] yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather
than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are null.
However, in other cases such as selecting an array slice that is completely outside the current array bounds,
a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match non-slice
behavior and is done for historical reasons.) If the requested slice partially overlaps the array bounds, then
it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol';

 array_dims

 [1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_upper

 2
(1 row)

array_length will return the length of a specified array dimension:

SELECT array_length(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_length

186

Data Types

 2
(1 row)

cardinality returns the total number of elements in an array across all dimensions. It is effectively
the number of rows a call to unnest would yield:

SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';

 cardinality

 4
(1 row)

8.15.4. Modifying Arrays
An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}'
 WHERE name = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
 WHERE name = 'Carol';

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
 WHERE name = 'Bill';

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = '{27000,27000}'
 WHERE name = 'Carol';

The slice syntaxes with omitted lower-bound and/or upper-bound can be used too, but only when
updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if
array myarray currently has 4 elements, it will have six elements after an update that assigns to
myarray[6]; myarray[5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, ||:

187

Data Types

SELECT ARRAY[1,2] || ARRAY[3,4];
 ?column?

 {1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
 ?column?

 {{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result is
an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1 || '[0:1]={2,3}'::int[]);
 array_dims

 [0:2]
(1 row)

SELECT array_dims(ARRAY[1,2] || 3);
 array_dims

 [1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand's outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
 array_dims

 [1:5]
(1 row)

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);
 array_dims

 [1:5][1:2]
(1 row)

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the N+1-dimensional array's outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);

188

Data Types

 array_dims

 [1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
 array_prepend

 {1,2,3}
(1 row)

SELECT array_append(ARRAY[1,2], 3);
 array_append

 {1,2,3}
(1 row)

SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);
 array_cat

 {1,2,3,4}
(1 row)

SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);
 array_cat

 {{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);
 array_cat

 {{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these functions.
However, because the concatenation operator is overloaded to serve all three cases, there are situations
where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '{3, 4}'; -- the untyped literal is taken as an
 array
 ?column?

 {1,2,3,4}

SELECT ARRAY[1, 2] || '7'; -- so is this one
ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated
 NULL

189

Data Types

 ?column?

 {1,2}
(1 row)

SELECT array_append(ARRAY[1, 2], NULL); -- this might have been
 meant
 array_append

 {1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator, and a
constant of undetermined type on the other. The heuristic it uses to resolve the constant's type is to assume
it's of the same type as the operator's other input — in this case, integer array. So the concatenation operator
is presumed to represent array_cat, not array_append. When that's the wrong choice, it could be
fixed by casting the constant to the array's element type; but explicit use of array_append might be
a preferable solution.

8.15.5. Searching in Arrays
To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
 pay_by_quarter[2] = 10000 OR
 pay_by_quarter[3] = 10000 OR
 pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT * FROM
 (SELECT pay_by_quarter,
 generate_subscripts(pay_by_quarter, 1) AS s
 FROM sal_emp) AS foo
 WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9.59.

You can also search an array using the && operator, which checks whether the left operand overlaps with
the right operand. For instance:

SELECT * FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];

190

Data Types

This and other array operators are further described in Section 9.18. It can be accelerated by an appropriate
index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and
array_positions functions. The former returns the subscript of the first occurrence of a value in an
array; the latter returns an array with the subscripts of all occurrences of the value in the array. For example:

SELECT
 array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'],
 'mon');
 array_positions

 2

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
 array_positions

 {1,4,8}

Tip

Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will
be easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax
The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array's element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is determined
by the typdelim setting for the array's element type. Among the standard data types provided in
the PostgreSQL distribution, all use a comma, except for type box, which uses a semicolon (;). In a
multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and
delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([]) around each array dimension's lower and upper bounds,
with a colon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2
 FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}'::int[] AS f1) AS
 ss;

191

Data Types

 e1 | e2
----+----
 1 | 6
(1 row)

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be entered.
Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls configuration
parameter can be turned off to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or the data type's delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
precede it with a backslash. Alternatively, you can avoid quotes and use backslash-escaping to protect all
data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip

The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In ARRAY, individual element values
are written the same way they would be written when not members of an array.

8.16. Composite Types
A composite type represents the structure of a row or record; it is essentially just a list of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that simple
types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types
Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
 r double precision,
 i double precision
);

CREATE TYPE inventory_item AS (
 name text,
 supplier_id integer,

192

Data Types

 price numeric
);

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
 item inventory_item,
 count integer
);

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);

or functions:

CREATE FUNCTION price_extension(inventory_item, integer) RETURNS
 numeric
AS 'SELECT $1.price * $2' LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:

CREATE TABLE inventory_item (
 name text,
 supplier_id integer REFERENCES suppliers,
 price numeric CHECK (price > 0)
);

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition do
not apply to values of the composite type outside the table. (To work around this, create a domain over the
composite type, and apply the desired constraints as CHECK constraints of the domain.)

8.16.2. Constructing Composite Values
To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

'(val1 , val2 , ...)'

An example is:

193

Data Types

'("fuzzy dice",42,1.99)'

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third field:

'("fuzzy dice",42,)'

If you want an empty string rather than NULL, write double quotes:

'("",42,)'

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.7.
The constant is initially treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary to tell which type to convert the constant to.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don't have to worry about multiple
layers of quoting. We already used this method above:

ROW('fuzzy dice', 42, 1.99)
ROW('', 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so these
can be simplified to:

('fuzzy dice', 42, 1.99)
('', 42, NULL)

The ROW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types
To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it's so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item).name FROM on_hand WHERE (item).price > 9.99;

or if you need to use the table name as well (for instance in a multitable query), like this:

SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price >
 9.99;

194

Data Types

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you'd need to write something
like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name * means “all fields”, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types
Here are some examples of the proper syntax for inserting and updating composite columns. First, inserting
or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for INSERT, too:

INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Using Composite Types in Queries
There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In PostgreSQL, a reference to a table name (or alias) in a query is effectively a reference to the composite
value of the table's current row. For example, if we had a table inventory_item as shown above, we
could write:

SELECT c FROM inventory_item c;

This query produces a single composite-valued column, so we might get output like:

195

Data Types

 c

 ("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example works
only because there is no column named c in the query's tables.

The ordinary qualified-column-name syntax table_name.column_name can be understood as
applying field selection to the composite value of the table's current row. (For efficiency reasons, it's not
actually implemented that way.)

When we write

SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

 name | supplier_id | price
------------+-------------+-------
 fuzzy dice | 42 | 1.99
(1 row)

as if the query were

SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that .* is applied to whenever it's not a simple
table name. For example, if myfunc() is a function returning a composite type with columns a, b, and
c, then these two queries have the same result:

SELECT (myfunc(x)).* FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip

PostgreSQL handles column expansion by actually transforming the first form into the second. So,
in this example, myfunc() would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with a query like:

SELECT m.* FROM some_table, LATERAL myfunc(x) AS m;

Placing the function in a LATERAL FROM item keeps it from being invoked more than once per
row. m.* is still expanded into m.a, m.b, m.c, but now those variables are just references to
the output of the FROM item. (The LATERAL keyword is optional here, but we show it to clarify
that the function is getting x from some_table.)

196

Data Types

The composite_value.* syntax results in column expansion of this kind when it appears at the top
level of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE, a VALUES clause, or a
row constructor. In all other contexts (including when nested inside one of those constructs), attaching .*
to a composite value does not change the value, since it means “all columns” and so the same composite
value is produced again. For example, if somefunc() accepts a composite-valued argument, these
queries are the same:

SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;

In both cases, the current row of inventory_item is passed to the function as a single composite-
valued argument. Even though .* does nothing in such cases, using it is good style, since it makes clear
that a composite value is intended. In particular, the parser will consider c in c.* to refer to a table name
or alias, not to a column name, so that there is no ambiguity; whereas without .*, it is not clear whether
c means a table name or a column name, and in fact the column-name interpretation will be preferred if
there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT * FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item c ORDER BY c.*;
SELECT * FROM inventory_item c ORDER BY ROW(c.*);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.23.6. However, if inventory_item contained a column named c,
the first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_item c ORDER BY ROW(c.name, c.supplier_id,
 c.price);
SELECT * FROM inventory_item c ORDER BY (c.name, c.supplier_id,
 c.price);

(The last case uses a row constructor with the key word ROW omitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table.field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item c WHERE c.price > 1000;
SELECT name(c) FROM inventory_item c WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.*) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn't
need to be directly aware that somefunc isn't a real column of the table.

197

Data Types

Tip

Because of this behavior, it's unwise to give a function that takes a single composite-type argument
the same name as any of the fields of that composite type. If there is ambiguity, the field-name
interpretation will be chosen if field-name syntax is used, while the function will be chosen if
function-call syntax is used. However, PostgreSQL versions before 11 always chose the field-
name interpretation, unless the syntax of the call required it to be a function call. One way to force
the function interpretation in older versions is to schema-qualify the function name, that is, write
schema.func(compositevalue).

8.16.6. Composite Type Input and Output Syntax
The external text representation of a composite value consists of items that are interpreted according to the
I/O conversion rules for the individual field types, plus decoration that indicates the composite structure.
The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and might or might not be significant depending on the input conversion rules for
the field data type. For example, in:

'(42)'

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is not
essential, but aids legibility.) Double quotes and backslashes embedded in field values will be doubled.

Note

Remember that what you write in an SQL command will first be interpreted as a string literal, and
then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in
a composite value, you'd need to write:

INSERT ... VALUES ('("\"\\")');

The string-literal processor removes one level of backslashes, so that what arrives at the composite-
value parser looks like ("\"\\"). In turn, the string fed to the text data type's input routine
becomes "\. (If we were working with a data type whose input routine also treated backslashes

198

Data Types

specially, bytea for example, we might need as many as eight backslashes in the command to
get one backslash into the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used
to avoid the need to double backslashes.

Tip

The ROW constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In ROW, individual field values are written the same
way they would be written when not members of a composite.

8.17. Range Types
Range types are data types representing a range of values of some element type (called the range's subtype).
For instance, ranges of timestamp might be used to represent the ranges of time that a meeting room
is reserved. In this case the data type is tsrange (short for “timestamp range”), and timestamp is the
subtype. The subtype must have a total order so that it is well-defined whether element values are within,
before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for
scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument,
and so forth can also be useful.

8.17.1. Built-in Range Types
PostgreSQL comes with the following built-in range types:

• int4range — Range of integer

• int8range — Range of bigint

• numrange — Range of numeric

• tsrange — Range of timestamp without time zone

• tstzrange — Range of timestamp with time zone

• daterange — Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
 (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Containment
SELECT int4range(10, 20) @> 3;

199

Data Types

-- Overlaps
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper(int8range(15, 25));

-- Compute the intersection
SELECT int4range(10, 20) * int4range(15, 25);

-- Is the range empty?
SELECT isempty(numrange(1, 5));

See Table 9.50 and Table 9.51 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds
Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower bound
is represented by “(”. Likewise, an inclusive upper bound is represented by “]”, while an exclusive upper
bound is represented by “)”. (See Section 8.17.5 for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range
value, respectively.

8.17.4. Infinite (Unbounded) Ranges
The lower bound of a range can be omitted, meaning that all points less than the upper bound are included
in the range. Likewise, if the upper bound of the range is omitted, then all points greater than the lower
bound are included in the range. If both lower and upper bounds are omitted, all values of the element
type are considered to be in the range.

This is equivalent to considering that the lower bound is “minus infinity”, or the upper bound is “plus
infinity”, respectively. But note that these infinite values are never values of the range's element type, and
can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you try to
write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range
type mechanisms are concerned. For example, in timestamp ranges, [today,] means the same thing as
[today,). But [today,infinity] means something different from [today,infinity) — the
latter excludes the special timestamp value infinity.

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range,
respectively.

8.17.5. Range Input/Output
The input for a range value must follow one of the following patterns:

(lower-bound,upper-bound)

200

Data Types

(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is empty, which represents an empty range (a range
that contains no points).

The lower-bound may be either a string that is valid input for the subtype, or empty to indicate no
lower bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty
to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would
otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound value,
precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value is taken
to represent a double quote character, analogously to the rules for single quotes in SQL literal strings.)
Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters that would
otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write "", since
writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or
might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

-- includes 3, does not include 7, and does include all points in
 between
SELECT '[3,7)'::int4range;

-- does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::int4range;

-- includes only the single point 4
SELECT '[4,4]'::int4range;

-- includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

8.17.6. Constructing Ranges
Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need for
extra quoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive), while

201

Data Types

the three-argument form constructs a range with bounds of the form specified by the third argument. The
third argument must be one of the strings “()”, “(]”, “[)”, or “[]”. For example:

-- The full form is: lower bound, upper bound, and text argument
 indicating
-- inclusivity/exclusivity of bounds.
SELECT numrange(1.0, 14.0, '(]');

-- If the third argument is omitted, '[)' is assumed.
SELECT numrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be
 converted to
-- canonical form, since int8range is a discrete range type (see
 below).
SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on
 that side.
SELECT numrange(NULL, 2.2);

8.17.7. Discrete Range Types
A discrete range is one whose element type has a well-defined “step”, such as integer or date. In
these types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, a range over the numeric type is continuous, as is a range
over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated
as discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4,8] and (3,9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size
for the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds. If a
canonicalization function is not specified, then ranges with different formatting will always be treated as
unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that
includes the lower bound and excludes the upper bound; that is, [). User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types
Users can define their own range types. The most common reason to do this is to use ranges over subtypes
not provided among the built-in range types. For example, to define a new range type of subtype float8:

CREATE TYPE floatrange AS RANGE (

202

Data Types

 subtype = float8,
 subtype_diff = float8mi
);

SELECT '[1.234, 5.678]'::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this example.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canonical function. The canonicalization function takes an input range value, and
must return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1,
8), must be identical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, a range type over timestamp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of an
hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a subtype
difference, or subtype_diff, function. (The index will still work without subtype_diff, but it is
likely to be considerably less efficient than if a difference function is provided.) The subtype difference
function takes two input values of the subtype, and returns their difference (i.e., X minus Y) represented
as a float8 value. In our example above, the function float8mi that underlies the regular float8
minus operator can be used; but for any other subtype, some type conversion would be necessary. Some
creative thought about how to represent differences as numbers might be needed, too. To the greatest
extent possible, the subtype_diff function should agree with the sort ordering implied by the selected
operator class and collation; that is, its result should be positive whenever its first argument is greater than
its second according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
 subtype = time,
 subtype_diff = time_subtype_diff
);

SELECT '[11:10, 23:00]'::timerange;

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing
GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a GiST
index:

203

Data Types

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@, @>, <<, >>,
-|-, &<, and &> (see Table 9.50 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index types,
basically the only useful range operation is equality. There is a B-tree sort ordering defined for range
values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually useful
in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and hashing
internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges
While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead, an
exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
 during tsrange,
 EXCLUDE USING GIST (during WITH &&)
);

That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
 ('[2010-01-01 11:30, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO reservation VALUES
 ('[2010-01-01 14:45, 2010-01-01 15:45)');
ERROR: conflicting key value violates exclusion constraint
 "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00"))
 conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01
 15:00:00")).

You can use the btree_gist extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after btree_gist
is installed, the following constraint will reject overlapping ranges only if the meeting room numbers are
equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (
 room text,
 during tsrange,
 EXCLUDE USING GIST (room WITH =, during WITH &&)
);

INSERT INTO room_reservation VALUES
 ('123A', '[2010-01-01 14:00, 2010-01-01 15:00)');

204

Data Types

INSERT 0 1

INSERT INTO room_reservation VALUES
 ('123A', '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR: conflicting key value violates exclusion constraint
 "room_reservation_room_during_excl"
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01
 15:30:00")) conflicts
with existing key (room, during)=(123A, ["2010-01-01
 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
 ('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
INSERT 0 1

8.18. Domain Types
A domain is a user-defined data type that is based on another underlying type. Optionally, it can have
constraints that restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOMAIN posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);
INSERT INTO mytable VALUES(1); -- works
INSERT INTO mytable VALUES(-1); -- fails

When an operator or function of the underlying type is applied to a domain value, the domain is
automatically down-cast to the underlying type. Thus, for example, the result of mytable.id - 1 is
considered to be of type integer not posint. We could write (mytable.id - 1)::posint
to cast the result back to posint, causing the domain's constraints to be rechecked. In this case, that
would result in an error if the expression had been applied to an id value of 1. Assigning a value of the
underlying type to a field or variable of the domain type is allowed without writing an explicit cast, but
the domain's constraints will be checked.

For additional information see CREATE DOMAIN.

8.19. Object Identifier Types
Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH OIDS is specified when the table is created, or the
default_with_oids configuration variable is enabled. Type oid represents an object identifier. There are
also several alias types for oid: regproc, regprocedure, regoper, regoperator, regclass,
regtype, regrole, regnamespace, regconfig, and regdictionary. Table 8.24 shows an
overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table's OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

205

Data Types

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines. These
routines are able to accept and display symbolic names for system objects, rather than the raw numeric
value that type oid would use. The alias types allow simplified lookup of OID values for objects. For
example, to examine the pg_attribute rows related to a table mytable, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable'::regclass;

rather than:

SELECT * FROM pg_attribute
 WHERE attrelid = (SELECT oid FROM pg_class WHERE relname =
 'mytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table's OID to regclass is handy for symbolic
display of a numeric OID.

Table 8.24. Object Identifier Types

Name References Description Value Example

oid any numeric object identifier 564182

regproc pg_proc function name sum

regprocedure pg_proc function with argument
types

sum(int4)

regoper pg_operator operator name +

regoperator pg_operator operator with argument
types

*(integer,integer)
or -(NONE,integer)

regclass pg_class relation name pg_type

regtype pg_type data type name integer

regrole pg_authid role name smithee

regnamespace pg_namespace namespace name pg_catalog

regconfig pg_ts_config text search configuration english

regdictionary pg_ts_dict text search dictionary simple

All of the OID alias types for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. The regproc and regoper alias types will only accept input names that are
unique (not overloaded), so they are of limited use; for most uses regprocedure or regoperator
are more appropriate. For regoperator, unary operators are identified by writing NONE for the unused
operand.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),

206

Data Types

it creates a dependency on the referenced object. For example, if a column has a default expression
nextval('my_seq'::regclass), PostgreSQL understands that the default expression depends on
the sequence my_seq; the system will not let the sequence be dropped without first removing the default
expression. regrole is the only exception for the property. Constants of this type are not allowed in
such expressions.

Note

The OID alias types do not completely follow transaction isolation rules. The planner also treats
them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the system
columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.20. pg_lsn Type
The pg_lsn data type can be used to store LSN (Log Sequence Number) data which is a pointer to
a location in the WAL. This type is a representation of XLogRecPtr and an internal system type of
PostgreSQL.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It is printed
as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example, 16/B374D848.
The pg_lsn type supports the standard comparison operators, like = and >. Two LSNs can be subtracted
using the - operator; the result is the number of bytes separating those write-ahead log locations.

8.21. Pseudo-Types
The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a function's
argument or result type. Each of the available pseudo-types is useful in situations where a function's
behavior does not correspond to simply taking or returning a value of a specific SQL data type. Table 8.25
lists the existing pseudo-types.

Table 8.25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data type.

anyelement Indicates that a function accepts any data type (see
Section 38.2.5).

anyarray Indicates that a function accepts any array data type
(see Section 38.2.5).

207

Data Types

Name Description

anynonarray Indicates that a function accepts any non-array data
type (see Section 38.2.5).

anyenum Indicates that a function accepts any enum data type
(see Section 38.2.5 and Section 8.7).

anyrange Indicates that a function accepts any range data type
(see Section 38.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-
terminated C string.

internal Indicates that a function accepts or returns a server-
internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

fdw_handler A foreign-data wrapper handler is declared to return
fdw_handler.

index_am_handler An index access method handler is declared to
return index_am_handler.

tsm_handler A tablesample method handler is declared to return
tsm_handler.

record Identifies a function taking or returning an
unspecified row type.

trigger A trigger function is declared to return trigger.

event_trigger An event trigger function is declared to return
event_trigger.

pg_ddl_command Identifies a representation of DDL commands that
is available to event triggers.

void Indicates that a function returns no value.

unknown Identifies a not-yet-resolved type, e.g. of an
undecorated string literal.

opaque An obsolete type name that formerly served many
of the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any of
these pseudo data types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and
allow only void and record as a result type (plus trigger or event_trigger when the function is
used as a trigger or event trigger). Some also support polymorphic functions using the types anyelement,
anyarray, anynonarray, anyenum, and anyrange.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

208

Chapter 9. Functions and Operators
PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described in Part V. The psql commands \df and \do can
be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described in this
chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present in
other SQL database management systems, and in many cases this functionality is compatible and consistent
between the various implementations. This chapter is also not exhaustive; additional functions appear in
relevant sections of the manual.

9.1. Logical Operators
The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and null, which represents “unknown”. Observe
the following truth tables:

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Functions and Operators
The usual comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description

< less than

209

Functions and Operators

Operator Description

> greater than

<= less than or equal to

>= greater than or equal to

= equal

<> or != not equal

Note

The != operator is converted to <> in the parser stage. It is not possible to implement != and <>
operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because there
is no < operator to compare a Boolean value with 3).

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators, but
have special syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate Description

a BETWEEN x AND y between

a NOT BETWEEN x AND y not between

a BETWEEN SYMMETRIC x AND y between, after sorting the comparison values

a NOT BETWEEN SYMMETRIC x AND y not between, after sorting the comparison values

a IS DISTINCT FROM b not equal, treating null like an ordinary value

a IS NOT DISTINCT FROM b equal, treating null like an ordinary value

expression IS NULL is null

expression IS NOT NULL is not null

expression ISNULL is null (nonstandard syntax)

expression NOTNULL is not null (nonstandard syntax)

boolean_expression IS TRUE is true

boolean_expression IS NOT TRUE is false or unknown

boolean_expression IS FALSE is false

boolean_expression IS NOT FALSE is true or unknown

boolean_expression IS UNKNOWN is unknown

boolean_expression IS NOT UNKNOWN is true or false

 The BETWEEN predicate simplifies range tests:

a BETWEEN x AND y

is equivalent to

210

Functions and Operators

a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the opposite
comparison:

a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

 BETWEEN SYMMETRIC is like BETWEEN except there is no requirement that the argument to the left of
AND be less than or equal to the argument on the right. If it is not, those two arguments are automatically
swapped, so that a nonempty range is always implied.

 Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input is
null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use
the IS [NOT] DISTINCT FROM predicates:

a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM
is identical to = for non-null inputs, but it returns true when both inputs are null, and false when only one
input is null. Thus, these predicates effectively act as though null were a normal data value, rather than
“unknown”.

 To check whether a value is or is not null, use the predicates:

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, predicates:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Tip

Some applications might expect that expression = NULL returns true if expression
evaluates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

211

Functions and Operators

If the expression is row-valued, then IS NULL is true when the row expression itself is null or when
all the row's fields are null, while IS NOT NULL is true when the row expression itself is non-null and
all the row's fields are non-null. Because of this behavior, IS NULL and IS NOT NULL do not always
return inverse results for row-valued expressions; in particular, a row-valued expression that contains both
null and non-null fields will return false for both tests. In some cases, it may be preferable to write row
IS DISTINCT FROM NULL or row IS NOT DISTINCT FROM NULL, which will simply check
whether the overall row value is null without any additional tests on the row fields.

 Boolean values can also be tested using the predicates

boolean_expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean_expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean_expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input is
treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effectively
the same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function Description Example Example Result

num_nonnulls(VARIADIC
"any")

returns the number of
non-null arguments

num_nonnulls(1,
NULL, 2)

2

num_nulls(VARIADIC
"any")

returns the number of
null arguments

num_nulls(1,
NULL, 2)

1

9.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without standard mathematical
conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the available mathematical operators.

Table 9.4. Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 - 3 -1

* multiplication 2 * 3 6

/ division (integer division
truncates the result)

4 / 2 2

% modulo (remainder) 5 % 4 1

212

Functions and Operators

Operator Description Example Result

^ exponentiation
(associates left to right)

2.0 ^ 3.0 8

|/ square root |/ 25.0 5

||/ cube root ||/ 27.0 3

! factorial 5 ! 120

!! factorial (prefix
operator)

!! 5 120

@ absolute value @ -5.0 5

& bitwise AND 91 & 15 11

| bitwise OR 32 | 3 35

bitwise XOR 17 # 5 20

~ bitwise NOT ~1 -2

<< bitwise shift left 1 << 4 16

>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as
shown in Table 9.13.

Table 9.5 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where noted,
any given form of a function returns the same data type as its argument. The functions working with
double precision data are mostly implemented on top of the host system's C library; accuracy and
behavior in boundary cases can therefore vary depending on the host system.

Table 9.5. Mathematical Functions

Function Return Type Description Example Result

 abs(x) (same as input) absolute value abs(-17.4) 17.4

 cbrt(dp) dp cube root cbrt(27.0) 3

 ceil(dp or
numeric)

(same as input) nearest integer
greater than or
equal to argument

ceil(-42.8) -42

 ceiling(dp or
numeric)

(same as input) nearest integer
greater than or
equal to argument
(same as ceil)

ceiling(-95.3)-95

 degrees(dp) dp radians to degrees degrees(0.5) 28.6478897565412

 div(y
numeric, x
numeric)

numeric integer quotient of
y/x

div(9,4) 2

 exp(dp or
numeric)

(same as input) exponential exp(1.0) 2.71828182845905

 floor(dp or
numeric)

(same as input) nearest integer less
than or equal to
argument

floor(-42.8) -43

213

Functions and Operators

Function Return Type Description Example Result

 ln(dp or
numeric)

(same as input) natural logarithm ln(2.0) 0.693147180559945

 log(dp or
numeric)

(same as input) base 10 logarithm log(100.0) 2

log(b
numeric, x
numeric)

numeric logarithm to base b log(2.0,
64.0)

6.0000000000

 mod(y, x) (same as argument
types)

remainder of y/x mod(9,4) 1

 pi() dp “#” constant pi() 3.14159265358979

 power(a dp, b
dp)

dp a raised to the
power of b

power(9.0,
3.0)

729

power(a
numeric, b
numeric)

numeric a raised to the
power of b

power(9.0,
3.0)

729

 radians(dp) dp degrees to radians radians(45.0) 0.785398163397448

 round(dp or
numeric)

(same as input) round to nearest
integer

round(42.4) 42

round(v
numeric, s
int)

numeric round to s decimal
places

round(42.4382,
2)

42.44

scale(numeric)
integer scale of the

argument (the
number of decimal
digits in the
fractional part)

scale(8.41) 2

 sign(dp or
numeric)

(same as input) sign of the
argument (-1, 0, +1)

sign(-8.4) -1

 sqrt(dp or
numeric)

(same as input) square root sqrt(2.0) 1.4142135623731

 trunc(dp or
numeric)

(same as input) truncate toward
zero

trunc(42.8) 42

trunc(v
numeric, s
int)

numeric truncate to s
decimal places

trunc(42.4382,
2)

42.43

width_bucket(operand
dp, b1 dp,
b2 dp, count
int)

int return the bucket
number to which
operand would
be assigned in a
histogram having
count equal-width
buckets spanning
the range b1 to
b2; returns 0 or
count+1 for an

width_bucket(5.35,
0.024, 10.06,
5)

3

214

Functions and Operators

Function Return Type Description Example Result

input outside the
range

width_bucket(operand
numeric, b1
numeric, b2
numeric,
count int)

int return the bucket
number to which
operand would
be assigned in a
histogram having
count equal-width
buckets spanning
the range b1 to
b2; returns 0 or
count+1 for an
input outside the
range

width_bucket(5.35,
0.024, 10.06,
5)

3

width_bucket(operand
anyelement,
thresholds
anyarray)

int return the bucket
number to which
operand would
be assigned given
an array listing
the lower bounds
of the buckets;
returns 0 for an
input less than the
first lower bound;
the thresholds
array must be
sorted, smallest
first, or unexpected
results will be
obtained

width_bucket(now(),
array['yesterday',
'today',
'tomorrow']::timestamptz[])

2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function Return Type Description

 random() dp random value in the range 0.0 <=
x < 1.0

 setseed(dp) void set seed for subsequent
random() calls (value between
-1.0 and 1.0, inclusive)

The characteristics of the values returned by random() depend on the system implementation. It is not
suitable for cryptographic applications; see pgcrypto module for an alternative.

Finally, Table 9.7 shows the available trigonometric functions. All trigonometric functions take arguments
and return values of type double precision. Each of the trigonometric functions comes in two
variants, one that measures angles in radians and one that measures angles in degrees.

215

Functions and Operators

Table 9.7. Trigonometric Functions

Function (radians) Function (degrees) Description

acos(x) acosd(x) inverse cosine

 asin(x) asind(x) inverse sine

 atan(x) atand(x) inverse tangent

 atan2(y, x) atan2d(y, x) inverse tangent of y/x

 cos(x) cosd(x) cosine

 cot(x) cotd(x) cotangent

 sin(x) sind(x) sine

 tan(x) tand(x) tangent

Note

Another way to work with angles measured in degrees is to use the unit transformation functions
radians() and degrees() shown earlier. However, using the degree-based trigonometric
functions is preferred, as that way avoids round-off error for special cases such as sind(30).

9.4. String Functions and Operators
This section describes functions and operators for examining and manipulating string values. Strings in this
context include values of the types character, character varying, and text. Unless otherwise
noted, all of the functions listed below work on all of these types, but be wary of potential effects of
automatic space-padding when using the character type. Some functions also exist natively for the
bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details
are in Table 9.8. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9.9).

Note

Before PostgreSQL 8.3, these functions would silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However, the
string concatenation operator (||) still accepts non-string input, so long as at least one input is of
a string type, as shown in Table 9.8. For other cases, insert an explicit coercion to text if you
need to duplicate the previous behavior.

Table 9.8. SQL String Functions and Operators

Function Return Type Description Example Result

string ||
string

text String
concatenation

'Post' ||
'greSQL'

PostgreSQL

string ||
non-string or

text String
concatenation with
one non-string input

'Value: ' ||
42

Value: 42

216

Functions and Operators

Function Return Type Description Example Result

non-string ||
string

bit_length(string)
int Number of bits in

string
bit_length('jose')32

char_length(string)
or
character_length(string)

int Number of
characters in string

char_length('jose')4

lower(string)
text Convert string to

lower case
lower('TOM') tom

octet_length(string)
int Number of bytes in

string
octet_length('jose')4

overlay(string
placing
string from
int [for
int])

text Replace substring overlay('Txxxxas'
placing 'hom'
from 2 for 4)

Thomas

position(substring
in string)

int Location of
specified substring

position('om'
in 'Thomas')

3

substring(string
[from int]
[for int])

text Extract substring substring('Thomas'
from 2 for 3)

hom

substring(string
from pattern)

text Extract substring
matching POSIX
regular expression.
See Section 9.7 for
more information
on pattern
matching.

substring('Thomas'
from '...$')

mas

substring(string
from pattern
for escape)

text Extract substring
matching SQL
regular expression.
See Section 9.7 for
more information
on pattern
matching.

substring('Thomas'
from
'%#"o_a#"_'
for '#')

oma

trim([leading
| trailing
| both]
[characters]
from string)

text Remove the longest
string containing
only characters
from
characters (a
space by default)
from the start, end,
or both ends (both

trim(both
'xyz' from
'yxTomxx')

Tom

217

Functions and Operators

Function Return Type Description Example Result

is the default) of
string

trim([leading
| trailing |
both] [from]
string [,
characters])

text Non-standard
syntax for trim()

trim(both
from
'yxTomxx',
'xyz')

Tom

upper(string)
text Convert string to

upper case
upper('tom') TOM

Additional string manipulation functions are available and are listed in Table 9.9. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9.8.

Table 9.9. Other String Functions

Function Return Type Description Example Result

ascii(string)
int ASCII code of the

first character of
the argument. For
UTF8 returns the
Unicode code point
of the character.
For other multibyte
encodings, the
argument must be
an ASCII character.

ascii('x') 120

 btrim(string
text [,
characters
text])

text Remove the longest
string consisting
only of characters
in characters (a
space by default)
from the start and
end of string

btrim('xyxtrimyyx',
'xyz')

trim

 chr(int) text Character with the
given code. For
UTF8 the argument
is treated as a
Unicode code point.
For other multibyte
encodings the
argument must
designate an ASCII
character. The
NULL (0) character
is not allowed
because text data
types cannot store
such bytes.

chr(65) A

 concat(str
"any" [,

text Concatenate the
text representations

concat('abcde',
2, NULL, 22)

abcde222

218

Functions and Operators

Function Return Type Description Example Result

str "any"
[, ...]])

of all the
arguments. NULL
arguments are
ignored.

concat_ws(sep
text, str
"any" [,
str "any"
[, ...]])

text Concatenate all but
the first argument
with separators.
The first argument
is used as the
separator string.
NULL arguments
are ignored.

concat_ws(',',
'abcde', 2,
NULL, 22)

abcde,2,22

convert(string
bytea,
src_encoding
name,
dest_encoding
name)

bytea Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding.
The string must
be valid in
this encoding.
Conversions can be
defined by CREATE
CONVERSION.
Also there are
some predefined
conversions. See
Table 9.10 for
available
conversions.

convert('text_in_utf8',
'UTF8',
'LATIN1')

text_in_utf8
represented in
Latin-1 encoding
(ISO 8859-1)

convert_from(string
bytea,
src_encoding
name)

text Convert string
to the database
encoding. The
original encoding
is specified by
src_encoding.
The string must
be valid in this
encoding.

convert_from('text_in_utf8',
'UTF8')

text_in_utf8
represented in the
current database
encoding

convert_to(string
text,
dest_encoding
name)

bytea Convert string to
dest_encoding.

convert_to('some
text',
'UTF8')

some text
represented in the
UTF8 encoding

decode(string
text, format
text)

bytea Decode binary
data from textual
representation in
string. Options
for format are

decode('MTIzAAE=',
'base64')

\x3132330001

219

Functions and Operators

Function Return Type Description Example Result

same as in
encode.

 encode(data
bytea, format
text)

text Encode binary data
into a textual
representation.
Supported formats
are: base64, hex,
escape. escape
converts zero bytes
and high-bit-set
bytes to octal
sequences (\nnn)
and doubles
backslashes.

encode('123\000\001',
'base64')

MTIzAAE=

format(formatstr
text [,
formatarg
"any"
[, ...]])

text Format arguments
according to a
format string. This
function is similar
to the C function
sprintf. See
Section 9.4.1.

format('Hello
%s, %1$s',
'World')

Hello World,
World

initcap(string)
text Convert the first

letter of each word
to upper case
and the rest to
lower case. Words
are sequences
of alphanumeric
characters
separated by non-
alphanumeric
characters.

initcap('hi
THOMAS')

Hi Thomas

 left(str
text, n int)

text Return first n
characters in the
string. When n
is negative, return
all but last |n|
characters.

left('abcde',
2)

ab

length(string)
int Number of

characters in
string

length('jose')4

length(string
bytea,
encoding name
)

int Number of
characters in
string in the
given encoding.
The string must
be valid in this
encoding.

length('jose',
'UTF8')

4

220

Functions and Operators

Function Return Type Description Example Result

 lpad(string
text, length
int [, fill
text])

text Fill up the string
to length length
by prepending the
characters fill (a
space by default).
If the string is
already longer than
length then it is
truncated (on the
right).

lpad('hi', 5,
'xy')

xyxhi

 ltrim(string
text [,
characters
text])

text Remove the longest
string containing
only characters
from
characters (a
space by default)
from the start of
string

ltrim('zzzytest',
'xyz')

test

 md5(string) text Calculates the MD5
hash of string,
returning the result
in hexadecimal

md5('abc') 900150983cd24fb0
d6963f7d28e17f72

parse_ident(qualified_identifier
text [,
strictmode
boolean
DEFAULT
true])

text[] Split
qualified_identifier
into an array of
identifiers,
removing any
quoting of
individual
identifiers. By
default, extra
characters after
the last identifier
are considered an
error; but if the
second parameter is
false, then such
extra characters
are ignored. (This
behavior is useful
for parsing names
for objects like
functions.) Note
that this function
does not truncate
over-length
identifiers. If you
want truncation you
can cast the result to
name[].

parse_ident('"SomeSchema".someTable'){SomeSchema,sometable}

221

Functions and Operators

Function Return Type Description Example Result

pg_client_encoding()
name Current client

encoding name
pg_client_encoding()SQL_ASCII

quote_ident(string
text)

text Return the given
string suitably
quoted to be used
as an identifier
in an SQL
statement string.
Quotes are added
only if necessary
(i.e., if the
string contains non-
identifier characters
or would be case-
folded). Embedded
quotes are properly
doubled. See also
Example 43.1.

quote_ident('Foo
bar')

"Foo bar"

quote_literal(string
text)

text Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on
null input; if the
argument might be
null,
quote_nullable
is often more
suitable. See also
Example 43.1.

quote_literal(E'O
\'Reilly')

'O''Reilly'

quote_literal(value
anyelement)

text Coerce the given
value to text and
then quote it as
a literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal(42.5)'42.5'

quote_nullable(string
text)

text Return the given
string suitably
quoted to be
used as a string
literal in an SQL
statement string; or,

quote_nullable(NULL)NULL

222

Functions and Operators

Function Return Type Description Example Result

if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.
See also
Example 43.1.

quote_nullable(value
anyelement)

text Coerce the given
value to text and
then quote it
as a literal; or,
if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.

quote_nullable(42.5)'42.5'

regexp_match(string
text, pattern
text [, flags
text])

text[] Return captured
substring(s)
resulting from
the first match
of a POSIX
regular expression
to the string. See
Section 9.7.3 for
more information.

regexp_match('foobarbequebaz',
'(bar)
(beque)')

{bar,beque}

regexp_matches(string
text, pattern
text [, flags
text])

setof text[] Return captured
substring(s)
resulting from
matching a POSIX
regular expression
to the string. See
Section 9.7.3 for
more information.

regexp_matches('foobarbequebaz',
'ba.', 'g')

{bar}

{baz}

(2 rows)

regexp_replace(string
text, pattern
text,
replacement
text [, flags
text])

text Replace
substring(s)
matching a POSIX
regular expression.
See Section 9.7.3
for more
information.

regexp_replace('Thomas',
'.[mN]a.',
'M')

ThM

regexp_split_to_array(string
text, pattern
text [, flags
text])

text[] Split string
using a POSIX
regular expression
as the delimiter. See
Section 9.7.3 for
more information.

regexp_split_to_array('hello
world', '\s
+')

{hello,world}

223

Functions and Operators

Function Return Type Description Example Result

regexp_split_to_table(string
text, pattern
text [, flags
text])

setof text Split string
using a POSIX
regular expression
as the delimiter. See
Section 9.7.3 for
more information.

regexp_split_to_table('hello
world', '\s
+')

hello

world

(2 rows)

repeat(string
text, number
int)

text Repeat string the
specified number
of times

repeat('Pg',
4)

PgPgPgPg

replace(string
text, from
text, to
text)

text Replace all
occurrences in
string of
substring from
with substring to

replace('abcdefabcdef',
'cd', 'XX')

abXXefabXXef

 reverse(str) text Return reversed
string.

reverse('abcde')edcba

 right(str
text, n int)

text Return last n
characters in the
string. When n
is negative, return
all but first |n|
characters.

right('abcde',
2)

de

 rpad(string
text, length
int [, fill
text])

text Fill up the string
to length length
by appending the
characters fill (a
space by default).
If the string is
already longer than
length then it is
truncated.

rpad('hi', 5,
'xy')

hixyx

 rtrim(string
text [,
characters
text])

text Remove the longest
string containing
only characters
from
characters (a
space by default)
from the end of
string

rtrim('testxxzx',
'xyz')

test

split_part(string
text,
delimiter
text, field
int)

text Split string on
delimiter and
return the given
field (counting from
one)

split_part('abc~@~def~@~ghi',
'~@~', 2)

def

strpos(string,
substring)

int Location of
specified substring
(same as

strpos('high',
'ig')

2

224

Functions and Operators

Function Return Type Description Example Result

position(substring
in string), but
note the reversed
argument order)

substr(string,
from [,
count])

text Extract substring
(same as
substring(string
from from for
count))

substr('alphabet',
3, 2)

ph

starts_with(string,
prefix)

bool Returns true if
string starts with
prefix.

starts_with('alphabet',
'alph')

t

to_ascii(string
text [,
encoding
text])

text Convert string to
ASCII from another
encoding (only
supports conversion
from LATIN1,
LATIN2, LATIN9,
and WIN1250
encodings)

to_ascii('Karel')Karel

to_hex(number
int or
bigint)

text Convert number
to its equivalent
hexadecimal
representation

to_hex(2147483647)7fffffff

translate(string
text, from
text, to
text)

text Any character
in string that
matches a character
in the from set
is replaced by
the corresponding
character in the
to set. If from
is longer than to,
occurrences of the
extra characters in
from are removed.

translate('12345',
'143', 'ax')

a2x5

The concat, concat_ws and format functions are variadic, so it is possible to pass the values to
be concatenated or formatted as an array marked with the VARIADIC keyword (see Section 38.5.5). The
array's elements are treated as if they were separate ordinary arguments to the function. If the variadic
array argument is NULL, concat and concat_ws return NULL, but format treats a NULL as a zero-
element array.

See also the aggregate function string_agg in Section 9.20.

Table 9.10. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding

ascii_to_mic SQL_ASCII MULE_INTERNAL

ascii_to_utf8 SQL_ASCII UTF8

225

Functions and Operators

Conversion Name a Source Encoding Destination Encoding

big5_to_euc_tw BIG5 EUC_TW

big5_to_mic BIG5 MULE_INTERNAL

big5_to_utf8 BIG5 UTF8

euc_cn_to_mic EUC_CN MULE_INTERNAL

euc_cn_to_utf8 EUC_CN UTF8

euc_jp_to_mic EUC_JP MULE_INTERNAL

euc_jp_to_sjis EUC_JP SJIS

euc_jp_to_utf8 EUC_JP UTF8

euc_kr_to_mic EUC_KR MULE_INTERNAL

euc_kr_to_utf8 EUC_KR UTF8

euc_tw_to_big5 EUC_TW BIG5

euc_tw_to_mic EUC_TW MULE_INTERNAL

euc_tw_to_utf8 EUC_TW UTF8

gb18030_to_utf8 GB18030 UTF8

gbk_to_utf8 GBK UTF8

iso_8859_10_to_utf8 LATIN6 UTF8

iso_8859_13_to_utf8 LATIN7 UTF8

iso_8859_14_to_utf8 LATIN8 UTF8

iso_8859_15_to_utf8 LATIN9 UTF8

iso_8859_16_to_utf8 LATIN10 UTF8

iso_8859_1_to_mic LATIN1 MULE_INTERNAL

iso_8859_1_to_utf8 LATIN1 UTF8

iso_8859_2_to_mic LATIN2 MULE_INTERNAL

iso_8859_2_to_utf8 LATIN2 UTF8

iso_8859_2_to_windows_1250LATIN2 WIN1250

iso_8859_3_to_mic LATIN3 MULE_INTERNAL

iso_8859_3_to_utf8 LATIN3 UTF8

iso_8859_4_to_mic LATIN4 MULE_INTERNAL

iso_8859_4_to_utf8 LATIN4 UTF8

iso_8859_5_to_koi8_r ISO_8859_5 KOI8R

iso_8859_5_to_mic ISO_8859_5 MULE_INTERNAL

iso_8859_5_to_utf8 ISO_8859_5 UTF8

iso_8859_5_to_windows_1251ISO_8859_5 WIN1251

iso_8859_5_to_windows_866ISO_8859_5 WIN866

iso_8859_6_to_utf8 ISO_8859_6 UTF8

iso_8859_7_to_utf8 ISO_8859_7 UTF8

iso_8859_8_to_utf8 ISO_8859_8 UTF8

iso_8859_9_to_utf8 LATIN5 UTF8

226

Functions and Operators

Conversion Name a Source Encoding Destination Encoding

johab_to_utf8 JOHAB UTF8

koi8_r_to_iso_8859_5 KOI8R ISO_8859_5

koi8_r_to_mic KOI8R MULE_INTERNAL

koi8_r_to_utf8 KOI8R UTF8

koi8_r_to_windows_1251 KOI8R WIN1251

koi8_r_to_windows_866 KOI8R WIN866

koi8_u_to_utf8 KOI8U UTF8

mic_to_ascii MULE_INTERNAL SQL_ASCII

mic_to_big5 MULE_INTERNAL BIG5

mic_to_euc_cn MULE_INTERNAL EUC_CN

mic_to_euc_jp MULE_INTERNAL EUC_JP

mic_to_euc_kr MULE_INTERNAL EUC_KR

mic_to_euc_tw MULE_INTERNAL EUC_TW

mic_to_iso_8859_1 MULE_INTERNAL LATIN1

mic_to_iso_8859_2 MULE_INTERNAL LATIN2

mic_to_iso_8859_3 MULE_INTERNAL LATIN3

mic_to_iso_8859_4 MULE_INTERNAL LATIN4

mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5

mic_to_koi8_r MULE_INTERNAL KOI8R

mic_to_sjis MULE_INTERNAL SJIS

mic_to_windows_1250 MULE_INTERNAL WIN1250

mic_to_windows_1251 MULE_INTERNAL WIN1251

mic_to_windows_866 MULE_INTERNAL WIN866

sjis_to_euc_jp SJIS EUC_JP

sjis_to_mic SJIS MULE_INTERNAL

sjis_to_utf8 SJIS UTF8

tcvn_to_utf8 WIN1258 UTF8

uhc_to_utf8 UHC UTF8

utf8_to_ascii UTF8 SQL_ASCII

utf8_to_big5 UTF8 BIG5

utf8_to_euc_cn UTF8 EUC_CN

utf8_to_euc_jp UTF8 EUC_JP

utf8_to_euc_kr UTF8 EUC_KR

utf8_to_euc_tw UTF8 EUC_TW

utf8_to_gb18030 UTF8 GB18030

utf8_to_gbk UTF8 GBK

utf8_to_iso_8859_1 UTF8 LATIN1

utf8_to_iso_8859_10 UTF8 LATIN6

227

Functions and Operators

Conversion Name a Source Encoding Destination Encoding

utf8_to_iso_8859_13 UTF8 LATIN7

utf8_to_iso_8859_14 UTF8 LATIN8

utf8_to_iso_8859_15 UTF8 LATIN9

utf8_to_iso_8859_16 UTF8 LATIN10

utf8_to_iso_8859_2 UTF8 LATIN2

utf8_to_iso_8859_3 UTF8 LATIN3

utf8_to_iso_8859_4 UTF8 LATIN4

utf8_to_iso_8859_5 UTF8 ISO_8859_5

utf8_to_iso_8859_6 UTF8 ISO_8859_6

utf8_to_iso_8859_7 UTF8 ISO_8859_7

utf8_to_iso_8859_8 UTF8 ISO_8859_8

utf8_to_iso_8859_9 UTF8 LATIN5

utf8_to_johab UTF8 JOHAB

utf8_to_koi8_r UTF8 KOI8R

utf8_to_koi8_u UTF8 KOI8U

utf8_to_sjis UTF8 SJIS

utf8_to_tcvn UTF8 WIN1258

utf8_to_uhc UTF8 UHC

utf8_to_windows_1250 UTF8 WIN1250

utf8_to_windows_1251 UTF8 WIN1251

utf8_to_windows_1252 UTF8 WIN1252

utf8_to_windows_1253 UTF8 WIN1253

utf8_to_windows_1254 UTF8 WIN1254

utf8_to_windows_1255 UTF8 WIN1255

utf8_to_windows_1256 UTF8 WIN1256

utf8_to_windows_1257 UTF8 WIN1257

utf8_to_windows_866 UTF8 WIN866

utf8_to_windows_874 UTF8 WIN874

windows_1250_to_iso_8859_2WIN1250 LATIN2

windows_1250_to_mic WIN1250 MULE_INTERNAL

windows_1250_to_utf8 WIN1250 UTF8

windows_1251_to_iso_8859_5WIN1251 ISO_8859_5

windows_1251_to_koi8_r WIN1251 KOI8R

windows_1251_to_mic WIN1251 MULE_INTERNAL

windows_1251_to_utf8 WIN1251 UTF8

windows_1251_to_windows_866WIN1251 WIN866

windows_1252_to_utf8 WIN1252 UTF8

windows_1256_to_utf8 WIN1256 UTF8

228

Functions and Operators

Conversion Name a Source Encoding Destination Encoding

windows_866_to_iso_8859_5WIN866 ISO_8859_5

windows_866_to_koi8_r WIN866 KOI8R

windows_866_to_mic WIN866 MULE_INTERNAL

windows_866_to_utf8 WIN866 UTF8

windows_866_to_windows_1251WIN866 WIN

windows_874_to_utf8 WIN874 UTF8

euc_jis_2004_to_utf8 EUC_JIS_2004 UTF8

utf8_to_euc_jis_2004 UTF8 EUC_JIS_2004

shift_jis_2004_to_utf8 SHIFT_JIS_2004 UTF8

utf8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004

euc_jis_2004_to_shift_jis_2004EUC_JIS_2004 SHIFT_JIS_2004

shift_jis_2004_to_euc_jis_2004SHIFT_JIS_2004 EUC_JIS_2004
a The conversion names follow a standard naming scheme: The official name of the source encoding with all non-alphanumeric
characters replaced by underscores, followed by _to_, followed by the similarly processed destination encoding name. Therefore,
the names might deviate from the customary encoding names.

9.4.1. format
The function format produces output formatted according to a format string, in a style similar to the C
function sprintf.

format(formatstr text [, formatarg "any" [, ...]])

formatstr is a format string that specifies how the result should be formatted. Text in the format string is
copied directly to the result, except where format specifiers are used. Format specifiers act as placeholders
in the string, defining how subsequent function arguments should be formatted and inserted into the result.
Each formatarg argument is converted to text according to the usual output rules for its data type, and
then formatted and inserted into the result string according to the format specifier(s).

Format specifiers are introduced by a % character and have the form

%[position][flags][width]type

where the component fields are:

position (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first argument
after formatstr. If the position is omitted, the default is to use the next argument in sequence.

flags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier's output to be left-justified.
This has no effect unless the width field is also specified.

width (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The output
is padded on the left or right (depending on the - flag) with spaces as needed to fill the width. A too-

229

Functions and Operators

small width does not cause truncation of the output, but is simply ignored. The width may be specified
using any of the following: a positive integer; an asterisk (*) to use the next function argument as the
width; or a string of the form *n$ to use the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that is
used for the format specifier's value. If the width argument is negative, the result is left aligned (as if
the - flag had been specified) within a field of length abs(width).

type (required)

The type of format conversion to use to produce the format specifier's output. The following types
are supported:

• s formats the argument value as a simple string. A null value is treated as an empty string.

• I treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error for
the value to be null (equivalent to quote_ident).

• L quotes the argument value as an SQL literal. A null value is displayed as the string NULL, without
quotes (equivalent to quote_nullable).

In addition to the format specifiers described above, the special sequence %% may be used to output a
literal % character.

Here are some examples of the basic format conversions:

SELECT format('Hello %s', 'World');
Result: Hello World

SELECT format('Testing %s, %s, %s, %%', 'one', 'two', 'three');
Result: Testing one, two, three, %

SELECT format('INSERT INTO %I VALUES(%L)', 'Foo bar', E'O\'Reilly');
Result: INSERT INTO "Foo bar" VALUES('O''Reilly')

SELECT format('INSERT INTO %I VALUES(%L)', 'locations', 'C:\Program
 Files');
Result: INSERT INTO locations VALUES('C:\Program Files')

Here are examples using width fields and the - flag:

SELECT format('|%10s|', 'foo');
Result: | foo|

SELECT format('|%-10s|', 'foo');
Result: |foo |

SELECT format('|%*s|', 10, 'foo');
Result: | foo|

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

SELECT format('|%-*s|', 10, 'foo');
Result: |foo |

230

Functions and Operators

SELECT format('|%-*s|', -10, 'foo');
Result: |foo |

These examples show use of position fields:

SELECT format('Testing %3$s, %2$s, %1$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%*2$s|', 'foo', 10, 'bar');
Result: | bar|

SELECT format('|%1$*2$s|', 'foo', 10, 'bar');
Result: | foo|

Unlike the standard C function sprintf, PostgreSQL's format function allows format specifiers
with and without position fields to be mixed in the same format string. A format specifier without
a position field always uses the next argument after the last argument consumed. In addition, the
format function does not require all function arguments to be used in the format string. For example:

SELECT format('Testing %3$s, %2$s, %s', 'one', 'two', 'three');
Result: Testing three, two, three

The %I and %L format specifiers are particularly useful for safely constructing dynamic SQL statements.
See Example 43.1.

9.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details
are in Table 9.11. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9.12).

Note

The sample results shown on this page assume that the server parameter bytea_output is set
to escape (the traditional PostgreSQL format).

Table 9.11. SQL Binary String Functions and Operators

Function Return Type Description Example Result

string ||
string

bytea String
concatenation

'\
\Post'::bytea
|| '\047gres
\000'::bytea

\\Post'gres
\000

octet_length(string)
int Number of bytes in

binary string
octet_length('jo
\000se'::bytea)

5

overlay(string
placing

bytea Replace substring overlay('Th
\000omas'::bytea
placing

T\\002\
\003mas

231

Functions and Operators

Function Return Type Description Example Result

string from
int [for
int])

'\002\003'::bytea
from 2 for 3)

position(substring
in string)

int Location of
specified substring

position('\000om'::bytea
in 'Th
\000omas'::bytea)

3

substring(string
[from int]
[for int])

bytea Extract substring substring('Th
\000omas'::bytea
from 2 for 3)

h\000o

 trim([both]
bytes from
string)

bytea Remove the longest
string containing
only bytes
appearing in
bytes from the
start and end of
string

trim('\000\001'::bytea
from '\000Tom
\001'::bytea)

Tom

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9.11.

Table 9.12. Other Binary String Functions

Function Return Type Description Example Result

 btrim(string
bytea, bytes
bytea)

bytea Remove the longest
string containing
only bytes
appearing in
bytes from the
start and end of
string

btrim('\000trim
\001'::bytea,
'\000\001'::bytea)

trim

decode(string
text, format
text)

bytea Decode binary
data from textual
representation in
string. Options
for format are
same as in
encode.

decode('123\000456',
'escape')

123\000456

 encode(data
bytea, format
text)

text Encode binary data
into a textual
representation.
Supported formats
are: base64, hex,
escape. escape
converts zero bytes
and high-bit-set
bytes to octal
sequences (\nnn)
and doubles
backslashes.

encode('123\000456'::bytea,
'escape')

123\000456

232

Functions and Operators

Function Return Type Description Example Result

get_bit(string,
offset)

int Extract bit from
string

get_bit('Th
\000omas'::bytea,
45)

1

get_byte(string,
offset)

int Extract byte from
string

get_byte('Th
\000omas'::bytea,
4)

109

length(string)
int Length of binary

string
length('jo
\000se'::bytea)

5

 md5(string) text Calculates the MD5
hash of string,
returning the result
in hexadecimal

md5('Th
\000omas'::bytea)

8ab2d3c9689aaf18
b4958c334c82d8b1

set_bit(string,
offset,
newvalue)

bytea Set bit in string set_bit('Th
\000omas'::bytea,
45, 0)

Th\000omAs

set_byte(string,
offset,
newvalue)

bytea Set byte in string set_byte('Th
\000omas'::bytea,
4, 64)

Th\000o@as

sha224(bytea)
bytea SHA-224 hash sha224('abc') \x23097d223405d8228642a477bda2

55b32aadbce4bda0b3f7e36c9da7

sha256(bytea)
bytea SHA-256 hash sha256('abc') \xba7816bf8f01cfea414140de5dae2223

b00361a396177a9cb410ff61f20015ad

sha384(bytea)
bytea SHA-384 hash sha384('abc') \xcb00753f45a35e8bb5a03d699ac65007

272c32ab0eded1631a8b605a43ff5bed
8086072ba1e7cc2358baeca134c825a7

sha512(bytea)
bytea SHA-512 hash sha512('abc') \xddaf35a193617abacc417349ae204131

12e6fa4e89a97ea20a9eeee64b55d39a
2192992a274fc1a836ba3c23a3feebbd
454d4423643ce80e2a9ac94fa54ca49f

get_byte and set_byte number the first byte of a binary string as byte 0. get_bit and set_bit
number bits from the right within each byte; for example bit 0 is the least significant bit of the first byte,
and bit 15 is the most significant bit of the second byte.

Note that for historic reasons, the function md5 returns a hex-encoded value of type text whereas the
SHA-2 functions return type bytea. Use the functions encode and decode to convert between the
two, for example encode(sha256('abc'), 'hex') to get a hex-encoded text representation.

See also the aggregate function string_agg in Section 9.20 and the large object functions in
Section 35.4.

9.6. Bit String Functions and Operators
This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. Aside from the usual comparison operators, the operators shown
in Table 9.13 can be used. Bit string operands of &, |, and # must be of equal length. When bit shifting,
the original length of the string is preserved, as shown in the examples.

233

Functions and Operators

Table 9.13. Bit String Operators

Operator Description Example Result

|| concatenation B'10001' ||
B'011'

10001011

& bitwise AND B'10001' &
B'01101'

00001

| bitwise OR B'10001' |
B'01101'

11101

bitwise XOR B'10001'
B'01101'

11100

~ bitwise NOT ~ B'10001' 01110

<< bitwise shift left B'10001' << 3 01000

>> bitwise shift right B'10001' >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring, overlay.

The following functions work on bit strings as well as binary strings: get_bit, set_bit. When working
with a bit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::bit(10) 0000101100
44::bit(3) 100
cast(-44 as bit(12)) 111111010100
'1110'::bit(4)::integer 14

Note that casting to just “bit” means casting to bit(1), and so will deliver only the least significant bit
of the integer.

Note

Casting an integer to bit(n) copies the rightmost n bits. Casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching
There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Aside from the basic “does this string match this pattern?” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip

If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

234

Functions and Operators

Caution

While most regular-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patterns from hostile sources. If you must do so, it is advisable to impose
a statement timeout.

Searches using SIMILAR TO patterns have the same security hazards, since SIMILAR TO
provides many of the same capabilities as POSIX-style regular expressions.

LIKE searches, being much simpler than the other two options, are safer to use with possibly-
hostile pattern sources.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the NOT
LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT
(string LIKE pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches)
any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but
a different one can be selected by using the ESCAPE clause. To match the escape character itself, write
two escape characters.

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It's also possible to select no escape character by writing ESCAPE ''. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs
in the pattern.

235

Functions and Operators

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~*
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-
specific.

There is also the prefix operator ̂ @ and corresponding starts_with function which covers cases when
only searching by beginning of the string is needed.

9.7.2. SIMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard's definition of
a regular expression. SQL regular expressions are a curious cross between LIKE notation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression behavior where the pattern can match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and .* in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

• | denotes alternation (either of two alternatives).

• * denotes repetition of the previous item zero or more times.

• + denotes repetition of the previous item one or more times.

• ? denotes repetition of the previous item zero or one time.

• {m} denotes repetition of the previous item exactly m times.

• {m,} denotes repetition of the previous item m or more times.

• {m,n} denotes repetition of the previous item at least m and not more than n times.

• Parentheses () can be used to group items into a single logical item.

• A bracket expression [...] specifies a character class, just as in POSIX regular expressions.

Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

'abc' SIMILAR TO 'abc' true
'abc' SIMILAR TO 'a' false
'abc' SIMILAR TO '%(b|d)%' true

236

Functions and Operators

'abc' SIMILAR TO '(b|c)%' false

The substring function with three parameters, substring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression
pattern. As with SIMILAR TO, the specified pattern must match the entire data string, or else the function
fails and returns null. To indicate the part of the pattern that should be returned on success, the pattern
must contain two occurrences of the escape character followed by a double quote ("). The text matching
the portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring('foobar' from '%#"o_b#"%' for '#') oob
substring('foobar' from '#"o_b#"%' for '#') NULL

9.7.3. POSIX Regular Expressions
Table 9.14 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.14. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, case
sensitive

'thomas' ~ '.*thomas.*'

~* Matches regular expression, case
insensitive

'thomas' ~*
'.*Thomas.*'

!~ Does not match regular
expression, case sensitive

'thomas' !~
'.*Thomas.*'

!~* Does not match regular
expression, case insensitive

'thomas' !~*
'.*vadim.*'

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are special
characters in the regular expression language — but regular expressions use different special characters
than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

'abc' ~ 'abc' true
'abc' ~ '^a' true
'abc' ~ '(b|d)' true
'abc' ~ '^(b|c)' false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring(string from pattern), provides
extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is

237

Functions and Operators

no match, otherwise the portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want to
use parentheses within it without triggering this exception. If you need parentheses in the pattern before
the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring('foobar' from 'o.b') oob
substring('foobar' from 'o(.)b') o

The regexp_replace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It has the syntax regexp_replace(source, pattern, replacement
[, flags]). The source string is returned unchanged if there is no match to the pattern. If there
is a match, the source string is returned with the replacement string substituted for the matching
substring. The replacement string can contain \n, where n is 1 through 9, to indicate that the source
substring matching the n'th parenthesized subexpression of the pattern should be inserted, and it can
contain \& to indicate that the substring matching the entire pattern should be inserted. Write \\ if you
need to put a literal backslash in the replacement text. The flags parameter is an optional text string
containing zero or more single-letter flags that change the function's behavior. Flag i specifies case-
insensitive matching, while flag g specifies replacement of each matching substring rather than only the
first one. Supported flags (though not g) are described in Table 9.22.

Some examples:

regexp_replace('foobarbaz', 'b..', 'X')
 fooXbaz
regexp_replace('foobarbaz', 'b..', 'X', 'g')
 fooXX
regexp_replace('foobarbaz', 'b(..)', 'X\1Y', 'g')
 fooXarYXazY

The regexp_match function returns a text array of captured substring(s) resulting from the first match
of a POSIX regular expression pattern to a string. It has the syntax regexp_match(string, pattern
[, flags]). If there is no match, the result is NULL. If a match is found, and the pattern contains
no parenthesized subexpressions, then the result is a single-element text array containing the substring
matching the whole pattern. If a match is found, and the pattern contains parenthesized subexpressions,
then the result is a text array whose n'th element is the substring matching the n'th parenthesized
subexpression of the pattern (not counting “non-capturing” parentheses; see below for details). The
flags parameter is an optional text string containing zero or more single-letter flags that change the
function's behavior. Supported flags are described in Table 9.22.

Some examples:

SELECT regexp_match('foobarbequebaz', 'bar.*que');
 regexp_match

 {barbeque}
(1 row)

SELECT regexp_match('foobarbequebaz', '(bar)(beque)');
 regexp_match

238

Functions and Operators

 {bar,beque}
(1 row)

In the common case where you just want the whole matching substring or NULL for no match, write
something like

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
 regexp_match

 barbeque
(1 row)

The regexp_matches function returns a set of text arrays of captured substring(s) resulting from
matching a POSIX regular expression pattern to a string. It has the same syntax as regexp_match. This
function returns no rows if there is no match, one row if there is a match and the g flag is not given, or
N rows if there are N matches and the g flag is given. Each returned row is a text array containing the
whole matched substring or the substrings matching parenthesized subexpressions of the pattern, just
as described above for regexp_match. regexp_matches accepts all the flags shown in Table 9.22,
plus the g flag which commands it to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
 regexp_matches

(0 rows)

SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)',
 'g');
 regexp_matches

 {bar,beque}
 {bazil,barf}
(2 rows)

Tip

In most cases regexp_matches() should be used with the g flag, since if you only want the first
match, it's easier and more efficient to use regexp_match(). However, regexp_match()
only exists in PostgreSQL version 10 and up. When working in older versions, a common trick is
to place a regexp_matches() call in a sub-select, for example:

SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) FROM
 tab;

This produces a text array if there's a match, or NULL if not, the same as regexp_match()
would do. Without the sub-select, this query would produce no output at all for table rows without
a match, which is typically not the desired behavior.

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as
a delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is

239

Functions and Operators

no match to the pattern, the function returns the string. If there is at least one match, for each match
it returns the text from the end of the last match (or the beginning of the string) to the beginning of the
match. When there are no more matches, it returns the text from the end of the last match to the end of
the string. The flags parameter is an optional text string containing zero or more single-letter flags that
change the function's behavior. regexp_split_to_table supports the flags described in Table 9.22.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over
 the lazy dog', '\s+') AS foo;
 foo

 the
 quick
 brown
 fox
 jumps
 over
 the
 lazy
 dog
(9 rows)

SELECT regexp_split_to_array('the quick brown fox jumps over the lazy
 dog', '\s+');
 regexp_split_to_array

 {the,quick,brown,fox,jumps,over,the,lazy,dog}
(1 row)

SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS
 foo;
 foo

 t
 h
 e
 q
 u
 i
 c
 k
 b
 r
 o
 w
 n
 f

240

Functions and Operators

 o
 x
(16 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition of
regexp matching that is implemented by regexp_match and regexp_matches, but is usually the
most convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL's regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become widely
used due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset
of EREs, but BREs have several notational incompatibilities (as well as being much more limited). We
first describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how
BREs differ.

Note

PostgreSQL always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that matches
one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9.15. The possible quantifiers and their meanings are shown
in Table 9.16.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint can
be used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints
are shown in Table 9.17; some more constraints are described later.

Table 9.15. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for reporting (a
“non-capturing” set of parentheses) (AREs only)

241

Functions and Operators

Atom Description

. matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k (where k is a non-alphanumeric character) matches
that character taken as an ordinary character, e.g., \
\ matches a backslash character

\c where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see below)

x where x is a single character with no other
significance, matches that character

An RE cannot end with a backslash (\).

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.16. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom

{m,} a sequence of m or more matches of the atom

{m,n} a sequence of m through n (inclusive) matches of the
atom; m cannot exceed n

*? non-greedy version of *

+? non-greedy version of +

?? non-greedy version of ?

{m}? non-greedy version of {m}

{m,}? non-greedy version of {m,}

{m,n}? non-greedy version of {m,n}

The forms using {...} are known as bounds. The numbers m and n within a bound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding
normal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches.
See Section 9.7.3.5 for more detail.

242

Functions and Operators

Note

A quantifier cannot immediately follow another quantifier, e.g., ** is invalid. A quantifier cannot
begin an expression or subexpression or follow ^ or |.

Table 9.17. Regular Expression Constraints

Constraint Description

^ matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a
substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

(?<=re) positive lookbehind matches at any point where a
substring matching re ends (AREs only)

(?<!re) negative lookbehind matches at any point where no
substring matching re ends (AREs only)

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ̂ , it matches any single character not from the rest of the list.
If two characters in the list are separated by -, this is shorthand for the full range of characters between
those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any decimal digit. It is
illegal for two ranges to share an endpoint, e.g., a-c-e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ^, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of a range, enclose it in [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression's list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[.ch.]]*c matches the first five characters of chchcc.

Note

PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

243

Functions and Operators

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .].)
For example, if o and ^ are the members of an equivalence class, then [[=o=]], [[=^=]], and [o^]
are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of all
characters belonging to that class. Standard character class names are: alnum, alpha, blank, cntrl,
digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character
classes defined in ctype. A locale can provide others. A character class cannot be used as an endpoint of
a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
is an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable; they are no more standard,
but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come in
several varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed
by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no
escapes: outside a bracket expression, a \ followed by an alphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ is an ordinary character. (The latter
is the one actual incompatibility between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9.18.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are shown
in Table 9.19.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as
an escape. They are shown in Table 9.20.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9.21). For example, ([bc])\1 matches bb or cc but not bc or
cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered
in the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Table 9.18. Regular Expression Character-entry Escapes

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

\cX (where X is any character) the character whose low-
order 5 bits are the same as those of X, and whose
other bits are all zero

244

Functions and Operators

Escape Description

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits) the
character whose hexadecimal value is 0xwxyz

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) the character whose hexadecimal value is
0xstuvwxyz

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal digits)
the character whose hexadecimal value is 0xhhh (a
single character no matter how many hexadecimal
digits are used)

\0 the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
0xy

\xyz (where xyz is exactly three octal digits, and is not
a back reference) the character whose octal value is
0xyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings
dependent on the database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode
code points, for example \u1234 means the character U+1234. For other multibyte encodings, character-
entry escapes usually just specify the concatenation of the byte values for the character. If the escape value
does not correspond to any legal character in the database encoding, no error will be raised, but it will
never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,
but \135 does not terminate a bracket expression.

Table 9.19. Regular Expression Class-shorthand Escapes

Escape Description

\d [[:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)

\D [^[:digit:]]

\S [^[:space:]]

\W [^[:alnum:]_] (note underscore is included)

245

Functions and Operators

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \S, and \W are illegal.
(So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent
to [a-c^[:digit:]], is illegal.)

Table 9.20. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from ^)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning or
end of a word

\Z matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal
within bracket expressions.

Table 9.21. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to the
m'th subexpression

\mnn (where m is a nonzero digit, and nn is some more
digits, and the decimal value mnn is not greater than
the number of closing capturing parentheses seen so
far) a back reference to the mnn'th subexpression

Note

There is an inherent ambiguity between octal character-entry escapes and back references, which
is resolved by the following heuristics, as hinted at above. A leading zero always indicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a
suitable subexpression (i.e., the number is in the legal range for a back reference), and otherwise
is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***:, the rest of the
RE is taken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be AREs;
but it does have an effect if ERE or BRE mode had been specified by the flags parameter to a regex

246

Functions and Operators

function.) If an RE begins with ***=, the rest of the RE is taken to be a literal string, with all characters
considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously determined
options — in particular, they can override the case-sensitivity behavior implied by a regex operator, or
the flags parameter to a regex function. The available option letters are shown in Table 9.22. Note that
these same option letters are used in the flags parameters of regex functions.

Table 9.22. ARE Embedded-option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see
Section 9.7.3.5)

q rest of RE is a literal (“quoted”) string, all ordinary
characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)
matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an
ARE (after the ***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters in
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

• a white-space character or # preceded by \ is retained

• white space or # within a bracket expression is retained

• white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not
containing a)) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like (?:. Such comments are more a historical artifact than a useful facility, and
their use is deprecated; use the expanded syntax instead.

247

Functions and Operators

None of these metasyntax extensions is available if an initial ***= director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is
greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

• Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

• Adding parentheses around an RE does not change its greediness.

• A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly
none) as the atom itself.

• A quantified atom with other normal quantifiers (including {m,n} with m equal to n) is greedy (prefers
longest match).

• A quantified atom with a non-greedy quantifier (including {m,n}? with m equal to n) is non-greedy
(prefers shortest match).

• A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

• An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with branches
and entire REs that contain quantified atoms. What that means is that the matching is done in such a way
that the branch, or whole RE, matches the longest or shortest possible substring as a whole. Once the length
of the entire match is determined, the part of it that matches any particular subexpression is determined
on the basis of the greediness attribute of that subexpression, with subexpressions starting earlier in the
RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})');
Result: 123
SELECT SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})');
Result: 1

In the first case, the RE as a whole is greedy because Y* is greedy. It can match beginning at the Y, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y*? is non-greedy. It can match
beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9]{1,3} is greedy but it cannot change the decision as to the overall match length; so it is forced
to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is either
as long as possible or as short as possible, according to the attribute assigned to the whole RE. The attributes

248

Functions and Operators

assigned to the subexpressions only affect how much of that match they are allowed to “eat” relative to
each other.

The quantifiers {1,1} and {1,1}? can be used to force greediness or non-greediness, respectively, on
a subexpression or a whole RE. This is useful when you need the whole RE to have a greediness attribute
different from what's deduced from its elements. As an example, suppose that we are trying to separate
a string containing some digits into the digits and the parts before and after them. We might try to do
that like this:

SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)');
Result: {abc0123,4,xyz}

That didn't work: the first .* is greedy so it “eats” as much as it can, leaving the \d+ to match at the last
possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_match('abc01234xyz', '(.*?)(\d+)(.*)');
Result: {abc,0,""}

That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match as
soon as possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_match('abc01234xyz', '(?:(.*?)(\d+)(.*)){1,1}');
Result: {abc,01234,xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flexibility
in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not collating
elements. An empty string is considered longer than no match at all. For example: bb* matches the
three middle characters of abbbc; (week|wee)(night|knights) matches all ten characters of
weeknights; when (.*).* is matched against abc the parenthesized subexpression matches all
three characters; and when (a*)* is matched against bc both the whole RE and the parenthesized
subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g., x
becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g., [x] becomes [xX] and [^x] becomes [^xX].

If newline-sensitive matching is specified, . and bracket expressions using ̂ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ^ and $
will match the empty string after and before a newline respectively, in addition to matching at beginning
and end of string respectively. But the ARE escapes \A and \Z continue to match beginning or end of
string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ^ and $.

If inverse partial newline-sensitive matching is specified, this affects ^ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn't very useful but is provided for symmetry.

249

Functions and Operators

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended to
be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its special
significance inside bracket expressions. All other ARE features use syntax which is illegal or has undefined
or unspecified effects in POSIX EREs; the *** syntax of directors likewise is outside the POSIX syntax
for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special
treatment for a trailing newline, the addition of complemented bracket expressions to the things affected by
newline-sensitive matching, the restrictions on parentheses and back references in lookahead/lookbehind
constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:

• In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

• In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be
written \\.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no
equivalent for their functionality. The delimiters for bounds are \{ and \}, with { and } by themselves
ordinary characters. The parentheses for nested subexpressions are \(and \), with (and) by themselves
ordinary characters. ^ is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leading ^). Finally, single-digit back
references are available, and \< and \> are synonyms for [[:<:]] and [[:>:]] respectively; no other
escapes are available in BREs.

9.8. Data Type Formatting Functions
The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data types. Table 9.23 lists them. These functions all follow a common calling convention: the
first argument is the value to be formatted and the second argument is a template that defines the output
or input format.

Table 9.23. Formatting Functions

Function Return Type Description Example

to_char(timestamp,
text)

text convert time stamp to
string

to_char(current_timestamp,
'HH12:MI:SS')

250

Functions and Operators

Function Return Type Description Example

to_char(interval,
text)

text convert interval to string to_char(interval
'15h 2m 12s',
'HH24:MI:SS')

to_char(int,
text)

text convert integer to string to_char(125,
'999')

to_char(double
precision, text)

text convert real/double
precision to string

to_char(125.8::real,
'999D9')

to_char(numeric,
text)

text convert numeric to string to_char(-125.8,
'999D99S')

 to_date(text,
text)

date convert string to date to_date('05 Dec 2000',
'DD Mon YYYY')

 to_number(text,
text)

numeric convert string to numeric to_number('12,454.8-',
'99G999D9S')

to_timestamp(text,
text)

timestamp with
time zone

convert string to time
stamp

to_timestamp('05 Dec 2000',
'DD Mon YYYY')

Note

There is also a single-argument to_timestamp function; see Table 9.30.

Tip

to_timestamp and to_date exist to handle input formats that cannot be converted by simple
casting. For most standard date/time formats, simply casting the source string to the required
data type works, and is much easier. Similarly, to_number is unnecessary for standard numeric
representations.

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns identify
the values to be supplied by the input data string. If there are characters in the template string that are not
template patterns, the corresponding characters in the input data string are simply skipped over (whether
or not they are equal to the template string characters).

Table 9.24 shows the template patterns available for formatting date and time values.

Table 9.24. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

251

Functions and Operators

Pattern Description

MS millisecond (000-999)

US microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

AM, am, PM or pm meridiem indicator (without periods)

A.M., a.m., P.M. or p.m. meridiem indicator (with periods)

Y,YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

IYYY ISO 8601 week-numbering year (4 or more digits)

IYY last 3 digits of ISO 8601 week-numbering year

IY last 2 digits of ISO 8601 week-numbering year

I last digit of ISO 8601 week-numbering year

BC, bc, AD or ad era indicator (without periods)

B.C., b.c., A.D. or a.d. era indicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Month full capitalized month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lower case month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9 chars)

Day full capitalized day name (blank-padded to 9 chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lower case day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD day of ISO 8601 week-numbering year (001-371;
day 1 of the year is Monday of the first ISO week)

252

Functions and Operators

Pattern Description

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

ID ISO 8601 day of the week, Monday (1) to Sunday
(7)

W week of month (1-5) (the first week starts on the first
day of the month)

WW week number of year (1-53) (the first week starts on
the first day of the year)

IW week number of ISO 8601 week-numbering year
(01-53; the first Thursday of the year is in week 1)

CC century (2 digits) (the twenty-first century starts on
2001-01-01)

J Julian Day (integer days since November 24, 4714
BC at midnight UTC)

Q quarter

RM month in upper case Roman numerals (I-XII;
I=January)

rm month in lower case Roman numerals (i-xii;
i=January)

TZ upper case time-zone abbreviation (only supported
in to_char)

tz lower case time-zone abbreviation (only supported
in to_char)

TZH time-zone hours

TZM time-zone minutes

OF time-zone offset from UTC (only supported in
to_char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the Month
pattern with the FM modifier. Table 9.25 shows the modifier patterns for date/time formatting.

Table 9.25. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FM prefix fill mode (suppress leading zeroes
and padding blanks)

FMMonth

TH suffix upper case ordinal number suffix DDTH, e.g., 12TH

th suffix lower case ordinal number suffix DDth, e.g., 12th

FX prefix fixed format global option (see
usage notes)

FX Month DD Day

TM prefix translation mode (print localized
day and month names based on
lc_time)

TMMonth

SP suffix spell mode (not implemented) DDSP

253

Functions and Operators

Usage notes for date/time formatting:

• FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output of
a pattern be fixed-width. In PostgreSQL, FM modifies only the next specification, while in Oracle FM
affects all subsequent specifications, and repeated FM modifiers toggle fill mode on and off.

• TM does not include trailing blanks. to_timestamp and to_date ignore the TM modifier.

• to_timestamp and to_date skip multiple blank spaces in the input string unless the FX option
is used. For example, to_timestamp('2000 JUN', 'YYYY MON') works, but
to_timestamp('2000 JUN', 'FXYYYY MON') returns an error because to_timestamp
expects one space only. FX must be specified as the first item in the template.

• Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains template patterns. For
example, in '"Hello Year "YYYY', the YYYY will be replaced by the year data, but the single Y
in Year will not be. In to_date, to_number, and to_timestamp, literal text and double-quoted
strings result in skipping the number of characters contained in the string; for example "XX" skips two
input characters (whether or not they are XX).

• If you want to have a double quote in the output you must precede it with a backslash, for example
'\"YYYY Month\"'. Backslashes are not otherwise special outside of double-quoted strings. Within
a double-quoted string, a backslash causes the next character to be taken literally, whatever it is (but
this has no special effect unless the next character is a double quote or another backslash).

• In to_timestamp and to_date, if the year format specification is less than four digits, e.g. YYY,
and the supplied year is less than four digits, the year will be adjusted to be nearest to the year 2020,
e.g. 95 becomes 1995.

• In to_timestamp and to_date, the YYYY conversion has a restriction when processing years with
more than 4 digits. You must use some non-digit character or template after YYYY, otherwise the year
is always interpreted as 4 digits. For example (with the year 20000): to_date('200001131',
'YYYYMMDD') will be interpreted as a 4-digit year; instead use a non-digit separator after
the year, like to_date('20000-1131', 'YYYY-MMDD') or to_date('20000Nov31',
'YYYYMonDD').

• In to_timestamp and to_date, the CC (century) field is accepted but ignored if there is a YYY,
YYYY or Y,YYY field. If CC is used with YY or Y then the result is computed as that year in the specified
century. If the century is specified but the year is not, the first year of the century is assumed.

• In to_timestamp and to_date, weekday names or numbers (DAY, D, and related field types) are
accepted but are ignored for purposes of computing the result. The same is true for quarter (Q) fields.

• In to_timestamp and to_date, an ISO 8601 week-numbering date (as distinct from a Gregorian
date) can be specified in one of two ways:

• Year, week number, and weekday: for example to_date('2006-42-4', 'IYYY-IW-ID')
returns the date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

• Year and day of year: for example to_date('2006-291', 'IYYY-IDDD') also returns
2006-10-19.

Attempting to enter a date using a mixture of ISO 8601 week-numbering fields and Gregorian date
fields is nonsensical, and will cause an error. In the context of an ISO 8601 week-numbering year, the
concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year, the ISO
week has no meaning.

254

Functions and Operators

Caution

While to_date will reject a mixture of Gregorian and ISO week-numbering date fields,
to_char will not, since output format specifications like YYYY-MM-DD (IYYY-IDDD) can
be useful. But avoid writing something like IYYY-MM-DD; that would yield surprising results
near the start of the year. (See Section 9.9.1 for more information.)

• In to_timestamp, millisecond (MS) or microsecond (US) fields are used as the seconds digits after
the decimal point. For example to_timestamp('12.3', 'SS.MS') is not 3 milliseconds, but
300, because the conversion treats it as 12 + 0.3 seconds. So, for the format SS.MS, the input values
12.3, 12.30, and 12.300 specify the same number of milliseconds. To get three milliseconds, one
must write 12.003, which the conversion treats as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp('15:12:02.020.001230',
'HH24:MI:SS.MS.US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

• to_char(..., 'ID')'s day of the week numbering matches the extract(isodow from ...)
function, but to_char(..., 'D')'s does not match extract(dow from ...)'s day
numbering.

• to_char(interval) formats HH and HH12 as shown on a 12-hour clock, for example zero hours
and 36 hours both output as 12, while HH24 outputs the full hour value, which can exceed 23 in an
interval value.

Table 9.26 shows the template patterns available for formatting numeric values.

Table 9.26. Template Patterns for Numeric Formatting

Pattern Description

9 digit position (can be dropped if insignificant)

0 digit position (will not be dropped, even if
insignificant)

. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

TH or th ordinal number suffix

V shift specified number of digits (see notes)

255

Functions and Operators

Pattern Description

EEEE exponent for scientific notation

Usage notes for numeric formatting:

• 0 specifies a digit position that will always be printed, even if it contains a leading/trailing zero. 9 also
specifies a digit position, but if it is a leading zero then it will be replaced by a space, while if it is a
trailing zero and fill mode is specified then it will be deleted. (For to_number(), these two pattern
characters are equivalent.)

• The pattern characters S, L, D, and G represent the sign, currency symbol, decimal point, and thousands
separator characters defined by the current locale (see lc_monetary and lc_numeric). The pattern
characters period and comma represent those exact characters, with the meanings of decimal point and
thousands separator, regardless of locale.

• If no explicit provision is made for a sign in to_char()'s pattern, one column will be reserved for
the sign, and it will be anchored to (appear just left of) the number. If S appears just left of some 9's,
it will likewise be anchored to the number.

• A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char(-12,
'MI9999') produces '- 12' but to_char(-12, 'S9999') produces ' -12'. (The Oracle
implementation does not allow the use of MI before 9, but rather requires that 9 precede MI.)

• TH does not convert values less than zero and does not convert fractional numbers.

• PL, SG, and TH are PostgreSQL extensions.

• In to_number, if non-data template patterns such as L or TH are used, the corresponding number
of input characters are skipped, whether or not they match the template pattern, unless they are data
characters (that is, digits, sign, decimal point, or comma). For example, TH would skip two non-data
characters.

• V with to_char multiplies the input values by 10^n, where n is the number of digits following V. V
with to_number divides in a similar manner. to_char and to_number do not support the use of
V combined with a decimal point (e.g., 99.9V99 is not allowed).

• EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns or
modifiers other than digit and decimal point patterns, and must be at the end of the format string (e.g.,
9.99EEEE is a valid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM99.99 is
the 99.99 pattern with the FM modifier. Table 9.27 shows the modifier patterns for numeric formatting.

Table 9.27. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example

FM prefix fill mode (suppress trailing zeroes
and padding blanks)

FM99.99

TH suffix upper case ordinal number suffix 999TH

th suffix lower case ordinal number suffix 999th

Table 9.28 shows some examples of the use of the to_char function.

256

Functions and Operators

Table 9.28. to_char Examples

Expression Result

to_char(current_timestamp,
'Day, DD HH12:MI:SS')

'Tuesday , 06 05:39:18'

to_char(current_timestamp,
'FMDay, FMDD HH12:MI:SS')

'Tuesday, 6 05:39:18'

to_char(-0.1, '99.99') ' -.10'

to_char(-0.1, 'FM9.99') '-.1'

to_char(-0.1, 'FM90.99') '-0.1'

to_char(0.1, '0.9') ' 0.1'

to_char(12, '9990999.9') ' 0012.0'

to_char(12, 'FM9990999.9') '0012.'

to_char(485, '999') ' 485'

to_char(-485, '999') '-485'

to_char(485, '9 9 9') ' 4 8 5'

to_char(1485, '9,999') ' 1,485'

to_char(1485, '9G999') ' 1 485'

to_char(148.5, '999.999') ' 148.500'

to_char(148.5, 'FM999.999') '148.5'

to_char(148.5, 'FM999.990') '148.500'

to_char(148.5, '999D999') ' 148,500'

to_char(3148.5, '9G999D999') ' 3 148,500'

to_char(-485, '999S') '485-'

to_char(-485, '999MI') '485-'

to_char(485, '999MI') '485 '

to_char(485, 'FM999MI') '485'

to_char(485, 'PL999') '+485'

to_char(485, 'SG999') '+485'

to_char(-485, 'SG999') '-485'

to_char(-485, '9SG99') '4-85'

to_char(-485, '999PR') '<485>'

to_char(485, 'L999') 'DM 485'

to_char(485, 'RN') ' CDLXXXV'

to_char(485, 'FMRN') 'CDLXXXV'

to_char(5.2, 'FMRN') 'V'

to_char(482, '999th') ' 482nd'

to_char(485, '"Good number:"999') 'Good number: 485'

to_char(485.8,
'"Pre:"999" Post:" .999')

'Pre: 485 Post: .800'

257

Functions and Operators

Expression Result

to_char(12, '99V999') ' 12000'

to_char(12.4, '99V999') ' 12400'

to_char(12.45, '99V9') ' 125'

to_char(0.0004859, '9.99EEEE') ' 4.86e-04'

9.9. Date/Time Functions and Operators
Table 9.30 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9.29 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information
on date/time data types from Section 8.5.

All the functions and operators described below that take time or timestamp inputs actually come in
two variants: one that takes time with time zone or timestamp with time zone, and one
that takes time without time zone or timestamp without time zone. For brevity, these
variants are not shown separately. Also, the + and * operators come in commutative pairs (for example
both date + integer and integer + date); we show only one of each such pair.

Table 9.29. Date/Time Operators

Operator Example Result

+ date '2001-09-28' +
integer '7'

date '2001-10-05'

+ date '2001-09-28' +
interval '1 hour'

timestamp '2001-09-28
01:00:00'

+ date '2001-09-28' +
time '03:00'

timestamp '2001-09-28
03:00:00'

+ interval '1 day' +
interval '1 hour'

interval '1 day
01:00:00'

+ timestamp '2001-09-28
01:00' + interval '23
hours'

timestamp '2001-09-29
00:00:00'

+ time '01:00' + interval
'3 hours'

time '04:00:00'

- - interval '23 hours' interval '-23:00:00'

- date '2001-10-01' -
date '2001-09-28'

integer '3' (days)

- date '2001-10-01' -
integer '7'

date '2001-09-24'

- date '2001-09-28' -
interval '1 hour'

timestamp '2001-09-27
23:00:00'

- time '05:00' - time
'03:00'

interval '02:00:00'

- time '05:00' - interval
'2 hours'

time '03:00:00'

258

Functions and Operators

Operator Example Result

- timestamp '2001-09-28
23:00' - interval '23
hours'

timestamp '2001-09-28
00:00:00'

- interval '1 day' -
interval '1 hour'

interval '1 day
-01:00:00'

- timestamp '2001-09-29
03:00' - timestamp
'2001-09-27 12:00'

interval '1 day
15:00:00'

* 900 * interval '1
second'

interval '00:15:00'

* 21 * interval '1 day' interval '21 days'

* double precision '3.5'
* interval '1 hour'

interval '03:30:00'

/ interval '1 hour' /
double precision '1.5'

interval '00:40:00'

Table 9.30. Date/Time Functions

Function Return Type Description Example Result

age(timestamp,
timestamp)

interval Subtract arguments,
producing a
“symbolic” result
that uses years and
months, rather than
just days

age(timestamp
'2001-04-10',
timestamp
'1957-06-13')

43 years 9
mons 27 days

age(timestamp)interval Subtract from
current_date
(at midnight)

age(timestamp
'1957-06-13')

43 years 8
mons 3 days

clock_timestamp()
timestamp
with time
zone

Current date and
time (changes
during statement
execution); see
Section 9.9.4

 current_date date Current date; see
Section 9.9.4

 current_time time with
time zone

Current time of day;
see Section 9.9.4

current_timestamp
timestamp
with time
zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

date_part(text,
timestamp)

double
precision

Get subfield
(equivalent to
extract); see
Section 9.9.1

date_part('hour',
timestamp
'2001-02-16
20:38:40')

20

259

Functions and Operators

Function Return Type Description Example Result

date_part(text,
interval)

double
precision

Get subfield
(equivalent to
extract); see
Section 9.9.1

date_part('month',
interval '2
years 3
months')

3

date_trunc(text,
timestamp)

timestamp Truncate to
specified precision;
see also
Section 9.9.2

date_trunc('hour',
timestamp
'2001-02-16
20:38:40')

2001-02-16
20:00:00

date_trunc(text,
interval)

interval Truncate to
specified precision;
see also
Section 9.9.2

date_trunc('hour',
interval '2
days 3 hours
40 minutes')

2 days
03:00:00

extract(field
from
timestamp)

double
precision

Get subfield; see
Section 9.9.1

extract(hour
from
timestamp
'2001-02-16
20:38:40')

20

extract(field
from
interval)

double
precision

Get subfield; see
Section 9.9.1

extract(month
from interval
'2 years 3
months')

3

isfinite(date)
boolean Test for finite date

(not +/-infinity)
isfinite(date
'2001-02-16')

true

isfinite(timestamp)boolean Test for finite time
stamp (not +/-
infinity)

isfinite(timestamp
'2001-02-16
21:28:30')

true

isfinite(interval)boolean Test for finite
interval

isfinite(interval
'4 hours')

true

justify_days(interval)
interval Adjust interval so

30-day time periods
are represented as
months

justify_days(interval
'35 days')

1 mon 5 days

justify_hours(interval)
interval Adjust interval

so 24-hour time
periods are
represented as days

justify_hours(interval
'27 hours')

1 day
03:00:00

justify_interval(interval)
interval Adjust interval

using
justify_days
and
justify_hours,
with additional sign
adjustments

justify_interval(interval
'1 mon -1
hour')

29 days
23:00:00

 localtime time Current time of day;
see Section 9.9.4

localtimestamp
timestamp Current date and

time (start of

260

Functions and Operators

Function Return Type Description Example Result

current
transaction); see
Section 9.9.4

make_date(year
int, month
int, day int)

date Create date from
year, month and day
fields

make_date(2013,
7, 15)

2013-07-15

make_interval(years
int DEFAULT
0, months
int DEFAULT
0, weeks
int DEFAULT
0, days int
DEFAULT 0,
hours int
DEFAULT 0,
mins int
DEFAULT 0,
secs double
precision
DEFAULT 0.0)

interval Create interval
from years, months,
weeks, days, hours,
minutes and
seconds fields

make_interval(days
=> 10)

10 days

make_time(hour
int, min int,
sec double
precision)

time Create time from
hour, minute and
seconds fields

make_time(8,
15, 23.5)

08:15:23.5

make_timestamp(year
int, month
int, day
int, hour
int, min int,
sec double
precision)

timestamp Create timestamp
from year, month,
day, hour, minute
and seconds fields

make_timestamp(2013,
7, 15, 8, 15,
23.5)

2013-07-15
08:15:23.5

make_timestamptz(year
int, month
int, day
int, hour
int, min int,
sec double
precision, [
timezone text
])

timestamp
with time
zone

Create timestamp
with time zone
from year, month,
day, hour, minute
and seconds fields;
if timezone is
not specified, the
current time zone is
used

make_timestamptz(2013,
7, 15, 8, 15,
23.5)

2013-07-15
08:15:23.5+01

 now() timestamp
with time
zone

Current date and
time (start of
current

261

Functions and Operators

Function Return Type Description Example Result

transaction); see
Section 9.9.4

statement_timestamp()
timestamp
with time
zone

Current date and
time (start of
current statement);
see Section 9.9.4

 timeofday() text Current date and
time (like
clock_timestamp,
but as a
text string); see
Section 9.9.4

transaction_timestamp()
timestamp
with time
zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

to_timestamp(double
precision)

timestamp
with time
zone

Convert Unix
epoch (seconds
since 1970-01-01
00:00:00+00) to
timestamp

to_timestamp(1284352323)2010-09-13
04:32:03+00

 In addition to these functions, the SQL OVERLAPS operator is supported:

(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time,
or time stamp followed by an interval. When a pair of values is provided, either the start or the end can be
written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time period is
considered to represent the half-open interval start <= time < end, unless start and end are equal
in which case it represents that single time instant. This means for instance that two time periods with only
an endpoint in common do not overlap.

SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: true
SELECT (DATE '2001-02-16', INTERVAL '100 days') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: false
SELECT (DATE '2001-10-29', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: false
SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: true

262

Functions and Operators

When adding an interval value to (or subtracting an interval value from) a timestamp with
time zone value, the days component advances or decrements the date of the timestamp with
time zone by the indicated number of days. Across daylight saving time changes (when the session
time zone is set to a time zone that recognizes DST), this means interval '1 day' does not
necessarily equal interval '24 hours'. For example, with the session time zone set to CST7CDT,
timestamp with time zone '2005-04-02 12:00-07' + interval '1 day' will
produce timestamp with time zone '2005-04-03 12:00-06', while adding interval
'24 hours' to the same initial timestamp with time zone produces timestamp with time
zone '2005-04-03 13:00-06', as there is a change in daylight saving time at 2005-04-03
02:00 in time zone CST7CDT.

Note there can be ambiguity in the months field returned by age because different months have different
numbers of days. PostgreSQL's approach uses the month from the earlier of the two dates when calculating
partial months. For example, age('2004-06-01', '2004-04-30') uses April to yield 1 mon 1
day, while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction is to convert each value to a number of seconds using EXTRACT(EPOCH FROM ...), then
subtract the results; this produces the number of seconds between the two values. This will adjust for the
number of days in each month, timezone changes, and daylight saving time adjustments. Subtraction of
date or timestamp values with the “-” operator returns the number of days (24-hours) and hours/minutes/
seconds between the values, making the same adjustments. The age function returns years, months,
days, and hours/minutes/seconds, performing field-by-field subtraction and then adjusting for negative
field values. The following queries illustrate the differences in these approaches. The sample results were
produced with timezone = 'US/Eastern'; there is a daylight saving time change between the two
dates used:

SELECT EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00');
Result: 10537200
SELECT (EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00'))
 / 60 / 60 / 24;
Result: 121.958333333333
SELECT timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01
 12:00:00';
Result: 121 days 23:00:00
SELECT age(timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01
 12:00:00');
Result: 4 mons

9.9.1. EXTRACT, date_part

EXTRACT(field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must be
a value expression of type timestamp, time, or interval. (Expressions of type date are cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field
to extract from the source value. The extract function returns values of type double precision.
The following are valid field names:

263

Functions and Operators

century

The century

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
Result: 20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from -1
century to 1 century. If you disagree with this, please write your complaint to: Pope, Cathedral Saint-
Peter of Roma, Vatican.

day

For timestamp values, the day (of the month) field (1 - 31) ; for interval values, the number
of days

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16

SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
Result: 40

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

dow

The day of the week as Sunday (0) to Saturday (6)

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5

Note that extract's day of the week numbering differs from that of the to_char(..., 'D')
function.

doy

The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47

epoch

For timestamp with time zone values, the number of seconds since 1970-01-01 00:00:00
UTC (can be negative); for date and timestamp values, the number of seconds since 1970-01-01
00:00:00 local time; for interval values, the total number of seconds in the interval

264

Functions and Operators

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16
 20:38:40.12-08');
Result: 982384720.12

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800

You can convert an epoch value back to a time stamp with to_timestamp:

SELECT to_timestamp(982384720.12);
Result: 2001-02-17 04:38:40.12+00

hour

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20

isodow

The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.

isoyear

The ISO 8601 week-numbering year that the date falls in (not applicable to intervals)

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
Result: 2005
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006

Each ISO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the ISO year may be different from the Gregorian year.
See the week field for more information.

This field is not available in PostgreSQL releases prior to 8.3.

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000

265

Functions and Operators

millennium

The millennium

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38

month

For timestamp values, the number of the month within the year (1 - 12) ; for interval values,
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1

quarter

The quarter of the year (1 - 4) that the date is in

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1

second

The seconds field, including fractional parts (0 - 591)

160 if leap seconds are implemented by the operating system

266

Functions and Operators

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC. (Technically, PostgreSQL does not use UTC because
leap seconds are not handled.)

timezone_hour

The hour component of the time zone offset

timezone_minute

The minute component of the time zone offset

week

The number of the ISO 8601 week-numbering week of the year. By definition, ISO weeks start on
Mondays and the first week of a year contains January 4 of that year. In other words, the first Thursday
of a year is in week 1 of that year.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or
53rd week of the previous year, and for late-December dates to be part of the first week of the next
year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part of
the 52nd week of year 2005, while 2012-12-31 is part of the first week of 2013. It's recommended
to use the isoyear field together with week to get consistent results.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be
done with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001

Note

When the input value is +/-Infinity, extract returns +/-Infinity for monotonically-increasing
fields (epoch, julian, year, isoyear, decade, century, and millennium). For other
fields, NULL is returned. PostgreSQL versions before 9.6 returned zero for all cases of infinite
input.

The extract function is primarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

267

Functions and Operators

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part('field', source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
Result: 16

SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
Result: 4

9.9.2. date_trunc
The function date_trunc is conceptually similar to the trunc function for numbers.

date_trunc('field', source)

source is a value expression of type timestamp or interval. (Values of type date and time
are cast automatically to timestamp or interval, respectively.) field selects to which precision to
truncate the input value. The return value is of type timestamp or interval with all fields that are
less significant than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute
hour
day
week
month
quarter
year
decade
century
millennium

Examples:

SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-02-16 20:00:00

SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

268

Functions and Operators

The AT TIME ZONE converts time stamp without time zone to/from time stamp with time zone, and time
values to different time zones. Table 9.31 shows its variants.

Table 9.31. AT TIME ZONE Variants

Expression Return Type Description

timestamp without time
zone AT TIME ZONE zone

timestamp with time
zone

Treat given time stamp without
time zone as located in the
specified time zone

timestamp with time
zone AT TIME ZONE zone

timestamp without time
zone

Convert given time stamp with
time zone to the new time zone,
with no time zone designation

time with time zone AT
TIME ZONE zone

time with time zone Convert given time with time zone
to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., 'America/
Los_Angeles') or as an interval (e.g., INTERVAL '-08:00'). In the text case, a time zone name
can be specified in any of the ways described in Section 8.5.3.

Examples (assuming the local time zone is America/Los_Angeles):

SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE
 'America/Denver';
Result: 2001-02-16 18:38:40

SELECT TIMESTAMP '2001-02-16 20:38:40-05' AT TIME ZONE 'Asia/Tokyo' AT
 TIME ZONE 'America/Chicago';
Result: 2001-02-16 05:38:40

The first example adds a time zone to a value that lacks it, and displays the value using the current
TimeZone setting. The second example shifts the time stamp with time zone value to the specified time
zone, and returns the value without a time zone. This allows storage and display of values different from
the current TimeZone setting. The third example converts Tokyo time to Chicago time. Converting time
values to other time zones uses the currently active time zone rules since no date is supplied.

The function timezone(zone, timestamp) is equivalent to the SQL-conforming construct
timestamp AT TIME ZONE zone.

9.9.4. Current Date/Time
PostgreSQL provides a number of functions that return values related to the current date and time. These
SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)

269

Functions and Operators

CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take
a precision parameter, which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent
notion of the “current” time, so that multiple modifications within the same transaction bear the same time
stamp.

Note

Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the actual
current time at the instant the function is called. The complete list of non-SQL-standard time functions is:

transaction_timestamp()
statement_timestamp()
clock_timestamp()
timeofday()
now()

transaction_timestamp() is equivalent to CURRENT_TIMESTAMP, but is named to clearly
reflect what it returns. statement_timestamp() returns the start time of the current

270

Functions and Operators

statement (more specifically, the time of receipt of the latest command message from the client).
statement_timestamp() and transaction_timestamp() return the same value during the
first command of a transaction, but might differ during subsequent commands. clock_timestamp()
returns the actual current time, and therefore its value changes even within a single SQL command.
timeofday() is a historical PostgreSQL function. Like clock_timestamp(), it returns the actual
current time, but as a formatted text string rather than a timestamp with time zone value.
now() is a traditional PostgreSQL equivalent to transaction_timestamp().

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP 'now'; -- incorrect for use with DEFAULT

Tip

You do not want to use the third form when specifying a DEFAULT clause while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not
be evaluated until the default value is used, because they are function calls. Thus they will give
the desired behavior of defaulting to the time of row insertion.

9.9.5. Delaying Execution
The following functions are available to delay execution of the server process:

pg_sleep(seconds)
pg_sleep_for(interval)
pg_sleep_until(timestamp with time zone)

pg_sleep makes the current session's process sleep until seconds seconds have elapsed. seconds is
a value of type double precision, so fractional-second delays can be specified. pg_sleep_for
is a convenience function for larger sleep times specified as an interval. pg_sleep_until is a
convenience function for when a specific wake-up time is desired. For example:

SELECT pg_sleep(1.5);
SELECT pg_sleep_for('5 minutes');
SELECT pg_sleep_until('tomorrow 03:00');

Note

The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value.
The sleep delay will be at least as long as specified. It might be longer depending on factors such as
server load. In particular, pg_sleep_until is not guaranteed to wake up exactly at the specified
time, but it will not wake up any earlier.

271

Functions and Operators

Warning

Make sure that your session does not hold more locks than necessary when calling pg_sleep or
its variants. Otherwise other sessions might have to wait for your sleeping process, slowing down
the entire system.

9.10. Enum Support Functions
For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.32. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green',
 'blue', 'purple');

Table 9.32. Enum Support Functions

Function Description Example Example Result

enum_first(anyenum)
Returns the first value of
the input enum type

enum_first(null::rainbow)red

enum_last(anyenum)
Returns the last value of
the input enum type

enum_last(null::rainbow)purple

enum_range(anyenum)
Returns all values of the
input enum type in an
ordered array

enum_range(null::rainbow){red,orange,yellow,green,blue,purple}

enum_range('orange'::rainbow,
'green'::rainbow)

{orange,yellow,green}

enum_range(NULL,
'green'::rainbow)

{red,orange,yellow,green}

enum_range(anyenum,
anyenum)

Returns the range
between the two given
enum values, as an
ordered array. The values
must be from the same
enum type. If the first
parameter is null, the
result will start with
the first value of the
enum type. If the second
parameter is null, the
result will end with the
last value of the enum
type.

enum_range('orange'::rainbow,
NULL)

{orange,yellow,green,blue,purple}

Notice that except for the two-argument form of enum_range, these functions disregard the specific
value passed to them; they care only about its declared data type. Either null or a specific value of the
type can be passed, with the same result. It is more common to apply these functions to a table column or
function argument than to a hardwired type name as suggested by the examples.

9.11. Geometric Functions and Operators
The geometric types point, box, lseg, line, path, polygon, and circle have a large set of
native support functions and operators, shown in Table 9.33, Table 9.34, and Table 9.35.

272

Functions and Operators

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for the point, box,
polygon, and circle types. Some of these types also have an = operator, but = compares for
equal areas only. The other scalar comparison operators (<= and so on) likewise compare areas
for these types.

Table 9.33. Geometric Operators

Operator Description Example

+ Translation box '((0,0),(1,1))' +
point '(2.0,0)'

- Translation box '((0,0),(1,1))' -
point '(2.0,0)'

* Scaling/rotation box '((0,0),(1,1))' *
point '(2.0,0)'

/ Scaling/rotation box '((0,0),(2,2))' /
point '(2.0,0)'

Point or box of intersection box '((1,-1),(-1,1))'
box '((1,1),(-2,-2))'

Number of points in path or
polygon

path '((1,0),(0,1),
(-1,0))'

@-@ Length or circumference @-@ path '((0,0),
(1,0))'

@@ Center @@ circle '((0,0),10)'

Closest point to first operand on
second operand

point '(0,0)' ## lseg
'((2,0),(0,2))'

<-> Distance between circle '((0,0),1)' <->
circle '((5,0),1)'

&& Overlaps? (One point in common
makes this true.)

box '((0,0),(1,1))' &&
box '((0,0),(2,2))'

<< Is strictly left of? circle '((0,0),1)' <<
circle '((5,0),1)'

>> Is strictly right of? circle '((5,0),1)' >>
circle '((0,0),1)'

&< Does not extend to the right of? box '((0,0),(1,1))' &<
box '((0,0),(2,2))'

&> Does not extend to the left of? box '((0,0),(3,3))' &>
box '((0,0),(2,2))'

<<| Is strictly below? box '((0,0),(3,3))' <<|
box '((3,4),(5,5))'

|>> Is strictly above? box '((3,4),(5,5))' |>>
box '((0,0),(3,3))'

&<| Does not extend above? box '((0,0),(1,1))' &<|
box '((0,0),(2,2))'

273

Functions and Operators

Operator Description Example

|&> Does not extend below? box '((0,0),(3,3))' |&>
box '((0,0),(2,2))'

<^ Is below (allows touching)? circle '((0,0),1)' <^
circle '((0,5),1)'

>^ Is above (allows touching)? circle '((0,5),1)' >^
circle '((0,0),1)'

?# Intersects? lseg '((-1,0),(1,0))' ?
box '((-2,-2),(2,2))'

?- Is horizontal? ?- lseg '((-1,0),
(1,0))'

?- Are horizontally aligned? point '(1,0)' ?- point
'(0,0)'

?| Is vertical? ?| lseg '((-1,0),
(1,0))'

?| Are vertically aligned? point '(0,1)' ?| point
'(0,0)'

?-| Is perpendicular? lseg '((0,0),
(0,1))' ?-| lseg
'((0,0),(1,0))'

?|| Are parallel? lseg '((-1,0),
(1,0))' ?|| lseg
'((-1,2),(1,2))'

@> Contains? circle '((0,0),2)' @>
point '(1,1)'

<@ Contained in or on? point '(1,1)' <@ circle
'((0,0),2)'

~= Same as? polygon '((0,0),
(1,1))' ~= polygon
'((1,1),(0,0))'

Note

Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called ~ and @.
These names are still available, but are deprecated and will eventually be removed.

Table 9.34. Geometric Functions

Function Return Type Description Example

area(object) double precision area area(box '((0,0),
(1,1))')

center(object) point center center(box
'((0,0),(1,2))')

diameter(circle) double precision diameter of circle diameter(circle
'((0,0),2.0)')

274

Functions and Operators

Function Return Type Description Example

height(box) double precision vertical size of box height(box
'((0,0),(1,1))')

isclosed(path) boolean a closed path? isclosed(path
'((0,0),(1,1),
(2,0))')

isopen(path) boolean an open path? isopen(path
'[(0,0),(1,1),
(2,0)]')

length(object) double precision length length(path
'((-1,0),
(1,0))')

npoints(path) int number of points npoints(path
'[(0,0),(1,1),
(2,0)]')

npoints(polygon) int number of points npoints(polygon
'((1,1),(0,0))')

pclose(path) path convert path to closed pclose(path
'[(0,0),(1,1),
(2,0)]')

popen(path) path convert path to open popen(path
'((0,0),(1,1),
(2,0))')

radius(circle) double precision radius of circle radius(circle
'((0,0),2.0)')

width(box) double precision horizontal size of box width(box
'((0,0),(1,1))')

Table 9.35. Geometric Type Conversion Functions

Function Return Type Description Example

 box(circle) box circle to box box(circle
'((0,0),2.0)')

box(point) box point to empty box box(point
'(0,0)')

box(point, point) box points to box box(point
'(0,0)', point
'(1,1)')

box(polygon) box polygon to box box(polygon
'((0,0),(1,1),
(2,0))')

bound_box(box,
box)

box boxes to bounding box bound_box(box
'((0,0),(1,1))',
box '((3,3),
(4,4))')

 circle(box) circle box to circle circle(box
'((0,0),(1,1))')

275

Functions and Operators

Function Return Type Description Example

circle(point,
double precision)

circle center and radius to circle circle(point
'(0,0)', 2.0)

circle(polygon) circle polygon to circle circle(polygon
'((0,0),(1,1),
(2,0))')

line(point,
point)

line points to line line(point
'(-1,0)', point
'(1,0)')

 lseg(box) lseg box diagonal to line
segment

lseg(box
'((-1,0),
(1,0))')

lseg(point,
point)

lseg points to line segment lseg(point
'(-1,0)', point
'(1,0)')

 path(polygon) path polygon to path path(polygon
'((0,0),(1,1),
(2,0))')

 point(double
precision, double
precision)

point construct point point(23.4,
-44.5)

point(box) point center of box point(box
'((-1,0),
(1,0))')

point(circle) point center of circle point(circle
'((0,0),2.0)')

point(lseg) point center of line segment point(lseg
'((-1,0),
(1,0))')

point(polygon) point center of polygon point(polygon
'((0,0),(1,1),
(2,0))')

 polygon(box) polygon box to 4-point polygon polygon(box
'((0,0),(1,1))')

polygon(circle) polygon circle to 12-point
polygon

polygon(circle
'((0,0),2.0)')

polygon(npts,
circle)

polygon circle to npts-point
polygon

polygon(12,
circle
'((0,0),2.0)')

polygon(path) polygon path to polygon polygon(path
'((0,0),(1,1),
(2,0))')

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t.p is a point column then SELECT p[0] FROM t retrieves the X
coordinate and UPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of
type box or lseg can be treated as an array of two point values.

276

Functions and Operators

The area function works for the types box, circle, and path. The area function only works
on the path data type if the points in the path are non-intersecting. For example, the path
'((0,0),(0,1),(2,1),(2,2),(1,2),(1,0),(0,0))'::PATH will not work; however,
the following visually identical path '((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),
(1,0),(0,0))'::PATH will work. If the concept of an intersecting versus non-intersecting path is
confusing, draw both of the above paths side by side on a piece of graph paper.

9.12. Network Address Functions and
Operators

Table 9.36 shows the operators available for the cidr and inet types. The operators <<, <<=, >>, >>=,
and && test for subnet inclusion. They consider only the network parts of the two addresses (ignoring any
host part) and determine whether one network is identical to or a subnet of the other.

Table 9.36. cidr and inet Operators

Operator Description Example

< is less than inet '192.168.1.5' <
inet '192.168.1.6'

<= is less than or equal inet '192.168.1.5' <=
inet '192.168.1.5'

= equals inet '192.168.1.5' =
inet '192.168.1.5'

>= is greater or equal inet '192.168.1.5' >=
inet '192.168.1.5'

> is greater than inet '192.168.1.5' >
inet '192.168.1.4'

<> is not equal inet '192.168.1.5' <>
inet '192.168.1.4'

<< is contained by inet '192.168.1.5' <<
inet '192.168.1/24'

<<= is contained by or equals inet '192.168.1/24' <<=
inet '192.168.1/24'

>> contains inet '192.168.1/24' >>
inet '192.168.1.5'

>>= contains or equals inet '192.168.1/24' >>=
inet '192.168.1/24'

&& contains or is contained by inet '192.168.1/24' &&
inet '192.168.1.80/28'

~ bitwise NOT ~ inet '192.168.1.6'

& bitwise AND inet '192.168.1.6' &
inet '0.0.0.255'

| bitwise OR inet '192.168.1.6' |
inet '0.0.0.255'

+ addition inet '192.168.1.6' + 25

277

Functions and Operators

Operator Description Example

- subtraction inet '192.168.1.43' -
36

- subtraction inet '192.168.1.43' -
inet '192.168.1.19'

Table 9.37 shows the functions available for use with the cidr and inet types. The abbrev, host,
and text functions are primarily intended to offer alternative display formats.

Table 9.37. cidr and inet Functions

Function Return Type Description Example Result

 abbrev(inet) text abbreviated display
format as text

abbrev(inet
'10.1.0.0/16')

10.1.0.0/16

abbrev(cidr) text abbreviated display
format as text

abbrev(cidr
'10.1.0.0/16')

10.1/16

broadcast(inet)
inet broadcast address

for network
broadcast('192.168.1.5/24')192.168.1.255/24

 family(inet) int extract family of
address; 4 for IPv4,
6 for IPv6

family('::1') 6

 host(inet) text extract IP address as
text

host('192.168.1.5/24')192.168.1.5

hostmask(inet)
inet construct host mask

for network
hostmask('192.168.23.20/30')0.0.0.3

masklen(inet)
int extract netmask

length
masklen('192.168.1.5/24')24

netmask(inet)
inet construct netmask

for network
netmask('192.168.1.5/24')255.255.255.0

network(inet)
cidr extract network part

of address
network('192.168.1.5/24')192.168.1.0/24

set_masklen(inet,
int)

inet set netmask length
for inet value

set_masklen('192.168.1.5/24',
16)

192.168.1.5/16

set_masklen(cidr,
int)

cidr set netmask length
for cidr value

set_masklen('192.168.1.0/24'::cidr,
16)

192.168.0.0/16

 text(inet) text extract IP address
and netmask length
as text

text(inet
'192.168.1.5')

192.168.1.5/32

inet_same_family(inet,
inet)

boolean are the addresses
from the same
family?

inet_same_family('192.168.1.5/24',
'::1')

false

inet_merge(inet,
inet)

cidr the smallest
network which
includes both of the
given networks

inet_merge('192.168.1.5/24',
'192.168.2.5/24')

192.168.0.0/22

278

Functions and Operators

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above as
operating on inet also work on cidr values. (Where there are separate functions for inet and cidr,
it is because the behavior should be different for the two cases.) Also, it is permitted to cast an inet value
to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a valid cidr
value. In addition, you can cast a text value to inet or cidr using normal casting syntax: for example,
inet(expression) or colname::cidr.

Table 9.38 shows the functions available for use with the macaddr type. The function
trunc(macaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to associate
the remaining prefix with a manufacturer.

Table 9.38. macaddr Functions

Function Return Type Description Example Result

trunc(macaddr)
macaddr set last 3 bytes to

zero
trunc(macaddr
'12:34:56:78:90:ab')

12:34:56:00:00:00

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical
ordering, and the bitwise arithmetic operators (~, & and |) for NOT, AND and OR.

Table 9.39 shows the functions available for use with the macaddr8 type. The function
trunc(macaddr8) returns a MAC address with the last 5 bytes set to zero. This can be used to associate
the remaining prefix with a manufacturer.

Table 9.39. macaddr8 Functions

Function Return Type Description Example Result

trunc(macaddr8)
macaddr8 set last 5 bytes to

zero
trunc(macaddr8
'12:34:56:78:90:ab:cd:ef')

12:34:56:00:00:00:00:00

macaddr8_set7bit(macaddr8)
macaddr8 set 7th bit to

one, also known as
modified EUI-64,
for inclusion in an
IPv6 address

macaddr8_set7bit(macaddr8
'00:34:56:ab:cd:ef')

02:34:56:ff:fe:ab:cd:ef

The macaddr8 type also supports the standard relational operators (>, <=, etc.) for ordering, and the
bitwise arithmetic operators (~, & and |) for NOT, AND and OR.

9.13. Text Search Functions and Operators
Table 9.40, Table 9.41 and Table 9.42 summarize the functions and operators that are provided for full
text searching. See Chapter 12 for a detailed explanation of PostgreSQL's text search facility.

Table 9.40. Text Search Operators

Operator Return Type Description Example Result

@@ boolean tsvector
matches tsquery
?

to_tsvector('fat
cats ate
rats') @@
to_tsquery('cat
& rat')

t

@@@ boolean deprecated
synonym for @@

to_tsvector('fat
cats ate

t

279

Functions and Operators

Operator Return Type Description Example Result

rats') @@@
to_tsquery('cat
& rat')

|| tsvector concatenate
tsvectors

'a:1
b:2'::tsvector
|| 'c:1 d:2
b:3'::tsvector

'a':1 'b':2,5
'c':3 'd':4

&& tsquery AND tsquerys
together

'fat |
rat'::tsquery
&&
'cat'::tsquery

('fat' |
'rat') &
'cat'

|| tsquery OR tsquerys
together

'fat |
rat'::tsquery
||
'cat'::tsquery

('fat' |
'rat') |
'cat'

!! tsquery negate a tsquery !!
'cat'::tsquery

!'cat'

<-> tsquery tsquery followed
by tsquery

to_tsquery('fat')
<->
to_tsquery('rat')

'fat' <->
'rat'

@> boolean tsquery contains
another ?

'cat'::tsquery
@> 'cat &
rat'::tsquery

f

<@ boolean tsquery is
contained in ?

'cat'::tsquery
<@ 'cat &
rat'::tsquery

t

Note

The tsquery containment operators consider only the lexemes listed in the two queries, ignoring
the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc) are
defined for types tsvector and tsquery. These are not very useful for text searching but allow, for
example, unique indexes to be built on columns of these types.

Table 9.41. Text Search Functions

Function Return Type Description Example Result

array_to_tsvector(text[])
tsvector convert array of

lexemes to
tsvector

array_to_tsvector('{fat,cat,rat}'::text[])'cat' 'fat'
'rat'

get_current_ts_config()
regconfig get default text

search
configuration

get_current_ts_config()english

280

Functions and Operators

Function Return Type Description Example Result

length(tsvector)
integer number of lexemes

in tsvector
length('fat:2,4
cat:3
rat:5A'::tsvector)

3

numnode(tsquery)
integer number of lexemes

plus operators in
tsquery

numnode('(fat
& rat) |
cat'::tsquery)

5

plainto_tsquery([
config
regconfig ,]
query text)

tsquery produce tsquery
ignoring
punctuation

plainto_tsquery('english',
'The Fat
Rats')

'fat' & 'rat'

phraseto_tsquery([
config
regconfig ,]
query text)

tsquery produce tsquery
that searches for
a phrase, ignoring
punctuation

phraseto_tsquery('english',
'The Fat
Rats')

'fat' <->
'rat'

websearch_to_tsquery([
config
regconfig ,]
query text)

tsquery produce tsquery
from a web search
style query

websearch_to_tsquery('english',
'"fat rat" or
rat')

'fat' <->
'rat' | 'rat'

querytree(query
tsquery)

text get indexable part
of a tsquery

querytree('foo
& !
bar'::tsquery)

'foo'

setweight(vector
tsvector,
weight
"char")

tsvector assign weight to
each element of
vector

setweight('fat:2,4
cat:3
rat:5B'::tsvector,
'A')

'cat':3A
'fat':2A,4A
'rat':5A

setweight(vector
tsvector,
weight
"char",
lexemes
text[])

tsvector assign weight
to elements of
vector that are
listed in lexemes

setweight('fat:2,4
cat:3
rat:5B'::tsvector,
'A',
'{cat,rat}')

'cat':3A
'fat':2,4
'rat':5A

strip(tsvector)
tsvector remove positions

and weights from
tsvector

strip('fat:2,4
cat:3
rat:5A'::tsvector)

'cat' 'fat'
'rat'

 to_tsquery([
config
regconfig ,]
query text)

tsquery normalize words
and convert to
tsquery

to_tsquery('english',
'The & Fat &
Rats')

'fat' & 'rat'

to_tsvector([
config
regconfig ,]

tsvector reduce document
text to tsvector

to_tsvector('english',
'The Fat
Rats')

'fat':2
'rat':3

281

Functions and Operators

Function Return Type Description Example Result

document
text)

to_tsvector([
config
regconfig ,]
document
json(b))

tsvector reduce each string
value in the
document to a
tsvector, and
then concatenate
those in document
order to produce a
single tsvector

to_tsvector('english',
'{"a": "The
Fat
Rats"}'::json)

'fat':2
'rat':3

json(b)_to_tsvector([
config
regconfig,]
document
json(b),
filter
json(b))

tsvector reduce each value
in the document,
specified by
filter to a
tsvector, and
then concatenate
those in document
order to produce a
single tsvector.
filter is a
jsonb array, that
enumerates what
kind of elements
need to be included
into the resulting
tsvector.
Possible values
for filter are
"string" (to
include all string
values),
"numeric" (to
include all numeric
values in the
string format),
"boolean" (to
include all Boolean
values in the string
format "true"/
"false"), "key"
(to include all
keys) or "all" (to
include all above).
These values can be
combined together
to include, e.g. all
string and numeric
values.

json_to_tsvector('english',
'{"a": "The
Fat Rats",
"b":
123}'::json,
'["string",
"numeric"]')

'123':5
'fat':2
'rat':3

ts_delete(vector
tsvector remove given

lexeme from
vector

ts_delete('fat:2,4
cat:3

'cat':3
'rat':5A

282

Functions and Operators

Function Return Type Description Example Result

tsvector,
lexeme text)

rat:5A'::tsvector,
'fat')

ts_delete(vector
tsvector,
lexemes
text[])

tsvector remove any
occurrence of
lexemes in
lexemes from
vector

ts_delete('fat:2,4
cat:3
rat:5A'::tsvector,
ARRAY['fat','rat'])

'cat':3

ts_filter(vector
tsvector,
weights
"char"[])

tsvector select only elements
with given
weights from
vector

ts_filter('fat:2,4
cat:3b
rat:5A'::tsvector,
'{a,b}')

'cat':3B
'rat':5A

ts_headline([
config
regconfig,]
document
text, query
tsquery [,
options text
])

text display a query
match

ts_headline('x
y z',
'z'::tsquery)

x y z

ts_headline([
config
regconfig,]
document
json(b),
query tsquery
[, options
text])

text display a query
match

ts_headline('{"a":"x
y z"}'::json,
'z'::tsquery)

{"a":"x y
z"}

 ts_rank([
weights
float4[],]
vector
tsvector,
query tsquery
[,
normalization
integer])

float4 rank document for
query

ts_rank(textsearch,
query)

0.818

 ts_rank_cd([
weights
float4[],]
vector
tsvector,
query tsquery
[,
normalization
integer])

float4 rank document for
query using cover
density

ts_rank_cd('{0.1,
0.2, 0.4,
1.0}',
textsearch,
query)

2.01317

283

Functions and Operators

Function Return Type Description Example Result

ts_rewrite(query
tsquery,
target
tsquery,
substitute
tsquery)

tsquery replace target
with substitute
within query

ts_rewrite('a
&
b'::tsquery,
'a'::tsquery,
'foo|
bar'::tsquery)

'b' & ('foo'
| 'bar')

ts_rewrite(query
tsquery,
select text)

tsquery replace using
targets and
substitutes from a
SELECT command

SELECT
ts_rewrite('a
&
b'::tsquery,
'SELECT t,s
FROM
aliases')

'b' & ('foo'
| 'bar')

tsquery_phrase(query1
tsquery,
query2
tsquery)

tsquery make query that
searches for
query1 followed
by query2 (same
as <-> operator)

tsquery_phrase(to_tsquery('fat'),
to_tsquery('cat'))

'fat' <->
'cat'

tsquery_phrase(query1
tsquery,
query2
tsquery,
distance
integer)

tsquery make query that
searches for
query1 followed
by query2 at
distance
distance

tsquery_phrase(to_tsquery('fat'),
to_tsquery('cat'),
10)

'fat' <10>
'cat'

tsvector_to_array(tsvector)
text[] convert

tsvector to
array of lexemes

tsvector_to_array('fat:2,4
cat:3
rat:5A'::tsvector)

{cat,fat,rat}

tsvector_update_trigger()
trigger trigger function for

automatic
tsvector
column update

CREATE
TRIGGER ...
tsvector_update_trigger(tsvcol,
'pg_catalog.swedish',
title, body)

tsvector_update_trigger_column()
trigger trigger function for

automatic
tsvector
column update

CREATE
TRIGGER ...
tsvector_update_trigger_column(tsvcol,
configcol,
title, body)

unnest(tsvector,
OUT lexeme
text, OUT
positions
smallint[],
OUT weights
text)

setof record expand a
tsvector to a set
of rows

unnest('fat:2,4
cat:3
rat:5A'::tsvector)

(cat,{3},
{D}) ...

284

Functions and Operators

Note

All the text search functions that accept an optional regconfig argument will use the
configuration specified by default_text_search_config when that argument is omitted.

The functions in Table 9.42 are listed separately because they are not usually used in everyday text
searching operations. They are helpful for development and debugging of new text search configurations.

Table 9.42. Text Search Debugging Functions

Function Return Type Description Example Result

 ts_debug([
config
regconfig,]
document
text, OUT
alias text,
OUT
description
text, OUT
token text,
OUT
dictionaries
regdictionary[],
OUT
dictionary
regdictionary,
OUT lexemes
text[])

setof record test a configuration ts_debug('english',
'The
Brightest
supernovaes')

(asciiword,"Word,
all
ASCII",The,
{english_stem},english_stem,
{}) ...

ts_lexize(dict
regdictionary,
token text)

text[] test a dictionary ts_lexize('english_stem',
'stars')

{star}

ts_parse(parser_name
text,
document
text, OUT
tokid
integer, OUT
token text)

setof record test a parser ts_parse('default',
'foo - bar')

(1,foo) ...

ts_parse(parser_oid
oid, document
text, OUT
tokid
integer, OUT
token text)

setof record test a parser ts_parse(3722,
'foo - bar')

(1,foo) ...

ts_token_type(parser_name
text, OUT

setof record get token types
defined by parser

ts_token_type('default')(1,asciiword,"Word,
all
ASCII") ...

285

Functions and Operators

Function Return Type Description Example Result

tokid
integer, OUT
alias text,
OUT
description
text)

ts_token_type(parser_oid
oid, OUT
tokid
integer, OUT
alias text,
OUT
description
text)

setof record get token types
defined by parser

ts_token_type(3722)(1,asciiword,"Word,
all
ASCII") ...

ts_stat(sqlquery
text, [
weights
text,]
OUT word
text, OUT
ndoc integer,
OUT nentry
integer)

setof record get statistics of
a tsvector
column

ts_stat('SELECT
vector from
apod')

(foo,10,15) ...

9.14. XML Functions
The functions and function-like expressions described in this section operate on values of type xml.
Check Section 8.13 for information about the xml type. The function-like expressions xmlparse and
xmlserialize for converting to and from type xml are not repeated here. Use of most of these functions
requires the installation to have been built with configure --with-libxml.

9.14.1. Producing XML Content
A set of functions and function-like expressions are available for producing XML content from SQL data.
As such, they are particularly suitable for formatting query results into XML documents for processing
in client applications.

9.14.1.1. xmlcomment

xmlcomment(text)

The function xmlcomment creates an XML value containing an XML comment with the specified text
as content. The text cannot contain “--” or end with a “-” so that the resulting construct is a valid XML
comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment('hello');

286

Functions and Operators

 xmlcomment

 <!--hello-->

9.14.1.2. xmlconcat

xmlconcat(xml[, ...])

The function xmlconcat concatenates a list of individual XML values to create a single value containing
an XML content fragment. Null values are omitted; the result is only null if there are no nonnull arguments.

Example:

SELECT xmlconcat('<abc/>', '<bar>foo</bar>');

 xmlconcat

 <abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML version
declaration, that version is used in the result, else no version is used. If all argument values have the
standalone declaration value “yes”, then that value is used in the result. If all argument values have a
standalone declaration value and at least one is “no”, then that is used in the result. Else the result will have
no standalone declaration. If the result is determined to require a standalone declaration but no version
declaration, a version declaration with version 1.0 will be used because XML requires an XML declaration
to contain a version declaration. Encoding declarations are ignored and removed in all cases.

Example:

SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1"
 standalone="no"?><bar/>');

 xmlconcat

 <?xml version="1.1"?><foo/><bar/>

9.14.1.3. xmlelement

xmlelement(name name [, xmlattributes(value [AS attname] [, ...])] [,
 content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

SELECT xmlelement(name foo);

 xmlelement

287

Functions and Operators

 <foo/>

SELECT xmlelement(name foo, xmlattributes('xyz' as bar));

 xmlelement

 <foo bar="xyz"/>

SELECT xmlelement(name foo, xmlattributes(current_date as bar),
 'cont', 'ent');

 xmlelement

 <foo bar="2007-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHH_, where HHHH is the character's Unicode codepoint in hexadecimal
notation. For example:

SELECT xmlelement(name "foo$bar", xmlattributes('xyz' as "a&b"));

 xmlelement

 <foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which case
the column's name will be used as the attribute name by default. In other cases, the attribute must be given
an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement(name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement(name test, xmlattributes('constant'), a, b) FROM
 test;
SELECT xmlelement(name test, xmlattributes(func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type
xml, complex XML documents can be constructed. For example:

SELECT xmlelement(name foo, xmlattributes('xyz' as bar),
 xmlelement(name abc),
 xmlcomment('test'),
 xmlelement(name xyz));

 xmlelement
--
 <foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the
characters <, >, and & will be converted to entities. Binary data (data type bytea) will be represented in

288

Functions and Operators

base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The particular
behavior for individual data types is expected to evolve in order to align the SQL and PostgreSQL data
types with the XML Schema specification, at which point a more precise description will appear.

9.14.1.4. xmlforest

xmlforest(content [AS name] [, ...])

The xmlforest expression produces an XML forest (sequence) of elements using the given names and
content.

Examples:

SELECT xmlforest('abc' AS foo, 123 AS bar);

 xmlforest

 <foo>abc</foo><bar>123</bar>

SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

 xmlforest

 <table_name>pg_authid</table_name><column_name>rolname</column_name>
 <table_name>pg_authid</table_name><column_name>rolsuper</column_name>
 ...

As seen in the second example, the element name can be omitted if the content value is a column reference,
in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly,
content data is escaped to make valid XML content, unless it is already of type xml.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might
be useful to wrap xmlforest expressions in xmlelement.

9.14.1.5. xmlpi

xmlpi(name target [, content])

The xmlpi expression creates an XML processing instruction. The content, if present, must not contain
the character sequence ?>.

Example:

SELECT xmlpi(name php, 'echo "hello world";');

 xmlpi

289

Functions and Operators

 <?php echo "hello world";?>

9.14.1.6. xmlroot

xmlroot(xml, version text | no value [, standalone yes|no|no value])

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified,
it replaces the value in the root node's version declaration; if a standalone setting is specified, it replaces
the value in the root node's standalone declaration.

SELECT xmlroot(xmlparse(document '<?xml version="1.1"?><content>abc</
content>'),
 version '1.0', standalone yes);

 xmlroot
--
 <?xml version="1.0" standalone="yes"?>
 <content>abc</content>

9.14.1.7. xmlagg

xmlagg(xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, much like xmlconcat does, except that concatenation
occurs across rows rather than across expressions in a single row. See Section 9.20 for additional
information about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
 xmlagg

 <foo>abc</foo><bar/>

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
 xmlagg

 <bar/><foo>abc</foo>

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

290

Functions and Operators

SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
 xmlagg

 <bar/><foo>abc</foo>

9.14.2. XML Predicates
The expressions described in this section check properties of xml values.

9.14.2.1. IS DOCUMENT

xml IS DOCUMENT

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false
if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the
difference between documents and content fragments.

9.14.2.2. IS NOT DOCUMENT

xml IS NOT DOCUMENT

The expression IS NOT DOCUMENT returns false if the argument XML value is a proper XML document,
true if it is not (that is, it is a content fragment), or null if the argument is null.

9.14.2.3. XMLEXISTS

XMLEXISTS(text PASSING [BY REF] xml [BY REF])

The function xmlexists returns true if the XPath expression in the first argument returns any nodes,
and false otherwise. (If either argument is null, the result is null.)

Example:

SELECT xmlexists('//town[text() = ''Toronto'']' PASSING BY REF
 '<towns><town>Toronto</town><town>Ottawa</town></towns>');

 xmlexists

 t
(1 row)

The BY REF clauses have no effect in PostgreSQL, but are allowed for SQL conformance and
compatibility with other implementations. Per SQL standard, the first BY REF is required, the second
is optional. Also note that the SQL standard specifies the xmlexists construct to take an XQuery
expression as first argument, but PostgreSQL currently only supports XPath, which is a subset of XQuery.

9.14.2.4. xml_is_well_formed

xml_is_well_formed(text)

291

Functions and Operators

xml_is_well_formed_document(text)
xml_is_well_formed_content(text)

These functions check whether a text string is well-formed XML, returning a Boolean
result. xml_is_well_formed_document checks for a well-formed document, while
xml_is_well_formed_content checks for well-formed content. xml_is_well_formed does
the former if the xmloption configuration parameter is set to DOCUMENT, or the latter if it is set to
CONTENT. This means that xml_is_well_formed is useful for seeing whether a simple cast to type
xml will succeed, whereas the other two functions are useful for seeing whether the corresponding variants
of XMLPARSE will succeed.

Examples:

SET xmloption TO DOCUMENT;
SELECT xml_is_well_formed('<>');
 xml_is_well_formed

 f
(1 row)

SELECT xml_is_well_formed('<abc/>');
 xml_is_well_formed

 t
(1 row)

SET xmloption TO CONTENT;
SELECT xml_is_well_formed('abc');
 xml_is_well_formed

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://
postgresql.org/stuff">bar</pg:foo>');
 xml_is_well_formed_document

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://
postgresql.org/stuff">bar</my:foo>');
 xml_is_well_formed_document

 f
(1 row)

The last example shows that the checks include whether namespaces are correctly matched.

9.14.3. Processing XML
To process values of data type xml, PostgreSQL offers the functions xpath and xpath_exists, which
evaluate XPath 1.0 expressions, and the XMLTABLE table function.

292

Functions and Operators

9.14.3.1. xpath

xpath(xpath, xml [, nsarray])

The function xpath evaluates the XPath expression xpath (a text value) against the XML value xml.
It returns an array of XML values corresponding to the node set produced by the XPath expression. If the
XPath expression returns a scalar value rather than a node set, a single-element array is returned.

The second argument must be a well formed XML document. In particular, it must have a single root
node element.

The optional third argument of the function is an array of namespace mappings. This array should be a
two-dimensional text array with the length of the second axis being equal to 2 (i.e., it should be an
array of arrays, each of which consists of exactly 2 elements). The first element of each array entry is the
namespace name (alias), the second the namespace URI. It is not required that aliases provided in this array
be the same as those being used in the XML document itself (in other words, both in the XML document
and in the xpath function context, aliases are local).

Example:

SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://
example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath

 {test}
(1 row)

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', '<a xmlns="http://
example.com">test',
 ARRAY[ARRAY['mydefns', 'http://example.com']]);

 xpath

 {test}
(1 row)

9.14.3.2. xpath_exists

xpath_exists(xpath, xml [, nsarray])

The function xpath_exists is a specialized form of the xpath function. Instead of returning the
individual XML values that satisfy the XPath, this function returns a Boolean indicating whether the query
was satisfied or not. This function is equivalent to the standard XMLEXISTS predicate, except that it also
offers support for a namespace mapping argument.

Example:

293

Functions and Operators

SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://
example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath_exists

 t
(1 row)

9.14.3.3. xmltable

xmltable([XMLNAMESPACES(namespace uri AS namespace name[, ...]),]
 row_expression PASSING [BY REF] document_expression [BY REF]
 COLUMNS name { type [PATH column_expression]
 [DEFAULT default_expression] [NOT NULL | NULL]
 | FOR ORDINALITY }
 [, ...]
)

The xmltable function produces a table based on the given XML value, an XPath filter to extract rows,
and an optional set of column definitions.

The optional XMLNAMESPACES clause is a comma-separated list of namespaces. It specifies the XML
namespaces used in the document and their aliases. A default namespace specification is not currently
supported.

The required row_expression argument is an XPath expression that is evaluated against the supplied
XML document to obtain an ordered sequence of XML nodes. This sequence is what xmltable
transforms into output rows.

document_expression provides the XML document to operate on. The BY REF clauses have no
effect in PostgreSQL, but are allowed for SQL conformance and compatibility with other implementations.
The argument must be a well-formed XML document; fragments/forests are not accepted.

The mandatory COLUMNS clause specifies the list of columns in the output table. If the COLUMNS clause
is omitted, the rows in the result set contain a single column of type xml containing the data matched
by row_expression. If COLUMNS is specified, each entry describes a single column. See the syntax
summary above for the format. The column name and type are required; the path, default and nullability
clauses are optional.

A column marked FOR ORDINALITY will be populated with row numbers matching the order in which
the output rows appeared in the original input XML document. At most one column may be marked FOR
ORDINALITY.

The column_expression for a column is an XPath expression that is evaluated for each row, relative
to the result of the row_expression, to find the value of the column. If no column_expression
is given, then the column name is used as an implicit path.

If a column's XPath expression returns multiple elements, an error is raised. If the expression matches an
empty tag, the result is an empty string (not NULL). Any xsi:nil attributes are ignored.

The text body of the XML matched by the column_expression is used as the column value. Multiple
text() nodes within an element are concatenated in order. Any child elements, processing instructions,

294

Functions and Operators

and comments are ignored, but the text contents of child elements are concatenated to the result. Note
that the whitespace-only text() node between two non-text elements is preserved, and that leading
whitespace on a text() node is not flattened.

If the path expression does not match for a given row but default_expression is specified, the
value resulting from evaluating that expression is used. If no DEFAULT clause is given for the column, the
field will be set to NULL. It is possible for a default_expression to reference the value of output
columns that appear prior to it in the column list, so the default of one column may be based on the value
of another column.

Columns may be marked NOT NULL. If the column_expression for a NOT NULL column does
not match anything and there is no DEFAULT or the default_expression also evaluates to null, an
error is reported.

Unlike regular PostgreSQL functions, column_expression and default_expression are not
evaluated to a simple value before calling the function. column_expression is normally evaluated
exactly once per input row, and default_expression is evaluated each time a default is needed for a
field. If the expression qualifies as stable or immutable the repeat evaluation may be skipped. Effectively
xmltable behaves more like a subquery than a function call. This means that you can usefully use volatile
functions like nextval in default_expression, and column_expression may depend on
other parts of the XML document.

Examples:

CREATE TABLE xmldata AS SELECT
xml $$
<ROWS>
 <ROW id="1">
 <COUNTRY_ID>AU</COUNTRY_ID>
 <COUNTRY_NAME>Australia</COUNTRY_NAME>
 </ROW>
 <ROW id="5">
 <COUNTRY_ID>JP</COUNTRY_ID>
 <COUNTRY_NAME>Japan</COUNTRY_NAME>
 <PREMIER_NAME>Shinzo Abe</PREMIER_NAME>
 <SIZE unit="sq_mi">145935</SIZE>
 </ROW>
 <ROW id="6">
 <COUNTRY_ID>SG</COUNTRY_ID>
 <COUNTRY_NAME>Singapore</COUNTRY_NAME>
 <SIZE unit="sq_km">697</SIZE>
 </ROW>
</ROWS>
$$ AS data;

SELECT xmltable.*
 FROM xmldata,
 XMLTABLE('//ROWS/ROW'
 PASSING data
 COLUMNS id int PATH '@id',
 ordinality FOR ORDINALITY,
 "COUNTRY_NAME" text,
 country_id text PATH 'COUNTRY_ID',
 size_sq_km float PATH 'SIZE[@unit = "sq_km"]',

295

Functions and Operators

 size_other text PATH
 'concat(SIZE[@unit!="sq_km"], " ",
 SIZE[@unit!="sq_km"]/@unit)',
 premier_name text PATH 'PREMIER_NAME' DEFAULT
 'not specified') ;

 id | ordinality | COUNTRY_NAME | country_id | size_sq_km |
 size_other | premier_name
----+------------+--------------+------------+------------
+--------------+---------------
 1 | 1 | Australia | AU | |
 | not specified
 5 | 2 | Japan | JP | | 145935
 sq_mi | Shinzo Abe
 6 | 3 | Singapore | SG | 697 |
 | not specified

The following example shows concatenation of multiple text() nodes, usage of the column name as XPath
filter, and the treatment of whitespace, XML comments and processing instructions:

CREATE TABLE xmlelements AS SELECT
xml $$
 <root>
 <element> Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> bbb<x>xxx</
x>CC </element>
 </root>
$$ AS data;

SELECT xmltable.*
 FROM xmlelements, XMLTABLE('/root' PASSING data COLUMNS element
 text);
 element

 Hello2a2 bbbCC

The following example illustrates how the XMLNAMESPACES clause can be used to specify a list of
namespaces used in the XML document as well as in the XPath expressions:

WITH xmldata(data) AS (VALUES ('
<example xmlns="http://example.com/myns" xmlns:B="http://example.com/
b">
 <item foo="1" B:bar="2"/>
 <item foo="3" B:bar="4"/>
 <item foo="4" B:bar="5"/>
</example>'::xml)
)
SELECT xmltable.*
 FROM XMLTABLE(XMLNAMESPACES('http://example.com/myns' AS x,
 'http://example.com/b' AS "B"),
 '/x:example/x:item'
 PASSING (SELECT data FROM xmldata)
 COLUMNS foo int PATH '@foo',
 bar int PATH '@B:bar');

296

Functions and Operators

 foo | bar
-----+-----
 1 | 2
 3 | 4
 4 | 5
(3 rows)

9.14.4. Mapping Tables to XML
The following functions map the contents of relational tables to XML values. They can be thought of as
XML export functionality:

table_to_xml(tbl regclass, nulls boolean, tableforest boolean,
 targetns text)
query_to_xml(query text, nulls boolean, tableforest boolean, targetns
 text)
cursor_to_xml(cursor refcursor, count int, nulls boolean,
 tableforest boolean, targetns text)

The return type of each function is xml.

table_to_xml maps the content of the named table, passed as parameter tbl. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications and
double quotes. query_to_xml executes the query whose text is passed as parameter query and maps
the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified by the
parameter cursor. This variant is recommended if large tables have to be mapped, because the result
value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:

<tablename>
 <row>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
 </row>

 <row>
 ...
 </row>

 ...
</tablename>

If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
</tablename>

<tablename>

297

Functions and Operators

 ...
</tablename>

...

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the
first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document, which will
be important in many applications. The second format tends to be more useful in the cursor_to_xml
function if the result values are to be reassembled into one document later on. The functions for producing
XML content discussed above, in particular xmlelement, can be used to alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.

The parameter nulls determines whether null values should be included in the output. If true, null values
in columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace
declaration will be added to the result value. If false, columns containing null values are simply omitted
from the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace
is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the
corresponding functions above:

table_to_xmlschema(tbl regclass, nulls boolean, tableforest boolean,
 targetns text)
query_to_xmlschema(query text, nulls boolean, tableforest boolean,
 targetns text)
cursor_to_xmlschema(cursor refcursor, nulls boolean, tableforest
 boolean, targetns text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one
document (or forest), linked together. They can be useful where self-contained and self-describing results
are wanted:

table_to_xml_and_xmlschema(tbl regclass, nulls boolean, tableforest
 boolean, targetns text)
query_to_xml_and_xmlschema(query text, nulls boolean, tableforest
 boolean, targetns text)

In addition, the following functions are available to produce analogous mappings of entire schemas or the
entire current database:

298

Functions and Operators

schema_to_xml(schema name, nulls boolean, tableforest boolean,
 targetns text)
schema_to_xmlschema(schema name, nulls boolean, tableforest boolean,
 targetns text)
schema_to_xml_and_xmlschema(schema name, nulls boolean, tableforest
 boolean, targetns text)

database_to_xml(nulls boolean, tableforest boolean, targetns text)
database_to_xmlschema(nulls boolean, tableforest boolean, targetns
 text)
database_to_xml_and_xmlschema(nulls boolean, tableforest boolean,
 targetns text)

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting
content mappings of large schemas or databases, it might be worthwhile to consider mapping the tables
separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>

table1-mapping

table2-mapping

...

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>

<schema1name>
 ...
</schema1name>

<schema2name>
 ...
</schema2name>

...

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Figure 9.1 shows an XSLT stylesheet that
converts the output of table_to_xml_and_xmlschema to an HTML document containing a tabular
rendition of the table data. In a similar manner, the results from these functions can be converted into other
XML-based formats.

299

Functions and Operators

Figure 9.1. XSLT Stylesheet for Converting SQL/XML Output to HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml"
>

 <xsl:output method="xml"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd"
 doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
 indent="yes"/>

 <xsl:template match="/*">
 <xsl:variable name="schema" select="//xsd:schema"/>
 <xsl:variable name="tabletypename"
 select="$schema/xsd:element[@name=name(current())]/
@type"/>
 <xsl:variable name="rowtypename"
 select="$schema/xsd:complexType[@name=
$tabletypename]/xsd:sequence/xsd:element[@name='row']/@type"/>

 <html>
 <head>
 <title><xsl:value-of select="name(current())"/></title>
 </head>
 <body>
 <table>
 <tr>
 <xsl:for-each select="$schema/xsd:complexType[@name=
$rowtypename]/xsd:sequence/xsd:element/@name">
 <th><xsl:value-of select="."/></th>
 </xsl:for-each>
 </tr>

 <xsl:for-each select="row">
 <tr>
 <xsl:for-each select="*">
 <td><xsl:value-of select="."/></td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

9.15. JSON Functions and Operators

300

Functions and Operators

Table 9.43 shows the operators that are available for use with the two JSON data types (see Section 8.14).

Table 9.43. json and jsonb Operators

Operator Right Operand
Type

Description Example Example Result

-> int Get JSON array
element (indexed
from zero, negative
integers count from
the end)

'[{"a":"foo"},
{"b":"bar"},
{"c":"baz"}]'::json-
>2

{"c":"baz"}

-> text Get JSON object
field by key

'{"a":
{"b":"foo"}}'::json-
>'a'

{"b":"foo"}

->> int Get JSON array
element as text

'[1,2,3]'::json-
>>2

3

->> text Get JSON object
field as text

'{"a":1,"b":2}'::json-
>>'b'

2

#> text[] Get JSON object at
specified path

'{"a": {"b":
{"c":
"foo"}}}'::json#>'{a,b}'

{"c": "foo"}

#>> text[] Get JSON object
at specified path as
text

'{"a":
[1,2,3],"b":
[4,5,6]}'::json#>>'{a,2}'

3

Note

There are parallel variants of these operators for both the json and jsonb types. The field/
element/path extraction operators return the same type as their left-hand input (either json or
jsonb), except for those specified as returning text, which coerce the value to text. The field/
element/path extraction operators return NULL, rather than failing, if the JSON input does not
have the right structure to match the request; for example if no such element exists. The field/
element/path extraction operators that accept integer JSON array subscripts all support negative
subscripting from the end of arrays.

The standard comparison operators shown in Table 9.1 are available for jsonb, but not for json. They
follow the ordering rules for B-tree operations outlined at Section 8.14.4.

Some further operators also exist only for jsonb, as shown in Table 9.44. Many of these operators can be
indexed by jsonb operator classes. For a full description of jsonb containment and existence semantics,
see Section 8.14.3. Section 8.14.4 describes how these operators can be used to effectively index jsonb
data.

Table 9.44. Additional jsonb Operators

Operator Right Operand Type Description Example

@> jsonb Does the left JSON value
contain the right JSON

'{"a":1,
"b":2}'::jsonb @>
'{"b":2}'::jsonb

301

Functions and Operators

Operator Right Operand Type Description Example

path/value entries at the
top level?

<@ jsonb Are the left JSON path/
value entries contained at
the top level within the
right JSON value?

'{"b":2}'::jsonb
<@ '{"a":1,
"b":2}'::jsonb

? text Does the string exist as a
top-level key within the
JSON value?

'{"a":1,
"b":2}'::jsonb ?
'b'

?| text[] Do any of these array
strings exist as top-level
keys?

'{"a":1, "b":2,
"c":3}'::jsonb ?|
array['b', 'c']

?& text[] Do all of these array
strings exist as top-level
keys?

'["a",
"b"]'::jsonb ?&
array['a', 'b']

|| jsonb Concatenate two jsonb
values into a new jsonb
value

'["a",
"b"]'::jsonb ||
'["c",
"d"]'::jsonb

- text Delete key/value pair or
string element from left
operand. Key/value pairs
are matched based on
their key value.

'{"a":
"b"}'::jsonb -
'a'

- text[] Delete multiple key/
value pairs or string
elements from left
operand. Key/value pairs
are matched based on
their key value.

'{"a": "b", "c":
"d"}'::jsonb -
'{a,c}'::text[]

- integer Delete the array element
with specified index
(Negative integers count
from the end). Throws
an error if top level
container is not an array.

'["a",
"b"]'::jsonb - 1

#- text[] Delete the field or
element with specified
path (for JSON arrays,
negative integers count
from the end)

'["a",
{"b":1}]'::jsonb
#- '{1,b}'

Note

The || operator concatenates the elements at the top level of each of its operands. It does not
operate recursively. For example, if both operands are objects with a common key field name, the
value of the field in the result will just be the value from the right hand operand.

302

Functions and Operators

Table 9.45 shows the functions that are available for creating json and jsonb values. (There are no
equivalent functions for jsonb, of the row_to_json and array_to_json functions. However, the
to_jsonb function supplies much the same functionality as these functions would.)

Table 9.45. JSON Creation Functions

Function Description Example Example Result

to_json(anyelement)

to_jsonb(anyelement)

Returns the value as
json or jsonb. Arrays
and composites are
converted (recursively)
to arrays and objects;
otherwise, if there is
a cast from the type
to json, the cast
function will be used to
perform the conversion;
otherwise, a scalar value
is produced. For any
scalar type other than
a number, a Boolean,
or a null value, the
text representation will
be used, in such a fashion
that it is a valid json or
jsonb value.

to_json('Fred
said
"Hi."'::text)

"Fred said \"Hi.
\""

array_to_json(anyarray
[, pretty_bool])

Returns the array as
a JSON array. A
PostgreSQL
multidimensional array
becomes a JSON array
of arrays. Line feeds
will be added between
dimension-1 elements if
pretty_bool is true.

array_to_json('{{1,5},
{99,100}}'::int[])

[[1,5],[99,100]]

row_to_json(record
[, pretty_bool])

Returns the row as
a JSON object. Line
feeds will be added
between level-1 elements
if pretty_bool is
true.

row_to_json(row(1,'foo')){"f1":1,"f2":"foo"}

json_build_array(VARIADIC
"any")

jsonb_build_array(VARIADIC
"any")

Builds a possibly-
heterogeneously-typed
JSON array out of a
variadic argument list.

json_build_array(1,2,'3',4,5)[1, 2, "3", 4, 5]

json_build_object(VARIADIC
"any")

jsonb_build_object(VARIADIC
"any")

Builds a JSON object out
of a variadic argument
list. By convention, the
argument list consists

json_build_object('foo',1,'bar',2){"foo": 1, "bar":
2}

303

Functions and Operators

Function Description Example Example Result

of alternating keys and
values.

json_object(text[])

jsonb_object(text[])

Builds a JSON object
out of a text array. The
array must have either
exactly one dimension
with an even number
of members, in which
case they are taken
as alternating key/value
pairs, or two dimensions
such that each inner array
has exactly two elements,
which are taken as a key/
value pair.

json_object('{a,
1, b, "def", c,
3.5}')

json_object('{{a,
1},{b, "def"},{c,
3.5}}')

{"a": "1", "b":
"def", "c":
"3.5"}

json_object(keys
text[], values
text[])

jsonb_object(keys
text[], values
text[])

This form of
json_object takes
keys and values pairwise
from two separate arrays.
In all other respects it
is identical to the one-
argument form.

json_object('{a,
b}', '{1,2}')

{"a": "1", "b":
"2"}

Note

array_to_json and row_to_json have the same behavior as to_json except for offering
a pretty-printing option. The behavior described for to_json likewise applies to each individual
value converted by the other JSON creation functions.

Note

The hstore extension has a cast from hstore to json, so that hstore values converted via the
JSON creation functions will be represented as JSON objects, not as primitive string values.

Table 9.46 shows the functions that are available for processing json and jsonb values.

Table 9.46. JSON Processing Functions

Function Return Type Description Example Example Result

json_array_length(json)

jsonb_array_length(jsonb)

int Returns the number
of elements in
the outermost JSON
array.

json_array_length('[1,2,3,
{"f1":1,"f2":
[5,6]},4]')

5

json_each(json)

jsonb_each(jsonb)

setof key
text, value
json

Expands the
outermost JSON
object into a set of
key/value pairs.

select * from
json_each('{"a":"foo",
"b":"bar"}')

 key | value
-----+-------
 a | "foo"

304

Functions and Operators

Function Return Type Description Example Example Result

setof key
text, value
jsonb

 b | "bar"

json_each_text(json)

jsonb_each_text(jsonb)

setof key
text, value
text

Expands the
outermost JSON
object into a set
of key/value pairs.
The returned values
will be of type
text.

select * from
json_each_text('{"a":"foo",
"b":"bar"}')

 key | value
-----+-------
 a | foo
 b | bar

json_extract_path(from_json
json,
VARIADIC
path_elems
text[])

jsonb_extract_path(from_json
jsonb,
VARIADIC
path_elems
text[])

json

jsonb

Returns JSON
value pointed to
by path_elems
(equivalent to #>
operator).

json_extract_path('{"f2":
{"f3":1},"f4":
{"f5":99,"f6":"foo"}}','f4')

{"f5":99,"f6":"foo"}

json_extract_path_text(from_json
json,
VARIADIC
path_elems
text[])

jsonb_extract_path_text(from_json
jsonb,
VARIADIC
path_elems
text[])

text Returns JSON
value pointed to by
path_elems as
text (equivalent
to #>> operator).

json_extract_path_text('{"f2":
{"f3":1},"f4":
{"f5":99,"f6":"foo"}}','f4',
'f6')

foo

json_object_keys(json)

jsonb_object_keys(jsonb)

setof text Returns set of keys
in the outermost
JSON object.

json_object_keys('{"f1":"abc","f2":
{"f3":"a",
"f4":"b"}}')

 json_object_keys

 f1
 f2

json_populate_record(base
anyelement,
from_json
json)

jsonb_populate_record(base
anyelement,
from_json
jsonb)

anyelement Expands the object
in from_json to a
row whose columns
match the record
type defined by
base (see note
below).

select * from
json_populate_record(null::myrowtype,
'{"a": 1,
"b": ["2",
"a b"], "c":
{"d": 4, "e":
"a b c"}}')

 a | b
c
+-----------
+-------------
 1 | {2,"a
 b"} | (4,"a
 b c")

json_populate_recordset(base
anyelement,
from_json
json)

setof
anyelement

Expands the
outermost array
of objects in
from_json to a

select * from
json_populate_recordset(null::myrowtype,
'[{"a":1,"b":2},
{"a":3,"b":4}]')

 a | b
---+---
 1 | 2

305

Functions and Operators

Function Return Type Description Example Example Result

jsonb_populate_recordset(base
anyelement,
from_json
jsonb)

set of rows whose
columns match the
record type defined
by base (see note
below).

 3 | 4

json_array_elements(json)

jsonb_array_elements(jsonb)

setof json

setof jsonb

Expands a JSON
array to a set of
JSON values.

select * from
json_array_elements('[1,true,
[2,false]]')

 value

 1
 true
 [2,false]

json_array_elements_text(json)

jsonb_array_elements_text(jsonb)

setof text Expands a JSON
array to a set of
text values.

select * from
json_array_elements_text('["foo",
"bar"]')

 value

 foo
 bar

json_typeof(json)

jsonb_typeof(jsonb)

text Returns the type
of the outermost
JSON value as
a text string.
Possible types are
object, array,
string, number,
boolean, and
null.

json_typeof('-123.4')number

json_to_record(json)

jsonb_to_record(jsonb)

record Builds an arbitrary
record from a
JSON object (see
note below). As
with all functions
returning record,
the caller must
explicitly define the
structure of the
record with an AS
clause.

select * from
json_to_record('{"a":1,"b":
[1,2,3],"c":
[1,2,3],"e":"bar","r":
{"a": 123,
"b": "a b
c"}}') as x(a
int, b text,
c int[],
d text, r
myrowtype)

 a | b
 | c |
 d | r
---+---------
+---------
+---
+---------------
 1 | [1,2,3]
 | {1,2,3} |
 | (123,"a b
 c")

json_to_recordset(json)

jsonb_to_recordset(jsonb)

setof record Builds an arbitrary
set of records
from a JSON array
of objects (see
note below). As
with all functions
returning record,
the caller must
explicitly define the
structure of the
record with an AS
clause.

select * from
json_to_recordset('[{"a":1,"b":"foo"},
{"a":"2","c":"bar"}]')
as x(a int, b
text);

 a | b
---+-----
 1 | foo
 2 |

306

Functions and Operators

Function Return Type Description Example Example Result

json_strip_nulls(from_json
json)

jsonb_strip_nulls(from_json
jsonb)

json

jsonb

Returns
from_json with
all object fields
that have null
values omitted.
Other null values
are untouched.

json_strip_nulls('[{"f1":1,"f2":null},2,null,3]')[{"f1":1},2,null,3]

jsonb_set(target
jsonb, path
text[],
new_value
jsonb[,
create_missing
boolean])

jsonb Returns target
with the section
designated by
path replaced by
new_value, or
with new_value
added if
create_missing
is true (default
is true) and the
item designated by
path does not
exist. As with
the path orientated
operators, negative
integers that appear
in path count from
the end of JSON
arrays.

jsonb_set('[{"f1":1,"f2":null},2,null,3]',
'{0,f1}','[2,3,4]',
false)

jsonb_set('[{"f1":1,"f2":null},2]',
'{0,f3}','[2,3,4]')

[{"f1":
[2,3,4],"f2":null},2,null,3]

[{"f1": 1,
"f2": null,
"f3": [2, 3,
4]}, 2]

jsonb_insert(target
jsonb, path
text[],
new_value
jsonb,
[insert_after
boolean])

jsonb Returns target
with new_value
inserted. If
target section
designated by
path is in
a JSONB array,
new_value will
be inserted before
target or after if
insert_after
is true (default
is false). If
target section
designated by
path is in
JSONB object,
new_value will
be inserted only
if target does
not exist. As with
the path orientated
operators, negative
integers that appear
in path count from

jsonb_insert('{"a":
[0,1,2]}',
'{a, 1}',
'"new_value"')

jsonb_insert('{"a":
[0,1,2]}',
'{a, 1}',
'"new_value"',
true)

{"a": [0,
"new_value",
1, 2]}

{"a": [0, 1,
"new_value",
2]}

307

Functions and Operators

Function Return Type Description Example Example Result

the end of JSON
arrays.

jsonb_pretty(from_json
jsonb)

text Returns
from_json as
indented JSON text.

jsonb_pretty('[{"f1":1,"f2":null},2,null,3]')
[
 {
 "f1":
 1,
 "f2":
 null
 },
 2,
 null,
 3
]

Note

Many of these functions and operators will convert Unicode escapes in JSON strings to the
appropriate single character. This is a non-issue if the input is type jsonb, because the conversion
was already done; but for json input, this may result in throwing an error, as noted in Section 8.14.

Note

While the examples for the functions json_populate_record,
json_populate_recordset, json_to_record and json_to_recordset use
constants, the typical use would be to reference a table in the FROM clause and use one of its json
or jsonb columns as an argument to the function. Extracted key values can then be referenced
in other parts of the query, like WHERE clauses and target lists. Extracting multiple values in this
way can improve performance over extracting them separately with per-key operators.

JSON keys are matched to identical column names in the target row type. JSON type coercion for
these functions is “best effort” and may not result in desired values for some types. JSON fields
that do not appear in the target row type will be omitted from the output, and target columns that
do not match any JSON field will simply be NULL.

Note

All the items of the path parameter of jsonb_set as well as jsonb_insert except the
last item must be present in the target. If create_missing is false, all items of the path
parameter of jsonb_set must be present. If these conditions are not met the target is returned
unchanged.

If the last path item is an object key, it will be created if it is absent and given the new value. If the
last path item is an array index, if it is positive the item to set is found by counting from the left, and
if negative by counting from the right - -1 designates the rightmost element, and so on. If the item
is out of the range -array_length .. array_length -1, and create_missing is true, the new value is
added at the beginning of the array if the item is negative, and at the end of the array if it is positive.

308

Functions and Operators

Note

The json_typeof function's null return value should not be confused with a
SQL NULL. While calling json_typeof('null'::json) will return null, calling
json_typeof(NULL::json) will return a SQL NULL.

Note

If the argument to json_strip_nulls contains duplicate field names in any object, the result
could be semantically somewhat different, depending on the order in which they occur. This is not
an issue for jsonb_strip_nulls since jsonb values never have duplicate object field names.

See also Section 9.20 for the aggregate function json_agg which aggregates record values as JSON,
and the aggregate function json_object_agg which aggregates pairs of values into a JSON object,
and their jsonb equivalents, jsonb_agg and jsonb_object_agg.

9.16. Sequence Manipulation Functions
This section describes functions for operating on sequence objects, also called sequence generators or just
sequences. Sequence objects are special single-row tables created with CREATE SEQUENCE. Sequence
objects are commonly used to generate unique identifiers for rows of a table. The sequence functions,
listed in Table 9.47, provide simple, multiuser-safe methods for obtaining successive sequence values from
sequence objects.

Table 9.47. Sequence Functions

Function Return Type Description

currval(regclass) bigint Return value most recently
obtained with nextval for
specified sequence

lastval() bigint Return value most recently
obtained with nextval for any
sequence

nextval(regclass) bigint Advance sequence and return new
value

setval(regclass,
bigint)

bigint Set sequence's current value

setval(regclass,
bigint, boolean)

bigint Set sequence's current value and
is_called flag

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID
by hand, however, since the regclass data type's input converter will do the work for you. Just write
the sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility with
the handling of ordinary SQL names, the string will be converted to lower case unless it contains double
quotes around the sequence name. Thus:

309

Functions and Operators

nextval('foo') operates on sequence foo
nextval('FOO') operates on sequence foo
nextval('"Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval('myschema.foo') operates on myschema.foo
nextval('"myschema".foo') same as above
nextval('foo') searches search path for foo

See Section 8.19 for more information about regclass.

Note

Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backward compatibility, this facility still exists, but internally it
is now handled as an implicit coercion from text to regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes a
constant of type regclass. Since this is really just an OID, it will track the originally identified
sequence despite later renaming, schema reassignment, etc. This “early binding” behavior is
usually desirable for sequence references in column defaults and views. But sometimes you might
want “late binding” where the sequence reference is resolved at run time. To get late-binding
behavior, force the constant to be stored as a text constant instead of regclass:

nextval('foo'::text) foo is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is
a text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple sessions execute nextval concurrently, each will safely receive a distinct sequence value.

If a sequence object has been created with default parameters, successive nextval calls will return
successive values beginning with 1. Other behaviors can be obtained by using special parameters in
the CREATE SEQUENCE command; see its command reference page for more information.

Important

To avoid blocking concurrent transactions that obtain numbers from the same sequence, a
nextval operation is never rolled back; that is, once a value has been fetched it is considered
used and will not be returned again. This is true even if the surrounding transaction later
aborts, or if the calling query ends up not using the value. For example an INSERT with an

310

Functions and Operators

ON CONFLICT clause will compute the to-be-inserted tuple, including doing any required
nextval calls, before detecting any conflict that would cause it to follow the ON CONFLICT
rule instead. Such cases will leave unused “holes” in the sequence of assigned values. Thus,
PostgreSQL sequence objects cannot be used to obtain “gapless” sequences.

This function requires USAGE or UPDATE privilege on the sequence.

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this
is returning a session-local value, it gives a predictable answer whether or not other sessions have
executed nextval since the current session did.

This function requires USAGE or SELECT privilege on the sequence.

lastval

Return the value most recently returned by nextval in the current session. This function is identical
to currval, except that instead of taking the sequence name as an argument it refers to whichever
sequence nextval was most recently applied to in the current session. It is an error to call lastval
if nextval has not yet been called in the current session.

This function requires USAGE or SELECT privilege on the last used sequence.

setval

Reset the sequence object's counter value. The two-parameter form sets the sequence's last_value
field to the specified value and sets its is_called field to true, meaning that the next nextval
will advance the sequence before returning a value. The value reported by currval is also set to the
specified value. In the three-parameter form, is_called can be set to either true or false. true
has the same effect as the two-parameter form. If it is set to false, the next nextval will return
exactly the specified value, and sequence advancement commences with the following nextval.
Furthermore, the value reported by currval is not changed in this case. For example,

SELECT setval('foo', 42); Next nextval will return 43
SELECT setval('foo', 42, true); Same as above
SELECT setval('foo', 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

Important

Because sequences are non-transactional, changes made by setval are not undone if the
transaction rolls back.

This function requires UPDATE privilege on the sequence.

9.17. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in PostgreSQL.

311

Functions and Operators

Tip

If your needs go beyond the capabilities of these conditional expressions, you might want to
consider writing a server-side function in a more expressive programming language.

9.17.1. CASE
The SQL CASE expression is a generic conditional expression, similar to if/else statements in other
programming languages:

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns
a boolean result. If the condition's result is true, the value of the CASE expression is the result that
follows the condition, and the remainder of the CASE expression is not processed. If the condition's result
is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition
yields true, the value of the CASE expression is the result of the ELSE clause. If the ELSE clause is
omitted and no condition is true, the result is null.

An example:

SELECT * FROM test;

 a

 1
 2
 3

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

312

Functions and Operators

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

The first expression is computed, then compared to each of the value expressions in the WHEN
clauses until one is found that is equal to it. If no match is found, the result of the ELSE clause (or a
null value) is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

A CASE expression does not evaluate any subexpressions that are not needed to determine the result. For
example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

Note

As described in Section 4.2.14, there are various situations in which subexpressions of an
expression are evaluated at different times, so that the principle that “CASE evaluates only
necessary subexpressions” is not ironclad. For example a constant 1/0 subexpression will usually
result in a division-by-zero failure at planning time, even if it's within a CASE arm that would
never be entered at run time.

9.17.2. COALESCE

COALESCE(value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved for
display, for example:

SELECT COALESCE(description, short_description, '(none)') ...

This returns description if it is not null, otherwise short_description if it is not null, otherwise
(none).

313

Functions and Operators

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result;
that is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard function
provides capabilities similar to NVL and IFNULL, which are used in some other database systems.

9.17.3. NULLIF

NULLIF(value1, value2)

The NULLIF function returns a null value if value1 equals value2; otherwise it returns value1. This
can be used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF(value, '(none)') ...

In this example, if value is (none), null is returned, otherwise the value of value is returned.

9.17.4. GREATEST and LEAST

GREATEST(value [, ...])

LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of the
result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL only
if all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

9.18. Array Functions and Operators
Table 9.48 shows the operators available for array types.

Table 9.48. Array Operators

Operator Description Example Result

= equal ARRAY[1.1,2.1,3.1]::int[]
= ARRAY[1,2,3]

t

<> not equal ARRAY[1,2,3] <>
ARRAY[1,2,4]

t

< less than ARRAY[1,2,3] <
ARRAY[1,2,4]

t

> greater than ARRAY[1,4,3] >
ARRAY[1,2,4]

t

<= less than or equal ARRAY[1,2,3] <=
ARRAY[1,2,3]

t

>= greater than or equal ARRAY[1,4,3] >=
ARRAY[1,4,3]

t

314

Functions and Operators

Operator Description Example Result

@> contains ARRAY[1,4,3] @>
ARRAY[3,1]

t

<@ is contained by ARRAY[2,7] <@
ARRAY[1,7,4,2,6]

t

&& overlap (have elements
in common)

ARRAY[1,4,3] &&
ARRAY[2,1]

t

|| array-to-array
concatenation

ARRAY[1,2,3] ||
ARRAY[4,5,6]

{1,2,3,4,5,6}

|| array-to-array
concatenation

ARRAY[1,2,3] ||
ARRAY[[4,5,6],
[7,8,9]]

{{1,2,3},
{4,5,6},{7,8,9}}

|| element-to-array
concatenation

3 || ARRAY[4,5,6] {3,4,5,6}

|| array-to-element
concatenation

ARRAY[4,5,6] || 7 {4,5,6,7}

Array comparisons compare the array contents element-by-element, using the default B-tree comparison
function for the element data type. In multidimensional arrays the elements are visited in row-major
order (last subscript varies most rapidly). If the contents of two arrays are equal but the dimensionality
is different, the first difference in the dimensionality information determines the sort order. (This is a
change from versions of PostgreSQL prior to 8.2: older versions would claim that two arrays with the same
contents were equal, even if the number of dimensions or subscript ranges were different.)

See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details about
which operators support indexed operations.

Table 9.49 shows the functions available for use with array types. See Section 8.15 for more information
and examples of the use of these functions.

Table 9.49. Array Functions

Function Return Type Description Example Result

array_append(anyarray,
anyelement)

anyarray append an element
to the end of an
array

array_append(ARRAY[1,2],
3)

{1,2,3}

array_cat(anyarray,
anyarray)

anyarray concatenate two
arrays

array_cat(ARRAY[1,2,3],
ARRAY[4,5])

{1,2,3,4,5}

array_ndims(anyarray)int returns the number
of dimensions of the
array

array_ndims(ARRAY[[1,2,3],
[4,5,6]])

2

array_dims(anyarray)text returns a text
representation of
array's dimensions

array_dims(ARRAY[[1,2,3],
[4,5,6]])

[1:2][1:3]

array_fill(anyelement,
int[] [,
int[]])

anyarray returns an array
initialized with
supplied value
and dimensions,
optionally with

array_fill(7,
ARRAY[3],
ARRAY[2])

[2:4]={7,7,7}

315

Functions and Operators

Function Return Type Description Example Result

lower bounds other
than 1

array_length(anyarray,
int)

int returns the length of
the requested array
dimension

array_length(array[1,2,3],
1)

3

array_lower(anyarray,
int)

int returns lower bound
of the requested
array dimension

array_lower('[0:2]={1,2,3}'::int[],
1)

0

array_position(anyarray,
anyelement [,
int])

int returns the subscript
of the first
occurrence of the
second argument in
the array, starting
at the element
indicated by the
third argument or
at the first element
(array must be one-
dimensional)

array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'],
'mon')

2

array_positions(anyarray,
anyelement)

int[] returns an array of
subscripts of all
occurrences of the
second argument in
the array given
as first argument
(array must be one-
dimensional)

array_positions(ARRAY['A','A','B','A'],
'A')

{1,2,4}

array_prepend(anyelement,
anyarray)

anyarray append an element
to the beginning of
an array

array_prepend(1,
ARRAY[2,3])

{1,2,3}

array_remove(anyarray,
anyelement)

anyarray remove all elements
equal to the given
value from the array
(array must be one-
dimensional)

array_remove(ARRAY[1,2,3,2],
2)

{1,3}

array_replace(anyarray,
anyelement,
anyelement)

anyarray replace each array
element equal to the
given value with a
new value

array_replace(ARRAY[1,2,5,4],
5, 3)

{1,2,3,4}

array_to_string(anyarray,
text [,
text])

text concatenates array
elements using
supplied delimiter
and optional null
string

array_to_string(ARRAY[1,
2, 3, NULL,
5], ',', '*')

1,2,3,*,5

array_upper(anyarray,
int)

int returns upper bound
of the requested
array dimension

array_upper(ARRAY[1,8,3,7],
1)

4

316

Functions and Operators

Function Return Type Description Example Result

cardinality(anyarray)int returns the total
number of elements
in the array, or 0 if
the array is empty

cardinality(ARRAY[[1,2],
[3,4]])

4

string_to_array(text,
text [,
text])

text[] splits string into
array elements
using supplied
delimiter and
optional null string

string_to_array('xx~^~yy~^~zz',
'~^~', 'yy')

{xx,NULL,zz}

unnest(anyarray)setof
anyelement

expand an array to a
set of rows

unnest(ARRAY[1,2])1
2

(2 rows)

unnest(anyarray,
anyarray
[, ...])

setof
anyelement,
anyelement
[, ...]

expand multiple
arrays (possibly of
different types) to a
set of rows. This is
only allowed in the
FROM clause; see
Section 7.2.1.4

unnest(ARRAY[1,2],ARRAY['foo','bar','baz'])1 foo
2 bar
NULL baz

(3 rows)

In array_position and array_positions, each array element is compared to the searched value
using IS NOT DISTINCT FROM semantics.

In array_position, NULL is returned if the value is not found.

In array_positions, NULL is returned only if the array is NULL; if the value is not found in the array,
an empty array is returned instead.

In string_to_array, if the delimiter parameter is NULL, each character in the input string will
become a separate element in the resulting array. If the delimiter is an empty string, then the entire input
string is returned as a one-element array. Otherwise the input string is split at each occurrence of the
delimiter string.

In string_to_array, if the null-string parameter is omitted or NULL, none of the substrings of the
input will be replaced by NULL. In array_to_string, if the null-string parameter is omitted or NULL,
any null elements in the array are simply skipped and not represented in the output string.

Note

There are two differences in the behavior of string_to_array from pre-9.1 versions of
PostgreSQL. First, it will return an empty (zero-element) array rather than NULL when the input
string is of zero length. Second, if the delimiter string is NULL, the function splits the input into
individual characters, rather than returning NULL as before.

See also Section 9.20 about the aggregate function array_agg for use with arrays.

9.19. Range Functions and Operators
See Section 8.17 for an overview of range types.

317

Functions and Operators

Table 9.50 shows the operators available for range types.

Table 9.50. Range Operators

Operator Description Example Result

= equal int4range(1,5) =
'[1,4]'::int4range

t

<> not equal numrange(1.1,2.2)
<>
numrange(1.1,2.3)

t

< less than int4range(1,10) <
int4range(2,3)

t

> greater than int4range(1,10) >
int4range(1,5)

t

<= less than or equal numrange(1.1,2.2)
<=
numrange(1.1,2.2)

t

>= greater than or equal numrange(1.1,2.2)
>=
numrange(1.1,2.0)

t

@> contains range int4range(2,4) @>
int4range(2,3)

t

@> contains element '[2011-01-01,2011-03-01)'::tsrange
@>
'2011-01-10'::timestamp

t

<@ range is contained by int4range(2,4) <@
int4range(1,7)

t

<@ element is contained by 42 <@
int4range(1,7)

f

&& overlap (have points in
common)

int8range(3,7) &&
int8range(4,12)

t

<< strictly left of int8range(1,10)
<<
int8range(100,110)

t

>> strictly right of int8range(50,60)
>>
int8range(20,30)

t

&< does not extend to the
right of

int8range(1,20)
&<
int8range(18,20)

t

&> does not extend to the left
of

int8range(7,20)
&>
int8range(5,10)

t

-	- is adjacent to numrange(1.1,2.2)
numrange(2.2,3.3)

t

318

Functions and Operators

Operator Description Example Result

+ union numrange(5,15) +
numrange(10,20)

[5,20)

* intersection int8range(5,15) *
int8range(10,20)

[10,15)

- difference int8range(5,15) -
int8range(10,20)

[5,10)

The simple comparison operators <, >, <=, and >= compare the lower bounds first, and only if those
are equal, compare the upper bounds. These comparisons are not usually very useful for ranges, but are
provided to allow B-tree indexes to be constructed on ranges.

The left-of/right-of/adjacent operators always return false when an empty range is involved; that is, an
empty range is not considered to be either before or after any other range.

The union and difference operators will fail if the resulting range would need to contain two disjoint sub-
ranges, as such a range cannot be represented.

Table 9.51 shows the functions available for use with range types.

Table 9.51. Range Functions

Function Return Type Description Example Result

lower(anyrange)range's element
type

lower bound of
range

lower(numrange(1.1,2.2))1.1

upper(anyrange)range's element
type

upper bound of
range

upper(numrange(1.1,2.2))2.2

isempty(anyrange)boolean is the range empty? isempty(numrange(1.1,2.2))false

lower_inc(anyrange)boolean is the lower bound
inclusive?

lower_inc(numrange(1.1,2.2))true

upper_inc(anyrange)boolean is the upper bound
inclusive?

upper_inc(numrange(1.1,2.2))false

lower_inf(anyrange)boolean is the lower bound
infinite?

lower_inf('(,)'::daterange)true

upper_inf(anyrange)boolean is the upper bound
infinite?

upper_inf('(,)'::daterange)true

range_merge(anyrange,
anyrange)

anyrange the smallest range
which includes both
of the given ranges

range_merge('[1,2)'::int4range,
'[3,4)'::int4range)

[1,4)

The lower and upper functions return null if the range is empty or the requested bound is infinite. The
lower_inc, upper_inc, lower_inf, and upper_inf functions all return false for an empty range.

9.20. Aggregate Functions
Aggregate functions compute a single result from a set of input values. The built-in general-purpose
aggregate functions are listed in Table 9.52 and statistical aggregates in Table 9.53. The built-in within-
group ordered-set aggregate functions are listed in Table 9.54 while the built-in within-group hypothetical-
set ones are in Table 9.55. Grouping operations, which are closely related to aggregate functions, are listed

319

Functions and Operators

in Table 9.56. The special syntax considerations for aggregate functions are explained in Section 4.2.7.
Consult Section 2.7 for additional introductory information.

Table 9.52. General-Purpose Aggregate Functions

Function Argument Type(s) Return Type Partial Mode Description

array_agg(expression)
any non-array type array of the

argument type
No input values,

including nulls,
concatenated into
an array

array_agg(expression)any array type same as argument
data type

No input arrays
concatenated into
array of one higher
dimension (inputs
must all have same
dimensionality, and
cannot be empty or
NULL)

avg(expression)

smallint, int,
bigint, real,
double
precision,
numeric, or
interval

numeric for
any integer-type
argument, double
precision for
a floating-point
argument,
otherwise the same
as the argument
data type

Yes the average
(arithmetic mean)
of all input values

bit_and(expression)
smallint, int,
bigint, or bit

same as argument
data type

Yes the bitwise AND of
all non-null input
values, or null if
none

bit_or(expression)
smallint, int,
bigint, or bit

same as argument
data type

Yes the bitwise OR of
all non-null input
values, or null if
none

bool_and(expression)
bool bool Yes true if all input

values are true,
otherwise false

bool_or(expression)
bool bool Yes true if at least one

input value is true,
otherwise false

 count(*) bigint Yes number of input
rows

count(expression)any bigint Yes number of input
rows for which
the value of
expression is
not null

every(expression)
bool bool Yes equivalent to

bool_and

320

Functions and Operators

Function Argument Type(s) Return Type Partial Mode Description

json_agg(expression)
any json No aggregates values

as a JSON array

jsonb_agg(expression)
any jsonb No aggregates values

as a JSON array

json_object_agg(name,
value)

(any, any) json No aggregates name/
value pairs as a
JSON object

jsonb_object_agg(name,
value)

(any, any) jsonb No aggregates name/
value pairs as a
JSON object

max(expression)
any numeric, string,
date/time, network,
or enum type, or
arrays of these types

same as argument
type

Yes maximum value
of expression
across all input
values

min(expression)
any numeric, string,
date/time, network,
or enum type, or
arrays of these types

same as argument
type

Yes minimum value
of expression
across all input
values

string_agg(expression,
delimiter)

(text, text) or
(bytea, bytea)

same as argument
types

No input values
concatenated into a
string, separated by
delimiter

sum(expression)
smallint, int,
bigint, real,
double
precision,
numeric,
interval, or
money

bigint for
smallint or
int arguments,
numeric for
bigint
arguments,
otherwise the same
as the argument
data type

Yes sum of
expression
across all input
values

xmlagg(expression)
xml xml No concatenation of

XML values (see
also
Section 9.14.1.7)

It should be noted that except for count, these functions return a null value when no rows are selected. In
particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null rather
than an empty array when there are no input rows. The coalesce function can be used to substitute zero
or an empty array for null when necessary.

Aggregate functions which support Partial Mode are eligible to participate in various optimizations, such
as parallel aggregation.

Note

Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates every
and any or some. As for any and some, it seems that there is an ambiguity built into the standard
syntax:

321

Functions and Operators

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

Here ANY can be considered either as introducing a subquery, or as being an aggregate function,
if the subquery returns one row with a Boolean value. Thus the standard name cannot be given
to these aggregates.

Note

Users accustomed to working with other SQL database management systems might be
disappointed by the performance of the count aggregate when it is applied to the entire table.
A query like:

SELECT count(*) FROM sometable;

will require effort proportional to the size of the table: PostgreSQL will need to scan either the
entire table or the entirety of an index which includes all rows in the table.

The aggregate functions array_agg, json_agg, jsonb_agg, json_object_agg,
jsonb_object_agg, string_agg, and xmlagg, as well as similar user-defined aggregate
functions, produce meaningfully different result values depending on the order of the input values. This
ordering is unspecified by default, but can be controlled by writing an ORDER BY clause within the
aggregate call, as shown in Section 4.2.7. Alternatively, supplying the input values from a sorted subquery
will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

Beware that this approach can fail if the outer query level contains additional processing, such as a join,
because that might cause the subquery's output to be reordered before the aggregate is computed.

Table 9.53 shows aggregate functions typically used in statistical analysis. (These are separated out merely
to avoid cluttering the listing of more-commonly-used aggregates.) Where the description mentions N,
it means the number of input rows for which all the input expressions are non-null. In all cases, null is
returned if the computation is meaningless, for example when N is zero.

Table 9.53. Aggregate Functions for Statistics

Function Argument Type Return Type Partial Mode Description

 corr(Y, X) double
precision

double
precision

Yes correlation
coefficient

 covar_pop(Y,
X)

double
precision

double
precision

Yes population
covariance

covar_samp(Y,
X)

double
precision

double
precision

Yes sample covariance

 regr_avgx(Y,
X)

double
precision

double
precision

Yes average of the
independent
variable (sum(X)/
N)

322

Functions and Operators

Function Argument Type Return Type Partial Mode Description

 regr_avgy(Y,
X)

double
precision

double
precision

Yes average of the
dependent variable
(sum(Y)/N)

regr_count(Y,
X)

double
precision

bigint Yes number of input
rows in which
both expressions
are nonnull

regr_intercept(Y,
X)

double
precision

double
precision

Yes y-intercept of the
least-squares-fit
linear equation
determined by the
(X, Y) pairs

 regr_r2(Y, X) double
precision

double
precision

Yes square of the
correlation
coefficient

regr_slope(Y,
X)

double
precision

double
precision

Yes slope of the least-
squares-fit linear
equation
determined by the
(X, Y) pairs

 regr_sxx(Y,
X)

double
precision

double
precision

Yes sum(X^2) -
sum(X)^2/N
(“sum of squares”
of the independent
variable)

 regr_sxy(Y,
X)

double
precision

double
precision

Yes sum(X*Y) -
sum(X) *
sum(Y)/N (“sum
of products” of
independent times
dependent variable)

 regr_syy(Y,
X)

double
precision

double
precision

Yes sum(Y^2) -
sum(Y)^2/N
(“sum of squares”
of the dependent
variable)

stddev(expression)

smallint, int,
bigint, real,
double
precision, or
numeric

double
precision for
floating-point
arguments,
otherwise
numeric

Yes historical alias for
stddev_samp

stddev_pop(expression)

smallint, int,
bigint, real,
double
precision, or
numeric

double
precision for
floating-point
arguments,
otherwise
numeric

Yes population standard
deviation of the
input values

323

Functions and Operators

Function Argument Type Return Type Partial Mode Description

stddev_samp(expression)

smallint, int,
bigint, real,
double
precision, or
numeric

double
precision for
floating-point
arguments,
otherwise
numeric

Yes sample standard
deviation of the
input values

variance(expression)
smallint, int,
bigint, real,
double
precision, or
numeric

double
precision for
floating-point
arguments,
otherwise
numeric

Yes historical alias for
var_samp

var_pop(expression)

smallint, int,
bigint, real,
double
precision, or
numeric

double
precision for
floating-point
arguments,
otherwise
numeric

Yes population variance
of the input values
(square of the
population standard
deviation)

var_samp(expression)

smallint, int,
bigint, real,
double
precision, or
numeric

double
precision for
floating-point
arguments,
otherwise
numeric

Yes sample variance of
the input values
(square of the
sample standard
deviation)

Table 9.54 shows some aggregate functions that use the ordered-set aggregate syntax. These functions
are sometimes referred to as “inverse distribution” functions.

Table 9.54. Ordered-Set Aggregate Functions

Function Direct
Argument
Type(s)

Aggregated
Argument
Type(s)

Return Type Partial Mode Description

 mode()
WITHIN
GROUP
(ORDER BY
sort_expression)

any sortable
type

same as sort
expression

No returns the
most frequent
input value
(arbitrarily
choosing the
first one if there
are multiple
equally-
frequent results)

percentile_cont(fraction)
WITHIN
GROUP
(ORDER BY
sort_expression)

double
precision

double
precision or
interval

same as sort
expression

No continuous
percentile:
returns a value
corresponding
to the specified
fraction in
the ordering,
interpolating

324

Functions and Operators

Function Direct
Argument
Type(s)

Aggregated
Argument
Type(s)

Return Type Partial Mode Description

between
adjacent input
items if needed

percentile_cont(fractions)
WITHIN
GROUP
(ORDER BY
sort_expression)

double
precision[]

double
precision or
interval

array of sort
expression's
type

No multiple
continuous
percentile:
returns an array
of results
matching the
shape of the
fractions
parameter, with
each non-null
element
replaced by the
value
corresponding
to that
percentile

percentile_disc(fraction)
WITHIN
GROUP
(ORDER BY
sort_expression)

double
precision

any sortable
type

same as sort
expression

No discrete
percentile:
returns the first
input value
whose position
in the ordering
equals or
exceeds the
specified
fraction

percentile_disc(fractions)
WITHIN
GROUP
(ORDER BY
sort_expression)

double
precision[]

any sortable
type

array of sort
expression's
type

No multiple
discrete
percentile:
returns an array
of results
matching the
shape of the
fractions
parameter, with
each non-null
element
replaced by
the input value
corresponding
to that
percentile

All the aggregates listed in Table 9.54 ignore null values in their sorted input. For those that take a
fraction parameter, the fraction value must be between 0 and 1; an error is thrown if not. However, a
null fraction value simply produces a null result.

325

Functions and Operators

Each of the aggregates listed in Table 9.55 is associated with a window function of the same name defined
in Section 9.21. In each case, the aggregate result is the value that the associated window function would
have returned for the “hypothetical” row constructed from args, if such a row had been added to the
sorted group of rows computed from the sorted_args.

Table 9.55. Hypothetical-Set Aggregate Functions

Function Direct
Argument
Type(s)

Aggregated
Argument
Type(s)

Return Type Partial Mode Description

 rank(args)
WITHIN
GROUP
(ORDER BY
sorted_args)

VARIADIC
"any"

VARIADIC
"any"

bigint No rank of the
hypothetical
row, with gaps
for duplicate
rows

dense_rank(args)
WITHIN
GROUP
(ORDER BY
sorted_args)

VARIADIC
"any"

VARIADIC
"any"

bigint No rank of the
hypothetical
row, without
gaps

percent_rank(args)
WITHIN
GROUP
(ORDER BY
sorted_args)

VARIADIC
"any"

VARIADIC
"any"

double
precision

No relative rank of
the hypothetical
row, ranging
from 0 to 1

cume_dist(args)
WITHIN
GROUP
(ORDER BY
sorted_args)

VARIADIC
"any"

VARIADIC
"any"

double
precision

No relative rank of
the hypothetical
row, ranging
from 1/N to 1

For each of these hypothetical-set aggregates, the list of direct arguments given in args must match the
number and types of the aggregated arguments given in sorted_args. Unlike most built-in aggregates,
these aggregates are not strict, that is they do not drop input rows containing nulls. Null values sort
according to the rule specified in the ORDER BY clause.

Table 9.56. Grouping Operations

Function Return Type Description

 GROUPING(args...) integer Integer bit mask indicating which
arguments are not being included
in the current grouping set

Grouping operations are used in conjunction with grouping sets (see Section 7.2.4) to distinguish result
rows. The arguments to the GROUPING operation are not actually evaluated, but they must match exactly
expressions given in the GROUP BY clause of the associated query level. Bits are assigned with the
rightmost argument being the least-significant bit; each bit is 0 if the corresponding expression is included
in the grouping criteria of the grouping set generating the result row, and 1 if it is not. For example:

326

Functions and Operators

=> SELECT * FROM items_sold;
 make | model | sales
-------+-------+-------
 Foo | GT | 10
 Foo | Tour | 20
 Bar | City | 15
 Bar | Sport | 5
(4 rows)

=> SELECT make, model, GROUPING(make,model), sum(sales) FROM
 items_sold GROUP BY ROLLUP(make,model);
 make | model | grouping | sum
-------+-------+----------+-----
 Foo | GT | 0 | 10
 Foo | Tour | 0 | 20
 Bar | City | 0 | 15
 Bar | Sport | 0 | 5
 Foo | | 1 | 30
 Bar | | 1 | 20
 | | 3 | 50
(7 rows)

9.21. Window Functions
Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature, and Section 4.2.8 for syntax details.

The built-in window functions are listed in Table 9.57. Note that these functions must be invoked using
window function syntax, i.e., an OVER clause is required.

In addition to these functions, any built-in or user-defined general-purpose or statistical aggregate (i.e.,
not ordered-set or hypothetical-set aggregates) can be used as a window function; see Section 9.20 for a
list of the built-in aggregates. Aggregate functions act as window functions only when an OVER clause
follows the call; otherwise they act as non-window aggregates and return a single row for the entire set.

Table 9.57. General-Purpose Window Functions

Function Return Type Description

 row_number() bigint number of the current row within
its partition, counting from 1

 rank() bigint rank of the current row with gaps;
same as row_number of its first
peer

 dense_rank() bigint rank of the current row without
gaps; this function counts peer
groups

 percent_rank() double precision relative rank of the current row:
(rank - 1) / (total partition rows
- 1)

 cume_dist() double precision cumulative distribution: (number
of partition rows preceding or peer

327

Functions and Operators

Function Return Type Description

with current row) / total partition
rows

 ntile(num_buckets
integer)

integer integer ranging from 1 to the
argument value, dividing the
partition as equally as possible

 lag(value anyelement
[, offset integer [,
default anyelement]])

same type as value returns value evaluated at the
row that is offset rows before
the current row within the
partition; if there is no such
row, instead return default
(which must be of the same
type as value). Both offset
and default are evaluated with
respect to the current row. If
omitted, offset defaults to 1
and default to null

 lead(value anyelement
[, offset integer [,
default anyelement]])

same type as value returns value evaluated at the
row that is offset rows after the
current row within the partition;
if there is no such row, instead
return default (which must be
of the same type as value).
Both offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to null

 first_value(value any) same type as value returns value evaluated at the
row that is the first row of the
window frame

 last_value(value any) same type as value returns value evaluated at the
row that is the last row of the
window frame

 nth_value(value any,
nth integer)

same type as value returns value evaluated at the
row that is the nth row of the
window frame (counting from 1);
null if no such row

All of the functions listed in Table 9.57 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct when considering only the ORDER BY
columns are said to be peers. The four ranking functions (including cume_dist) are defined so that they
give the same answer for all peer rows.

Note that first_value, last_value, and nth_value consider only the rows within the “window
frame”, which by default contains the rows from the start of the partition through the last peer of the current
row. This is likely to give unhelpful results for last_value and sometimes also nth_value. You
can redefine the frame by adding a suitable frame specification (RANGE, ROWS or GROUPS) to the OVER
clause. See Section 4.2.8 for more information about frame specifications.

When an aggregate function is used as a window function, it aggregates over the rows within the current
row's window frame. An aggregate used with ORDER BY and the default window frame definition
produces a “running sum” type of behavior, which may or may not be what's wanted. To obtain aggregation

328

Functions and Operators

over the whole partition, omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING. Other frame specifications can be used to obtain other effects.

Note

The SQL standard defines a RESPECT NULLS or IGNORE NULLS option for lead, lag,
first_value, last_value, and nth_value. This is not implemented in PostgreSQL: the
behavior is always the same as the standard's default, namely RESPECT NULLS. Likewise, the
standard's FROM FIRST or FROM LAST option for nth_value is not implemented: only the
default FROM FIRST behavior is supported. (You can achieve the result of FROM LAST by
reversing the ORDER BY ordering.)

cume_dist computes the fraction of partition rows that are less than or equal to the current row and its
peers, while percent_rank computes the fraction of partition rows that are less than the current row,
assuming the current row does not exist in the partition.

9.22. Subquery Expressions
This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

9.22.1. EXISTS

EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”; if the
subquery returns no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as calling
sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally unimportant. A common coding convention is to write all EXISTS
tests in the form EXISTS(SELECT 1 WHERE ...). There are exceptions to this rule however, such
as subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tab1
row, even if there are several matching tab2 rows:

SELECT col1
FROM tab1
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

9.22.2. IN

expression IN (subquery)

329

Functions and Operators

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true” if any
equal subquery row is found. The result is “false” if no equal row is found (including the case where the
subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance with
SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of IN is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of IN is null.

9.22.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT IN is “true”
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.13. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of NOT IN is “true” if only unequal subquery rows are found (including the
case where the subquery returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of NOT IN is null.

330

Functions and Operators

9.22.4. ANY/SOME

expression operator ANY (subquery)
expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator's result,
the result of the ANY construct will be null, not false. This is in accordance with SQL's normal rules for
Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ANY is “true” if the comparison returns true for
any subquery row. The result is “false” if the comparison returns false for every subquery row (including
the case where the subquery returns no rows). The result is NULL if no comparison with a subquery row
returns true, and at least one comparison returns NULL.

See Section 9.23.5 for details about the meaning of a row constructor comparison.

9.22.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is NULL
if no comparison with a subquery row returns false, and at least one comparison returns NULL.

NOT IN is equivalent to <> ALL.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ALL is “true” if the comparison returns true
for all subquery rows (including the case where the subquery returns no rows). The result is “false” if the

331

Functions and Operators

comparison returns false for any subquery row. The result is NULL if no comparison with a subquery row
returns false, and at least one comparison returns NULL.

See Section 9.23.5 for details about the meaning of a row constructor comparison.

9.22.6. Single-row Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.13. The right-hand side is a
parenthesized subquery, which must return exactly as many columns as there are expressions in the left-
hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is
taken to be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.23.5 for details about the meaning of a row constructor comparison.

9.23. Row and Array Comparisons
This section describes several specialized constructs for making multiple comparisons between groups of
values. These forms are syntactically related to the subquery forms of the previous section, but do not
involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest are
SQL-compliant. All of the expression forms documented in this section return Boolean (true/false) results.

9.23.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression's result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = value1
OR
expression = value2
OR
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

9.23.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression's result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> value1
AND
expression <> value2
AND

332

Functions and Operators

...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT IN construct will be null, not true as one might
naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null values.

Tip

x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much
more likely to trip up the novice when working with NOT IN than when working with IN. It is
best to express your condition positively if possible.

9.23.3. ANY/SOME (array)

expression operator ANY (array expression)
expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false”
if no true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no true comparison result is
obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). This is
in accordance with SQL's normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.23.4. ALL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ALL is “true” if all comparisons yield true (including the case
where the array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result is
obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). This is in
accordance with SQL's normal rules for Boolean combinations of null values.

9.23.5. Row Constructor Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row values must have the same
number of fields. Each side is evaluated and they are compared row-wise. Row constructor comparisons

333

Functions and Operators

are allowed when the operator is =, <>, <, <=, > or >=. Every row element must be of a type which
has a default B-tree operator class or the attempted comparison may generate an error.

Note

Errors related to the number or types of elements might not occur if the comparison is resolved
using earlier columns.

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members are
non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an unequal
or null pair of elements is found. If either of this pair of elements is null, the result of the row comparison
is unknown (null); otherwise comparison of this pair of elements determines the result. For example,
ROW(1,2,NULL) < ROW(1,3,0) yields true, not null, because the third pair of elements are not
considered.

Note

Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A
comparison like ROW(a,b) < ROW(c,d) was implemented as a < c AND b < d whereas
the correct behavior is equivalent to a < c OR (a = c AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any null
value is considered unequal to (distinct from) any non-null value, and any two nulls are considered equal
(not distinct). Thus the result will always be either true or false, never null.

9.23.6. Composite Type Comparison

record operator record

The SQL specification requires row-wise comparison to return NULL if the result depends on comparing
two NULL values or a NULL and a non-NULL. PostgreSQL does this only when comparing the results
of two row constructors (as in Section 9.23.5) or comparing a row constructor to the output of a subquery
(as in Section 9.22). In other contexts where two composite-type values are compared, two NULL field
values are considered equal, and a NULL is considered larger than a non-NULL. This is necessary in order
to have consistent sorting and indexing behavior for composite types.

Each side is evaluated and they are compared row-wise. Composite type comparisons are allowed when
the operator is =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific, an

334

Functions and Operators

operator can be a row comparison operator if it is a member of a B-tree operator class, or is the negator of
the = member of a B-tree operator class.) The default behavior of the above operators is the same as for
IS [NOT] DISTINCT FROM for row constructors (see Section 9.23.5).

To support matching of rows which include elements without a default B-tree operator class, the following
operators are defined for composite type comparison: *=, *<>, *<, *<=, *>, and *>=. These operators
compare the internal binary representation of the two rows. Two rows might have a different binary
representation even though comparisons of the two rows with the equality operator is true. The ordering of
rows under these comparison operators is deterministic but not otherwise meaningful. These operators are
used internally for materialized views and might be useful for other specialized purposes such as replication
but are not intended to be generally useful for writing queries.

9.24. Set Returning Functions
This section describes functions that possibly return more than one row. The most widely used functions in
this class are series generating functions, as detailed in Table 9.58 and Table 9.59. Other, more specialized
set-returning functions are described elsewhere in this manual. See Section 7.2.1.4 for ways to combine
multiple set-returning functions.

Table 9.58. Series Generating Functions

Function Argument Type Return Type Description

generate_series(start,
stop)

int, bigint or
numeric

setof int, setof
bigint, or setof
numeric (same as
argument type)

Generate a series of
values, from start to
stop with a step size of
one

generate_series(start,
stop, step)

int, bigint or
numeric

setof int, setof
bigint or setof
numeric (same as
argument type)

Generate a series of
values, from start to
stop with a step size of
step

generate_series(start,
stop, step
interval)

timestamp or
timestamp with
time zone

setof timestamp or
setof timestamp
with time zone
(same as argument type)

Generate a series of
values, from start to
stop with a step size of
step

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step
is negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL
inputs. It is an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
 generate_series

 2
 3
 4
(3 rows)

SELECT * FROM generate_series(5,1,-2);
 generate_series

 5
 3

335

Functions and Operators

 1
(3 rows)

SELECT * FROM generate_series(4,3);
 generate_series

(0 rows)

SELECT generate_series(1.1, 4, 1.3);
 generate_series

 1.1
 2.4
 3.7
(3 rows)

-- this example relies on the date-plus-integer operator
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS
 s(a);
 dates

 2004-02-05
 2004-02-12
 2004-02-19
(3 rows)

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp,
 '2008-03-04 12:00', '10 hours');
 generate_series

 2008-03-01 00:00:00
 2008-03-01 10:00:00
 2008-03-01 20:00:00
 2008-03-02 06:00:00
 2008-03-02 16:00:00
 2008-03-03 02:00:00
 2008-03-03 12:00:00
 2008-03-03 22:00:00
 2008-03-04 08:00:00
(9 rows)

Table 9.59. Subscript Generating Functions

Function Return Type Description

generate_subscripts(array
anyarray, dim int)

setof int Generate a series comprising the
given array's subscripts.

generate_subscripts(array
anyarray, dim int,
reverse boolean)

setof int Generate a series comprising the
given array's subscripts. When
reverse is true, the series is
returned in reverse order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the
specified dimension of the given array. Zero rows are returned for arrays that do not have the requested

336

Functions and Operators

dimension, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some
examples follow:

-- basic usage
SELECT generate_subscripts('{NULL,1,NULL,2}'::int[], 1) AS s;
 s

 1
 2
 3
 4
(4 rows)

-- presenting an array, the subscript and the subscripted
-- value requires a subquery
SELECT * FROM arrays;
 a

 {-1,-2}
 {100,200,300}
(2 rows)

SELECT a AS array, s AS subscript, a[s] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;
 array | subscript | value
---------------+-----------+-------
 {-1,-2} | 1 | -1
 {-1,-2} | 2 | -2
 {100,200,300} | 1 | 100
 {100,200,300} | 2 | 200
 {100,200,300} | 3 | 300
(5 rows)

-- unnest a 2D array
CREATE OR REPLACE FUNCTION unnest2(anyarray)
RETURNS SETOF anyelement AS $$
select $1[i][j]
 from generate_subscripts($1,1) g1(i),
 generate_subscripts($1,2) g2(j);
$$ LANGUAGE sql IMMUTABLE;
CREATE FUNCTION
SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
 unnest2

 1
 2
 3
 4
(4 rows)

When a function in the FROM clause is suffixed by WITH ORDINALITY, a bigint column is appended
to the output which starts from 1 and increments by 1 for each row of the function's output. This is most
useful in the case of set returning functions such as unnest().

337

Functions and Operators

-- set returning function WITH ORDINALITY
SELECT * FROM pg_ls_dir('.') WITH ORDINALITY AS t(ls,n);
 ls | n
-----------------+----
 pg_serial | 1
 pg_twophase | 2
 postmaster.opts | 3
 pg_notify | 4
 postgresql.conf | 5
 pg_tblspc | 6
 logfile | 7
 base | 8
 postmaster.pid | 9
 pg_ident.conf | 10
 global | 11
 pg_xact | 12
 pg_snapshots | 13
 pg_multixact | 14
 PG_VERSION | 15
 pg_wal | 16
 pg_hba.conf | 17
 pg_stat_tmp | 18
 pg_subtrans | 19
(19 rows)

9.25. System Information Functions
Table 9.60 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 28.2.2 for more information.

Table 9.60. Session Information Functions

Name Return Type Description

current_catalog name name of current database (called
“catalog” in the SQL standard)

current_database() name name of current database

current_query() text text of the currently executing
query, as submitted by the client
(might contain more than one
statement)

current_role name equivalent to current_user

current_schema[()] name name of current schema

current_schemas(boolean)name[] names of schemas in search
path, optionally including implicit
schemas

current_user name user name of current execution
context

338

Functions and Operators

Name Return Type Description

inet_client_addr() inet address of the remote connection

inet_client_port() int port of the remote connection

inet_server_addr() inet address of the local connection

inet_server_port() int port of the local connection

pg_backend_pid() int Process ID of the server process
attached to the current session

pg_blocking_pids(int) int[] Process ID(s) that are blocking
specified server process ID from
acquiring a lock

pg_conf_load_time() timestamp with time
zone

configuration load time

pg_current_logfile([text])text Primary log file name, or log in the
requested format, currently in use
by the logging collector

pg_my_temp_schema() oid OID of session's temporary
schema, or 0 if none

pg_is_other_temp_schema(oid)boolean is schema another session's
temporary schema?

pg_jit_available() boolean is JIT compilation available in this
session (see Chapter 32)? Returns
false if jit is set to false.

pg_listening_channels() setof text channel names that the session is
currently listening on

pg_notification_queue_usage()double fraction of the asynchronous
notification queue currently
occupied (0-1)

pg_postmaster_start_time()timestamp with time
zone

server start time

pg_safe_snapshot_blocking_pids(int)int[] Process ID(s) that are blocking
specified server process ID from
acquiring a safe snapshot

pg_trigger_depth() int current nesting level of
PostgreSQL triggers (0 if not
called, directly or indirectly, from
inside a trigger)

session_user name session user name

user name equivalent to current_user

version() text PostgreSQL version information.
See also server_version_num for a
machine-readable version.

Note

current_catalog, current_role, current_schema, current_user,
session_user, and user have special syntactic status in SQL: they must be called

339

Functions and Operators

without trailing parentheses. (In PostgreSQL, parentheses can optionally be used with
current_schema, but not with the others.)

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user
identifier that is applicable for permission checking. Normally it is equal to the session user, but it can be
changed with SET ROLE. It also changes during the execution of functions with the attribute SECURITY
DEFINER. In Unix parlance, the session user is the “real user” and the current user is the “effective user”.
current_role and user are synonyms for current_user. (The SQL standard draws a distinction
between current_role and current_user, but PostgreSQL does not, since it unifies users and
roles into a single kind of entity.)

current_schema returns the name of the schema that is first in the search path (or a null value if the
search path is empty). This is the schema that will be used for any tables or other named objects that are
created without specifying a target schema. current_schemas(boolean) returns an array of the
names of all schemas presently in the search path. The Boolean option determines whether or not implicitly
included system schemas such as pg_catalog are included in the returned search path.

Note

The search path can be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

inet_client_addr returns the IP address of the current client, and inet_client_port returns
the port number. inet_server_addr returns the IP address on which the server accepted the current
connection, and inet_server_port returns the port number. All these functions return NULL if the
current connection is via a Unix-domain socket.

pg_blocking_pids returns an array of the process IDs of the sessions that are blocking the server
process with the specified process ID, or an empty array if there is no such server process or it is not
blocked. One server process blocks another if it either holds a lock that conflicts with the blocked process's
lock request (hard block), or is waiting for a lock that would conflict with the blocked process's lock request
and is ahead of it in the wait queue (soft block). When using parallel queries the result always lists client-
visible process IDs (that is, pg_backend_pid results) even if the actual lock is held or awaited by a
child worker process. As a result of that, there may be duplicated PIDs in the result. Also note that when
a prepared transaction holds a conflicting lock, it will be represented by a zero process ID in the result of
this function. Frequent calls to this function could have some impact on database performance, because it
needs exclusive access to the lock manager's shared state for a short time.

pg_conf_load_time returns the timestamp with time zone when the server configuration
files were last loaded. (If the current session was alive at the time, this will be the time when the session
itself re-read the configuration files, so the reading will vary a little in different sessions. Otherwise it is
the time when the postmaster process re-read the configuration files.)

pg_current_logfile returns, as text, the path of the log file(s) currently in use by the logging
collector. The path includes the log_directory directory and the log file name. Log collection must
be enabled or the return value is NULL. When multiple log files exist, each in a different format,
pg_current_logfile called without arguments returns the path of the file having the first format
found in the ordered list: stderr, csvlog. NULL is returned when no log file has any of these formats.

340

Functions and Operators

To request a specific file format supply, as text, either csvlog or stderr as the value of the optional
parameter. The return value is NULL when the log format requested is not a configured log_destination.
The pg_current_logfile reflects the contents of the current_logfiles file.

pg_my_temp_schema returns the OID of the current session's temporary schema, or zero if it has none
(because it has not created any temporary tables). pg_is_other_temp_schema returns true if the
given OID is the OID of another session's temporary schema. (This can be useful, for example, to exclude
other sessions' temporary tables from a catalog display.)

pg_listening_channels returns a set of names of asynchronous notification channels that the
current session is listening to. pg_notification_queue_usage returns the fraction of the total
available space for notifications currently occupied by notifications that are waiting to be processed, as a
double in the range 0-1. See LISTEN and NOTIFY for more information.

pg_postmaster_start_time returns the timestamp with time zone when the server
started.

pg_safe_snapshot_blocking_pids returns an array of the process IDs of the sessions that are
blocking the server process with the specified process ID from acquiring a safe snapshot, or an empty array
if there is no such server process or it is not blocked. A session running a SERIALIZABLE transaction
blocks a SERIALIZABLE READ ONLY DEFERRABLE transaction from acquiring a snapshot until the
latter determines that it is safe to avoid taking any predicate locks. See Section 13.2.3 for more information
about serializable and deferrable transactions. Frequent calls to this function could have some impact on
database performance, because it needs access to the predicate lock manager's shared state for a short time.

version returns a string describing the PostgreSQL server's version. You can also get this information
from server_version or for a machine-readable version, server_version_num. Software developers should
use server_version_num (available since 8.2) or PQserverVersion instead of parsing the text
version.

Table 9.61 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9.61. Access Privilege Inquiry Functions

Name Return Type Description

has_any_column_privilege(user,
table, privilege)

boolean does user have privilege for any
column of table

has_any_column_privilege(table,
privilege)

boolean does current user have privilege
for any column of table

has_column_privilege(user,
table, column,
privilege)

boolean does user have privilege for
column

has_column_privilege(table,
column, privilege)

boolean does current user have privilege
for column

has_database_privilege(user,
database, privilege)

boolean does user have privilege for
database

has_database_privilege(database,
privilege)

boolean does current user have privilege
for database

341

Functions and Operators

Name Return Type Description

has_foreign_data_wrapper_privilege(user,
fdw, privilege)

boolean does user have privilege for
foreign-data wrapper

has_foreign_data_wrapper_privilege(fdw,
privilege)

boolean does current user have privilege
for foreign-data wrapper

has_function_privilege(user,
function, privilege)

boolean does user have privilege for
function

has_function_privilege(function,
privilege)

boolean does current user have privilege
for function

has_language_privilege(user,
language, privilege)

boolean does user have privilege for
language

has_language_privilege(language,
privilege)

boolean does current user have privilege
for language

has_schema_privilege(user,
schema, privilege)

boolean does user have privilege for
schema

has_schema_privilege(schema,
privilege)

boolean does current user have privilege
for schema

has_sequence_privilege(user,
sequence, privilege)

boolean does user have privilege for
sequence

has_sequence_privilege(sequence,
privilege)

boolean does current user have privilege
for sequence

has_server_privilege(user,
server, privilege)

boolean does user have privilege for
foreign server

has_server_privilege(server,
privilege)

boolean does current user have privilege
for foreign server

has_table_privilege(user,
table, privilege)

boolean does user have privilege for table

has_table_privilege(table,
privilege)

boolean does current user have privilege
for table

has_tablespace_privilege(user,
tablespace, privilege)

boolean does user have privilege for
tablespace

has_tablespace_privilege(tablespace,
privilege)

boolean does current user have privilege
for tablespace

has_type_privilege(user,
type, privilege)

boolean does user have privilege for type

has_type_privilege(type,
privilege)

boolean does current user have privilege
for type

pg_has_role(user,
role, privilege)

boolean does user have privilege for role

pg_has_role(role,
privilege)

boolean does current user have privilege
for role

row_security_active(table)boolean does current user have row level
security active for table

342

Functions and Operators

has_table_privilege checks whether a user can access a table in a particular way. The user can be
specified by name, by OID (pg_authid.oid), public to indicate the PUBLIC pseudo-role, or if the
argument is omitted current_user is assumed. The table can be specified by name or by OID. (Thus,
there are actually six variants of has_table_privilege, which can be distinguished by the number
and types of their arguments.) When specifying by name, the name can be schema-qualified if necessary.
The desired access privilege type is specified by a text string, which must evaluate to one of the values
SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER. Optionally, WITH
GRANT OPTION can be added to a privilege type to test whether the privilege is held with grant option.
Also, multiple privilege types can be listed separated by commas, in which case the result will be true
if any of the listed privileges is held. (Case of the privilege string is not significant, and extra whitespace
is allowed between but not within privilege names.) Some examples:

SELECT has_table_privilege('myschema.mytable', 'select');
SELECT has_table_privilege('joe', 'mytable', 'INSERT, SELECT WITH
 GRANT OPTION');

has_sequence_privilege checks whether a user can access a sequence in a particular way. The
possibilities for its arguments are analogous to has_table_privilege. The desired access privilege
type must evaluate to one of USAGE, SELECT, or UPDATE.

has_any_column_privilege checks whether a user can access any column of a table in a particular
way. Its argument possibilities are analogous to has_table_privilege, except that the desired access
privilege type must evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES.
Note that having any of these privileges at the table level implicitly grants it for each column of the table,
so has_any_column_privilege will always return true if has_table_privilege does for
the same arguments. But has_any_column_privilege also succeeds if there is a column-level grant
of the privilege for at least one column.

has_column_privilege checks whether a user can access a column in a particular way. Its argument
possibilities are analogous to has_table_privilege, with the addition that the column can be
specified either by name or attribute number. The desired access privilege type must evaluate to some
combination of SELECT, INSERT, UPDATE, or REFERENCES. Note that having any of these privileges
at the table level implicitly grants it for each column of the table.

has_database_privilege checks whether a user can access a database in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is equivalent
to TEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. Its
argument possibilities are analogous to has_table_privilege. When specifying a function by a
text string rather than by OID, the allowed input is the same as for the regprocedure data type (see
Section 8.19). The desired access privilege type must evaluate to EXECUTE. An example is:

SELECT has_function_privilege('joeuser', 'myfunc(int, text)',
 'execute');

has_foreign_data_wrapper_privilege checks whether a user can access a foreign-data
wrapper in a particular way. Its argument possibilities are analogous to has_table_privilege. The
desired access privilege type must evaluate to USAGE.

has_language_privilege checks whether a user can access a procedural language in a particular
way. Its argument possibilities are analogous to has_table_privilege. The desired access privilege
type must evaluate to USAGE.

343

Functions and Operators

has_schema_privilege checks whether a user can access a schema in a particular way. Its argument
possibilities are analogous to has_table_privilege. The desired access privilege type must evaluate
to some combination of CREATE or USAGE.

has_server_privilege checks whether a user can access a foreign server in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to USAGE.

has_tablespace_privilege checks whether a user can access a tablespace in a particular way.
Its argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to CREATE.

has_type_privilege checks whether a user can access a type in a particular way. Its argument
possibilities are analogous to has_table_privilege. When specifying a type by a text string rather
than by OID, the allowed input is the same as for the regtype data type (see Section 8.19). The desired
access privilege type must evaluate to USAGE.

pg_has_role checks whether a user can access a role in a particular way. Its argument possibilities are
analogous to has_table_privilege, except that public is not allowed as a user name. The desired
access privilege type must evaluate to some combination of MEMBER or USAGE. MEMBER denotes direct
or indirect membership in the role (that is, the right to do SET ROLE), while USAGE denotes whether the
privileges of the role are immediately available without doing SET ROLE.

row_security_active checks whether row level security is active for the specified table in the
context of the current_user and environment. The table can be specified by name or by OID.

Table 9.62 shows functions that determine whether a certain object is visible in the current schema search
path. For example, a table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table can
be referenced by name without explicit schema qualification. To list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

Table 9.62. Schema Visibility Inquiry Functions

Name Return Type Description

pg_collation_is_visible(collation_oid)boolean is collation visible in search path

pg_conversion_is_visible(conversion_oid)boolean is conversion visible in search
path

pg_function_is_visible(function_oid)boolean is function visible in search path

pg_opclass_is_visible(opclass_oid)boolean is operator class visible in search
path

pg_operator_is_visible(operator_oid)boolean is operator visible in search path

pg_opfamily_is_visible(opclass_oid)boolean is operator family visible in search
path

pg_statistics_obj_is_visible(stat_oid)boolean is statistics object visible in search
path

pg_table_is_visible(table_oid)boolean is table visible in search path

pg_ts_config_is_visible(config_oid)boolean is text search configuration visible
in search path

344

Functions and Operators

Name Return Type Description

pg_ts_dict_is_visible(dict_oid)boolean is text search dictionary visible in
search path

pg_ts_parser_is_visible(parser_oid)boolean is text search parser visible in
search path

pg_ts_template_is_visible(template_oid)boolean is text search template visible in
search path

pg_type_is_visible(type_oid)boolean is type (or domain) visible in
search path

Each function performs the visibility check for one type of database object. Note that
pg_table_is_visible can also be used with views, materialized views, indexes, sequences and
foreign tables; pg_function_is_visible can also be used with procedures and aggregates;
pg_type_is_visible can also be used with domains. For functions and operators, an object in the
search path is visible if there is no object of the same name and argument data type(s) earlier in the path.
For operator classes, both name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias types (regclass, regtype, regprocedure,
regoperator, regconfig, or regdictionary), for example:

SELECT pg_type_is_visible('myschema.widget'::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if the
name can be recognized at all, it must be visible.

Table 9.63 lists functions that extract information from the system catalogs.

Table 9.63. System Catalog Information Functions

Name Return Type Description

format_type(type_oid,
typemod)

text get SQL name of a data type

pg_get_constraintdef(constraint_oid)text get definition of a constraint

pg_get_constraintdef(constraint_oid,
pretty_bool)

text get definition of a constraint

pg_get_expr(pg_node_tree,
relation_oid)

text decompile internal form of an
expression, assuming that any
Vars in it refer to the relation
indicated by the second parameter

pg_get_expr(pg_node_tree,
relation_oid,
pretty_bool)

text decompile internal form of an
expression, assuming that any
Vars in it refer to the relation
indicated by the second parameter

pg_get_functiondef(func_oid)text get definition of a function or
procedure

pg_get_function_arguments(func_oid)text get argument list of function's
or procedure's definition (with
default values)

345

Functions and Operators

Name Return Type Description

pg_get_function_identity_arguments(func_oid)text get argument list to identify a
function or procedure (without
default values)

pg_get_function_result(func_oid)text get RETURNS clause for function
(returns null for a procedure)

pg_get_indexdef(index_oid)text get CREATE INDEX command
for index

pg_get_indexdef(index_oid,
column_no,
pretty_bool)

text get CREATE INDEX command
for index, or definition of just one
index column when column_no
is not zero

pg_get_keywords() setof record get list of SQL keywords and their
categories

pg_get_ruledef(rule_oid)text get CREATE RULE command for
rule

pg_get_ruledef(rule_oid,
pretty_bool)

text get CREATE RULE command for
rule

pg_get_serial_sequence(table_name,
column_name)

text get name of the sequence that a
serial or identity column uses

pg_get_statisticsobjdef(statobj_oid)text get CREATE STATISTICS
command for extended statistics
object

pg_get_triggerdef(trigger_oid)text get CREATE [CONSTRAINT]
TRIGGER command for trigger

pg_get_triggerdef(trigger_oid,
pretty_bool)

text get CREATE [CONSTRAINT]
TRIGGER command for trigger

pg_get_userbyid(role_oid)name get role name with given OID

pg_get_viewdef(view_name)text get underlying SELECT
command for view or materialized
view (deprecated)

pg_get_viewdef(view_name,
pretty_bool)

text get underlying SELECT
command for view or materialized
view (deprecated)

pg_get_viewdef(view_oid)text get underlying SELECT
command for view or materialized
view

pg_get_viewdef(view_oid,
pretty_bool)

text get underlying SELECT
command for view or materialized
view

pg_get_viewdef(view_oid,
wrap_column_int)

text get underlying SELECT
command for view or materialized
view; lines with fields are
wrapped to specified number
of columns, pretty-printing is
implied

346

Functions and Operators

Name Return Type Description

pg_index_column_has_property(index_oid,
column_no, prop_name)

boolean test whether an index column has
a specified property

pg_index_has_property(index_oid,
prop_name)

boolean test whether an index has a
specified property

pg_indexam_has_property(am_oid,
prop_name)

boolean test whether an index access
method has a specified property

pg_options_to_table(reloptions)setof record get the set of storage option name/
value pairs

pg_tablespace_databases(tablespace_oid)setof oid get the set of database OIDs that
have objects in the tablespace

pg_tablespace_location(tablespace_oid)text get the path in the file system that
this tablespace is located in

pg_typeof(any) regtype get the data type of any value

collation for (any) text get the collation of the argument

to_regclass(rel_name) regclass get the OID of the named relation

to_regproc(func_name) regproc get the OID of the named function

to_regprocedure(func_name)regprocedure get the OID of the named function

to_regoper(operator_name)regoper get the OID of the named operator

to_regoperator(operator_name)regoperator get the OID of the named operator

to_regtype(type_name) regtype get the OID of the named type

to_regnamespace(schema_name)regnamespace get the OID of the named schema

to_regrole(role_name) regrole get the OID of the named role

format_type returns the SQL name of a data type that is identified by its type OID and possibly a type
modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_get_keywords returns a set of records describing the SQL keywords recognized by the server. The
word column contains the keyword. The catcode column contains a category code: U for unreserved,
C for column name, T for type or function name, or R for reserved. The catdesc column contains a
possibly-localized string describing the category.

pg_get_constraintdef, pg_get_indexdef, pg_get_ruledef,
pg_get_statisticsobjdef, and pg_get_triggerdef, respectively reconstruct the creating
command for a constraint, index, rule, extended statistics object, or trigger. (Note that this is a decompiled
reconstruction, not the original text of the command.) pg_get_expr decompiles the internal form of
an individual expression, such as the default value for a column. It can be useful when examining the
contents of system catalogs. If the expression might contain Vars, specify the OID of the relation they refer
to as the second parameter; if no Vars are expected, zero is sufficient. pg_get_viewdef reconstructs
the SELECT query that defines a view. Most of these functions come in two variants, one of which can
optionally “pretty-print” the result. The pretty-printed format is more readable, but the default format is
more likely to be interpreted the same way by future versions of PostgreSQL; avoid using pretty-printed
output for dump purposes. Passing false for the pretty-print parameter yields the same result as the
variant that does not have the parameter at all.

pg_get_functiondef returns a complete CREATE OR REPLACE FUNCTION statement for a
function. pg_get_function_arguments returns the argument list of a function, in the form it would
need to appear in within CREATE FUNCTION. pg_get_function_result similarly returns the

347

Functions and Operators

appropriate RETURNS clause for the function. pg_get_function_identity_arguments returns
the argument list necessary to identify a function, in the form it would need to appear in within ALTER
FUNCTION, for instance. This form omits default values.

pg_get_serial_sequence returns the name of the sequence associated with a column, or NULL if
no sequence is associated with the column. If the column is an identity column, the associated sequence is
the sequence internally created for the identity column. For columns created using one of the serial types
(serial, smallserial, bigserial), it is the sequence created for that serial column definition. In
the latter case, this association can be modified or removed with ALTER SEQUENCE OWNED BY. (The
function probably should have been called pg_get_owned_sequence; its current name reflects the
fact that it has typically been used with serial or bigserial columns.) The first input parameter is a
table name with optional schema, and the second parameter is a column name. Because the first parameter
is potentially a schema and table, it is not treated as a double-quoted identifier, meaning it is lower cased
by default, while the second parameter, being just a column name, is treated as double-quoted and has
its case preserved. The function returns a value suitably formatted for passing to sequence functions (see
Section 9.16). A typical use is in reading the current value of a sequence for an identity or serial column,
for example:

SELECT currval(pg_get_serial_sequence('sometable', 'id'));

pg_get_userbyid extracts a role's name given its OID.

pg_index_column_has_property, pg_index_has_property, and
pg_indexam_has_property return whether the specified index column, index, or index access
method possesses the named property. NULL is returned if the property name is not known or does not
apply to the particular object, or if the OID or column number does not identify a valid object. Refer
to Table 9.64 for column properties, Table 9.65 for index properties, and Table 9.66 for access method
properties. (Note that extension access methods can define additional property names for their indexes.)

Table 9.64. Index Column Properties

Name Description

asc Does the column sort in ascending order on a
forward scan?

desc Does the column sort in descending order on a
forward scan?

nulls_first Does the column sort with nulls first on a forward
scan?

nulls_last Does the column sort with nulls last on a forward
scan?

orderable Does the column possess any defined sort ordering?

distance_orderable Can the column be scanned in order by a “distance”
operator, for example ORDER BY col <->
constant ?

returnable Can the column value be returned by an index-only
scan?

search_array Does the column natively support col =
ANY(array) searches?

search_nulls Does the column support IS NULL and IS NOT
NULL searches?

348

Functions and Operators

Table 9.65. Index Properties

Name Description

clusterable Can the index be used in a CLUSTER command?

index_scan Does the index support plain (non-bitmap) scans?

bitmap_scan Does the index support bitmap scans?

backward_scan Can the scan direction be changed in mid-scan (to
support FETCH BACKWARD on a cursor without
needing materialization)?

Table 9.66. Index Access Method Properties

Name Description

can_order Does the access method support ASC, DESC and
related keywords in CREATE INDEX?

can_unique Does the access method support unique indexes?

can_multi_col Does the access method support indexes with
multiple columns?

can_exclude Does the access method support exclusion
constraints?

can_include Does the access method support the INCLUDE
clause of CREATE INDEX?

pg_options_to_table returns the set of storage option name/value pairs (option_name/
option_value) when passed pg_class.reloptions or pg_attribute.attoptions.

pg_tablespace_databases allows a tablespace to be examined. It returns the set of OIDs of
databases that have objects stored in the tablespace. If this function returns any rows, the tablespace is
not empty and cannot be dropped. To display the specific objects populating the tablespace, you will need
to connect to the databases identified by pg_tablespace_databases and query their pg_class
catalogs.

pg_typeof returns the OID of the data type of the value that is passed to it. This can be helpful for
troubleshooting or dynamically constructing SQL queries. The function is declared as returning regtype,
which is an OID alias type (see Section 8.19); this means that it is the same as an OID for comparison
purposes but displays as a type name. For example:

SELECT pg_typeof(33);

 pg_typeof

 integer
(1 row)

SELECT typlen FROM pg_type WHERE oid = pg_typeof(33);
 typlen

 4
(1 row)

349

Functions and Operators

The expression collation for returns the collation of the value that is passed to it. Example:

SELECT collation for (description) FROM pg_description LIMIT 1;
 pg_collation_for

 "default"
(1 row)

SELECT collation for ('foo' COLLATE "de_DE");
 pg_collation_for

 "de_DE"
(1 row)

The value might be quoted and schema-qualified. If no collation is derived for the argument expression,
then a null value is returned. If the argument is not of a collatable data type, then an error is raised.

The to_regclass, to_regproc, to_regprocedure, to_regoper, to_regoperator,
to_regtype, to_regnamespace, and to_regrole functions translate relation, function,
operator, type, schema, and role names (given as text) to objects of type regclass,
regproc, regprocedure, regoper, regoperator, regtype, regnamespace, and regrole
respectively. These functions differ from a cast from text in that they don't accept a numeric OID, and
that they return null rather than throwing an error if the name is not found (or, for to_regproc and
to_regoper, if the given name matches multiple objects).

Table 9.67 lists functions related to database object identification and addressing.

Table 9.67. Object Information and Addressing Functions

Name Return Type Description

pg_describe_object(classid
oid, objid oid,
objsubid integer)

text get description of a database
object

pg_identify_object(classid
oid, objid oid,
objsubid integer)

type text, schema text,
name text, identity text

get identity of a database object

pg_identify_object_as_address(classid
oid, objid oid,
objsubid integer)

type text, object_names
text[], object_args
text[]

get external representation of a
database object's address

pg_get_object_address(type
text, object_names
text[], object_args
text[])

classid oid, objid oid,
objsubid integer

get address of a database object
from its external representation

pg_describe_object returns a textual description of a database object specified by catalog OID,
object OID, and sub-object ID (such as a column number within a table; the sub-object ID is zero when
referring to a whole object). This description is intended to be human-readable, and might be translated,
depending on server configuration. This is useful to determine the identity of an object as stored in the
pg_depend catalog.

pg_identify_object returns a row containing enough information to uniquely identify the database
object specified by catalog OID, object OID and sub-object ID. This information is intended to be machine-

350

Functions and Operators

readable, and is never translated. type identifies the type of database object; schema is the schema
name that the object belongs in, or NULL for object types that do not belong to schemas; name is the
name of the object, quoted if necessary, if the name (along with schema name, if pertinent) is sufficient to
uniquely identify the object, otherwise NULL; identity is the complete object identity, with the precise
format depending on object type, and each name within the format being schema-qualified and quoted
as necessary.

pg_identify_object_as_address returns a row containing enough information to uniquely
identify the database object specified by catalog OID, object OID and sub-object ID. The returned
information is independent of the current server, that is, it could be used to identify an identically
named object in another server. type identifies the type of database object; object_names and
object_args are text arrays that together form a reference to the object. These three values can be
passed to pg_get_object_address to obtain the internal address of the object. This function is the
inverse of pg_get_object_address.

pg_get_object_address returns a row containing enough information to uniquely identify the
database object specified by its type and object name and argument arrays. The returned values are the ones
that would be used in system catalogs such as pg_depend and can be passed to other system functions
such as pg_identify_object or pg_describe_object. classid is the OID of the system
catalog containing the object; objid is the OID of the object itself, and objsubid is the sub-object ID,
or zero if none. This function is the inverse of pg_identify_object_as_address.

The functions shown in Table 9.68 extract comments previously stored with the COMMENT command.
A null value is returned if no comment could be found for the specified parameters.

Table 9.68. Comment Information Functions

Name Return Type Description

col_description(table_oid,
column_number)

text get comment for a table column

obj_description(object_oid,
catalog_name)

text get comment for a database object

obj_description(object_oid)text get comment for a database object
(deprecated)

shobj_description(object_oid,
catalog_name)

text get comment for a shared database
object

col_description returns the comment for a table column, which is specified by the OID of its table
and its column number. (obj_description cannot be used for table columns since columns do not
have OIDs of their own.)

The two-parameter form of obj_description returns the comment for a database object
specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,'pg_class') would retrieve the comment for the table with OID
123456. The one-parameter form of obj_description requires only the object OID. It is deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong
comment might be returned.

shobj_description is used just like obj_description except it is used for retrieving comments
on shared objects. Some system catalogs are global to all databases within each cluster, and the descriptions
for objects in them are stored globally as well.

351

Functions and Operators

The functions shown in Table 9.69 provide server transaction information in an exportable form. The main
use of these functions is to determine which transactions were committed between two snapshots.

Table 9.69. Transaction IDs and Snapshots

Name Return Type Description

txid_current() bigint get current transaction ID,
assigning a new one if the current
transaction does not have one

txid_current_if_assigned()bigint same as txid_current() but
returns null instead of assigning
a new transaction ID if none is
already assigned

txid_current_snapshot() txid_snapshot get current snapshot

txid_snapshot_xip(txid_snapshot)setof bigint get in-progress transaction IDs in
snapshot

txid_snapshot_xmax(txid_snapshot)bigint get xmax of snapshot

txid_snapshot_xmin(txid_snapshot)bigint get xmin of snapshot

txid_visible_in_snapshot(bigint,
txid_snapshot)

boolean is transaction ID visible in
snapshot? (do not use with
subtransaction ids)

txid_status(bigint) text report the status of the
given transaction: committed,
aborted, in progress, or
null if the transaction ID is too old

The internal transaction ID type (xid) is 32 bits wide and wraps around every 4 billion transactions.
However, these functions export a 64-bit format that is extended with an “epoch” counter so it will not wrap
around during the life of an installation. The data type used by these functions, txid_snapshot, stores
information about transaction ID visibility at a particular moment in time. Its components are described
in Table 9.70.

Table 9.70. Snapshot Components

Name Description

xmin Earliest transaction ID (txid) that is still active. All
earlier transactions will either be committed and
visible, or rolled back and dead.

xmax First as-yet-unassigned txid. All txids greater than
or equal to this are not yet started as of the time of
the snapshot, and thus invisible.

xip_list Active txids at the time of the snapshot. The list
includes only those active txids between xmin and
xmax; there might be active txids higher than xmax.
A txid that is xmin <= txid < xmax and not
in this list was already completed at the time of the
snapshot, and thus either visible or dead according
to its commit status. The list does not include txids
of subtransactions.

352

Functions and Operators

txid_snapshot's textual representation is xmin:xmax:xip_list. For example
10:20:10,14,15 means xmin=10, xmax=20, xip_list=10, 14, 15.

txid_status(bigint) reports the commit status of a recent transaction. Applications may use it to
determine whether a transaction committed or aborted when the application and database server become
disconnected while a COMMIT is in progress. The status of a transaction will be reported as either in
progress, committed, or aborted, provided that the transaction is recent enough that the system
retains the commit status of that transaction. If is old enough that no references to that transaction survive in
the system and the commit status information has been discarded, this function will return NULL. Note that
prepared transactions are reported as in progress; applications must check pg_prepared_xacts
if they need to determine whether the txid is a prepared transaction.

The functions shown in Table 9.71 provide information about transactions that have been already
committed. These functions mainly provide information about when the transactions were committed.
They only provide useful data when track_commit_timestamp configuration option is enabled and only
for transactions that were committed after it was enabled.

Table 9.71. Committed transaction information

Name Return Type Description

pg_xact_commit_timestamp(xid)
timestamp with time
zone

get commit timestamp of a
transaction

pg_last_committed_xact()
xid xid, timestamp
timestamp with time
zone

get transaction ID and commit
timestamp of latest committed
transaction

The functions shown in Table 9.72 print information initialized during initdb, such as the catalog
version. They also show information about write-ahead logging and checkpoint processing. This
information is cluster-wide, and not specific to any one database. They provide most of the same
information, from the same source, as pg_controldata, although in a form better suited to SQL functions.

Table 9.72. Control Data Functions

Name Return Type Description

pg_control_checkpoint()
record Returns information about current

checkpoint state.

 pg_control_system() record Returns information about current
control file state.

 pg_control_init() record Returns information about cluster
initialization state.

 pg_control_recovery() record Returns information about
recovery state.

pg_control_checkpoint returns a record, shown in Table 9.73

Table 9.73. pg_control_checkpoint Columns

Column Name Data Type

checkpoint_lsn pg_lsn

redo_lsn pg_lsn

redo_wal_file text

timeline_id integer

353

Functions and Operators

Column Name Data Type

prev_timeline_id integer

full_page_writes boolean

next_xid text

next_oid oid

next_multixact_id xid

next_multi_offset xid

oldest_xid xid

oldest_xid_dbid oid

oldest_active_xid xid

oldest_multi_xid xid

oldest_multi_dbid oid

oldest_commit_ts_xid xid

newest_commit_ts_xid xid

checkpoint_time timestamp with time zone

pg_control_system returns a record, shown in Table 9.74

Table 9.74. pg_control_system Columns

Column Name Data Type

pg_control_version integer

catalog_version_no integer

system_identifier bigint

pg_control_last_modified timestamp with time zone

pg_control_init returns a record, shown in Table 9.75

Table 9.75. pg_control_init Columns

Column Name Data Type

max_data_alignment integer

database_block_size integer

blocks_per_segment integer

wal_block_size integer

bytes_per_wal_segment integer

max_identifier_length integer

max_index_columns integer

max_toast_chunk_size integer

large_object_chunk_size integer

float4_pass_by_value boolean

float8_pass_by_value boolean

data_page_checksum_version integer

354

Functions and Operators

pg_control_recovery returns a record, shown in Table 9.76

Table 9.76. pg_control_recovery Columns

Column Name Data Type

min_recovery_end_lsn pg_lsn

min_recovery_end_timeline integer

backup_start_lsn pg_lsn

backup_end_lsn pg_lsn

end_of_backup_record_required boolean

9.26. System Administration Functions
The functions described in this section are used to control and monitor a PostgreSQL installation.

9.26.1. Configuration Settings Functions
Table 9.77 shows the functions available to query and alter run-time configuration parameters.

Table 9.77. Configuration Settings Functions

Name Return Type Description

current_setting(setting_name
[, missing_ok])

text get current value of setting

set_config(setting_name,
new_value, is_local)

text set parameter and return new
value

The function current_setting yields the current value of the setting setting_name. It
corresponds to the SQL command SHOW. An example:

SELECT current_setting('datestyle');

 current_setting

 ISO, MDY
(1 row)

If there is no setting named setting_name, current_setting throws an error unless
missing_ok is supplied and is true.

set_config sets the parameter setting_name to new_value. If is_local is true, the new
value will only apply to the current transaction. If you want the new value to apply for the current session,
use false instead. The function corresponds to the SQL command SET. An example:

SELECT set_config('log_statement_stats', 'off', false);

 set_config

355

Functions and Operators

 off
(1 row)

9.26.2. Server Signaling Functions
The functions shown in Table 9.78 send control signals to other server processes. Use of these functions is
restricted to superusers by default but access may be granted to others using GRANT, with noted exceptions.

Table 9.78. Server Signaling Functions

Name Return Type Description

pg_cancel_backend(pid
int)

boolean Cancel a backend's current query.
This is also allowed if the calling
role is a member of the role whose
backend is being canceled or
the calling role has been granted
pg_signal_backend,
however only superusers can
cancel superuser backends.

pg_reload_conf() boolean Cause server processes to reload
their configuration files

pg_rotate_logfile() boolean Rotate server's log file

pg_terminate_backend(pid
int)

boolean Terminate a backend. This is
also allowed if the calling role
is a member of the role whose
backend is being terminated or
the calling role has been granted
pg_signal_backend,
however only superusers can
terminate superuser backends.

Each of these functions returns true if successful and false otherwise.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM
respectively) to backend processes identified by process ID. The process ID of an active backend can be
found from the pid column of the pg_stat_activity view, or by listing the postgres processes
on the server (using ps on Unix or the Task Manager on Windows). The role of an active backend can be
found from the usename column of the pg_stat_activity view.

pg_reload_conf sends a SIGHUP signal to the server, causing configuration files to be reloaded by
all server processes.

pg_rotate_logfile signals the log-file manager to switch to a new output file immediately. This
works only when the built-in log collector is running, since otherwise there is no log-file manager
subprocess.

9.26.3. Backup Control Functions
The functions shown in Table 9.79 assist in making on-line backups. These functions cannot
be executed during recovery (except pg_is_in_backup, pg_backup_start_time and
pg_wal_lsn_diff).

356

Functions and Operators

Table 9.79. Backup Control Functions

Name Return Type Description

pg_create_restore_point(name
text)

pg_lsn Create a named point for
performing restore (restricted to
superusers by default, but other
users can be granted EXECUTE
to run the function)

pg_current_wal_flush_lsn()pg_lsn Get current write-ahead log flush
location

pg_current_wal_insert_lsn()pg_lsn Get current write-ahead log insert
location

pg_current_wal_lsn() pg_lsn Get current write-ahead log write
location

pg_start_backup(label
text [, fast boolean [,
exclusive boolean]])

pg_lsn Prepare for performing on-line
backup (restricted to superusers
by default, but other users can
be granted EXECUTE to run the
function)

pg_stop_backup() pg_lsn Finish performing exclusive
on-line backup (restricted to
superusers by default, but other
users can be granted EXECUTE
to run the function)

pg_stop_backup(exclusive
boolean [,
wait_for_archive
boolean])

setof record Finish performing exclusive or
non-exclusive on-line backup
(restricted to superusers by
default, but other users can be
granted EXECUTE to run the
function)

pg_is_in_backup() bool True if an on-line exclusive
backup is still in progress.

pg_backup_start_time() timestamp with time
zone

Get start time of an on-line
exclusive backup in progress.

pg_switch_wal() pg_lsn Force switch to a new write-ahead
log file (restricted to superusers
by default, but other users can
be granted EXECUTE to run the
function)

pg_walfile_name(lsn
pg_lsn)

text Convert write-ahead log location
to file name

pg_walfile_name_offset(lsn
pg_lsn)

text, integer Convert write-ahead log location
to file name and decimal byte
offset within file

pg_wal_lsn_diff(lsn
pg_lsn, lsn pg_lsn)

numeric Calculate the difference between
two write-ahead log locations

pg_start_backup accepts an arbitrary user-defined label for the backup. (Typically this would be
the name under which the backup dump file will be stored.) When used in exclusive mode, the function

357

Functions and Operators

writes a backup label file (backup_label) and, if there are any links in the pg_tblspc/ directory, a
tablespace map file (tablespace_map) into the database cluster's data directory, performs a checkpoint,
and then returns the backup's starting write-ahead log location as text. The user can ignore this result value,
but it is provided in case it is useful. When used in non-exclusive mode, the contents of these files are
instead returned by the pg_stop_backup function, and should be written to the backup by the caller.

postgres=# select pg_start_backup('label_goes_here');
 pg_start_backup

 0/D4445B8
(1 row)

There is an optional second parameter of type boolean. If true, it specifies executing
pg_start_backup as quickly as possible. This forces an immediate checkpoint which will cause a
spike in I/O operations, slowing any concurrently executing queries.

In an exclusive backup, pg_stop_backup removes the label file and, if it exists, the
tablespace_map file created by pg_start_backup. In a non-exclusive backup, the contents of
the backup_label and tablespace_map are returned in the result of the function, and should be
written to files in the backup (and not in the data directory). There is an optional second parameter of
type boolean. If false, the pg_stop_backup will return immediately after the backup is completed
without waiting for WAL to be archived. This behavior is only useful for backup software which
independently monitors WAL archiving. Otherwise, WAL required to make the backup consistent might
be missing and make the backup useless. When this parameter is set to true, pg_stop_backup will
wait for WAL to be archived when archiving is enabled; on the standby, this means that it will wait only
when archive_mode = always. If write activity on the primary is low, it may be useful to run
pg_switch_wal on the primary in order to trigger an immediate segment switch.

When executed on a primary, the function also creates a backup history file in the write-ahead log archive
area. The history file includes the label given to pg_start_backup, the starting and ending write-
ahead log locations for the backup, and the starting and ending times of the backup. The return value is
the backup's ending write-ahead log location (which again can be ignored). After recording the ending
location, the current write-ahead log insertion point is automatically advanced to the next write-ahead log
file, so that the ending write-ahead log file can be archived immediately to complete the backup.

pg_switch_wal moves to the next write-ahead log file, allowing the current file to be archived
(assuming you are using continuous archiving). The return value is the ending write-ahead log location
+ 1 within the just-completed write-ahead log file. If there has been no write-ahead log activity since the
last write-ahead log switch, pg_switch_wal does nothing and returns the start location of the write-
ahead log file currently in use.

pg_create_restore_point creates a named write-ahead log record that can be used as recovery
target, and returns the corresponding write-ahead log location. The given name can then be used with
recovery_target_name to specify the point up to which recovery will proceed. Avoid creating multiple
restore points with the same name, since recovery will stop at the first one whose name matches the
recovery target.

pg_current_wal_lsn displays the current write-ahead log write location in the same format used
by the above functions. Similarly, pg_current_wal_insert_lsn displays the current write-ahead
log insertion location and pg_current_wal_flush_lsn displays the current write-ahead log flush
location. The insertion location is the “logical” end of the write-ahead log at any instant, while the write
location is the end of what has actually been written out from the server's internal buffers and flush location
is the location guaranteed to be written to durable storage. The write location is the end of what can be
examined from outside the server, and is usually what you want if you are interested in archiving partially-

358

Functions and Operators

complete write-ahead log files. The insertion and flush locations are made available primarily for server
debugging purposes. These are both read-only operations and do not require superuser permissions.

You can use pg_walfile_name_offset to extract the corresponding write-ahead log file name and
byte offset from the results of any of the above functions. For example:

postgres=# SELECT * FROM pg_walfile_name_offset(pg_stop_backup());
 file_name | file_offset
--------------------------+-------------
 00000001000000000000000D | 4039624
(1 row)

Similarly, pg_walfile_name extracts just the write-ahead log file name. When the given write-ahead
log location is exactly at a write-ahead log file boundary, both these functions return the name of the
preceding write-ahead log file. This is usually the desired behavior for managing write-ahead log archiving
behavior, since the preceding file is the last one that currently needs to be archived.

pg_wal_lsn_diff calculates the difference in bytes between two write-ahead log locations. It can be
used with pg_stat_replication or some functions shown in Table 9.79 to get the replication lag.

For details about proper usage of these functions, see Section 25.3.

9.26.4. Recovery Control Functions
The functions shown in Table 9.80 provide information about the current status of the standby. These
functions may be executed both during recovery and in normal running.

Table 9.80. Recovery Information Functions

Name Return Type Description

pg_is_in_recovery() bool True if recovery is still in
progress.

pg_last_wal_receive_lsn()pg_lsn Get last write-ahead log location
received and synced to disk
by streaming replication. While
streaming replication is in
progress this will increase
monotonically. If recovery has
completed this will remain static
at the value of the last WAL
record received and synced to
disk during recovery. If streaming
replication is disabled, or if it
has not yet started, the function
returns NULL.

pg_last_wal_replay_lsn()pg_lsn Get last write-ahead log location
replayed during recovery. If
recovery is still in progress this
will increase monotonically. If
recovery has completed then this
value will remain static at the
value of the last WAL record
applied during that recovery.

359

Functions and Operators

Name Return Type Description

When the server has been started
normally without recovery the
function returns NULL.

pg_last_xact_replay_timestamp()timestamp with time
zone

Get time stamp of last transaction
replayed during recovery. This is
the time at which the commit
or abort WAL record for that
transaction was generated on the
primary. If no transactions have
been replayed during recovery,
this function returns NULL.
Otherwise, if recovery is still
in progress this will increase
monotonically. If recovery has
completed then this value will
remain static at the value of the
last transaction applied during
that recovery. When the server
has been started normally without
recovery the function returns
NULL.

The functions shown in Table 9.81 control the progress of recovery. These functions may be executed
only during recovery.

Table 9.81. Recovery Control Functions

Name Return Type Description

pg_is_wal_replay_paused()bool True if recovery is paused.

pg_wal_replay_pause() void Pauses recovery immediately
(restricted to superusers by
default, but other users can be
granted EXECUTE to run the
function).

pg_wal_replay_resume() void Restarts recovery if it was
paused (restricted to superusers
by default, but other users can
be granted EXECUTE to run the
function).

While recovery is paused no further database changes are applied. If in hot standby, all new queries will
see the same consistent snapshot of the database, and no further query conflicts will be generated until
recovery is resumed.

If streaming replication is disabled, the paused state may continue indefinitely without problem. While
streaming replication is in progress WAL records will continue to be received, which will eventually fill
available disk space, depending upon the duration of the pause, the rate of WAL generation and available
disk space.

9.26.5. Snapshot Synchronization Functions

360

Functions and Operators

PostgreSQL allows database sessions to synchronize their snapshots. A snapshot determines which data
is visible to the transaction that is using the snapshot. Synchronized snapshots are necessary when two
or more sessions need to see identical content in the database. If two sessions just start their transactions
independently, there is always a possibility that some third transaction commits between the executions
of the two START TRANSACTION commands, so that one session sees the effects of that transaction
and the other does not.

To solve this problem, PostgreSQL allows a transaction to export the snapshot it is using. As long as the
exporting transaction remains open, other transactions can import its snapshot, and thereby be guaranteed
that they see exactly the same view of the database that the first transaction sees. But note that any database
changes made by any one of these transactions remain invisible to the other transactions, as is usual for
changes made by uncommitted transactions. So the transactions are synchronized with respect to pre-
existing data, but act normally for changes they make themselves.

Snapshots are exported with the pg_export_snapshot function, shown in Table 9.82, and imported
with the SET TRANSACTION command.

Table 9.82. Snapshot Synchronization Functions

Name Return Type Description

pg_export_snapshot() text Save the current snapshot and
return its identifier

The function pg_export_snapshot saves the current snapshot and returns a text string identifying
the snapshot. This string must be passed (outside the database) to clients that want to import the snapshot.
The snapshot is available for import only until the end of the transaction that exported it. A transaction
can export more than one snapshot, if needed. Note that doing so is only useful in READ COMMITTED
transactions, since in REPEATABLE READ and higher isolation levels, transactions use the same snapshot
throughout their lifetime. Once a transaction has exported any snapshots, it cannot be prepared with
PREPARE TRANSACTION.

See SET TRANSACTION for details of how to use an exported snapshot.

9.26.6. Replication Functions
The functions shown in Table 9.83 are for controlling and interacting with replication features. See
Section 26.2.5, Section 26.2.6, and Chapter 50 for information about the underlying features. Use of these
functions is restricted to superusers.

Many of these functions have equivalent commands in the replication protocol; see Section 53.4.

The functions described in Section 9.26.3, Section 9.26.4, and Section 9.26.5 are also relevant for
replication.

Table 9.83. Replication SQL Functions

Function Return Type Description

pg_create_physical_replication_slot(slot_name
name [,
immediately_reserve
boolean, temporary
boolean])

(slot_name name, lsn
pg_lsn)

Creates a new physical replication
slot named slot_name. The
optional second parameter, when
true, specifies that the LSN for
this replication slot be reserved
immediately; otherwise the LSN
is reserved on first connection
from a streaming replication

361

Functions and Operators

Function Return Type Description

client. Streaming changes from
a physical slot is only possible
with the streaming-replication
protocol — see Section 53.4.
The optional third parameter,
temporary, when set to true,
specifies that the slot should not
be permanently stored to disk
and is only meant for use by
current session. Temporary slots
are also released upon any error.
This function corresponds to
the replication protocol command
CREATE_REPLICATION_SLOT ...
PHYSICAL.

pg_drop_replication_slot(slot_name
name)

void Drops the physical or
logical replication slot named
slot_name. Same as
replication protocol command
DROP_REPLICATION_SLOT.
For logical slots, this must be
called when connected to the same
database the slot was created on.

pg_create_logical_replication_slot(slot_name
name, plugin name [,
temporary boolean])

(slot_name name, lsn
pg_lsn)

Creates a new logical
(decoding) replication slot named
slot_name using the output
plugin plugin. The optional
third parameter, temporary,
when set to true, specifies that
the slot should not be permanently
stored to disk and is only
meant for use by current session.
Temporary slots are also released
upon any error. A call to this
function has the same effect as
the replication protocol command
CREATE_REPLICATION_SLOT ...
LOGICAL.

pg_logical_slot_get_changes(slot_name
name, upto_lsn pg_lsn,
upto_nchanges int,
VARIADIC options
text[])

(lsn pg_lsn, xid xid, data
text)

Returns changes in the slot
slot_name, starting from
the point at which since
changes have been consumed
last. If upto_lsn and
upto_nchanges are NULL,
logical decoding will continue
until end of WAL. If
upto_lsn is non-NULL,
decoding will include only
those transactions which commit
prior to the specified LSN. If
upto_nchanges is non-NULL,

362

Functions and Operators

Function Return Type Description

decoding will stop when the
number of rows produced by
decoding exceeds the specified
value. Note, however, that the
actual number of rows returned
may be larger, since this limit
is only checked after adding the
rows produced when decoding
each new transaction commit.

pg_logical_slot_peek_changes(slot_name
name, upto_lsn pg_lsn,
upto_nchanges int,
VARIADIC options
text[])

(lsn pg_lsn, xid xid, data
text)

Behaves just like the
pg_logical_slot_get_changes()
function, except that changes are
not consumed; that is, they will be
returned again on future calls.

pg_logical_slot_get_binary_changes(slot_name
name, upto_lsn pg_lsn,
upto_nchanges int,
VARIADIC options
text[])

(lsn pg_lsn, xid xid, data
bytea)

Behaves just like the
pg_logical_slot_get_changes()
function, except that changes are
returned as bytea.

pg_logical_slot_peek_binary_changes(slot_name
name, upto_lsn pg_lsn,
upto_nchanges int,
VARIADIC options
text[])

(lsn pg_lsn, xid xid, data
bytea)

Behaves just like the
pg_logical_slot_get_changes()
function, except that changes are
returned as bytea and that
changes are not consumed; that
is, they will be returned again on
future calls.

pg_replication_slot_advance(slot_name
name, upto_lsn pg_lsn)

(slot_name name, end_lsn
pg_lsn) bool

Advances the current confirmed
position of a replication slot
named slot_name. The slot will
not be moved backwards, and it
will not be moved beyond the
current insert location. Returns
name of the slot and real position
to which it was advanced to.

pg_replication_origin_create(node_name
text)

oid Create a replication origin with
the given external name, and
return the internal id assigned to it.

pg_replication_origin_drop(node_name
text)

void Delete a previously created
replication origin, including any
associated replay progress.

pg_replication_origin_oid(node_name
text)

oid Lookup a replication origin by
name and return the internal id.
If no corresponding replication
origin is found an error is thrown.

pg_replication_origin_session_setup(node_name
text)

void Mark the current session
as replaying from the
given origin, allowing replay

363

Functions and Operators

Function Return Type Description

progress to be tracked. Use
pg_replication_origin_session_reset
to revert. Can only be used if no
previous origin is configured.

pg_replication_origin_session_reset()
void Cancel the effects of

pg_replication_origin_session_setup().

pg_replication_origin_session_is_setup()
bool Has a replication origin been

configured in the current session?

pg_replication_origin_session_progress(flush
bool)

pg_lsn Return the replay location for the
replication origin configured in
the current session. The parameter
flush determines whether the
corresponding local transaction
will be guaranteed to have been
flushed to disk or not.

pg_replication_origin_xact_setup(origin_lsn
pg_lsn,
origin_timestamp
timestamptz)

void Mark the current transaction as
replaying a transaction that has
committed at the given LSN and
timestamp. Can only be called
when a replication origin has
previously been configured using
pg_replication_origin_session_setup().

pg_replication_origin_xact_reset()
void Cancel the effects of

pg_replication_origin_xact_setup().

pg_replication_origin_advance(node_name
text, lsn pg_lsn)

void Set replication progress for the
given node to the given location.
This primarily is useful for setting
up the initial location or a
new location after configuration
changes and similar. Be aware that
careless use of this function can
lead to inconsistently replicated
data.

pg_replication_origin_progress(node_name
text, flush bool)

pg_lsn Return the replay location for
the given replication origin.
The parameter flush determines
whether the corresponding local
transaction will be guaranteed to
have been flushed to disk or not.

pg_logical_emit_message(transactional
bool, prefix text,
content text)

pg_lsn Emit text logical decoding
message. This can be used
to pass generic messages
to logical decoding plugins
through WAL. The parameter
transactional specifies if
the message should be part
of current transaction or if it
should be written immediately
and decoded as soon as the

364

Functions and Operators

Function Return Type Description

logical decoding reads the record.
The prefix is textual prefix
used by the logical decoding
plugins to easily recognize
interesting messages for them.
The content is the text of the
message.

pg_logical_emit_message(transactional
bool, prefix text,
content bytea)

pg_lsn Emit binary logical decoding
message. This can be used
to pass generic messages
to logical decoding plugins
through WAL. The parameter
transactional specifies if
the message should be part
of current transaction or if it
should be written immediately
and decoded as soon as the
logical decoding reads the record.
The prefix is textual prefix
used by the logical decoding
plugins to easily recognize
interesting messages for them.
The content is the binary
content of the message.

9.26.7. Database Object Management Functions
The functions shown in Table 9.84 calculate the disk space usage of database objects.

Table 9.84. Database Object Size Functions

Name Return Type Description

pg_column_size(any) int Number of bytes used to store
a particular value (possibly
compressed)

pg_database_size(oid) bigint Disk space used by the database
with the specified OID

pg_database_size(name) bigint Disk space used by the database
with the specified name

pg_indexes_size(regclass)bigint Total disk space used by indexes
attached to the specified table

pg_relation_size(relation
regclass, fork text)

bigint Disk space used by the specified
fork ('main', 'fsm', 'vm', or
'init') of the specified table or
index

pg_relation_size(relation
regclass)

bigint Shorthand for
pg_relation_size(...,
'main')

365

Functions and Operators

Name Return Type Description

pg_size_bytes(text) bigint Converts a size in human-readable
format with size units into bytes

pg_size_pretty(bigint) text Converts a size in bytes expressed
as a 64-bit integer into a human-
readable format with size units

pg_size_pretty(numeric) text Converts a size in bytes expressed
as a numeric value into a human-
readable format with size units

pg_table_size(regclass) bigint Disk space used by the specified
table, excluding indexes (but
including TOAST, free space
map, and visibility map)

pg_tablespace_size(oid) bigint Disk space used by the tablespace
with the specified OID

pg_tablespace_size(name)bigint Disk space used by the tablespace
with the specified name

pg_total_relation_size(regclass)bigint Total disk space used by the
specified table, including all
indexes and TOAST data

pg_column_size shows the space used to store any individual data value.

pg_total_relation_size accepts the OID or name of a table or toast table, and returns the
total on-disk space used for that table, including all associated indexes. This function is equivalent to
pg_table_size + pg_indexes_size.

pg_table_size accepts the OID or name of a table and returns the disk space needed for that table,
exclusive of indexes. (TOAST space, free space map, and visibility map are included.)

pg_indexes_size accepts the OID or name of a table and returns the total disk space used by all the
indexes attached to that table.

pg_database_size and pg_tablespace_size accept the OID or name of a database or
tablespace, and return the total disk space used therein. To use pg_database_size, you must have
CONNECT permission on the specified database (which is granted by default), or be a member of the
pg_read_all_stats role. To use pg_tablespace_size, you must have CREATE permission
on the specified tablespace, or be a member of the pg_read_all_stats role unless it is the default
tablespace for the current database.

pg_relation_size accepts the OID or name of a table, index or toast table, and returns the on-disk
size in bytes of one fork of that relation. (Note that for most purposes it is more convenient to use the
higher-level functions pg_total_relation_size or pg_table_size, which sum the sizes of all
forks.) With one argument, it returns the size of the main data fork of the relation. The second argument
can be provided to specify which fork to examine:

• 'main' returns the size of the main data fork of the relation.
• 'fsm' returns the size of the Free Space Map (see Section 68.3) associated with the relation.
• 'vm' returns the size of the Visibility Map (see Section 68.4) associated with the relation.
• 'init' returns the size of the initialization fork, if any, associated with the relation.

pg_size_pretty can be used to format the result of one of the other functions in a human-readable
way, using bytes, kB, MB, GB or TB as appropriate.

366

Functions and Operators

pg_size_bytes can be used to get the size in bytes from a string in human-readable format. The input
may have units of bytes, kB, MB, GB or TB, and is parsed case-insensitively. If no units are specified,
bytes are assumed.

Note

The units kB, MB, GB and TB used by the functions pg_size_pretty and pg_size_bytes
are defined using powers of 2 rather than powers of 10, so 1kB is 1024 bytes, 1MB is 10242 =
1048576 bytes, and so on.

The functions above that operate on tables or indexes accept a regclass argument, which is simply the
OID of the table or index in the pg_class system catalog. You do not have to look up the OID by hand,
however, since the regclass data type's input converter will do the work for you. Just write the table
name enclosed in single quotes so that it looks like a literal constant. For compatibility with the handling
of ordinary SQL names, the string will be converted to lower case unless it contains double quotes around
the table name.

If an OID that does not represent an existing object is passed as argument to one of the above functions,
NULL is returned.

The functions shown in Table 9.85 assist in identifying the specific disk files associated with database
objects.

Table 9.85. Database Object Location Functions

Name Return Type Description

pg_relation_filenode(relation
regclass)

oid Filenode number of the specified
relation

pg_relation_filepath(relation
regclass)

text File path name of the specified
relation

pg_filenode_relation(tablespace
oid, filenode oid)

regclass Find the relation associated with a
given tablespace and filenode

pg_relation_filenode accepts the OID or name of a table, index, sequence, or toast table, and
returns the “filenode” number currently assigned to it. The filenode is the base component of the file
name(s) used for the relation (see Section 68.1 for more information). For most tables the result is the same
as pg_class.relfilenode, but for certain system catalogs relfilenode is zero and this function
must be used to get the correct value. The function returns NULL if passed a relation that does not have
storage, such as a view.

pg_relation_filepath is similar to pg_relation_filenode, but it returns the entire file path
name (relative to the database cluster's data directory PGDATA) of the relation.

pg_filenode_relation is the reverse of pg_relation_filenode. Given a “tablespace” OID
and a “filenode”, it returns the associated relation's OID. For a table in the database's default tablespace,
the tablespace can be specified as 0.

Table 9.86 lists functions used to manage collations.

367

Functions and Operators

Table 9.86. Collation Management Functions

Name Return Type Description

pg_collation_actual_version(oid)
text Return actual version of collation

from operating system

pg_import_system_collations(schema
regnamespace)

integer Import operating system
collations

pg_collation_actual_version returns the actual version of the collation object as it is currently
installed in the operating system. If this is different from the value in pg_collation.collversion,
then objects depending on the collation might need to be rebuilt. See also ALTER COLLATION.

pg_import_system_collations adds collations to the system catalog pg_collation based on
all the locales it finds in the operating system. This is what initdb uses; see Section 23.2.2 for more
details. If additional locales are installed into the operating system later on, this function can be run again to
add collations for the new locales. Locales that match existing entries in pg_collation will be skipped.
(But collation objects based on locales that are no longer present in the operating system are not removed
by this function.) The schema parameter would typically be pg_catalog, but that is not a requirement;
the collations could be installed into some other schema as well. The function returns the number of new
collation objects it created.

9.26.8. Index Maintenance Functions
Table 9.87 shows the functions available for index maintenance tasks. These functions cannot be executed
during recovery. Use of these functions is restricted to superusers and the owner of the given index.

Table 9.87. Index Maintenance Functions

Name Return Type Description

brin_summarize_new_values(index
regclass)

integer summarize page ranges not
already summarized

brin_summarize_range(index
regclass, blockNumber
bigint)

integer summarize the page range
covering the given block, if not
already summarized

brin_desummarize_range(index
regclass, blockNumber
bigint)

integer de-summarize the page range
covering the given block, if
summarized

gin_clean_pending_list(index
regclass)

bigint move GIN pending list entries into
main index structure

brin_summarize_new_values accepts the OID or name of a BRIN index and inspects the index to
find page ranges in the base table that are not currently summarized by the index; for any such range it
creates a new summary index tuple by scanning the table pages. It returns the number of new page range
summaries that were inserted into the index. brin_summarize_range does the same, except it only
summarizes the range that covers the given block number.

gin_clean_pending_list accepts the OID or name of a GIN index and cleans up the pending list of
the specified index by moving entries in it to the main GIN data structure in bulk. It returns the number of
pages removed from the pending list. Note that if the argument is a GIN index built with the fastupdate
option disabled, no cleanup happens and the return value is 0, because the index doesn't have a pending
list. Please see Section 66.4.1 and Section 66.5 for details of the pending list and fastupdate option.

368

Functions and Operators

9.26.9. Generic File Access Functions
The functions shown in Table 9.88 provide native access to files on the machine hosting the server. Only
files within the database cluster directory and the log_directory can be accessed unless the user is
granted the role pg_read_server_files. Use a relative path for files in the cluster directory, and a
path matching the log_directory configuration setting for log files.

Note that granting users the EXECUTE privilege on pg_read_file(), or related functions, allows
them the ability to read any file on the server which the database can read and that those reads bypass all
in-database privilege checks. This means that, among other things, a user with this access is able to read
the contents of the pg_authid table where authentication information is contained, as well as read any
file in the database. Therefore, granting access to these functions should be carefully considered.

Table 9.88. Generic File Access Functions

Name Return Type Description

pg_ls_dir(dirname text
[, missing_ok boolean,
include_dot_dirs
boolean])

setof text List the contents of a directory.
Restricted to superusers by
default, but other users can be
granted EXECUTE to run the
function.

pg_ls_logdir() setof record List the name, size, and last
modification time of files in the
log directory. Access is granted
to members of the pg_monitor
role and may be granted to other
non-superuser roles.

pg_ls_waldir() setof record List the name, size, and last
modification time of files in the
WAL directory. Access is granted
to members of the pg_monitor
role and may be granted to other
non-superuser roles.

pg_read_file(filename
text [, offset bigint,
length bigint [,
missing_ok boolean]])

text Return the contents of a text
file. Restricted to superusers by
default, but other users can be
granted EXECUTE to run the
function.

pg_read_binary_file(filename
text [, offset bigint,
length bigint [,
missing_ok boolean]])

bytea Return the contents of a file.
Restricted to superusers by
default, but other users can be
granted EXECUTE to run the
function.

pg_stat_file(filename
text[, missing_ok
boolean])

record Return information about a
file. Restricted to superusers by
default, but other users can be
granted EXECUTE to run the
function.

Some of these functions take an optional missing_ok parameter, which specifies the behavior when the
file or directory does not exist. If true, the function returns NULL (except pg_ls_dir, which returns
an empty result set). If false, an error is raised. The default is false.

369

Functions and Operators

pg_ls_dir returns the names of all files (and directories and other special files) in the specified directory.
The include_dot_dirs indicates whether “.” and “..” are included in the result set. The default is
to exclude them (false), but including them can be useful when missing_ok is true, to distinguish
an empty directory from an non-existent directory.

pg_ls_logdir returns the name, size, and last modified time (mtime) of each file in the log directory.
By default, only superusers and members of the pg_monitor role can use this function. Access may be
granted to others using GRANT.

pg_ls_waldir returns the name, size, and last modified time (mtime) of each file in the write ahead
log (WAL) directory. By default only superusers and members of the pg_monitor role can use this
function. Access may be granted to others using GRANT.

pg_read_file returns part of a text file, starting at the given offset, returning at most length
bytes (less if the end of file is reached first). If offset is negative, it is relative to the end of the file. If
offset and length are omitted, the entire file is returned. The bytes read from the file are interpreted
as a string in the server encoding; an error is thrown if they are not valid in that encoding.

pg_read_binary_file is similar to pg_read_file, except that the result is a bytea value;
accordingly, no encoding checks are performed. In combination with the convert_from function, this
function can be used to read a file in a specified encoding:

SELECT convert_from(pg_read_binary_file('file_in_utf8.txt'), 'UTF8');

pg_stat_file returns a record containing the file size, last accessed time stamp, last modified time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (Windows only),
and a boolean indicating if it is a directory. Typical usages include:

SELECT * FROM pg_stat_file('filename');
SELECT (pg_stat_file('filename')).modification;

9.26.10. Advisory Lock Functions
The functions shown in Table 9.89 manage advisory locks. For details about proper use of these functions,
see Section 13.3.5.

Table 9.89. Advisory Lock Functions

Name Return Type Description

pg_advisory_lock(key
bigint)

void Obtain exclusive session level
advisory lock

pg_advisory_lock(key1
int, key2 int)

void Obtain exclusive session level
advisory lock

pg_advisory_lock_shared(key
bigint)

void Obtain shared session level
advisory lock

370

Functions and Operators

Name Return Type Description

pg_advisory_lock_shared(key1
int, key2 int)

void Obtain shared session level
advisory lock

pg_advisory_unlock(key
bigint)

boolean Release an exclusive session level
advisory lock

pg_advisory_unlock(key1
int, key2 int)

boolean Release an exclusive session level
advisory lock

pg_advisory_unlock_all()void Release all session level advisory
locks held by the current session

pg_advisory_unlock_shared(key
bigint)

boolean Release a shared session level
advisory lock

pg_advisory_unlock_shared(key1
int, key2 int)

boolean Release a shared session level
advisory lock

pg_advisory_xact_lock(key
bigint)

void Obtain exclusive transaction level
advisory lock

pg_advisory_xact_lock(key1
int, key2 int)

void Obtain exclusive transaction level
advisory lock

pg_advisory_xact_lock_shared(key
bigint)

void Obtain shared transaction level
advisory lock

pg_advisory_xact_lock_shared(key1
int, key2 int)

void Obtain shared transaction level
advisory lock

pg_try_advisory_lock(key
bigint)

boolean Obtain exclusive session level
advisory lock if available

pg_try_advisory_lock(key1
int, key2 int)

boolean Obtain exclusive session level
advisory lock if available

pg_try_advisory_lock_shared(key
bigint)

boolean Obtain shared session level
advisory lock if available

pg_try_advisory_lock_shared(key1
int, key2 int)

boolean Obtain shared session level
advisory lock if available

pg_try_advisory_xact_lock(key
bigint)

boolean Obtain exclusive transaction level
advisory lock if available

pg_try_advisory_xact_lock(key1
int, key2 int)

boolean Obtain exclusive transaction level
advisory lock if available

pg_try_advisory_xact_lock_shared(key
bigint)

boolean Obtain shared transaction level
advisory lock if available

pg_try_advisory_xact_lock_shared(key1
int, key2 int)

boolean Obtain shared transaction level
advisory lock if available

pg_advisory_lock locks an application-defined resource, which can be identified either by a single
64-bit key value or two 32-bit key values (note that these two key spaces do not overlap). If another session
already holds a lock on the same resource identifier, this function will wait until the resource becomes
available. The lock is exclusive. Multiple lock requests stack, so that if the same resource is locked three
times it must then be unlocked three times to be released for other sessions' use.

pg_advisory_lock_shared works the same as pg_advisory_lock, except the lock can be
shared with other sessions requesting shared locks. Only would-be exclusive lockers are locked out.

371

Functions and Operators

pg_try_advisory_lock is similar to pg_advisory_lock, except the function will not wait for
the lock to become available. It will either obtain the lock immediately and return true, or return false
if the lock cannot be acquired immediately.

pg_try_advisory_lock_shared works the same as pg_try_advisory_lock, except it
attempts to acquire a shared rather than an exclusive lock.

pg_advisory_unlock will release a previously-acquired exclusive session level advisory lock. It
returns true if the lock is successfully released. If the lock was not held, it will return false, and in
addition, an SQL warning will be reported by the server.

pg_advisory_unlock_shared works the same as pg_advisory_unlock, except it releases a
shared session level advisory lock.

pg_advisory_unlock_all will release all session level advisory locks held by the current session.
(This function is implicitly invoked at session end, even if the client disconnects ungracefully.)

pg_advisory_xact_lock works the same as pg_advisory_lock, except the lock is
automatically released at the end of the current transaction and cannot be released explicitly.

pg_advisory_xact_lock_shared works the same as pg_advisory_lock_shared, except
the lock is automatically released at the end of the current transaction and cannot be released explicitly.

pg_try_advisory_xact_lock works the same as pg_try_advisory_lock, except the lock,
if acquired, is automatically released at the end of the current transaction and cannot be released explicitly.

pg_try_advisory_xact_lock_shared works the same as
pg_try_advisory_lock_shared, except the lock, if acquired, is automatically released at the end
of the current transaction and cannot be released explicitly.

9.27. Trigger Functions
Currently PostgreSQL provides one built in trigger function,
suppress_redundant_updates_trigger, which will prevent any update that does not actually
change the data in the row from taking place, in contrast to the normal behavior which always performs
the update regardless of whether or not the data has changed. (This normal behavior makes updates run
faster, since no checking is required, and is also useful in certain cases.)

Ideally, you should normally avoid running updates that don't actually change the data in the record.
Redundant updates can cost considerable unnecessary time, especially if there are lots of indexes to alter,
and space in dead rows that will eventually have to be vacuumed. However, detecting such situations in
client code is not always easy, or even possible, and writing expressions to detect them can be error-prone.
An alternative is to use suppress_redundant_updates_trigger, which will skip updates that
don't change the data. You should use this with care, however. The trigger takes a small but non-trivial
time for each record, so if most of the records affected by an update are actually changed, use of this trigger
will actually make the update run slower.

372

Functions and Operators

The suppress_redundant_updates_trigger function can be added to a table like this:

CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE FUNCTION suppress_redundant_updates_trigger();

In most cases, you would want to fire this trigger last for each row. Bearing in mind that triggers fire in
name order, you would then choose a trigger name that comes after the name of any other trigger you
might have on the table.

For more information about creating triggers, see CREATE TRIGGER.

9.28. Event Trigger Functions
PostgreSQL provides these helper functions to retrieve information from event triggers.

For more information about event triggers, see Chapter 40.

9.28.1. Capturing Changes at Command End
pg_event_trigger_ddl_commands returns a list of DDL commands executed by each user action,
when invoked in a function attached to a ddl_command_end event trigger. If called in any other context,
an error is raised. pg_event_trigger_ddl_commands returns one row for each base command
executed; some commands that are a single SQL sentence may return more than one row. This function
returns the following columns:

Name Type Description

classid oid OID of catalog the object belongs
in

objid oid OID of the object itself

objsubid integer Sub-object ID (e.g. attribute
number for a column)

command_tag text Command tag

object_type text Type of the object

schema_name text Name of the schema the object
belongs in, if any; otherwise
NULL. No quoting is applied.

object_identity text Text rendering of the object
identity, schema-qualified. Each
identifier included in the identity
is quoted if necessary.

in_extension bool True if the command is part of an
extension script

command pg_ddl_command A complete representation of the
command, in internal format. This
cannot be output directly, but it
can be passed to other functions
to obtain different pieces of
information about the command.

373

Functions and Operators

9.28.2. Processing Objects Dropped by a DDL Command
pg_event_trigger_dropped_objects returns a list of all objects dropped
by the command in whose sql_drop event it is called. If called
in any other context, pg_event_trigger_dropped_objects raises an error.
pg_event_trigger_dropped_objects returns the following columns:

Name Type Description

classid oid OID of catalog the object
belonged in

objid oid OID of the object itself

objsubid integer Sub-object ID (e.g. attribute
number for a column)

original bool True if this was one of the root
object(s) of the deletion

normal bool True if there was a normal
dependency relationship in the
dependency graph leading to this
object

is_temporary bool True if this was a temporary object

object_type text Type of the object

schema_name text Name of the schema the object
belonged in, if any; otherwise
NULL. No quoting is applied.

object_name text Name of the object, if the
combination of schema and name
can be used as a unique identifier
for the object; otherwise NULL.
No quoting is applied, and name is
never schema-qualified.

object_identity text Text rendering of the object
identity, schema-qualified. Each
identifier included in the identity
is quoted if necessary.

address_names text[] An array that, together
with object_type and
address_args, can be
used by the
pg_get_object_address()
function to recreate the object
address in a remote server
containing an identically named
object of the same kind

address_args text[] Complement for
address_names

The pg_event_trigger_dropped_objects function can be used in an event trigger like this:

374

Functions and Operators

CREATE FUNCTION test_event_trigger_for_drops()
 RETURNS event_trigger LANGUAGE plpgsql AS $$
DECLARE
 obj record;
BEGIN
 FOR obj IN SELECT * FROM pg_event_trigger_dropped_objects()
 LOOP
 RAISE NOTICE '% dropped object: % %.% %',
 tg_tag,
 obj.object_type,
 obj.schema_name,
 obj.object_name,
 obj.object_identity;
 END LOOP;
END
$$;
CREATE EVENT TRIGGER test_event_trigger_for_drops
 ON sql_drop
 EXECUTE FUNCTION test_event_trigger_for_drops();

9.28.3. Handling a Table Rewrite Event
The functions shown in Table 9.90 provide information about a table for which a table_rewrite event
has just been called. If called in any other context, an error is raised.

Table 9.90. Table Rewrite information

Name Return Type Description

pg_event_trigger_table_rewrite_oid()
Oid The OID of the table about to be

rewritten.

pg_event_trigger_table_rewrite_reason()
int The reason code(s) explaining the

reason for rewriting. The exact
meaning of the codes is release
dependent.

The pg_event_trigger_table_rewrite_oid function can be used in an event trigger like this:

CREATE FUNCTION test_event_trigger_table_rewrite_oid()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$
BEGIN
 RAISE NOTICE 'rewriting table % for reason %',
 pg_event_trigger_table_rewrite_oid()::regclass,
 pg_event_trigger_table_rewrite_reason();
END;
$$;

CREATE EVENT TRIGGER test_table_rewrite_oid
 ON table_rewrite
 EXECUTE FUNCTION test_event_trigger_table_rewrite_oid();

375

Chapter 10. Type Conversion
SQL statements can, intentionally or not, require the mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user does not need to understand the details of the type conversion mechanism. However,
implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these results
can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed
functions and operators.

10.1. Overview
SQL is a strongly typed language. That is, every data item has an associated data type which determines its
behavior and allowed usage. PostgreSQL has an extensible type system that is more general and flexible
than other SQL implementations. Hence, most type conversion behavior in PostgreSQL is governed by
general rules rather than by ad hoc heuristics. This allows the use of mixed-type expressions even with
user-defined types.

The PostgreSQL scanner/parser divides lexical elements into five fundamental categories: integers, non-
integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are first
classified as strings. The SQL language definition allows specifying type names with strings, and this
mechanism can be used in PostgreSQL to start the parser down the correct path. For example, the query:

SELECT text 'Origin' AS "label", point '(0,0)' AS "value";

 label | value
--------+-------
 Origin | (0,0)
(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then the
placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have one
or more arguments. Since PostgreSQL permits function overloading, the function name alone does
not uniquely identify the function to be called; the parser must select the right function based on the
data types of the supplied arguments.

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators. Like functions, operators can be overloaded, so the same problem
of selecting the right operator exists.

376

Type Conversion

Value Storage

SQL INSERT and UPDATE statements place the results of expressions into a table. The expressions
in the statement must be matched up with, and perhaps converted to, the types of the target columns.

UNION, CASE, and related constructs

Since all query results from a unionized SELECT statement must appear in a single set of columns,
the types of the results of each SELECT clause must be matched up and converted to a uniform set.
Similarly, the result expressions of a CASE construct must be converted to a common type so that the
CASE expression as a whole has a known output type. The same holds for ARRAY constructs, and for
the GREATEST and LEAST functions.

The system catalogs store information about which conversions, or casts, exist between which data types,
and how to perform those conversions. Additional casts can be added by the user with the CREATE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between
built-in types has been carefully crafted and is best not altered.)

An additional heuristic provided by the parser allows improved determination of the proper casting
behavior among groups of types that have implicit casts. Data types are divided into several basic
type categories, including boolean, numeric, string, bitstring, datetime, timespan,
geometric, network, and user-defined. (For a list see Table 52.63; but note it is also possible to
create custom type categories.) Within each category there can be one or more preferred types, which are
preferred when there is a choice of possible types. With careful selection of preferred types and available
implicit casts, it is possible to ensure that ambiguous expressions (those with multiple candidate parsing
solutions) can be resolved in a useful way.

All type conversion rules are designed with several principles in mind:

• Implicit conversions should never have surprising or unpredictable outcomes.

• There should be no extra overhead in the parser or executor if a query does not need implicit type
conversion. That is, if a query is well-formed and the types already match, then the query should execute
without spending extra time in the parser and without introducing unnecessary implicit conversion calls
in the query.

• Additionally, if a query usually requires an implicit conversion for a function, and if then the user defines
a new function with the correct argument types, the parser should use this new function and no longer
do implicit conversion to use the old function.

10.2. Operators
The specific operator that is referenced by an operator expression is determined using the following
procedure. Note that this procedure is indirectly affected by the precedence of the operators involved, since
that will determine which sub-expressions are taken to be the inputs of which operators. See Section 4.1.6
for more information.

Operator Type Resolution

1. Select the operators to be considered from the pg_operator system catalog. If a non-schema-
qualified operator name was used (the usual case), the operators considered are those with the
matching name and argument count that are visible in the current search path (see Section 5.8.3). If
a qualified operator name was given, only operators in the specified schema are considered.

377

Type Conversion

• (Optional) If the search path finds multiple operators with identical argument types, only the
one appearing earliest in the path is considered. Operators with different argument types are
considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it. Lack of an exact match creates a security
hazard when calling, via qualified name 1 (not typical), any operator found in a schema that permits
untrusted users to create objects. In such situations, cast arguments to force an exact match.

a. (Optional) If one argument of a binary operator invocation is of the unknown type, then assume
it is the same type as the other argument for this check. Invocations involving two unknown
inputs, or a unary operator with an unknown input, will never find a match at this step.

b. (Optional) If one argument of a binary operator invocation is of the unknown type and the
other is of a domain type, next check to see if there is an operator accepting exactly the domain's
base type on both sides; if so, use it.

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next step.

b. If any input argument is of a domain type, treat it as being of the domain's base type for all
subsequent steps. This ensures that domains act like their base types for purposes of ambiguous-
operator resolution.

c. Run through all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have exact matches. If only one candidate remains, use it; else continue
to the next step.

d. Run through all candidates and keep those that accept preferred types (of the input data type's
type category) at the most positions where type conversion will be required. Keep all candidates
if none accept preferred types. If only one candidate remains, use it; else continue to the next step.

e. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same
type category, select that category; otherwise fail because the correct choice cannot be deduced
without more clues. Now discard candidates that do not accept the selected type category.
Furthermore, if any candidate accepts a preferred type in that category, discard candidates that
accept non-preferred types for that argument. Keep all candidates if none survive these tests. If
only one candidate remains, use it; else continue to the next step.

f. If there are both unknown and known-type arguments, and all the known-type arguments have
the same type, assume that the unknown arguments are also of that type, and check which
candidates can accept that type at the unknown-argument positions. If exactly one candidate
passes this test, use it. Otherwise, fail.

Some examples follow.

1 The hazard does not arise with a non-schema-qualified name, because a search path containing schemas that permit untrusted users to create
objects is not a secure schema usage pattern.

378

Type Conversion

Example 10.1. Factorial Operator Type Resolution

There is only one factorial operator (postfix !) defined in the standard catalog, and it takes an argument of
type bigint. The scanner assigns an initial type of integer to the argument in this query expression:

SELECT 40 ! AS "40 factorial";

 40 factorial
--
 815915283247897734345611269596115894272000000000
(1 row)

So the parser does a type conversion on the operand and the query is equivalent to:

SELECT CAST(40 AS bigint) ! AS "40 factorial";

Example 10.2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for working with complex extension types.
Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text 'abc' || 'def' AS "text and unknown";

 text and unknown

 abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there is,
it assumes that the second argument should be interpreted as type text.

Here is a concatenation of two values of unspecified types:

SELECT 'abc' || 'def' AS "unspecified";

 unspecified

 abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query. So, the
parser looks for all candidate operators and finds that there are candidates accepting both string-category
and bit-string-category inputs. Since string category is preferred when available, that category is selected,
and then the preferred type for strings, text, is used as the specific type to resolve the unknown-type
literals as.

Example 10.3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type float8, which

379

Type Conversion

is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced with
an unknown input:

SELECT @ '-4.5' AS "abs";
 abs

 4.5
(1 row)

Here the system has implicitly resolved the unknown-type literal as type float8 before applying the
chosen operator. We can verify that float8 and not some other type was used:

SELECT @ '-4.5e500' AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not for
float8. So, if we try a similar case with ~, we get:

SELECT ~ '20' AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You might need to
 add
explicit type casts.

This happens because the system cannot decide which of the several possible ~ operators should be
preferred. We can help it out with an explicit cast:

SELECT ~ CAST('20' AS int8) AS "negation";

 negation

 -21
(1 row)

Example 10.4. Array Inclusion Operator Type Resolution

Here is another example of resolving an operator with one known and one unknown input:

SELECT array[1,2] <@ '{1,2,3}' as "is subset";

 is subset

 t
(1 row)

The PostgreSQL operator catalog has several entries for the infix operator <@, but the only two that could
possibly accept an integer array on the left-hand side are array inclusion (anyarray <@ anyarray)
and range inclusion (anyelement <@ anyrange). Since none of these polymorphic pseudo-types (see
Section 8.21) are considered preferred, the parser cannot resolve the ambiguity on that basis. However,

380

Type Conversion

Step 3.f tells it to assume that the unknown-type literal is of the same type as the other input, that is, integer
array. Now only one of the two operators can match, so array inclusion is selected. (Had range inclusion
been selected, we would have gotten an error, because the string does not have the right format to be a
range literal.)

Example 10.5. Custom Operator on a Domain Type

Users sometimes try to declare operators applying just to a domain type. This is possible but is not nearly
as useful as it might seem, because the operator resolution rules are designed to select operators applying
to the domain's base type. As an example consider

CREATE DOMAIN mytext AS text CHECK(...);
CREATE FUNCTION mytext_eq_text (mytext, text) RETURNS boolean AS ...;
CREATE OPERATOR = (procedure=mytext_eq_text, leftarg=mytext,
 rightarg=text);
CREATE TABLE mytable (val mytext);

SELECT * FROM mytable WHERE val = 'foo';

This query will not use the custom operator. The parser will first see if there is a mytext = mytext
operator (Step 2.a), which there is not; then it will consider the domain's base type text, and see if there
is a text = text operator (Step 2.b), which there is; so it resolves the unknown-type literal as text
and uses the text = text operator. The only way to get the custom operator to be used is to explicitly
cast the literal:

SELECT * FROM mytable WHERE val = text 'foo';

so that the mytext = text operator is found immediately according to the exact-match rule. If the best-
match rules are reached, they actively discriminate against operators on domain types. If they did not, such
an operator would create too many ambiguous-operator failures, because the casting rules always consider
a domain as castable to or from its base type, and so the domain operator would be considered usable in
all the same cases as a similarly-named operator on the base type.

10.3. Functions
The specific function that is referenced by a function call is determined using the following procedure.

Function Type Resolution

1. Select the functions to be considered from the pg_proc system catalog. If a non-schema-qualified
function name was used, the functions considered are those with the matching name and argument
count that are visible in the current search path (see Section 5.8.3). If a qualified function name was
given, only functions in the specified schema are considered.

a. (Optional) If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. Functions of different argument types are considered
on an equal footing regardless of search path position.

b. (Optional) If a function is declared with a VARIADIC array parameter, and the call does not use
the VARIADIC keyword, then the function is treated as if the array parameter were replaced by
one or more occurrences of its element type, as needed to match the call. After such expansion
the function might have effective argument types identical to some non-variadic function. In that

381

Type Conversion

case the function appearing earlier in the search path is used, or if the two functions are in the
same schema, the non-variadic one is preferred.

This creates a security hazard when calling, via qualified name 2, a variadic function found
in a schema that permits untrusted users to create objects. A malicious user can take control
and execute arbitrary SQL functions as though you executed them. Substitute a call bearing
the VARIADIC keyword, which bypasses this hazard. Calls populating VARIADIC "any"
parameters often have no equivalent formulation containing the VARIADIC keyword. To issue
those calls safely, the function's schema must permit only trusted users to create objects.

c. (Optional) Functions that have default values for parameters are considered to match any call
that omits zero or more of the defaultable parameter positions. If more than one such function
matches a call, the one appearing earliest in the search path is used. If there are two or more
such functions in the same schema with identical parameter types in the non-defaulted positions
(which is possible if they have different sets of defaultable parameters), the system will not be
able to determine which to prefer, and so an “ambiguous function call” error will result if no
better match to the call can be found.

This creates an availability hazard when calling, via qualified name2, any function found in a
schema that permits untrusted users to create objects. A malicious user can create a function
with the name of an existing function, replicating that function's parameters and appending novel
parameters having default values. This precludes new calls to the original function. To forestall
this hazard, place functions in schemas that permit only trusted users to create objects.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of functions considered), use it. Lack of an exact match creates a security hazard
when calling, via qualified name2, a function found in a schema that permits untrusted users to create
objects. In such situations, cast arguments to force an exact match. (Cases involving unknown will
never find a match at this step.)

3. If no exact match is found, see if the function call appears to be a special type conversion request.
This happens if the function call has just one argument and the function name is the same as the
(internal) name of some data type. Furthermore, the function argument must be either an unknown-
type literal, or a type that is binary-coercible to the named data type, or a type that could be converted
to the named data type by applying that type's I/O functions (that is, the conversion is either to or
from one of the standard string types). When these conditions are met, the function call is treated as
a form of CAST specification. 3

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next step.

b. If any input argument is of a domain type, treat it as being of the domain's base type for all
subsequent steps. This ensures that domains act like their base types for purposes of ambiguous-
function resolution.

c. Run through all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have exact matches. If only one candidate remains, use it; else continue
to the next step.

2 The hazard does not arise with a non-schema-qualified name, because a search path containing schemas that permit untrusted users to create
objects is not a secure schema usage pattern.
3 The reason for this step is to support function-style cast specifications in cases where there is not an actual cast function. If there is a cast function,
it is conventionally named after its output type, and so there is no need to have a special case. See CREATE CAST for additional commentary.

382

Type Conversion

d. Run through all candidates and keep those that accept preferred types (of the input data type's
type category) at the most positions where type conversion will be required. Keep all candidates
if none accept preferred types. If only one candidate remains, use it; else continue to the next step.

e. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same
type category, select that category; otherwise fail because the correct choice cannot be deduced
without more clues. Now discard candidates that do not accept the selected type category.
Furthermore, if any candidate accepts a preferred type in that category, discard candidates that
accept non-preferred types for that argument. Keep all candidates if none survive these tests. If
only one candidate remains, use it; else continue to the next step.

f. If there are both unknown and known-type arguments, and all the known-type arguments have
the same type, assume that the unknown arguments are also of that type, and check which
candidates can accept that type at the unknown-argument positions. If exactly one candidate
passes this test, use it. Otherwise, fail.

Note that the “best match” rules are identical for operator and function type resolution. Some examples
follow.

Example 10.6. Rounding Function Argument Type Resolution

There is only one round function that takes two arguments; it takes a first argument of type numeric and
a second argument of type integer. So the following query automatically converts the first argument
of type integer to numeric:

SELECT round(4, 4);

 round

 4.0000
(1 row)

That query is actually transformed by the parser to:

SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type numeric, the following query
will require no type conversion and therefore might be slightly more efficient:

SELECT round(4.0, 4);

Example 10.7. Variadic Function Resolution

CREATE FUNCTION public.variadic_example(VARIADIC numeric[]) RETURNS
 int
 LANGUAGE sql AS 'SELECT 1';
CREATE FUNCTION

383

Type Conversion

This function accepts, but does not require, the VARIADIC keyword. It tolerates both integer and numeric
arguments:

SELECT public.variadic_example(0),
 public.variadic_example(0.0),
 public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
 1 | 1 | 1
(1 row)

However, the first and second calls will prefer more-specific functions, if available:

CREATE FUNCTION public.variadic_example(numeric) RETURNS int
 LANGUAGE sql AS 'SELECT 2';
CREATE FUNCTION

CREATE FUNCTION public.variadic_example(int) RETURNS int
 LANGUAGE sql AS 'SELECT 3';
CREATE FUNCTION

SELECT public.variadic_example(0),
 public.variadic_example(0.0),
 public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
 3 | 2 | 1
(1 row)

Given the default configuration and only the first function existing, the first and second calls are insecure.
Any user could intercept them by creating the second or third function. By matching the argument type
exactly and using the VARIADIC keyword, the third call is secure.

Example 10.8. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a string
constant of unspecified type, the system chooses the candidate function that accepts an argument of the
preferred category string (namely of type text).

SELECT substr('1234', 3);

 substr

 34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr(varchar '1234', 3);

 substr

384

Type Conversion

 34
(1 row)

This is transformed by the parser to effectively become:

SELECT substr(CAST (varchar '1234' AS text), 3);

Note

The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to
text:

SELECT substr(1234, 3);
ERROR: function substr(integer, integer) does not exist
HINT: No function matches the given name and argument types. You
 might need
to add explicit type casts.

This does not work because integer does not have an implicit cast to text. An explicit cast will work,
however:

SELECT substr(CAST (1234 AS text), 3);

 substr

 34
(1 row)

10.4. Value Storage
Values to be inserted into a table are converted to the destination column's data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This is possible if an assignment cast
between the two types is registered in the pg_cast catalog (see CREATE CAST). Alternatively,
if the expression is an unknown-type literal, the contents of the literal string will be fed to the input
conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type to
itself. If one is found in the pg_cast catalog, apply it to the expression before storing into the
destination column. The implementation function for such a cast always takes an extra parameter of

385

Type Conversion

type integer, which receives the destination column's atttypmod value (typically its declared
length, although the interpretation of atttypmod varies for different data types), and it may take
a third boolean parameter that says whether the cast is explicit or implicit. The cast function is
responsible for applying any length-dependent semantics such as size checking or truncation.

Example 10.9. character Storage Type Conversion

For a target column declared as character(20) the following statement shows that the stored value
is sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT 'abc' || 'def';
SELECT v, octet_length(v) FROM vv;

 v | octet_length
----------------------+--------------
 abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, allowing
the || operator to be resolved as text concatenation. Then the text result of the operator is converted
to bpchar (“blank-padded char”, the internal name of the character data type) to match the target
column type. (Since the conversion from text to bpchar is binary-coercible, this conversion does not
insert any real function call.) Finally, the sizing function bpchar(bpchar, integer, boolean)
is found in the system catalog and applied to the operator's result and the stored column length. This type-
specific function performs the required length check and addition of padding spaces.

10.5. UNION, CASE, and Related Constructs
SQL UNION constructs must match up possibly dissimilar types to become a single result set. The
resolution algorithm is applied separately to each output column of a union query. The INTERSECT and
EXCEPT constructs resolve dissimilar types in the same way as UNION. The CASE, ARRAY, VALUES,
GREATEST and LEAST constructs use the identical algorithm to match up their component expressions
and select a result data type.

Type Resolution for UNION, CASE, and Related Constructs

1. If all inputs are of the same type, and it is not unknown, resolve as that type.

2. If any input is of a domain type, treat it as being of the domain's base type for all subsequent steps. 4

3. If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored for the purposes of the remaining rules.

4. If the non-unknown inputs are not all of the same type category, fail.

5. Choose the first non-unknown input type which is a preferred type in that category, if there is one.

6. Otherwise, choose the last non-unknown input type that allows all the preceding non-unknown inputs
to be implicitly converted to it. (There always is such a type, since at least the first type in the list
must satisfy this condition.)

4 Somewhat like the treatment of domain inputs for operators and functions, this behavior allows a domain type to be preserved through a UNION
or similar construct, so long as the user is careful to ensure that all inputs are implicitly or explicitly of that exact type. Otherwise the domain's
base type will be preferred.

386

Type Conversion

7. Convert all inputs to the selected type. Fail if there is not a conversion from a given input to the
selected type.

Some examples follow.

Example 10.10. Type Resolution with Underspecified Types in a Union

SELECT text 'a' AS "text" UNION SELECT 'b';

 text

 a
 b
(2 rows)

Here, the unknown-type literal 'b' will be resolved to type text.

Example 10.11. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

 numeric

 1
 1.2
(2 rows)

The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so
that type is used.

Example 10.12. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST('2.2' AS REAL);

 real

 1
 2.2
(2 rows)

Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to
real, the union result type is resolved as real.

Example 10.13. Type Resolution in a Nested Union

SELECT NULL UNION SELECT NULL UNION SELECT 1;

ERROR: UNION types text and integer cannot be matched

This failure occurs because PostgreSQL treats multiple UNIONs as a nest of pairwise operations; that is,
this input is the same as

387

Type Conversion

(SELECT NULL UNION SELECT NULL) UNION SELECT 1;

The inner UNION is resolved as emitting type text, according to the rules given above. Then the outer
UNION has inputs of types text and integer, leading to the observed error. The problem can be fixed
by ensuring that the leftmost UNION has at least one input of the desired result type.

INTERSECT and EXCEPT operations are likewise resolved pairwise. However, the other constructs
described in this section consider all of their inputs in one resolution step.

10.6. SELECT Output Columns
The rules given in the preceding sections will result in assignment of non-unknown data types to all
expressions in a SQL query, except for unspecified-type literals that appear as simple output columns of
a SELECT command. For example, in

SELECT 'Hello World';

there is nothing to identify what type the string literal should be taken as. In this situation PostgreSQL will
fall back to resolving the literal's type as text.

When the SELECT is one arm of a UNION (or INTERSECT or EXCEPT) construct, or when it appears
within INSERT ... SELECT, this rule is not applied since rules given in preceding sections take
precedence. The type of an unspecified-type literal can be taken from the other UNION arm in the first
case, or from the destination column in the second case.

RETURNING lists are treated the same as SELECT output lists for this purpose.

Note

Prior to PostgreSQL 10, this rule did not exist, and unspecified-type literals in a SELECT output
list were left as type unknown. That had assorted bad consequences, so it's been changed.

388

Chapter 11. Indexes
Indexes are a common way to enhance database performance. An index allows the database server to find
and retrieve specific rows much faster than it could do without an index. But indexes also add overhead
to the database system as a whole, so they should be used sensibly.

11.1. Introduction
Suppose we have a table similar to this:

CREATE TABLE test1 (
 id integer,
 content varchar
);

and the application issues many queries of the form:

SELECT content FROM test1 WHERE id = constant;

With no advance preparation, the system would have to scan the entire test1 table, row by row, to find all
matching entries. If there are many rows in test1 and only a few rows (perhaps zero or one) that would
be returned by such a query, this is clearly an inefficient method. But if the system has been instructed to
maintain an index on the id column, it can use a more efficient method for locating matching rows. For
instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most non-fiction books: terms and concepts that are frequently looked up
by readers are collected in an alphabetic index at the end of the book. The interested reader can scan the
index relatively quickly and flip to the appropriate page(s), rather than having to read the entire book to
find the material of interest. Just as it is the task of the author to anticipate the items that readers are likely
to look up, it is the task of the database programmer to foresee which indexes will be useful.

The following command can be used to create an index on the id column, as discussed:

CREATE INDEX test1_id_index ON test1 (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from tables
at any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks doing so would be more efficient than
a sequential table scan. But you might have to run the ANALYZE command regularly to update statistics
to allow the query planner to make educated decisions. See Chapter 14 for information about how to find
out whether an index is used and when and why the planner might choose not to use an index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can moreover
be used in join searches. Thus, an index defined on a column that is part of a join condition can also
significantly speed up queries with joins.

389

Indexes

Creating an index on a large table can take a long time. By default, PostgreSQL allows reads (SELECT
statements) to occur on the table in parallel with index creation, but writes (INSERT, UPDATE, DELETE)
are blocked until the index build is finished. In production environments this is often unacceptable. It is
possible to allow writes to occur in parallel with index creation, but there are several caveats to be aware
of — for more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead to data
manipulation operations. Therefore indexes that are seldom or never used in queries should be removed.

11.2. Index Types
PostgreSQL provides several index types: B-tree, Hash, GiST, SP-GiST, GIN and BRIN. Each index type
uses a different algorithm that is best suited to different types of queries. By default, the CREATE INDEX
command creates B-tree indexes, which fit the most common situations.

 B-trees can handle equality and range queries on data that can be sorted into some ordering. In particular,
the PostgreSQL query planner will consider using a B-tree index whenever an indexed column is involved
in a comparison using one of these operators:

<
<=
=
>=
>

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be
implemented with a B-tree index search. Also, an IS NULL or IS NOT NULL condition on an index
column can be used with a B-tree index.

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE and
~ if the pattern is a constant and is anchored to the beginning of the string — for example, col LIKE
'foo%' or col ~ '^foo', but not col LIKE '%bar'. However, if your database does not use
the C locale you will need to create the index with a special operator class to support indexing of pattern-
matching queries; see Section 11.10 below. It is also possible to use B-tree indexes for ILIKE and ~*,
but only if the pattern starts with non-alphabetic characters, i.e., characters that are not affected by upper/
lower case conversion.

B-tree indexes can also be used to retrieve data in sorted order. This is not always faster than a simple
scan and sort, but it is often helpful.

 Hash indexes can only handle simple equality comparisons. The query planner will consider using a
hash index whenever an indexed column is involved in a comparison using the = operator. The following
command is used to create a hash index:

CREATE INDEX name ON table USING HASH (column);

 GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST index
can be used vary depending on the indexing strategy (the operator class). As an example, the standard
distribution of PostgreSQL includes GiST operator classes for several two-dimensional geometric data
types, which support indexed queries using these operators:

<<

390

Indexes

&<
&>
>>
<<|
&<|
|&>
|>>
@>
<@
~=
&&

(See Section 9.11 for the meaning of these operators.) The GiST operator classes included in the standard
distribution are documented in Table 64.1. Many other GiST operator classes are available in the contrib
collection or as separate projects. For more information see Chapter 64.

GiST indexes are also capable of optimizing “nearest-neighbor” searches, such as

SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;

which finds the ten places closest to a given target point. The ability to do this is again dependent on the
particular operator class being used. In Table 64.1, operators that can be used in this way are listed in the
column “Ordering Operators”.

 SP-GiST indexes, like GiST indexes, offer an infrastructure that supports various kinds of searches. SP-
GiST permits implementation of a wide range of different non-balanced disk-based data structures, such
as quadtrees, k-d trees, and radix trees (tries). As an example, the standard distribution of PostgreSQL
includes SP-GiST operator classes for two-dimensional points, which support indexed queries using these
operators:

<<
>>
~=
<@
<^
>^

(See Section 9.11 for the meaning of these operators.) The SP-GiST operator classes included in the
standard distribution are documented in Table 65.1. For more information see Chapter 65.

 GIN indexes are “inverted indexes” which are appropriate for data values that contain multiple component
values, such as arrays. An inverted index contains a separate entry for each component value, and can
efficiently handle queries that test for the presence of specific component values.

Like GiST and SP-GiST, GIN can support many different user-defined indexing strategies, and the
particular operators with which a GIN index can be used vary depending on the indexing strategy. As an
example, the standard distribution of PostgreSQL includes a GIN operator class for arrays, which supports
indexed queries using these operators:

<@
@>
=
&&

391

Indexes

(See Section 9.18 for the meaning of these operators.) The GIN operator classes included in the standard
distribution are documented in Table 66.1. Many other GIN operator classes are available in the contrib
collection or as separate projects. For more information see Chapter 66.

 BRIN indexes (a shorthand for Block Range INdexes) store summaries about the values stored in
consecutive physical block ranges of a table. Like GiST, SP-GiST and GIN, BRIN can support many
different indexing strategies, and the particular operators with which a BRIN index can be used vary
depending on the indexing strategy. For data types that have a linear sort order, the indexed data
corresponds to the minimum and maximum values of the values in the column for each block range. This
supports indexed queries using these operators:

<
<=
=
>=
>

The BRIN operator classes included in the standard distribution are documented in Table 67.1. For more
information see Chapter 67.

11.3. Multicolumn Indexes
An index can be defined on more than one column of a table. For example, if you have a table of this form:

CREATE TABLE test2 (
 major int,
 minor int,
 name varchar
);

(say, you keep your /dev directory in a database...) and you frequently issue queries like:

SELECT name FROM test2 WHERE major = constant AND minor = constant;

then it might be appropriate to define an index on the columns major and minor together, e.g.:

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree, GiST, GIN, and BRIN index types support multicolumn indexes. Up to
32 columns can be specified. (This limit can be altered when building PostgreSQL; see the file
pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index's
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the first
column that does not have an equality constraint, will be used to limit the portion of the index that is
scanned. Constraints on columns to the right of these columns are checked in the index, so they save visits
to the table proper, but they do not reduce the portion of the index that has to be scanned. For example,
given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND c < 77,
the index would have to be scanned from the first entry with a = 5 and b = 42 up through the last entry
with a = 5. Index entries with c >= 77 would be skipped, but they'd still have to be scanned through. This

392

Indexes

index could in principle be used for queries that have constraints on b and/or c with no constraint on a
— but the entire index would have to be scanned, so in most cases the planner would prefer a sequential
table scan over using the index.

A multicolumn GiST index can be used with query conditions that involve any subset of the index's
columns. Conditions on additional columns restrict the entries returned by the index, but the condition on
the first column is the most important one for determining how much of the index needs to be scanned.
A GiST index will be relatively ineffective if its first column has only a few distinct values, even if there
are many distinct values in additional columns.

A multicolumn GIN index can be used with query conditions that involve any subset of the index's columns.
Unlike B-tree or GiST, index search effectiveness is the same regardless of which index column(s) the
query conditions use.

A multicolumn BRIN index can be used with query conditions that involve any subset of the index's
columns. Like GIN and unlike B-tree or GiST, index search effectiveness is the same regardless of which
index column(s) the query conditions use. The only reason to have multiple BRIN indexes instead of one
multicolumn BRIN index on a single table is to have a different pages_per_range storage parameter.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is sufficient
and saves space and time. Indexes with more than three columns are unlikely to be helpful unless the usage
of the table is extremely stylized. See also Section 11.5 and Section 11.9 for some discussion of the merits
of different index configurations.

11.4. Indexes and ORDER BY
In addition to simply finding the rows to be returned by a query, an index may be able to deliver them in
a specific sorted order. This allows a query's ORDER BY specification to be honored without a separate
sorting step. Of the index types currently supported by PostgreSQL, only B-tree can produce sorted output
— the other index types return matching rows in an unspecified, implementation-dependent order.

The planner will consider satisfying an ORDER BY specification either by scanning an available index that
matches the specification, or by scanning the table in physical order and doing an explicit sort. For a query
that requires scanning a large fraction of the table, an explicit sort is likely to be faster than using an index
because it requires less disk I/O due to following a sequential access pattern. Indexes are more useful when
only a few rows need be fetched. An important special case is ORDER BY in combination with LIMIT n:
an explicit sort will have to process all the data to identify the first n rows, but if there is an index matching
the ORDER BY, the first n rows can be retrieved directly, without scanning the remainder at all.

By default, B-tree indexes store their entries in ascending order with nulls last. This means that a forward
scan of an index on column x produces output satisfying ORDER BY x (or more verbosely, ORDER BY
x ASC NULLS LAST). The index can also be scanned backward, producing output satisfying ORDER
BY x DESC (or more verbosely, ORDER BY x DESC NULLS FIRST, since NULLS FIRST is
the default for ORDER BY DESC).

You can adjust the ordering of a B-tree index by including the options ASC, DESC, NULLS FIRST, and/
or NULLS LAST when creating the index; for example:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

393

Indexes

An index stored in ascending order with nulls first can satisfy either ORDER BY x ASC NULLS FIRST
or ORDER BY x DESC NULLS LAST depending on which direction it is scanned in.

You might wonder why bother providing all four options, when two options together with the possibility
of backward scan would cover all the variants of ORDER BY. In single-column indexes the options are
indeed redundant, but in multicolumn indexes they can be useful. Consider a two-column index on (x,
y): this can satisfy ORDER BY x, y if we scan forward, or ORDER BY x DESC, y DESC if we
scan backward. But it might be that the application frequently needs to use ORDER BY x ASC, y
DESC. There is no way to get that ordering from a plain index, but it is possible if the index is defined as
(x ASC, y DESC) or (x DESC, y ASC).

Obviously, indexes with non-default sort orderings are a fairly specialized feature, but sometimes they can
produce tremendous speedups for certain queries. Whether it's worth maintaining such an index depends
on how often you use queries that require a special sort ordering.

11.5. Combining Multiple Indexes
A single index scan can only use query clauses that use the index's columns with operators of its operator
class and are joined with AND. For example, given an index on (a, b) a query condition like WHERE
a = 5 AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6 could not
directly use the index.

Fortunately, PostgreSQL has the ability to combine multiple indexes (including multiple uses of the same
index) to handle cases that cannot be implemented by single index scans. The system can form AND and
OR conditions across several index scans. For example, a query like WHERE x = 42 OR x = 47
OR x = 53 OR x = 99 could be broken down into four separate scans of an index on x, each scan
using one of the query clauses. The results of these scans are then ORed together to produce the result.
Another example is that if we have separate indexes on x and y, one possible implementation of a query
like WHERE x = 5 AND y = 6 is to use each index with the appropriate query clause and then AND
together the index results to identify the result rows.

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory giving
the locations of table rows that are reported as matching that index's conditions. The bitmaps are then
ANDed and ORed together as needed by the query. Finally, the actual table rows are visited and returned.
The table rows are visited in physical order, because that is how the bitmap is laid out; this means that
any ordering of the original indexes is lost, and so a separate sort step will be needed if the query has an
ORDER BY clause. For this reason, and because each additional index scan adds extra time, the planner
will sometimes choose to use a simple index scan even though additional indexes are available that could
have been used as well.

In all but the simplest applications, there are various combinations of indexes that might be useful, and
the database developer must make trade-offs to decide which indexes to provide. Sometimes multicolumn
indexes are best, but sometimes it's better to create separate indexes and rely on the index-combination
feature. For example, if your workload includes a mix of queries that sometimes involve only column
x, sometimes only column y, and sometimes both columns, you might choose to create two separate
indexes on x and y, relying on index combination to process the queries that use both columns. You
could also create a multicolumn index on (x, y). This index would typically be more efficient than
index combination for queries involving both columns, but as discussed in Section 11.3, it would be
almost useless for queries involving only y, so it should not be the only index. A combination of the
multicolumn index and a separate index on y would serve reasonably well. For queries involving only
x, the multicolumn index could be used, though it would be larger and hence slower than an index on x
alone. The last alternative is to create all three indexes, but this is probably only reasonable if the table is
searched much more often than it is updated and all three types of query are common. If one of the types
of query is much less common than the others, you'd probably settle for creating just the two indexes that
best match the common types.

394

Indexes

11.6. Unique Indexes
Indexes can also be used to enforce uniqueness of a column's value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values are not allowed. Null
values are not considered equal. A multicolumn unique index will only reject cases where all indexed
columns are equal in multiple rows.

PostgreSQL automatically creates a unique index when a unique constraint or primary key is defined for
a table. The index covers the columns that make up the primary key or unique constraint (a multicolumn
index, if appropriate), and is the mechanism that enforces the constraint.

Note

There's no need to manually create indexes on unique columns; doing so would just duplicate the
automatically-created index.

11.7. Indexes on Expressions
An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access
to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the lower function:

SELECT * FROM test1 WHERE lower(col1) = 'value';

This query can use an index if one has been defined on the result of the lower(col1) function:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

If we were to declare this index UNIQUE, it would prevent creation of rows whose col1 values differ
only in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions can
be used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like:

SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John
 Smith';

then it might be worth creating an index like this:

395

Indexes

CREATE INDEX people_names ON people ((first_name || ' ' ||
 last_name));

The syntax of the CREATE INDEX command normally requires writing parentheses around index
expressions, as shown in the second example. The parentheses can be omitted when the expression is just
a function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be
computed for each row upon insertion and whenever it is updated. However, the index expressions are
not recomputed during an indexed search, since they are already stored in the index. In both examples
above, the system sees the query as just WHERE indexedcolumn = 'constant' and so the speed
of the search is equivalent to any other simple index query. Thus, indexes on expressions are useful when
retrieval speed is more important than insertion and update speed.

11.8. Partial Indexes
A partial index is an index built over a subset of a table; the subset is defined by a conditional expression
(called the predicate of the partial index). The index contains entries only for those table rows that satisfy
the predicate. Partial indexes are a specialized feature, but there are several situations in which they are
useful.

One major reason for using a partial index is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use
the index anyway, there is no point in keeping those rows in the index at all. This reduces the size of the
index, which will speed up those queries that do use the index. It will also speed up many table update
operations because the index does not need to be updated in all cases. Example 11.1 shows a possible
application of this idea.

Example 11.1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP address
range of your organization but some are from elsewhere (say, employees on dial-up connections). If your
searches by IP are primarily for outside accesses, you probably do not need to index the IP range that
corresponds to your organization's subnet.

Assume a table like this:

CREATE TABLE access_log (
 url varchar,
 client_ip inet,
 ...
);

To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND
 client_ip < inet '192.168.100.255');

A typical query that can use this index would be:

SELECT *

396

Indexes

FROM access_log
WHERE url = '/index.html' AND client_ip = inet '212.78.10.32';

A query that cannot use this index is:

SELECT *
FROM access_log
WHERE client_ip = inet '192.168.100.23';

Observe that this kind of partial index requires that the common values be predetermined, so such partial
indexes are best used for data distributions that do not change. The indexes can be recreated occasionally
to adjust for new data distributions, but this adds maintenance effort.

Another possible use for a partial index is to exclude values from the index that the typical query workload
is not interested in; this is shown in Example 11.2. This results in the same advantages as listed above,
but it prevents the “uninteresting” values from being accessed via that index, even if an index scan might
be profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot
of care and experimentation.

Example 11.2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a small
fraction of the total table and yet those are the most-accessed rows, you can improve performance by
creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
 WHERE billed is not true;

A possible query to use this index would be:

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.:

SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;

The order 3501 might be among the billed or unbilled orders.

Example 11.2 also illustrates that the indexed column and the column used in the predicate do not need to
match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the table
being indexed are involved. However, keep in mind that the predicate must match the conditions used in the
queries that are supposed to benefit from the index. To be precise, a partial index can be used in a query only
if the system can recognize that the WHERE condition of the query mathematically implies the predicate
of the index. PostgreSQL does not have a sophisticated theorem prover that can recognize mathematically

397

Indexes

equivalent expressions that are written in different forms. (Not only is such a general theorem prover
extremely difficult to create, it would probably be too slow to be of any real use.) The system can recognize
simple inequality implications, for example “x < 1” implies “x < 2”; otherwise the predicate condition
must exactly match part of the query's WHERE condition or the index will not be recognized as usable.
Matching takes place at query planning time, not at run time. As a result, parameterized query clauses do
not work with a partial index. For example a prepared query with a parameter might specify “x < ?” which
will never imply “x < 2” for all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea here
is to create a unique index over a subset of a table, as in Example 11.3. This enforces uniqueness among
the rows that satisfy the index predicate, without constraining those that do not.

Example 11.3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one
“successful” entry for a given subject and target combination, but there might be any number of
“unsuccessful” entries. Here is one way to do it:

CREATE TABLE tests (
 subject text,
 target text,
 success boolean,
 ...
);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject,
 target)
 WHERE success;

This is a particularly efficient approach when there are few successful tests and many unsuccessful ones.

Finally, a partial index can also be used to override the system's query plan choices. Also, data sets with
peculiar distributions might cause the system to use an index when it really should not. In that case the index
can be set up so that it is not available for the offending query. Normally, PostgreSQL makes reasonable
choices about index usage (e.g., it avoids them when retrieving common values, so the earlier example
really only saves index size, it is not required to avoid index usage), and grossly incorrect plan choices
are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query planner
knows, in particular you know when an index might be profitable. Forming this knowledge requires
experience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a
partial index over a regular index will be minimal.

More information about partial indexes can be found in [ston89b], [olson93], and [seshadri95].

11.9. Index-Only Scans and Covering Indexes
All indexes in PostgreSQL are secondary indexes, meaning that each index is stored separately from
the table's main data area (which is called the table's heap in PostgreSQL terminology). This means that
in an ordinary index scan, each row retrieval requires fetching data from both the index and the heap.
Furthermore, while the index entries that match a given indexable WHERE condition are usually close
together in the index, the table rows they reference might be anywhere in the heap. The heap-access portion
of an index scan thus involves a lot of random access into the heap, which can be slow, particularly on

398

Indexes

traditional rotating media. (As described in Section 11.5, bitmap scans try to alleviate this cost by doing
the heap accesses in sorted order, but that only goes so far.)

To solve this performance problem, PostgreSQL supports index-only scans, which can answer queries
from an index alone without any heap access. The basic idea is to return values directly out of each index
entry instead of consulting the associated heap entry. There are two fundamental restrictions on when this
method can be used:

1. The index type must support index-only scans. B-tree indexes always do. GiST and SP-GiST indexes
support index-only scans for some operator classes but not others. Other index types have no support.
The underlying requirement is that the index must physically store, or else be able to reconstruct, the
original data value for each index entry. As a counterexample, GIN indexes cannot support index-only
scans because each index entry typically holds only part of the original data value.

2. The query must reference only columns stored in the index. For example, given an index on columns
x and y of a table that also has a column z, these queries could use index-only scans:

SELECT x, y FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND y < 42;

but these queries could not:

SELECT x, z FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND z < 42;

(Expression indexes and partial indexes complicate this rule, as discussed below.)

If these two fundamental requirements are met, then all the data values required by the query are available
from the index, so an index-only scan is physically possible. But there is an additional requirement for
any table scan in PostgreSQL: it must verify that each retrieved row be “visible” to the query's MVCC
snapshot, as discussed in Chapter 13. Visibility information is not stored in index entries, only in heap
entries; so at first glance it would seem that every row retrieval would require a heap access anyway. And
this is indeed the case, if the table row has been modified recently. However, for seldom-changing data
there is a way around this problem. PostgreSQL tracks, for each page in a table's heap, whether all rows
stored in that page are old enough to be visible to all current and future transactions. This information is
stored in a bit in the table's visibility map. An index-only scan, after finding a candidate index entry, checks
the visibility map bit for the corresponding heap page. If it's set, the row is known visible and so the data
can be returned with no further work. If it's not set, the heap entry must be visited to find out whether it's
visible, so no performance advantage is gained over a standard index scan. Even in the successful case,
this approach trades visibility map accesses for heap accesses; but since the visibility map is four orders of
magnitude smaller than the heap it describes, far less physical I/O is needed to access it. In most situations
the visibility map remains cached in memory all the time.

In short, while an index-only scan is possible given the two fundamental requirements, it will be a win
only if a significant fraction of the table's heap pages have their all-visible map bits set. But tables in which
a large fraction of the rows are unchanging are common enough to make this type of scan very useful
in practice.

 To make effective use of the index-only scan feature, you might choose to create a covering index, which
is an index specifically designed to include the columns needed by a particular type of query that you
run frequently. Since queries typically need to retrieve more columns than just the ones they search on,
PostgreSQL allows you to create an index in which some columns are just “payload” and are not part of
the search key. This is done by adding an INCLUDE clause listing the extra columns. For example, if you
commonly run queries like

399

Indexes

SELECT y FROM tab WHERE x = 'key';

the traditional approach to speeding up such queries would be to create an index on x only. However, an
index defined as

CREATE INDEX tab_x_y ON tab(x) INCLUDE (y);

could handle these queries as index-only scans, because y can be obtained from the index without visiting
the heap.

Because column y is not part of the index's search key, it does not have to be of a data type that the index
can handle; it's merely stored in the index and is not interpreted by the index machinery. Also, if the index
is a unique index, that is

CREATE UNIQUE INDEX tab_x_y ON tab(x) INCLUDE (y);

the uniqueness condition applies to just column x, not to the combination of x and y. (An INCLUDE
clause can also be written in UNIQUE and PRIMARY KEY constraints, providing alternative syntax for
setting up an index like this.)

It's wise to be conservative about adding non-key payload columns to an index, especially wide columns.
If an index tuple exceeds the maximum size allowed for the index type, data insertion will fail. In any
case, non-key columns duplicate data from the index's table and bloat the size of the index, thus potentially
slowing searches. And remember that there is little point in including payload columns in an index unless
the table changes slowly enough that an index-only scan is likely to not need to access the heap. If the heap
tuple must be visited anyway, it costs nothing more to get the column's value from there. Other restrictions
are that expressions are not currently supported as included columns, and that only B-tree indexes currently
support included columns.

Before PostgreSQL had the INCLUDE feature, people sometimes made covering indexes by writing the
payload columns as ordinary index columns, that is writing

CREATE INDEX tab_x_y ON tab(x, y);

even though they had no intention of ever using y as part of a WHERE clause. This works fine as long
as the extra columns are trailing columns; making them be leading columns is unwise for the reasons
explained in Section 11.3. However, this method doesn't support the case where you want the index to
enforce uniqueness on the key column(s). Also, explicitly marking non-searchable columns as INCLUDE
columns makes the index slightly smaller, because such columns need not be stored in upper B-tree levels.

In principle, index-only scans can be used with expression indexes. For example, given an index on f(x)
where x is a table column, it should be possible to execute

SELECT f(x) FROM tab WHERE f(x) < 1;

as an index-only scan; and this is very attractive if f() is an expensive-to-compute function. However,
PostgreSQL's planner is currently not very smart about such cases. It considers a query to be potentially
executable by index-only scan only when all columns needed by the query are available from the index.
In this example, x is not needed except in the context f(x), but the planner does not notice that and
concludes that an index-only scan is not possible. If an index-only scan seems sufficiently worthwhile,
this can be worked around by adding x as an included column, for example

400

Indexes

CREATE INDEX tab_f_x ON tab (f(x)) INCLUDE (x);

An additional caveat, if the goal is to avoid recalculating f(x), is that the planner won't necessarily match
uses of f(x) that aren't in indexable WHERE clauses to the index column. It will usually get this right
in simple queries such as shown above, but not in queries that involve joins. These deficiencies may be
remedied in future versions of PostgreSQL.

Partial indexes also have interesting interactions with index-only scans. Consider the partial index shown
in Example 11.3:

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject,
 target)
 WHERE success;

In principle, we could do an index-only scan on this index to satisfy a query like

SELECT target FROM tests WHERE subject = 'some-subject' AND success;

But there's a problem: the WHERE clause refers to success which is not available as a result column
of the index. Nonetheless, an index-only scan is possible because the plan does not need to recheck that
part of the WHERE clause at run time: all entries found in the index necessarily have success = true
so this need not be explicitly checked in the plan. PostgreSQL versions 9.6 and later will recognize such
cases and allow index-only scans to be generated, but older versions will not.

11.10. Operator Classes and Operator Families
An index definition can specify an operator class for each column of an index.

CREATE INDEX name ON table (column opclass [sort options] [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column's data type is
usually sufficient. The main reason for having operator classes is that for some data types, there could be
more than one meaningful index behavior. For example, we might want to sort a complex-number data
type either by absolute value or by real part. We could do this by defining two operator classes for the data
type and then selecting the proper class when making an index. The operator class determines the basic
sort ordering (which can then be modified by adding sort options COLLATE, ASC/DESC and/or NULLS
FIRST/NULLS LAST).

There are also some built-in operator classes besides the default ones:

• The operator classes text_pattern_ops, varchar_pattern_ops, and
bpchar_pattern_ops support B-tree indexes on the types text, varchar, and char
respectively. The difference from the default operator classes is that the values are compared strictly
character by character rather than according to the locale-specific collation rules. This makes these
operator classes suitable for use by queries involving pattern matching expressions (LIKE or POSIX
regular expressions) when the database does not use the standard “C” locale. As an example, you might
index a varchar column like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

401

Indexes

Note that you should also create an index with the default operator class if you want queries involving
ordinary <, <=, >, or >= comparisons to use an index. Such queries cannot use the xxx_pattern_ops
operator classes. (Ordinary equality comparisons can use these operator classes, however.) It is possible
to create multiple indexes on the same column with different operator classes. If you do use the C locale,
you do not need the xxx_pattern_ops operator classes, because an index with the default operator
class is usable for pattern-matching queries in the C locale.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
 opc.opcname AS opclass_name,
 opc.opcintype::regtype AS indexed_type,
 opc.opcdefault AS is_default
 FROM pg_am am, pg_opclass opc
 WHERE opc.opcmethod = am.oid
 ORDER BY index_method, opclass_name;

An operator class is actually just a subset of a larger structure called an operator family. In cases where
several data types have similar behaviors, it is frequently useful to define cross-data-type operators and
allow these to work with indexes. To do this, the operator classes for each of the types must be grouped
into the same operator family. The cross-type operators are members of the family, but are not associated
with any single class within the family.

This expanded version of the previous query shows the operator family each operator class belongs to:

SELECT am.amname AS index_method,
 opc.opcname AS opclass_name,
 opf.opfname AS opfamily_name,
 opc.opcintype::regtype AS indexed_type,
 opc.opcdefault AS is_default
 FROM pg_am am, pg_opclass opc, pg_opfamily opf
 WHERE opc.opcmethod = am.oid AND
 opc.opcfamily = opf.oid
 ORDER BY index_method, opclass_name;

This query shows all defined operator families and all the operators included in each family:

SELECT am.amname AS index_method,
 opf.opfname AS opfamily_name,
 amop.amopopr::regoperator AS opfamily_operator
 FROM pg_am am, pg_opfamily opf, pg_amop amop
 WHERE opf.opfmethod = am.oid AND
 amop.amopfamily = opf.oid
 ORDER BY index_method, opfamily_name, opfamily_operator;

11.11. Indexes and Collations
An index can support only one collation per index column. If multiple collations are of interest, multiple
indexes may be needed.

Consider these statements:

402

Indexes

CREATE TABLE test1c (
 id integer,
 content varchar COLLATE "x"
);

CREATE INDEX test1c_content_index ON test1c (content);

The index automatically uses the collation of the underlying column. So a query of the form

SELECT * FROM test1c WHERE content > constant;

could use the index, because the comparison will by default use the collation of the column. However, this
index cannot accelerate queries that involve some other collation. So if queries of the form, say,

SELECT * FROM test1c WHERE content > constant COLLATE "y";

are also of interest, an additional index could be created that supports the "y" collation, like this:

CREATE INDEX test1c_content_y_index ON test1c (content COLLATE "y");

11.12. Examining Index Usage
Although indexes in PostgreSQL do not need maintenance or tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage for an individual query
is done with the EXPLAIN command; its application for this purpose is illustrated in Section 14.1. It is
also possible to gather overall statistics about index usage in a running server, as described in Section 28.2.

It is difficult to formulate a general procedure for determining which indexes to create. There are a number
of typical cases that have been shown in the examples throughout the previous sections. A good deal of
experimentation is often necessary. The rest of this section gives some tips for that:

• Always run ANALYZE first. This command collects statistics about the distribution of the values in the
table. This information is required to estimate the number of rows returned by a query, which is needed
by the planner to assign realistic costs to each possible query plan. In absence of any real statistics, some
default values are assumed, which are almost certain to be inaccurate. Examining an application's index
usage without having run ANALYZE is therefore a lost cause. See Section 24.1.3 and Section 24.1.6
for more information.

• Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you
need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows could be
a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows probably fit
within a single disk page, and there is no plan that can beat sequentially fetching 1 disk page.

Also be careful when making up test data, which is often unavoidable when the application is not yet in
production. Values that are very similar, completely random, or inserted in sorted order will skew the
statistics away from the distribution that real data would have.

• When indexes are not used, it can be useful for testing to force their use. There are run-time parameters
that can turn off various plan types (see Section 19.7.1). For instance, turning off sequential scans

403

Indexes

(enable_seqscan) and nested-loop joins (enable_nestloop), which are the most basic plans,
will force the system to use a different plan. If the system still chooses a sequential scan or nested-loop
join then there is probably a more fundamental reason why the index is not being used; for example, the
query condition does not match the index. (What kind of query can use what kind of index is explained
in the previous sections.)

• If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not reflecting
reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE command
can be useful here.

• If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node. The
costs estimated for the plan nodes can be adjusted via run-time parameters (described in Section 19.7.2).
An inaccurate selectivity estimate is due to insufficient statistics. It might be possible to improve this
by tuning the statistics-gathering parameters (see ALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you might have to resort to
forcing index usage explicitly. You might also want to contact the PostgreSQL developers to examine
the issue.

404

Chapter 12. Full Text Search
12.1. Introduction

Full Text Searching (or just text search) provides the capability to identify natural-language documents
that satisfy a query, and optionally to sort them by relevance to the query. The most common type of search
is to find all documents containing given query terms and return them in order of their similarity to the
query. Notions of query and similarity are very flexible and depend on the specific application. The
simplest search considers query as a set of words and similarity as the frequency of query words
in the document.

Textual search operators have existed in databases for years. PostgreSQL has ~, ~*, LIKE, and ILIKE
operators for textual data types, but they lack many essential properties required by modern information
systems:

• There is no linguistic support, even for English. Regular expressions are not sufficient because they
cannot easily handle derived words, e.g., satisfies and satisfy. You might miss documents that
contain satisfies, although you probably would like to find them when searching for satisfy.
It is possible to use OR to search for multiple derived forms, but this is tedious and error-prone (some
words can have several thousand derivatives).

• They provide no ordering (ranking) of search results, which makes them ineffective when thousands
of matching documents are found.

• They tend to be slow because there is no index support, so they must process all documents for every
search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers, words,
complex words, email addresses, so that they can be processed differently. In principle token classes
depend on the specific application, but for most purposes it is adequate to use a predefined set of classes.
PostgreSQL uses a parser to perform this step. A standard parser is provided, and custom parsers can
be created for specific needs.

Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized so that
different forms of the same word are made alike. For example, normalization almost always includes
folding upper-case letters to lower-case, and often involves removal of suffixes (such as s or es in
English). This allows searches to find variant forms of the same word, without tediously entering all the
possible variants. Also, this step typically eliminates stop words, which are words that are so common
that they are useless for searching. (In short, then, tokens are raw fragments of the document text, while
lexemes are words that are believed useful for indexing and searching.) PostgreSQL uses dictionaries
to perform this step. Various standard dictionaries are provided, and custom ones can be created for
specific needs.

Storing preprocessed documents optimized for searching. For example, each document can be
represented as a sorted array of normalized lexemes. Along with the lexemes it is often desirable to store
positional information to use for proximity ranking, so that a document that contains a more “dense”
region of query words is assigned a higher rank than one with scattered query words.

Dictionaries allow fine-grained control over how tokens are normalized. With appropriate dictionaries,
you can:

• Define stop words that should not be indexed.

405

Full Text Search

• Map synonyms to a single word using Ispell.

• Map phrases to a single word using a thesaurus.

• Map different variations of a word to a canonical form using an Ispell dictionary.

• Map different variations of a word to a canonical form using Snowball stemmer rules.

A data type tsvector is provided for storing preprocessed documents, along with a type tsquery for
representing processed queries (Section 8.11). There are many functions and operators available for these
data types (Section 9.13), the most important of which is the match operator @@, which we introduce in
Section 12.1.2. Full text searches can be accelerated using indexes (Section 12.9).

12.1.1. What Is a Document?

A document is the unit of searching in a full text search system; for example, a magazine article or email
message. The text search engine must be able to parse documents and store associations of lexemes (key
words) with their parent document. Later, these associations are used to search for documents that contain
query words.

For searches within PostgreSQL, a document is normally a textual field within a row of a database table,
or possibly a combination (concatenation) of such fields, perhaps stored in several tables or obtained
dynamically. In other words, a document can be constructed from different parts for indexing and it might
not be stored anywhere as a whole. For example:

SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS
 document
FROM messages
WHERE mid = 12;

SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' ||
 d.body AS document
FROM messages m, docs d
WHERE mid = did AND mid = 12;

Note

Actually, in these example queries, coalesce should be used to prevent a single NULL attribute
from causing a NULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system. In this case, the database
can be used to store the full text index and to execute searches, and some unique identifier can be used to
retrieve the document from the file system. However, retrieving files from outside the database requires
superuser permissions or special function support, so this is usually less convenient than keeping all the
data inside PostgreSQL. Also, keeping everything inside the database allows easy access to document
metadata to assist in indexing and display.

For text search purposes, each document must be reduced to the preprocessed tsvector format.
Searching and ranking are performed entirely on the tsvector representation of a document — the
original text need only be retrieved when the document has been selected for display to a user. We therefore
often speak of the tsvector as being the document, but of course it is only a compact representation
of the full document.

406

Full Text Search

12.1.2. Basic Text Matching
Full text searching in PostgreSQL is based on the match operator @@, which returns true if a tsvector
(document) matches a tsquery (query). It doesn't matter which data type is written first:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat &
 rat'::tsquery;
 ?column?

 t

SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat
 rat'::tsvector;
 ?column?

 f

As the above example suggests, a tsquery is not just raw text, any more than a tsvector is. A
tsquery contains search terms, which must be already-normalized lexemes, and may combine multiple
terms using AND, OR, NOT, and FOLLOWED BY operators. (For syntax details see Section 8.11.2.)
There are functions to_tsquery, plainto_tsquery, and phraseto_tsquery that are helpful
in converting user-written text into a proper tsquery, primarily by normalizing words appearing in the
text. Similarly, to_tsvector is used to parse and normalize a document string. So in practice a text
search match would look more like this:

SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat &
 rat');
 ?column?

 t

Observe that this match would not succeed if written as

SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat');
 ?column?

 f

since here no normalization of the word rats will occur. The elements of a tsvector are lexemes,
which are assumed already normalized, so rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text string to tsvector or
tsquery to be skipped in simple cases. The variants available are:

tsvector @@ tsquery
tsquery @@ tsvector
text @@ tsquery
text @@ text

The first two of these we saw already. The form text @@ tsquery is equivalent to to_tsvector(x)
@@ y. The form text @@ text is equivalent to to_tsvector(x) @@ plainto_tsquery(y).

407

Full Text Search

Within a tsquery, the & (AND) operator specifies that both its arguments must appear in the document
to have a match. Similarly, the | (OR) operator specifies that at least one of its arguments must appear,
while the ! (NOT) operator specifies that its argument must not appear in order to have a match. For
example, the query fat & ! rat matches documents that contain fat but not rat.

Searching for phrases is possible with the help of the <-> (FOLLOWED BY) tsquery operator, which
matches only if its arguments have matches that are adjacent and in the given order. For example:

SELECT to_tsvector('fatal error') @@ to_tsquery('fatal <-> error');
 ?column?

 t

SELECT to_tsvector('error is not fatal') @@ to_tsquery('fatal <->
 error');
 ?column?

 f

There is a more general version of the FOLLOWED BY operator having the form <N>, where N is
an integer standing for the difference between the positions of the matching lexemes. <1> is the same
as <->, while <2> allows exactly one other lexeme to appear between the matches, and so on. The
phraseto_tsquery function makes use of this operator to construct a tsquery that can match a
multi-word phrase when some of the words are stop words. For example:

SELECT phraseto_tsquery('cats ate rats');
 phraseto_tsquery

 'cat' <-> 'ate' <-> 'rat'

SELECT phraseto_tsquery('the cats ate the rats');
 phraseto_tsquery

 'cat' <-> 'ate' <2> 'rat'

A special case that's sometimes useful is that <0> can be used to require that two patterns match the same
word.

Parentheses can be used to control nesting of the tsquery operators. Without parentheses, | binds least
tightly, then &, then <->, and ! most tightly.

It's worth noticing that the AND/OR/NOT operators mean something subtly different when they are within
the arguments of a FOLLOWED BY operator than when they are not, because within FOLLOWED BY
the exact position of the match is significant. For example, normally !x matches only documents that do
not contain x anywhere. But !x <-> y matches y if it is not immediately after an x; an occurrence of
x elsewhere in the document does not prevent a match. Another example is that x & y normally only
requires that x and y both appear somewhere in the document, but (x & y) <-> z requires x and
y to match at the same place, immediately before a z. Thus this query behaves differently from x <-
> z & y <-> z, which will match a document containing two separate sequences x z and y z.
(This specific query is useless as written, since x and y could not match at the same place; but with more
complex situations such as prefix-match patterns, a query of this form could be useful.)

408

Full Text Search

12.1.3. Configurations
The above are all simple text search examples. As mentioned before, full text search functionality includes
the ability to do many more things: skip indexing certain words (stop words), process synonyms, and use
sophisticated parsing, e.g., parse based on more than just white space. This functionality is controlled by
text search configurations. PostgreSQL comes with predefined configurations for many languages, and
you can easily create your own configurations. (psql's \dF command shows all available configurations.)

During installation an appropriate configuration is selected and default_text_search_config is set
accordingly in postgresql.conf. If you are using the same text search configuration for the entire
cluster you can use the value in postgresql.conf. To use different configurations throughout the
cluster but the same configuration within any one database, use ALTER DATABASE ... SET.
Otherwise, you can set default_text_search_config in each session.

Each text search function that depends on a configuration has an optional regconfig argument, so that
the configuration to use can be specified explicitly. default_text_search_config is used only
when this argument is omitted.

To make it easier to build custom text search configurations, a configuration is built up from simpler
database objects. PostgreSQL's text search facility provides four types of configuration-related database
objects:

• Text search parsers break documents into tokens and classify each token (for example, as words or
numbers).

• Text search dictionaries convert tokens to normalized form and reject stop words.
• Text search templates provide the functions underlying dictionaries. (A dictionary simply specifies a

template and a set of parameters for the template.)
• Text search configurations select a parser and a set of dictionaries to use to normalize the tokens

produced by the parser.

Text search parsers and templates are built from low-level C functions; therefore it requires C programming
ability to develop new ones, and superuser privileges to install one into a database. (There are examples of
add-on parsers and templates in the contrib/ area of the PostgreSQL distribution.) Since dictionaries
and configurations just parameterize and connect together some underlying parsers and templates, no
special privilege is needed to create a new dictionary or configuration. Examples of creating custom
dictionaries and configurations appear later in this chapter.

12.2. Tables and Indexes
The examples in the previous section illustrated full text matching using simple constant strings. This
section shows how to search table data, optionally using indexes.

12.2.1. Searching a Table
It is possible to do a full text search without an index. A simple query to print the title of each row that
contains the word friend in its body field is:

SELECT title
FROM pgweb
WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');

This will also find related words such as friends and friendly, since all these are reduced to the
same normalized lexeme.

409

Full Text Search

The query above specifies that the english configuration is to be used to parse and normalize the strings.
Alternatively we could omit the configuration parameters:

SELECT title
FROM pgweb
WHERE to_tsvector(body) @@ to_tsquery('friend');

This query will use the configuration set by default_text_search_config.

A more complex example is to select the ten most recent documents that contain create and table
in the title or body:

SELECT title
FROM pgweb
WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create &
 table')
ORDER BY last_mod_date DESC
LIMIT 10;

For clarity we omitted the coalesce function calls which would be needed to find rows that contain
NULL in one of the two fields.

Although these queries will work without an index, most applications will find this approach too slow,
except perhaps for occasional ad-hoc searches. Practical use of text searching usually requires creating
an index.

12.2.2. Creating Indexes
We can create a GIN index (Section 12.9) to speed up text searches:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english',
 body));

Notice that the 2-argument version of to_tsvector is used. Only text search functions that specify a
configuration name can be used in expression indexes (Section 11.7). This is because the index contents
must be unaffected by default_text_search_config. If they were affected, the index contents might be
inconsistent because different entries could contain tsvectors that were created with different text
search configurations, and there would be no way to guess which was which. It would be impossible to
dump and restore such an index correctly.

Because the two-argument version of to_tsvector was used in the index above, only a query reference
that uses the 2-argument version of to_tsvector with the same configuration name will use that index.
That is, WHERE to_tsvector('english', body) @@ 'a & b' can use the index, but WHERE
to_tsvector(body) @@ 'a & b' cannot. This ensures that an index will be used only with the
same configuration used to create the index entries.

It is possible to set up more complex expression indexes wherein the configuration name is specified by
another column, e.g.:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector(config_name,
 body));

410

Full Text Search

where config_name is a column in the pgweb table. This allows mixed configurations in the same index
while recording which configuration was used for each index entry. This would be useful, for example,
if the document collection contained documents in different languages. Again, queries that are meant to
use the index must be phrased to match, e.g., WHERE to_tsvector(config_name, body) @@
'a & b'.

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english',
 title || ' ' || body));

Another approach is to create a separate tsvector column to hold the output of to_tsvector. This
example is a concatenation of title and body, using coalesce to ensure that one field will still be
indexed when the other is NULL:

ALTER TABLE pgweb ADD COLUMN textsearchable_index_col tsvector;
UPDATE pgweb SET textsearchable_index_col =
 to_tsvector('english', coalesce(title,'') || ' ' ||
 coalesce(body,''));

Then we create a GIN index to speed up the search:

CREATE INDEX textsearch_idx ON pgweb USING GIN
 (textsearchable_index_col);

Now we are ready to perform a fast full text search:

SELECT title
FROM pgweb
WHERE textsearchable_index_col @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;

When using a separate column to store the tsvector representation, it is necessary to create a trigger
to keep the tsvector column current anytime title or body changes. Section 12.4.3 explains how
to do that.

One advantage of the separate-column approach over an expression index is that it is not necessary to
explicitly specify the text search configuration in queries in order to make use of the index. As shown in
the example above, the query can depend on default_text_search_config. Another advantage
is that searches will be faster, since it will not be necessary to redo the to_tsvector calls to verify
index matches. (This is more important when using a GiST index than a GIN index; see Section 12.9.)
The expression-index approach is simpler to set up, however, and it requires less disk space since the
tsvector representation is not stored explicitly.

12.3. Controlling Text Search
To implement full text searching there must be a function to create a tsvector from a document and a
tsquery from a user query. Also, we need to return results in a useful order, so we need a function that

411

Full Text Search

compares documents with respect to their relevance to the query. It's also important to be able to display
the results nicely. PostgreSQL provides support for all of these functions.

12.3.1. Parsing Documents
PostgreSQL provides the function to_tsvector for converting a document to the tsvector data type.

to_tsvector([config regconfig,] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns a
tsvector which lists the lexemes together with their positions in the document. The document is
processed according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat
 rats');
 to_tsvector

 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4

In the example above we see that the resulting tsvector does not contain the words a, on, or it, the
word rats became rat, and the punctuation sign - was ignored.

The to_tsvector function internally calls a parser which breaks the document text into tokens and
assigns a type to each token. For each token, a list of dictionaries (Section 12.6) is consulted, where the
list can vary depending on the token type. The first dictionary that recognizes the token emits one or
more normalized lexemes to represent the token. For example, rats became rat because one of the
dictionaries recognized that the word rats is a plural form of rat. Some words are recognized as stop
words (Section 12.6.1), which causes them to be ignored since they occur too frequently to be useful in
searching. In our example these are a, on, and it. If no dictionary in the list recognizes the token then
it is also ignored. In this example that happened to the punctuation sign - because there are in fact no
dictionaries assigned for its token type (Space symbols), meaning space tokens will never be indexed.
The choices of parser, dictionaries and which types of tokens to index are determined by the selected
text search configuration (Section 12.7). It is possible to have many different configurations in the same
database, and predefined configurations are available for various languages. In our example we used the
default configuration english for the English language.

The function setweight can be used to label the entries of a tsvector with a given weight, where a
weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts
of a document, such as title versus body. Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a field
might be null. Here is the recommended method for creating a tsvector from a structured document:

UPDATE tt SET ti =
 setweight(to_tsvector(coalesce(title,'')), 'A') ||
 setweight(to_tsvector(coalesce(keyword,'')), 'B') ||
 setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
 setweight(to_tsvector(coalesce(body,'')), 'D');

Here we have used setweight to label the source of each lexeme in the finished tsvector, and then
merged the labeled tsvector values using the tsvector concatenation operator ||. (Section 12.4.1
gives details about these operations.)

412

Full Text Search

12.3.2. Parsing Queries
PostgreSQL provides the functions to_tsquery, plainto_tsquery, phraseto_tsquery and
websearch_to_tsquery for converting a query to the tsquery data type. to_tsquery offers
access to more features than either plainto_tsquery or phraseto_tsquery, but it is less
forgiving about its input. websearch_to_tsquery is a simplified version of to_tsquery with an
alternative syntax, similar to the one used by web search engines.

to_tsquery([config regconfig,] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single tokens
separated by the tsquery operators & (AND), | (OR), ! (NOT), and <-> (FOLLOWED BY), possibly
grouped using parentheses. In other words, the input to to_tsquery must already follow the general
rules for tsquery input, as described in Section 8.11.2. The difference is that while basic tsquery
input takes the tokens at face value, to_tsquery normalizes each token into a lexeme using the specified
or default configuration, and discards any tokens that are stop words according to the configuration. For
example:

SELECT to_tsquery('english', 'The & Fat & Rats');
 to_tsquery

 'fat' & 'rat'

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it to match only
tsvector lexemes of those weight(s). For example:

SELECT to_tsquery('english', 'Fat | Rats:AB');
 to_tsquery

 'fat' | 'rat':AB

Also, * can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery('supern:*A & star:A*B');
 to_tsquery

 'supern':*A & 'star':*AB

Such a lexeme will match any word in a tsvector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration
includes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus contains
the rule supernovae stars : sn:

SELECT to_tsquery('''supernovae stars'' & !crab');
 to_tsquery

 'sn' & !'crab'

413

Full Text Search

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an AND,
OR, or FOLLOWED BY operator.

plainto_tsquery([config regconfig,] querytext text) returns tsquery

plainto_tsquery transforms the unformatted text querytext to a tsquery value. The text is
parsed and normalized much as for to_tsvector, then the & (AND) tsquery operator is inserted
between surviving words.

Example:

SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery

 'fat' & 'rat'

Note that plainto_tsquery will not recognize tsquery operators, weight labels, or prefix-match
labels in its input:

SELECT plainto_tsquery('english', 'The Fat & Rats:C');
 plainto_tsquery

 'fat' & 'rat' & 'c'

Here, all the input punctuation was discarded as being space symbols.

phraseto_tsquery([config regconfig,] querytext text) returns tsquery

phraseto_tsquery behaves much like plainto_tsquery, except that it inserts the <->
(FOLLOWED BY) operator between surviving words instead of the & (AND) operator. Also, stop words
are not simply discarded, but are accounted for by inserting <N> operators rather than <-> operators. This
function is useful when searching for exact lexeme sequences, since the FOLLOWED BY operators check
lexeme order not just the presence of all the lexemes.

Example:

SELECT phraseto_tsquery('english', 'The Fat Rats');
 phraseto_tsquery

 'fat' <-> 'rat'

Like plainto_tsquery, the phraseto_tsquery function will not recognize tsquery operators,
weight labels, or prefix-match labels in its input:

SELECT phraseto_tsquery('english', 'The Fat & Rats:C');
 phraseto_tsquery

 'fat' <-> 'rat' <-> 'c'

414

Full Text Search

websearch_to_tsquery([config regconfig,] querytext text)
 returns tsquery

websearch_to_tsquery creates a tsquery value from querytext using an alternative syntax in
which simple unformatted text is a valid query. Unlike plainto_tsquery and phraseto_tsquery,
it also recognizes certain operators. Moreover, this function should never raise syntax errors, which makes
it possible to use raw user-supplied input for search. The following syntax is supported:

• unquoted text: text not inside quote marks will be converted to terms separated by & operators,
as if processed by plainto_tsquery.

• "quoted text": text inside quote marks will be converted to terms separated by <-> operators, as
if processed by phraseto_tsquery.

• OR: logical or will be converted to the | operator.
• -: the logical not operator, converted to the the ! operator.

Examples:

SELECT websearch_to_tsquery('english', 'The fat rats');
 websearch_to_tsquery

 'fat' & 'rat'
(1 row)

SELECT websearch_to_tsquery('english', '"supernovae stars" -crab');
 websearch_to_tsquery

 'supernova' <-> 'star' & !'crab'
(1 row)

SELECT websearch_to_tsquery('english', '"sad cat" or "fat rat"');
 websearch_to_tsquery

 'sad' <-> 'cat' | 'fat' <-> 'rat'
(1 row)

SELECT websearch_to_tsquery('english', 'signal -"segmentation
 fault"');
 websearch_to_tsquery

 'signal' & !('segment' <-> 'fault')
(1 row)

SELECT websearch_to_tsquery('english', '""")(dummy \\ query <->');
 websearch_to_tsquery

 'dummi' & 'queri'
(1 row)

12.3.3. Ranking Search Results
Ranking attempts to measure how relevant documents are to a particular query, so that when there are
many matches the most relevant ones can be shown first. PostgreSQL provides two predefined ranking

415

Full Text Search

functions, which take into account lexical, proximity, and structural information; that is, they consider
how often the query terms appear in the document, how close together the terms are in the document, and
how important is the part of the document where they occur. However, the concept of relevancy is vague
and very application-specific. Different applications might require additional information for ranking, e.g.,
document modification time. The built-in ranking functions are only examples. You can write your own
ranking functions and/or combine their results with additional factors to fit your specific needs.

The two ranking functions currently available are:

 ts_rank([weights float4[],] vector tsvector, query tsquery [,
normalization integer]) returns float4

Ranks vectors based on the frequency of their matching lexemes.

 ts_rank_cd([weights float4[],] vector tsvector, query tsquery [,
normalization integer]) returns float4

This function computes the cover density ranking for the given document vector and query, as
described in Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three Term Queries" in
the journal "Information Processing and Management", 1999. Cover density is similar to ts_rank
ranking except that the proximity of matching lexemes to each other is taken into consideration.

This function requires lexeme positional information to perform its calculation. Therefore, it ignores
any “stripped” lexemes in the tsvector. If there are no unstripped lexemes in the input, the result
will be zero. (See Section 12.4.1 for more information about the strip function and positional
information in tsvectors.)

For both these functions, the optional weights argument offers the ability to weigh word instances more
or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each
category of word, in the order:

{D-weight, C-weight, B-weight, A-weight}

If no weights are provided, then these defaults are used:

{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial
abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take into
account document size, e.g., a hundred-word document with five instances of a search word is probably
more relevant than a thousand-word document with five instances. Both ranking functions take an integer
normalization option that specifies whether and how a document's length should impact its rank. The
integer option controls several behaviors, so it is a bit mask: you can specify one or more behaviors using
| (for example, 2|4).

• 0 (the default) ignores the document length
• 1 divides the rank by 1 + the logarithm of the document length
• 2 divides the rank by the document length
• 4 divides the rank by the mean harmonic distance between extents (this is implemented only by
ts_rank_cd)

• 8 divides the rank by the number of unique words in document
• 16 divides the rank by 1 + the logarithm of the number of unique words in document

416

Full Text Search

• 32 divides the rank by itself + 1

If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impossible
to produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32 (rank/
(rank+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a cosmetic
change; it will not affect the ordering of the search results.

Here is an example that selects only the ten highest-ranked matches:

SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank
---+----------
 Neutrinos in the Sun | 3.1
 The Sudbury Neutrino Detector | 2.4
 A MACHO View of Galactic Dark Matter | 2.01317
 Hot Gas and Dark Matter | 1.91171
 The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
 Rafting for Solar Neutrinos | 1.9
 NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
 Hot Gas and Dark Matter | 1.6123
 Ice Fishing for Cosmic Neutrinos | 1.6
 Weak Lensing Distorts the Universe | 0.818218

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */)
 AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank
---+-------------------
 Neutrinos in the Sun | 0.756097569485493
 The Sudbury Neutrino Detector | 0.705882361190954
 A MACHO View of Galactic Dark Matter | 0.668123210574724
 Hot Gas and Dark Matter | 0.65655958650282
 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
 Rafting for Solar Neutrinos | 0.655172410958162
 NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
 Hot Gas and Dark Matter | 0.617195790024749
 Ice Fishing for Cosmic Neutrinos | 0.615384618911517
 Weak Lensing Distorts the Universe | 0.450010798361481

Ranking can be expensive since it requires consulting the tsvector of each matching document, which
can be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical queries
often result in large numbers of matches.

417

Full Text Search

12.3.4. Highlighting Results
To present search results it is ideal to show a part of each document and how it is related to the query.
Usually, search engines show fragments of the document with marked search terms. PostgreSQL provides
a function ts_headline that implements this functionality.

ts_headline([config regconfig,] document text, query tsquery
 [, options text]) returns text

ts_headline accepts a document along with a query, and returns an excerpt from the document in
which terms from the query are highlighted. The configuration to be used to parse the document can be
specified by config; if config is omitted, the default_text_search_config configuration is
used.

If an options string is specified it must consist of a comma-separated list of one or more
option=value pairs. The available options are:

• StartSel, StopSel: the strings with which to delimit query words appearing in the document, to
distinguish them from other excerpted words. You must double-quote these strings if they contain spaces
or commas.

• MaxWords, MinWords: these numbers determine the longest and shortest headlines to output.
• ShortWord: words of this length or less will be dropped at the start and end of a headline. The default

value of three eliminates common English articles.
• HighlightAll: Boolean flag; if true the whole document will be used as the headline, ignoring

the preceding three parameters.
• MaxFragments: maximum number of text excerpts or fragments to display. The default value of zero

selects a non-fragment-oriented headline generation method. A value greater than zero selects fragment-
based headline generation. This method finds text fragments with as many query words as possible and
stretches those fragments around the query words. As a result query words are close to the middle of
each fragment and have words on each side. Each fragment will be of at most MaxWords and words of
length ShortWord or less are dropped at the start and end of each fragment. If not all query words are
found in the document, then a single fragment of the first MinWords in the document will be displayed.

• FragmentDelimiter: When more than one fragment is displayed, the fragments will be separated
by this string.

These option names are recognized case-insensitively. Any unspecified options receive these defaults:

StartSel=, StopSel=,
MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline('english',
 'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
 to_tsquery('query & similarity'));
 ts_headline

418

Full Text Search

--
 containing given query terms
 and return them in order of their similarity to the
 query.

SELECT ts_headline('english',
 'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
 to_tsquery('query & similarity'),
 'StartSel = <, StopSel = >');
 ts_headline

 containing given <query> terms
 and return them in order of their <similarity> to the
 <query>.

ts_headline uses the original document, not a tsvector summary, so it can be slow and should
be used with care.

12.4. Additional Features
This section describes additional functions and operators that are useful in connection with text search.

12.4.1. Manipulating Documents
Section 12.3.1 showed how raw textual documents can be converted into tsvector values. PostgreSQL
also provides functions and operators that can be used to manipulate documents that are already in
tsvector form.

 tsvector || tsvector

The tsvector concatenation operator returns a vector which combines the lexemes and positional
information of the two vectors given as arguments. Positions and weight labels are retained during
the concatenation. Positions appearing in the right-hand vector are offset by the largest position
mentioned in the left-hand vector, so that the result is nearly equivalent to the result of performing
to_tsvector on the concatenation of the two original document strings. (The equivalence is not
exact, because any stop-words removed from the end of the left-hand argument will not affect the
result, whereas they would have affected the positions of the lexemes in the right-hand argument if
textual concatenation were used.)

One advantage of using concatenation in the vector form, rather than concatenating text before
applying to_tsvector, is that you can use different configurations to parse different sections of the
document. Also, because the setweight function marks all lexemes of the given vector the same
way, it is necessary to parse the text and do setweight before concatenating if you want to label
different parts of the document with different weights.

 setweight(vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input vector in which every position has been labeled with the
given weight, either A, B, C, or D. (D is the default for new vectors and as such is not displayed on
output.) These labels are retained when vectors are concatenated, allowing words from different parts
of a document to be weighted differently by ranking functions.

419

Full Text Search

Note that weight labels apply to positions, not lexemes. If the input vector has been stripped of
positions then setweight does nothing.

 length(vector tsvector) returns integer

Returns the number of lexemes stored in the vector.

 strip(vector tsvector) returns tsvector

Returns a vector that lists the same lexemes as the given vector, but lacks any position or weight
information. The result is usually much smaller than an unstripped vector, but it is also less useful.
Relevance ranking does not work as well on stripped vectors as unstripped ones. Also, the <->
(FOLLOWED BY) tsquery operator will never match stripped input, since it cannot determine the
distance between lexeme occurrences.

A full list of tsvector-related functions is available in Table 9.41.

12.4.2. Manipulating Queries
Section 12.3.2 showed how raw textual queries can be converted into tsquery values. PostgreSQL also
provides functions and operators that can be used to manipulate queries that are already in tsquery form.

tsquery && tsquery

Returns the AND-combination of the two given queries.

tsquery || tsquery

Returns the OR-combination of the two given queries.

!! tsquery

Returns the negation (NOT) of the given query.

tsquery <-> tsquery

Returns a query that searches for a match to the first given query immediately followed by a match to
the second given query, using the <-> (FOLLOWED BY) tsquery operator. For example:

SELECT to_tsquery('fat') <-> to_tsquery('cat | rat');
 ?column?

 'fat' <-> 'cat' | 'fat' <-> 'rat'

 tsquery_phrase(query1 tsquery, query2 tsquery [, distance integer])
returns tsquery

Returns a query that searches for a match to the first given query followed by a match to the second
given query at a distance of at distance lexemes, using the <N> tsquery operator. For example:

SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);
 tsquery_phrase

420

Full Text Search

 'fat' <10> 'cat'

 numnode(query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a tsquery. This function is useful to
determine if the query is meaningful (returns > 0), or contains only stop words (returns 0). Examples:

SELECT numnode(plainto_tsquery('the any'));
NOTICE: query contains only stopword(s) or doesn't contain
 lexeme(s), ignored
 numnode

 0

SELECT numnode('foo & bar'::tsquery);
 numnode

 3

 querytree(query tsquery) returns text

Returns the portion of a tsquery that can be used for searching an index. This function is useful for
detecting unindexable queries, for example those containing only stop words or only negated terms.
For example:

SELECT querytree(to_tsquery('!defined'));
 querytree

12.4.2.1. Query Rewriting

The ts_rewrite family of functions search a given tsquery for occurrences of a target subquery,
and replace each occurrence with a substitute subquery. In essence this operation is a tsquery-specific
version of substring replacement. A target and substitute combination can be thought of as a query rewrite
rule. A collection of such rewrite rules can be a powerful search aid. For example, you can expand the
search using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the search to direct
the user to some hot topic. There is some overlap in functionality between this feature and thesaurus
dictionaries (Section 12.6.4). However, you can modify a set of rewrite rules on-the-fly without reindexing,
whereas updating a thesaurus requires reindexing to be effective.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns
tsquery

This form of ts_rewrite simply applies a single rewrite rule: target is replaced by
substitute wherever it appears in query. For example:

SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery);
 ts_rewrite

 'b' & 'c'

421

Full Text Search

ts_rewrite (query tsquery, select text) returns tsquery

This form of ts_rewrite accepts a starting query and a SQL select command, which is given
as a text string. The select must yield two columns of tsquery type. For each row of the select
result, occurrences of the first column value (the target) are replaced by the second column value (the
substitute) within the current query value. For example:

CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a', 'c');

SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases');
 ts_rewrite

 'b' & 'c'

Note that when multiple rewrite rules are applied in this way, the order of application can be important;
so in practice you will want the source query to ORDER BY some ordering key.

Let's consider a real-life astronomical example. We'll expand query supernovae using table-driven
rewriting rules:

CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(to_tsquery('supernovae'),
 to_tsquery('supernovae|sn'));

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM
 aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn')

We can change the rewriting rules just by updating the table:

UPDATE aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM
 aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn' & !'nebula')

Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possible match.
To filter out obvious non-candidate rules we can use the containment operators for the tsquery type. In
the example below, we select only those rules which might match the original query:

SELECT ts_rewrite('a & b'::tsquery,
 'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @>
 t');
 ts_rewrite

422

Full Text Search

 'b' & 'c'

12.4.3. Triggers for Automatic Updates
When using a separate column to store the tsvector representation of your documents, it is necessary
to create a trigger to update the tsvector column when the document content columns change. Two
built-in trigger functions are available for this, or you can write your own.

tsvector_update_trigger(tsvector_column_name, config_name, text_column_name
 [, ...])
tsvector_update_trigger_column(tsvector_column_name, config_column_name, text_column_name
 [, ...])

These trigger functions automatically compute a tsvector column from one or more textual columns,
under the control of parameters specified in the CREATE TRIGGER command. An example of their use is:

CREATE TABLE messages (
 title text,
 body text,
 tsv tsvector
);

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);

INSERT INTO messages VALUES('title here', 'the body text is here');

SELECT * FROM messages;
 title | body | tsv
------------+-----------------------+----------------------------
 title here | the body text is here | 'bodi':4 'text':5 'titl':1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title &
 body');
 title | body
------------+-----------------------
 title here | the body text is here

Having created this trigger, any change in title or body will automatically be reflected into tsv,
without the application having to worry about it.

The first trigger argument must be the name of the tsvector column to be updated. The
second argument specifies the text search configuration to be used to perform the conversion. For
tsvector_update_trigger, the configuration name is simply given as the second trigger argument.
It must be schema-qualified as shown above, so that the trigger behavior will not change with changes
in search_path. For tsvector_update_trigger_column, the second trigger argument is the
name of another table column, which must be of type regconfig. This allows a per-row selection of
configuration to be made. The remaining argument(s) are the names of textual columns (of type text,
varchar, or char). These will be included in the document in the order given. NULL values will be
skipped (but the other columns will still be indexed).

423

Full Text Search

A limitation of these built-in triggers is that they treat all the input columns alike. To process columns
differently — for example, to weight title differently from body — it is necessary to write a custom trigger.
Here is an example using PL/pgSQL as the trigger language:

CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
begin
 new.tsv :=
 setweight(to_tsvector('pg_catalog.english',
 coalesce(new.title,'')), 'A') ||
 setweight(to_tsvector('pg_catalog.english',
 coalesce(new.body,'')), 'D');
 return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
 ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger();

Keep in mind that it is important to specify the configuration name explicitly when creating
tsvector values inside triggers, so that the column's contents will not be affected by changes to
default_text_search_config. Failure to do this is likely to lead to problems such as search results
changing after a dump and reload.

12.4.4. Gathering Document Statistics
The function ts_stat is useful for checking your configuration and for finding stop-word candidates.

ts_stat(sqlquery text, [weights text,]
 OUT word text, OUT ndoc integer,
 OUT nentry integer) returns setof record

sqlquery is a text value containing an SQL query which must return a single tsvector column.
ts_stat executes the query and returns statistics about each distinct lexeme (word) contained in the
tsvector data. The columns returned are

• word text — the value of a lexeme
• ndoc integer — number of documents (tsvectors) the word occurred in
• nentry integer — total number of occurrences of the word

If weights is supplied, only occurrences having one of those weights are counted.

For example, to find the ten most frequent words in a document collection:

SELECT * FROM ts_stat('SELECT vector FROM apod')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

The same, but counting only word occurrences with weight A or B:

SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

424

Full Text Search

12.5. Parsers
Text search parsers are responsible for splitting raw document text into tokens and identifying each token's
type, where the set of possible types is defined by the parser itself. Note that a parser does not modify the
text at all — it simply identifies plausible word boundaries. Because of this limited scope, there is less
need for application-specific custom parsers than there is for custom dictionaries. At present PostgreSQL
provides just one built-in parser, which has been found to be useful for a wide range of applications.

The built-in parser is named pg_catalog.default. It recognizes 23 token types, shown in Table 12.1.

Table 12.1. Default Parser's Token Types

Alias Description Example

asciiword Word, all ASCII letters elephant

word Word, all letters mañana

numword Word, letters and digits beta1

asciihword Hyphenated word, all ASCII up-to-date

hword Hyphenated word, all letters lógico-matemática

numhword Hyphenated word, letters and
digits

postgresql-beta1

hword_asciipart Hyphenated word part, all ASCII postgresql in the context
postgresql-beta1

hword_part Hyphenated word part, all letters lógico or matemática in the
context lógico-matemática

hword_numpart Hyphenated word part, letters and
digits

beta1 in the context
postgresql-beta1

email Email address foo@example.com

protocol Protocol head http://

url URL example.com/stuff/
index.html

host Host example.com

url_path URL path /stuff/index.html, in the
context of a URL

file File or path name /usr/local/foo.txt, if not
within a URL

sfloat Scientific notation -1.234e56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag

entity XML entity &

blank Space symbols (any whitespace or punctuation
not otherwise recognized)

425

Full Text Search

Note

The parser's notion of a “letter” is determined by the database's locale setting, specifically
lc_ctype. Words containing only the basic ASCII letters are reported as a separate token type,
since it is sometimes useful to distinguish them. In most European languages, token types word
and asciiword should be treated alike.

email does not support all valid email characters as defined by RFC 5322. Specifically, the only
non-alphanumeric characters supported for email user names are period, dash, and underscore.

It is possible for the parser to produce overlapping tokens from the same piece of text. As an example, a
hyphenated word will be reported both as the entire word and as each component:

SELECT alias, description, token FROM ts_debug('foo-bar-beta1');
 alias | description |
 token
-----------------+--
+---------------
 numhword | Hyphenated word, letters and digits | foo-bar-
beta1
 hword_asciipart | Hyphenated word part, all ASCII | foo
 blank | Space symbols | -
 hword_asciipart | Hyphenated word part, all ASCII | bar
 blank | Space symbols | -
 hword_numpart | Hyphenated word part, letters and digits | beta1

This behavior is desirable since it allows searches to work for both the whole compound word and for
components. Here is another instructive example:

SELECT alias, description, token FROM ts_debug('http://example.com/
stuff/index.html');
 alias | description | token
----------+---------------+------------------------------
 protocol | Protocol head | http://
 url | URL | example.com/stuff/index.html
 host | Host | example.com
 url_path | URL path | /stuff/index.html

12.6. Dictionaries
Dictionaries are used to eliminate words that should not be considered in a search (stop words), and to
normalize words so that different derived forms of the same word will match. A successfully normalized
word is called a lexeme. Aside from improving search quality, normalization and removal of stop
words reduce the size of the tsvector representation of a document, thereby improving performance.
Normalization does not always have linguistic meaning and usually depends on application semantics.

Some examples of normalization:

• Linguistic - Ispell dictionaries try to reduce input words to a normalized form; stemmer dictionaries
remove word endings

426

Full Text Search

• URL locations can be canonicalized to make equivalent URLs match:
• http://www.pgsql.ru/db/mw/index.html
• http://www.pgsql.ru/db/mw/
• http://www.pgsql.ru/db/../db/mw/index.html

• Color names can be replaced by their hexadecimal values, e.g., red, green, blue, magenta
-> FF0000, 00FF00, 0000FF, FF00FF

• If indexing numbers, we can remove some fractional digits to reduce the range of possible numbers,
so for example 3.14159265359, 3.1415926, 3.14 will be the same after normalization if only two digits
are kept after the decimal point.

A dictionary is a program that accepts a token as input and returns:

• an array of lexemes if the input token is known to the dictionary (notice that one token can produce
more than one lexeme)

• a single lexeme with the TSL_FILTER flag set, to replace the original token with a new token to be
passed to subsequent dictionaries (a dictionary that does this is called a filtering dictionary)

• an empty array if the dictionary knows the token, but it is a stop word
• NULL if the dictionary does not recognize the input token

PostgreSQL provides predefined dictionaries for many languages. There are also several predefined
templates that can be used to create new dictionaries with custom parameters. Each predefined dictionary
template is described below. If no existing template is suitable, it is possible to create new ones; see the
contrib/ area of the PostgreSQL distribution for examples.

A text search configuration binds a parser together with a set of dictionaries to process the parser's output
tokens. For each token type that the parser can return, a separate list of dictionaries is specified by the
configuration. When a token of that type is found by the parser, each dictionary in the list is consulted
in turn, until some dictionary recognizes it as a known word. If it is identified as a stop word, or if no
dictionary recognizes the token, it will be discarded and not indexed or searched for. Normally, the first
dictionary that returns a non-NULL output determines the result, and any remaining dictionaries are not
consulted; but a filtering dictionary can replace the given word with a modified word, which is then passed
to subsequent dictionaries.

The general rule for configuring a list of dictionaries is to place first the most narrow, most specific
dictionary, then the more general dictionaries, finishing with a very general dictionary, like a Snowball
stemmer or simple, which recognizes everything. For example, for an astronomy-specific search
(astro_en configuration) one could bind token type asciiword (ASCII word) to a synonym
dictionary of astronomical terms, a general English dictionary and a Snowball English stemmer:

ALTER TEXT SEARCH CONFIGURATION astro_en
 ADD MAPPING FOR asciiword WITH astrosyn, english_ispell,
 english_stem;

A filtering dictionary can be placed anywhere in the list, except at the end where it'd be useless. Filtering
dictionaries are useful to partially normalize words to simplify the task of later dictionaries. For example,
a filtering dictionary could be used to remove accents from accented letters, as is done by the unaccent
module.

12.6.1. Stop Words
Stop words are words that are very common, appear in almost every document, and have no discrimination
value. Therefore, they can be ignored in the context of full text searching. For example, every English text
contains words like a and the, so it is useless to store them in an index. However, stop words do affect
the positions in tsvector, which in turn affect ranking:

427

Full Text Search

SELECT to_tsvector('english','in the list of stop words');
 to_tsvector

 'list':3 'stop':5 'word':6

The missing positions 1,2,4 are because of stop words. Ranks calculated for documents with and without
stop words are quite different:

SELECT ts_rank_cd (to_tsvector('english','in the list of stop words'),
 to_tsquery('list & stop'));
 ts_rank_cd

 0.05

SELECT ts_rank_cd (to_tsvector('english','list stop words'),
 to_tsquery('list & stop'));
 ts_rank_cd

 0.1

It is up to the specific dictionary how it treats stop words. For example, ispell dictionaries first normalize
words and then look at the list of stop words, while Snowball stemmers first check the list of stop words.
The reason for the different behavior is an attempt to decrease noise.

12.6.2. Simple Dictionary
The simple dictionary template operates by converting the input token to lower case and checking it
against a file of stop words. If it is found in the file then an empty array is returned, causing the token to
be discarded. If not, the lower-cased form of the word is returned as the normalized lexeme. Alternatively,
the dictionary can be configured to report non-stop-words as unrecognized, allowing them to be passed
on to the next dictionary in the list.

Here is an example of a dictionary definition using the simple template:

CREATE TEXT SEARCH DICTIONARY public.simple_dict (
 TEMPLATE = pg_catalog.simple,
 STOPWORDS = english
);

Here, english is the base name of a file of stop words. The file's full name will be $SHAREDIR/
tsearch_data/english.stop, where $SHAREDIR means the PostgreSQL installation's shared-
data directory, often /usr/local/share/postgresql (use pg_config --sharedir to
determine it if you're not sure). The file format is simply a list of words, one per line. Blank lines and
trailing spaces are ignored, and upper case is folded to lower case, but no other processing is done on the
file contents.

Now we can test our dictionary:

SELECT ts_lexize('public.simple_dict','YeS');
 ts_lexize

428

Full Text Search

 {yes}

SELECT ts_lexize('public.simple_dict','The');
 ts_lexize

 {}

We can also choose to return NULL, instead of the lower-cased word, if it is not found in the stop words
file. This behavior is selected by setting the dictionary's Accept parameter to false. Continuing the
example:

ALTER TEXT SEARCH DICTIONARY public.simple_dict (Accept = false);

SELECT ts_lexize('public.simple_dict','YeS');
 ts_lexize

SELECT ts_lexize('public.simple_dict','The');
 ts_lexize

 {}

With the default setting of Accept = true, it is only useful to place a simple dictionary at the end of
a list of dictionaries, since it will never pass on any token to a following dictionary. Conversely, Accept
= false is only useful when there is at least one following dictionary.

Caution

Most types of dictionaries rely on configuration files, such as files of stop words. These files must
be stored in UTF-8 encoding. They will be translated to the actual database encoding, if that is
different, when they are read into the server.

Caution

Normally, a database session will read a dictionary configuration file only once, when it is first
used within the session. If you modify a configuration file and want to force existing sessions to
pick up the new contents, issue an ALTER TEXT SEARCH DICTIONARY command on the
dictionary. This can be a “dummy” update that doesn't actually change any parameter values.

12.6.3. Synonym Dictionary
This dictionary template is used to create dictionaries that replace a word with a synonym. Phrases are
not supported (use the thesaurus template (Section 12.6.4) for that). A synonym dictionary can be used to
overcome linguistic problems, for example, to prevent an English stemmer dictionary from reducing the
word “Paris” to “pari”. It is enough to have a Paris paris line in the synonym dictionary and put it
before the english_stem dictionary. For example:

429

Full Text Search

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries | dictionary |
 lexemes
-----------+-----------------+-------+----------------+--------------
+---------
 asciiword | Word, all ASCII | Paris | {english_stem} | english_stem |
 {pari}

CREATE TEXT SEARCH DICTIONARY my_synonym (
 TEMPLATE = synonym,
 SYNONYMS = my_synonyms
);

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR asciiword
 WITH my_synonym, english_stem;

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries |
 dictionary | lexemes
-----------+-----------------+-------+---------------------------
+------------+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} |
 my_synonym | {paris}

The only parameter required by the synonym template is SYNONYMS, which is the base name of its
configuration file — my_synonyms in the above example. The file's full name will be $SHAREDIR/
tsearch_data/my_synonyms.syn (where $SHAREDIR means the PostgreSQL installation's
shared-data directory). The file format is just one line per word to be substituted, with the word followed
by its synonym, separated by white space. Blank lines and trailing spaces are ignored.

The synonym template also has an optional parameter CaseSensitive, which defaults to false.
When CaseSensitive is false, words in the synonym file are folded to lower case, as are input
tokens. When it is true, words and tokens are not folded to lower case, but are compared as-is.

An asterisk (*) can be placed at the end of a synonym in the configuration file. This indicates that
the synonym is a prefix. The asterisk is ignored when the entry is used in to_tsvector(), but
when it is used in to_tsquery(), the result will be a query item with the prefix match marker
(see Section 12.3.2). For example, suppose we have these entries in $SHAREDIR/tsearch_data/
synonym_sample.syn:

postgres pgsql
postgresql pgsql
postgre pgsql
gogle googl
indices index*

Then we will get these results:

mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym,
 synonyms='synonym_sample');
mydb=# SELECT ts_lexize('syn','indices');
 ts_lexize

430

Full Text Search

 {index}
(1 row)

mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword
 WITH syn;
mydb=# SELECT to_tsvector('tst','indices');
 to_tsvector

 'index':1
(1 row)

mydb=# SELECT to_tsquery('tst','indices');
 to_tsquery

 'index':*
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector;
 tsvector

 'are' 'indexes' 'useful' 'very'
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector @@
 to_tsquery('tst','indices');
 ?column?

 t
(1 row)

12.6.4. Thesaurus Dictionary
A thesaurus dictionary (sometimes abbreviated as TZ) is a collection of words that includes information
about the relationships of words and phrases, i.e., broader terms (BT), narrower terms (NT), preferred
terms, non-preferred terms, related terms, etc.

Basically a thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally,
preserves the original terms for indexing as well. PostgreSQL's current implementation of the thesaurus
dictionary is an extension of the synonym dictionary with added phrase support. A thesaurus dictionary
requires a configuration file of the following format:

this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...

where the colon (:) symbol acts as a delimiter between a phrase and its replacement.

A thesaurus dictionary uses a subdictionary (which is specified in the dictionary's configuration) to
normalize the input text before checking for phrase matches. It is only possible to select one subdictionary.
An error is reported if the subdictionary fails to recognize a word. In that case, you should remove the use

431

Full Text Search

of the word or teach the subdictionary about it. You can place an asterisk (*) at the beginning of an indexed
word to skip applying the subdictionary to it, but all sample words must be known to the subdictionary.

The thesaurus dictionary chooses the longest match if there are multiple phrases matching the input, and
ties are broken by using the last definition.

Specific stop words recognized by the subdictionary cannot be specified; instead use ? to mark the location
where any stop word can appear. For example, assuming that a and the are stop words according to the
subdictionary:

? one ? two : swsw

matches a one the two and the one a two; both would be replaced by swsw.

Since a thesaurus dictionary has the capability to recognize phrases it must remember its state and interact
with the parser. A thesaurus dictionary uses these assignments to check if it should handle the next word or
stop accumulation. The thesaurus dictionary must be configured carefully. For example, if the thesaurus
dictionary is assigned to handle only the asciiword token, then a thesaurus dictionary definition like
one 7 will not work since token type uint is not assigned to the thesaurus dictionary.

Caution

Thesauruses are used during indexing so any change in the thesaurus dictionary's parameters
requires reindexing. For most other dictionary types, small changes such as adding or removing
stopwords does not force reindexing.

12.6.4.1. Thesaurus Configuration

To define a new thesaurus dictionary, use the thesaurus template. For example:

CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
 TEMPLATE = thesaurus,
 DictFile = mythesaurus,
 Dictionary = pg_catalog.english_stem
);

Here:

• thesaurus_simple is the new dictionary's name
• mythesaurus is the base name of the thesaurus configuration file. (Its full name will be
$SHAREDIR/tsearch_data/mythesaurus.ths, where $SHAREDIR means the installation
shared-data directory.)

• pg_catalog.english_stem is the subdictionary (here, a Snowball English stemmer) to use for
thesaurus normalization. Notice that the subdictionary will have its own configuration (for example,
stop words), which is not shown here.

Now it is possible to bind the thesaurus dictionary thesaurus_simple to the desired token types in
a configuration, for example:

ALTER TEXT SEARCH CONFIGURATION russian

432

Full Text Search

 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_simple;

12.6.4.2. Thesaurus Example

Consider a simple astronomical thesaurus thesaurus_astro, which contains some astronomical word
combinations:

supernovae stars : sn
crab nebulae : crab

Below we create a dictionary and bind some token types to an astronomical thesaurus and English stemmer:

CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
 TEMPLATE = thesaurus,
 DictFile = thesaurus_astro,
 Dictionary = english_stem
);

ALTER TEXT SEARCH CONFIGURATION russian
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_astro, english_stem;

Now we can see how it works. ts_lexize is not very useful for testing a thesaurus, because it treats its
input as a single token. Instead we can use plainto_tsquery and to_tsvector which will break
their input strings into multiple tokens:

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn'

SELECT to_tsvector('supernova star');
 to_tsvector

 'sn':1

In principle, one can use to_tsquery if you quote the argument:

SELECT to_tsquery('''supernova star''');
 to_tsquery

 'sn'

Notice that supernova star matches supernovae stars in thesaurus_astro because we
specified the english_stem stemmer in the thesaurus definition. The stemmer removed the e and s.

To index the original phrase as well as the substitute, just include it in the right-hand part of the definition:

supernovae stars : sn supernovae stars

433

Full Text Search

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn' & 'supernova' & 'star'

12.6.5. Ispell Dictionary
The Ispell dictionary template supports morphological dictionaries, which can normalize many different
linguistic forms of a word into the same lexeme. For example, an English Ispell dictionary can match all
declensions and conjugations of the search term bank, e.g., banking, banked, banks, banks', and
bank's.

The standard PostgreSQL distribution does not include any Ispell configuration files. Dictionaries for a
large number of languages are available from Ispell1. Also, some more modern dictionary file formats are
supported — MySpell2 (OO < 2.0.1) and Hunspell3 (OO >= 2.0.2). A large list of dictionaries is available
on the OpenOffice Wiki4.

To create an Ispell dictionary perform these steps:

• download dictionary configuration files. OpenOffice extension files have the .oxt extension. It is
necessary to extract .aff and .dic files, change extensions to .affix and .dict. For some
dictionary files it is also needed to convert characters to the UTF-8 encoding with commands (for
example, for a Norwegian language dictionary):

iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff
iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic

• copy files to the $SHAREDIR/tsearch_data directory
• load files into PostgreSQL with the following command:

CREATE TEXT SEARCH DICTIONARY english_hunspell (
 TEMPLATE = ispell,
 DictFile = en_us,
 AffFile = en_us,
 Stopwords = english);

Here, DictFile, AffFile, and StopWords specify the base names of the dictionary, affixes, and
stop-words files. The stop-words file has the same format explained above for the simple dictionary
type. The format of the other files is not specified here but is available from the above-mentioned web sites.

Ispell dictionaries usually recognize a limited set of words, so they should be followed by another broader
dictionary; for example, a Snowball dictionary, which recognizes everything.

The .affix file of Ispell has the following structure:

prefixes
flag *A:

1 https://www.cs.hmc.edu/~geoff/ispell.html
2 https://en.wikipedia.org/wiki/MySpell
3 https://sourceforge.net/projects/hunspell/
4 https://wiki.openoffice.org/wiki/Dictionaries

434

https://www.cs.hmc.edu/~geoff/ispell.html
https://en.wikipedia.org/wiki/MySpell
https://sourceforge.net/projects/hunspell/
https://wiki.openoffice.org/wiki/Dictionaries
https://www.cs.hmc.edu/~geoff/ispell.html
https://en.wikipedia.org/wiki/MySpell
https://sourceforge.net/projects/hunspell/
https://wiki.openoffice.org/wiki/Dictionaries

Full Text Search

 . > RE # As in enter > reenter
suffixes
flag T:
 E > ST # As in late > latest
 [^AEIOU]Y > -Y,IEST # As in dirty > dirtiest
 [AEIOU]Y > EST # As in gray > grayest
 [^EY] > EST # As in small > smallest

And the .dict file has the following structure:

lapse/ADGRS
lard/DGRS
large/PRTY
lark/MRS

Format of the .dict file is:

basic_form/affix_class_name

In the .affix file every affix flag is described in the following format:

condition > [-stripping_letters,] adding_affix

Here, condition has a format similar to the format of regular expressions. It can use groupings [...] and
[^...]. For example, [AEIOU]Y means that the last letter of the word is "y" and the penultimate letter
is "a", "e", "i", "o" or "u". [^EY] means that the last letter is neither "e" nor "y".

Ispell dictionaries support splitting compound words; a useful feature. Notice that the affix file should
specify a special flag using the compoundwords controlled statement that marks dictionary words
that can participate in compound formation:

compoundwords controlled z

Here are some examples for the Norwegian language:

SELECT ts_lexize('norwegian_ispell',
 'overbuljongterningpakkmesterassistent');
 {over,buljong,terning,pakk,mester,assistent}
SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
 {sjokoladefabrikk,sjokolade,fabrikk}

MySpell format is a subset of Hunspell. The .affix file of Hunspell has the following structure:

PFX A Y 1
PFX A 0 re .
SFX T N 4
SFX T 0 st e
SFX T y iest [^aeiou]y
SFX T 0 est [aeiou]y
SFX T 0 est [^ey]

435

Full Text Search

The first line of an affix class is the header. Fields of an affix rules are listed after the header:

• parameter name (PFX or SFX)
• flag (name of the affix class)
• stripping characters from beginning (at prefix) or end (at suffix) of the word
• adding affix
• condition that has a format similar to the format of regular expressions.

The .dict file looks like the .dict file of Ispell:

larder/M
lardy/RT
large/RSPMYT
largehearted

Note

MySpell does not support compound words. Hunspell has sophisticated support for compound
words. At present, PostgreSQL implements only the basic compound word operations of Hunspell.

12.6.6. Snowball Dictionary
The Snowball dictionary template is based on a project by Martin Porter, inventor of the popular
Porter's stemming algorithm for the English language. Snowball now provides stemming algorithms
for many languages (see the Snowball site5 for more information). Each algorithm understands how to
reduce common variant forms of words to a base, or stem, spelling within its language. A Snowball
dictionary requires a language parameter to identify which stemmer to use, and optionally can specify
a stopword file name that gives a list of words to eliminate. (PostgreSQL's standard stopword lists are
also provided by the Snowball project.) For example, there is a built-in definition equivalent to

CREATE TEXT SEARCH DICTIONARY english_stem (
 TEMPLATE = snowball,
 Language = english,
 StopWords = english
);

The stopword file format is the same as already explained.

A Snowball dictionary recognizes everything, whether or not it is able to simplify the word, so it should be
placed at the end of the dictionary list. It is useless to have it before any other dictionary because a token
will never pass through it to the next dictionary.

12.7. Configuration Example
A text search configuration specifies all options necessary to transform a document into a tsvector:
the parser to use to break text into tokens, and the dictionaries to use to transform each token into a
lexeme. Every call of to_tsvector or to_tsquery needs a text search configuration to perform

5 http://snowballstem.org/

436

http://snowballstem.org/
http://snowballstem.org/

Full Text Search

its processing. The configuration parameter default_text_search_config specifies the name of the default
configuration, which is the one used by text search functions if an explicit configuration parameter is
omitted. It can be set in postgresql.conf, or set for an individual session using the SET command.

Several predefined text search configurations are available, and you can create custom configurations
easily. To facilitate management of text search objects, a set of SQL commands is available, and there are
several psql commands that display information about text search objects (Section 12.10).

As an example we will create a configuration pg, starting by duplicating the built-in english
configuration:

CREATE TEXT SEARCH CONFIGURATION public.pg (COPY =
 pg_catalog.english);

We will use a PostgreSQL-specific synonym list and store it in $SHAREDIR/tsearch_data/
pg_dict.syn. The file contents look like:

postgres pg
pgsql pg
postgresql pg

We define the synonym dictionary like this:

CREATE TEXT SEARCH DICTIONARY pg_dict (
 TEMPLATE = synonym,
 SYNONYMS = pg_dict
);

Next we register the Ispell dictionary english_ispell, which has its own configuration files:

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

Now we can set up the mappings for words in configuration pg:

ALTER TEXT SEARCH CONFIGURATION pg
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
 word, hword, hword_part
 WITH pg_dict, english_ispell, english_stem;

We choose not to index or search some token types that the built-in configuration does handle:

ALTER TEXT SEARCH CONFIGURATION pg
 DROP MAPPING FOR email, url, url_path, sfloat, float;

Now we can test our configuration:

437

Full Text Search

SELECT * FROM ts_debug('public.pg', '
PostgreSQL, the highly scalable, SQL compliant, open source object-
relational
database management system, is now undergoing beta testing of the next
version of our software.
');

The next step is to set the session to use the new configuration, which was created in the public schema:

=> \dF
 List of text search configurations
 Schema | Name | Description
---------+------+-------------
 public | pg |

SET default_text_search_config = 'public.pg';
SET

SHOW default_text_search_config;
 default_text_search_config

 public.pg

12.8. Testing and Debugging Text Search
The behavior of a custom text search configuration can easily become confusing. The functions described
in this section are useful for testing text search objects. You can test a complete configuration, or test
parsers and dictionaries separately.

12.8.1. Configuration Testing
The function ts_debug allows easy testing of a text search configuration.

ts_debug([config regconfig,] document text,
 OUT alias text,
 OUT description text,
 OUT token text,
 OUT dictionaries regdictionary[],
 OUT dictionary regdictionary,
 OUT lexemes text[])
 returns setof record

ts_debug displays information about every token of document as produced by the parser
and processed by the configured dictionaries. It uses the configuration specified by config, or
default_text_search_config if that argument is omitted.

ts_debug returns one row for each token identified in the text by the parser. The columns returned are

• alias text — short name of the token type
• description text — description of the token type

438

Full Text Search

• token text — text of the token
• dictionaries regdictionary[] — the dictionaries selected by the configuration for this token

type
• dictionary regdictionary — the dictionary that recognized the token, or NULL if none did
• lexemes text[] — the lexeme(s) produced by the dictionary that recognized the token, or NULL if

none did; an empty array ({}) means it was recognized as a stop word

Here is a simple example:

SELECT * FROM ts_debug('english','a fat cat sat on a mat - it ate a
 fat rats');
 alias | description | token | dictionaries | dictionary |
 lexemes
-----------+-----------------+-------+----------------+--------------
+---------
 asciiword | Word, all ASCII | a | {english_stem} | english_stem |
 {}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem |
 {fat}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | cat | {english_stem} | english_stem |
 {cat}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | sat | {english_stem} | english_stem |
 {sat}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | on | {english_stem} | english_stem |
 {}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem |
 {}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | mat | {english_stem} | english_stem |
 {mat}
 blank | Space symbols | | {} |
 |
 blank | Space symbols | - | {} |
 |
 asciiword | Word, all ASCII | it | {english_stem} | english_stem |
 {}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | ate | {english_stem} | english_stem |
 {ate}
 blank | Space symbols | | {} |
 |

439

Full Text Search

 asciiword | Word, all ASCII | a | {english_stem} | english_stem |
 {}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem |
 {fat}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | rats | {english_stem} | english_stem |
 {rat}

For a more extensive demonstration, we first create a public.english configuration and Ispell
dictionary for the English language:

CREATE TEXT SEARCH CONFIGURATION public.english (COPY =
 pg_catalog.english);

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

ALTER TEXT SEARCH CONFIGURATION public.english
 ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;

SELECT * FROM ts_debug('public.english','The Brightest supernovaes');
 alias | description | token | dictionaries
 | dictionary | lexemes
-----------+-----------------+-------------
+-------------------------------+----------------+-------------
 asciiword | Word, all ASCII | The |
 {english_ispell,english_stem} | english_ispell | {}
 blank | Space symbols | | {}
 | |
 asciiword | Word, all ASCII | Brightest |
 {english_ispell,english_stem} | english_ispell | {bright}
 blank | Space symbols | | {}
 | |
 asciiword | Word, all ASCII | supernovaes |
 {english_ispell,english_stem} | english_stem | {supernova}

In this example, the word Brightest was recognized by the parser as an ASCII word (alias
asciiword). For this token type the dictionary list is english_ispell and english_stem.
The word was recognized by english_ispell, which reduced it to the noun bright. The word
supernovaes is unknown to the english_ispell dictionary so it was passed to the next dictionary,
and, fortunately, was recognized (in fact, english_stem is a Snowball dictionary which recognizes
everything; that is why it was placed at the end of the dictionary list).

The word The was recognized by the english_ispell dictionary as a stop word (Section 12.6.1) and
will not be indexed. The spaces are discarded too, since the configuration provides no dictionaries at all
for them.

440

Full Text Search

You can reduce the width of the output by explicitly specifying which columns you want to see:

SELECT alias, token, dictionary, lexemes
FROM ts_debug('public.english','The Brightest supernovaes');
 alias | token | dictionary | lexemes
-----------+-------------+----------------+-------------
 asciiword | The | english_ispell | {}
 blank | | |
 asciiword | Brightest | english_ispell | {bright}
 blank | | |
 asciiword | supernovaes | english_stem | {supernova}

12.8.2. Parser Testing
The following functions allow direct testing of a text search parser.

ts_parse(parser_name text, document text,
 OUT tokid integer, OUT token text) returns setof record
ts_parse(parser_oid oid, document text,
 OUT tokid integer, OUT token text) returns setof record

ts_parse parses the given document and returns a series of records, one for each token produced by
parsing. Each record includes a tokid showing the assigned token type and a token which is the text
of the token. For example:

SELECT * FROM ts_parse('default', '123 - a number');
 tokid | token
-------+--------
 22 | 123
 12 |
 12 | -
 1 | a
 12 |
 1 | number

ts_token_type(parser_name text, OUT tokid integer,
 OUT alias text, OUT description text) returns setof
 record
ts_token_type(parser_oid oid, OUT tokid integer,
 OUT alias text, OUT description text) returns setof
 record

ts_token_type returns a table which describes each type of token the specified parser can recognize.
For each token type, the table gives the integer tokid that the parser uses to label a token of that type, the
alias that names the token type in configuration commands, and a short description. For example:

SELECT * FROM ts_token_type('default');
 tokid | alias | description
-------+-----------------+--

441

Full Text Search

 1 | asciiword | Word, all ASCII
 2 | word | Word, all letters
 3 | numword | Word, letters and digits
 4 | email | Email address
 5 | url | URL
 6 | host | Host
 7 | sfloat | Scientific notation
 8 | version | Version number
 9 | hword_numpart | Hyphenated word part, letters and digits
 10 | hword_part | Hyphenated word part, all letters
 11 | hword_asciipart | Hyphenated word part, all ASCII
 12 | blank | Space symbols
 13 | tag | XML tag
 14 | protocol | Protocol head
 15 | numhword | Hyphenated word, letters and digits
 16 | asciihword | Hyphenated word, all ASCII
 17 | hword | Hyphenated word, all letters
 18 | url_path | URL path
 19 | file | File or path name
 20 | float | Decimal notation
 21 | int | Signed integer
 22 | uint | Unsigned integer
 23 | entity | XML entity

12.8.3. Dictionary Testing
The ts_lexize function facilitates dictionary testing.

ts_lexize(dict regdictionary, token text) returns text[]

ts_lexize returns an array of lexemes if the input token is known to the dictionary, or an empty array
if the token is known to the dictionary but it is a stop word, or NULL if it is an unknown word.

Examples:

SELECT ts_lexize('english_stem', 'stars');
 ts_lexize

 {star}

SELECT ts_lexize('english_stem', 'a');
 ts_lexize

 {}

Note

The ts_lexize function expects a single token, not text. Here is a case where this can be
confusing:

SELECT ts_lexize('thesaurus_astro','supernovae stars') is null;

442

Full Text Search

 ?column?

 t

The thesaurus dictionary thesaurus_astro does know the phrase supernovae stars,
but ts_lexize fails since it does not parse the input text but treats it as a single token. Use
plainto_tsquery or to_tsvector to test thesaurus dictionaries, for example:

SELECT plainto_tsquery('supernovae stars');
 plainto_tsquery

 'sn'

12.9. GIN and GiST Index Types
There are two kinds of indexes that can be used to speed up full text searches. Note that indexes are not
mandatory for full text searching, but in cases where a column is searched on a regular basis, an index
is usually desirable.

 CREATE INDEX name ON table USING GIN (column);

Creates a GIN (Generalized Inverted Index)-based index. The column must be of tsvector type.

 CREATE INDEX name ON table USING GIST (column);

Creates a GiST (Generalized Search Tree)-based index. The column can be of tsvector or
tsquery type.

GIN indexes are the preferred text search index type. As inverted indexes, they contain an index entry for
each word (lexeme), with a compressed list of matching locations. Multi-word searches can find the first
match, then use the index to remove rows that are lacking additional words. GIN indexes store only the
words (lexemes) of tsvector values, and not their weight labels. Thus a table row recheck is needed
when using a query that involves weights.

A GiST index is lossy, meaning that the index might produce false matches, and it is necessary to check
the actual table row to eliminate such false matches. (PostgreSQL does this automatically when needed.)
GiST indexes are lossy because each document is represented in the index by a fixed-length signature.
The signature is generated by hashing each word into a single bit in an n-bit string, with all these bits OR-
ed together to produce an n-bit document signature. When two words hash to the same bit position there
will be a false match. If all words in the query have matches (real or false) then the table row must be
retrieved to see if the match is correct.

Lossiness causes performance degradation due to unnecessary fetches of table records that turn out to be
false matches. Since random access to table records is slow, this limits the usefulness of GiST indexes.
The likelihood of false matches depends on several factors, in particular the number of unique words, so
using dictionaries to reduce this number is recommended.

Note that GIN index build time can often be improved by increasing maintenance_work_mem, while GiST
index build time is not sensitive to that parameter.

Partitioning of big collections and the proper use of GIN and GiST indexes allows the implementation of
very fast searches with online update. Partitioning can be done at the database level using table inheritance,
or by distributing documents over servers and collecting external search results, e.g. via Foreign Data
access. The latter is possible because ranking functions use only local information.

443

Full Text Search

12.10. psql Support
Information about text search configuration objects can be obtained in psql using a set of commands:

\dF{d,p,t}[+] [PATTERN]

An optional + produces more details.

The optional parameter PATTERN can be the name of a text search object, optionally schema-qualified.
If PATTERN is omitted then information about all visible objects will be displayed. PATTERN can be
a regular expression and can provide separate patterns for the schema and object names. The following
examples illustrate this:

=> \dF *fulltext*
 List of text search configurations
 Schema | Name | Description
--------+--------------+-------------
 public | fulltext_cfg |

=> \dF *.fulltext*
 List of text search configurations
 Schema | Name | Description
----------+----------------------------
 fulltext | fulltext_cfg |
 public | fulltext_cfg |

The available commands are:

\dF[+] [PATTERN]

List text search configurations (add + for more detail).

=> \dF russian
 List of text search configurations
 Schema | Name | Description
------------+---------+------------------------------------
 pg_catalog | russian | configuration for russian language

=> \dF+ russian
Text search configuration "pg_catalog.russian"
Parser: "pg_catalog.default"
 Token | Dictionaries
-----------------+--------------
 asciihword | english_stem
 asciiword | english_stem
 email | simple
 file | simple
 float | simple
 host | simple
 hword | russian_stem
 hword_asciipart | english_stem

444

Full Text Search

 hword_numpart | simple
 hword_part | russian_stem
 int | simple
 numhword | simple
 numword | simple
 sfloat | simple
 uint | simple
 url | simple
 url_path | simple
 version | simple
 word | russian_stem

\dFd[+] [PATTERN]

List text search dictionaries (add + for more detail).

=> \dFd
 List of text search dictionaries
 Schema | Name | Description

------------+-----------------
+---
 pg_catalog | danish_stem | snowball stemmer for danish
 language
 pg_catalog | dutch_stem | snowball stemmer for dutch language
 pg_catalog | english_stem | snowball stemmer for english
 language
 pg_catalog | finnish_stem | snowball stemmer for finnish
 language
 pg_catalog | french_stem | snowball stemmer for french
 language
 pg_catalog | german_stem | snowball stemmer for german
 language
 pg_catalog | hungarian_stem | snowball stemmer for hungarian
 language
 pg_catalog | italian_stem | snowball stemmer for italian
 language
 pg_catalog | norwegian_stem | snowball stemmer for norwegian
 language
 pg_catalog | portuguese_stem | snowball stemmer for portuguese
 language
 pg_catalog | romanian_stem | snowball stemmer for romanian
 language
 pg_catalog | russian_stem | snowball stemmer for russian
 language
 pg_catalog | simple | simple dictionary: just lower case
 and check for stopword
 pg_catalog | spanish_stem | snowball stemmer for spanish
 language
 pg_catalog | swedish_stem | snowball stemmer for swedish
 language
 pg_catalog | turkish_stem | snowball stemmer for turkish
 language

445

Full Text Search

\dFp[+] [PATTERN]

List text search parsers (add + for more detail).

=> \dFp
 List of text search parsers
 Schema | Name | Description
------------+---------+---------------------
 pg_catalog | default | default word parser
=> \dFp+
 Text search parser "pg_catalog.default"
 Method | Function | Description
-----------------+----------------+-------------
 Start parse | prsd_start |
 Get next token | prsd_nexttoken |
 End parse | prsd_end |
 Get headline | prsd_headline |
 Get token types | prsd_lextype |

 Token types for parser "pg_catalog.default"
 Token name | Description
-----------------+--
 asciihword | Hyphenated word, all ASCII
 asciiword | Word, all ASCII
 blank | Space symbols
 email | Email address
 entity | XML entity
 file | File or path name
 float | Decimal notation
 host | Host
 hword | Hyphenated word, all letters
 hword_asciipart | Hyphenated word part, all ASCII
 hword_numpart | Hyphenated word part, letters and digits
 hword_part | Hyphenated word part, all letters
 int | Signed integer
 numhword | Hyphenated word, letters and digits
 numword | Word, letters and digits
 protocol | Protocol head
 sfloat | Scientific notation
 tag | XML tag
 uint | Unsigned integer
 url | URL
 url_path | URL path
 version | Version number
 word | Word, all letters
(23 rows)

\dFt[+] [PATTERN]

List text search templates (add + for more detail).

=> \dFt
 List of text search templates

446

Full Text Search

 Schema | Name | Description

------------+-----------
+---
 pg_catalog | ispell | ispell dictionary
 pg_catalog | simple | simple dictionary: just lower case and
 check for stopword
 pg_catalog | snowball | snowball stemmer
 pg_catalog | synonym | synonym dictionary: replace word by its
 synonym
 pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase
 substitution

12.11. Limitations
The current limitations of PostgreSQL's text search features are:

• The length of each lexeme must be less than 2K bytes
• The length of a tsvector (lexemes + positions) must be less than 1 megabyte
• The number of lexemes must be less than 264

• Position values in tsvector must be greater than 0 and no more than 16,383
• The match distance in a <N> (FOLLOWED BY) tsquery operator cannot be more than 16,384
• No more than 256 positions per lexeme
• The number of nodes (lexemes + operators) in a tsquery must be less than 32,768

For comparison, the PostgreSQL 8.1 documentation contained 10,441 unique words, a total of 335,420
words, and the most frequent word “postgresql” was mentioned 6,127 times in 655 documents.

Another example — the PostgreSQL mailing list archives contained 910,989 unique words with
57,491,343 lexemes in 461,020 messages.

447

Chapter 13. Concurrency Control
This chapter describes the behavior of the PostgreSQL database system when two or more sessions try to
access the same data at the same time. The goals in that situation are to allow efficient access for all sessions
while maintaining strict data integrity. Every developer of database applications should be familiar with
the topics covered in this chapter.

13.1. Introduction
PostgreSQL provides a rich set of tools for developers to manage concurrent access to data. Internally, data
consistency is maintained by using a multiversion model (Multiversion Concurrency Control, MVCC).
This means that each SQL statement sees a snapshot of data (a database version) as it was some time ago,
regardless of the current state of the underlying data. This prevents statements from viewing inconsistent
data produced by concurrent transactions performing updates on the same data rows, providing transaction
isolation for each database session. MVCC, by eschewing the locking methodologies of traditional
database systems, minimizes lock contention in order to allow for reasonable performance in multiuser
environments.

The main advantage of using the MVCC model of concurrency control rather than locking is that in MVCC
locks acquired for querying (reading) data do not conflict with locks acquired for writing data, and so
reading never blocks writing and writing never blocks reading. PostgreSQL maintains this guarantee even
when providing the strictest level of transaction isolation through the use of an innovative Serializable
Snapshot Isolation (SSI) level.

Table- and row-level locking facilities are also available in PostgreSQL for applications which don't
generally need full transaction isolation and prefer to explicitly manage particular points of conflict.
However, proper use of MVCC will generally provide better performance than locks. In addition,
application-defined advisory locks provide a mechanism for acquiring locks that are not tied to a single
transaction.

13.2. Transaction Isolation
The SQL standard defines four levels of transaction isolation. The most strict is Serializable, which is
defined by the standard in a paragraph which says that any concurrent execution of a set of Serializable
transactions is guaranteed to produce the same effect as running them one at a time in some order. The other
three levels are defined in terms of phenomena, resulting from interaction between concurrent transactions,
which must not occur at each level. The standard notes that due to the definition of Serializable, none of
these phenomena are possible at that level. (This is hardly surprising -- if the effect of the transactions
must be consistent with having been run one at a time, how could you see any phenomena caused by
interactions?)

The phenomena which are prohibited at various levels are:

dirty read

A transaction reads data written by a concurrent uncommitted transaction.

nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

448

Concurrency Control

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and finds that
the set of rows satisfying the condition has changed due to another recently-committed transaction.

serialization anomaly

The result of successfully committing a group of transactions is inconsistent with all possible orderings
of running those transactions one at a time.

 The SQL standard and PostgreSQL-implemented transaction isolation levels are described in Table 13.1.

Table 13.1. Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable
Read

Phantom Read Serialization
Anomaly

Read uncommitted Allowed, but not in
PG

Possible Possible Possible

Read committed Not possible Possible Possible Possible

Repeatable read Not possible Not possible Allowed, but not in
PG

Possible

Serializable Not possible Not possible Not possible Not possible

In PostgreSQL, you can request any of the four standard transaction isolation levels, but internally only
three distinct isolation levels are implemented, i.e. PostgreSQL's Read Uncommitted mode behaves like
Read Committed. This is because it is the only sensible way to map the standard isolation levels to
PostgreSQL's multiversion concurrency control architecture.

The table also shows that PostgreSQL's Repeatable Read implementation does not allow phantom reads.
Stricter behavior is permitted by the SQL standard: the four isolation levels only define which phenomena
must not happen, not which phenomena must happen. The behavior of the available isolation levels is
detailed in the following subsections.

To set the transaction isolation level of a transaction, use the command SET TRANSACTION.

Important

Some PostgreSQL data types and functions have special rules regarding transactional behavior.
In particular, changes made to a sequence (and therefore the counter of a column declared using
serial) are immediately visible to all other transactions and are not rolled back if the transaction
that made the changes aborts. See Section 9.16 and Section 8.1.4.

13.2.1. Read Committed Isolation Level
Read Committed is the default isolation level in PostgreSQL. When a transaction uses this isolation level,
a SELECT query (without a FOR UPDATE/SHARE clause) sees only data committed before the query
began; it never sees either uncommitted data or changes committed during query execution by concurrent
transactions. In effect, a SELECT query sees a snapshot of the database as of the instant the query begins to
run. However, SELECT does see the effects of previous updates executed within its own transaction, even
though they are not yet committed. Also note that two successive SELECT commands can see different

449

Concurrency Control

data, even though they are within a single transaction, if other transactions commit changes after the first
SELECT starts and before the second SELECT starts.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same
as SELECT in terms of searching for target rows: they will only find target rows that were committed as
of the command start time. However, such a target row might have already been updated (or deleted or
locked) by another concurrent transaction by the time it is found. In this case, the would-be updater will
wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater
rolls back, then its effects are negated and the second updater can proceed with updating the originally
found row. If the first updater commits, the second updater will ignore the row if the first updater deleted
it, otherwise it will attempt to apply its operation to the updated version of the row. The search condition
of the command (the WHERE clause) is re-evaluated to see if the updated version of the row still matches
the search condition. If so, the second updater proceeds with its operation using the updated version of the
row. In the case of SELECT FOR UPDATE and SELECT FOR SHARE, this means it is the updated
version of the row that is locked and returned to the client.

INSERT with an ON CONFLICT DO UPDATE clause behaves similarly. In Read Committed mode,
each row proposed for insertion will either insert or update. Unless there are unrelated errors, one of those
two outcomes is guaranteed. If a conflict originates in another transaction whose effects are not yet visible
to the INSERT , the UPDATE clause will affect that row, even though possibly no version of that row
is conventionally visible to the command.

INSERT with an ON CONFLICT DO NOTHING clause may have insertion not proceed for a row due
to the outcome of another transaction whose effects are not visible to the INSERT snapshot. Again, this
is only the case in Read Committed mode.

Because of the above rules, it is possible for an updating command to see an inconsistent snapshot: it
can see the effects of concurrent updating commands on the same rows it is trying to update, but it does
not see effects of those commands on other rows in the database. This behavior makes Read Committed
mode unsuitable for commands that involve complex search conditions; however, it is just right for simpler
cases. For example, consider updating bank balances with transactions like:

BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start with the updated version of the account's row. Because each command is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

More complex usage can produce undesirable results in Read Committed mode. For example, consider a
DELETE command operating on data that is being both added and removed from its restriction criteria by
another command, e.g., assume website is a two-row table with website.hits equaling 9 and 10:

BEGIN;
UPDATE website SET hits = hits + 1;
-- run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

The DELETE will have no effect even though there is a website.hits = 10 row before and after the
UPDATE. This occurs because the pre-update row value 9 is skipped, and when the UPDATE completes and
DELETE obtains a lock, the new row value is no longer 10 but 11, which no longer matches the criteria.

450

Concurrency Control

Because Read Committed mode starts each command with a new snapshot that includes all transactions
committed up to that instant, subsequent commands in the same transaction will see the effects of the
committed concurrent transaction in any case. The point at issue above is whether or not a single command
sees an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applications,
and this mode is fast and simple to use; however, it is not sufficient for all cases. Applications that do
complex queries and updates might require a more rigorously consistent view of the database than Read
Committed mode provides.

13.2.2. Repeatable Read Isolation Level
The Repeatable Read isolation level only sees data committed before the transaction began; it never sees
either uncommitted data or changes committed during transaction execution by concurrent transactions.
(However, the query does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.) This is a stronger guarantee than is required by the SQL standard
for this isolation level, and prevents all of the phenomena described in Table 13.1 except for serialization
anomalies. As mentioned above, this is specifically allowed by the standard, which only describes the
minimum protections each isolation level must provide.

This level is different from Read Committed in that a query in a repeatable read transaction sees a snapshot
as of the start of the first non-transaction-control statement in the transaction, not as of the start of the
current statement within the transaction. Thus, successive SELECT commands within a single transaction
see the same data, i.e., they do not see changes made by other transactions that committed after their own
transaction started.

Applications using this level must be prepared to retry transactions due to serialization failures.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as
SELECT in terms of searching for target rows: they will only find target rows that were committed as of the
transaction start time. However, such a target row might have already been updated (or deleted or locked)
by another concurrent transaction by the time it is found. In this case, the repeatable read transaction will
wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater
rolls back, then its effects are negated and the repeatable read transaction can proceed with updating the
originally found row. But if the first updater commits (and actually updated or deleted the row, not just
locked it) then the repeatable read transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

because a repeatable read transaction cannot modify or lock rows changed by other transactions after the
repeatable read transaction began.

When an application receives this error message, it should abort the current transaction and retry the whole
transaction from the beginning. The second time through, the transaction will see the previously-committed
change as part of its initial view of the database, so there is no logical conflict in using the new version of
the row as the starting point for the new transaction's update.

Note that only updating transactions might need to be retried; read-only transactions will never have
serialization conflicts.

The Repeatable Read mode provides a rigorous guarantee that each transaction sees a completely stable
view of the database. However, this view will not necessarily always be consistent with some serial (one at
a time) execution of concurrent transactions of the same level. For example, even a read only transaction

451

Concurrency Control

at this level may see a control record updated to show that a batch has been completed but not see one
of the detail records which is logically part of the batch because it read an earlier revision of the control
record. Attempts to enforce business rules by transactions running at this isolation level are not likely to
work correctly without careful use of explicit locks to block conflicting transactions.

Note

Prior to PostgreSQL version 9.1, a request for the Serializable transaction isolation level provided
exactly the same behavior described here. To retain the legacy Serializable behavior, Repeatable
Read should now be requested.

13.2.3. Serializable Isolation Level
The Serializable isolation level provides the strictest transaction isolation. This level emulates serial
transaction execution for all committed transactions; as if transactions had been executed one after another,
serially, rather than concurrently. However, like the Repeatable Read level, applications using this level
must be prepared to retry transactions due to serialization failures. In fact, this isolation level works exactly
the same as Repeatable Read except that it monitors for conditions which could make execution of a
concurrent set of serializable transactions behave in a manner inconsistent with all possible serial (one
at a time) executions of those transactions. This monitoring does not introduce any blocking beyond that
present in repeatable read, but there is some overhead to the monitoring, and detection of the conditions
which could cause a serialization anomaly will trigger a serialization failure.

As an example, consider a table mytab, initially containing:

 class | value
-------+-------
 1 | 10
 1 | 20
 2 | 100
 2 | 200

Suppose that serializable transaction A computes:

SELECT SUM(value) FROM mytab WHERE class = 1;

and then inserts the result (30) as the value in a new row with class = 2. Concurrently, serializable
transaction B computes:

SELECT SUM(value) FROM mytab WHERE class = 2;

and obtains the result 300, which it inserts in a new row with class = 1. Then both transactions try to
commit. If either transaction were running at the Repeatable Read isolation level, both would be allowed
to commit; but since there is no serial order of execution consistent with the result, using Serializable
transactions will allow one transaction to commit and will roll the other back with this message:

ERROR: could not serialize access due to read/write dependencies
 among transactions

452

Concurrency Control

This is because if A had executed before B, B would have computed the sum 330, not 300, and similarly
the other order would have resulted in a different sum computed by A.

When relying on Serializable transactions to prevent anomalies, it is important that any data read from a
permanent user table not be considered valid until the transaction which read it has successfully committed.
This is true even for read-only transactions, except that data read within a deferrable read-only transaction
is known to be valid as soon as it is read, because such a transaction waits until it can acquire a snapshot
guaranteed to be free from such problems before starting to read any data. In all other cases applications
must not depend on results read during a transaction that later aborted; instead, they should retry the
transaction until it succeeds.

To guarantee true serializability PostgreSQL uses predicate locking, which means that it keeps locks which
allow it to determine when a write would have had an impact on the result of a previous read from a
concurrent transaction, had it run first. In PostgreSQL these locks do not cause any blocking and therefore
can not play any part in causing a deadlock. They are used to identify and flag dependencies among
concurrent Serializable transactions which in certain combinations can lead to serialization anomalies. In
contrast, a Read Committed or Repeatable Read transaction which wants to ensure data consistency may
need to take out a lock on an entire table, which could block other users attempting to use that table, or it
may use SELECT FOR UPDATE or SELECT FOR SHARE which not only can block other transactions
but cause disk access.

Predicate locks in PostgreSQL, like in most other database systems, are based on data actually accessed
by a transaction. These will show up in the pg_locks system view with a mode of SIReadLock.
The particular locks acquired during execution of a query will depend on the plan used by the query, and
multiple finer-grained locks (e.g., tuple locks) may be combined into fewer coarser-grained locks (e.g.,
page locks) during the course of the transaction to prevent exhaustion of the memory used to track the locks.
A READ ONLY transaction may be able to release its SIRead locks before completion, if it detects that
no conflicts can still occur which could lead to a serialization anomaly. In fact, READ ONLY transactions
will often be able to establish that fact at startup and avoid taking any predicate locks. If you explicitly
request a SERIALIZABLE READ ONLY DEFERRABLE transaction, it will block until it can establish
this fact. (This is the only case where Serializable transactions block but Repeatable Read transactions
don't.) On the other hand, SIRead locks often need to be kept past transaction commit, until overlapping
read write transactions complete.

Consistent use of Serializable transactions can simplify development. The guarantee that any set of
successfully committed concurrent Serializable transactions will have the same effect as if they were run
one at a time means that if you can demonstrate that a single transaction, as written, will do the right
thing when run by itself, you can have confidence that it will do the right thing in any mix of Serializable
transactions, even without any information about what those other transactions might do, or it will not
successfully commit. It is important that an environment which uses this technique have a generalized way
of handling serialization failures (which always return with a SQLSTATE value of '40001'), because it
will be very hard to predict exactly which transactions might contribute to the read/write dependencies
and need to be rolled back to prevent serialization anomalies. The monitoring of read/write dependencies
has a cost, as does the restart of transactions which are terminated with a serialization failure, but balanced
against the cost and blocking involved in use of explicit locks and SELECT FOR UPDATE or SELECT
FOR SHARE, Serializable transactions are the best performance choice for some environments.

While PostgreSQL's Serializable transaction isolation level only allows concurrent transactions to commit
if it can prove there is a serial order of execution that would produce the same effect, it doesn't always
prevent errors from being raised that would not occur in true serial execution. In particular, it is possible
to see unique constraint violations caused by conflicts with overlapping Serializable transactions even
after explicitly checking that the key isn't present before attempting to insert it. This can be avoided by
making sure that all Serializable transactions that insert potentially conflicting keys explicitly check if
they can do so first. For example, imagine an application that asks the user for a new key and then checks
that it doesn't exist already by trying to select it first, or generates a new key by selecting the maximum

453

Concurrency Control

existing key and adding one. If some Serializable transactions insert new keys directly without following
this protocol, unique constraints violations might be reported even in cases where they could not occur in
a serial execution of the concurrent transactions.

For optimal performance when relying on Serializable transactions for concurrency control, these issues
should be considered:

• Declare transactions as READ ONLY when possible.

• Control the number of active connections, using a connection pool if needed. This is always an important
performance consideration, but it can be particularly important in a busy system using Serializable
transactions.

• Don't put more into a single transaction than needed for integrity purposes.

• Don't leave connections dangling “idle in transaction” longer than necessary. The configuration
parameter idle_in_transaction_session_timeout may be used to automatically disconnect lingering
sessions.

• Eliminate explicit locks, SELECT FOR UPDATE, and SELECT FOR SHARE where no longer needed
due to the protections automatically provided by Serializable transactions.

• When the system is forced to combine multiple page-level predicate locks into a single relation-
level predicate lock because the predicate lock table is short of memory, an increase in the rate of
serialization failures may occur. You can avoid this by increasing max_pred_locks_per_transaction,
max_pred_locks_per_relation, and/or max_pred_locks_per_page.

• A sequential scan will always necessitate a relation-level predicate lock. This can result in an increased
rate of serialization failures. It may be helpful to encourage the use of index scans by reducing
random_page_cost and/or increasing cpu_tuple_cost. Be sure to weigh any decrease in transaction
rollbacks and restarts against any overall change in query execution time.

13.3. Explicit Locking
PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes can be
used for application-controlled locking in situations where MVCC does not give the desired behavior. Also,
most PostgreSQL commands automatically acquire locks of appropriate modes to ensure that referenced
tables are not dropped or modified in incompatible ways while the command executes. (For example,
TRUNCATE cannot safely be executed concurrently with other operations on the same table, so it obtains
an exclusive lock on the table to enforce that.)

To examine a list of the currently outstanding locks in a database server, use the pg_locks system view.
For more information on monitoring the status of the lock manager subsystem, refer to Chapter 28.

13.3.1. Table-level Locks
The list below shows the available lock modes and the contexts in which they are used automatically by
PostgreSQL. You can also acquire any of these locks explicitly with the command LOCK. Remember that
all of these lock modes are table-level locks, even if the name contains the word “row”; the names of the
lock modes are historical. To some extent the names reflect the typical usage of each lock mode — but
the semantics are all the same. The only real difference between one lock mode and another is the set of
lock modes with which each conflicts (see Table 13.2). Two transactions cannot hold locks of conflicting
modes on the same table at the same time. (However, a transaction never conflicts with itself. For example,
it might acquire ACCESS EXCLUSIVE lock and later acquire ACCESS SHARE lock on the same table.)

454

Concurrency Control

Non-conflicting lock modes can be held concurrently by many transactions. Notice in particular that some
lock modes are self-conflicting (for example, an ACCESS EXCLUSIVE lock cannot be held by more than
one transaction at a time) while others are not self-conflicting (for example, an ACCESS SHARE lock
can be held by multiple transactions).

Table-level Lock Modes

ACCESS SHARE

Conflicts with the ACCESS EXCLUSIVE lock mode only.

The SELECT command acquires a lock of this mode on referenced tables. In general, any query that
only reads a table and does not modify it will acquire this lock mode.

ROW SHARE

Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

The SELECT FOR UPDATE and SELECT FOR SHARE commands acquire a lock of this mode
on the target table(s) (in addition to ACCESS SHARE locks on any other tables that are referenced
but not selected FOR UPDATE/FOR SHARE).

ROW EXCLUSIVE

Conflicts with the SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE
lock modes.

The commands UPDATE, DELETE, and INSERT acquire this lock mode on the target table (in
addition to ACCESS SHARE locks on any other referenced tables). In general, this lock mode will
be acquired by any command that modifies data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent
schema changes and VACUUM runs.

Acquired by VACUUM (without FULL), ANALYZE, CREATE INDEX CONCURRENTLY, CREATE
STATISTICS and ALTER TABLE VALIDATE and other ALTER TABLE variants (for full details
see ALTER TABLE).

SHARE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent
data changes.

Acquired by CREATE INDEX (without CONCURRENTLY).

SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table
against concurrent data changes, and is self-exclusive so that only one session can hold it at a time.

Acquired by CREATE COLLATION, CREATE TRIGGER, and many forms of ALTER TABLE (see
ALTER TABLE).

455

Concurrency Control

EXCLUSIVE

Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE,
SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode
allows only concurrent ACCESS SHARE locks, i.e., only reads from the table can proceed in parallel
with a transaction holding this lock mode.

Acquired by REFRESH MATERIALIZED VIEW CONCURRENTLY.

ACCESS EXCLUSIVE

Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS
EXCLUSIVE). This mode guarantees that the holder is the only transaction accessing the table in any
way.

Acquired by the DROP TABLE, TRUNCATE, REINDEX, CLUSTER, VACUUM FULL, and REFRESH
MATERIALIZED VIEW (without CONCURRENTLY) commands. Many forms of ALTER TABLE
also acquire a lock at this level. This is also the default lock mode for LOCK TABLE statements that
do not specify a mode explicitly.

Tip

Only an ACCESS EXCLUSIVE lock blocks a SELECT (without FOR UPDATE/SHARE)
statement.

Once acquired, a lock is normally held till end of transaction. But if a lock is acquired after establishing
a savepoint, the lock is released immediately if the savepoint is rolled back to. This is consistent with the
principle that ROLLBACK cancels all effects of the commands since the savepoint. The same holds for
locks acquired within a PL/pgSQL exception block: an error escape from the block releases locks acquired
within it.

Table 13.2. Conflicting Lock Modes

Current Lock ModeRequested
Lock
Mode

ACCESS
SHARE

ROW
SHARE

ROW
EXCLUSIVE

SHARE
UPDATE
EXCLUSIVE

SHARE SHARE
ROW
EXCLUSIVE

EXCLUSIVEACCESS
EXCLUSIVE

ACCESS
SHARE

 X

ROW
SHARE

 X X

ROW
EXCLUSIVE

 X X X X

SHARE
UPDATE
EXCLUSIVE

 X X X X X

SHARE X X X X X

SHARE
ROW
EXCLUSIVE

 X X X X X X

456

Concurrency Control

Current Lock ModeRequested
Lock
Mode

ACCESS
SHARE

ROW
SHARE

ROW
EXCLUSIVE

SHARE
UPDATE
EXCLUSIVE

SHARE SHARE
ROW
EXCLUSIVE

EXCLUSIVEACCESS
EXCLUSIVE

EXCLUSIVE X X X X X X X

ACCESS
EXCLUSIVE

X X X X X X X X

13.3.2. Row-level Locks
In addition to table-level locks, there are row-level locks, which are listed as below with the contexts
in which they are used automatically by PostgreSQL. See Table 13.3 for a complete table of row-level
lock conflicts. Note that a transaction can hold conflicting locks on the same row, even in different
subtransactions; but other than that, two transactions can never hold conflicting locks on the same row.
Row-level locks do not affect data querying; they block only writers and lockers to the same row.

Row-level Lock Modes

FOR UPDATE

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though for update.
This prevents them from being locked, modified or deleted by other transactions until the current
transaction ends. That is, other transactions that attempt UPDATE, DELETE, SELECT FOR UPDATE,
SELECT FOR NO KEY UPDATE, SELECT FOR SHARE or SELECT FOR KEY SHARE of
these rows will be blocked until the current transaction ends; conversely, SELECT FOR UPDATE
will wait for a concurrent transaction that has run any of those commands on the same row, and will
then lock and return the updated row (or no row, if the row was deleted). Within a REPEATABLE
READ or SERIALIZABLE transaction, however, an error will be thrown if a row to be locked has
changed since the transaction started. For further discussion see Section 13.4.

The FOR UPDATE lock mode is also acquired by any DELETE on a row, and also by an UPDATE
that modifies the values on certain columns. Currently, the set of columns considered for the UPDATE
case are those that have a unique index on them that can be used in a foreign key (so partial indexes
and expressional indexes are not considered), but this may change in the future.

FOR NO KEY UPDATE

Behaves similarly to FOR UPDATE, except that the lock acquired is weaker: this lock will not block
SELECT FOR KEY SHARE commands that attempt to acquire a lock on the same rows. This lock
mode is also acquired by any UPDATE that does not acquire a FOR UPDATE lock.

FOR SHARE

Behaves similarly to FOR NO KEY UPDATE, except that it acquires a shared lock rather than
exclusive lock on each retrieved row. A shared lock blocks other transactions from performing
UPDATE, DELETE, SELECT FOR UPDATE or SELECT FOR NO KEY UPDATE on these rows,
but it does not prevent them from performing SELECT FOR SHARE or SELECT FOR KEY SHARE.

FOR KEY SHARE

Behaves similarly to FOR SHARE, except that the lock is weaker: SELECT FOR UPDATE is
blocked, but not SELECT FOR NO KEY UPDATE. A key-shared lock blocks other transactions
from performing DELETE or any UPDATE that changes the key values, but not other UPDATE, and

457

Concurrency Control

neither does it prevent SELECT FOR NO KEY UPDATE, SELECT FOR SHARE, or SELECT
FOR KEY SHARE.

PostgreSQL doesn't remember any information about modified rows in memory, so there is no limit on
the number of rows locked at one time. However, locking a row might cause a disk write, e.g., SELECT
FOR UPDATE modifies selected rows to mark them locked, and so will result in disk writes.

Table 13.3. Conflicting Row-level Locks

Current Lock ModeRequested Lock
Mode FOR KEY

SHARE
FOR SHARE FOR NO KEY

UPDATE
FOR UPDATE

FOR KEY SHARE X

FOR SHARE X X

FOR NO KEY
UPDATE

 X X X

FOR UPDATE X X X X

13.3.3. Page-level Locks
In addition to table and row locks, page-level share/exclusive locks are used to control read/write access to
table pages in the shared buffer pool. These locks are released immediately after a row is fetched or updated.
Application developers normally need not be concerned with page-level locks, but they are mentioned
here for completeness.

13.3.4. Deadlocks
The use of explicit locking can increase the likelihood of deadlocks, wherein two (or more) transactions
each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock on table A and
then tries to acquire an exclusive lock on table B, while transaction 2 has already exclusive-locked table
B and now wants an exclusive lock on table A, then neither one can proceed. PostgreSQL automatically
detects deadlock situations and resolves them by aborting one of the transactions involved, allowing the
other(s) to complete. (Exactly which transaction will be aborted is difficult to predict and should not be
relied upon.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even if explicit
locking is not used). Consider the case in which two concurrent transactions modify a table. The first
transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

This acquires a row-level lock on the row with the specified account number. Then, the second transaction
executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The first UPDATE statement successfully acquires a row-level lock on the specified row, so it succeeds in
updating that row. However, the second UPDATE statement finds that the row it is attempting to update has

458

Concurrency Control

already been locked, so it waits for the transaction that acquired the lock to complete. Transaction two is
now waiting on transaction one to complete before it continues execution. Now, transaction one executes:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction two
already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is blocked on
transaction two, and transaction two is blocked on transaction one: a deadlock condition. PostgreSQL will
detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications using a
database acquire locks on multiple objects in a consistent order. In the example above, if both transactions
had updated the rows in the same order, no deadlock would have occurred. One should also ensure that
the first lock acquired on an object in a transaction is the most restrictive mode that will be needed for that
object. If it is not feasible to verify this in advance, then deadlocks can be handled on-the-fly by retrying
transactions that abort due to deadlocks.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications to
hold transactions open for long periods of time (e.g., while waiting for user input).

13.3.5. Advisory Locks
PostgreSQL provides a means for creating locks that have application-defined meanings. These are called
advisory locks, because the system does not enforce their use — it is up to the application to use them
correctly. Advisory locks can be useful for locking strategies that are an awkward fit for the MVCC model.
For example, a common use of advisory locks is to emulate pessimistic locking strategies typical of so-
called “flat file” data management systems. While a flag stored in a table could be used for the same
purpose, advisory locks are faster, avoid table bloat, and are automatically cleaned up by the server at the
end of the session.

There are two ways to acquire an advisory lock in PostgreSQL: at session level or at transaction level.
Once acquired at session level, an advisory lock is held until explicitly released or the session ends. Unlike
standard lock requests, session-level advisory lock requests do not honor transaction semantics: a lock
acquired during a transaction that is later rolled back will still be held following the rollback, and likewise
an unlock is effective even if the calling transaction fails later. A lock can be acquired multiple times by
its owning process; for each completed lock request there must be a corresponding unlock request before
the lock is actually released. Transaction-level lock requests, on the other hand, behave more like regular
lock requests: they are automatically released at the end of the transaction, and there is no explicit unlock
operation. This behavior is often more convenient than the session-level behavior for short-term usage of
an advisory lock. Session-level and transaction-level lock requests for the same advisory lock identifier
will block each other in the expected way. If a session already holds a given advisory lock, additional
requests by it will always succeed, even if other sessions are awaiting the lock; this statement is true
regardless of whether the existing lock hold and new request are at session level or transaction level.

Like all locks in PostgreSQL, a complete list of advisory locks currently held by any session can be found
in the pg_locks system view.

Both advisory locks and regular locks are stored in a shared memory pool whose size is defined by
the configuration variables max_locks_per_transaction and max_connections. Care must be taken not to
exhaust this memory or the server will be unable to grant any locks at all. This imposes an upper limit
on the number of advisory locks grantable by the server, typically in the tens to hundreds of thousands
depending on how the server is configured.

459

Concurrency Control

In certain cases using advisory locking methods, especially in queries involving explicit ordering and
LIMIT clauses, care must be taken to control the locks acquired because of the order in which SQL
expressions are evaluated. For example:

SELECT pg_advisory_lock(id) FROM foo WHERE id = 12345; -- ok
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; --
 danger!
SELECT pg_advisory_lock(q.id) FROM
(
 SELECT id FROM foo WHERE id > 12345 LIMIT 100
) q; -- ok

In the above queries, the second form is dangerous because the LIMIT is not guaranteed to be applied
before the locking function is executed. This might cause some locks to be acquired that the application
was not expecting, and hence would fail to release (until it ends the session). From the point of view of
the application, such locks would be dangling, although still viewable in pg_locks.

The functions provided to manipulate advisory locks are described in Section 9.26.10.

13.4. Data Consistency Checks at the
Application Level

It is very difficult to enforce business rules regarding data integrity using Read Committed transactions
because the view of the data is shifting with each statement, and even a single statement may not restrict
itself to the statement's snapshot if a write conflict occurs.

While a Repeatable Read transaction has a stable view of the data throughout its execution, there is a
subtle issue with using MVCC snapshots for data consistency checks, involving something known as read/
write conflicts. If one transaction writes data and a concurrent transaction attempts to read the same data
(whether before or after the write), it cannot see the work of the other transaction. The reader then appears
to have executed first regardless of which started first or which committed first. If that is as far as it goes,
there is no problem, but if the reader also writes data which is read by a concurrent transaction there is
now a transaction which appears to have run before either of the previously mentioned transactions. If the
transaction which appears to have executed last actually commits first, it is very easy for a cycle to appear
in a graph of the order of execution of the transactions. When such a cycle appears, integrity checks will
not work correctly without some help.

As mentioned in Section 13.2.3, Serializable transactions are just Repeatable Read transactions which add
nonblocking monitoring for dangerous patterns of read/write conflicts. When a pattern is detected which
could cause a cycle in the apparent order of execution, one of the transactions involved is rolled back to
break the cycle.

13.4.1. Enforcing Consistency With Serializable
Transactions

If the Serializable transaction isolation level is used for all writes and for all reads which need a consistent
view of the data, no other effort is required to ensure consistency. Software from other environments
which is written to use serializable transactions to ensure consistency should “just work” in this regard
in PostgreSQL.

When using this technique, it will avoid creating an unnecessary burden for application programmers if the
application software goes through a framework which automatically retries transactions which are rolled

460

Concurrency Control

back with a serialization failure. It may be a good idea to set default_transaction_isolation
to serializable. It would also be wise to take some action to ensure that no other transaction isolation
level is used, either inadvertently or to subvert integrity checks, through checks of the transaction isolation
level in triggers.

See Section 13.2.3 for performance suggestions.

Warning

This level of integrity protection using Serializable transactions does not yet extend to hot standby
mode (Section 26.5). Because of that, those using hot standby may want to use Repeatable Read
and explicit locking on the master.

13.4.2. Enforcing Consistency With Explicit Blocking
Locks

When non-serializable writes are possible, to ensure the current validity of a row and protect it against
concurrent updates one must use SELECT FOR UPDATE, SELECT FOR SHARE, or an appropriate
LOCK TABLE statement. (SELECT FOR UPDATE and SELECT FOR SHARE lock just the returned
rows against concurrent updates, while LOCK TABLE locks the whole table.) This should be taken into
account when porting applications to PostgreSQL from other environments.

Also of note to those converting from other environments is the fact that SELECT FOR UPDATE does not
ensure that a concurrent transaction will not update or delete a selected row. To do that in PostgreSQL you
must actually update the row, even if no values need to be changed. SELECT FOR UPDATE temporarily
blocks other transactions from acquiring the same lock or executing an UPDATE or DELETE which would
affect the locked row, but once the transaction holding this lock commits or rolls back, a blocked transaction
will proceed with the conflicting operation unless an actual UPDATE of the row was performed while the
lock was held.

Global validity checks require extra thought under non-serializable MVCC. For example, a banking
application might wish to check that the sum of all credits in one table equals the sum of debits in another
table, when both tables are being actively updated. Comparing the results of two successive SELECT
sum(...) commands will not work reliably in Read Committed mode, since the second query will likely
include the results of transactions not counted by the first. Doing the two sums in a single repeatable
read transaction will give an accurate picture of only the effects of transactions that committed before
the repeatable read transaction started — but one might legitimately wonder whether the answer is still
relevant by the time it is delivered. If the repeatable read transaction itself applied some changes before
trying to make the consistency check, the usefulness of the check becomes even more debatable, since
now it includes some but not all post-transaction-start changes. In such cases a careful person might wish
to lock all tables needed for the check, in order to get an indisputable picture of current reality. A SHARE
mode (or higher) lock guarantees that there are no uncommitted changes in the locked table, other than
those of the current transaction.

Note also that if one is relying on explicit locking to prevent concurrent changes, one should either use
Read Committed mode, or in Repeatable Read mode be careful to obtain locks before performing queries.
A lock obtained by a repeatable read transaction guarantees that no other transactions modifying the table
are still running, but if the snapshot seen by the transaction predates obtaining the lock, it might predate
some now-committed changes in the table. A repeatable read transaction's snapshot is actually frozen at
the start of its first query or data-modification command (SELECT, INSERT, UPDATE, or DELETE), so
it is possible to obtain locks explicitly before the snapshot is frozen.

461

Concurrency Control

13.5. Caveats
Some DDL commands, currently only TRUNCATE and the table-rewriting forms of ALTER TABLE,
are not MVCC-safe. This means that after the truncation or rewrite commits, the table will appear empty
to concurrent transactions, if they are using a snapshot taken before the DDL command committed. This
will only be an issue for a transaction that did not access the table in question before the DDL command
started — any transaction that has done so would hold at least an ACCESS SHARE table lock, which
would block the DDL command until that transaction completes. So these commands will not cause any
apparent inconsistency in the table contents for successive queries on the target table, but they could cause
visible inconsistency between the contents of the target table and other tables in the database.

Support for the Serializable transaction isolation level has not yet been added to Hot Standby replication
targets (described in Section 26.5). The strictest isolation level currently supported in hot standby mode is
Repeatable Read. While performing all permanent database writes within Serializable transactions on the
master will ensure that all standbys will eventually reach a consistent state, a Repeatable Read transaction
run on the standby can sometimes see a transient state that is inconsistent with any serial execution of the
transactions on the master.

13.6. Locking and Indexes
Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write access
is not currently offered for every index access method implemented in PostgreSQL. The various index
types are handled as follows:

B-tree, GiST and SP-GiST indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index row is fetched or inserted. These index types provide the highest
concurrency without deadlock conditions.

Hash indexes

Share/exclusive hash-bucket-level locks are used for read/write access. Locks are released after the
whole bucket is processed. Bucket-level locks provide better concurrency than index-level ones, but
deadlock is possible since the locks are held longer than one index operation.

GIN indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index row is fetched or inserted. But note that insertion of a GIN-indexed
value usually produces several index key insertions per row, so GIN might do substantial work for
a single value's insertion.

Currently, B-tree indexes offer the best performance for concurrent applications; since they also have more
features than hash indexes, they are the recommended index type for concurrent applications that need to
index scalar data. When dealing with non-scalar data, B-trees are not useful, and GiST, SP-GiST or GIN
indexes should be used instead.

462

Chapter 14. Performance Tips
Query performance can be affected by many things. Some of these can be controlled by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning PostgreSQL performance.

14.1. Using EXPLAIN
PostgreSQL devises a query plan for each query it receives. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance, so the system includes
a complex planner that tries to choose good plans. You can use the EXPLAIN command to see what query
plan the planner creates for any query. Plan-reading is an art that requires some experience to master, but
this section attempts to cover the basics.

Examples in this section are drawn from the regression test database after doing a VACUUM ANALYZE,
using 9.3 development sources. You should be able to get similar results if you try the examples yourself,
but your estimated costs and row counts might vary slightly because ANALYZE's statistics are random
samples rather than exact, and because costs are inherently somewhat platform-dependent.

The examples use EXPLAIN's default “text” output format, which is compact and convenient for humans
to read. If you want to feed EXPLAIN's output to a program for further analysis, you should use one of its
machine-readable output formats (XML, JSON, or YAML) instead.

14.1.1. EXPLAIN Basics

The structure of a query plan is a tree of plan nodes. Nodes at the bottom level of the tree are scan nodes:
they return raw rows from a table. There are different types of scan nodes for different table access methods:
sequential scans, index scans, and bitmap index scans. There are also non-table row sources, such as
VALUES clauses and set-returning functions in FROM, which have their own scan node types. If the query
requires joining, aggregation, sorting, or other operations on the raw rows, then there will be additional
nodes above the scan nodes to perform these operations. Again, there is usually more than one possible
way to do these operations, so different node types can appear here too. The output of EXPLAIN has one
line for each node in the plan tree, showing the basic node type plus the cost estimates that the planner
made for the execution of that plan node. Additional lines might appear, indented from the node's summary
line, to show additional properties of the node. The very first line (the summary line for the topmost node)
has the estimated total execution cost for the plan; it is this number that the planner seeks to minimize.

Here is a trivial example, just to show what the output looks like:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

Since this query has no WHERE clause, it must scan all the rows of the table, so the planner has chosen to
use a simple sequential scan plan. The numbers that are quoted in parentheses are (left to right):

• Estimated start-up cost. This is the time expended before the output phase can begin, e.g., time to do
the sorting in a sort node.

463

Performance Tips

• Estimated total cost. This is stated on the assumption that the plan node is run to completion, i.e., all
available rows are retrieved. In practice a node's parent node might stop short of reading all available
rows (see the LIMIT example below).

• Estimated number of rows output by this plan node. Again, the node is assumed to be run to completion.

• Estimated average width of rows output by this plan node (in bytes).

The costs are measured in arbitrary units determined by the planner's cost parameters (see Section 19.7.2).
Traditional practice is to measure the costs in units of disk page fetches; that is, seq_page_cost is
conventionally set to 1.0 and the other cost parameters are set relative to that. The examples in this section
are run with the default cost parameters.

It's important to understand that the cost of an upper-level node includes the cost of all its child nodes. It's
also important to realize that the cost only reflects things that the planner cares about. In particular, the
cost does not consider the time spent transmitting result rows to the client, which could be an important
factor in the real elapsed time; but the planner ignores it because it cannot change it by altering the plan.
(Every correct plan will output the same row set, we trust.)

The rows value is a little tricky because it is not the number of rows processed or scanned by the plan
node, but rather the number emitted by the node. This is often less than the number scanned, as a result
of filtering by any WHERE-clause conditions that are being applied at the node. Ideally the top-level rows
estimate will approximate the number of rows actually returned, updated, or deleted by the query.

Returning to our example:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

These numbers are derived very straightforwardly. If you do:

SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

you will find that tenk1 has 358 disk pages and 10000 rows. The estimated cost is computed as (disk
pages read * seq_page_cost) + (rows scanned * cpu_tuple_cost). By default, seq_page_cost is 1.0
and cpu_tuple_cost is 0.01, so the estimated cost is (358 * 1.0) + (10000 * 0.01) = 458.

Now let's modify the query to add a WHERE condition:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 7000;

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=7001 width=244)
 Filter: (unique1 < 7000)

Notice that the EXPLAIN output shows the WHERE clause being applied as a “filter” condition attached
to the Seq Scan plan node. This means that the plan node checks the condition for each row it scans, and
outputs only the ones that pass the condition. The estimate of output rows has been reduced because of the
WHERE clause. However, the scan will still have to visit all 10000 rows, so the cost hasn't decreased; in

464

Performance Tips

fact it has gone up a bit (by 10000 * cpu_operator_cost, to be exact) to reflect the extra CPU time spent
checking the WHERE condition.

The actual number of rows this query would select is 7000, but the rows estimate is only approximate.
If you try to duplicate this experiment, you will probably get a slightly different estimate; moreover, it
can change after each ANALYZE command, because the statistics produced by ANALYZE are taken from
a randomized sample of the table.

Now, let's make the condition more restrictive:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100;

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=5.07..229.20 rows=101 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101
 width=0)
 Index Cond: (unique1 < 100)

Here the planner has decided to use a two-step plan: the child plan node visits an index to find the locations
of rows matching the index condition, and then the upper plan node actually fetches those rows from the
table itself. Fetching rows separately is much more expensive than reading them sequentially, but because
not all the pages of the table have to be visited, this is still cheaper than a sequential scan. (The reason
for using two plan levels is that the upper plan node sorts the row locations identified by the index into
physical order before reading them, to minimize the cost of separate fetches. The “bitmap” mentioned in
the node names is the mechanism that does the sorting.)

Now let's add another condition to the WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = 'xxx';

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=5.04..229.43 rows=1 width=244)
 Recheck Cond: (unique1 < 100)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101
 width=0)
 Index Cond: (unique1 < 100)

The added condition stringu1 = 'xxx' reduces the output row count estimate, but not the cost
because we still have to visit the same set of rows. Notice that the stringu1 clause cannot be applied
as an index condition, since this index is only on the unique1 column. Instead it is applied as a filter on
the rows retrieved by the index. Thus the cost has actually gone up slightly to reflect this extra checking.

In some cases the planner will prefer a “simple” index scan plan:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42;

 QUERY PLAN

465

Performance Tips

 Index Scan using tenk1_unique1 on tenk1 (cost=0.29..8.30 rows=1
 width=244)
 Index Cond: (unique1 = 42)

In this type of plan the table rows are fetched in index order, which makes them even more expensive
to read, but there are so few that the extra cost of sorting the row locations is not worth it. You'll most
often see this plan type for queries that fetch just a single row. It's also often used for queries that have
an ORDER BY condition that matches the index order, because then no extra sorting step is needed to
satisfy the ORDER BY.

If there are separate indexes on several of the columns referenced in WHERE, the planner might choose to
use an AND or OR combination of the indexes:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

 QUERY PLAN

 Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 -> BitmapAnd (cost=25.08..25.08 rows=10 width=0)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04
 rows=101 width=0)
 Index Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78
 rows=999 width=0)
 Index Cond: (unique2 > 9000)

But this requires visiting both indexes, so it's not necessarily a win compared to using just one index
and treating the other condition as a filter. If you vary the ranges involved you'll see the plan change
accordingly.

Here is an example showing the effects of LIMIT:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000
 LIMIT 2;

 QUERY PLAN

 Limit (cost=0.29..14.48 rows=2 width=244)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..71.27
 rows=10 width=244)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)

This is the same query as above, but we added a LIMIT so that not all the rows need be retrieved, and the
planner changed its mind about what to do. Notice that the total cost and row count of the Index Scan node
are shown as if it were run to completion. However, the Limit node is expected to stop after retrieving
only a fifth of those rows, so its total cost is only a fifth as much, and that's the actual estimated cost of
the query. This plan is preferred over adding a Limit node to the previous plan because the Limit could
not avoid paying the startup cost of the bitmap scan, so the total cost would be something over 25 units
with that approach.

Let's try joining two tables, using the columns we have been discussing:

466

Performance Tips

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Nested Loop (cost=4.65..118.62 rows=10 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10
 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36
 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91
 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

In this plan, we have a nested-loop join node with two table scans as inputs, or children. The indentation
of the node summary lines reflects the plan tree structure. The join's first, or “outer”, child is a bitmap
scan similar to those we saw before. Its cost and row count are the same as we'd get from SELECT ...
WHERE unique1 < 10 because we are applying the WHERE clause unique1 < 10 at that node.
The t1.unique2 = t2.unique2 clause is not relevant yet, so it doesn't affect the row count of the
outer scan. The nested-loop join node will run its second, or “inner” child once for each row obtained from
the outer child. Column values from the current outer row can be plugged into the inner scan; here, the
t1.unique2 value from the outer row is available, so we get a plan and costs similar to what we saw
above for a simple SELECT ... WHERE t2.unique2 = constant case. (The estimated cost
is actually a bit lower than what was seen above, as a result of caching that's expected to occur during
the repeated index scans on t2.) The costs of the loop node are then set on the basis of the cost of the
outer scan, plus one repetition of the inner scan for each outer row (10 * 7.91, here), plus a little CPU
time for join processing.

In this example the join's output row count is the same as the product of the two scans' row counts, but
that's not true in all cases because there can be additional WHERE clauses that mention both tables and so
can only be applied at the join point, not to either input scan. Here's an example:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;

 QUERY PLAN

 Nested Loop (cost=4.65..49.46 rows=33 width=488)
 Join Filter: (t1.hundred < t2.hundred)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10
 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36
 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Materialize (cost=0.29..8.51 rows=10 width=244)
 -> Index Scan using tenk2_unique2 on tenk2 t2
 (cost=0.29..8.46 rows=10 width=244)
 Index Cond: (unique2 < 10)

467

Performance Tips

The condition t1.hundred < t2.hundred can't be tested in the tenk2_unique2 index, so it's
applied at the join node. This reduces the estimated output row count of the join node, but does not change
either input scan.

Notice that here the planner has chosen to “materialize” the inner relation of the join, by putting a
Materialize plan node atop it. This means that the t2 index scan will be done just once, even though the
nested-loop join node needs to read that data ten times, once for each row from the outer relation. The
Materialize node saves the data in memory as it's read, and then returns the data from memory on each
subsequent pass.

When dealing with outer joins, you might see join plan nodes with both “Join Filter” and plain “Filter”
conditions attached. Join Filter conditions come from the outer join's ON clause, so a row that fails the
Join Filter condition could still get emitted as a null-extended row. But a plain Filter condition is applied
after the outer-join rules and so acts to remove rows unconditionally. In an inner join there is no semantic
difference between these types of filters.

If we change the query's selectivity a bit, we might get a very different join plan:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Hash Join (cost=230.47..713.98 rows=101 width=488)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244)
 -> Hash (cost=229.20..229.20 rows=101 width=244)
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101
 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1
 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)

Here, the planner has chosen to use a hash join, in which rows of one table are entered into an in-memory
hash table, after which the other table is scanned and the hash table is probed for matches to each row.
Again note how the indentation reflects the plan structure: the bitmap scan on tenk1 is the input to the
Hash node, which constructs the hash table. That's then returned to the Hash Join node, which reads rows
from its outer child plan and searches the hash table for each one.

Another possible type of join is a merge join, illustrated here:

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Merge Join (cost=198.11..268.19 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28
 rows=101 width=244)

468

Performance Tips

 Filter: (unique1 < 100)
 -> Sort (cost=197.83..200.33 rows=1000 width=244)
 Sort Key: t2.unique2
 -> Seq Scan on onek t2 (cost=0.00..148.00 rows=1000
 width=244)

Merge join requires its input data to be sorted on the join keys. In this plan the tenk1 data is sorted by
using an index scan to visit the rows in the correct order, but a sequential scan and sort is preferred for
onek, because there are many more rows to be visited in that table. (Sequential-scan-and-sort frequently
beats an index scan for sorting many rows, because of the nonsequential disk access required by the index
scan.)

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was the
cheapest, using the enable/disable flags described in Section 19.7.1. (This is a crude tool, but useful. See
also Section 14.3.) For example, if we're unconvinced that sequential-scan-and-sort is the best way to deal
with table onek in the previous example, we could try

SET enable_sort = off;

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Merge Join (cost=0.56..292.65 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28
 rows=101 width=244)
 Filter: (unique1 < 100)
 -> Index Scan using onek_unique2 on onek t2 (cost=0.28..224.79
 rows=1000 width=244)

which shows that the planner thinks that sorting onek by index-scanning is about 12% more expensive
than sequential-scan-and-sort. Of course, the next question is whether it's right about that. We can
investigate that using EXPLAIN ANALYZE, as discussed below.

14.1.2. EXPLAIN ANALYZE
It is possible to check the accuracy of the planner's estimates by using EXPLAIN's ANALYZE option. With
this option, EXPLAIN actually executes the query, and then displays the true row counts and true run
time accumulated within each plan node, along with the same estimates that a plain EXPLAIN shows. For
example, we might get a result like this:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN

 Nested Loop (cost=4.65..118.62 rows=10 width=488) (actual
 time=0.128..0.377 rows=10 loops=1)

469

Performance Tips

 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10
 width=244) (actual time=0.057..0.121 rows=10 loops=1)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36
 rows=10 width=0) (actual time=0.024..0.024 rows=10 loops=1)
 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91
 rows=1 width=244) (actual time=0.021..0.022 rows=1 loops=10)
 Index Cond: (unique2 = t1.unique2)
 Planning time: 0.181 ms
 Execution time: 0.501 ms

Note that the “actual time” values are in milliseconds of real time, whereas the cost estimates are
expressed in arbitrary units; so they are unlikely to match up. The thing that's usually most important to
look for is whether the estimated row counts are reasonably close to reality. In this example the estimates
were all dead-on, but that's quite unusual in practice.

In some query plans, it is possible for a subplan node to be executed more than once. For example, the
inner index scan will be executed once per outer row in the above nested-loop plan. In such cases, the
loops value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that the
cost estimates are shown. Multiply by the loops value to get the total time actually spent in the node. In
the above example, we spent a total of 0.220 milliseconds executing the index scans on tenk2.

In some cases EXPLAIN ANALYZE shows additional execution statistics beyond the plan node execution
times and row counts. For example, Sort and Hash nodes provide extra information:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY
 t1.fivethous;

 QUERY
 PLAN
--
 Sort (cost=717.34..717.59 rows=101 width=488) (actual
 time=7.761..7.774 rows=100 loops=1)
 Sort Key: t1.fivethous
 Sort Method: quicksort Memory: 77kB
 -> Hash Join (cost=230.47..713.98 rows=101 width=488) (actual
 time=0.711..7.427 rows=100 loops=1)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000
 width=244) (actual time=0.007..2.583 rows=10000 loops=1)
 -> Hash (cost=229.20..229.20 rows=101 width=244) (actual
 time=0.659..0.659 rows=100 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 28kB
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20
 rows=101 width=244) (actual time=0.080..0.526 rows=100 loops=1)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1
 (cost=0.00..5.04 rows=101 width=0) (actual time=0.049..0.049 rows=100
 loops=1)
 Index Cond: (unique1 < 100)

470

Performance Tips

 Planning time: 0.194 ms
 Execution time: 8.008 ms

The Sort node shows the sort method used (in particular, whether the sort was in-memory or on-disk)
and the amount of memory or disk space needed. The Hash node shows the number of hash buckets and
batches as well as the peak amount of memory used for the hash table. (If the number of batches exceeds
one, there will also be disk space usage involved, but that is not shown.)

Another type of extra information is the number of rows removed by a filter condition:

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..483.00 rows=7000 width=244) (actual
 time=0.016..5.107 rows=7000 loops=1)
 Filter: (ten < 7)
 Rows Removed by Filter: 3000
 Planning time: 0.083 ms
 Execution time: 5.905 ms

These counts can be particularly valuable for filter conditions applied at join nodes. The “Rows Removed”
line only appears when at least one scanned row, or potential join pair in the case of a join node, is rejected
by the filter condition.

A case similar to filter conditions occurs with “lossy” index scans. For example, consider this search for
polygons containing a specific point:

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon
 '(0.5,2.0)';

 QUERY PLAN
--
 Seq Scan on polygon_tbl (cost=0.00..1.05 rows=1 width=32) (actual
 time=0.044..0.044 rows=0 loops=1)
 Filter: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Filter: 4
 Planning time: 0.040 ms
 Execution time: 0.083 ms

The planner thinks (quite correctly) that this sample table is too small to bother with an index scan, so we
have a plain sequential scan in which all the rows got rejected by the filter condition. But if we force an
index scan to be used, we see:

SET enable_seqscan TO off;

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon
 '(0.5,2.0)';

 QUERY PLAN
--
 Index Scan using gpolygonind on polygon_tbl (cost=0.13..8.15 rows=1
 width=32) (actual time=0.062..0.062 rows=0 loops=1)

471

Performance Tips

 Index Cond: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Index Recheck: 1
 Planning time: 0.034 ms
 Execution time: 0.144 ms

Here we can see that the index returned one candidate row, which was then rejected by a recheck of the
index condition. This happens because a GiST index is “lossy” for polygon containment tests: it actually
returns the rows with polygons that overlap the target, and then we have to do the exact containment test
on those rows.

EXPLAIN has a BUFFERS option that can be used with ANALYZE to get even more run time statistics:

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tenk1 WHERE unique1 < 100 AND
 unique2 > 9000;

 QUERY PLAN

 Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244)
 (actual time=0.323..0.342 rows=10 loops=1)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 Buffers: shared hit=15
 -> BitmapAnd (cost=25.08..25.08 rows=10 width=0) (actual
 time=0.309..0.309 rows=0 loops=1)
 Buffers: shared hit=7
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04
 rows=101 width=0) (actual time=0.043..0.043 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Buffers: shared hit=2
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78
 rows=999 width=0) (actual time=0.227..0.227 rows=999 loops=1)
 Index Cond: (unique2 > 9000)
 Buffers: shared hit=5
 Planning time: 0.088 ms
 Execution time: 0.423 ms

The numbers provided by BUFFERS help to identify which parts of the query are the most I/O-intensive.

Keep in mind that because EXPLAIN ANALYZE actually runs the query, any side-effects will happen
as usual, even though whatever results the query might output are discarded in favor of printing the
EXPLAIN data. If you want to analyze a data-modifying query without changing your tables, you can roll
the command back afterwards, for example:

BEGIN;

EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 <
 100;

 QUERY PLAN
--
 Update on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual
 time=14.628..14.628 rows=0 loops=1)
 -> Bitmap Heap Scan on tenk1 (cost=5.07..229.46 rows=101
 width=250) (actual time=0.101..0.439 rows=100 loops=1)

472

Performance Tips

 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04
 rows=101 width=0) (actual time=0.043..0.043 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Planning time: 0.079 ms
 Execution time: 14.727 ms

ROLLBACK;

As seen in this example, when the query is an INSERT, UPDATE, or DELETE command, the actual work
of applying the table changes is done by a top-level Insert, Update, or Delete plan node. The plan nodes
underneath this node perform the work of locating the old rows and/or computing the new data. So above,
we see the same sort of bitmap table scan we've seen already, and its output is fed to an Update node that
stores the updated rows. It's worth noting that although the data-modifying node can take a considerable
amount of run time (here, it's consuming the lion's share of the time), the planner does not currently add
anything to the cost estimates to account for that work. That's because the work to be done is the same for
every correct query plan, so it doesn't affect planning decisions.

When an UPDATE or DELETE command affects an inheritance hierarchy, the output might look like this:

EXPLAIN UPDATE parent SET f2 = f2 + 1 WHERE f1 = 101;
 QUERY PLAN

 Update on parent (cost=0.00..24.53 rows=4 width=14)
 Update on parent
 Update on child1
 Update on child2
 Update on child3
 -> Seq Scan on parent (cost=0.00..0.00 rows=1 width=14)
 Filter: (f1 = 101)
 -> Index Scan using child1_f1_key on child1 (cost=0.15..8.17
 rows=1 width=14)
 Index Cond: (f1 = 101)
 -> Index Scan using child2_f1_key on child2 (cost=0.15..8.17
 rows=1 width=14)
 Index Cond: (f1 = 101)
 -> Index Scan using child3_f1_key on child3 (cost=0.15..8.17
 rows=1 width=14)
 Index Cond: (f1 = 101)

In this example the Update node needs to consider three child tables as well as the originally-mentioned
parent table. So there are four input scanning subplans, one per table. For clarity, the Update node is
annotated to show the specific target tables that will be updated, in the same order as the corresponding
subplans. (These annotations are new as of PostgreSQL 9.5; in prior versions the reader had to intuit the
target tables by inspecting the subplans.)

The Planning time shown by EXPLAIN ANALYZE is the time it took to generate the query plan
from the parsed query and optimize it. It does not include parsing or rewriting.

The Execution time shown by EXPLAIN ANALYZE includes executor start-up and shut-down time,
as well as the time to run any triggers that are fired, but it does not include parsing, rewriting, or planning
time. Time spent executing BEFORE triggers, if any, is included in the time for the related Insert, Update,
or Delete node; but time spent executing AFTER triggers is not counted there because AFTER triggers are
fired after completion of the whole plan. The total time spent in each trigger (either BEFORE or AFTER) is

473

Performance Tips

also shown separately. Note that deferred constraint triggers will not be executed until end of transaction
and are thus not considered at all by EXPLAIN ANALYZE.

14.1.3. Caveats
There are two significant ways in which run times measured by EXPLAIN ANALYZE can deviate from
normal execution of the same query. First, since no output rows are delivered to the client, network
transmission costs and I/O conversion costs are not included. Second, the measurement overhead added
by EXPLAIN ANALYZE can be significant, especially on machines with slow gettimeofday()
operating-system calls. You can use the pg_test_timing tool to measure the overhead of timing on your
system.

EXPLAIN results should not be extrapolated to situations much different from the one you are actually
testing; for example, results on a toy-sized table cannot be assumed to apply to large tables. The planner's
cost estimates are not linear and so it might choose a different plan for a larger or smaller table. An extreme
example is that on a table that only occupies one disk page, you'll nearly always get a sequential scan
plan whether indexes are available or not. The planner realizes that it's going to take one disk page read to
process the table in any case, so there's no value in expending additional page reads to look at an index.
(We saw this happening in the polygon_tbl example above.)

There are cases in which the actual and estimated values won't match up well, but nothing is really wrong.
One such case occurs when plan node execution is stopped short by a LIMIT or similar effect. For example,
in the LIMIT query we used before,

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 >
 9000 LIMIT 2;

 QUERY PLAN

 Limit (cost=0.29..14.71 rows=2 width=244) (actual time=0.177..0.249
 rows=2 loops=1)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..72.42
 rows=10 width=244) (actual time=0.174..0.244 rows=2 loops=1)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)
 Rows Removed by Filter: 287
 Planning time: 0.096 ms
 Execution time: 0.336 ms

the estimated cost and row count for the Index Scan node are shown as though it were run to completion.
But in reality the Limit node stopped requesting rows after it got two, so the actual row count is only 2 and
the run time is less than the cost estimate would suggest. This is not an estimation error, only a discrepancy
in the way the estimates and true values are displayed.

Merge joins also have measurement artifacts that can confuse the unwary. A merge join will stop reading
one input if it's exhausted the other input and the next key value in the one input is greater than the last
key value of the other input; in such a case there can be no more matches and so no need to scan the rest
of the first input. This results in not reading all of one child, with results like those mentioned for LIMIT.
Also, if the outer (first) child contains rows with duplicate key values, the inner (second) child is backed
up and rescanned for the portion of its rows matching that key value. EXPLAIN ANALYZE counts these
repeated emissions of the same inner rows as if they were real additional rows. When there are many outer
duplicates, the reported actual row count for the inner child plan node can be significantly larger than the
number of rows that are actually in the inner relation.

474

Performance Tips

BitmapAnd and BitmapOr nodes always report their actual row counts as zero, due to implementation
limitations.

Generally, the EXPLAIN output will display details for every plan node which was generated by the
query planner. However, there are cases where the executor is able to determine that certain nodes are not
required; currently, the only node type to support this is the Append node. This node type has the ability
to discard subnodes which it is able to determine won't contain any records required by the query. It is
possible to determine that nodes have been removed in this way by the presence of a "Subplans Removed"
property in the EXPLAIN output.

14.2. Statistics Used by the Planner

14.2.1. Single-Column Statistics
As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by
a query in order to make good choices of query plans. This section provides a quick look at the statistics
that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the number
of disk blocks occupied by each table and index. This information is kept in the table pg_class, in the
columns reltuples and relpages. We can look at it with queries similar to this one:

SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE 'tenk1%';

 relname | relkind | reltuples | relpages
----------------------+---------+-----------+----------
 tenk1 | r | 10000 | 358
 tenk1_hundred | i | 10000 | 30
 tenk1_thous_tenthous | i | 10000 | 30
 tenk1_unique1 | i | 10000 | 30
 tenk1_unique2 | i | 10000 | 30
(5 rows)

Here we can see that tenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly)
much smaller than the table.

For efficiency reasons, reltuples and relpages are not updated on-the-fly, and so they usually
contain somewhat out-of-date values. They are updated by VACUUM, ANALYZE, and a few DDL
commands such as CREATE INDEX. A VACUUM or ANALYZE operation that does not scan the entire
table (which is commonly the case) will incrementally update the reltuples count on the basis of the
part of the table it did scan, resulting in an approximate value. In any case, the planner will scale the values
it finds in pg_class to match the current physical table size, thus obtaining a closer approximation.

Most queries retrieve only a fraction of the rows in a table, due to WHERE clauses that restrict the rows
to be examined. The planner thus needs to make an estimate of the selectivity of WHERE clauses, that is,
the fraction of rows that match each condition in the WHERE clause. The information used for this task is
stored in the pg_statistic system catalog. Entries in pg_statistic are updated by the ANALYZE
and VACUUM ANALYZE commands, and are always approximate even when freshly updated.

475

Performance Tips

Rather than look at pg_statistic directly, it's better to look at its view pg_stats when examining
the statistics manually. pg_stats is designed to be more easily readable. Furthermore, pg_stats is
readable by all, whereas pg_statistic is only readable by a superuser. (This prevents unprivileged
users from learning something about the contents of other people's tables from the statistics. The
pg_stats view is restricted to show only rows about tables that the current user can read.) For example,
we might do:

SELECT attname, inherited, n_distinct,
 array_to_string(most_common_vals, E'\n') as most_common_vals
FROM pg_stats
WHERE tablename = 'road';

 attname | inherited | n_distinct | most_common_vals
---------+-----------+------------
+------------------------------------
 name | f | -0.363388 | I- 580 Ramp
+
 | | | I- 880 Ramp
+
 | | | Sp Railroad
 +
 | | | I- 580
 +
 | | | I- 680 Ramp
 name | t | -0.284859 | I- 880 Ramp
+
 | | | I- 580 Ramp
+
 | | | I- 680 Ramp
+
 | | | I- 580
 +
 | | | State Hwy 13 Ramp
(2 rows)

Note that two rows are displayed for the same column, one corresponding to the complete inheritance
hierarchy starting at the road table (inherited=t), and another one including only the road table
itself (inherited=f).

The amount of information stored in pg_statistic by ANALYZE, in particular the maximum number
of entries in the most_common_vals and histogram_bounds arrays for each column, can be set
on a column-by-column basis using the ALTER TABLE SET STATISTICS command, or globally
by setting the default_statistics_target configuration variable. The default limit is presently 100 entries.
Raising the limit might allow more accurate planner estimates to be made, particularly for columns with
irregular data distributions, at the price of consuming more space in pg_statistic and slightly more
time to compute the estimates. Conversely, a lower limit might be sufficient for columns with simple data
distributions.

Further details about the planner's use of statistics can be found in Chapter 70.

14.2.2. Extended Statistics
It is common to see slow queries running bad execution plans because multiple columns used in the
query clauses are correlated. The planner normally assumes that multiple conditions are independent

476

Performance Tips

of each other, an assumption that does not hold when column values are correlated. Regular statistics,
because of their per-individual-column nature, cannot capture any knowledge about cross-column
correlation. However, PostgreSQL has the ability to compute multivariate statistics, which can capture
such information.

Because the number of possible column combinations is very large, it's impractical to compute multivariate
statistics automatically. Instead, extended statistics objects, more often called just statistics objects, can
be created to instruct the server to obtain statistics across interesting sets of columns.

Statistics objects are created using the CREATE STATISTICS command. Creation of such an object
merely creates a catalog entry expressing interest in the statistics. Actual data collection is performed by
ANALYZE (either a manual command, or background auto-analyze). The collected values can be examined
in the pg_statistic_ext catalog.

ANALYZE computes extended statistics based on the same sample of table rows that it takes for computing
regular single-column statistics. Since the sample size is increased by increasing the statistics target for
the table or any of its columns (as described in the previous section), a larger statistics target will normally
result in more accurate extended statistics, as well as more time spent calculating them.

The following subsections describe the kinds of extended statistics that are currently supported.

14.2.2.1. Functional Dependencies

The simplest kind of extended statistics tracks functional dependencies, a concept used in definitions of
database normal forms. We say that column b is functionally dependent on column a if knowledge of
the value of a is sufficient to determine the value of b, that is there are no two rows having the same
value of a but different values of b. In a fully normalized database, functional dependencies should exist
only on primary keys and superkeys. However, in practice many data sets are not fully normalized for
various reasons; intentional denormalization for performance reasons is a common example. Even in a
fully normalized database, there may be partial correlation between some columns, which can be expressed
as partial functional dependency.

The existence of functional dependencies directly affects the accuracy of estimates in certain queries.
If a query contains conditions on both the independent and the dependent column(s), the conditions
on the dependent columns do not further reduce the result size; but without knowledge of the
functional dependency, the query planner will assume that the conditions are independent, resulting in
underestimating the result size.

To inform the planner about functional dependencies, ANALYZE can collect measurements of cross-
column dependency. Assessing the degree of dependency between all sets of columns would be
prohibitively expensive, so data collection is limited to those groups of columns appearing together in
a statistics object defined with the dependencies option. It is advisable to create dependencies
statistics only for column groups that are strongly correlated, to avoid unnecessary overhead in both
ANALYZE and later query planning.

Here is an example of collecting functional-dependency statistics:

CREATE STATISTICS stts (dependencies) ON zip, city FROM zipcodes;

ANALYZE zipcodes;

SELECT stxname, stxkeys, stxdependencies
 FROM pg_statistic_ext
 WHERE stxname = 'stts';

477

Performance Tips

 stxname | stxkeys | stxdependencies
---------+---------+--
 stts | 1 5 | {"1 => 5": 1.000000, "5 => 1": 0.423130}
(1 row)

Here it can be seen that column 1 (zip code) fully determines column 5 (city) so the coefficient is 1.0,
while city only determines zip code about 42% of the time, meaning that there are many cities (58%) that
are represented by more than a single ZIP code.

When computing the selectivity for a query involving functionally dependent columns, the planner
adjusts the per-condition selectivity estimates using the dependency coefficients so as not to produce an
underestimate.

14.2.2.1.1. Limitations of Functional Dependencies

Functional dependencies are currently only applied when considering simple equality conditions that
compare columns to constant values. They are not used to improve estimates for equality conditions
comparing two columns or comparing a column to an expression, nor for range clauses, LIKE or any other
type of condition.

When estimating with functional dependencies, the planner assumes that conditions on the involved
columns are compatible and hence redundant. If they are incompatible, the correct estimate would be zero
rows, but that possibility is not considered. For example, given a query like

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '94105';

the planner will disregard the city clause as not changing the selectivity, which is correct. However, it
will make the same assumption about

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '90210';

even though there will really be zero rows satisfying this query. Functional dependency statistics do not
provide enough information to conclude that, however.

In many practical situations, this assumption is usually satisfied; for example, there might be a GUI in the
application that only allows selecting compatible city and ZIP code values to use in a query. But if that's
not the case, functional dependencies may not be a viable option.

14.2.2.2. Multivariate N-Distinct Counts

Single-column statistics store the number of distinct values in each column. Estimates of the number of
distinct values when combining more than one column (for example, for GROUP BY a, b) are frequently
wrong when the planner only has single-column statistical data, causing it to select bad plans.

To improve such estimates, ANALYZE can collect n-distinct statistics for groups of columns. As before,
it's impractical to do this for every possible column grouping, so data is collected only for those groups
of columns appearing together in a statistics object defined with the ndistinct option. Data will be
collected for each possible combination of two or more columns from the set of listed columns.

Continuing the previous example, the n-distinct counts in a table of ZIP codes might look like the
following:

CREATE STATISTICS stts2 (ndistinct) ON zip, state, city FROM zipcodes;

478

Performance Tips

ANALYZE zipcodes;

SELECT stxkeys AS k, stxndistinct AS nd
 FROM pg_statistic_ext
 WHERE stxname = 'stts2';
-[RECORD 1]--
k | 1 2 5
nd | {"1, 2": 33178, "1, 5": 33178, "2, 5": 27435, "1, 2, 5": 33178}
(1 row)

This indicates that there are three combinations of columns that have 33178 distinct values: ZIP code and
state; ZIP code and city; and ZIP code, city and state (the fact that they are all equal is expected given
that ZIP code alone is unique in this table). On the other hand, the combination of city and state has only
27435 distinct values.

It's advisable to create ndistinct statistics objects only on combinations of columns that are actually
used for grouping, and for which misestimation of the number of groups is resulting in bad plans.
Otherwise, the ANALYZE cycles are just wasted.

14.3. Controlling the Planner with Explicit JOIN
Clauses

It is possible to control the query planner to some extent by using the explicit JOIN syntax. To see why
this matters, we first need some background.

In a simple join query, such as:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan that joins
A to B, using the WHERE condition a.id = b.id, and then joins C to this joined table, using the other
WHERE condition. Or it could join B to C and then join A to that result. Or it could join A to C and then
join them with B — but that would be inefficient, since the full Cartesian product of A and C would have
to be formed, there being no applicable condition in the WHERE clause to allow optimization of the join.
(All joins in the PostgreSQL executor happen between two input tables, so it's necessary to build up the
result in one or another of these fashions.) The important point is that these different join possibilities give
semantically equivalent results but might have hugely different execution costs. Therefore, the planner
will explore all of them to try to find the most efficient query plan.

When a query only involves two or three tables, there aren't many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so
input tables it's no longer practical to do an exhaustive search of all the possibilities, and even for six
or seven tables planning might take an annoyingly long time. When there are too many input tables, the
PostgreSQL planner will switch from exhaustive search to a genetic probabilistic search through a limited
number of possibilities. (The switch-over threshold is set by the geqo_threshold run-time parameter.) The
genetic search takes less time, but it won't necessarily find the best possible plan.

When the query involves outer joins, the planner has less freedom than it does for plain (inner) joins. For
example, consider:

479

Performance Tips

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id =
 b.id);

Although this query's restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B and
C. Therefore the planner has no choice of join order here: it must join B to C and then join A to that result.
Accordingly, this query takes less time to plan than the previous query. In other cases, the planner might
be able to determine that more than one join order is safe. For example, given:

SELECT * FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c ON (a.cid =
 c.id);

it is valid to join A to either B or C first. Currently, only FULL JOIN completely constrains the join order.
Most practical cases involving LEFT JOIN or RIGHT JOIN can be rearranged to some extent.

Explicit inner join syntax (INNER JOIN, CROSS JOIN, or unadorned JOIN) is semantically the same
as listing the input relations in FROM, so it does not constrain the join order.

Even though most kinds of JOIN don't completely constrain the join order, it is possible to instruct the
PostgreSQL query planner to treat all JOIN clauses as constraining the join order anyway. For example,
these three queries are logically equivalent:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref
 = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor the JOIN order, the second and third take less time to plan than the first.
This effect is not worth worrying about for only three tables, but it can be a lifesaver with many tables.

To force the planner to follow the join order laid out by explicit JOINs, set the join_collapse_limit run-
time parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it's OK to use
JOIN operators within items of a plain FROM list. For example, consider:

SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other
tables, but doesn't constrain its choices otherwise. In this example, the number of possible join orders is
reduced by a factor of 5.

Constraining the planner's search in this way is a useful technique both for reducing planning time and
for directing the planner to a good query plan. If the planner chooses a bad join order by default, you can
force it to choose a better order via JOIN syntax — assuming that you know of a better order, that is.
Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query. For
example, consider:

SELECT *
FROM x, y,
 (SELECT * FROM a, b, c WHERE something) AS ss

480

Performance Tips

WHERE somethingelse;

This situation might arise from use of a view that contains a join; the view's SELECT rule will be inserted
in place of the view reference, yielding a query much like the above. Normally, the planner will try to
collapse the subquery into the parent, yielding:

SELECT * FROM x, y, a, b, c WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, the outer WHERE
conditions might be such that joining X to A first eliminates many rows of A, thus avoiding the need to form
the full logical output of the subquery.) But at the same time, we have increased the planning time; here, we
have a five-way join problem replacing two separate three-way join problems. Because of the exponential
growth of the number of possibilities, this makes a big difference. The planner tries to avoid getting stuck
in huge join search problems by not collapsing a subquery if more than from_collapse_limit FROM
items would result in the parent query. You can trade off planning time against quality of plan by adjusting
this run-time parameter up or down.

from_collapse_limit and join_collapse_limit are similarly named because they do almost the same
thing: one controls when the planner will “flatten out” subqueries, and the other controls when
it will flatten out explicit joins. Typically you would either set join_collapse_limit
equal to from_collapse_limit (so that explicit joins and subqueries act similarly) or set
join_collapse_limit to 1 (if you want to control join order with explicit joins). But you might set
them differently if you are trying to fine-tune the trade-off between planning time and run time.

14.4. Populating a Database
One might need to insert a large amount of data when first populating a database. This section contains
some suggestions on how to make this process as efficient as possible.

14.4.1. Disable Autocommit
When using multiple INSERTs, turn off autocommit and just do one commit at the end. (In plain SQL,
this means issuing BEGIN at the start and COMMIT at the end. Some client libraries might do this behind
your back, in which case you need to make sure the library does it when you want it done.) If you allow
each insertion to be committed separately, PostgreSQL is doing a lot of work for each row that is added.
An additional benefit of doing all insertions in one transaction is that if the insertion of one row were to
fail then the insertion of all rows inserted up to that point would be rolled back, so you won't be stuck
with partially loaded data.

14.4.2. Use COPY
Use COPY to load all the rows in one command, instead of using a series of INSERT commands. The
COPY command is optimized for loading large numbers of rows; it is less flexible than INSERT, but
incurs significantly less overhead for large data loads. Since COPY is a single command, there is no need
to disable autocommit if you use this method to populate a table.

If you cannot use COPY, it might help to use PREPARE to create a prepared INSERT statement, and
then use EXECUTE as many times as required. This avoids some of the overhead of repeatedly parsing
and planning INSERT. Different interfaces provide this facility in different ways; look for “prepared
statements” in the interface documentation.

Note that loading a large number of rows using COPY is almost always faster than using INSERT, even
if PREPARE is used and multiple insertions are batched into a single transaction.

481

Performance Tips

COPY is fastest when used within the same transaction as an earlier CREATE TABLE or TRUNCATE
command. In such cases no WAL needs to be written, because in case of an error, the files containing the
newly loaded data will be removed anyway. However, this consideration only applies when wal_level is
minimal for non-partitioned tables as all commands must write WAL otherwise.

14.4.3. Remove Indexes
If you are loading a freshly created table, the fastest method is to create the table, bulk load the table's
data using COPY, then create any indexes needed for the table. Creating an index on pre-existing data is
quicker than updating it incrementally as each row is loaded.

If you are adding large amounts of data to an existing table, it might be a win to drop the indexes, load
the table, and then recreate the indexes. Of course, the database performance for other users might suffer
during the time the indexes are missing. One should also think twice before dropping a unique index, since
the error checking afforded by the unique constraint will be lost while the index is missing.

14.4.4. Remove Foreign Key Constraints
Just as with indexes, a foreign key constraint can be checked “in bulk” more efficiently than row-by-row.
So it might be useful to drop foreign key constraints, load data, and re-create the constraints. Again, there
is a trade-off between data load speed and loss of error checking while the constraint is missing.

What's more, when you load data into a table with existing foreign key constraints, each new row requires
an entry in the server's list of pending trigger events (since it is the firing of a trigger that checks the row's
foreign key constraint). Loading many millions of rows can cause the trigger event queue to overflow
available memory, leading to intolerable swapping or even outright failure of the command. Therefore it
may be necessary, not just desirable, to drop and re-apply foreign keys when loading large amounts of
data. If temporarily removing the constraint isn't acceptable, the only other recourse may be to split up the
load operation into smaller transactions.

14.4.5. Increase maintenance_work_mem
Temporarily increasing the maintenance_work_mem configuration variable when loading large amounts
of data can lead to improved performance. This will help to speed up CREATE INDEX commands and
ALTER TABLE ADD FOREIGN KEY commands. It won't do much for COPY itself, so this advice is
only useful when you are using one or both of the above techniques.

14.4.6. Increase max_wal_size
Temporarily increasing the max_wal_size configuration variable can also make large data loads faster.
This is because loading a large amount of data into PostgreSQL will cause checkpoints to occur more often
than the normal checkpoint frequency (specified by the checkpoint_timeout configuration variable).
Whenever a checkpoint occurs, all dirty pages must be flushed to disk. By increasing max_wal_size
temporarily during bulk data loads, the number of checkpoints that are required can be reduced.

14.4.7. Disable WAL Archival and Streaming Replication
When loading large amounts of data into an installation that uses WAL archiving or streaming replication,
it might be faster to take a new base backup after the load has completed than to process a large amount
of incremental WAL data. To prevent incremental WAL logging while loading, disable archiving and
streaming replication, by setting wal_level to minimal, archive_mode to off, and max_wal_senders to
zero. But note that changing these settings requires a server restart.

482

Performance Tips

Aside from avoiding the time for the archiver or WAL sender to process the WAL data, doing this will
actually make certain commands faster, because they are designed not to write WAL at all if wal_level
is minimal. (They can guarantee crash safety more cheaply by doing an fsync at the end than by writing
WAL.) This applies to the following commands:

• CREATE TABLE AS SELECT

• CREATE INDEX (and variants such as ALTER TABLE ADD PRIMARY KEY)

• ALTER TABLE SET TABLESPACE

• CLUSTER

• COPY FROM, when the target table has been created or truncated earlier in the same transaction

14.4.8. Run ANALYZE Afterwards
Whenever you have significantly altered the distribution of data within a table, running ANALYZE is
strongly recommended. This includes bulk loading large amounts of data into the table. Running ANALYZE
(or VACUUM ANALYZE) ensures that the planner has up-to-date statistics about the table. With no statistics
or obsolete statistics, the planner might make poor decisions during query planning, leading to poor
performance on any tables with inaccurate or nonexistent statistics. Note that if the autovacuum daemon is
enabled, it might run ANALYZE automatically; see Section 24.1.3 and Section 24.1.6 for more information.

14.4.9. Some Notes About pg_dump
Dump scripts generated by pg_dump automatically apply several, but not all, of the above guidelines. To
reload a pg_dump dump as quickly as possible, you need to do a few extra things manually. (Note that
these points apply while restoring a dump, not while creating it. The same points apply whether loading
a text dump with psql or using pg_restore to load from a pg_dump archive file.)

By default, pg_dump uses COPY, and when it is generating a complete schema-and-data dump, it is careful
to load data before creating indexes and foreign keys. So in this case several guidelines are handled
automatically. What is left for you to do is to:

• Set appropriate (i.e., larger than normal) values for maintenance_work_mem and
max_wal_size.

• If using WAL archiving or streaming replication, consider disabling them during the restore. To do that,
set archive_mode to off, wal_level to minimal, and max_wal_senders to zero before
loading the dump. Afterwards, set them back to the right values and take a fresh base backup.

• Experiment with the parallel dump and restore modes of both pg_dump and pg_restore and find the
optimal number of concurrent jobs to use. Dumping and restoring in parallel by means of the -j option
should give you a significantly higher performance over the serial mode.

• Consider whether the whole dump should be restored as a single transaction. To do that, pass the -1 or
--single-transaction command-line option to psql or pg_restore. When using this mode, even
the smallest of errors will rollback the entire restore, possibly discarding many hours of processing.
Depending on how interrelated the data is, that might seem preferable to manual cleanup, or not. COPY
commands will run fastest if you use a single transaction and have WAL archiving turned off.

• If multiple CPUs are available in the database server, consider using pg_restore's --jobs option. This
allows concurrent data loading and index creation.

• Run ANALYZE afterwards.

483

Performance Tips

A data-only dump will still use COPY, but it does not drop or recreate indexes, and it does not normally
touch foreign keys. 1 So when loading a data-only dump, it is up to you to drop and recreate indexes
and foreign keys if you wish to use those techniques. It's still useful to increase max_wal_size while
loading the data, but don't bother increasing maintenance_work_mem; rather, you'd do that while
manually recreating indexes and foreign keys afterwards. And don't forget to ANALYZE when you're done;
see Section 24.1.3 and Section 24.1.6 for more information.

14.5. Non-Durable Settings
Durability is a database feature that guarantees the recording of committed transactions even if the
server crashes or loses power. However, durability adds significant database overhead, so if your site
does not require such a guarantee, PostgreSQL can be configured to run much faster. The following
are configuration changes you can make to improve performance in such cases. Except as noted below,
durability is still guaranteed in case of a crash of the database software; only abrupt operating system
stoppage creates a risk of data loss or corruption when these settings are used.

• Place the database cluster's data directory in a memory-backed file system (i.e. RAM disk). This
eliminates all database disk I/O, but limits data storage to the amount of available memory (and perhaps
swap).

• Turn off fsync; there is no need to flush data to disk.

• Turn off synchronous_commit; there might be no need to force WAL writes to disk on every commit.
This setting does risk transaction loss (though not data corruption) in case of a crash of the database.

• Turn off full_page_writes; there is no need to guard against partial page writes.

• Increase max_wal_size and checkpoint_timeout; this reduces the frequency of checkpoints, but
increases the storage requirements of /pg_wal.

• Create unlogged tables to avoid WAL writes, though it makes the tables non-crash-safe.

1 You can get the effect of disabling foreign keys by using the --disable-triggers option — but realize that that eliminates, rather than just
postpones, foreign key validation, and so it is possible to insert bad data if you use it.

484

Chapter 15. Parallel Query
PostgreSQL can devise query plans which can leverage multiple CPUs in order to answer queries faster.
This feature is known as parallel query. Many queries cannot benefit from parallel query, either due to
limitations of the current implementation or because there is no imaginable query plan which is any faster
than the serial query plan. However, for queries that can benefit, the speedup from parallel query is often
very significant. Many queries can run more than twice as fast when using parallel query, and some queries
can run four times faster or even more. Queries that touch a large amount of data but return only a few rows
to the user will typically benefit most. This chapter explains some details of how parallel query works and
in which situations it can be used so that users who wish to make use of it can understand what to expect.

15.1. How Parallel Query Works
When the optimizer determines that parallel query is the fastest execution strategy for a particular query,
it will create a query plan which includes a Gather or Gather Merge node. Here is a simple example:

EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
 QUERY PLAN

 Gather (cost=1000.00..217018.43 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..216018.33
 rows=1 width=97)
 Filter: (filler ~~ '%x%'::text)
(4 rows)

In all cases, the Gather or Gather Merge node will have exactly one child plan, which is the portion
of the plan that will be executed in parallel. If the Gather or Gather Merge node is at the very top
of the plan tree, then the entire query will execute in parallel. If it is somewhere else in the plan tree, then
only the portion of the plan below it will run in parallel. In the example above, the query accesses only
one table, so there is only one plan node other than the Gather node itself; since that plan node is a child
of the Gather node, it will run in parallel.

Using EXPLAIN, you can see the number of workers chosen by the planner. When the Gather
node is reached during query execution, the process which is implementing the user's session will
request a number of background worker processes equal to the number of workers chosen by the
planner. The number of background workers that the planner will consider using is limited to at most
max_parallel_workers_per_gather. The total number of background workers that can exist at any one
time is limited by both max_worker_processes and max_parallel_workers. Therefore, it is possible
for a parallel query to run with fewer workers than planned, or even with no workers at all. The
optimal plan may depend on the number of workers that are available, so this can result in poor
query performance. If this occurrence is frequent, consider increasing max_worker_processes and
max_parallel_workers so that more workers can be run simultaneously or alternatively reducing
max_parallel_workers_per_gather so that the planner requests fewer workers.

Every background worker process which is successfully started for a given parallel query will execute the
parallel portion of the plan. The leader will also execute that portion of the plan, but it has an additional
responsibility: it must also read all of the tuples generated by the workers. When the parallel portion of the
plan generates only a small number of tuples, the leader will often behave very much like an additional
worker, speeding up query execution. Conversely, when the parallel portion of the plan generates a large
number of tuples, the leader may be almost entirely occupied with reading the tuples generated by the

485

Parallel Query

workers and performing any further processing steps which are required by plan nodes above the level of
the Gather node or Gather Merge node. In such cases, the leader will do very little of the work of
executing the parallel portion of the plan.

When the node at the top of the parallel portion of the plan is Gather Merge rather than Gather, it
indicates that each process executing the parallel portion of the plan is producing tuples in sorted order,
and that the leader is performing an order-preserving merge. In contrast, Gather reads tuples from the
workers in whatever order is convenient, destroying any sort order that may have existed.

15.2. When Can Parallel Query Be Used?
There are several settings which can cause the query planner not to generate a parallel query plan under
any circumstances. In order for any parallel query plans whatsoever to be generated, the following settings
must be configured as indicated.

• max_parallel_workers_per_gather must be set to a value which is greater than zero. This is a special
case of the more general principle that no more workers should be used than the number configured via
max_parallel_workers_per_gather.

• dynamic_shared_memory_type must be set to a value other than none. Parallel query requires dynamic
shared memory in order to pass data between cooperating processes.

In addition, the system must not be running in single-user mode. Since the entire database system is running
in single process in this situation, no background workers will be available.

Even when it is in general possible for parallel query plans to be generated, the planner will not generate
them for a given query if any of the following are true:

• The query writes any data or locks any database rows. If a query contains a data-modifying operation
either at the top level or within a CTE, no parallel plans for that query will be generated. As an exception,
the commands CREATE TABLE ... AS, SELECT INTO, and CREATE MATERIALIZED VIEW
which create a new table and populate it can use a parallel plan.

• The query might be suspended during execution. In any situation in which the system thinks that partial
or incremental execution might occur, no parallel plan is generated. For example, a cursor created using
DECLARE CURSOR will never use a parallel plan. Similarly, a PL/pgSQL loop of the form FOR x
IN query LOOP .. END LOOP will never use a parallel plan, because the parallel query system
is unable to verify that the code in the loop is safe to execute while parallel query is active.

• The query uses any function marked PARALLEL UNSAFE. Most system-defined functions are
PARALLEL SAFE, but user-defined functions are marked PARALLEL UNSAFE by default. See the
discussion of Section 15.4.

• The query is running inside of another query that is already parallel. For example, if a function called by
a parallel query issues an SQL query itself, that query will never use a parallel plan. This is a limitation
of the current implementation, but it may not be desirable to remove this limitation, since it could result
in a single query using a very large number of processes.

• The transaction isolation level is serializable. This is a limitation of the current implementation.

Even when parallel query plan is generated for a particular query, there are several circumstances under
which it will be impossible to execute that plan in parallel at execution time. If this occurs, the leader will
execute the portion of the plan below the Gather node entirely by itself, almost as if the Gather node
were not present. This will happen if any of the following conditions are met:

486

Parallel Query

• No background workers can be obtained because of the limitation that the total number of background
workers cannot exceed max_worker_processes.

• No background workers can be obtained because of the limitation that the total number of background
workers launched for purposes of parallel query cannot exceed max_parallel_workers.

• The client sends an Execute message with a non-zero fetch count. See the discussion of the extended
query protocol. Since libpq currently provides no way to send such a message, this can only occur when
using a client that does not rely on libpq. If this is a frequent occurrence, it may be a good idea to set
max_parallel_workers_per_gather to zero in sessions where it is likely, so as to avoid generating query
plans that may be suboptimal when run serially.

• The transaction isolation level is serializable. This situation does not normally arise, because parallel
query plans are not generated when the transaction isolation level is serializable. However, it can happen
if the transaction isolation level is changed to serializable after the plan is generated and before it is
executed.

15.3. Parallel Plans
Because each worker executes the parallel portion of the plan to completion, it is not possible to simply
take an ordinary query plan and run it using multiple workers. Each worker would produce a full copy
of the output result set, so the query would not run any faster than normal but would produce incorrect
results. Instead, the parallel portion of the plan must be what is known internally to the query optimizer
as a partial plan; that is, it must be constructed so that each process which executes the plan will generate
only a subset of the output rows in such a way that each required output row is guaranteed to be generated
by exactly one of the cooperating processes. Generally, this means that the scan on the driving table of
the query must be a parallel-aware scan.

15.3.1. Parallel Scans
The following types of parallel-aware table scans are currently supported.

• In a parallel sequential scan, the table's blocks will be divided among the cooperating processes. Blocks
are handed out one at a time, so that access to the table remains sequential.

• In a parallel bitmap heap scan, one process is chosen as the leader. That process performs a scan of one
or more indexes and builds a bitmap indicating which table blocks need to be visited. These blocks are
then divided among the cooperating processes as in a parallel sequential scan. In other words, the heap
scan is performed in parallel, but the underlying index scan is not.

• In a parallel index scan or parallel index-only scan, the cooperating processes take turns reading data
from the index. Currently, parallel index scans are supported only for btree indexes. Each process will
claim a single index block and will scan and return all tuples referenced by that block; other process can
at the same time be returning tuples from a different index block. The results of a parallel btree scan are
returned in sorted order within each worker process.

Other scan types, such as scans of non-btree indexes, may support parallel scans in the future.

15.3.2. Parallel Joins
Just as in a non-parallel plan, the driving table may be joined to one or more other tables using a nested
loop, hash join, or merge join. The inner side of the join may be any kind of non-parallel plan that is
otherwise supported by the planner provided that it is safe to run within a parallel worker. Depending on
the join type, the inner side may also be a parallel plan.

487

Parallel Query

• In a nested loop join, the inner side is always non-parallel. Although it is executed in full, this is efficient
if the inner side is an index scan, because the outer tuples and thus the loops that look up values in the
index are divided over the cooperating processes.

• In a merge join, the inner side is always a non-parallel plan and therefore executed in full. This may be
inefficient, especially if a sort must be performed, because the work and resulting data are duplicated
in every cooperating process.

• In a hash join (without the "parallel" prefix), the inner side is executed in full by every cooperating
process to build identical copies of the hash table. This may be inefficient if the hash table is large or
the plan is expensive. In a parallel hash join, the inner side is a parallel hash that divides the work of
building a shared hash table over the cooperating processes.

15.3.3. Parallel Aggregation
PostgreSQL supports parallel aggregation by aggregating in two stages. First, each process participating
in the parallel portion of the query performs an aggregation step, producing a partial result for each group
of which that process is aware. This is reflected in the plan as a Partial Aggregate node. Second,
the partial results are transferred to the leader via Gather or Gather Merge. Finally, the leader re-
aggregates the results across all workers in order to produce the final result. This is reflected in the plan
as a Finalize Aggregate node.

Because the Finalize Aggregate node runs on the leader process, queries which produce a relatively
large number of groups in comparison to the number of input rows will appear less favorable to the
query planner. For example, in the worst-case scenario the number of groups seen by the Finalize
Aggregate node could be as many as the number of input rows which were seen by all worker processes
in the Partial Aggregate stage. For such cases, there is clearly going to be no performance benefit
to using parallel aggregation. The query planner takes this into account during the planning process and
is unlikely to choose parallel aggregate in this scenario.

Parallel aggregation is not supported in all situations. Each aggregate must be safe for parallelism
and must have a combine function. If the aggregate has a transition state of type internal, it must
have serialization and deserialization functions. See CREATE AGGREGATE for more details. Parallel
aggregation is not supported if any aggregate function call contains DISTINCT or ORDER BY clause and
is also not supported for ordered set aggregates or when the query involves GROUPING SETS. It can only
be used when all joins involved in the query are also part of the parallel portion of the plan.

15.3.4. Parallel Append
Whenever PostgreSQL needs to combine rows from multiple sources into a single result set, it uses an
Append or MergeAppend plan node. This commonly happens when implementing UNION ALL or
when scanning a partitioned table. Such nodes can be used in parallel plans just as they can in any other
plan. However, in a parallel plan, the planner may instead use a Parallel Append node.

When an Append node is used in a parallel plan, each process will execute the child plans in the order
in which they appear, so that all participating processes cooperate to execute the first child plan until it
is complete and then move to the second plan at around the same time. When a Parallel Append is
used instead, the executor will instead spread out the participating processes as evenly as possible across
its child plans, so that multiple child plans are executed simultaneously. This avoids contention, and also
avoids paying the startup cost of a child plan in those processes that never execute it.

Also, unlike a regular Append node, which can only have partial children when used within a parallel
plan, a Parallel Append node can have both partial and non-partial child plans. Non-partial children
will be scanned by only a single process, since scanning them more than once would produce duplicate

488

Parallel Query

results. Plans that involve appending multiple results sets can therefore achieve coarse-grained parallelism
even when efficient partial plans are not available. For example, consider a query against a partitioned
table which can be only be implemented efficiently by using an index that does not support parallel scans.
The planner might choose a Parallel Append of regular Index Scan plans; each individual index
scan would have to be executed to completion by a single process, but different scans could be performed
at the same time by different processes.

enable_parallel_append can be used to disable this feature.

15.3.5. Parallel Plan Tips
If a query that is expected to do so does not produce a parallel plan, you can try reducing parallel_setup_cost
or parallel_tuple_cost. Of course, this plan may turn out to be slower than the serial plan which the planner
preferred, but this will not always be the case. If you don't get a parallel plan even with very small values
of these settings (e.g. after setting them both to zero), there may be some reason why the query planner
is unable to generate a parallel plan for your query. See Section 15.2 and Section 15.4 for information on
why this may be the case.

When executing a parallel plan, you can use EXPLAIN (ANALYZE, VERBOSE) to display per-
worker statistics for each plan node. This may be useful in determining whether the work is being evenly
distributed between all plan nodes and more generally in understanding the performance characteristics
of the plan.

15.4. Parallel Safety
The planner classifies operations involved in a query as either parallel safe, parallel restricted, or parallel
unsafe. A parallel safe operation is one which does not conflict with the use of parallel query. A parallel
restricted operation is one which cannot be performed in a parallel worker, but which can be performed
in the leader while parallel query is in use. Therefore, parallel restricted operations can never occur below
a Gather or Gather Merge node, but can occur elsewhere in a plan which contains such a node. A
parallel unsafe operation is one which cannot be performed while parallel query is in use, not even in the
leader. When a query contains anything which is parallel unsafe, parallel query is completely disabled
for that query.

The following operations are always parallel restricted.

• Scans of common table expressions (CTEs).

• Scans of temporary tables.

• Scans of foreign tables, unless the foreign data wrapper has an IsForeignScanParallelSafe
API which indicates otherwise.

• Plan nodes to which an InitPlan is attached.

• Plan nodes which reference a correlated SubPlan.

15.4.1. Parallel Labeling for Functions and Aggregates
The planner cannot automatically determine whether a user-defined function or aggregate is parallel
safe, parallel restricted, or parallel unsafe, because this would require predicting every operation which
the function could possibly perform. In general, this is equivalent to the Halting Problem and therefore
impossible. Even for simple functions where it could conceivably be done, we do not try, since this
would be expensive and error-prone. Instead, all user-defined functions are assumed to be parallel unsafe

489

Parallel Query

unless otherwise marked. When using CREATE FUNCTION or ALTER FUNCTION, markings can
be set by specifying PARALLEL SAFE, PARALLEL RESTRICTED, or PARALLEL UNSAFE as
appropriate. When using CREATE AGGREGATE, the PARALLEL option can be specified with SAFE,
RESTRICTED, or UNSAFE as the corresponding value.

Functions and aggregates must be marked PARALLEL UNSAFE if they write to the database, access
sequences, change the transaction state even temporarily (e.g. a PL/pgSQL function which establishes
an EXCEPTION block to catch errors), or make persistent changes to settings. Similarly, functions must
be marked PARALLEL RESTRICTED if they access temporary tables, client connection state, cursors,
prepared statements, or miscellaneous backend-local state which the system cannot synchronize across
workers. For example, setseed and random are parallel restricted for this last reason.

In general, if a function is labeled as being safe when it is restricted or unsafe, or if it is labeled as being
restricted when it is in fact unsafe, it may throw errors or produce wrong answers when used in a parallel
query. C-language functions could in theory exhibit totally undefined behavior if mislabeled, since there
is no way for the system to protect itself against arbitrary C code, but in most likely cases the result will
be no worse than for any other function. If in doubt, it is probably best to label functions as UNSAFE.

If a function executed within a parallel worker acquires locks which are not held by the leader, for example
by querying a table not referenced in the query, those locks will be released at worker exit, not end of
transaction. If you write a function which does this, and this behavior difference is important to you, mark
such functions as PARALLEL RESTRICTED to ensure that they execute only in the leader.

Note that the query planner does not consider deferring the evaluation of parallel-restricted functions or
aggregates involved in the query in order to obtain a superior plan. So, for example, if a WHERE clause
applied to a particular table is parallel restricted, the query planner will not consider performing a scan of
that table in the parallel portion of a plan. In some cases, it would be possible (and perhaps even efficient)
to include the scan of that table in the parallel portion of the query and defer the evaluation of the WHERE
clause so that it happens above the Gather node. However, the planner does not do this.

490

Part III. Server Administration
This part covers topics that are of interest to a PostgreSQL database administrator. This includes installation of the
software, set up and configuration of the server, management of users and databases, and maintenance tasks. Anyone
who runs a PostgreSQL server, even for personal use, but especially in production, should be familiar with the topics
covered in this part.

The information in this part is arranged approximately in the order in which a new user should read it. But the chapters
are self-contained and can be read individually as desired. The information in this part is presented in a narrative
fashion in topical units. Readers looking for a complete description of a particular command should see Part VI.

The first few chapters are written so they can be understood without prerequisite knowledge, so new users who need to
set up their own server can begin their exploration with this part. The rest of this part is about tuning and management;
that material assumes that the reader is familiar with the general use of the PostgreSQL database system. Readers are
encouraged to look at Part I and Part II for additional information.

Table of Contents
16. Installation from Source Code .. 498

16.1. Short Version .. 498
16.2. Requirements .. 498
16.3. Getting The Source .. 500
16.4. Installation Procedure ... 500
16.5. Post-Installation Setup .. 513

16.5.1. Shared Libraries .. 513
16.5.2. Environment Variables ... 514

16.6. Supported Platforms ... 514
16.7. Platform-specific Notes ... 515

16.7.1. AIX .. 515
16.7.2. Cygwin .. 518
16.7.3. HP-UX .. 519
16.7.4. macOS .. 520
16.7.5. MinGW/Native Windows ... 520
16.7.6. Solaris ... 521

17. Installation from Source Code on Windows .. 523
17.1. Building with Visual C++ or the Microsoft Windows SDK 523

17.1.1. Requirements .. 524
17.1.2. Special Considerations for 64-bit Windows .. 526
17.1.3. Building .. 526
17.1.4. Cleaning and Installing ... 526
17.1.5. Running the Regression Tests .. 527
17.1.6. Building the Documentation .. 528

18. Server Setup and Operation ... 529
18.1. The PostgreSQL User Account .. 529
18.2. Creating a Database Cluster ... 529

18.2.1. Use of Secondary File Systems .. 530
18.2.2. Use of Network File Systems .. 531

18.3. Starting the Database Server .. 531
18.3.1. Server Start-up Failures .. 533
18.3.2. Client Connection Problems .. 534

18.4. Managing Kernel Resources .. 534
18.4.1. Shared Memory and Semaphores ... 535
18.4.2. systemd RemoveIPC .. 540
18.4.3. Resource Limits .. 541
18.4.4. Linux Memory Overcommit .. 542
18.4.5. Linux Huge Pages ... 543

18.5. Shutting Down the Server ... 544
18.6. Upgrading a PostgreSQL Cluster .. 545

18.6.1. Upgrading Data via pg_dumpall ... 546
18.6.2. Upgrading Data via pg_upgrade ... 548
18.6.3. Upgrading Data via Replication ... 548

18.7. Preventing Server Spoofing ... 548
18.8. Encryption Options .. 548
18.9. Secure TCP/IP Connections with SSL ... 549

18.9.1. Basic Setup .. 550
18.9.2. OpenSSL Configuration ... 550
18.9.3. Using Client Certificates ... 551
18.9.4. SSL Server File Usage ... 551
18.9.5. Creating Certificates .. 552

492

Server Administration

18.10. Secure TCP/IP Connections with SSH Tunnels .. 553
18.11. Registering Event Log on Windows .. 554

19. Server Configuration ... 556
19.1. Setting Parameters ... 556

19.1.1. Parameter Names and Values .. 556
19.1.2. Parameter Interaction via the Configuration File ... 556
19.1.3. Parameter Interaction via SQL ... 557
19.1.4. Parameter Interaction via the Shell ... 558
19.1.5. Managing Configuration File Contents .. 558

19.2. File Locations ... 560
19.3. Connections and Authentication ... 561

19.3.1. Connection Settings ... 561
19.3.2. Authentication .. 563
19.3.3. SSL .. 564

19.4. Resource Consumption ... 566
19.4.1. Memory ... 566
19.4.2. Disk .. 569
19.4.3. Kernel Resource Usage .. 569
19.4.4. Cost-based Vacuum Delay .. 569
19.4.5. Background Writer .. 570
19.4.6. Asynchronous Behavior .. 571

19.5. Write Ahead Log ... 573
19.5.1. Settings ... 573
19.5.2. Checkpoints .. 577
19.5.3. Archiving ... 578

19.6. Replication ... 579
19.6.1. Sending Servers .. 579
19.6.2. Master Server ... 580
19.6.3. Standby Servers .. 582
19.6.4. Subscribers ... 583

19.7. Query Planning ... 584
19.7.1. Planner Method Configuration ... 584
19.7.2. Planner Cost Constants ... 586
19.7.3. Genetic Query Optimizer .. 588
19.7.4. Other Planner Options .. 589

19.8. Error Reporting and Logging ... 591
19.8.1. Where To Log .. 591
19.8.2. When To Log ... 594
19.8.3. What To Log .. 596
19.8.4. Using CSV-Format Log Output ... 600
19.8.5. Process Title ... 601

19.9. Run-time Statistics ... 601
19.9.1. Query and Index Statistics Collector ... 601
19.9.2. Statistics Monitoring .. 602

19.10. Automatic Vacuuming .. 603
19.11. Client Connection Defaults .. 605

19.11.1. Statement Behavior .. 605
19.11.2. Locale and Formatting .. 610
19.11.3. Shared Library Preloading ... 611
19.11.4. Other Defaults .. 613

19.12. Lock Management .. 614
19.13. Version and Platform Compatibility .. 615

19.13.1. Previous PostgreSQL Versions ... 615
19.13.2. Platform and Client Compatibility .. 616

493

Server Administration

19.14. Error Handling .. 617
19.15. Preset Options ... 617
19.16. Customized Options ... 619
19.17. Developer Options ... 619
19.18. Short Options .. 623

20. Client Authentication .. 624
20.1. The pg_hba.conf File .. 624
20.2. User Name Maps ... 631
20.3. Authentication Methods .. 632
20.4. Trust Authentication ... 633
20.5. Password Authentication ... 633
20.6. GSSAPI Authentication .. 634
20.7. SSPI Authentication ... 635
20.8. Ident Authentication ... 636
20.9. Peer Authentication .. 637
20.10. LDAP Authentication ... 637
20.11. RADIUS Authentication .. 640
20.12. Certificate Authentication .. 641
20.13. PAM Authentication ... 642
20.14. BSD Authentication .. 642
20.15. Authentication Problems .. 643

21. Database Roles .. 644
21.1. Database Roles .. 644
21.2. Role Attributes .. 645
21.3. Role Membership .. 646
21.4. Dropping Roles ... 648
21.5. Default Roles .. 649
21.6. Function Security ... 650

22. Managing Databases ... 651
22.1. Overview .. 651
22.2. Creating a Database ... 651
22.3. Template Databases ... 652
22.4. Database Configuration ... 653
22.5. Destroying a Database .. 654
22.6. Tablespaces .. 654

23. Localization .. 657
23.1. Locale Support .. 657

23.1.1. Overview ... 657
23.1.2. Behavior .. 658
23.1.3. Problems .. 659

23.2. Collation Support ... 659
23.2.1. Concepts .. 659
23.2.2. Managing Collations .. 661

23.3. Character Set Support ... 665
23.3.1. Supported Character Sets .. 666
23.3.2. Setting the Character Set .. 668
23.3.3. Automatic Character Set Conversion Between Server and Client 669
23.3.4. Further Reading .. 672

24. Routine Database Maintenance Tasks .. 673
24.1. Routine Vacuuming ... 673

24.1.1. Vacuuming Basics ... 673
24.1.2. Recovering Disk Space .. 674
24.1.3. Updating Planner Statistics ... 675
24.1.4. Updating The Visibility Map ... 676

494

Server Administration

24.1.5. Preventing Transaction ID Wraparound Failures ... 676
24.1.6. The Autovacuum Daemon .. 679

24.2. Routine Reindexing .. 681
24.3. Log File Maintenance ... 681

25. Backup and Restore .. 683
25.1. SQL Dump ... 683

25.1.1. Restoring the Dump ... 684
25.1.2. Using pg_dumpall ... 685
25.1.3. Handling Large Databases .. 685

25.2. File System Level Backup ... 686
25.3. Continuous Archiving and Point-in-Time Recovery (PITR) 687

25.3.1. Setting Up WAL Archiving .. 688
25.3.2. Making a Base Backup .. 690
25.3.3. Making a Base Backup Using the Low Level API 691
25.3.4. Recovering Using a Continuous Archive Backup .. 694
25.3.5. Timelines ... 696
25.3.6. Tips and Examples .. 697
25.3.7. Caveats .. 698

26. High Availability, Load Balancing, and Replication ... 700
26.1. Comparison of Different Solutions .. 700
26.2. Log-Shipping Standby Servers ... 703

26.2.1. Planning .. 704
26.2.2. Standby Server Operation ... 704
26.2.3. Preparing the Master for Standby Servers .. 705
26.2.4. Setting Up a Standby Server ... 705
26.2.5. Streaming Replication .. 706
26.2.6. Replication Slots ... 708
26.2.7. Cascading Replication .. 708
26.2.8. Synchronous Replication .. 709
26.2.9. Continuous archiving in standby .. 712

26.3. Failover .. 713
26.4. Alternative Method for Log Shipping .. 713

26.4.1. Implementation ... 714
26.4.2. Record-based Log Shipping .. 715

26.5. Hot Standby .. 715
26.5.1. User's Overview .. 715
26.5.2. Handling Query Conflicts ... 717
26.5.3. Administrator's Overview ... 719
26.5.4. Hot Standby Parameter Reference .. 722
26.5.5. Caveats .. 722

27. Recovery Configuration ... 723
27.1. Archive Recovery Settings .. 723
27.2. Recovery Target Settings .. 724
27.3. Standby Server Settings .. 725

28. Monitoring Database Activity ... 727
28.1. Standard Unix Tools .. 727
28.2. The Statistics Collector ... 728

28.2.1. Statistics Collection Configuration .. 728
28.2.2. Viewing Statistics .. 729
28.2.3. Statistics Functions .. 759

28.3. Viewing Locks .. 761
28.4. Progress Reporting ... 761

28.4.1. VACUUM Progress Reporting ... 762
28.5. Dynamic Tracing ... 763

495

Server Administration

28.5.1. Compiling for Dynamic Tracing .. 764
28.5.2. Built-in Probes .. 764
28.5.3. Using Probes .. 771
28.5.4. Defining New Probes ... 772

29. Monitoring Disk Usage ... 774
29.1. Determining Disk Usage ... 774
29.2. Disk Full Failure ... 775

30. Reliability and the Write-Ahead Log ... 776
30.1. Reliability ... 776
30.2. Write-Ahead Logging (WAL) .. 778
30.3. Asynchronous Commit ... 778
30.4. WAL Configuration ... 780
30.5. WAL Internals .. 782

31. Logical Replication .. 784
31.1. Publication ... 784
31.2. Subscription .. 785

31.2.1. Replication Slot Management .. 786
31.3. Conflicts .. 786
31.4. Restrictions ... 786
31.5. Architecture .. 787

31.5.1. Initial Snapshot ... 787
31.6. Monitoring ... 788
31.7. Security .. 788
31.8. Configuration Settings .. 788
31.9. Quick Setup .. 789

32. Just-in-Time Compilation (JIT) ... 790
32.1. What is JIT compilation? .. 790

32.1.1. JIT Accelerated Operations ... 790
32.1.2. Inlining .. 790
32.1.3. Optimization ... 790

32.2. When to JIT? .. 790
32.3. Configuration .. 792
32.4. Extensibility .. 792

32.4.1. Inlining Support for Extensions ... 792
32.4.2. Pluggable JIT Providers ... 792

33. Regression Tests .. 794
33.1. Running the Tests .. 794

33.1.1. Running the Tests Against a Temporary Installation 794
33.1.2. Running the Tests Against an Existing Installation 795
33.1.3. Additional Test Suites .. 795
33.1.4. Locale and Encoding ... 796
33.1.5. Extra Tests ... 797
33.1.6. Testing Hot Standby .. 797

33.2. Test Evaluation ... 798
33.2.1. Error Message Differences .. 798
33.2.2. Locale Differences .. 798
33.2.3. Date and Time Differences ... 799
33.2.4. Floating-Point Differences .. 799
33.2.5. Row Ordering Differences .. 799
33.2.6. Insufficient Stack Depth ... 799
33.2.7. The “random” Test .. 800
33.2.8. Configuration Parameters .. 800

33.3. Variant Comparison Files .. 800
33.4. TAP Tests .. 801

496

Server Administration

33.5. Test Coverage Examination ... 801

497

Chapter 16. Installation from Source
Code

This chapter describes the installation of PostgreSQL using the source code distribution. (If you are
installing a pre-packaged distribution, such as an RPM or Debian package, ignore this chapter and read
the packager's instructions instead.)

16.1. Short Version

./configure
make
su
make install
adduser postgres
mkdir /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data >logfile 2>&1 &
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test

The long version is the rest of this chapter.

16.2. Requirements
In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms that had
received specific testing at the time of release are listed in Section 16.6 below. In the doc subdirectory
of the distribution there are several platform-specific FAQ documents you might wish to consult if you
are having trouble.

The following software packages are required for building PostgreSQL:

• GNU make version 3.80 or newer is required; other make programs or older GNU make versions will
not work. (GNU make is sometimes installed under the name gmake.) To test for GNU make enter:

make --version

• You need an ISO/ANSI C compiler (at least C89-compliant). Recent versions of GCC are recommended,
but PostgreSQL is known to build using a wide variety of compilers from different vendors.

• tar is required to unpack the source distribution, in addition to either gzip or bzip2.

• The GNU Readline library is used by default. It allows psql (the PostgreSQL command line SQL
interpreter) to remember each command you type, and allows you to use arrow keys to recall and edit
previous commands. This is very helpful and is strongly recommended. If you don't want to use it then
you must specify the --without-readline option to configure. As an alternative, you can
often use the BSD-licensed libedit library, originally developed on NetBSD. The libedit library
is GNU Readline-compatible and is used if libreadline is not found, or if --with-libedit-

498

Installation from Source Code

preferred is used as an option to configure. If you are using a package-based Linux distribution,
be aware that you need both the readline and readline-devel packages, if those are separate
in your distribution.

• The zlib compression library is used by default. If you don't want to use it then you must specify the --
without-zlib option to configure. Using this option disables support for compressed archives
in pg_dump and pg_restore.

The following packages are optional. They are not required in the default configuration, but they are needed
when certain build options are enabled, as explained below:

• To build the server programming language PL/Perl you need a full Perl installation, including the
libperl library and the header files. The minimum required version is Perl 5.8.3. Since PL/Perl will
be a shared library, the libperl library must be a shared library also on most platforms. This appears
to be the default in recent Perl versions, but it was not in earlier versions, and in any case it is the choice
of whomever installed Perl at your site. configure will fail if building PL/Perl is selected but it cannot
find a shared libperl. In that case, you will have to rebuild and install Perl manually to be able to
build PL/Perl. During the configuration process for Perl, request a shared library.

If you intend to make more than incidental use of PL/Perl, you should ensure that the Perl installation
was built with the usemultiplicity option enabled (perl -V will show whether this is the case).

• To build the PL/Python server programming language, you need a Python installation with the header
files and the distutils module. The minimum required version is Python 2.4. Python 3 is supported if it's
version 3.1 or later; but see Section 46.1 when using Python 3.

Since PL/Python will be a shared library, the libpython library must be a shared library also on
most platforms. This is not the case in a default Python installation built from source, but a shared
library is available in many operating system distributions. configure will fail if building PL/Python
is selected but it cannot find a shared libpython. That might mean that you either have to install
additional packages or rebuild (part of) your Python installation to provide this shared library. When
building from source, run Python's configure with the --enable-shared flag.

• To build the PL/Tcl procedural language, you of course need a Tcl installation. The minimum required
version is Tcl 8.4.

• To enable Native Language Support (NLS), that is, the ability to display a program's messages in a
language other than English, you need an implementation of the Gettext API. Some operating systems
have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download an add-on package
from http://www.gnu.org/software/gettext/. If you are using the Gettext implementation in the GNU C
library then you will additionally need the GNU Gettext package for some utility programs. For any of
the other implementations you will not need it.

• You need OpenSSL, if you want to support encrypted client connections. The minimum required version
is 0.9.8.

• You need Kerberos, OpenLDAP, and/or PAM, if you want to support authentication using those
services.

• To build the PostgreSQL documentation, there is a separate set of requirements; see Section J.2.

If you are building from a Git tree instead of using a released source package, or if you want to do server
development, you also need the following packages:

• Flex and Bison are needed to build from a Git checkout, or if you changed the actual scanner and
parser definition files. If you need them, be sure to get Flex 2.5.31 or later and Bison 1.875 or later.
Other lex and yacc programs cannot be used.

499

http://www.gnu.org/software/gettext/

Installation from Source Code

• Perl 5.8.3 or later is needed to build from a Git checkout, or if you changed the input files for any of
the build steps that use Perl scripts. If building on Windows you will need Perl in any case. Perl is also
required to run some test suites.

If you need to get a GNU package, you can find it at your local GNU mirror site (see https://www.gnu.org/
prep/ftp for a list) or at ftp://ftp.gnu.org/gnu/.

Also check that you have sufficient disk space. You will need about 100 MB for the source tree during
compilation and about 20 MB for the installation directory. An empty database cluster takes about 35 MB;
databases take about five times the amount of space that a flat text file with the same data would take. If
you are going to run the regression tests you will temporarily need up to an extra 150 MB. Use the df
command to check free disk space.

16.3. Getting The Source
The PostgreSQL 11.2 sources can be obtained from the download section of our website: https://
www.postgresql.org/download/. You should get a file named postgresql-11.2.tar.gz or
postgresql-11.2.tar.bz2. After you have obtained the file, unpack it:

gunzip postgresql-11.2.tar.gz
tar xf postgresql-11.2.tar

(Use bunzip2 instead of gunzip if you have the .bz2 file.) This will create a directory
postgresql-11.2 under the current directory with the PostgreSQL sources. Change into that directory
for the rest of the installation procedure.

You can also get the source directly from the version control repository, see Appendix I.

16.4. Installation Procedure
1. Configuration

The first step of the installation procedure is to configure the source tree for your system and choose
the options you would like. This is done by running the configure script. For a default installation
simply enter:

./configure

This script will run a number of tests to determine values for various system dependent variables and
detect any quirks of your operating system, and finally will create several files in the build tree to
record what it found. You can also run configure in a directory outside the source tree, if you
want to keep the build directory separate. This procedure is also called a VPATH build. Here's how:

mkdir build_dir
cd build_dir
/path/to/source/tree/configure [options go here]
make

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed under /usr/local/pgsql
by default.

500

https://www.gnu.org/prep/ftp
https://www.gnu.org/prep/ftp
ftp://ftp.gnu.org/gnu/
https://www.postgresql.org/download/
https://www.postgresql.org/download/

Installation from Source Code

You can customize the build and installation process by supplying one or more of the following
command line options to configure:

--prefix=PREFIX

Install all files under the directory PREFIX instead of /usr/local/pgsql. The actual files
will be installed into various subdirectories; no files will ever be installed directly into the
PREFIX directory.

If you have special needs, you can also customize the individual subdirectories with the following
options. However, if you leave these with their defaults, the installation will be relocatable,
meaning you can move the directory after installation. (The man and doc locations are not
affected by this.)

For relocatable installs, you might want to use configure's --disable-rpath option.
Also, you will need to tell the operating system how to find the shared libraries.

--exec-prefix=EXEC-PREFIX

You can install architecture-dependent files under a different prefix, EXEC-PREFIX, than what
PREFIX was set to. This can be useful to share architecture-independent files between hosts. If
you omit this, then EXEC-PREFIX is set equal to PREFIX and both architecture-dependent and
independent files will be installed under the same tree, which is probably what you want.

--bindir=DIRECTORY

Specifies the directory for executable programs. The default is EXEC-PREFIX/bin, which
normally means /usr/local/pgsql/bin.

--sysconfdir=DIRECTORY

Sets the directory for various configuration files, PREFIX/etc by default.

--libdir=DIRECTORY

Sets the location to install libraries and dynamically loadable modules. The default is EXEC-
PREFIX/lib.

--includedir=DIRECTORY

Sets the directory for installing C and C++ header files. The default is PREFIX/include.

--datarootdir=DIRECTORY

Sets the root directory for various types of read-only data files. This only sets the default for
some of the following options. The default is PREFIX/share.

--datadir=DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is
DATAROOTDIR. Note that this has nothing to do with where your database files will be placed.

--localedir=DIRECTORY

Sets the directory for installing locale data, in particular message translation catalog files. The
default is DATAROOTDIR/locale.

501

Installation from Source Code

--mandir=DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their
respective manx subdirectories. The default is DATAROOTDIR/man.

--docdir=DIRECTORY

Sets the root directory for installing documentation files, except “man” pages. This only sets the
default for the following options. The default value for this option is DATAROOTDIR/doc/
postgresql.

--htmldir=DIRECTORY

The HTML-formatted documentation for PostgreSQL will be installed under this directory. The
default is DATAROOTDIR.

Note

Care has been taken to make it possible to install PostgreSQL into shared installation locations
(such as /usr/local/include) without interfering with the namespace of the rest of
the system. First, the string “/postgresql” is automatically appended to datadir,
sysconfdir, and docdir, unless the fully expanded directory name already contains
the string “postgres” or “pgsql”. For example, if you choose /usr/local as prefix,
the documentation will be installed in /usr/local/doc/postgresql, but if the prefix
is /opt/postgres, then it will be in /opt/postgres/doc. The public C header
files of the client interfaces are installed into includedir and are namespace-clean. The
internal header files and the server header files are installed into private directories under
includedir. See the documentation of each interface for information about how to access
its header files. Finally, a private subdirectory will also be created, if appropriate, under
libdir for dynamically loadable modules.

--with-extra-version=STRING

Append STRING to the PostgreSQL version number. You can use this, for example, to mark
binaries built from unreleased Git snapshots or containing custom patches with an extra version
string such as a git describe identifier or a distribution package release number.

--with-includes=DIRECTORIES

DIRECTORIES is a colon-separated list of directories that will be added to the list the compiler
searches for header files. If you have optional packages (such as GNU Readline) installed in
a non-standard location, you have to use this option and probably also the corresponding --
with-libraries option.

Example: --with-includes=/opt/gnu/include:/usr/sup/include.

--with-libraries=DIRECTORIES

DIRECTORIES is a colon-separated list of directories to search for libraries. You will probably
have to use this option (and the corresponding --with-includes option) if you have
packages installed in non-standard locations.

Example: --with-libraries=/opt/gnu/lib:/usr/sup/lib.

502

Installation from Source Code

--enable-nls[=LANGUAGES]

Enables Native Language Support (NLS), that is, the ability to display a program's messages in
a language other than English. LANGUAGES is an optional space-separated list of codes of the
languages that you want supported, for example --enable-nls='de fr'. (The intersection
between your list and the set of actually provided translations will be computed automatically.)
If you do not specify a list, then all available translations are installed.

To use this option, you will need an implementation of the Gettext API; see above.

--with-pgport=NUMBER

Set NUMBER as the default port number for server and clients. The default is 5432. The port can
always be changed later on, but if you specify it here then both server and clients will have the
same default compiled in, which can be very convenient. Usually the only good reason to select
a non-default value is if you intend to run multiple PostgreSQL servers on the same machine.

--with-perl

Build the PL/Perl server-side language.

--with-python

Build the PL/Python server-side language.

--with-tcl

Build the PL/Tcl server-side language.

--with-tclconfig=DIRECTORY

Tcl installs the file tclConfig.sh, which contains configuration information needed to build
modules interfacing to Tcl. This file is normally found automatically at a well-known location,
but if you want to use a different version of Tcl you can specify the directory in which to look
for it.

--with-gssapi

Build with support for GSSAPI authentication. On many systems, the GSSAPI (usually a part
of the Kerberos installation) system is not installed in a location that is searched by default (e.g.,
/usr/include, /usr/lib), so you must use the options --with-includes and --
with-libraries in addition to this option. configure will check for the required header
files and libraries to make sure that your GSSAPI installation is sufficient before proceeding.

--with-krb-srvnam=NAME

The default name of the Kerberos service principal used by GSSAPI. postgres is the default.
There's usually no reason to change this unless you have a Windows environment, in which case
it must be set to upper case POSTGRES.

--with-llvm

Build with support for LLVM based JIT compilation (see Chapter 32). This requires the LLVM
library to be installed. The minimum required version of LLVM is currently 3.9.

503

Installation from Source Code

llvm-config will be used to find the required compilation options. llvm-config, and
then llvm-config-$major-$minor for all supported versions, will be searched on PATH.
If that would not yield the correct binary, use LLVM_CONFIG to specify a path to the correct
llvm-config. For example

./configure ... --with-llvm LLVM_CONFIG='/path/to/llvm/bin/
llvm-config'

LLVM support requires a compatible clang compiler (specified, if necessary, using the CLANG
environment variable), and a working C++ compiler (specified, if necessary, using the CXX
environment variable).

--with-icu

Build with support for the ICU library. This requires the ICU4C package to be installed. The
minimum required version of ICU4C is currently 4.2.

By default, pkg-config will be used to find the required compilation options. This is supported for
ICU4C version 4.6 and later. For older versions, or if pkg-config is not available, the variables
ICU_CFLAGS and ICU_LIBS can be specified to configure, like in this example:

./configure ... --with-icu ICU_CFLAGS='-I/some/where/include'
 ICU_LIBS='-L/some/where/lib -licui18n -licuuc -licudata'

(If ICU4C is in the default search path for the compiler, then you still need to specify a nonempty
string in order to avoid use of pkg-config, for example, ICU_CFLAGS=' '.)

--with-openssl

Build with support for SSL (encrypted) connections. This requires the OpenSSL package to be
installed. configure will check for the required header files and libraries to make sure that
your OpenSSL installation is sufficient before proceeding.

--with-pam

Build with PAM (Pluggable Authentication Modules) support.

--with-bsd-auth

Build with BSD Authentication support. (The BSD Authentication framework is currently only
available on OpenBSD.)

--with-ldap

Build with LDAP support for authentication and connection parameter lookup (see Section 34.17
and Section 20.10 for more information). On Unix, this requires the OpenLDAP package to be
installed. On Windows, the default WinLDAP library is used. configure will check for the
required header files and libraries to make sure that your OpenLDAP installation is sufficient
before proceeding.

--with-systemd

Build with support for systemd service notifications. This improves integration if the server
binary is started under systemd but has no impact otherwise; see Section 18.3 for more

504

Installation from Source Code

information. libsystemd and the associated header files need to be installed to be able to use this
option.

--without-readline

Prevents use of the Readline library (and libedit as well). This option disables command-line
editing and history in psql, so it is not recommended.

--with-libedit-preferred

Favors the use of the BSD-licensed libedit library rather than GPL-licensed Readline. This option
is significant only if you have both libraries installed; the default in that case is to use Readline.

--with-bonjour

Build with Bonjour support. This requires Bonjour support in your operating system.
Recommended on macOS.

--with-uuid=LIBRARY

Build the uuid-ossp module (which provides functions to generate UUIDs), using the specified
UUID library. LIBRARY must be one of:

• bsd to use the UUID functions found in FreeBSD, NetBSD, and some other BSD-derived
systems

• e2fs to use the UUID library created by the e2fsprogs project; this library is present in
most Linux systems and in macOS, and can be obtained for other platforms as well

• ossp to use the OSSP UUID library1

--with-ossp-uuid

Obsolete equivalent of --with-uuid=ossp.

--with-libxml

Build with libxml (enables SQL/XML support). Libxml version 2.6.23 or later is required for
this feature.

Libxml installs a program xml2-config that can be used to detect the required compiler and
linker options. PostgreSQL will use it automatically if found. To specify a libxml installation at
an unusual location, you can either set the environment variable XML2_CONFIG to point to the
xml2-config program belonging to the installation, or use the options --with-includes
and --with-libraries.

--with-libxslt

Use libxslt when building the xml2 module. xml2 relies on this library to perform XSL
transformations of XML.

--disable-float4-byval

Disable passing float4 values “by value”, causing them to be passed “by reference” instead. This
option costs performance, but may be needed for compatibility with old user-defined functions

1 http://www.ossp.org/pkg/lib/uuid/

505

http://www.ossp.org/pkg/lib/uuid/
http://www.ossp.org/pkg/lib/uuid/

Installation from Source Code

that are written in C and use the “version 0” calling convention. A better long-term solution is to
update any such functions to use the “version 1” calling convention.

--disable-float8-byval

Disable passing float8 values “by value”, causing them to be passed “by reference” instead. This
option costs performance, but may be needed for compatibility with old user-defined functions
that are written in C and use the “version 0” calling convention. A better long-term solution is to
update any such functions to use the “version 1” calling convention. Note that this option affects
not only float8, but also int8 and some related types such as timestamp. On 32-bit platforms,
--disable-float8-byval is the default and it is not allowed to select --enable-
float8-byval.

--with-segsize=SEGSIZE

Set the segment size, in gigabytes. Large tables are divided into multiple operating-system files,
each of size equal to the segment size. This avoids problems with file size limits that exist
on many platforms. The default segment size, 1 gigabyte, is safe on all supported platforms.
If your operating system has “largefile” support (which most do, nowadays), you can use a
larger segment size. This can be helpful to reduce the number of file descriptors consumed when
working with very large tables. But be careful not to select a value larger than is supported by
your platform and the file systems you intend to use. Other tools you might wish to use, such
as tar, could also set limits on the usable file size. It is recommended, though not absolutely
required, that this value be a power of 2. Note that changing this value requires an initdb.

--with-blocksize=BLOCKSIZE

Set the block size, in kilobytes. This is the unit of storage and I/O within tables. The default, 8
kilobytes, is suitable for most situations; but other values may be useful in special cases. The
value must be a power of 2 between 1 and 32 (kilobytes). Note that changing this value requires
an initdb.

--with-wal-blocksize=BLOCKSIZE

Set the WAL block size, in kilobytes. This is the unit of storage and I/O within the WAL log.
The default, 8 kilobytes, is suitable for most situations; but other values may be useful in special
cases. The value must be a power of 2 between 1 and 64 (kilobytes). Note that changing this
value requires an initdb.

--disable-spinlocks

Allow the build to succeed even if PostgreSQL has no CPU spinlock support for the platform.
The lack of spinlock support will result in poor performance; therefore, this option should only
be used if the build aborts and informs you that the platform lacks spinlock support. If this option
is required to build PostgreSQL on your platform, please report the problem to the PostgreSQL
developers.

--disable-strong-random

Allow the build to succeed even if PostgreSQL has no support for strong random numbers on the
platform. A source of random numbers is needed for some authentication protocols, as well as
some routines in the pgcrypto module. --disable-strong-random disables functionality
that requires cryptographically strong random numbers, and substitutes a weak pseudo-random-
number-generator for the generation of authentication salt values and query cancel keys. It may
make authentication less secure.

506

Installation from Source Code

--disable-thread-safety

Disable the thread-safety of client libraries. This prevents concurrent threads in libpq and ECPG
programs from safely controlling their private connection handles.

--with-system-tzdata=DIRECTORY

PostgreSQL includes its own time zone database, which it requires for date and time operations.
This time zone database is in fact compatible with the IANA time zone database provided by
many operating systems such as FreeBSD, Linux, and Solaris, so it would be redundant to install
it again. When this option is used, the system-supplied time zone database in DIRECTORY is
used instead of the one included in the PostgreSQL source distribution. DIRECTORY must be
specified as an absolute path. /usr/share/zoneinfo is a likely directory on some operating
systems. Note that the installation routine will not detect mismatching or erroneous time zone
data. If you use this option, you are advised to run the regression tests to verify that the time zone
data you have pointed to works correctly with PostgreSQL.

This option is mainly aimed at binary package distributors who know their target operating
system well. The main advantage of using this option is that the PostgreSQL package won't
need to be upgraded whenever any of the many local daylight-saving time rules change. Another
advantage is that PostgreSQL can be cross-compiled more straightforwardly if the time zone
database files do not need to be built during the installation.

--without-zlib

 Prevents use of the Zlib library. This disables support for compressed archives in pg_dump and
pg_restore. This option is only intended for those rare systems where this library is not available.

--enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run the
programs in a debugger to analyze problems. This enlarges the size of the installed executables
considerably, and on non-GCC compilers it usually also disables compiler optimization, causing
slowdowns. However, having the symbols available is extremely helpful for dealing with any
problems that might arise. Currently, this option is recommended for production installations
only if you use GCC. But you should always have it on if you are doing development work or
running a beta version.

--enable-coverage

If using GCC, all programs and libraries are compiled with code coverage testing
instrumentation. When run, they generate files in the build directory with code coverage metrics.
See Section 33.5 for more information. This option is for use only with GCC and when doing
development work.

--enable-profiling

If using GCC, all programs and libraries are compiled so they can be profiled. On backend exit,
a subdirectory will be created that contains the gmon.out file for use in profiling. This option
is for use only with GCC and when doing development work.

507

Installation from Source Code

--enable-cassert

Enables assertion checks in the server, which test for many “cannot happen” conditions. This is
invaluable for code development purposes, but the tests can slow down the server significantly.
Also, having the tests turned on won't necessarily enhance the stability of your server! The
assertion checks are not categorized for severity, and so what might be a relatively harmless bug
will still lead to server restarts if it triggers an assertion failure. This option is not recommended
for production use, but you should have it on for development work or when running a beta
version.

--enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that all
affected object files will be rebuilt when any header file is changed. This is useful if you are
doing development work, but is just wasted overhead if you intend only to compile once and
install. At present, this option only works with GCC.

--enable-dtrace

 Compiles PostgreSQL with support for the dynamic tracing tool DTrace. See Section 28.5 for
more information.

To point to the dtrace program, the environment variable DTRACE can be set. This will often
be necessary because dtrace is typically installed under /usr/sbin, which might not be in
the path.

Extra command-line options for the dtrace program can be specified in the environment
variable DTRACEFLAGS. On Solaris, to include DTrace support in a 64-bit binary, you must
specify DTRACEFLAGS="-64" to configure. For example, using the GCC compiler:

./configure CC='gcc -m64' --enable-dtrace DTRACEFLAGS='-64' ...

Using Sun's compiler:

./configure CC='/opt/SUNWspro/bin/cc -xtarget=native64' --
enable-dtrace DTRACEFLAGS='-64' ...

--enable-tap-tests

Enable tests using the Perl TAP tools. This requires a Perl installation and the Perl module
IPC::Run. See Section 33.4 for more information.

If you prefer a C compiler different from the one configure picks, you can set the environment
variable CC to the program of your choice. By default, configure will pick gcc if available, else
the platform's default (usually cc). Similarly, you can override the default compiler flags if needed
with the CFLAGS variable.

You can specify environment variables on the configure command line, for example:

./configure CC=/opt/bin/gcc CFLAGS='-O2 -pipe'

Here is a list of the significant variables that can be set in this manner:

508

Installation from Source Code

BISON

Bison program

CC

C compiler

CFLAGS

options to pass to the C compiler

CLANG

path to clang program used to process source code for inlining when compiling with --with-
llvm

CPP

C preprocessor

CPPFLAGS

options to pass to the C preprocessor

CXX

C++ compiler

CXXFLAGS

options to pass to the C++ compiler

DTRACE

location of the dtrace program

DTRACEFLAGS

options to pass to the dtrace program

FLEX

Flex program

LDFLAGS

options to use when linking either executables or shared libraries

LDFLAGS_EX

additional options for linking executables only

LDFLAGS_SL

additional options for linking shared libraries only
509

Installation from Source Code

LLVM_CONFIG

llvm-config program used to locate the LLVM installation.

MSGFMT

msgfmt program for native language support

PERL

Perl interpreter program. This will be used to determine the dependencies for building PL/Perl.
The default is perl.

PYTHON

Python interpreter program. This will be used to determine the dependencies for building
PL/Python. Also, whether Python 2 or 3 is specified here (or otherwise implicitly chosen)
determines which variant of the PL/Python language becomes available. See Section 46.1 for
more information. If this is not set, the following are probed in this order: python python3
python2.

TCLSH

Tcl interpreter program. This will be used to determine the dependencies for building PL/Tcl,
and it will be substituted into Tcl scripts.

XML2_CONFIG

xml2-config program used to locate the libxml installation.

Sometimes it is useful to add compiler flags after-the-fact to the set that were chosen by configure.
An important example is that gcc's -Werror option cannot be included in the CFLAGS passed to
configure, because it will break many of configure's built-in tests. To add such flags, include
them in the COPT environment variable while running make. The contents of COPT are added to
both the CFLAGS and LDFLAGS options set up by configure. For example, you could do

make COPT='-Werror'

or

export COPT='-Werror'
make

Note

When developing code inside the server, it is recommended to use the configure options --
enable-cassert (which turns on many run-time error checks) and --enable-debug
(which improves the usefulness of debugging tools).

If using GCC, it is best to build with an optimization level of at least -O1, because using
no optimization (-O0) disables some important compiler warnings (such as the use of
uninitialized variables). However, non-zero optimization levels can complicate debugging
because stepping through compiled code will usually not match up one-to-one with source

510

Installation from Source Code

code lines. If you get confused while trying to debug optimized code, recompile the specific
files of interest with -O0. An easy way to do this is by passing an option to make: make
PROFILE=-O0 file.o.

The COPT and PROFILE environment variables are actually handled identically by the
PostgreSQL makefiles. Which to use is a matter of preference, but a common habit among
developers is to use PROFILE for one-time flag adjustments, while COPT might be kept set
all the time.

2. Build

To start the build, type either of:

make
make all

(Remember to use GNU make.) The build will take a few minutes depending on your hardware. The
last line displayed should be:

All of PostgreSQL successfully made. Ready to install.

If you want to build everything that can be built, including the documentation (HTML and man pages),
and the additional modules (contrib), type instead:

make world

The last line displayed should be:

PostgreSQL, contrib, and documentation successfully made. Ready to
 install.

If you want to invoke the build from another makefile rather than manually, you must unset
MAKELEVEL or set it to zero, for instance like this:

build-postgresql:
 $(MAKE) -C postgresql MAKELEVEL=0 all

Failure to do that can lead to strange error messages, typically about missing header files.

3. Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at this
point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in the way
the developers expected it to. Type:

make check

(This won't work as root; do it as an unprivileged user.) See Chapter 33 for detailed information about
interpreting the test results. You can repeat this test at any later time by issuing the same command.511

Installation from Source Code

4. Installing the Files

Note

If you are upgrading an existing system be sure to read Section 18.6, which has instructions
about upgrading a cluster.

To install PostgreSQL enter:

make install

This will install files into the directories that were specified in Step 1. Make sure that you
have appropriate permissions to write into that area. Normally you need to do this step as root.
Alternatively, you can create the target directories in advance and arrange for appropriate permissions
to be granted.

To install the documentation (HTML and man pages), enter:

make install-docs

If you built the world above, type instead:

make install-world

This also installs the documentation.

You can use make install-strip instead of make install to strip the executable files
and libraries as they are installed. This will save some space. If you built with debugging support,
stripping will effectively remove the debugging support, so it should only be done if debugging is
no longer needed. install-strip tries to do a reasonable job saving space, but it does not have
perfect knowledge of how to strip every unneeded byte from an executable file, so if you want to save
all the disk space you possibly can, you will have to do manual work.

The standard installation provides all the header files needed for client application development as
well as for server-side program development, such as custom functions or data types written in C.
(Prior to PostgreSQL 8.0, a separate make install-all-headers command was needed for
the latter, but this step has been folded into the standard install.)

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:

make -C src/bin install
make -C src/include install
make -C src/interfaces install
make -C doc install

src/bin has a few binaries for server-only use, but they are small.

Uninstallation: To undo the installation use the command make uninstall. However, this will
not remove any created directories. 512

Installation from Source Code

Cleaning: After the installation you can free disk space by removing the built files from the source
tree with the command make clean. This will preserve the files made by the configure program,
so that you can rebuild everything with make later on. To reset the source tree to the state in which it
was distributed, use make distclean. If you are going to build for several platforms within the same
source tree you must do this and re-configure for each platform. (Alternatively, use a separate build tree
for each platform, so that the source tree remains unmodified.)

If you perform a build and then discover that your configure options were wrong, or if you change
anything that configure investigates (for example, software upgrades), then it's a good idea to do make
distclean before reconfiguring and rebuilding. Without this, your changes in configuration choices
might not propagate everywhere they need to.

16.5. Post-Installation Setup

16.5.1. Shared Libraries
On some systems with shared libraries you need to tell the system how to find the newly installed
shared libraries. The systems on which this is not necessary include FreeBSD, HP-UX, Linux, NetBSD,
OpenBSD, and Solaris.

The method to set the shared library search path varies between platforms, but the most widely-used
method is to set the environment variable LD_LIBRARY_PATH like so: In Bourne shells (sh, ksh, bash,
zsh):

LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH

or in csh or tcsh:

setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Replace /usr/local/pgsql/lib with whatever you set --libdir to in Step 1. You should put
these commands into a shell start-up file such as /etc/profile or ~/.bash_profile. Some
good information about the caveats associated with this method can be found at http://xahlee.info/
UnixResource_dir/_/ldpath.html.

On some systems it might be preferable to set the environment variable LD_RUN_PATH before building.

On Cygwin, put the library directory in the PATH or move the .dll files into the bin directory.

If in doubt, refer to the manual pages of your system (perhaps ld.so or rld). If you later get a message
like:

psql: error in loading shared libraries
libpq.so.2.1: cannot open shared object file: No such file or
 directory

then this step was necessary. Simply take care of it then.

 If you are on Linux and you have root access, you can run:

513

http://xahlee.info/UnixResource_dir/_/ldpath.html
http://xahlee.info/UnixResource_dir/_/ldpath.html

Installation from Source Code

/sbin/ldconfig /usr/local/pgsql/lib

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries faster.
Refer to the manual page of ldconfig for more information. On FreeBSD, NetBSD, and OpenBSD the
command is:

/sbin/ldconfig -m /usr/local/pgsql/lib

instead. Other systems are not known to have an equivalent command.

16.5.2. Environment Variables
If you installed into /usr/local/pgsql or some other location that is not searched for programs by
default, you should add /usr/local/pgsql/bin (or whatever you set --bindir to in Step 1) into
your PATH. Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more
convenient.

To do this, add the following to your shell start-up file, such as ~/.bash_profile (or /etc/
profile, if you want it to affect all users):

PATH=/usr/local/pgsql/bin:$PATH
export PATH

If you are using csh or tcsh, then use this command:

set path = (/usr/local/pgsql/bin $path)

 To enable your system to find the man documentation, you need to add lines like the following to a shell
start-up file unless you installed into a location that is searched by default:

MANPATH=/usr/local/pgsql/share/man:$MANPATH
export MANPATH

The environment variables PGHOST and PGPORT specify to client applications the host and port of the
database server, overriding the compiled-in defaults. If you are going to run client applications remotely
then it is convenient if every user that plans to use the database sets PGHOST. This is not required, however;
the settings can be communicated via command line options to most client programs.

16.6. Supported Platforms
A platform (that is, a CPU architecture and operating system combination) is considered supported by the
PostgreSQL development community if the code contains provisions to work on that platform and it has
recently been verified to build and pass its regression tests on that platform. Currently, most testing of
platform compatibility is done automatically by test machines in the PostgreSQL Build Farm2. If you are
interested in using PostgreSQL on a platform that is not represented in the build farm, but on which the
code works or can be made to work, you are strongly encouraged to set up a build farm member machine
so that continued compatibility can be assured.

In general, PostgreSQL can be expected to work on these CPU architectures: x86, x86_64, IA64, PowerPC,
PowerPC 64, S/390, S/390x, Sparc, Sparc 64, ARM, MIPS, MIPSEL, and PA-RISC. Code support exists

2 https://buildfarm.postgresql.org/

514

https://buildfarm.postgresql.org/
https://buildfarm.postgresql.org/

Installation from Source Code

for M68K, M32R, and VAX, but these architectures are not known to have been tested recently. It is
often possible to build on an unsupported CPU type by configuring with --disable-spinlocks, but
performance will be poor.

PostgreSQL can be expected to work on these operating systems: Linux (all recent distributions), Windows
(Win2000 SP4 and later), FreeBSD, OpenBSD, NetBSD, macOS, AIX, HP/UX, and Solaris. Other Unix-
like systems may also work but are not currently being tested. In most cases, all CPU architectures
supported by a given operating system will work. Look in Section 16.7 below to see if there is information
specific to your operating system, particularly if using an older system.

If you have installation problems on a platform that is known to be supported according to recent build farm
results, please report it to <pgsql-bugs@lists.postgresql.org>. If you are interested in porting
PostgreSQL to a new platform, <pgsql-hackers@lists.postgresql.org> is the appropriate
place to discuss that.

16.7. Platform-specific Notes
This section documents additional platform-specific issues regarding the installation and setup of
PostgreSQL. Be sure to read the installation instructions, and in particular Section 16.2 as well. Also,
check Chapter 33 regarding the interpretation of regression test results.

Platforms that are not covered here have no known platform-specific installation issues.

16.7.1. AIX
PostgreSQL works on AIX, but getting it installed properly can be challenging. AIX versions from 4.3.3
to 6.1 are considered supported. You can use GCC or the native IBM compiler xlc. In general, using
recent versions of AIX and PostgreSQL helps. Check the build farm for up to date information about which
versions of AIX are known to work.

The minimum recommended fix levels for supported AIX versions are:

AIX 4.3.3

Maintenance Level 11 + post ML11 bundle

AIX 5.1

Maintenance Level 9 + post ML9 bundle

AIX 5.2

Technology Level 10 Service Pack 3

AIX 5.3

Technology Level 7

AIX 6.1

Base Level

To check your current fix level, use oslevel -r in AIX 4.3.3 to AIX 5.2 ML 7, or oslevel -s
in later versions.

515

Installation from Source Code

Use the following configure flags in addition to your own if you have installed Readline or libz
in /usr/local: --with-includes=/usr/local/include --with-libraries=/usr/
local/lib.

16.7.1.1. GCC Issues

On AIX 5.3, there have been some problems getting PostgreSQL to compile and run using GCC.

You will want to use a version of GCC subsequent to 3.3.2, particularly if you use a prepackaged version.
We had good success with 4.0.1. Problems with earlier versions seem to have more to do with the way
IBM packaged GCC than with actual issues with GCC, so that if you compile GCC yourself, you might
well have success with an earlier version of GCC.

16.7.1.2. Unix-Domain Sockets Broken

AIX 5.3 has a problem where sockaddr_storage is not defined to be large enough. In version 5.3,
IBM increased the size of sockaddr_un, the address structure for Unix-domain sockets, but did not
correspondingly increase the size of sockaddr_storage. The result of this is that attempts to use Unix-
domain sockets with PostgreSQL lead to libpq overflowing the data structure. TCP/IP connections work
OK, but not Unix-domain sockets, which prevents the regression tests from working.

The problem was reported to IBM, and is recorded as bug report PMR29657. If you upgrade to maintenance
level 5300-03 or later, that will include this fix. A quick workaround is to alter _SS_MAXSIZE to 1025 in
/usr/include/sys/socket.h. In either case, recompile PostgreSQL once you have the corrected
header file.

16.7.1.3. Internet Address Issues

PostgreSQL relies on the system's getaddrinfo function to parse IP addresses in
listen_addresses, pg_hba.conf, etc. Older versions of AIX have assorted bugs in this function.
If you have problems related to these settings, updating to the appropriate AIX fix level shown above
should take care of it.

One user reports:

When implementing PostgreSQL version 8.1 on AIX 5.3, we periodically ran into problems where the
statistics collector would “mysteriously” not come up successfully. This appears to be the result of
unexpected behavior in the IPv6 implementation. It looks like PostgreSQL and IPv6 do not play very well
together on AIX 5.3.

Any of the following actions “fix” the problem.

• Delete the IPv6 address for localhost:

(as root)
ifconfig lo0 inet6 ::1/0 delete

• Remove IPv6 from net services. The file /etc/netsvc.conf on AIX is roughly equivalent to /
etc/nsswitch.conf on Solaris/Linux. The default, on AIX, is thus:

hosts=local,bind

Replace this with:

516

Installation from Source Code

hosts=local4,bind4

to deactivate searching for IPv6 addresses.

Warning

This is really a workaround for problems relating to immaturity of IPv6 support, which improved
visibly during the course of AIX 5.3 releases. It has worked with AIX version 5.3, but does not
represent an elegant solution to the problem. It has been reported that this workaround is not only
unnecessary, but causes problems on AIX 6.1, where IPv6 support has become more mature.

16.7.1.4. Memory Management

AIX can be somewhat peculiar with regards to the way it does memory management. You can have a
server with many multiples of gigabytes of RAM free, but still get out of memory or address space errors
when running applications. One example is loading of extensions failing with unusual errors. For example,
running as the owner of the PostgreSQL installation:

=# CREATE EXTENSION plperl;
ERROR: could not load library "/opt/dbs/pgsql/lib/plperl.so": A
 memory address is not in the address space for the process.

Running as a non-owner in the group possessing the PostgreSQL installation:

=# CREATE EXTENSION plperl;
ERROR: could not load library "/opt/dbs/pgsql/lib/plperl.so": Bad
 address

Another example is out of memory errors in the PostgreSQL server logs, with every memory allocation
near or greater than 256 MB failing.

The overall cause of all these problems is the default bittedness and memory model used by the server
process. By default, all binaries built on AIX are 32-bit. This does not depend upon hardware type or
kernel in use. These 32-bit processes are limited to 4 GB of memory laid out in 256 MB segments using
one of a few models. The default allows for less than 256 MB in the heap as it shares a single segment
with the stack.

In the case of the plperl example, above, check your umask and the permissions of the binaries in
your PostgreSQL installation. The binaries involved in that example were 32-bit and installed as mode
750 instead of 755. Due to the permissions being set in this fashion, only the owner or a member of the
possessing group can load the library. Since it isn't world-readable, the loader places the object into the
process' heap instead of the shared library segments where it would otherwise be placed.

The “ideal” solution for this is to use a 64-bit build of PostgreSQL, but that is not always practical, because
systems with 32-bit processors can build, but not run, 64-bit binaries.

If a 32-bit binary is desired, set LDR_CNTRL to MAXDATA=0xn0000000, where 1 <= n <= 8,
before starting the PostgreSQL server, and try different values and postgresql.conf settings to
find a configuration that works satisfactorily. This use of LDR_CNTRL tells AIX that you want the
server to have MAXDATA bytes set aside for the heap, allocated in 256 MB segments. When you find

517

Installation from Source Code

a workable configuration, ldedit can be used to modify the binaries so that they default to using
the desired heap size. PostgreSQL can also be rebuilt, passing configure LDFLAGS="-Wl,-
bmaxdata:0xn0000000" to achieve the same effect.

For a 64-bit build, set OBJECT_MODE to 64 and pass CC="gcc -maix64" and LDFLAGS="-Wl,-
bbigtoc" to configure. (Options for xlc might differ.) If you omit the export of OBJECT_MODE,
your build may fail with linker errors. When OBJECT_MODE is set, it tells AIX's build utilities such as
ar, as, and ld what type of objects to default to handling.

By default, overcommit of paging space can happen. While we have not seen this occur, AIX will kill
processes when it runs out of memory and the overcommit is accessed. The closest to this that we have
seen is fork failing because the system decided that there was not enough memory for another process.
Like many other parts of AIX, the paging space allocation method and out-of-memory kill is configurable
on a system- or process-wide basis if this becomes a problem.

References and Resources

“Large Program Support1”. AIX Documentation: General Programming Concepts: Writing and Debugging Programs.

“Program Address Space Overview2”. AIX Documentation: General Programming Concepts: Writing and Debugging
Programs.

“Performance Overview of the Virtual Memory Manager (VMM)3”. AIX Documentation: Performance Management
Guide.

“Page Space Allocation4”. AIX Documentation: Performance Management Guide.

“Paging-space thresholds tuning5”. AIX Documentation: Performance Management Guide.

Developing and Porting C and C++ Applications on AIX6. IBM Redbook.

16.7.2. Cygwin
PostgreSQL can be built using Cygwin, a Linux-like environment for Windows, but that method is
inferior to the native Windows build (see Chapter 17) and running a server under Cygwin is no longer
recommended.

When building from source, proceed according to the normal installation procedure (i.e., ./configure;
make; etc.), noting the following-Cygwin specific differences:

• Set your path to use the Cygwin bin directory before the Windows utilities. This will help prevent
problems with compilation.

• The adduser command is not supported; use the appropriate user management application on
Windows NT, 2000, or XP. Otherwise, skip this step.

• The su command is not supported; use ssh to simulate su on Windows NT, 2000, or XP. Otherwise,
skip this step.

• OpenSSL is not supported.

1 http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/lrg_prg_support.htm
2 http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/address_space.htm
3 http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/resmgmt2.htm
4 http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf7.htm
5 http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf6.htm
6 http://www.redbooks.ibm.com/abstracts/sg245674.html?Open

518

http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/lrg_prg_support.htm
http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/address_space.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/resmgmt2.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf7.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf6.htm
http://www.redbooks.ibm.com/abstracts/sg245674.html?Open
http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/lrg_prg_support.htm
http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/address_space.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/resmgmt2.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf7.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf6.htm
http://www.redbooks.ibm.com/abstracts/sg245674.html?Open

Installation from Source Code

• Start cygserver for shared memory support. To do this, enter the command /usr/sbin/
cygserver &. This program needs to be running anytime you start the PostgreSQL server or initialize
a database cluster (initdb). The default cygserver configuration may need to be changed (e.g.,
increase SEMMNS) to prevent PostgreSQL from failing due to a lack of system resources.

• Building might fail on some systems where a locale other than C is in use. To fix this, set the locale to
C by doing export LANG=C.utf8 before building, and then setting it back to the previous setting,
after you have installed PostgreSQL.

• The parallel regression tests (make check) can generate spurious regression test failures due to
overflowing the listen() backlog queue which causes connection refused errors or hangs. You can
limit the number of connections using the make variable MAX_CONNECTIONS thus:

make MAX_CONNECTIONS=5 check

(On some systems you can have up to about 10 simultaneous connections).

It is possible to install cygserver and the PostgreSQL server as Windows NT services. For information
on how to do this, please refer to the README document included with the PostgreSQL binary package
on Cygwin. It is installed in the directory /usr/share/doc/Cygwin.

16.7.3. HP-UX
PostgreSQL 7.3+ should work on Series 700/800 PA-RISC machines running HP-UX 10.X or 11.X, given
appropriate system patch levels and build tools. At least one developer routinely tests on HP-UX 10.20,
and we have reports of successful installations on HP-UX 11.00 and 11.11.

Aside from the PostgreSQL source distribution, you will need GNU make (HP's make will not do), and
either GCC or HP's full ANSI C compiler. If you intend to build from Git sources rather than a distribution
tarball, you will also need Flex (GNU lex) and Bison (GNU yacc). We also recommend making sure you
are fairly up-to-date on HP patches. At a minimum, if you are building 64 bit binaries on HP-UX 11.11
you may need PHSS_30966 (11.11) or a successor patch otherwise initdb may hang:

PHSS_30966 s700_800 ld(1) and linker tools cumulative patch

On general principles you should be current on libc and ld/dld patches, as well as compiler patches if you
are using HP's C compiler. See HP's support sites such as ftp://us-ffs.external.hp.com/ for free copies of
their latest patches.

If you are building on a PA-RISC 2.0 machine and want to have 64-bit binaries using GCC, you must
use a GCC 64-bit version.

If you are building on a PA-RISC 2.0 machine and want the compiled binaries to run on PA-RISC 1.1
machines you will need to specify +DAportable in CFLAGS.

If you are building on a HP-UX Itanium machine, you will need the latest HP ANSI C compiler with its
dependent patch or successor patches:

PHSS_30848 s700_800 HP C Compiler (A.05.57)
PHSS_30849 s700_800 u2comp/be/plugin library Patch

If you have both HP's C compiler and GCC's, then you might want to explicitly select the compiler to use
when you run configure:

519

ftp://us-ffs.external.hp.com/

Installation from Source Code

./configure CC=cc

for HP's C compiler, or

./configure CC=gcc

for GCC. If you omit this setting, then configure will pick gcc if it has a choice.

The default install target location is /usr/local/pgsql, which you might want to change to something
under /opt. If so, use the --prefix switch to configure.

In the regression tests, there might be some low-order-digit differences in the geometry tests, which vary
depending on which compiler and math library versions you use. Any other error is cause for suspicion.

16.7.4. macOS
On recent macOS releases, it's necessary to embed the “sysroot” path in the include switches used to find
some system header files. This results in the outputs of the configure script varying depending on which
SDK version was used during configure. That shouldn't pose any problem in simple scenarios, but if you
are trying to do something like building an extension on a different machine than the server code was built
on, you may need to force use of a different sysroot path. To do that, set PG_SYSROOT, for example

make PG_SYSROOT=/desired/path all

To find out the appropriate path on your machine, run

xcodebuild -version -sdk macosx Path

Note that building an extension using a different sysroot version than was used to build the core server is
not really recommended; in the worst case it could result in hard-to-debug ABI inconsistencies.

You can also select a non-default sysroot path when configuring, by specifying PG_SYSROOT to
configure:

./configure ... PG_SYSROOT=/desired/path

macOS's “System Integrity Protection” (SIP) feature breaks make check, because it prevents passing
the needed setting of DYLD_LIBRARY_PATH down to the executables being tested. You can work around
that by doing make install before make check. Most Postgres developers just turn off SIP, though.

16.7.5. MinGW/Native Windows
PostgreSQL for Windows can be built using MinGW, a Unix-like build environment for Microsoft
operating systems, or using Microsoft's Visual C++ compiler suite. The MinGW build variant uses the
normal build system described in this chapter; the Visual C++ build works completely differently and is
described in Chapter 17. It is a fully native build and uses no additional software like MinGW. A ready-
made installer is available on the main PostgreSQL web site.

The native Windows port requires a 32 or 64-bit version of Windows 2000 or later. Earlier operating
systems do not have sufficient infrastructure (but Cygwin may be used on those). MinGW, the Unix-like

520

Installation from Source Code

build tools, and MSYS, a collection of Unix tools required to run shell scripts like configure, can be
downloaded from http://www.mingw.org/. Neither is required to run the resulting binaries; they are needed
only for creating the binaries.

To build 64 bit binaries using MinGW, install the 64 bit tool set from https://mingw-w64.org/, put its bin
directory in the PATH, and run configure with the --host=x86_64-w64-mingw32 option.

After you have everything installed, it is suggested that you run psql under CMD.EXE, as the MSYS
console has buffering issues.

16.7.5.1. Collecting Crash Dumps on Windows

If PostgreSQL on Windows crashes, it has the ability to generate minidumps that can be used to track
down the cause for the crash, similar to core dumps on Unix. These dumps can be read using the
Windows Debugger Tools or using Visual Studio. To enable the generation of dumps on Windows, create
a subdirectory named crashdumps inside the cluster data directory. The dumps will then be written into
this directory with a unique name based on the identifier of the crashing process and the current time of
the crash.

16.7.6. Solaris
PostgreSQL is well-supported on Solaris. The more up to date your operating system, the fewer issues
you will experience; details below.

16.7.6.1. Required Tools

You can build with either GCC or Sun's compiler suite. For better code optimization, Sun's compiler is
strongly recommended on the SPARC architecture. We have heard reports of problems when using GCC
2.95.1; GCC 2.95.3 or later is recommended. If you are using Sun's compiler, be careful not to select /
usr/ucb/cc; use /opt/SUNWspro/bin/cc.

You can download Sun Studio from https://www.oracle.com/technetwork/server-storage/solarisstudio/
downloads/. Many of GNU tools are integrated into Solaris 10, or they are present on the Solaris
companion CD. If you like packages for older version of Solaris, you can find these tools at http://
www.sunfreeware.com. If you prefer sources, look at https://www.gnu.org/prep/ftp.

16.7.6.2. configure Complains About a Failed Test Program

If configure complains about a failed test program, this is probably a case of the run-time linker being
unable to find some library, probably libz, libreadline or some other non-standard library such as libssl.
To point it to the right location, set the LDFLAGS environment variable on the configure command
line, e.g.,

configure ... LDFLAGS="-R /usr/sfw/lib:/opt/sfw/lib:/usr/local/lib"

See the ld man page for more information.

16.7.6.3. 64-bit Build Sometimes Crashes

On Solaris 7 and older, the 64-bit version of libc has a buggy vsnprintf routine, which leads to erratic
core dumps in PostgreSQL. The simplest known workaround is to force PostgreSQL to use its own version
of vsnprintf rather than the library copy. To do this, after you run configure edit a file produced
by configure: In src/Makefile.global, change the line

521

http://www.mingw.org/
https://mingw-w64.org/
https://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/
https://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/
http://www.sunfreeware.com
http://www.sunfreeware.com
https://www.gnu.org/prep/ftp

Installation from Source Code

LIBOBJS =

to read

LIBOBJS = snprintf.o

(There might be other files already listed in this variable. Order does not matter.) Then build as usual.

16.7.6.4. Compiling for Optimal Performance

On the SPARC architecture, Sun Studio is strongly recommended for compilation. Try using the -xO5
optimization flag to generate significantly faster binaries. Do not use any flags that modify behavior of
floating-point operations and errno processing (e.g., -fast). These flags could raise some nonstandard
PostgreSQL behavior for example in the date/time computing.

If you do not have a reason to use 64-bit binaries on SPARC, prefer the 32-bit version. The 64-bit operations
are slower and 64-bit binaries are slower than the 32-bit variants. And on other hand, 32-bit code on the
AMD64 CPU family is not native, and that is why 32-bit code is significant slower on this CPU family.

16.7.6.5. Using DTrace for Tracing PostgreSQL

Yes, using DTrace is possible. See Section 28.5 for further information.

If you see the linking of the postgres executable abort with an error message like:

Undefined first referenced
 symbol in file
AbortTransaction utils/probes.o
CommitTransaction utils/probes.o
ld: fatal: Symbol referencing errors. No output written to postgres
collect2: ld returned 1 exit status
make: *** [postgres] Error 1

your DTrace installation is too old to handle probes in static functions. You need Solaris 10u4 or newer.

522

Chapter 17. Installation from Source
Code on Windows

It is recommended that most users download the binary distribution for Windows, available as a graphical
installer package from the PostgreSQL website. Building from source is only intended for people
developing PostgreSQL or extensions.

There are several different ways of building PostgreSQL on Windows. The simplest way to build with
Microsoft tools is to install Visual Studio Express 2017 for Windows Desktop and use the included
compiler. It is also possible to build with the full Microsoft Visual C++ 2005 to 2017. In some cases that
requires the installation of the Windows SDK in addition to the compiler.

It is also possible to build PostgreSQL using the GNU compiler tools provided by MinGW, or using
Cygwin for older versions of Windows.

Building using MinGW or Cygwin uses the normal build system, see Chapter 16 and the specific notes in
Section 16.7.5 and Section 16.7.2. To produce native 64 bit binaries in these environments, use the tools
from MinGW-w64. These tools can also be used to cross-compile for 32 bit and 64 bit Windows targets on
other hosts, such as Linux and macOS. Cygwin is not recommended for running a production server, and
it should only be used for running on older versions of Windows where the native build does not work,
such as Windows 98. The official binaries are built using Visual Studio.

Native builds of psql don't support command line editing. The Cygwin build does support command line
editing, so it should be used where psql is needed for interactive use on Windows.

17.1. Building with Visual C++ or the Microsoft
Windows SDK

PostgreSQL can be built using the Visual C++ compiler suite from Microsoft. These compilers can be
either from Visual Studio, Visual Studio Express or some versions of the Microsoft Windows SDK. If you
do not already have a Visual Studio environment set up, the easiest ways are to use the compilers from
Visual Studio Express 2017 for Windows Desktop or those in the Windows SDK 8.1, which are both free
downloads from Microsoft.

Both 32-bit and 64-bit builds are possible with the Microsoft Compiler suite. 32-bit PostgreSQL builds are
possible with Visual Studio 2005 to Visual Studio 2017 (including Express editions), as well as standalone
Windows SDK releases 6.0 to 8.1. 64-bit PostgreSQL builds are supported with Microsoft Windows SDK
version 6.0a to 8.1 or Visual Studio 2008 and above. Compilation is supported down to Windows XP and
Windows Server 2003 when building with Visual Studio 2005 to Visual Studio 2013. Building with Visual
Studio 2015 is supported down to Windows Vista and Windows Server 2008. Building with Visual Studio
2017 is supported down to Windows 7 SP1 and Windows Server 2008 R2 SP1.

The tools for building using Visual C++ or Platform SDK are in the src/tools/msvc directory. When
building, make sure there are no tools from MinGW or Cygwin present in your system PATH. Also, make
sure you have all the required Visual C++ tools available in the PATH. In Visual Studio, start the Visual
Studio Command Prompt. If you wish to build a 64-bit version, you must use the 64-bit version of the
command, and vice versa. In the Microsoft Windows SDK, start the CMD shell listed under the SDK on
the Start Menu. In recent SDK versions you can change the targeted CPU architecture, build type, and
target OS by using the setenv command, e.g. setenv /x86 /release /xp to target Windows
XP or later with a 32-bit release build. See /? for other options to setenv. All commands should be run
from the src\tools\msvc directory.

523

Installation from Source
Code on Windows

Before you build, you may need to edit the file config.pl to reflect any configuration options you want
to change, or the paths to any third party libraries to use. The complete configuration is determined by first
reading and parsing the file config_default.pl, and then apply any changes from config.pl. For
example, to specify the location of your Python installation, put the following in config.pl:

$config->{python} = 'c:\python26';

You only need to specify those parameters that are different from what's in config_default.pl.

If you need to set any other environment variables, create a file called buildenv.pl and put the required
commands there. For example, to add the path for bison when it's not in the PATH, create a file containing:

$ENV{PATH}=$ENV{PATH} . ';c:\some\where\bison\bin';

To pass additional command line arguments to the Visual Studio build command (msbuild or vcbuild):

$ENV{MSBFLAGS}="/m";

17.1.1. Requirements
The following additional products are required to build PostgreSQL. Use the config.pl file to specify
which directories the libraries are available in.

Microsoft Windows SDK

If your build environment doesn't ship with a supported version of the Microsoft Windows SDK it is
recommended that you upgrade to the latest version (currently version 7.1), available for download
from https://www.microsoft.com/download.

You must always include the Windows Headers and Libraries part of the SDK. If you install a
Windows SDK including the Visual C++ Compilers, you don't need Visual Studio to build. Note
that as of Version 8.0a the Windows SDK no longer ships with a complete command-line build
environment.

ActiveState Perl

ActiveState Perl is required to run the build generation scripts. MinGW or Cygwin Perl will not work.
It must also be present in the PATH. Binaries can be downloaded from https://www.activestate.com
(Note: version 5.8.3 or later is required, the free Standard Distribution is sufficient).

The following additional products are not required to get started, but are required to build the complete
package. Use the config.pl file to specify which directories the libraries are available in.

ActiveState TCL

Required for building PL/Tcl (Note: version 8.4 is required, the free Standard Distribution is
sufficient).

Bison and Flex

Bison and Flex are required to build from Git, but not required when building from a release file. Only
Bison 1.875 or versions 2.2 and later will work. Flex must be version 2.5.31 or later.

Both Bison and Flex are included in the msys tool suite, available from http://www.mingw.org/wiki/
MSYS as part of the MinGW compiler suite.

524

https://www.microsoft.com/download
https://www.activestate.com
http://www.mingw.org/wiki/MSYS
http://www.mingw.org/wiki/MSYS

Installation from Source
Code on Windows

You will need to add the directory containing flex.exe and bison.exe to the PATH environment
variable in buildenv.pl unless they are already in PATH. In the case of MinGW, the directory is
the \msys\1.0\bin subdirectory of your MinGW installation directory.

Note

The Bison distribution from GnuWin32 appears to have a bug that causes Bison to malfunction
when installed in a directory with spaces in the name, such as the default location on English
installations C:\Program Files\GnuWin32. Consider installing into C:\GnuWin32
or use the NTFS short name path to GnuWin32 in your PATH environment setting (e.g. C:
\PROGRA~1\GnuWin32).

Note

The obsolete winflex binaries distributed on the PostgreSQL FTP site and referenced in
older documentation will fail with “flex: fatal internal error, exec failed” on 64-bit Windows
hosts. Use Flex from MSYS instead.

Diff

Diff is required to run the regression tests, and can be downloaded from http://
gnuwin32.sourceforge.net.

Gettext

Gettext is required to build with NLS support, and can be downloaded from http://
gnuwin32.sourceforge.net. Note that binaries, dependencies and developer files are all needed.

MIT Kerberos

Required for GSSAPI authentication support. MIT Kerberos can be downloaded from http://
web.mit.edu/Kerberos/dist/index.html.

libxml2 and libxslt

Required for XML support. Binaries can be downloaded from http://zlatkovic.com/pub/libxml or
source from http://xmlsoft.org. Note that libxml2 requires iconv, which is available from the same
download location.

OpenSSL

Required for SSL support. Binaries can be downloaded from https://slproweb.com/products/
Win32OpenSSL.html or source from https://www.openssl.org.

ossp-uuid

Required for UUID-OSSP support (contrib only). Source can be downloaded from http://
www.ossp.org/pkg/lib/uuid/.

Python

Required for building PL/Python. Binaries can be downloaded from https://www.python.org.

525

http://gnuwin32.sourceforge.net
http://gnuwin32.sourceforge.net
http://gnuwin32.sourceforge.net
http://gnuwin32.sourceforge.net
http://web.mit.edu/Kerberos/dist/index.html
http://web.mit.edu/Kerberos/dist/index.html
http://zlatkovic.com/pub/libxml
http://xmlsoft.org
https://slproweb.com/products/Win32OpenSSL.html
https://slproweb.com/products/Win32OpenSSL.html
https://www.openssl.org
http://www.ossp.org/pkg/lib/uuid/
http://www.ossp.org/pkg/lib/uuid/
https://www.python.org

Installation from Source
Code on Windows

zlib

Required for compression support in pg_dump and pg_restore. Binaries can be downloaded from
http://www.zlib.net.

17.1.2. Special Considerations for 64-bit Windows
PostgreSQL will only build for the x64 architecture on 64-bit Windows, there is no support for Itanium
processors.

Mixing 32- and 64-bit versions in the same build tree is not supported. The build system will automatically
detect if it's running in a 32- or 64-bit environment, and build PostgreSQL accordingly. For this reason, it
is important to start the correct command prompt before building.

To use a server-side third party library such as python or OpenSSL, this library must also be 64-bit.
There is no support for loading a 32-bit library in a 64-bit server. Several of the third party libraries that
PostgreSQL supports may only be available in 32-bit versions, in which case they cannot be used with
64-bit PostgreSQL.

17.1.3. Building
To build all of PostgreSQL in release configuration (the default), run the command:

build

To build all of PostgreSQL in debug configuration, run the command:

build DEBUG

To build just a single project, for example psql, run the commands:

build psql
build DEBUG psql

To change the default build configuration to debug, put the following in the buildenv.pl file:

$ENV{CONFIG}="Debug";

It is also possible to build from inside the Visual Studio GUI. In this case, you need to run:

perl mkvcbuild.pl

from the command prompt, and then open the generated pgsql.sln (in the root directory of the source
tree) in Visual Studio.

17.1.4. Cleaning and Installing
Most of the time, the automatic dependency tracking in Visual Studio will handle changed files. But if there
have been large changes, you may need to clean the installation. To do this, simply run the clean.bat

526

http://www.zlib.net

Installation from Source
Code on Windows

command, which will automatically clean out all generated files. You can also run it with the dist
parameter, in which case it will behave like make distclean and remove the flex/bison output files
as well.

By default, all files are written into a subdirectory of the debug or release directories. To install these
files using the standard layout, and also generate the files required to initialize and use the database, run
the command:

install c:\destination\directory

If you want to install only the client applications and interface libraries, then you can use these commands:

install c:\destination\directory client

17.1.5. Running the Regression Tests
To run the regression tests, make sure you have completed the build of all required parts first. Also, make
sure that the DLLs required to load all parts of the system (such as the Perl and Python DLLs for the
procedural languages) are present in the system path. If they are not, set it through the buildenv.pl
file. To run the tests, run one of the following commands from the src\tools\msvc directory:

vcregress check
vcregress installcheck
vcregress plcheck
vcregress contribcheck
vcregress modulescheck
vcregress ecpgcheck
vcregress isolationcheck
vcregress bincheck
vcregress recoverycheck
vcregress upgradecheck

To change the schedule used (default is parallel), append it to the command line like:

vcregress check serial

For more information about the regression tests, see Chapter 33.

Running the regression tests on client programs, with vcregress bincheck, or on recovery tests,
with vcregress recoverycheck, requires an additional Perl module to be installed:

IPC::Run

As of this writing, IPC::Run is not included in the ActiveState Perl installation, nor in
the ActiveState Perl Package Manager (PPM) library. To install, download the IPC-Run-
<version>.tar.gz source archive from CPAN, at https://metacpan.org/release/IPC-Run, and
uncompress. Edit the buildenv.pl file, and add a PERL5LIB variable to point to the lib
subdirectory from the extracted archive. For example:

$ENV{PERL5LIB}=$ENV{PERL5LIB} . ';c:\IPC-Run-0.94\lib';

527

https://metacpan.org/release/IPC-Run

Installation from Source
Code on Windows

17.1.6. Building the Documentation
Building the PostgreSQL documentation in HTML format requires several tools and files. Create a root
directory for all these files, and store them in the subdirectories in the list below.

OpenJade 1.3.1-2

Download from https://sourceforge.net/projects/openjade/files/openjade/1.3.1/openjade-1_3_1-2-
bin.zip/download and uncompress in the subdirectory openjade-1.3.1.

DocBook DTD 4.2

Download from https://www.oasis-open.org/docbook/sgml/4.2/docbook-4.2.zip and uncompress in
the subdirectory docbook.

ISO character entities

Download from https://www.oasis-open.org/cover/ISOEnts.zip and uncompress in the subdirectory
docbook.

Edit the buildenv.pl file, and add a variable for the location of the root directory, for example:

$ENV{DOCROOT}='c:\docbook';

To build the documentation, run the command builddoc.bat. Note that this will actually run the build
twice, in order to generate the indexes. The generated HTML files will be in doc\src\sgml.

528

https://sourceforge.net/projects/openjade/files/openjade/1.3.1/openjade-1_3_1-2-bin.zip/download
https://sourceforge.net/projects/openjade/files/openjade/1.3.1/openjade-1_3_1-2-bin.zip/download
https://www.oasis-open.org/docbook/sgml/4.2/docbook-4.2.zip
https://www.oasis-open.org/cover/ISOEnts.zip

Chapter 18. Server Setup and
Operation

This chapter discusses how to set up and run the database server and its interactions with the operating
system.

18.1. The PostgreSQL User Account
As with any server daemon that is accessible to the outside world, it is advisable to run PostgreSQL under
a separate user account. This user account should only own the data that is managed by the server, and
should not be shared with other daemons. (For example, using the user nobody is a bad idea.) It is not
advisable to install executables owned by this user because compromised systems could then modify their
own binaries.

To add a Unix user account to your system, look for a command useradd or adduser. The user name
postgres is often used, and is assumed throughout this book, but you can use another name if you like.

18.2. Creating a Database Cluster
Before you can do anything, you must initialize a database storage area on disk. We call this a database
cluster. (The SQL standard uses the term catalog cluster.) A database cluster is a collection of databases
that is managed by a single instance of a running database server. After initialization, a database cluster
will contain a database named postgres, which is meant as a default database for use by utilities, users
and third party applications. The database server itself does not require the postgres database to exist,
but many external utility programs assume it exists. Another database created within each cluster during
initialization is called template1. As the name suggests, this will be used as a template for subsequently
created databases; it should not be used for actual work. (See Chapter 22 for information about creating
new databases within a cluster.)

In file system terms, a database cluster is a single directory under which all data will be stored. We call
this the data directory or data area. It is completely up to you where you choose to store your data. There
is no default, although locations such as /usr/local/pgsql/data or /var/lib/pgsql/data
are popular. To initialize a database cluster, use the command initdb, which is installed with PostgreSQL.
The desired file system location of your database cluster is indicated by the -D option, for example:

$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip

As an alternative to the -D option, you can set the environment variable PGDATA.

Alternatively, you can run initdb via the pg_ctl program like so:

$ pg_ctl -D /usr/local/pgsql/data initdb

529

Server Setup and Operation

This may be more intuitive if you are using pg_ctl for starting and stopping the server (see Section 18.3),
so that pg_ctl would be the sole command you use for managing the database server instance.

initdb will attempt to create the directory you specify if it does not already exist. Of course, this will
fail if initdb does not have permissions to write in the parent directory. It's generally recommendable
that the PostgreSQL user own not just the data directory but its parent directory as well, so that this should
not be a problem. If the desired parent directory doesn't exist either, you will need to create it first, using
root privileges if the grandparent directory isn't writable. So the process might look like this:

root# mkdir /usr/local/pgsql
root# chown postgres /usr/local/pgsql
root# su postgres
postgres$ initdb -D /usr/local/pgsql/data

initdb will refuse to run if the data directory exists and already contains files; this is to prevent
accidentally overwriting an existing installation.

Because the data directory contains all the data stored in the database, it is essential that it be secured from
unauthorized access. initdb therefore revokes access permissions from everyone but the PostgreSQL
user, and optionally, group. Group access, when enabled, is read-only. This allows an unprivileged user
in the same group as the cluster owner to take a backup of the cluster data or perform other operations
that only require read access.

Note that enabling or disabling group access on an existing cluster requires the cluster to be shut down
and the appropriate mode to be set on all directories and files before restarting PostgreSQL. Otherwise,
a mix of modes might exist in the data directory. For clusters that allow access only by the owner, the
appropriate modes are 0700 for directories and 0600 for files. For clusters that also allow reads by the
group, the appropriate modes are 0750 for directories and 0640 for files.

However, while the directory contents are secure, the default client authentication setup allows any local
user to connect to the database and even become the database superuser. If you do not trust other local
users, we recommend you use one of initdb's -W, --pwprompt or --pwfile options to assign a
password to the database superuser. Also, specify -A md5 or -A password so that the default trust
authentication mode is not used; or modify the generated pg_hba.conf file after running initdb,
but before you start the server for the first time. (Other reasonable approaches include using peer
authentication or file system permissions to restrict connections. See Chapter 20 for more information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a different
locale for the database; more information about that can be found in Section 23.1. The default sort order
used within the particular database cluster is set by initdb, and while you can create new databases
using different sort order, the order used in the template databases that initdb creates cannot be changed
without dropping and recreating them. There is also a performance impact for using locales other than C
or POSIX. Therefore, it is important to make this choice correctly the first time.

initdb also sets the default character set encoding for the database cluster. Normally this should be
chosen to match the locale setting. For details see Section 23.3.

Non-C and non-POSIX locales rely on the operating system's collation library for character set ordering.
This controls the ordering of keys stored in indexes. For this reason, a cluster cannot switch to an
incompatible collation library version, either through snapshot restore, binary streaming replication, a
different operating system, or an operating system upgrade.

18.2.1. Use of Secondary File Systems

530

Server Setup and Operation

Many installations create their database clusters on file systems (volumes) other than the machine's
“root” volume. If you choose to do this, it is not advisable to try to use the secondary volume's topmost
directory (mount point) as the data directory. Best practice is to create a directory within the mount-point
directory that is owned by the PostgreSQL user, and then create the data directory within that. This avoids
permissions problems, particularly for operations such as pg_upgrade, and it also ensures clean failures
if the secondary volume is taken offline.

18.2.2. Use of Network File Systems
Many installations create their database clusters on network file systems. Sometimes this is done via NFS,
or by using a Network Attached Storage (NAS) device that uses NFS internally. PostgreSQL does nothing
special for NFS file systems, meaning it assumes NFS behaves exactly like locally-connected drives. If
the client or server NFS implementation does not provide standard file system semantics, this can cause
reliability problems (see https://www.time-travellers.org/shane/papers/NFS_considered_harmful.html).
Specifically, delayed (asynchronous) writes to the NFS server can cause data corruption problems. If
possible, mount the NFS file system synchronously (without caching) to avoid this hazard. Also, soft-
mounting the NFS file system is not recommended.

Storage Area Networks (SAN) typically use communication protocols other than NFS, and may or may
not be subject to hazards of this sort. It's advisable to consult the vendor's documentation concerning data
consistency guarantees. PostgreSQL cannot be more reliable than the file system it's using.

18.3. Starting the Database Server
Before anyone can access the database, you must start the database server. The database server program
is called postgres. The postgres program must know where to find the data it is supposed to use.
This is done with the -D option. Thus, the simplest way to start the server is:

$ postgres -D /usr/local/pgsql/data

which will leave the server running in the foreground. This must be done while logged into the PostgreSQL
user account. Without -D, the server will try to use the data directory named by the environment variable
PGDATA. If that variable is not provided either, it will fail.

Normally it is better to start postgres in the background. For this, use the usual Unix shell syntax:

$ postgres -D /usr/local/pgsql/data >logfile 2>&1 &

It is important to store the server's stdout and stderr output somewhere, as shown above. It will help for
auditing purposes and to diagnose problems. (See Section 24.3 for a more thorough discussion of log file
handling.)

The postgres program also takes a number of other command-line options. For more information, see
the postgres reference page and Chapter 19 below.

This shell syntax can get tedious quickly. Therefore the wrapper program pg_ctl is provided to simplify
some tasks. For example:

pg_ctl start -l logfile

will start the server in the background and put the output into the named log file. The -D option has the
same meaning here as for postgres. pg_ctl is also capable of stopping the server.

531

https://www.time-travellers.org/shane/papers/NFS_considered_harmful.html

Server Setup and Operation

Normally, you will want to start the database server when the computer boots. Autostart scripts are
operating-system-specific. There are a few distributed with PostgreSQL in the contrib/start-
scripts directory. Installing one will require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have a
file /etc/rc.local or /etc/rc.d/rc.local. Others use init.d or rc.d directories. Whatever
you do, the server must be run by the PostgreSQL user account and not by root or any other user. Therefore
you probably should form your commands using su postgres -c '...'. For example:

su postgres -c 'pg_ctl start -D /usr/local/pgsql/data -l serverlog'

Here are a few more operating-system-specific suggestions. (In each case be sure to use the proper
installation directory and user name where we show generic values.)

• For FreeBSD, look at the file contrib/start-scripts/freebsd in the PostgreSQL source
distribution.

• On OpenBSD, add the following lines to the file /etc/rc.local:

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsql/bin/
postgres]; then
 su -l postgres -c '/usr/local/pgsql/bin/pg_ctl start -s -l /var/
postgresql/log -D /usr/local/pgsql/data'
 echo -n ' postgresql'
fi

• On Linux systems either add

/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/
data

to /etc/rc.d/rc.local or /etc/rc.local or look at the file contrib/start-scripts/
linux in the PostgreSQL source distribution.

When using systemd, you can use the following service unit file (e.g., at /etc/systemd/system/
postgresql.service):

[Unit]
Description=PostgreSQL database server
Documentation=man:postgres(1)

[Service]
Type=notify
User=postgres
ExecStart=/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data
ExecReload=/bin/kill -HUP $MAINPID
KillMode=mixed
KillSignal=SIGINT
TimeoutSec=0

[Install]
WantedBy=multi-user.target

532

Server Setup and Operation

Using Type=notify requires that the server binary was built with configure --with-
systemd.

Consider carefully the timeout setting. systemd has a default timeout of 90 seconds as of this writing and
will kill a process that does not notify readiness within that time. But a PostgreSQL server that might
have to perform crash recovery at startup could take much longer to become ready. The suggested value
of 0 disables the timeout logic.

• On NetBSD, use either the FreeBSD or Linux start scripts, depending on preference.

• On Solaris, create a file called /etc/init.d/postgresql that contains the following line:

su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /
usr/local/pgsql/data"

Then, create a symbolic link to it in /etc/rc3.d as S99postgresql.

While the server is running, its PID is stored in the file postmaster.pid in the data directory. This
is used to prevent multiple server instances from running in the same data directory and can also be used
for shutting down the server.

18.3.1. Server Start-up Failures
There are several common reasons the server might fail to start. Check the server's log file, or start it by
hand (without redirecting standard output or standard error) and see what error messages appear. Below
we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 address "127.0.0.1": Address already in use
HINT: Is another postmaster already running on port 5432? If not,
 wait a few seconds and retry.
FATAL: could not create any TCP/IP sockets

This usually means just what it suggests: you tried to start another server on the same port where one is
already running. However, if the kernel error message is not Address already in use or some
variant of that, there might be a different problem. For example, trying to start a server on a reserved port
number might draw something like:

$ postgres -p 666
LOG: could not bind IPv4 address "127.0.0.1": Permission denied
HINT: Is another postmaster already running on port 666? If not, wait
 a few seconds and retry.
FATAL: could not create any TCP/IP sockets

A message like:

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget(key=5440001, size=4011376640,
 03600).

probably means your kernel's limit on the size of shared memory is smaller than the work area PostgreSQL
is trying to create (4011376640 bytes in this example). Or it could mean that you do not have System-

533

Server Setup and Operation

V-style shared memory support configured into your kernel at all. As a temporary workaround, you can
try starting the server with a smaller-than-normal number of buffers (shared_buffers). You will eventually
want to reconfigure your kernel to increase the allowed shared memory size. You might also see this
message when trying to start multiple servers on the same machine, if their total space requested exceeds
the kernel limit.

An error like:

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget(5440126, 17, 03600).

does not mean you've run out of disk space. It means your kernel's limit on the number of System
V semaphores is smaller than the number PostgreSQL wants to create. As above, you might be able
to work around the problem by starting the server with a reduced number of allowed connections
(max_connections), but you'll eventually want to increase the kernel limit.

If you get an “illegal system call” error, it is likely that shared memory or semaphores are not supported
in your kernel at all. In that case your only option is to reconfigure the kernel to enable these features.

Details about configuring System V IPC facilities are given in Section 18.4.1.

18.3.2. Client Connection Problems
Although the error conditions possible on the client side are quite varied and application-dependent, a few
of them might be directly related to how the server was started. Conditions other than those shown below
should be documented with the respective client application.

psql: could not connect to server: Connection refused
 Is the server running on host "server.joe.com" and accepting
 TCP/IP connections on port 5432?

This is the generic “I couldn't find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure the server to allow TCP/IP
connections.

Alternatively, you'll get this when attempting Unix-domain socket communication to a local server:

psql: could not connect to server: No such file or directory
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

The last line is useful in verifying that the client is trying to connect to the right place. If there is in fact
no server running there, the kernel error message will typically be either Connection refused or No
such file or directory, as illustrated. (It is important to realize that Connection refused
in this context does not mean that the server got your connection request and rejected it. That case will
produce a different message, as shown in Section 20.15.) Other error messages such as Connection
timed out might indicate more fundamental problems, like lack of network connectivity.

18.4. Managing Kernel Resources
PostgreSQL can sometimes exhaust various operating system resource limits, especially when multiple
copies of the server are running on the same system, or in very large installations. This section explains

534

Server Setup and Operation

the kernel resources used by PostgreSQL and the steps you can take to resolve problems related to kernel
resource consumption.

18.4.1. Shared Memory and Semaphores
PostgreSQL requires the operating system to provide inter-process communication (IPC) features,
specifically shared memory and semaphores. Unix-derived systems typically provide “System V” IPC,
“POSIX” IPC, or both. Windows has its own implementation of these features and is not discussed here.

The complete lack of these facilities is usually manifested by an “Illegal system call” error upon server
start. In that case there is no alternative but to reconfigure your kernel. PostgreSQL won't work without
them. This situation is rare, however, among modern operating systems.

Upon starting the server, PostgreSQL normally allocates a very small amount of System V shared memory,
as well as a much larger amount of POSIX (mmap) shared memory. In addition a significant number of
semaphores, which can be either System V or POSIX style, are created at server startup. Currently, POSIX
semaphores are used on Linux and FreeBSD systems while other platforms use System V semaphores.

Note

Prior to PostgreSQL 9.3, only System V shared memory was used, so the amount of System V
shared memory required to start the server was much larger. If you are running an older version of
the server, please consult the documentation for your server version.

System V IPC features are typically constrained by system-wide allocation limits. When PostgreSQL
exceeds one of these limits, the server will refuse to start and should leave an instructive error message
describing the problem and what to do about it. (See also Section 18.3.1.) The relevant kernel parameters
are named consistently across different systems; Table 18.1 gives an overview. The methods to set them,
however, vary. Suggestions for some platforms are given below.

Table 18.1. System V IPC Parameters

Name Description Values needed to run one
PostgreSQL instance

SHMMAX Maximum size of shared memory
segment (bytes)

at least 1kB, but the default is
usually much higher

SHMMIN Minimum size of shared memory
segment (bytes)

1

SHMALL Total amount of shared memory
available (bytes or pages)

same as SHMMAX if
bytes, or ceil(SHMMAX/
PAGE_SIZE) if pages, plus
room for other applications

SHMSEG Maximum number of shared
memory segments per process

only 1 segment is needed, but the
default is much higher

SHMMNI Maximum number of shared
memory segments system-wide

like SHMSEG plus room for other
applications

SEMMNI Maximum number of semaphore
identifiers (i.e., sets)

at least
ceil((max_connections
+

535

Server Setup and Operation

Name Description Values needed to run one
PostgreSQL instance

autovacuum_max_workers
+ max_worker_processes
+ 5) / 16) plus room for other
applications

SEMMNS Maximum number of semaphores
system-wide

ceil((max_connections
+
autovacuum_max_workers
+ max_worker_processes
+ 5) / 16) * 17 plus room
for other applications

SEMMSL Maximum number of semaphores
per set

at least 17

SEMMAP Number of entries in semaphore
map

see text

SEMVMX Maximum value of semaphore at least 1000 (The default is
often 32767; do not change unless
necessary)

PostgreSQL requires a few bytes of System V shared memory (typically 48 bytes, on 64-bit platforms) for
each copy of the server. On most modern operating systems, this amount can easily be allocated. However,
if you are running many copies of the server, or if other applications are also using System V shared
memory, it may be necessary to increase SHMALL, which is the total amount of System V shared memory
system-wide. Note that SHMALL is measured in pages rather than bytes on many systems.

Less likely to cause problems is the minimum size for shared memory segments (SHMMIN), which should
be at most approximately 32 bytes for PostgreSQL (it is usually just 1). The maximum number of segments
system-wide (SHMMNI) or per-process (SHMSEG) are unlikely to cause a problem unless your system has
them set to zero.

When using System V semaphores, PostgreSQL uses one semaphore per allowed connection
(max_connections), allowed autovacuum worker process (autovacuum_max_workers) and allowed
background process (max_worker_processes), in sets of 16. Each such set will also contain a 17th
semaphore which contains a “magic number”, to detect collision with semaphore sets used by
other applications. The maximum number of semaphores in the system is set by SEMMNS, which
consequently must be at least as high as max_connections plus autovacuum_max_workers
plus max_worker_processes, plus one extra for each 16 allowed connections plus workers (see the
formula in Table 18.1). The parameter SEMMNI determines the limit on the number of semaphore sets that
can exist on the system at one time. Hence this parameter must be at least ceil((max_connections
+ autovacuum_max_workers + max_worker_processes + 5) / 16). Lowering the
number of allowed connections is a temporary workaround for failures, which are usually confusingly
worded “No space left on device”, from the function semget.

In some cases it might also be necessary to increase SEMMAP to be at least on the order of SEMMNS. If
the system has this parameter (many do not), it defines the size of the semaphore resource map, in which
each contiguous block of available semaphores needs an entry. When a semaphore set is freed it is either
added to an existing entry that is adjacent to the freed block or it is registered under a new map entry. If
the map is full, the freed semaphores get lost (until reboot). Fragmentation of the semaphore space could
over time lead to fewer available semaphores than there should be.

Various other settings related to “semaphore undo”, such as SEMMNU and SEMUME, do not affect
PostgreSQL.

536

Server Setup and Operation

When using POSIX semaphores, the number of semaphores needed is the same as for System V,
that is one semaphore per allowed connection (max_connections), allowed autovacuum worker process
(autovacuum_max_workers) and allowed background process (max_worker_processes). On the platforms
where this option is preferred, there is no specific kernel limit on the number of POSIX semaphores.

AIX

At least as of version 5.1, it should not be necessary to do any special configuration for such parameters
as SHMMAX, as it appears this is configured to allow all memory to be used as shared memory. That
is the sort of configuration commonly used for other databases such as DB/2.

It might, however, be necessary to modify the global ulimit information in /etc/security/
limits, as the default hard limits for file sizes (fsize) and numbers of files (nofiles) might
be too low.

FreeBSD

The default IPC settings can be changed using the sysctl or loader interfaces. The following
parameters can be set using sysctl:

sysctl kern.ipc.shmall=32768
sysctl kern.ipc.shmmax=134217728

To make these settings persist over reboots, modify /etc/sysctl.conf.

These semaphore-related settings are read-only as far as sysctl is concerned, but can be set in /
boot/loader.conf:

kern.ipc.semmni=256
kern.ipc.semmns=512

After modifying that file, a reboot is required for the new settings to take effect.

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

If running in FreeBSD jails by enabling sysctl's security.jail.sysvipc_allowed,
postmasters running in different jails should be run by different operating system users. This improves
security because it prevents non-root users from interfering with shared memory or semaphores in
different jails, and it allows the PostgreSQL IPC cleanup code to function properly. (In FreeBSD 6.0
and later the IPC cleanup code does not properly detect processes in other jails, preventing the running
of postmasters on the same port in different jails.)

FreeBSD versions before 4.0 work like old OpenBSD (see below).

NetBSD

In NetBSD 5.0 and later, IPC parameters can be adjusted using sysctl, for example:

sysctl -w kern.ipc.semmni=100

To make these settings persist over reboots, modify /etc/sysctl.conf.

537

Server Setup and Operation

You will usually want to increase kern.ipc.semmni and kern.ipc.semmns, as NetBSD's
default settings for these are uncomfortably small.

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

NetBSD versions before 5.0 work like old OpenBSD (see below), except that kernel parameters should
be set with the keyword options not option.

OpenBSD

In OpenBSD 3.3 and later, IPC parameters can be adjusted using sysctl, for example:

sysctl kern.seminfo.semmni=100

To make these settings persist over reboots, modify /etc/sysctl.conf.

You will usually want to increase kern.seminfo.semmni and kern.seminfo.semmns, as
OpenBSD's default settings for these are uncomfortably small.

In older OpenBSD versions, you will need to build a custom kernel to change the IPC parameters.
Make sure that the options SYSVSHM and SYSVSEM are enabled, too. (They are by default.) The
following shows an example of how to set the various parameters in the kernel configuration file:

option SYSVSHM
option SHMMAXPGS=4096
option SHMSEG=256

option SYSVSEM
option SEMMNI=256
option SEMMNS=512
option SEMMNU=256

HP-UX

The default settings tend to suffice for normal installations. On HP-UX 10, the factory default for
SEMMNS is 128, which might be too low for larger database sites.

IPC parameters can be set in the System Administration Manager (SAM) under Kernel Configuration
→ Configurable Parameters. Choose Create A New Kernel when you're done.

Linux

The default maximum segment size is 32 MB, and the default maximum total size is 2097152 pages.
A page is almost always 4096 bytes except in unusual kernel configurations with “huge pages” (use
getconf PAGE_SIZE to verify).

The shared memory size settings can be changed via the sysctl interface. For example, to allow
16 GB:

$ sysctl -w kernel.shmmax=17179869184
$ sysctl -w kernel.shmall=4194304

538

Server Setup and Operation

In addition these settings can be preserved between reboots in the file /etc/sysctl.conf. Doing
that is highly recommended.

Ancient distributions might not have the sysctl program, but equivalent changes can be made by
manipulating the /proc file system:

$ echo 17179869184 >/proc/sys/kernel/shmmax
$ echo 4194304 >/proc/sys/kernel/shmall

The remaining defaults are quite generously sized, and usually do not require changes.

macOS

The recommended method for configuring shared memory in macOS is to create a file named /etc/
sysctl.conf, containing variable assignments such as:

kern.sysv.shmmax=4194304
kern.sysv.shmmin=1
kern.sysv.shmmni=32
kern.sysv.shmseg=8
kern.sysv.shmall=1024

Note that in some macOS versions, all five shared-memory parameters must be set in /etc/
sysctl.conf, else the values will be ignored.

Beware that recent releases of macOS ignore attempts to set SHMMAX to a value that isn't an exact
multiple of 4096.

SHMALL is measured in 4 kB pages on this platform.

In older macOS versions, you will need to reboot to have changes in the shared memory parameters
take effect. As of 10.5 it is possible to change all but SHMMNI on the fly, using sysctl. But it's still
best to set up your preferred values via /etc/sysctl.conf, so that the values will be kept across
reboots.

The file /etc/sysctl.conf is only honored in macOS 10.3.9 and later. If you are running a
previous 10.3.x release, you must edit the file /etc/rc and change the values in the following
commands:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

Note that /etc/rc is usually overwritten by macOS system updates, so you should expect to have
to redo these edits after each update.

In macOS 10.2 and earlier, instead edit these commands in the file /System/Library/
StartupItems/SystemTuning/SystemTuning.

Solaris 2.6 to 2.9 (Solaris 6 to Solaris 9)

The relevant settings can be changed in /etc/system, for example:

539

Server Setup and Operation

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=256
set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semmsl=32

You need to reboot for the changes to take effect. See also http://sunsite.uakom.sk/sunworldonline/
swol-09-1997/swol-09-insidesolaris.html for information on shared memory under older versions of
Solaris.

Solaris 2.10 (Solaris 10) and later
OpenSolaris

In Solaris 10 and later, and OpenSolaris, the default shared memory and semaphore settings are good
enough for most PostgreSQL applications. Solaris now defaults to a SHMMAX of one-quarter of system
RAM. To further adjust this setting, use a project setting associated with the postgres user. For
example, run the following as root:

projadd -c "PostgreSQL DB User" -K "project.max-shm-
memory=(privileged,8GB,deny)" -U postgres -G postgres user.postgres

This command adds the user.postgres project and sets the shared memory maximum for the
postgres user to 8GB, and takes effect the next time that user logs in, or when you restart
PostgreSQL (not reload). The above assumes that PostgreSQL is run by the postgres user in the
postgres group. No server reboot is required.

Other recommended kernel setting changes for database servers which will have a large number of
connections are:

project.max-shm-ids=(priv,32768,deny)
project.max-sem-ids=(priv,4096,deny)
project.max-msg-ids=(priv,4096,deny)

Additionally, if you are running PostgreSQL inside a zone, you may need to raise the zone resource
usage limits as well. See "Chapter2: Projects and Tasks" in the System Administrator's Guide for more
information on projects and prctl.

18.4.2. systemd RemoveIPC
If systemd is in use, some care must be taken that IPC resources (shared memory and semaphores) are not
prematurely removed by the operating system. This is especially of concern when installing PostgreSQL
from source. Users of distribution packages of PostgreSQL are less likely to be affected, as the postgres
user is then normally created as a system user.

The setting RemoveIPC in logind.conf controls whether IPC objects are removed when a user fully
logs out. System users are exempt. This setting defaults to on in stock systemd, but some operating system
distributions default it to off.

540

http://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html
http://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html

Server Setup and Operation

A typical observed effect when this setting is on is that the semaphore objects used by a PostgreSQL server
are removed at apparently random times, leading to the server crashing with log messages like

LOG: semctl(1234567890, 0, IPC_RMID, ...) failed: Invalid argument

Different types of IPC objects (shared memory vs. semaphores, System V vs. POSIX) are treated slightly
differently by systemd, so one might observe that some IPC resources are not removed in the same way
as others. But it is not advisable to rely on these subtle differences.

A “user logging out” might happen as part of a maintenance job or manually when an administrator logs
in as the postgres user or something similar, so it is hard to prevent in general.

What is a “system user” is determined at systemd compile time from the SYS_UID_MAX setting in /
etc/login.defs.

Packaging and deployment scripts should be careful to create the postgres user as a system user by
using useradd -r, adduser --system, or equivalent.

Alternatively, if the user account was created incorrectly or cannot be changed, it is recommended to set

RemoveIPC=no

in /etc/systemd/logind.conf or another appropriate configuration file.

Caution

At least one of these two things has to be ensured, or the PostgreSQL server will be very unreliable.

18.4.3. Resource Limits
Unix-like operating systems enforce various kinds of resource limits that might interfere with the operation
of your PostgreSQL server. Of particular importance are limits on the number of processes per user, the
number of open files per process, and the amount of memory available to each process. Each of these
have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be changed by the user
up to the hard limit. The hard limit can only be changed by the root user. The system call setrlimit
is responsible for setting these parameters. The shell's built-in command ulimit (Bourne shells) or
limit (csh) is used to control the resource limits from the command line. On BSD-derived systems the
file /etc/login.conf controls the various resource limits set during login. See the operating system
documentation for details. The relevant parameters are maxproc, openfiles, and datasize. For
example:

default:\
...
 :datasize-cur=256M:\
 :maxproc-cur=256:\
 :openfiles-cur=256:\
...

(-cur is the soft limit. Append -max to set the hard limit.)

Kernels can also have system-wide limits on some resources.

541

Server Setup and Operation

• On Linux /proc/sys/fs/file-max determines the maximum number of open files that the kernel
will support. It can be changed by writing a different number into the file or by adding an assignment
in /etc/sysctl.conf. The maximum limit of files per process is fixed at the time the kernel is
compiled; see /usr/src/linux/Documentation/proc.txt for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many
processes as allowed connections, in addition to what you need for the rest of your system. This is usually
not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users to
coexist on a machine without using an inappropriate fraction of the system resources. If you run many
servers on a machine this is perhaps what you want, but on dedicated servers you might want to raise
this limit.

On the other side of the coin, some systems allow individual processes to open large numbers of
files; if more than a few processes do so then the system-wide limit can easily be exceeded. If you
find this happening, and you do not want to alter the system-wide limit, you can set PostgreSQL's
max_files_per_process configuration parameter to limit the consumption of open files.

18.4.4. Linux Memory Overcommit
In Linux 2.4 and later, the default virtual memory behavior is not optimal for PostgreSQL. Because of
the way that the kernel implements memory overcommit, the kernel might terminate the PostgreSQL
postmaster (the master server process) if the memory demands of either PostgreSQL or another process
cause the system to run out of virtual memory.

If this happens, you will see a kernel message that looks like this (consult your system documentation and
configuration on where to look for such a message):

Out of Memory: Killed process 12345 (postgres).

This indicates that the postgres process has been terminated due to memory pressure. Although existing
database connections will continue to function normally, no new connections will be accepted. To recover,
PostgreSQL will need to be restarted.

One way to avoid this problem is to run PostgreSQL on a machine where you can be sure that other
processes will not run the machine out of memory. If memory is tight, increasing the swap space of the
operating system can help avoid the problem, because the out-of-memory (OOM) killer is invoked only
when physical memory and swap space are exhausted.

If PostgreSQL itself is the cause of the system running out of memory, you can avoid the problem
by changing your configuration. In some cases, it may help to lower memory-related configuration
parameters, particularly shared_buffers and work_mem. In other cases, the problem may be caused
by allowing too many connections to the database server itself. In many cases, it may be better to reduce
max_connections and instead make use of external connection-pooling software.

On Linux 2.6 and later, it is possible to modify the kernel's behavior so that it will not “overcommit”
memory. Although this setting will not prevent the OOM killer1 from being invoked altogether, it will
lower the chances significantly and will therefore lead to more robust system behavior. This is done by
selecting strict overcommit mode via sysctl:

1 https://lwn.net/Articles/104179/

542

https://lwn.net/Articles/104179/
https://lwn.net/Articles/104179/

Server Setup and Operation

sysctl -w vm.overcommit_memory=2

or placing an equivalent entry in /etc/sysctl.conf. You might also wish to modify the related setting
vm.overcommit_ratio. For details see the kernel documentation file https://www.kernel.org/doc/
Documentation/vm/overcommit-accounting.

Another approach, which can be used with or without altering vm.overcommit_memory, is to set the
process-specific OOM score adjustment value for the postmaster process to -1000, thereby guaranteeing
it will not be targeted by the OOM killer. The simplest way to do this is to execute

echo -1000 > /proc/self/oom_score_adj

in the postmaster's startup script just before invoking the postmaster. Note that this action must be done
as root, or it will have no effect; so a root-owned startup script is the easiest place to do it. If you do this,
you should also set these environment variables in the startup script before invoking the postmaster:

export PG_OOM_ADJUST_FILE=/proc/self/oom_score_adj
export PG_OOM_ADJUST_VALUE=0

These settings will cause postmaster child processes to run with the normal OOM score adjustment
of zero, so that the OOM killer can still target them at need. You could use some other value for
PG_OOM_ADJUST_VALUE if you want the child processes to run with some other OOM score adjustment.
(PG_OOM_ADJUST_VALUE can also be omitted, in which case it defaults to zero.) If you do not set
PG_OOM_ADJUST_FILE, the child processes will run with the same OOM score adjustment as the
postmaster, which is unwise since the whole point is to ensure that the postmaster has a preferential setting.

Older Linux kernels do not offer /proc/self/oom_score_adj, but may have a previous version of
the same functionality called /proc/self/oom_adj. This works the same except the disable value
is -17 not -1000.

Note

Some vendors' Linux 2.4 kernels are reported to have early versions of the 2.6 overcommit
sysctl parameter. However, setting vm.overcommit_memory to 2 on a 2.4 kernel that does
not have the relevant code will make things worse, not better. It is recommended that you inspect
the actual kernel source code (see the function vm_enough_memory in the file mm/mmap.c)
to verify what is supported in your kernel before you try this in a 2.4 installation. The presence
of the overcommit-accounting documentation file should not be taken as evidence that the
feature is there. If in any doubt, consult a kernel expert or your kernel vendor.

18.4.5. Linux Huge Pages
Using huge pages reduces overhead when using large contiguous chunks of memory, as PostgreSQL does,
particularly when using large values of shared_buffers. To use this feature in PostgreSQL you need a
kernel with CONFIG_HUGETLBFS=y and CONFIG_HUGETLB_PAGE=y. You will also have to adjust
the kernel setting vm.nr_hugepages. To estimate the number of huge pages needed, start PostgreSQL
without huge pages enabled and check the postmaster's anonymous shared memory segment size, as well
as the system's huge page size, using the /proc file system. This might look like:

$ head -1 $PGDATA/postmaster.pid

543

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Server Setup and Operation

4170
$ pmap 4170 | awk '/rw-s/ && /zero/ {print $2}'
6490428K
$ grep ^Hugepagesize /proc/meminfo
Hugepagesize: 2048 kB

6490428 / 2048 gives approximately 3169.154, so in this example we need at least 3170 huge pages,
which we can set with:

$ sysctl -w vm.nr_hugepages=3170

A larger setting would be appropriate if other programs on the machine also need huge pages. Don't forget
to add this setting to /etc/sysctl.conf so that it will be reapplied after reboots.

Sometimes the kernel is not able to allocate the desired number of huge pages immediately, so it might be
necessary to repeat the command or to reboot. (Immediately after a reboot, most of the machine's memory
should be available to convert into huge pages.) To verify the huge page allocation situation, use:

$ grep Huge /proc/meminfo

It may also be necessary to give the database server's operating system user permission to use huge pages
by setting vm.hugetlb_shm_group via sysctl, and/or give permission to lock memory with ulimit
-l.

The default behavior for huge pages in PostgreSQL is to use them when possible and to fall back
to normal pages when failing. To enforce the use of huge pages, you can set huge_pages to on in
postgresql.conf. Note that with this setting PostgreSQL will fail to start if not enough huge pages
are available.

For a detailed description of the Linux huge pages feature have a look at https://www.kernel.org/doc/
Documentation/vm/hugetlbpage.txt.

18.5. Shutting Down the Server
There are several ways to shut down the database server. You control the type of shutdown by sending
different signals to the master postgres process.

SIGTERM

This is the Smart Shutdown mode. After receiving SIGTERM, the server disallows new connections,
but lets existing sessions end their work normally. It shuts down only after all of the sessions terminate.
If the server is in online backup mode, it additionally waits until online backup mode is no longer
active. While backup mode is active, new connections will still be allowed, but only to superusers (this
exception allows a superuser to connect to terminate online backup mode). If the server is in recovery
when a smart shutdown is requested, recovery and streaming replication will be stopped only after
all regular sessions have terminated.

SIGINT

This is the Fast Shutdown mode. The server disallows new connections and sends all existing server
processes SIGTERM, which will cause them to abort their current transactions and exit promptly. It
then waits for all server processes to exit and finally shuts down. If the server is in online backup
mode, backup mode will be terminated, rendering the backup useless.

544

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

Server Setup and Operation

SIGQUIT

This is the Immediate Shutdown mode. The server will send SIGQUIT to all child processes and wait
for them to terminate. If any do not terminate within 5 seconds, they will be sent SIGKILL. The
master server process exits as soon as all child processes have exited, without doing normal database
shutdown processing. This will lead to recovery (by replaying the WAL log) upon next start-up. This
is recommended only in emergencies.

The pg_ctl program provides a convenient interface for sending these signals to shut down the server.
Alternatively, you can send the signal directly using kill on non-Windows systems. The PID of the
postgres process can be found using the ps program, or from the file postmaster.pid in the data
directory. For example, to do a fast shutdown:

$ kill -INT `head -1 /usr/local/pgsql/data/postmaster.pid`

Important

It is best not to use SIGKILL to shut down the server. Doing so will prevent the server from
releasing shared memory and semaphores, which might then have to be done manually before a
new server can be started. Furthermore, SIGKILL kills the postgres process without letting it
relay the signal to its subprocesses, so it will be necessary to kill the individual subprocesses by
hand as well.

To terminate an individual session while allowing other sessions to continue, use
pg_terminate_backend() (see Table 9.78) or send a SIGTERM signal to the child process
associated with the session.

18.6. Upgrading a PostgreSQL Cluster
This section discusses how to upgrade your database data from one PostgreSQL release to a newer one.

Current PostgreSQL version numbers consist of a major and a minor version number. For example, in the
version number 10.1, the 10 is the major version number and the 1 is the minor version number, meaning
this would be the first minor release of the major release 10. For releases before PostgreSQL version 10.0,
version numbers consist of three numbers, for example, 9.5.3. In those cases, the major version consists
of the first two digit groups of the version number, e.g., 9.5, and the minor version is the third number,
e.g., 3, meaning this would be the third minor release of the major release 9.5.

Minor releases never change the internal storage format and are always compatible with earlier and later
minor releases of the same major version number. For example, version 10.1 is compatible with version
10.0 and version 10.6. Similarly, for example, 9.5.3 is compatible with 9.5.0, 9.5.1, and 9.5.6. To update
between compatible versions, you simply replace the executables while the server is down and restart the
server. The data directory remains unchanged — minor upgrades are that simple.

For major releases of PostgreSQL, the internal data storage format is subject to change, thus complicating
upgrades. The traditional method for moving data to a new major version is to dump and reload the
database, though this can be slow. A faster method is pg_upgrade. Replication methods are also available,
as discussed below.

New major versions also typically introduce some user-visible incompatibilities, so application
programming changes might be required. All user-visible changes are listed in the release notes

545

Server Setup and Operation

(Appendix E); pay particular attention to the section labeled "Migration". If you are upgrading across
several major versions, be sure to read the release notes for each intervening version.

Cautious users will want to test their client applications on the new version before switching over fully;
therefore, it's often a good idea to set up concurrent installations of old and new versions. When testing a
PostgreSQL major upgrade, consider the following categories of possible changes:

Administration

The capabilities available for administrators to monitor and control the server often change and
improve in each major release.

SQL

Typically this includes new SQL command capabilities and not changes in behavior, unless
specifically mentioned in the release notes.

Library API

Typically libraries like libpq only add new functionality, again unless mentioned in the release notes.

System Catalogs

System catalog changes usually only affect database management tools.

Server C-language API

This involves changes in the backend function API, which is written in the C programming language.
Such changes affect code that references backend functions deep inside the server.

18.6.1. Upgrading Data via pg_dumpall
One upgrade method is to dump data from one major version of PostgreSQL and reload it in another —
to do this, you must use a logical backup tool like pg_dumpall; file system level backup methods will
not work. (There are checks in place that prevent you from using a data directory with an incompatible
version of PostgreSQL, so no great harm can be done by trying to start the wrong server version on a
data directory.)

It is recommended that you use the pg_dump and pg_dumpall programs from the newer version of
PostgreSQL, to take advantage of enhancements that might have been made in these programs. Current
releases of the dump programs can read data from any server version back to 7.0.

These instructions assume that your existing installation is under the /usr/local/pgsql directory,
and that the data area is in /usr/local/pgsql/data. Substitute your paths appropriately.

1. If making a backup, make sure that your database is not being updated. This does not affect the
integrity of the backup, but the changed data would of course not be included. If necessary, edit the
permissions in the file /usr/local/pgsql/data/pg_hba.conf (or equivalent) to disallow
access from everyone except you. See Chapter 20 for additional information on access control.

 To back up your database installation, type:

pg_dumpall > outputfile

To make the backup, you can use the pg_dumpall command from the version you are currently
running; see Section 25.1.2 for more details. For best results, however, try to use the pg_dumpall

546

Server Setup and Operation

command from PostgreSQL 11.2, since this version contains bug fixes and improvements over older
versions. While this advice might seem idiosyncratic since you haven't installed the new version yet,
it is advisable to follow it if you plan to install the new version in parallel with the old version. In that
case you can complete the installation normally and transfer the data later. This will also decrease
the downtime.

2. Shut down the old server:

pg_ctl stop

On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that this works:

/etc/rc.d/init.d/postgresql stop

See Chapter 18 for details about starting and stopping the server.

3. If restoring from backup, rename or delete the old installation directory if it is not version-specific. It
is a good idea to rename the directory, rather than delete it, in case you have trouble and need to revert
to it. Keep in mind the directory might consume significant disk space. To rename the directory, use
a command like this:

mv /usr/local/pgsql /usr/local/pgsql.old

(Be sure to move the directory as a single unit so relative paths remain unchanged.)

4. Install the new version of PostgreSQL as outlined in Section 16.4.

5. Create a new database cluster if needed. Remember that you must execute these commands while
logged in to the special database user account (which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

6. Restore your previous pg_hba.conf and any postgresql.conf modifications.

7. Start the database server, again using the special database user account:

/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

8. Finally, restore your data from backup with:

/usr/local/pgsql/bin/psql -d postgres -f outputfile

using the new psql.

The least downtime can be achieved by installing the new server in a different directory and running both
the old and the new servers in parallel, on different ports. Then you can use something like:

pg_dumpall -p 5432 | psql -d postgres -p 5433

to transfer your data.

547

Server Setup and Operation

18.6.2. Upgrading Data via pg_upgrade
The pg_upgrade module allows an installation to be migrated in-place from one major PostgreSQL
version to another. Upgrades can be performed in minutes, particularly with --link mode. It requires
steps similar to pg_dumpall above, e.g. starting/stopping the server, running initdb. The pg_upgrade
documentation outlines the necessary steps.

18.6.3. Upgrading Data via Replication
It is also possible to use logical replication methods to create a standby server with the updated version
of PostgreSQL. This is possible because logical replication supports replication between different major
versions of PostgreSQL. The standby can be on the same computer or a different computer. Once it has
synced up with the master server (running the older version of PostgreSQL), you can switch masters and
make the standby the master and shut down the older database instance. Such a switch-over results in only
several seconds of downtime for an upgrade.

This method of upgrading can be performed using the built-in logical replication facilities as well as using
external logical replication systems such as pglogical, Slony, Londiste, and Bucardo.

18.7. Preventing Server Spoofing
While the server is running, it is not possible for a malicious user to take the place of the normal database
server. However, when the server is down, it is possible for a local user to spoof the normal server by
starting their own server. The spoof server could read passwords and queries sent by clients, but could
not return any data because the PGDATA directory would still be secure because of directory permissions.
Spoofing is possible because any user can start a database server; a client cannot identify an invalid server
unless it is specially configured.

One way to prevent spoofing of local connections is to use a Unix domain socket directory
(unix_socket_directories) that has write permission only for a trusted local user. This prevents a malicious
user from creating their own socket file in that directory. If you are concerned that some applications
might still reference /tmp for the socket file and hence be vulnerable to spoofing, during operating system
startup create a symbolic link /tmp/.s.PGSQL.5432 that points to the relocated socket file. You also
might need to modify your /tmp cleanup script to prevent removal of the symbolic link.

Another option for local connections is for clients to use requirepeer to specify the required owner
of the server process connected to the socket.

To prevent spoofing on TCP connections, the best solution is to use SSL certificates and make sure that
clients check the server's certificate. To do that, the server must be configured to accept only hostssl
connections (Section 20.1) and have SSL key and certificate files (Section 18.9). The TCP client must
connect using sslmode=verify-ca or verify-full and have the appropriate root certificate file
installed (Section 34.18.1).

18.8. Encryption Options
PostgreSQL offers encryption at several levels, and provides flexibility in protecting data from disclosure
due to database server theft, unscrupulous administrators, and insecure networks. Encryption might also
be required to secure sensitive data such as medical records or financial transactions.

Password Encryption

Database user passwords are stored as hashes (determined by the setting password_encryption), so
the administrator cannot determine the actual password assigned to the user. If SCRAM or MD5

548

Server Setup and Operation

encryption is used for client authentication, the unencrypted password is never even temporarily
present on the server because the client encrypts it before being sent across the network. SCRAM is
preferred, because it is an Internet standard and is more secure than the PostgreSQL-specific MD5
authentication protocol.

Encryption For Specific Columns

The pgcrypto module allows certain fields to be stored encrypted. This is useful if only some of the
data is sensitive. The client supplies the decryption key and the data is decrypted on the server and
then sent to the client.

The decrypted data and the decryption key are present on the server for a brief time while it is being
decrypted and communicated between the client and server. This presents a brief moment where the
data and keys can be intercepted by someone with complete access to the database server, such as
the system administrator.

Data Partition Encryption

Storage encryption can be performed at the file system level or the block level. Linux file system
encryption options include eCryptfs and EncFS, while FreeBSD uses PEFS. Block level or full
disk encryption options include dm-crypt + LUKS on Linux and GEOM modules geli and gbde on
FreeBSD. Many other operating systems support this functionality, including Windows.

This mechanism prevents unencrypted data from being read from the drives if the drives or the entire
computer is stolen. This does not protect against attacks while the file system is mounted, because
when mounted, the operating system provides an unencrypted view of the data. However, to mount
the file system, you need some way for the encryption key to be passed to the operating system, and
sometimes the key is stored somewhere on the host that mounts the disk.

Encrypting Data Across A Network

SSL connections encrypt all data sent across the network: the password, the queries, and the data
returned. The pg_hba.conf file allows administrators to specify which hosts can use non-encrypted
connections (host) and which require SSL-encrypted connections (hostssl). Also, clients can
specify that they connect to servers only via SSL. Stunnel or SSH can also be used to encrypt
transmissions.

SSL Host Authentication

It is possible for both the client and server to provide SSL certificates to each other. It takes some
extra configuration on each side, but this provides stronger verification of identity than the mere use
of passwords. It prevents a computer from pretending to be the server just long enough to read the
password sent by the client. It also helps prevent “man in the middle” attacks where a computer
between the client and server pretends to be the server and reads and passes all data between the client
and server.

Client-Side Encryption

If the system administrator for the server's machine cannot be trusted, it is necessary for the client to
encrypt the data; this way, unencrypted data never appears on the database server. Data is encrypted
on the client before being sent to the server, and database results have to be decrypted on the client
before being used.

18.9. Secure TCP/IP Connections with SSL

549

Server Setup and Operation

PostgreSQL has native support for using SSL connections to encrypt client/server communications for
increased security. This requires that OpenSSL is installed on both client and server systems and that
support in PostgreSQL is enabled at build time (see Chapter 16).

18.9.1. Basic Setup
With SSL support compiled in, the PostgreSQL server can be started with SSL enabled by setting the
parameter ssl to on in postgresql.conf. The server will listen for both normal and SSL connections
on the same TCP port, and will negotiate with any connecting client on whether to use SSL. By default,
this is at the client's option; see Section 20.1 about how to set up the server to require use of SSL for some
or all connections.

To start in SSL mode, files containing the server certificate and private key must exist. By default,
these files are expected to be named server.crt and server.key, respectively, in the server's data
directory, but other names and locations can be specified using the configuration parameters ssl_cert_file
and ssl_key_file.

On Unix systems, the permissions on server.key must disallow any access to world or group; achieve
this by the command chmod 0600 server.key. Alternatively, the file can be owned by root and have
group read access (that is, 0640 permissions). That setup is intended for installations where certificate and
key files are managed by the operating system. The user under which the PostgreSQL server runs should
then be made a member of the group that has access to those certificate and key files.

If the data directory allows group read access then certificate files may need to be located outside of the
data directory in order to conform to the security requirements outlined above. Generally, group access is
enabled to allow an unprivileged user to backup the database, and in that case the backup software will
not be able to read the certificate files and will likely error.

If the private key is protected with a passphrase, the server will prompt for the passphrase and will not
start until it has been entered. Using a passphrase also disables the ability to change the server's SSL
configuration without a server restart. Furthermore, passphrase-protected private keys cannot be used at
all on Windows.

The first certificate in server.crt must be the server's certificate because it must match the server's
private key. The certificates of “intermediate” certificate authorities can also be appended to the file. Doing
this avoids the necessity of storing intermediate certificates on clients, assuming the root and intermediate
certificates were created with v3_ca extensions. This allows easier expiration of intermediate certificates.

It is not necessary to add the root certificate to server.crt. Instead, clients must have the root certificate
of the server's certificate chain.

18.9.2. OpenSSL Configuration
PostgreSQL reads the system-wide OpenSSL configuration file. By default, this file is named
openssl.cnf and is located in the directory reported by openssl version -d. This default can be
overridden by setting environment variable OPENSSL_CONF to the name of the desired configuration file.

OpenSSL supports a wide range of ciphers and authentication algorithms, of varying strength. While a list
of ciphers can be specified in the OpenSSL configuration file, you can specify ciphers specifically for use
by the database server by modifying ssl_ciphers in postgresql.conf.

Note

It is possible to have authentication without encryption overhead by using NULL-SHA or NULL-
MD5 ciphers. However, a man-in-the-middle could read and pass communications between client

550

Server Setup and Operation

and server. Also, encryption overhead is minimal compared to the overhead of authentication. For
these reasons NULL ciphers are not recommended.

18.9.3. Using Client Certificates
To require the client to supply a trusted certificate, place certificates of the root certificate authorities
(CAs) you trust in a file in the data directory, set the parameter ssl_ca_file in postgresql.conf to the
new file name, and add the authentication option clientcert=1 to the appropriate hostssl line(s) in
pg_hba.conf. A certificate will then be requested from the client during SSL connection startup. (See
Section 34.18 for a description of how to set up certificates on the client.) The server will verify that the
client's certificate is signed by one of the trusted certificate authorities.

Intermediate certificates that chain up to existing root certificates can also appear in the ssl_ca_file file if
you wish to avoid storing them on clients (assuming the root and intermediate certificates were created with
v3_ca extensions). Certificate Revocation List (CRL) entries are also checked if the parameter ssl_crl_file
is set. (See http://h41379.www4.hpe.com/doc/83final/ba554_90007/ch04s02.html for diagrams showing
SSL certificate usage.)

The clientcert authentication option is available for all authentication methods, but only in
pg_hba.conf lines specified as hostssl. When clientcert is not specified or is set to 0, the
server will still verify any presented client certificates against its CA file, if one is configured — but it
will not insist that a client certificate be presented.

If you are setting up client certificates, you may wish to use the cert authentication method, so that the
certificates control user authentication as well as providing connection security. See Section 20.12 for
details. (It is not necessary to specify clientcert=1 explicitly when using the cert authentication
method.)

18.9.4. SSL Server File Usage
Table 18.2 summarizes the files that are relevant to the SSL setup on the server. (The shown file names
are default names. The locally configured names could be different.)

Table 18.2. SSL Server File Usage

File Contents Effect

ssl_cert_file ($PGDATA/
server.crt)

server certificate sent to client to indicate server's
identity

ssl_key_file ($PGDATA/
server.key)

server private key proves server certificate was sent
by the owner; does not indicate
certificate owner is trustworthy

ssl_ca_file trusted certificate authorities checks that client certificate is
signed by a trusted certificate
authority

ssl_crl_file certificates revoked by certificate
authorities

client certificate must not be on
this list

The server reads these files at server start and whenever the server configuration is reloaded. On Windows
systems, they are also re-read whenever a new backend process is spawned for a new client connection.

If an error in these files is detected at server start, the server will refuse to start. But if an error is detected
during a configuration reload, the files are ignored and the old SSL configuration continues to be used.

551

http://h41379.www4.hpe.com/doc/83final/ba554_90007/ch04s02.html

Server Setup and Operation

On Windows systems, if an error in these files is detected at backend start, that backend will be unable to
establish an SSL connection. In all these cases, the error condition is reported in the server log.

18.9.5. Creating Certificates
To create a simple self-signed certificate for the server, valid for 365 days, use the following OpenSSL
command, replacing dbhost.yourdomain.com with the server's host name:

openssl req -new -x509 -days 365 -nodes -text -out server.crt \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"

Then do:

chmod og-rwx server.key

because the server will reject the file if its permissions are more liberal than this. For more details on how
to create your server private key and certificate, refer to the OpenSSL documentation.

While a self-signed certificate can be used for testing, a certificate signed by a certificate authority (CA)
(usually an enterprise-wide root CA) should be used in production.

To create a server certificate whose identity can be validated by clients, first create a certificate signing
request (CSR) and a public/private key file:

openssl req -new -nodes -text -out root.csr \
 -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key

Then, sign the request with the key to create a root certificate authority (using the default OpenSSL
configuration file location on Linux):

openssl x509 -req -in root.csr -text -days 3650 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -signkey root.key -out root.crt

Finally, create a server certificate signed by the new root certificate authority:

openssl req -new -nodes -text -out server.csr \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key

openssl x509 -req -in server.csr -text -days 365 \
 -CA root.crt -CAkey root.key -CAcreateserial \
 -out server.crt

server.crt and server.key should be stored on the server, and root.crt should be stored on
the client so the client can verify that the server's leaf certificate was signed by its trusted root certificate.
root.key should be stored offline for use in creating future certificates.

It is also possible to create a chain of trust that includes intermediate certificates:

552

Server Setup and Operation

root
openssl req -new -nodes -text -out root.csr \
 -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key
openssl x509 -req -in root.csr -text -days 3650 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -signkey root.key -out root.crt

intermediate
openssl req -new -nodes -text -out intermediate.csr \
 -keyout intermediate.key -subj "/CN=intermediate.yourdomain.com"
chmod og-rwx intermediate.key
openssl x509 -req -in intermediate.csr -text -days 1825 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -CA root.crt -CAkey root.key -CAcreateserial \
 -out intermediate.crt

leaf
openssl req -new -nodes -text -out server.csr \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key
openssl x509 -req -in server.csr -text -days 365 \
 -CA intermediate.crt -CAkey intermediate.key -CAcreateserial \
 -out server.crt

server.crt and intermediate.crt should be concatenated into a certificate file bundle and stored
on the server. server.key should also be stored on the server. root.crt should be stored on the
client so the client can verify that the server's leaf certificate was signed by a chain of certificates linked
to its trusted root certificate. root.key and intermediate.key should be stored offline for use in
creating future certificates.

18.10. Secure TCP/IP Connections with SSH
Tunnels

It is possible to use SSH to encrypt the network connection between clients and a PostgreSQL server. Done
properly, this provides an adequately secure network connection, even for non-SSL-capable clients.

First make sure that an SSH server is running properly on the same machine as the PostgreSQL server
and that you can log in using ssh as some user. Then you can establish a secure tunnel with a command
like this from the client machine:

ssh -L 63333:localhost:5432 joe@foo.com

The first number in the -L argument, 63333, is the port number of your end of the tunnel; it can be any
unused port. (IANA reserves ports 49152 through 65535 for private use.) The second number, 5432, is
the remote end of the tunnel: the port number your server is using. The name or IP address between the
port numbers is the host with the database server you are going to connect to, as seen from the host you
are logging in to, which is foo.com in this example. In order to connect to the database server using this
tunnel, you connect to port 63333 on the local machine:

553

Server Setup and Operation

psql -h localhost -p 63333 postgres

To the database server it will then look as though you are really user joe on host foo.com connecting
to localhost in that context, and it will use whatever authentication procedure was configured for
connections from this user and host. Note that the server will not think the connection is SSL-encrypted,
since in fact it is not encrypted between the SSH server and the PostgreSQL server. This should not pose
any extra security risk as long as they are on the same machine.

In order for the tunnel setup to succeed you must be allowed to connect via ssh as joe@foo.com, just
as if you had attempted to use ssh to create a terminal session.

You could also have set up the port forwarding as

ssh -L 63333:foo.com:5432 joe@foo.com

but then the database server will see the connection as coming in on its foo.com interface, which is
not opened by the default setting listen_addresses = 'localhost'. This is usually not what
you want.

If you have to “hop” to the database server via some login host, one possible setup could look like this:

ssh -L 63333:db.foo.com:5432 joe@shell.foo.com

Note that this way the connection from shell.foo.com to db.foo.com will not be encrypted by the
SSH tunnel. SSH offers quite a few configuration possibilities when the network is restricted in various
ways. Please refer to the SSH documentation for details.

Tip

Several other applications exist that can provide secure tunnels using a procedure similar in concept
to the one just described.

18.11. Registering Event Log on Windows
To register a Windows event log library with the operating system, issue this command:

regsvr32 pgsql_library_directory/pgevent.dll

This creates registry entries used by the event viewer, under the default event source named PostgreSQL.

To specify a different event source name (see event_source), use the /n and /i options:

regsvr32 /n /i:event_source_name pgsql_library_directory/pgevent.dll

To unregister the event log library from the operating system, issue this command:

regsvr32 /u [/i:event_source_name] pgsql_library_directory/pgevent.dll

554

Server Setup and Operation

Note

To enable event logging in the database server, modify log_destination to include eventlog in
postgresql.conf.

555

Chapter 19. Server Configuration
There are many configuration parameters that affect the behavior of the database system. In the first section
of this chapter we describe how to interact with configuration parameters. The subsequent sections discuss
each parameter in detail.

19.1. Setting Parameters

19.1.1. Parameter Names and Values
All parameter names are case-insensitive. Every parameter takes a value of one of five types: boolean,
string, integer, floating point, or enumerated (enum). The type determines the syntax for setting the
parameter:

• Boolean: Values can be written as on, off, true, false, yes, no, 1, 0 (all case-insensitive) or any
unambiguous prefix of one of these.

• String: In general, enclose the value in single quotes, doubling any single quotes within the value. Quotes
can usually be omitted if the value is a simple number or identifier, however.

• Numeric (integer and floating point): A decimal point is permitted only for floating-point parameters.
Do not use thousands separators. Quotes are not required.

• Numeric with Unit: Some numeric parameters have an implicit unit, because they describe quantities
of memory or time. The unit might be bytes, kilobytes, blocks (typically eight kilobytes), milliseconds,
seconds, or minutes. An unadorned numeric value for one of these settings will use the setting's default
unit, which can be learned from pg_settings.unit. For convenience, settings can be given with
a unit specified explicitly, for example '120 ms' for a time value, and they will be converted to
whatever the parameter's actual unit is. Note that the value must be written as a string (with quotes)
to use this feature. The unit name is case-sensitive, and there can be whitespace between the numeric
value and the unit.

• Valid memory units are B (bytes), kB (kilobytes), MB (megabytes), GB (gigabytes), and TB (terabytes).
The multiplier for memory units is 1024, not 1000.

• Valid time units are ms (milliseconds), s (seconds), min (minutes), h (hours), and d (days).

• Enumerated: Enumerated-type parameters are written in the same way as string parameters, but are
restricted to have one of a limited set of values. The values allowable for such a parameter can be found
from pg_settings.enumvals. Enum parameter values are case-insensitive.

19.1.2. Parameter Interaction via the Configuration File
The most fundamental way to set these parameters is to edit the file postgresql.conf, which is
normally kept in the data directory. A default copy is installed when the database cluster directory is
initialized. An example of what this file might look like is:

This is a comment
log_connections = yes
log_destination = 'syslog'
search_path = '"$user", public'

556

Server Configuration

shared_buffers = 128MB

One parameter is specified per line. The equal sign between name and value is optional. Whitespace
is insignificant (except within a quoted parameter value) and blank lines are ignored. Hash marks (#)
designate the remainder of the line as a comment. Parameter values that are not simple identifiers or
numbers must be single-quoted. To embed a single quote in a parameter value, write either two quotes
(preferred) or backslash-quote.

Parameters set in this way provide default values for the cluster. The settings seen by active sessions will be
these values unless they are overridden. The following sections describe ways in which the administrator
or user can override these defaults.

 The configuration file is reread whenever the main server process receives a SIGHUP signal; this signal
is most easily sent by running pg_ctl reload from the command line or by calling the SQL function
pg_reload_conf(). The main server process also propagates this signal to all currently running server
processes, so that existing sessions also adopt the new values (this will happen after they complete any
currently-executing client command). Alternatively, you can send the signal to a single server process
directly. Some parameters can only be set at server start; any changes to their entries in the configuration
file will be ignored until the server is restarted. Invalid parameter settings in the configuration file are
likewise ignored (but logged) during SIGHUP processing.

In addition to postgresql.conf, a PostgreSQL data directory contains a file
postgresql.auto.conf, which has the same format as postgresql.conf but should never be
edited manually. This file holds settings provided through the ALTER SYSTEM command. This file is
automatically read whenever postgresql.conf is, and its settings take effect in the same way. Settings
in postgresql.auto.conf override those in postgresql.conf.

The system view pg_file_settings can be helpful for pre-testing changes to the configuration file,
or for diagnosing problems if a SIGHUP signal did not have the desired effects.

19.1.3. Parameter Interaction via SQL
PostgreSQL provides three SQL commands to establish configuration defaults. The already-mentioned
ALTER SYSTEM command provides a SQL-accessible means of changing global defaults; it is
functionally equivalent to editing postgresql.conf. In addition, there are two commands that allow
setting of defaults on a per-database or per-role basis:

• The ALTER DATABASE command allows global settings to be overridden on a per-database basis.

• The ALTER ROLE command allows both global and per-database settings to be overridden with user-
specific values.

Values set with ALTER DATABASE and ALTER ROLE are applied only when starting a fresh database
session. They override values obtained from the configuration files or server command line, and constitute
defaults for the rest of the session. Note that some settings cannot be changed after server start, and so
cannot be set with these commands (or the ones listed below).

Once a client is connected to the database, PostgreSQL provides two additional SQL commands (and
equivalent functions) to interact with session-local configuration settings:

• The SHOW command allows inspection of the current value of all parameters. The corresponding
function is current_setting(setting_name text).

• The SET command allows modification of the current value of those parameters that can be
set locally to a session; it has no effect on other sessions. The corresponding function is
set_config(setting_name, new_value, is_local).

557

Server Configuration

In addition, the system view pg_settings can be used to view and change session-local values:

• Querying this view is similar to using SHOW ALL but provides more detail. It is also more flexible,
since it's possible to specify filter conditions or join against other relations.

• Using UPDATE on this view, specifically updating the setting column, is the equivalent of issuing
SET commands. For example, the equivalent of

SET configuration_parameter TO DEFAULT;

is:

UPDATE pg_settings SET setting = reset_val WHERE name =
 'configuration_parameter';

19.1.4. Parameter Interaction via the Shell
In addition to setting global defaults or attaching overrides at the database or role level, you can pass
settings to PostgreSQL via shell facilities. Both the server and libpq client library accept parameter values
via the shell.

• During server startup, parameter settings can be passed to the postgres command via the -c
command-line parameter. For example,

postgres -c log_connections=yes -c log_destination='syslog'

Settings provided in this way override those set via postgresql.conf or ALTER SYSTEM, so they
cannot be changed globally without restarting the server.

• When starting a client session via libpq, parameter settings can be specified using the PGOPTIONS
environment variable. Settings established in this way constitute defaults for the life of the session, but
do not affect other sessions. For historical reasons, the format of PGOPTIONS is similar to that used
when launching the postgres command; specifically, the -c flag must be specified. For example,

env PGOPTIONS="-c geqo=off -c statement_timeout=5min" psql

Other clients and libraries might provide their own mechanisms, via the shell or otherwise, that allow
the user to alter session settings without direct use of SQL commands.

19.1.5. Managing Configuration File Contents
PostgreSQL provides several features for breaking down complex postgresql.conf files into sub-
files. These features are especially useful when managing multiple servers with related, but not identical,
configurations.

 In addition to individual parameter settings, the postgresql.conf file can contain include directives,
which specify another file to read and process as if it were inserted into the configuration file at this point.
This feature allows a configuration file to be divided into physically separate parts. Include directives
simply look like:

include 'filename'

558

Server Configuration

If the file name is not an absolute path, it is taken as relative to the directory containing the referencing
configuration file. Inclusions can be nested.

 There is also an include_if_exists directive, which acts the same as the include directive, except
when the referenced file does not exist or cannot be read. A regular include will consider this an error
condition, but include_if_exists merely logs a message and continues processing the referencing
configuration file.

 The postgresql.conf file can also contain include_dir directives, which specify an entire
directory of configuration files to include. These look like

include_dir 'directory'

Non-absolute directory names are taken as relative to the directory containing the referencing configuration
file. Within the specified directory, only non-directory files whose names end with the suffix .conf will
be included. File names that start with the . character are also ignored, to prevent mistakes since such files
are hidden on some platforms. Multiple files within an include directory are processed in file name order
(according to C locale rules, i.e. numbers before letters, and uppercase letters before lowercase ones).

Include files or directories can be used to logically separate portions of the database configuration, rather
than having a single large postgresql.conf file. Consider a company that has two database servers,
each with a different amount of memory. There are likely elements of the configuration both will share,
for things such as logging. But memory-related parameters on the server will vary between the two.
And there might be server specific customizations, too. One way to manage this situation is to break
the custom configuration changes for your site into three files. You could add this to the end of your
postgresql.conf file to include them:

include 'shared.conf'
include 'memory.conf'
include 'server.conf'

All systems would have the same shared.conf. Each server with a particular amount of memory could
share the same memory.conf; you might have one for all servers with 8GB of RAM, another for those
having 16GB. And finally server.conf could have truly server-specific configuration information in it.

Another possibility is to create a configuration file directory and put this information into files there. For
example, a conf.d directory could be referenced at the end of postgresql.conf:

include_dir 'conf.d'

Then you could name the files in the conf.d directory like this:

00shared.conf
01memory.conf
02server.conf

This naming convention establishes a clear order in which these files will be loaded. This is important
because only the last setting encountered for a particular parameter while the server is reading configuration
files will be used. In this example, something set in conf.d/02server.conf would override a value
set in conf.d/01memory.conf.

You might instead use this approach to naming the files descriptively:

559

Server Configuration

00shared.conf
01memory-8GB.conf
02server-foo.conf

This sort of arrangement gives a unique name for each configuration file variation. This can help eliminate
ambiguity when several servers have their configurations all stored in one place, such as in a version
control repository. (Storing database configuration files under version control is another good practice to
consider.)

19.2. File Locations
In addition to the postgresql.conf file already mentioned, PostgreSQL uses two other manually-
edited configuration files, which control client authentication (their use is discussed in Chapter 20). By
default, all three configuration files are stored in the database cluster's data directory. The parameters
described in this section allow the configuration files to be placed elsewhere. (Doing so can ease
administration. In particular it is often easier to ensure that the configuration files are properly backed-
up when they are kept separate.)

data_directory (string)

Specifies the directory to use for data storage. This parameter can only be set at server start.

config_file (string)

Specifies the main server configuration file (customarily called postgresql.conf). This
parameter can only be set on the postgres command line.

hba_file (string)

Specifies the configuration file for host-based authentication (customarily called pg_hba.conf).
This parameter can only be set at server start.

ident_file (string)

Specifies the configuration file for user name mapping (customarily called pg_ident.conf). This
parameter can only be set at server start. See also Section 20.2.

external_pid_file (string)

Specifies the name of an additional process-ID (PID) file that the server should create for use by server
administration programs. This parameter can only be set at server start.

In a default installation, none of the above parameters are set explicitly. Instead, the data directory is
specified by the -D command-line option or the PGDATA environment variable, and the configuration
files are all found within the data directory.

If you wish to keep the configuration files elsewhere than the data directory, the postgres -D command-
line option or PGDATA environment variable must point to the directory containing the configuration files,
and the data_directory parameter must be set in postgresql.conf (or on the command line)
to show where the data directory is actually located. Notice that data_directory overrides -D and
PGDATA for the location of the data directory, but not for the location of the configuration files.

If you wish, you can specify the configuration file names and locations individually using the parameters
config_file, hba_file and/or ident_file. config_file can only be specified on the

560

Server Configuration

postgres command line, but the others can be set within the main configuration file. If all three
parameters plus data_directory are explicitly set, then it is not necessary to specify -D or PGDATA.

When setting any of these parameters, a relative path will be interpreted with respect to the directory in
which postgres is started.

19.3. Connections and Authentication

19.3.1. Connection Settings
listen_addresses (string)

Specifies the TCP/IP address(es) on which the server is to listen for connections from client
applications. The value takes the form of a comma-separated list of host names and/or numeric IP
addresses. The special entry * corresponds to all available IP interfaces. The entry 0.0.0.0 allows
listening for all IPv4 addresses and :: allows listening for all IPv6 addresses. If the list is empty, the
server does not listen on any IP interface at all, in which case only Unix-domain sockets can be used to
connect to it. The default value is localhost, which allows only local TCP/IP “loopback” connections
to be made. While client authentication (Chapter 20) allows fine-grained control over who can access
the server, listen_addresses controls which interfaces accept connection attempts, which can
help prevent repeated malicious connection requests on insecure network interfaces. This parameter
can only be set at server start.

port (integer)

The TCP port the server listens on; 5432 by default. Note that the same port number is used for all IP
addresses the server listens on. This parameter can only be set at server start.

max_connections (integer)

Determines the maximum number of concurrent connections to the database server. The default is
typically 100 connections, but might be less if your kernel settings will not support it (as determined
during initdb). This parameter can only be set at server start.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

superuser_reserved_connections (integer)

Determines the number of connection “slots” that are reserved for connections by PostgreSQL
superusers. At most max_connections connections can ever be active simultaneously. Whenever
the number of active concurrent connections is at least max_connections minus
superuser_reserved_connections, new connections will be accepted only for superusers,
and no new replication connections will be accepted.

The default value is three connections. The value must be less than max_connections minus
max_wal_senders. This parameter can only be set at server start.

unix_socket_directories (string)

Specifies the directory of the Unix-domain socket(s) on which the server is to listen for connections
from client applications. Multiple sockets can be created by listing multiple directories separated by
commas. Whitespace between entries is ignored; surround a directory name with double quotes if you
need to include whitespace or commas in the name. An empty value specifies not listening on any

561

Server Configuration

Unix-domain sockets, in which case only TCP/IP sockets can be used to connect to the server. The
default value is normally /tmp, but that can be changed at build time. This parameter can only be
set at server start.

In addition to the socket file itself, which is named .s.PGSQL.nnnn where nnnn is the server's
port number, an ordinary file named .s.PGSQL.nnnn.lock will be created in each of the
unix_socket_directories directories. Neither file should ever be removed manually.

This parameter is irrelevant on Windows, which does not have Unix-domain sockets.

unix_socket_group (string)

Sets the owning group of the Unix-domain socket(s). (The owning user of the sockets is always the
user that starts the server.) In combination with the parameter unix_socket_permissions this
can be used as an additional access control mechanism for Unix-domain connections. By default this
is the empty string, which uses the default group of the server user. This parameter can only be set
at server start.

This parameter is irrelevant on Windows, which does not have Unix-domain sockets.

unix_socket_permissions (integer)

Sets the access permissions of the Unix-domain socket(s). Unix-domain sockets use the usual Unix
file system permission set. The parameter value is expected to be a numeric mode specified in the
format accepted by the chmod and umask system calls. (To use the customary octal format the
number must start with a 0 (zero).)

The default permissions are 0777, meaning anyone can connect. Reasonable alternatives are 0770
(only user and group, see also unix_socket_group) and 0700 (only user). (Note that for a Unix-
domain socket, only write permission matters, so there is no point in setting or revoking read or execute
permissions.)

This access control mechanism is independent of the one described in Chapter 20.

This parameter can only be set at server start.

This parameter is irrelevant on systems, notably Solaris as of Solaris 10, that ignore socket permissions
entirely. There, one can achieve a similar effect by pointing unix_socket_directories to a
directory having search permission limited to the desired audience. This parameter is also irrelevant
on Windows, which does not have Unix-domain sockets.

bonjour (boolean)

Enables advertising the server's existence via Bonjour. The default is off. This parameter can only
be set at server start.

bonjour_name (string)

Specifies the Bonjour service name. The computer name is used if this parameter is set to the empty
string '' (which is the default). This parameter is ignored if the server was not compiled with Bonjour
support. This parameter can only be set at server start.

tcp_keepalives_idle (integer)

Specifies the number of seconds of inactivity after which TCP should send a keepalive message to the
client. A value of 0 uses the system default. This parameter is supported only on systems that support

562

Server Configuration

TCP_KEEPIDLE or an equivalent socket option, and on Windows; on other systems, it must be zero.
In sessions connected via a Unix-domain socket, this parameter is ignored and always reads as zero.

Note

On Windows, a value of 0 will set this parameter to 2 hours, since Windows does not provide
a way to read the system default value.

tcp_keepalives_interval (integer)

Specifies the number of seconds after which a TCP keepalive message that is not acknowledged by
the client should be retransmitted. A value of 0 uses the system default. This parameter is supported
only on systems that support TCP_KEEPINTVL or an equivalent socket option, and on Windows;
on other systems, it must be zero. In sessions connected via a Unix-domain socket, this parameter is
ignored and always reads as zero.

Note

On Windows, a value of 0 will set this parameter to 1 second, since Windows does not provide
a way to read the system default value.

tcp_keepalives_count (integer)

Specifies the number of TCP keepalives that can be lost before the server's connection to the client is
considered dead. A value of 0 uses the system default. This parameter is supported only on systems
that support TCP_KEEPCNT or an equivalent socket option; on other systems, it must be zero. In
sessions connected via a Unix-domain socket, this parameter is ignored and always reads as zero.

Note

This parameter is not supported on Windows, and must be zero.

19.3.2. Authentication
authentication_timeout (integer)

Maximum time to complete client authentication, in seconds. If a would-be client has not completed
the authentication protocol in this much time, the server closes the connection. This prevents hung
clients from occupying a connection indefinitely. The default is one minute (1m). This parameter can
only be set in the postgresql.conf file or on the server command line.

password_encryption (enum)

When a password is specified in CREATE ROLE or ALTER ROLE, this parameter determines the
algorithm to use to encrypt the password. The default value is md5, which stores the password as an
MD5 hash (on is also accepted, as alias for md5). Setting this parameter to scram-sha-256 will
encrypt the password with SCRAM-SHA-256.

Note that older clients might lack support for the SCRAM authentication mechanism, and hence not
work with passwords encrypted with SCRAM-SHA-256. See Section 20.5 for more details.

563

Server Configuration

krb_server_keyfile (string)

Sets the location of the Kerberos server key file. See Section 20.6 for details. This parameter can only
be set in the postgresql.conf file or on the server command line.

krb_caseins_users (boolean)

Sets whether GSSAPI user names should be treated case-insensitively. The default is off (case
sensitive). This parameter can only be set in the postgresql.conf file or on the server command
line.

db_user_namespace (boolean)

This parameter enables per-database user names. It is off by default. This parameter can only be set
in the postgresql.conf file or on the server command line.

If this is on, you should create users as username@dbname. When username is passed by a
connecting client, @ and the database name are appended to the user name and that database-specific
user name is looked up by the server. Note that when you create users with names containing @ within
the SQL environment, you will need to quote the user name.

With this parameter enabled, you can still create ordinary global users. Simply append @ when
specifying the user name in the client, e.g. joe@. The @ will be stripped off before the user name
is looked up by the server.

db_user_namespace causes the client's and server's user name representation to differ.
Authentication checks are always done with the server's user name so authentication methods must
be configured for the server's user name, not the client's. Because md5 uses the user name as salt on
both the client and server, md5 cannot be used with db_user_namespace.

Note

This feature is intended as a temporary measure until a complete solution is found. At that
time, this option will be removed.

19.3.3. SSL
See Section 18.9 for more information about setting up SSL.

ssl (boolean)

Enables SSL connections. This parameter can only be set in the postgresql.conf file or on the
server command line. The default is off.

ssl_ca_file (string)

Specifies the name of the file containing the SSL server certificate authority (CA). Relative paths are
relative to the data directory. This parameter can only be set in the postgresql.conf file or on
the server command line. The default is empty, meaning no CA file is loaded, and client certificate
verification is not performed.

ssl_cert_file (string)

Specifies the name of the file containing the SSL server certificate. Relative paths are relative to
the data directory. This parameter can only be set in the postgresql.conf file or on the server
command line. The default is server.crt.

564

Server Configuration

ssl_crl_file (string)

Specifies the name of the file containing the SSL server certificate revocation list (CRL). Relative
paths are relative to the data directory. This parameter can only be set in the postgresql.conf
file or on the server command line. The default is empty, meaning no CRL file is loaded.

ssl_key_file (string)

Specifies the name of the file containing the SSL server private key. Relative paths are relative to
the data directory. This parameter can only be set in the postgresql.conf file or on the server
command line. The default is server.key.

ssl_ciphers (string)

Specifies a list of SSL cipher suites that are allowed to be used on secure connections. See the ciphers
manual page in the OpenSSL package for the syntax of this setting and a list of supported values.
This parameter can only be set in the postgresql.conf file or on the server command line. The
default value is HIGH:MEDIUM:+3DES:!aNULL. The default is usually a reasonable choice unless
you have specific security requirements.

Explanation of the default value:

HIGH

Cipher suites that use ciphers from HIGH group (e.g., AES, Camellia, 3DES)

MEDIUM

Cipher suites that use ciphers from MEDIUM group (e.g., RC4, SEED)

+3DES

The OpenSSL default order for HIGH is problematic because it orders 3DES higher than AES128.
This is wrong because 3DES offers less security than AES128, and it is also much slower. +3DES
reorders it after all other HIGH and MEDIUM ciphers.

!aNULL

Disables anonymous cipher suites that do no authentication. Such cipher suites are vulnerable to
man-in-the-middle attacks and therefore should not be used.

Available cipher suite details will vary across OpenSSL versions. Use the command openssl
ciphers -v 'HIGH:MEDIUM:+3DES:!aNULL' to see actual details for the currently installed
OpenSSL version. Note that this list is filtered at run time based on the server key type.

ssl_prefer_server_ciphers (boolean)

Specifies whether to use the server's SSL cipher preferences, rather than the client's. This parameter
can only be set in the postgresql.conf file or on the server command line. The default is true.

Older PostgreSQL versions do not have this setting and always use the client's preferences. This setting
is mainly for backward compatibility with those versions. Using the server's preferences is usually
better because it is more likely that the server is appropriately configured.

ssl_ecdh_curve (string)

Specifies the name of the curve to use in ECDH key exchange. It needs to be supported by all clients
that connect. It does not need to be the same curve used by the server's Elliptic Curve key. This

565

Server Configuration

parameter can only be set in the postgresql.conf file or on the server command line. The default
is prime256v1.

OpenSSL names for the most common curves are: prime256v1 (NIST P-256), secp384r1 (NIST
P-384), secp521r1 (NIST P-521). The full list of available curves can be shown with the command
openssl ecparam -list_curves. Not all of them are usable in TLS though.

ssl_dh_params_file (string)

Specifies the name of the file containing Diffie-Hellman parameters used for so-called ephemeral
DH family of SSL ciphers. The default is empty, in which case compiled-in default DH parameters
used. Using custom DH parameters reduces the exposure if an attacker manages to crack the well-
known compiled-in DH parameters. You can create your own DH parameters file with the command
openssl dhparam -out dhparams.pem 2048.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_passphrase_command (string)

Sets an external command to be invoked when a passphrase for decrypting an SSL file such as a private
key needs to be obtained. By default, this parameter is empty, which means the built-in prompting
mechanism is used.

The command must print the passphrase to the standard output and exit with code 0. In the parameter
value, %p is replaced by a prompt string. (Write %% for a literal %.) Note that the prompt string will
probably contain whitespace, so be sure to quote adequately. A single newline is stripped from the
end of the output if present.

The command does not actually have to prompt the user for a passphrase. It can read it from a file,
obtain it from a keychain facility, or similar. It is up to the user to make sure the chosen mechanism
is adequately secure.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_passphrase_command_supports_reload (boolean)

This parameter determines whether the passphrase command set by ssl_passphrase_command
will also be called during a configuration reload if a key file needs a passphrase. If this parameter is
false (the default), then ssl_passphrase_command will be ignored during a reload and the SSL
configuration will not be reloaded if a passphrase is needed. That setting is appropriate for a command
that requires a TTY for prompting, which might not be available when the server is running. Setting
this parameter to true might be appropriate if the passphrase is obtained from a file, for example.

This parameter can only be set in the postgresql.conf file or on the server command line.

19.4. Resource Consumption

19.4.1. Memory
shared_buffers (integer)

Sets the amount of memory the database server uses for shared memory buffers. The default is
typically 128 megabytes (128MB), but might be less if your kernel settings will not support it (as
determined during initdb). This setting must be at least 128 kilobytes. (Non-default values of BLCKSZ
change the minimum.) However, settings significantly higher than the minimum are usually needed
for good performance. This parameter can only be set at server start.

566

Server Configuration

If you have a dedicated database server with 1GB or more of RAM, a reasonable starting value
for shared_buffers is 25% of the memory in your system. There are some workloads where
even larger settings for shared_buffers are effective, but because PostgreSQL also relies
on the operating system cache, it is unlikely that an allocation of more than 40% of RAM to
shared_buffers will work better than a smaller amount. Larger settings for shared_buffers
usually require a corresponding increase in max_wal_size, in order to spread out the process of
writing large quantities of new or changed data over a longer period of time.

On systems with less than 1GB of RAM, a smaller percentage of RAM is appropriate, so as to leave
adequate space for the operating system.

huge_pages (enum)

Controls whether huge pages are requested for the main shared memory area. Valid values are try
(the default), on, and off. With huge_pages set to try, the server will try to request huge pages,
but fall back to the default if that fails. With on, failure to request huge pages will prevent the server
from starting up. With off, huge pages will not be requested.

At present, this setting is supported only on Linux and Windows. The setting is ignored on other
systems when set to try.

The use of huge pages results in smaller page tables and less CPU time spent on memory management,
increasing performance. For more details about using huge pages on Linux, see Section 18.4.5.

Huge pages are known as large pages on Windows. To use them, you need to assign the user right Lock
Pages in Memory to the Windows user account that runs PostgreSQL. You can use Windows Group
Policy tool (gpedit.msc) to assign the user right Lock Pages in Memory. To start the database server
on the command prompt as a standalone process, not as a Windows service, the command prompt
must be run as an administrator or User Access Control (UAC) must be disabled. When the UAC is
enabled, the normal command prompt revokes the user right Lock Pages in Memory when started.

Note that this setting only affects the main shared memory area. Operating systems such as Linux,
FreeBSD, and Illumos can also use huge pages (also known as “super” pages or “large” pages)
automatically for normal memory allocation, without an explicit request from PostgreSQL. On Linux,
this is called “transparent huge pages” (THP). That feature has been known to cause performance
degradation with PostgreSQL for some users on some Linux versions, so its use is currently
discouraged (unlike explicit use of huge_pages).

temp_buffers (integer)

Sets the maximum number of temporary buffers used by each database session. These are session-
local buffers used only for access to temporary tables. The default is eight megabytes (8MB). The
setting can be changed within individual sessions, but only before the first use of temporary tables
within the session; subsequent attempts to change the value will have no effect on that session.

A session will allocate temporary buffers as needed up to the limit given by temp_buffers. The
cost of setting a large value in sessions that do not actually need many temporary buffers is only
a buffer descriptor, or about 64 bytes, per increment in temp_buffers. However if a buffer is
actually used an additional 8192 bytes will be consumed for it (or in general, BLCKSZ bytes).

max_prepared_transactions (integer)

Sets the maximum number of transactions that can be in the “prepared” state simultaneously (see
PREPARE TRANSACTION). Setting this parameter to zero (which is the default) disables the
prepared-transaction feature. This parameter can only be set at server start.

567

Server Configuration

If you are not planning to use prepared transactions, this parameter should be set to zero to prevent
accidental creation of prepared transactions. If you are using prepared transactions, you will probably
want max_prepared_transactions to be at least as large as max_connections, so that every
session can have a prepared transaction pending.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

work_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before writing
to temporary disk files. The value defaults to four megabytes (4MB). Note that for a complex query,
several sort or hash operations might be running in parallel; each operation will be allowed to use as
much memory as this value specifies before it starts to write data into temporary files. Also, several
running sessions could be doing such operations concurrently. Therefore, the total memory used could
be many times the value of work_mem; it is necessary to keep this fact in mind when choosing the
value. Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are used
in hash joins, hash-based aggregation, and hash-based processing of IN subqueries.

maintenance_work_mem (integer)

Specifies the maximum amount of memory to be used by maintenance operations, such as VACUUM,
CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. It defaults to 64 megabytes (64MB).
Since only one of these operations can be executed at a time by a database session, and an installation
normally doesn't have many of them running concurrently, it's safe to set this value significantly
larger than work_mem. Larger settings might improve performance for vacuuming and for restoring
database dumps.

Note that when autovacuum runs, up to autovacuum_max_workers times this memory may be
allocated, so be careful not to set the default value too high. It may be useful to control for this by
separately setting autovacuum_work_mem.

autovacuum_work_mem (integer)

Specifies the maximum amount of memory to be used by each autovacuum worker process. It defaults
to -1, indicating that the value of maintenance_work_mem should be used instead. The setting has no
effect on the behavior of VACUUM when run in other contexts.

max_stack_depth (integer)

Specifies the maximum safe depth of the server's execution stack. The ideal setting for this parameter
is the actual stack size limit enforced by the kernel (as set by ulimit -s or local equivalent),
less a safety margin of a megabyte or so. The safety margin is needed because the stack depth is not
checked in every routine in the server, but only in key potentially-recursive routines such as expression
evaluation. The default setting is two megabytes (2MB), which is conservatively small and unlikely to
risk crashes. However, it might be too small to allow execution of complex functions. Only superusers
can change this setting.

Setting max_stack_depth higher than the actual kernel limit will mean that a runaway recursive
function can crash an individual backend process. On platforms where PostgreSQL can determine
the kernel limit, the server will not allow this variable to be set to an unsafe value. However, not all
platforms provide the information, so caution is recommended in selecting a value.

dynamic_shared_memory_type (enum)

Specifies the dynamic shared memory implementation that the server should use. Possible values are
posix (for POSIX shared memory allocated using shm_open), sysv (for System V shared memory

568

Server Configuration

allocated via shmget), windows (for Windows shared memory), mmap (to simulate shared memory
using memory-mapped files stored in the data directory), and none (to disable this feature). Not all
values are supported on all platforms; the first supported option is the default for that platform. The
use of the mmap option, which is not the default on any platform, is generally discouraged because
the operating system may write modified pages back to disk repeatedly, increasing system I/O load;
however, it may be useful for debugging, when the pg_dynshmem directory is stored on a RAM
disk, or when other shared memory facilities are not available.

19.4.2. Disk
temp_file_limit (integer)

Specifies the maximum amount of disk space that a process can use for temporary files, such as sort
and hash temporary files, or the storage file for a held cursor. A transaction attempting to exceed this
limit will be canceled. The value is specified in kilobytes, and -1 (the default) means no limit. Only
superusers can change this setting.

This setting constrains the total space used at any instant by all temporary files used by a given
PostgreSQL process. It should be noted that disk space used for explicit temporary tables, as opposed
to temporary files used behind-the-scenes in query execution, does not count against this limit.

19.4.3. Kernel Resource Usage
max_files_per_process (integer)

Sets the maximum number of simultaneously open files allowed to each server subprocess. The default
is one thousand files. If the kernel is enforcing a safe per-process limit, you don't need to worry about
this setting. But on some platforms (notably, most BSD systems), the kernel will allow individual
processes to open many more files than the system can actually support if many processes all try to
open that many files. If you find yourself seeing “Too many open files” failures, try reducing this
setting. This parameter can only be set at server start.

19.4.4. Cost-based Vacuum Delay
During the execution of VACUUM and ANALYZE commands, the system maintains an internal counter
that keeps track of the estimated cost of the various I/O operations that are performed. When the
accumulated cost reaches a limit (specified by vacuum_cost_limit), the process performing the
operation will sleep for a short period of time, as specified by vacuum_cost_delay. Then it will reset
the counter and continue execution.

The intent of this feature is to allow administrators to reduce the I/O impact of these commands on
concurrent database activity. There are many situations where it is not important that maintenance
commands like VACUUM and ANALYZE finish quickly; however, it is usually very important that these
commands do not significantly interfere with the ability of the system to perform other database operations.
Cost-based vacuum delay provides a way for administrators to achieve this.

This feature is disabled by default for manually issued VACUUM commands. To enable it, set the
vacuum_cost_delay variable to a nonzero value.

vacuum_cost_delay (integer)

The length of time, in milliseconds, that the process will sleep when the cost limit has been exceeded.
The default value is zero, which disables the cost-based vacuum delay feature. Positive values enable
cost-based vacuuming. Note that on many systems, the effective resolution of sleep delays is 10

569

Server Configuration

milliseconds; setting vacuum_cost_delay to a value that is not a multiple of 10 might have the
same results as setting it to the next higher multiple of 10.

When using cost-based vacuuming, appropriate values for vacuum_cost_delay are usually quite
small, perhaps 10 or 20 milliseconds. Adjusting vacuum's resource consumption is best done by
changing the other vacuum cost parameters.

vacuum_cost_page_hit (integer)

The estimated cost for vacuuming a buffer found in the shared buffer cache. It represents the cost
to lock the buffer pool, lookup the shared hash table and scan the content of the page. The default
value is one.

vacuum_cost_page_miss (integer)

The estimated cost for vacuuming a buffer that has to be read from disk. This represents the effort to
lock the buffer pool, lookup the shared hash table, read the desired block in from the disk and scan
its content. The default value is 10.

vacuum_cost_page_dirty (integer)

The estimated cost charged when vacuum modifies a block that was previously clean. It represents
the extra I/O required to flush the dirty block out to disk again. The default value is 20.

vacuum_cost_limit (integer)

The accumulated cost that will cause the vacuuming process to sleep. The default value is 200.

Note

There are certain operations that hold critical locks and should therefore complete as quickly as
possible. Cost-based vacuum delays do not occur during such operations. Therefore it is possible
that the cost accumulates far higher than the specified limit. To avoid uselessly long delays in such
cases, the actual delay is calculated as vacuum_cost_delay * accumulated_balance /
vacuum_cost_limit with a maximum of vacuum_cost_delay * 4.

19.4.5. Background Writer
There is a separate server process called the background writer, whose function is to issue writes of
“dirty” (new or modified) shared buffers. It writes shared buffers so server processes handling user queries
seldom or never need to wait for a write to occur. However, the background writer does cause a net overall
increase in I/O load, because while a repeatedly-dirtied page might otherwise be written only once per
checkpoint interval, the background writer might write it several times as it is dirtied in the same interval.
The parameters discussed in this subsection can be used to tune the behavior for local needs.

bgwriter_delay (integer)

Specifies the delay between activity rounds for the background writer. In each round the writer issues
writes for some number of dirty buffers (controllable by the following parameters). It then sleeps
for bgwriter_delay milliseconds, and repeats. When there are no dirty buffers in the buffer
pool, though, it goes into a longer sleep regardless of bgwriter_delay. The default value is
200 milliseconds (200ms). Note that on many systems, the effective resolution of sleep delays is
10 milliseconds; setting bgwriter_delay to a value that is not a multiple of 10 might have the
same results as setting it to the next higher multiple of 10. This parameter can only be set in the
postgresql.conf file or on the server command line.

570

Server Configuration

bgwriter_lru_maxpages (integer)

In each round, no more than this many buffers will be written by the background writer. Setting this to
zero disables background writing. (Note that checkpoints, which are managed by a separate, dedicated
auxiliary process, are unaffected.) The default value is 100 buffers. This parameter can only be set in
the postgresql.conf file or on the server command line.

bgwriter_lru_multiplier (floating point)

The number of dirty buffers written in each round is based on the number of new buffers that have
been needed by server processes during recent rounds. The average recent need is multiplied by
bgwriter_lru_multiplier to arrive at an estimate of the number of buffers that will be needed
during the next round. Dirty buffers are written until there are that many clean, reusable buffers
available. (However, no more than bgwriter_lru_maxpages buffers will be written per round.)
Thus, a setting of 1.0 represents a “just in time” policy of writing exactly the number of buffers
predicted to be needed. Larger values provide some cushion against spikes in demand, while smaller
values intentionally leave writes to be done by server processes. The default is 2.0. This parameter
can only be set in the postgresql.conf file or on the server command line.

bgwriter_flush_after (integer)

Whenever more than bgwriter_flush_after bytes have been written by the background writer,
attempt to force the OS to issue these writes to the underlying storage. Doing so will limit the amount
of dirty data in the kernel's page cache, reducing the likelihood of stalls when an fsync is issued
at the end of a checkpoint, or when the OS writes data back in larger batches in the background.
Often that will result in greatly reduced transaction latency, but there also are some cases, especially
with workloads that are bigger than shared_buffers, but smaller than the OS's page cache, where
performance might degrade. This setting may have no effect on some platforms. The valid range is
between 0, which disables forced writeback, and 2MB. The default is 512kB on Linux, 0 elsewhere.
(If BLCKSZ is not 8kB, the default and maximum values scale proportionally to it.) This parameter
can only be set in the postgresql.conf file or on the server command line.

Smaller values of bgwriter_lru_maxpages and bgwriter_lru_multiplier reduce the extra
I/O load caused by the background writer, but make it more likely that server processes will have to issue
writes for themselves, delaying interactive queries.

19.4.6. Asynchronous Behavior
effective_io_concurrency (integer)

Sets the number of concurrent disk I/O operations that PostgreSQL expects can be executed
simultaneously. Raising this value will increase the number of I/O operations that any individual
PostgreSQL session attempts to initiate in parallel. The allowed range is 1 to 1000, or zero to disable
issuance of asynchronous I/O requests. Currently, this setting only affects bitmap heap scans.

For magnetic drives, a good starting point for this setting is the number of separate drives comprising
a RAID 0 stripe or RAID 1 mirror being used for the database. (For RAID 5 the parity drive should
not be counted.) However, if the database is often busy with multiple queries issued in concurrent
sessions, lower values may be sufficient to keep the disk array busy. A value higher than needed to
keep the disks busy will only result in extra CPU overhead. SSDs and other memory-based storage
can often process many concurrent requests, so the best value might be in the hundreds.

Asynchronous I/O depends on an effective posix_fadvise function, which some operating
systems lack. If the function is not present then setting this parameter to anything but zero will result
in an error. On some operating systems (e.g., Solaris), the function is present but does not actually
do anything.

571

Server Configuration

The default is 1 on supported systems, otherwise 0. This value can be overridden for tables
in a particular tablespace by setting the tablespace parameter of the same name (see ALTER
TABLESPACE).

max_worker_processes (integer)

Sets the maximum number of background processes that the system can support. This parameter can
only be set at server start. The default is 8.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

When changing this value, consider also adjusting max_parallel_workers,
max_parallel_maintenance_workers, and max_parallel_workers_per_gather.

max_parallel_workers_per_gather (integer)

Sets the maximum number of workers that can be started by a single Gather or Gather Merge
node. Parallel workers are taken from the pool of processes established by max_worker_processes,
limited by max_parallel_workers. Note that the requested number of workers may not actually be
available at run time. If this occurs, the plan will run with fewer workers than expected, which may
be inefficient. The default value is 2. Setting this value to 0 disables parallel query execution.

Note that parallel queries may consume very substantially more resources than non-parallel queries,
because each worker process is a completely separate process which has roughly the same impact on
the system as an additional user session. This should be taken into account when choosing a value
for this setting, as well as when configuring other settings that control resource utilization, such as
work_mem. Resource limits such as work_mem are applied individually to each worker, which means
the total utilization may be much higher across all processes than it would normally be for any single
process. For example, a parallel query using 4 workers may use up to 5 times as much CPU time,
memory, I/O bandwidth, and so forth as a query which uses no workers at all.

For more information on parallel query, see Chapter 15.

max_parallel_maintenance_workers (integer)

Sets the maximum number of parallel workers that can be started by a single utility command.
Currently, the only parallel utility command that supports the use of parallel workers is CREATE
INDEX, and only when building a B-tree index. Parallel workers are taken from the pool of processes
established by max_worker_processes, limited by max_parallel_workers. Note that the requested
number of workers may not actually be available at run time. If this occurs, the utility operation will
run with fewer workers than expected. The default value is 2. Setting this value to 0 disables the use
of parallel workers by utility commands.

Note that parallel utility commands should not consume substantially more memory than
equivalent non-parallel operations. This strategy differs from that of parallel query, where resource
limits generally apply per worker process. Parallel utility commands treat the resource limit
maintenance_work_mem as a limit to be applied to the entire utility command, regardless of
the number of parallel worker processes. However, parallel utility commands may still consume
substantially more CPU resources and I/O bandwidth.

max_parallel_workers (integer)

Sets the maximum number of workers that the system can support for parallel operations.
The default value is 8. When increasing or decreasing this value, consider also adjusting
max_parallel_maintenance_workers and max_parallel_workers_per_gather. Also, note that a setting

572

Server Configuration

for this value which is higher than max_worker_processes will have no effect, since parallel workers
are taken from the pool of worker processes established by that setting.

backend_flush_after (integer)

Whenever more than backend_flush_after bytes have been written by a single backend,
attempt to force the OS to issue these writes to the underlying storage. Doing so will limit the amount
of dirty data in the kernel's page cache, reducing the likelihood of stalls when an fsync is issued
at the end of a checkpoint, or when the OS writes data back in larger batches in the background.
Often that will result in greatly reduced transaction latency, but there also are some cases, especially
with workloads that are bigger than shared_buffers, but smaller than the OS's page cache, where
performance might degrade. This setting may have no effect on some platforms. The valid range is
between 0, which disables forced writeback, and 2MB. The default is 0, i.e., no forced writeback. (If
BLCKSZ is not 8kB, the maximum value scales proportionally to it.)

old_snapshot_threshold (integer)

Sets the minimum time that a snapshot can be used without risk of a snapshot too old error
occurring when using the snapshot. This parameter can only be set at server start.

Beyond the threshold, old data may be vacuumed away. This can help prevent bloat in the face of
snapshots which remain in use for a long time. To prevent incorrect results due to cleanup of data
which would otherwise be visible to the snapshot, an error is generated when the snapshot is older
than this threshold and the snapshot is used to read a page which has been modified since the snapshot
was built.

A value of -1 disables this feature, and is the default. Useful values for production work probably
range from a small number of hours to a few days. The setting will be coerced to a granularity of
minutes, and small numbers (such as 0 or 1min) are only allowed because they may sometimes be
useful for testing. While a setting as high as 60d is allowed, please note that in many workloads
extreme bloat or transaction ID wraparound may occur in much shorter time frames.

When this feature is enabled, freed space at the end of a relation cannot be released to the operating
system, since that could remove information needed to detect the snapshot too old condition.
All space allocated to a relation remains associated with that relation for reuse only within that relation
unless explicitly freed (for example, with VACUUM FULL).

This setting does not attempt to guarantee that an error will be generated under any particular
circumstances. In fact, if the correct results can be generated from (for example) a cursor which has
materialized a result set, no error will be generated even if the underlying rows in the referenced table
have been vacuumed away. Some tables cannot safely be vacuumed early, and so will not be affected
by this setting, such as system catalogs. For such tables this setting will neither reduce bloat nor create
a possibility of a snapshot too old error on scanning.

19.5. Write Ahead Log
For additional information on tuning these settings, see Section 30.4.

19.5.1. Settings
wal_level (enum)

wal_level determines how much information is written to the WAL. The default value is
replica, which writes enough data to support WAL archiving and replication, including running
read-only queries on a standby server. minimal removes all logging except the information required

573

Server Configuration

to recover from a crash or immediate shutdown. Finally, logical adds information necessary
to support logical decoding. Each level includes the information logged at all lower levels. This
parameter can only be set at server start.

In minimal level, WAL-logging of some bulk operations can be safely skipped, which can make
those operations much faster (see Section 14.4.7). Operations in which this optimization can be applied
include:

CREATE TABLE AS
CREATE INDEX
CLUSTER
COPY into tables that were created or truncated in the same transaction

But minimal WAL does not contain enough information to reconstruct the data from a base backup
and the WAL logs, so replica or higher must be used to enable WAL archiving (archive_mode)
and streaming replication.

In logical level, the same information is logged as with replica, plus information needed to
allow extracting logical change sets from the WAL. Using a level of logical will increase the
WAL volume, particularly if many tables are configured for REPLICA IDENTITY FULL and many
UPDATE and DELETE statements are executed.

In releases prior to 9.6, this parameter also allowed the values archive and hot_standby. These
are still accepted but mapped to replica.

fsync (boolean)

If this parameter is on, the PostgreSQL server will try to make sure that updates are physically written
to disk, by issuing fsync() system calls or various equivalent methods (see wal_sync_method).
This ensures that the database cluster can recover to a consistent state after an operating system or
hardware crash.

While turning off fsync is often a performance benefit, this can result in unrecoverable data
corruption in the event of a power failure or system crash. Thus it is only advisable to turn off fsync
if you can easily recreate your entire database from external data.

Examples of safe circumstances for turning off fsync include the initial loading of a new database
cluster from a backup file, using a database cluster for processing a batch of data after which the
database will be thrown away and recreated, or for a read-only database clone which gets recreated
frequently and is not used for failover. High quality hardware alone is not a sufficient justification
for turning off fsync.

For reliable recovery when changing fsync off to on, it is necessary to force all modified buffers
in the kernel to durable storage. This can be done while the cluster is shutdown or while fsync is
on by running initdb --sync-only, running sync, unmounting the file system, or rebooting
the server.

In many situations, turning off synchronous_commit for noncritical transactions can provide much of
the potential performance benefit of turning off fsync, without the attendant risks of data corruption.

fsync can only be set in the postgresql.conf file or on the server command line. If you turn
this parameter off, also consider turning off full_page_writes.

synchronous_commit (enum)

Specifies whether transaction commit will wait for WAL records to be written to disk before
the command returns a “success” indication to the client. Valid values are on, remote_apply,

574

Server Configuration

remote_write, local, and off. The default, and safe, setting is on. When off, there can be a
delay between when success is reported to the client and when the transaction is really guaranteed to
be safe against a server crash. (The maximum delay is three times wal_writer_delay.) Unlike fsync,
setting this parameter to off does not create any risk of database inconsistency: an operating system
or database crash might result in some recent allegedly-committed transactions being lost, but the
database state will be just the same as if those transactions had been aborted cleanly. So, turning
synchronous_commit off can be a useful alternative when performance is more important than
exact certainty about the durability of a transaction. For more discussion see Section 30.3.

If synchronous_standby_names is non-empty, this parameter also controls whether or not transaction
commits will wait for their WAL records to be replicated to the standby server(s). When set to on,
commits will wait until replies from the current synchronous standby(s) indicate they have received
the commit record of the transaction and flushed it to disk. This ensures the transaction will not
be lost unless both the primary and all synchronous standbys suffer corruption of their database
storage. When set to remote_apply, commits will wait until replies from the current synchronous
standby(s) indicate they have received the commit record of the transaction and applied it, so that it
has become visible to queries on the standby(s). When set to remote_write, commits will wait
until replies from the current synchronous standby(s) indicate they have received the commit record
of the transaction and written it out to their operating system. This setting is sufficient to ensure data
preservation even if a standby instance of PostgreSQL were to crash, but not if the standby suffers an
operating-system-level crash, since the data has not necessarily reached stable storage on the standby.
Finally, the setting local causes commits to wait for local flush to disk, but not for replication. This
is not usually desirable when synchronous replication is in use, but is provided for completeness.

If synchronous_standby_names is empty, the settings on, remote_apply,
remote_write and local all provide the same synchronization level: transaction commits only
wait for local flush to disk.

This parameter can be changed at any time; the behavior for any one transaction is determined
by the setting in effect when it commits. It is therefore possible, and useful, to have some
transactions commit synchronously and others asynchronously. For example, to make a single
multistatement transaction commit asynchronously when the default is the opposite, issue SET
LOCAL synchronous_commit TO OFF within the transaction.

wal_sync_method (enum)

Method used for forcing WAL updates out to disk. If fsync is off then this setting is irrelevant, since
WAL file updates will not be forced out at all. Possible values are:

• open_datasync (write WAL files with open() option O_DSYNC)

• fdatasync (call fdatasync() at each commit)

• fsync (call fsync() at each commit)

• fsync_writethrough (call fsync() at each commit, forcing write-through of any disk write
cache)

• open_sync (write WAL files with open() option O_SYNC)

The open_* options also use O_DIRECT if available. Not all of these choices are available on all
platforms. The default is the first method in the above list that is supported by the platform, except
that fdatasync is the default on Linux. The default is not necessarily ideal; it might be necessary
to change this setting or other aspects of your system configuration in order to create a crash-safe
configuration or achieve optimal performance. These aspects are discussed in Section 30.1. This
parameter can only be set in the postgresql.conf file or on the server command line.

575

Server Configuration

full_page_writes (boolean)

When this parameter is on, the PostgreSQL server writes the entire content of each disk page to WAL
during the first modification of that page after a checkpoint. This is needed because a page write that
is in process during an operating system crash might be only partially completed, leading to an on-
disk page that contains a mix of old and new data. The row-level change data normally stored in WAL
will not be enough to completely restore such a page during post-crash recovery. Storing the full page
image guarantees that the page can be correctly restored, but at the price of increasing the amount
of data that must be written to WAL. (Because WAL replay always starts from a checkpoint, it is
sufficient to do this during the first change of each page after a checkpoint. Therefore, one way to
reduce the cost of full-page writes is to increase the checkpoint interval parameters.)

Turning this parameter off speeds normal operation, but might lead to either unrecoverable data
corruption, or silent data corruption, after a system failure. The risks are similar to turning off fsync,
though smaller, and it should be turned off only based on the same circumstances recommended for
that parameter.

Turning off this parameter does not affect use of WAL archiving for point-in-time recovery (PITR)
(see Section 25.3).

This parameter can only be set in the postgresql.conf file or on the server command line. The
default is on.

wal_log_hints (boolean)

When this parameter is on, the PostgreSQL server writes the entire content of each disk page to WAL
during the first modification of that page after a checkpoint, even for non-critical modifications of
so-called hint bits.

If data checksums are enabled, hint bit updates are always WAL-logged and this setting is ignored.
You can use this setting to test how much extra WAL-logging would occur if your database had data
checksums enabled.

This parameter can only be set at server start. The default value is off.

wal_compression (boolean)

When this parameter is on, the PostgreSQL server compresses a full page image written to WAL
when full_page_writes is on or during a base backup. A compressed page image will be decompressed
during WAL replay. The default value is off. Only superusers can change this setting.

Turning this parameter on can reduce the WAL volume without increasing the risk of unrecoverable
data corruption, but at the cost of some extra CPU spent on the compression during WAL logging and
on the decompression during WAL replay.

wal_buffers (integer)

The amount of shared memory used for WAL data that has not yet been written to disk. The default
setting of -1 selects a size equal to 1/32nd (about 3%) of shared_buffers, but not less than 64kB
nor more than the size of one WAL segment, typically 16MB. This value can be set manually if the
automatic choice is too large or too small, but any positive value less than 32kB will be treated as
32kB. This parameter can only be set at server start.

The contents of the WAL buffers are written out to disk at every transaction commit, so extremely
large values are unlikely to provide a significant benefit. However, setting this value to at least a few
megabytes can improve write performance on a busy server where many clients are committing at
once. The auto-tuning selected by the default setting of -1 should give reasonable results in most cases.

576

Server Configuration

wal_writer_delay (integer)

Specifies how often the WAL writer flushes WAL. After flushing WAL it sleeps for
wal_writer_delay milliseconds, unless woken up by an asynchronously committing transaction.
If the last flush happened less than wal_writer_delay milliseconds ago and less than
wal_writer_flush_after bytes of WAL have been produced since, then WAL is only written
to the operating system, not flushed to disk. The default value is 200 milliseconds (200ms).
Note that on many systems, the effective resolution of sleep delays is 10 milliseconds; setting
wal_writer_delay to a value that is not a multiple of 10 might have the same results as setting
it to the next higher multiple of 10. This parameter can only be set in the postgresql.conf file
or on the server command line.

wal_writer_flush_after (integer)

Specifies how often the WAL writer flushes WAL. If the last flush happened less than
wal_writer_delay milliseconds ago and less than wal_writer_flush_after bytes of
WAL have been produced since, then WAL is only written to the operating system, not flushed to disk.
If wal_writer_flush_after is set to 0 then WAL data is flushed immediately. The default is
1MB. This parameter can only be set in the postgresql.conf file or on the server command line.

commit_delay (integer)

commit_delay adds a time delay, measured in microseconds, before a WAL flush is initiated.
This can improve group commit throughput by allowing a larger number of transactions to commit
via a single WAL flush, if system load is high enough that additional transactions become ready
to commit within the given interval. However, it also increases latency by up to commit_delay
microseconds for each WAL flush. Because the delay is just wasted if no other transactions become
ready to commit, a delay is only performed if at least commit_siblings other transactions are
active when a flush is about to be initiated. Also, no delays are performed if fsync is disabled. The
default commit_delay is zero (no delay). Only superusers can change this setting.

In PostgreSQL releases prior to 9.3, commit_delay behaved differently and was much less
effective: it affected only commits, rather than all WAL flushes, and waited for the entire configured
delay even if the WAL flush was completed sooner. Beginning in PostgreSQL 9.3, the first process
that becomes ready to flush waits for the configured interval, while subsequent processes wait only
until the leader completes the flush operation.

commit_siblings (integer)

Minimum number of concurrent open transactions to require before performing the commit_delay
delay. A larger value makes it more probable that at least one other transaction will become ready to
commit during the delay interval. The default is five transactions.

19.5.2. Checkpoints
checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints, in seconds. The valid range is between 30
seconds and one day. The default is five minutes (5min). Increasing this parameter can increase the
amount of time needed for crash recovery. This parameter can only be set in the postgresql.conf
file or on the server command line.

checkpoint_completion_target (floating point)

Specifies the target of checkpoint completion, as a fraction of total time between checkpoints. The
default is 0.5. This parameter can only be set in the postgresql.conf file or on the server
command line.

577

Server Configuration

checkpoint_flush_after (integer)

Whenever more than checkpoint_flush_after bytes have been written while performing a
checkpoint, attempt to force the OS to issue these writes to the underlying storage. Doing so will
limit the amount of dirty data in the kernel's page cache, reducing the likelihood of stalls when an
fsync is issued at the end of the checkpoint, or when the OS writes data back in larger batches in
the background. Often that will result in greatly reduced transaction latency, but there also are some
cases, especially with workloads that are bigger than shared_buffers, but smaller than the OS's page
cache, where performance might degrade. This setting may have no effect on some platforms. The
valid range is between 0, which disables forced writeback, and 2MB. The default is 256kB on Linux,
0 elsewhere. (If BLCKSZ is not 8kB, the default and maximum values scale proportionally to it.) This
parameter can only be set in the postgresql.conf file or on the server command line.

checkpoint_warning (integer)

Write a message to the server log if checkpoints caused by the filling of WAL segment files happen
closer together than this many seconds (which suggests that max_wal_size ought to be raised).
The default is 30 seconds (30s). Zero disables the warning. No warnings will be generated if
checkpoint_timeout is less than checkpoint_warning. This parameter can only be set in
the postgresql.conf file or on the server command line.

max_wal_size (integer)

Maximum size to let the WAL grow to between automatic WAL checkpoints. This is a soft limit;
WAL size can exceed max_wal_size under special circumstances, like under heavy load, a failing
archive_command, or a high wal_keep_segments setting. The default is 1 GB. Increasing
this parameter can increase the amount of time needed for crash recovery. This parameter can only be
set in the postgresql.conf file or on the server command line.

min_wal_size (integer)

As long as WAL disk usage stays below this setting, old WAL files are always recycled for future use
at a checkpoint, rather than removed. This can be used to ensure that enough WAL space is reserved
to handle spikes in WAL usage, for example when running large batch jobs. The default is 80 MB.
This parameter can only be set in the postgresql.conf file or on the server command line.

19.5.3. Archiving
archive_mode (enum)

When archive_mode is enabled, completed WAL segments are sent to archive storage by setting
archive_command. In addition to off, to disable, there are two modes: on, and always. During
normal operation, there is no difference between the two modes, but when set to always the WAL
archiver is enabled also during archive recovery or standby mode. In always mode, all files restored
from the archive or streamed with streaming replication will be archived (again). See Section 26.2.9
for details.

archive_mode and archive_command are separate variables so that archive_command
can be changed without leaving archiving mode. This parameter can only be set at server start.
archive_mode cannot be enabled when wal_level is set to minimal.

archive_command (string)

The local shell command to execute to archive a completed WAL file segment. Any %p in the string
is replaced by the path name of the file to archive, and any %f is replaced by only the file name. (The

578

Server Configuration

path name is relative to the working directory of the server, i.e., the cluster's data directory.) Use %%
to embed an actual % character in the command. It is important for the command to return a zero exit
status only if it succeeds. For more information see Section 25.3.1.

This parameter can only be set in the postgresql.conf file or on the server command line. It
is ignored unless archive_mode was enabled at server start. If archive_command is an empty
string (the default) while archive_mode is enabled, WAL archiving is temporarily disabled, but
the server continues to accumulate WAL segment files in the expectation that a command will soon
be provided. Setting archive_command to a command that does nothing but return true, e.g. /
bin/true (REM on Windows), effectively disables archiving, but also breaks the chain of WAL
files needed for archive recovery, so it should only be used in unusual circumstances.

archive_timeout (integer)

The archive_command is only invoked for completed WAL segments. Hence, if your server generates
little WAL traffic (or has slack periods where it does so), there could be a long delay between the
completion of a transaction and its safe recording in archive storage. To limit how old unarchived
data can be, you can set archive_timeout to force the server to switch to a new WAL segment
file periodically. When this parameter is greater than zero, the server will switch to a new segment
file whenever this many seconds have elapsed since the last segment file switch, and there has been
any database activity, including a single checkpoint (checkpoints are skipped if there is no database
activity). Note that archived files that are closed early due to a forced switch are still the same length as
completely full files. Therefore, it is unwise to use a very short archive_timeout — it will bloat
your archive storage. archive_timeout settings of a minute or so are usually reasonable. You
should consider using streaming replication, instead of archiving, if you want data to be copied off
the master server more quickly than that. This parameter can only be set in the postgresql.conf
file or on the server command line.

19.6. Replication
These settings control the behavior of the built-in streaming replication feature (see Section 26.2.5).
Servers will be either a master or a standby server. Masters can send data, while standbys are always
receivers of replicated data. When cascading replication (see Section 26.2.7) is used, standby servers can
also be senders, as well as receivers. Parameters are mainly for sending and standby servers, though some
parameters have meaning only on the master server. Settings may vary across the cluster without problems
if that is required.

19.6.1. Sending Servers
These parameters can be set on any server that is to send replication data to one or more standby servers.
The master is always a sending server, so these parameters must always be set on the master. The role and
meaning of these parameters does not change after a standby becomes the master.

max_wal_senders (integer)

Specifies the maximum number of concurrent connections from standby servers or streaming base
backup clients (i.e., the maximum number of simultaneously running WAL sender processes). The
default is 10. The value 0 means replication is disabled. WAL sender processes count towards the
total number of connections, so this parameter's value must be less than max_connections minus
superuser_reserved_connections. Abrupt streaming client disconnection might leave an orphaned
connection slot behind until a timeout is reached, so this parameter should be set slightly higher than
the maximum number of expected clients so disconnected clients can immediately reconnect. This
parameter can only be set at server start. Also, wal_level must be set to replica or higher to
allow connections from standby servers.

579

Server Configuration

max_replication_slots (integer)

Specifies the maximum number of replication slots (see Section 26.2.6) that the server can support.
The default is 10. This parameter can only be set at server start. Setting it to a lower value than the
number of currently existing replication slots will prevent the server from starting. Also, wal_level
must be set to replica or higher to allow replication slots to be used.

wal_keep_segments (integer)

Specifies the minimum number of past log file segments kept in the pg_wal directory, in case a
standby server needs to fetch them for streaming replication. Each segment is normally 16 megabytes.
If a standby server connected to the sending server falls behind by more than wal_keep_segments
segments, the sending server might remove a WAL segment still needed by the standby, in which
case the replication connection will be terminated. Downstream connections will also eventually fail
as a result. (However, the standby server can recover by fetching the segment from archive, if WAL
archiving is in use.)

This sets only the minimum number of segments retained in pg_wal; the system might need to retain
more segments for WAL archival or to recover from a checkpoint. If wal_keep_segments is zero
(the default), the system doesn't keep any extra segments for standby purposes, so the number of old
WAL segments available to standby servers is a function of the location of the previous checkpoint
and status of WAL archiving. This parameter can only be set in the postgresql.conf file or on
the server command line.

wal_sender_timeout (integer)

Terminate replication connections that are inactive longer than the specified number of milliseconds.
This is useful for the sending server to detect a standby crash or network outage. A value of zero
disables the timeout mechanism. This parameter can only be set in the postgresql.conf file or
on the server command line. The default value is 60 seconds.

track_commit_timestamp (boolean)

Record commit time of transactions. This parameter can only be set in postgresql.conf file or
on the server command line. The default value is off.

19.6.2. Master Server
These parameters can be set on the master/primary server that is to send replication data to one or more
standby servers. Note that in addition to these parameters, wal_level must be set appropriately on the
master server, and optionally WAL archiving can be enabled as well (see Section 19.5.3). The values of
these parameters on standby servers are irrelevant, although you may wish to set them there in preparation
for the possibility of a standby becoming the master.

synchronous_standby_names (string)

Specifies a list of standby servers that can support synchronous replication, as described in
Section 26.2.8. There will be one or more active synchronous standbys; transactions waiting for
commit will be allowed to proceed after these standby servers confirm receipt of their data.
The synchronous standbys will be those whose names appear in this list, and that are both
currently connected and streaming data in real-time (as shown by a state of streaming in the
pg_stat_replication view). Specifying more than one synchronous standby can allow for very
high availability and protection against data loss.

The name of a standby server for this purpose is the application_name setting of the standby, as
set in the standby's connection information. In case of a physical replication standby, this should be

580

Server Configuration

set in the primary_conninfo setting in recovery.conf; the default is walreceiver. For
logical replication, this can be set in the connection information of the subscription, and it defaults to
the subscription name. For other replication stream consumers, consult their documentation.

This parameter specifies a list of standby servers using either of the following syntaxes:

[FIRST] num_sync (standby_name [, ...])
ANY num_sync (standby_name [, ...])
standby_name [, ...]

where num_sync is the number of synchronous standbys that transactions need to wait for replies
from, and standby_name is the name of a standby server. FIRST and ANY specify the method to
choose synchronous standbys from the listed servers.

The keyword FIRST, coupled with num_sync, specifies a priority-based synchronous replication
and makes transaction commits wait until their WAL records are replicated to num_sync
synchronous standbys chosen based on their priorities. For example, a setting of FIRST 3 (s1,
s2, s3, s4) will cause each commit to wait for replies from three higher-priority standbys chosen
from standby servers s1, s2, s3 and s4. The standbys whose names appear earlier in the list are given
higher priority and will be considered as synchronous. Other standby servers appearing later in this list
represent potential synchronous standbys. If any of the current synchronous standbys disconnects for
whatever reason, it will be replaced immediately with the next-highest-priority standby. The keyword
FIRST is optional.

The keyword ANY, coupled with num_sync, specifies a quorum-based synchronous replication and
makes transaction commits wait until their WAL records are replicated to at least num_sync listed
standbys. For example, a setting of ANY 3 (s1, s2, s3, s4) will cause each commit to proceed
as soon as at least any three standbys of s1, s2, s3 and s4 reply.

FIRST and ANY are case-insensitive. If these keywords are used as the name of a standby server, its
standby_name must be double-quoted.

The third syntax was used before PostgreSQL version 9.6 and is still supported. It's the same as the
first syntax with FIRST and num_sync equal to 1. For example, FIRST 1 (s1, s2) and s1,
s2 have the same meaning: either s1 or s2 is chosen as a synchronous standby.

The special entry * matches any standby name.

There is no mechanism to enforce uniqueness of standby names. In case of duplicates one of the
matching standbys will be considered as higher priority, though exactly which one is indeterminate.

Note

Each standby_name should have the form of a valid SQL identifier, unless it is *. You can
use double-quoting if necessary. But note that standby_names are compared to standby
application names case-insensitively, whether double-quoted or not.

If no synchronous standby names are specified here, then synchronous replication is not enabled
and transaction commits will not wait for replication. This is the default configuration. Even
when synchronous replication is enabled, individual transactions can be configured not to wait for
replication by setting the synchronous_commit parameter to local or off.

This parameter can only be set in the postgresql.conf file or on the server command line.

581

Server Configuration

vacuum_defer_cleanup_age (integer)

Specifies the number of transactions by which VACUUM and HOT updates will defer cleanup of dead
row versions. The default is zero transactions, meaning that dead row versions can be removed as
soon as possible, that is, as soon as they are no longer visible to any open transaction. You may
wish to set this to a non-zero value on a primary server that is supporting hot standby servers, as
described in Section 26.5. This allows more time for queries on the standby to complete without
incurring conflicts due to early cleanup of rows. However, since the value is measured in terms of
number of write transactions occurring on the primary server, it is difficult to predict just how much
additional grace time will be made available to standby queries. This parameter can only be set in the
postgresql.conf file or on the server command line.

You should also consider setting hot_standby_feedback on standby server(s) as an alternative
to using this parameter.

This does not prevent cleanup of dead rows which have reached the age specified by
old_snapshot_threshold.

19.6.3. Standby Servers
These settings control the behavior of a standby server that is to receive replication data. Their values on
the master server are irrelevant.

hot_standby (boolean)

Specifies whether or not you can connect and run queries during recovery, as described in Section 26.5.
The default value is on. This parameter can only be set at server start. It only has effect during archive
recovery or in standby mode.

max_standby_archive_delay (integer)

When Hot Standby is active, this parameter determines how long the standby server should wait
before canceling standby queries that conflict with about-to-be-applied WAL entries, as described
in Section 26.5.2. max_standby_archive_delay applies when WAL data is being read from
WAL archive (and is therefore not current). The default is 30 seconds. Units are milliseconds if not
specified. A value of -1 allows the standby to wait forever for conflicting queries to complete. This
parameter can only be set in the postgresql.conf file or on the server command line.

Note that max_standby_archive_delay is not the same as the maximum length of time a
query can run before cancellation; rather it is the maximum total time allowed to apply any one
WAL segment's data. Thus, if one query has resulted in significant delay earlier in the WAL segment,
subsequent conflicting queries will have much less grace time.

max_standby_streaming_delay (integer)

When Hot Standby is active, this parameter determines how long the standby server should wait
before canceling standby queries that conflict with about-to-be-applied WAL entries, as described in
Section 26.5.2. max_standby_streaming_delay applies when WAL data is being received
via streaming replication. The default is 30 seconds. Units are milliseconds if not specified. A value
of -1 allows the standby to wait forever for conflicting queries to complete. This parameter can only
be set in the postgresql.conf file or on the server command line.

Note that max_standby_streaming_delay is not the same as the maximum length of time a
query can run before cancellation; rather it is the maximum total time allowed to apply WAL data
once it has been received from the primary server. Thus, if one query has resulted in significant delay,
subsequent conflicting queries will have much less grace time until the standby server has caught up
again.

582

Server Configuration

wal_receiver_status_interval (integer)

Specifies the minimum frequency for the WAL receiver process on the standby to send information
about replication progress to the primary or upstream standby, where it can be seen using the
pg_stat_replication view. The standby will report the last write-ahead log location it has
written, the last position it has flushed to disk, and the last position it has applied. This parameter's
value is the maximum interval, in seconds, between reports. Updates are sent each time the write or
flush positions change, or at least as often as specified by this parameter. Thus, the apply position may
lag slightly behind the true position. Setting this parameter to zero disables status updates completely.
This parameter can only be set in the postgresql.conf file or on the server command line. The
default value is 10 seconds.

hot_standby_feedback (boolean)

Specifies whether or not a hot standby will send feedback to the primary or upstream standby about
queries currently executing on the standby. This parameter can be used to eliminate query cancels
caused by cleanup records, but can cause database bloat on the primary for some workloads. Feedback
messages will not be sent more frequently than once per wal_receiver_status_interval.
The default value is off. This parameter can only be set in the postgresql.conf file or on the
server command line.

If cascaded replication is in use the feedback is passed upstream until it eventually reaches the primary.
Standbys make no other use of feedback they receive other than to pass upstream.

This setting does not override the behavior of old_snapshot_threshold on the primary; a
snapshot on the standby which exceeds the primary's age threshold can become invalid, resulting
in cancellation of transactions on the standby. This is because old_snapshot_threshold is
intended to provide an absolute limit on the time which dead rows can contribute to bloat, which
would otherwise be violated because of the configuration of a standby.

wal_receiver_timeout (integer)

Terminate replication connections that are inactive longer than the specified number of milliseconds.
This is useful for the receiving standby server to detect a primary node crash or network
outage. A value of zero disables the timeout mechanism. This parameter can only be set in the
postgresql.conf file or on the server command line. The default value is 60 seconds.

wal_retrieve_retry_interval (integer)

Specify how long the standby server should wait when WAL data is not available from any sources
(streaming replication, local pg_wal or WAL archive) before retrying to retrieve WAL data. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
value is 5 seconds. Units are milliseconds if not specified.

This parameter is useful in configurations where a node in recovery needs to control the amount of
time to wait for new WAL data to be available. For example, in archive recovery, it is possible to
make the recovery more responsive in the detection of a new WAL log file by reducing the value
of this parameter. On a system with low WAL activity, increasing it reduces the amount of requests
necessary to access WAL archives, something useful for example in cloud environments where the
amount of times an infrastructure is accessed is taken into account.

19.6.4. Subscribers
These settings control the behavior of a logical replication subscriber. Their values on the publisher are
irrelevant.

583

Server Configuration

Note that wal_receiver_timeout, wal_receiver_status_interval and
wal_retrieve_retry_interval configuration parameters affect the logical replication workers
as well.

max_logical_replication_workers (int)

Specifies maximum number of logical replication workers. This includes both apply workers and table
synchronization workers.

Logical replication workers are taken from the pool defined by max_worker_processes.

The default value is 4.

max_sync_workers_per_subscription (integer)

Maximum number of synchronization workers per subscription. This parameter controls the amount of
parallelism of the initial data copy during the subscription initialization or when new tables are added.

Currently, there can be only one synchronization worker per table.

The synchronization workers are taken from the pool defined by
max_logical_replication_workers.

The default value is 2.

19.7. Query Planning

19.7.1. Planner Method Configuration
These configuration parameters provide a crude method of influencing the query plans chosen by the
query optimizer. If the default plan chosen by the optimizer for a particular query is not optimal, a
temporary solution is to use one of these configuration parameters to force the optimizer to choose a
different plan. Better ways to improve the quality of the plans chosen by the optimizer include adjusting
the planner cost constants (see Section 19.7.2), running ANALYZE manually, increasing the value of
the default_statistics_target configuration parameter, and increasing the amount of statistics collected for
specific columns using ALTER TABLE SET STATISTICS.

enable_bitmapscan (boolean)

Enables or disables the query planner's use of bitmap-scan plan types. The default is on.

enable_gathermerge (boolean)

Enables or disables the query planner's use of gather merge plan types. The default is on.

enable_hashagg (boolean)

Enables or disables the query planner's use of hashed aggregation plan types. The default is on.

enable_hashjoin (boolean)

Enables or disables the query planner's use of hash-join plan types. The default is on.

enable_indexscan (boolean)

Enables or disables the query planner's use of index-scan plan types. The default is on.

584

Server Configuration

enable_indexonlyscan (boolean)

Enables or disables the query planner's use of index-only-scan plan types (see Section 11.9). The
default is on.

enable_material (boolean)

Enables or disables the query planner's use of materialization. It is impossible to suppress
materialization entirely, but turning this variable off prevents the planner from inserting materialize
nodes except in cases where it is required for correctness. The default is on.

enable_mergejoin (boolean)

Enables or disables the query planner's use of merge-join plan types. The default is on.

enable_nestloop (boolean)

Enables or disables the query planner's use of nested-loop join plans. It is impossible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on.

enable_parallel_append (boolean)

Enables or disables the query planner's use of parallel-aware append plan types. The default is on.

enable_parallel_hash (boolean)

Enables or disables the query planner's use of hash-join plan types with parallel hash. Has no effect
if hash-join plans are not also enabled. The default is on.

enable_partition_pruning (boolean)

Enables or disables the query planner's ability to eliminate a partitioned table's partitions from query
plans. This also controls the planner's ability to generate query plans which allow the query executor
to remove (ignore) partitions during query execution. The default is on. See Section 5.10.4 for details.

enable_partitionwise_join (boolean)

Enables or disables the query planner's use of partitionwise join, which allows a join between
partitioned tables to be performed by joining the matching partitions. Partitionwise join currently
applies only when the join conditions include all the partition keys, which must be of the same data
type and have exactly matching sets of child partitions. Because partitionwise join planning can use
significantly more CPU time and memory during planning, the default is off.

enable_partitionwise_aggregate (boolean)

Enables or disables the query planner's use of partitionwise grouping or aggregation, which allows
grouping or aggregation on a partitioned tables performed separately for each partition. If the GROUP
BY clause does not include the partition keys, only partial aggregation can be performed on a
per-partition basis, and finalization must be performed later. Because partitionwise grouping or
aggregation can use significantly more CPU time and memory during planning, the default is off.

enable_seqscan (boolean)

Enables or disables the query planner's use of sequential scan plan types. It is impossible to suppress
sequential scans entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on.

585

Server Configuration

enable_sort (boolean)

Enables or disables the query planner's use of explicit sort steps. It is impossible to suppress explicit
sorts entirely, but turning this variable off discourages the planner from using one if there are other
methods available. The default is on.

enable_tidscan (boolean)

Enables or disables the query planner's use of TID scan plan types. The default is on.

19.7.2. Planner Cost Constants
The cost variables described in this section are measured on an arbitrary scale. Only their relative
values matter, hence scaling them all up or down by the same factor will result in no change in the
planner's choices. By default, these cost variables are based on the cost of sequential page fetches; that
is, seq_page_cost is conventionally set to 1.0 and the other cost variables are set with reference to
that. But you can use a different scale if you prefer, such as actual execution times in milliseconds on a
particular machine.

Note

Unfortunately, there is no well-defined method for determining ideal values for the cost variables.
They are best treated as averages over the entire mix of queries that a particular installation will
receive. This means that changing them on the basis of just a few experiments is very risky.

seq_page_cost (floating point)

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of sequential fetches.
The default is 1.0. This value can be overridden for tables and indexes in a particular tablespace by
setting the tablespace parameter of the same name (see ALTER TABLESPACE).

random_page_cost (floating point)

Sets the planner's estimate of the cost of a non-sequentially-fetched disk page. The default is 4.0. This
value can be overridden for tables and indexes in a particular tablespace by setting the tablespace
parameter of the same name (see ALTER TABLESPACE).

Reducing this value relative to seq_page_cost will cause the system to prefer index scans; raising
it will make index scans look relatively more expensive. You can raise or lower both values together
to change the importance of disk I/O costs relative to CPU costs, which are described by the following
parameters.

Random access to mechanical disk storage is normally much more expensive than four times
sequential access. However, a lower default is used (4.0) because the majority of random accesses
to disk, such as indexed reads, are assumed to be in cache. The default value can be thought of as
modeling random access as 40 times slower than sequential, while expecting 90% of random reads
to be cached.

If you believe a 90% cache rate is an incorrect assumption for your workload, you can increase
random_page_cost to better reflect the true cost of random storage reads. Correspondingly, if your
data is likely to be completely in cache, such as when the database is smaller than the total server
memory, decreasing random_page_cost can be appropriate. Storage that has a low random read cost

586

Server Configuration

relative to sequential, e.g. solid-state drives, might also be better modeled with a lower value for
random_page_cost.

Tip

Although the system will let you set random_page_cost to less than seq_page_cost,
it is not physically sensible to do so. However, setting them equal makes sense if the database
is entirely cached in RAM, since in that case there is no penalty for touching pages out of
sequence. Also, in a heavily-cached database you should lower both values relative to the
CPU parameters, since the cost of fetching a page already in RAM is much smaller than it
would normally be.

cpu_tuple_cost (floating point)

Sets the planner's estimate of the cost of processing each row during a query. The default is 0.01.

cpu_index_tuple_cost (floating point)

Sets the planner's estimate of the cost of processing each index entry during an index scan. The default
is 0.005.

cpu_operator_cost (floating point)

Sets the planner's estimate of the cost of processing each operator or function executed during a query.
The default is 0.0025.

parallel_setup_cost (floating point)

Sets the planner's estimate of the cost of launching parallel worker processes. The default is 1000.

parallel_tuple_cost (floating point)

Sets the planner's estimate of the cost of transferring one tuple from a parallel worker process to
another process. The default is 0.1.

min_parallel_table_scan_size (integer)

Sets the minimum amount of table data that must be scanned in order for a parallel scan to be
considered. For a parallel sequential scan, the amount of table data scanned is always equal to the size
of the table, but when indexes are used the amount of table data scanned will normally be less. The
default is 8 megabytes (8MB).

min_parallel_index_scan_size (integer)

Sets the minimum amount of index data that must be scanned in order for a parallel scan to be
considered. Note that a parallel index scan typically won't touch the entire index; it is the number of
pages which the planner believes will actually be touched by the scan which is relevant. The default
is 512 kilobytes (512kB).

effective_cache_size (integer)

Sets the planner's assumption about the effective size of the disk cache that is available to a single
query. This is factored into estimates of the cost of using an index; a higher value makes it more likely
index scans will be used, a lower value makes it more likely sequential scans will be used. When
setting this parameter you should consider both PostgreSQL's shared buffers and the portion of the

587

Server Configuration

kernel's disk cache that will be used for PostgreSQL data files, though some data might exist in both
places. Also, take into account the expected number of concurrent queries on different tables, since
they will have to share the available space. This parameter has no effect on the size of shared memory
allocated by PostgreSQL, nor does it reserve kernel disk cache; it is used only for estimation purposes.
The system also does not assume data remains in the disk cache between queries. The default is 4
gigabytes (4GB).

jit_above_cost (floating point)

Sets the query cost above which JIT compilation is activated, if enabled (see Chapter 32). Performing
JIT costs planning time but can accelerate query execution. Setting this to -1 disables JIT compilation.
The default is 100000.

jit_inline_above_cost (floating point)

Sets the query cost above which JIT compilation attempts to inline functions and operators. Inlining
adds planning time, but can improve execution speed. It is not meaningful to set this to less than
jit_above_cost. Setting this to -1 disables inlining. The default is 500000.

jit_optimize_above_cost (floating point)

Sets the query cost above which JIT compilation applies expensive optimizations. Such optimization
adds planning time, but can improve execution speed. It is not meaningful to set this to
less than jit_above_cost, and it is unlikely to be beneficial to set it to more than
jit_inline_above_cost. Setting this to -1 disables expensive optimizations. The default is
500000.

19.7.3. Genetic Query Optimizer
The genetic query optimizer (GEQO) is an algorithm that does query planning using heuristic searching.
This reduces planning time for complex queries (those joining many relations), at the cost of producing
plans that are sometimes inferior to those found by the normal exhaustive-search algorithm. For more
information see Chapter 60.

geqo (boolean)

Enables or disables genetic query optimization. This is on by default. It is usually best not to turn it
off in production; the geqo_threshold variable provides more granular control of GEQO.

geqo_threshold (integer)

Use genetic query optimization to plan queries with at least this many FROM items involved. (Note
that a FULL OUTER JOIN construct counts as only one FROM item.) The default is 12. For simpler
queries it is usually best to use the regular, exhaustive-search planner, but for queries with many tables
the exhaustive search takes too long, often longer than the penalty of executing a suboptimal plan.
Thus, a threshold on the size of the query is a convenient way to manage use of GEQO.

geqo_effort (integer)

Controls the trade-off between planning time and query plan quality in GEQO. This variable must be
an integer in the range from 1 to 10. The default value is five. Larger values increase the time spent
doing query planning, but also increase the likelihood that an efficient query plan will be chosen.

geqo_effort doesn't actually do anything directly; it is only used to compute the default values
for the other variables that influence GEQO behavior (described below). If you prefer, you can set
the other parameters by hand instead.

588

Server Configuration

geqo_pool_size (integer)

Controls the pool size used by GEQO, that is the number of individuals in the genetic population. It
must be at least two, and useful values are typically 100 to 1000. If it is set to zero (the default setting)
then a suitable value is chosen based on geqo_effort and the number of tables in the query.

geqo_generations (integer)

Controls the number of generations used by GEQO, that is the number of iterations of the algorithm.
It must be at least one, and useful values are in the same range as the pool size. If it is set to zero (the
default setting) then a suitable value is chosen based on geqo_pool_size.

geqo_selection_bias (floating point)

Controls the selection bias used by GEQO. The selection bias is the selective pressure within the
population. Values can be from 1.50 to 2.00; the latter is the default.

geqo_seed (floating point)

Controls the initial value of the random number generator used by GEQO to select random paths
through the join order search space. The value can range from zero (the default) to one. Varying the
value changes the set of join paths explored, and may result in a better or worse best path being found.

19.7.4. Other Planner Options
default_statistics_target (integer)

Sets the default statistics target for table columns without a column-specific target set via ALTER
TABLE SET STATISTICS. Larger values increase the time needed to do ANALYZE, but might
improve the quality of the planner's estimates. The default is 100. For more information on the use of
statistics by the PostgreSQL query planner, refer to Section 14.2.

constraint_exclusion (enum)

Controls the query planner's use of table constraints to optimize queries. The allowed values of
constraint_exclusion are on (examine constraints for all tables), off (never examine
constraints), and partition (examine constraints only for inheritance child tables and UNION ALL
subqueries). partition is the default setting. It is often used with inheritance tables to improve
performance.

When this parameter allows it for a particular table, the planner compares query conditions with
the table's CHECK constraints, and omits scanning tables for which the conditions contradict the
constraints. For example:

CREATE TABLE parent(key integer, ...);
CREATE TABLE child1000(check (key between 1000 and 1999))
 INHERITS(parent);
CREATE TABLE child2000(check (key between 2000 and 2999))
 INHERITS(parent);
...
SELECT * FROM parent WHERE key = 2400;

With constraint exclusion enabled, this SELECT will not scan child1000 at all, improving
performance.

589

Server Configuration

Currently, constraint exclusion is enabled by default only for cases that are often used to implement
table partitioning via inheritance tables. Turning it on for all tables imposes extra planning overhead
that is quite noticeable on simple queries, and most often will yield no benefit for simple queries. If
you have no inheritance partitioned tables you might prefer to turn it off entirely.

Refer to Section 5.10.5 for more information on using constraint exclusion and partitioning.

cursor_tuple_fraction (floating point)

Sets the planner's estimate of the fraction of a cursor's rows that will be retrieved. The default is 0.1.
Smaller values of this setting bias the planner towards using “fast start” plans for cursors, which will
retrieve the first few rows quickly while perhaps taking a long time to fetch all rows. Larger values
put more emphasis on the total estimated time. At the maximum setting of 1.0, cursors are planned
exactly like regular queries, considering only the total estimated time and not how soon the first rows
might be delivered.

from_collapse_limit (integer)

The planner will merge sub-queries into upper queries if the resulting FROM list would have no more
than this many items. Smaller values reduce planning time but might yield inferior query plans. The
default is eight. For more information see Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in non-
optimal plans. See Section 19.7.3.

jit (boolean)

Determines whether JIT compilation may be used by PostgreSQL, if available (see Chapter 32). The
default is off.

join_collapse_limit (integer)

The planner will rewrite explicit JOIN constructs (except FULL JOINs) into lists of FROM items
whenever a list of no more than this many items would result. Smaller values reduce planning time
but might yield inferior query plans.

By default, this variable is set the same as from_collapse_limit, which is appropriate for most
uses. Setting it to 1 prevents any reordering of explicit JOINs. Thus, the explicit join order specified
in the query will be the actual order in which the relations are joined. Because the query planner does
not always choose the optimal join order, advanced users can elect to temporarily set this variable to
1, and then specify the join order they desire explicitly. For more information see Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in non-
optimal plans. See Section 19.7.3.

parallel_leader_participation (boolean)

Allows the leader process to execute the query plan under Gather and Gather Merge nodes
instead of waiting for worker processes. The default is on. Setting this value to off reduces the
likelihood that workers will become blocked because the leader is not reading tuples fast enough,
but requires the leader process to wait for worker processes to start up before the first tuples can be
produced. The degree to which the leader can help or hinder performance depends on the plan type,
number of workers and query duration.

force_parallel_mode (enum)

Allows the use of parallel queries for testing purposes even in cases where no performance benefit is
expected. The allowed values of force_parallel_mode are off (use parallel mode only when

590

Server Configuration

it is expected to improve performance), on (force parallel query for all queries for which it is thought
to be safe), and regress (like on, but with additional behavior changes as explained below).

More specifically, setting this value to on will add a Gather node to the top of any query plan for
which this appears to be safe, so that the query runs inside of a parallel worker. Even when a parallel
worker is not available or cannot be used, operations such as starting a subtransaction that would be
prohibited in a parallel query context will be prohibited unless the planner believes that this will cause
the query to fail. If failures or unexpected results occur when this option is set, some functions used by
the query may need to be marked PARALLEL UNSAFE (or, possibly, PARALLEL RESTRICTED).

Setting this value to regress has all of the same effects as setting it to on plus some additional
effects that are intended to facilitate automated regression testing. Normally, messages from a parallel
worker include a context line indicating that, but a setting of regress suppresses this line so that the
output is the same as in non-parallel execution. Also, the Gather nodes added to plans by this setting
are hidden in EXPLAIN output so that the output matches what would be obtained if this setting were
turned off.

19.8. Error Reporting and Logging

19.8.1. Where To Log
log_destination (string)

PostgreSQL supports several methods for logging server messages, including stderr, csvlog and
syslog. On Windows, eventlog is also supported. Set this parameter to a list of desired log destinations
separated by commas. The default is to log to stderr only. This parameter can only be set in the
postgresql.conf file or on the server command line.

If csvlog is included in log_destination, log entries are output in “comma separated value”
(CSV) format, which is convenient for loading logs into programs. See Section 19.8.4 for details.
logging_collector must be enabled to generate CSV-format log output.

When either stderr or csvlog are included, the file current_logfiles is created to record
the location of the log file(s) currently in use by the logging collector and the associated logging
destination. This provides a convenient way to find the logs currently in use by the instance. Here is
an example of this file's content:

stderr log/postgresql.log
csvlog log/postgresql.csv

current_logfiles is recreated when a new log file is created as an effect of rotation, and
when log_destination is reloaded. It is removed when neither stderr nor csvlog are included in
log_destination, and when the logging collector is disabled.

Note

On most Unix systems, you will need to alter the configuration of your system's syslog
daemon in order to make use of the syslog option for log_destination. PostgreSQL
can log to syslog facilities LOCAL0 through LOCAL7 (see syslog_facility), but the default
syslog configuration on most platforms will discard all such messages. You will need to add
something like:

591

Server Configuration

local0.* /var/log/postgresql

to the syslog daemon's configuration file to make it work.

On Windows, when you use the eventlog option for log_destination, you should
register an event source and its library with the operating system so that the Windows Event
Viewer can display event log messages cleanly. See Section 18.11 for details.

logging_collector (boolean)

This parameter enables the logging collector, which is a background process that captures log
messages sent to stderr and redirects them into log files. This approach is often more useful than
logging to syslog, since some types of messages might not appear in syslog output. (One common
example is dynamic-linker failure messages; another is error messages produced by scripts such as
archive_command.) This parameter can only be set at server start.

Note

It is possible to log to stderr without using the logging collector; the log messages will just go
to wherever the server's stderr is directed. However, that method is only suitable for low log
volumes, since it provides no convenient way to rotate log files. Also, on some platforms not
using the logging collector can result in lost or garbled log output, because multiple processes
writing concurrently to the same log file can overwrite each other's output.

Note

The logging collector is designed to never lose messages. This means that in case of extremely
high load, server processes could be blocked while trying to send additional log messages
when the collector has fallen behind. In contrast, syslog prefers to drop messages if it cannot
write them, which means it may fail to log some messages in such cases but it will not block
the rest of the system.

log_directory (string)

When logging_collector is enabled, this parameter determines the directory in which log files
will be created. It can be specified as an absolute path, or relative to the cluster data directory. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
is log.

log_filename (string)

When logging_collector is enabled, this parameter sets the file names of the created log files.
The value is treated as a strftime pattern, so %-escapes can be used to specify time-varying file
names. (Note that if there are any time-zone-dependent %-escapes, the computation is done in the zone
specified by log_timezone.) The supported %-escapes are similar to those listed in the Open Group's
strftime 1 specification. Note that the system's strftime is not used directly, so platform-specific
(nonstandard) extensions do not work. The default is postgresql-%Y-%m-%d_%H%M%S.log.

1 http://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html

592

http://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html

Server Configuration

If you specify a file name without escapes, you should plan to use a log rotation utility to avoid
eventually filling the entire disk. In releases prior to 8.4, if no % escapes were present, PostgreSQL
would append the epoch of the new log file's creation time, but this is no longer the case.

If CSV-format output is enabled in log_destination, .csv will be appended to the timestamped
log file name to create the file name for CSV-format output. (If log_filename ends in .log, the
suffix is replaced instead.)

This parameter can only be set in the postgresql.conf file or on the server command line.

log_file_mode (integer)

On Unix systems this parameter sets the permissions for log files when logging_collector is
enabled. (On Microsoft Windows this parameter is ignored.) The parameter value is expected to be a
numeric mode specified in the format accepted by the chmod and umask system calls. (To use the
customary octal format the number must start with a 0 (zero).)

The default permissions are 0600, meaning only the server owner can read or write the log files.
The other commonly useful setting is 0640, allowing members of the owner's group to read the files.
Note however that to make use of such a setting, you'll need to alter log_directory to store the files
somewhere outside the cluster data directory. In any case, it's unwise to make the log files world-
readable, since they might contain sensitive data.

This parameter can only be set in the postgresql.conf file or on the server command line.

log_rotation_age (integer)

When logging_collector is enabled, this parameter determines the maximum lifetime of
an individual log file. After this many minutes have elapsed, a new log file will be created. Set
to zero to disable time-based creation of new log files. This parameter can only be set in the
postgresql.conf file or on the server command line.

log_rotation_size (integer)

When logging_collector is enabled, this parameter determines the maximum size of an
individual log file. After this many kilobytes have been emitted into a log file, a new log file will be
created. Set to zero to disable size-based creation of new log files. This parameter can only be set in
the postgresql.conf file or on the server command line.

log_truncate_on_rotation (boolean)

When logging_collector is enabled, this parameter will cause PostgreSQL to truncate
(overwrite), rather than append to, any existing log file of the same name. However, truncation will
occur only when a new file is being opened due to time-based rotation, not during server startup or
size-based rotation. When off, pre-existing files will be appended to in all cases. For example, using
this setting in combination with a log_filename like postgresql-%H.log would result in
generating twenty-four hourly log files and then cyclically overwriting them. This parameter can only
be set in the postgresql.conf file or on the server command line.

Example: To keep 7 days of logs, one log file per day named server_log.Mon,
server_log.Tue, etc, and automatically overwrite last week's log with this week's log,
set log_filename to server_log.%a, log_truncate_on_rotation to on, and
log_rotation_age to 1440.

Example: To keep 24 hours of logs, one log file per hour, but also rotate sooner if the log file size
exceeds 1GB, set log_filename to server_log.%H%M, log_truncate_on_rotation

593

Server Configuration

to on, log_rotation_age to 60, and log_rotation_size to 1000000. Including %M in
log_filename allows any size-driven rotations that might occur to select a file name different
from the hour's initial file name.

syslog_facility (enum)

When logging to syslog is enabled, this parameter determines the syslog “facility” to be used. You
can choose from LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7;
the default is LOCAL0. See also the documentation of your system's syslog daemon. This parameter
can only be set in the postgresql.conf file or on the server command line.

syslog_ident (string)

When logging to syslog is enabled, this parameter determines the program name used to identify
PostgreSQL messages in syslog logs. The default is postgres. This parameter can only be set in
the postgresql.conf file or on the server command line.

syslog_sequence_numbers (boolean)

When logging to syslog and this is on (the default), then each message will be prefixed
by an increasing sequence number (such as [2]). This circumvents the “--- last message
repeated N times ---” suppression that many syslog implementations perform by default. In more
modern syslog implementations, repeated message suppression can be configured (for example,
$RepeatedMsgReduction in rsyslog), so this might not be necessary. Also, you could turn this
off if you actually want to suppress repeated messages.

This parameter can only be set in the postgresql.conf file or on the server command line.

syslog_split_messages (boolean)

When logging to syslog is enabled, this parameter determines how messages are delivered to syslog.
When on (the default), messages are split by lines, and long lines are split so that they will fit into
1024 bytes, which is a typical size limit for traditional syslog implementations. When off, PostgreSQL
server log messages are delivered to the syslog service as is, and it is up to the syslog service to cope
with the potentially bulky messages.

If syslog is ultimately logging to a text file, then the effect will be the same either way, and it is best to
leave the setting on, since most syslog implementations either cannot handle large messages or would
need to be specially configured to handle them. But if syslog is ultimately writing into some other
medium, it might be necessary or more useful to keep messages logically together.

This parameter can only be set in the postgresql.conf file or on the server command line.

event_source (string)

When logging to event log is enabled, this parameter determines the program name used to identify
PostgreSQL messages in the log. The default is PostgreSQL. This parameter can only be set in the
postgresql.conf file or on the server command line.

19.8.2. When To Log
log_min_messages (enum)

Controls which message levels are written to the server log. Valid values are DEBUG5, DEBUG4,
DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC. Each
level includes all the levels that follow it. The later the level, the fewer messages are sent to the log.

594

Server Configuration

The default is WARNING. Note that LOG has a different rank here than in client_min_messages. Only
superusers can change this setting.

log_min_error_statement (enum)

Controls which SQL statements that cause an error condition are recorded in the server log. The
current SQL statement is included in the log entry for any message of the specified severity or higher.
Valid values are DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING,
ERROR, LOG, FATAL, and PANIC. The default is ERROR, which means statements causing errors, log
messages, fatal errors, or panics will be logged. To effectively turn off logging of failing statements,
set this parameter to PANIC. Only superusers can change this setting.

log_min_duration_statement (integer)

Causes the duration of each completed statement to be logged if the statement ran for at least the
specified number of milliseconds. Setting this to zero prints all statement durations. Minus-one (the
default) disables logging statement durations. For example, if you set it to 250ms then all SQL
statements that run 250ms or longer will be logged. Enabling this parameter can be helpful in tracking
down unoptimized queries in your applications. Only superusers can change this setting.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

Note

When using this option together with log_statement, the text of statements that are logged
because of log_statement will not be repeated in the duration log message. If you are
not using syslog, it is recommended that you log the PID or session ID using log_line_prefix
so that you can link the statement message to the later duration message using the process
ID or session ID.

Table 19.1 explains the message severity levels used by PostgreSQL. If logging output is sent to syslog or
Windows' eventlog, the severity levels are translated as shown in the table.

Table 19.1. Message Severity Levels

Severity Usage syslog eventlog

DEBUG1..DEBUG5 Provides successively-
more-detailed
information for use by
developers.

DEBUG INFORMATION

INFO Provides information
implicitly requested by
the user, e.g., output from
VACUUM VERBOSE.

INFO INFORMATION

NOTICE Provides information
that might be helpful
to users, e.g., notice
of truncation of long
identifiers.

NOTICE INFORMATION

WARNING Provides warnings of
likely problems, e.g.,

NOTICE WARNING

595

Server Configuration

Severity Usage syslog eventlog

COMMIT outside a
transaction block.

ERROR Reports an error that
caused the current
command to abort.

WARNING ERROR

LOG Reports information of
interest to administrators,
e.g., checkpoint activity.

INFO INFORMATION

FATAL Reports an error that
caused the current
session to abort.

ERR ERROR

PANIC Reports an error that
caused all database
sessions to abort.

CRIT ERROR

19.8.3. What To Log
application_name (string)

The application_name can be any string of less than NAMEDATALEN characters (64 characters
in a standard build). It is typically set by an application upon connection to the server. The name will be
displayed in the pg_stat_activity view and included in CSV log entries. It can also be included
in regular log entries via the log_line_prefix parameter. Only printable ASCII characters may be used
in the application_name value. Other characters will be replaced with question marks (?).

debug_print_parse (boolean)
debug_print_rewritten (boolean)
debug_print_plan (boolean)

These parameters enable various debugging output to be emitted. When set, they print the resulting
parse tree, the query rewriter output, or the execution plan for each executed query. These messages
are emitted at LOG message level, so by default they will appear in the server log but will not be sent to
the client. You can change that by adjusting client_min_messages and/or log_min_messages. These
parameters are off by default.

debug_pretty_print (boolean)

When set, debug_pretty_print indents the messages produced by debug_print_parse,
debug_print_rewritten, or debug_print_plan. This results in more readable but much
longer output than the “compact” format used when it is off. It is on by default.

log_checkpoints (boolean)

Causes checkpoints and restartpoints to be logged in the server log. Some statistics are included in the
log messages, including the number of buffers written and the time spent writing them. This parameter
can only be set in the postgresql.conf file or on the server command line. The default is off.

log_connections (boolean)

Causes each attempted connection to the server to be logged, as well as successful completion of client
authentication. Only superusers can change this parameter at session start, and it cannot be changed
at all within a session. The default is off.

596

Server Configuration

Note

Some client programs, like psql, attempt to connect twice while determining if a password is
required, so duplicate “connection received” messages do not necessarily indicate a problem.

log_disconnections (boolean)

Causes session terminations to be logged. The log output provides information similar to
log_connections, plus the duration of the session. Only superusers can change this parameter at
session start, and it cannot be changed at all within a session. The default is off.

log_duration (boolean)

Causes the duration of every completed statement to be logged. The default is off. Only superusers
can change this setting.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

Note

The difference between setting this option and setting log_min_duration_statement to
zero is that exceeding log_min_duration_statement forces the text of the
query to be logged, but this option doesn't. Thus, if log_duration is on and
log_min_duration_statement has a positive value, all durations are logged but the
query text is included only for statements exceeding the threshold. This behavior can be useful
for gathering statistics in high-load installations.

log_error_verbosity (enum)

Controls the amount of detail written in the server log for each message that is logged. Valid values are
TERSE, DEFAULT, and VERBOSE, each adding more fields to displayed messages. TERSE excludes
the logging of DETAIL, HINT, QUERY, and CONTEXT error information. VERBOSE output includes
the SQLSTATE error code (see also Appendix A) and the source code file name, function name, and
line number that generated the error. Only superusers can change this setting.

log_hostname (boolean)

By default, connection log messages only show the IP address of the connecting host. Turning this
parameter on causes logging of the host name as well. Note that depending on your host name
resolution setup this might impose a non-negligible performance penalty. This parameter can only be
set in the postgresql.conf file or on the server command line.

log_line_prefix (string)

This is a printf-style string that is output at the beginning of each log line. % characters begin
“escape sequences” that are replaced with status information as outlined below. Unrecognized escapes
are ignored. Other characters are copied straight to the log line. Some escapes are only recognized
by session processes, and will be treated as empty by background processes such as the main server
process. Status information may be aligned either left or right by specifying a numeric literal after the

597

Server Configuration

% and before the option. A negative value will cause the status information to be padded on the right
with spaces to give it a minimum width, whereas a positive value will pad on the left. Padding can be
useful to aid human readability in log files. This parameter can only be set in the postgresql.conf
file or on the server command line. The default is '%m [%p] ' which logs a time stamp and the
process ID.

Escape Effect Session only

%a Application name yes

%u User name yes

%d Database name yes

%r Remote host name or IP address,
and remote port

yes

%h Remote host name or IP address yes

%p Process ID no

%t Time stamp without
milliseconds

no

%m Time stamp with milliseconds no

%n Time stamp with milliseconds
(as a Unix epoch)

no

%i Command tag: type of session's
current command

yes

%e SQLSTATE error code no

%c Session ID: see below no

%l Number of the log line for each
session or process, starting at 1

no

%s Process start time stamp no

%v Virtual transaction ID
(backendID/localXID)

no

%x Transaction ID (0 if none is
assigned)

no

%q Produces no output, but tells
non-session processes to stop at
this point in the string; ignored
by session processes

no

%% Literal % no

The %c escape prints a quasi-unique session identifier, consisting of two 4-byte hexadecimal numbers
(without leading zeros) separated by a dot. The numbers are the process start time and the process ID,
so %c can also be used as a space saving way of printing those items. For example, to generate the
session identifier from pg_stat_activity, use this query:

SELECT to_hex(trunc(EXTRACT(EPOCH FROM backend_start))::integer) ||
 '.' ||
 to_hex(pid)
FROM pg_stat_activity;

598

Server Configuration

Tip

If you set a nonempty value for log_line_prefix, you should usually make its last
character be a space, to provide visual separation from the rest of the log line. A punctuation
character can be used too.

Tip

Syslog produces its own time stamp and process ID information, so you probably do not want
to include those escapes if you are logging to syslog.

Tip

The %q escape is useful when including information that is only available in session (backend)
context like user or database name. For example:

log_line_prefix = '%m [%p] %q%u@%d/%a '

log_lock_waits (boolean)

Controls whether a log message is produced when a session waits longer than deadlock_timeout to
acquire a lock. This is useful in determining if lock waits are causing poor performance. The default
is off. Only superusers can change this setting.

log_statement (enum)

Controls which SQL statements are logged. Valid values are none (off), ddl, mod, and all (all
statements). ddl logs all data definition statements, such as CREATE, ALTER, and DROP statements.
mod logs all ddl statements, plus data-modifying statements such as INSERT, UPDATE, DELETE,
TRUNCATE, and COPY FROM. PREPARE, EXECUTE, and EXPLAIN ANALYZE statements are
also logged if their contained command is of an appropriate type. For clients using extended query
protocol, logging occurs when an Execute message is received, and values of the Bind parameters are
included (with any embedded single-quote marks doubled).

The default is none. Only superusers can change this setting.

Note

Statements that contain simple syntax errors are not logged even by the log_statement
= all setting, because the log message is emitted only after basic parsing has been done to
determine the statement type. In the case of extended query protocol, this setting likewise does
not log statements that fail before the Execute phase (i.e., during parse analysis or planning).
Set log_min_error_statement to ERROR (or lower) to log such statements.

log_replication_commands (boolean)

Causes each replication command to be logged in the server log. See Section 53.4 for more information
about replication command. The default value is off. Only superusers can change this setting.

599

Server Configuration

log_temp_files (integer)

Controls logging of temporary file names and sizes. Temporary files can be created for sorts, hashes,
and temporary query results. A log entry is made for each temporary file when it is deleted. A value of
zero logs all temporary file information, while positive values log only files whose size is greater than
or equal to the specified number of kilobytes. The default setting is -1, which disables such logging.
Only superusers can change this setting.

log_timezone (string)

Sets the time zone used for timestamps written in the server log. Unlike TimeZone, this value is
cluster-wide, so that all sessions will report timestamps consistently. The built-in default is GMT, but
that is typically overridden in postgresql.conf; initdb will install a setting there corresponding
to its system environment. See Section 8.5.3 for more information. This parameter can only be set in
the postgresql.conf file or on the server command line.

19.8.4. Using CSV-Format Log Output
Including csvlog in the log_destination list provides a convenient way to import log files into a
database table. This option emits log lines in comma-separated-values (CSV) format, with these columns:
time stamp with milliseconds, user name, database name, process ID, client host:port number, session ID,
per-session line number, command tag, session start time, virtual transaction ID, regular transaction ID,
error severity, SQLSTATE code, error message, error message detail, hint, internal query that led to the
error (if any), character count of the error position therein, error context, user query that led to the error
(if any and enabled by log_min_error_statement), character count of the error position therein,
location of the error in the PostgreSQL source code (if log_error_verbosity is set to verbose),
and application name. Here is a sample table definition for storing CSV-format log output:

CREATE TABLE postgres_log
(
 log_time timestamp(3) with time zone,
 user_name text,
 database_name text,
 process_id integer,
 connection_from text,
 session_id text,
 session_line_num bigint,
 command_tag text,
 session_start_time timestamp with time zone,
 virtual_transaction_id text,
 transaction_id bigint,
 error_severity text,
 sql_state_code text,
 message text,
 detail text,
 hint text,
 internal_query text,
 internal_query_pos integer,
 context text,
 query text,
 query_pos integer,
 location text,
 application_name text,

600

Server Configuration

 PRIMARY KEY (session_id, session_line_num)
);

To import a log file into this table, use the COPY FROM command:

COPY postgres_log FROM '/full/path/to/logfile.csv' WITH csv;

There are a few things you need to do to simplify importing CSV log files:

1. Set log_filename and log_rotation_age to provide a consistent, predictable naming scheme
for your log files. This lets you predict what the file name will be and know when an individual log file
is complete and therefore ready to be imported.

2. Set log_rotation_size to 0 to disable size-based log rotation, as it makes the log file name
difficult to predict.

3. Set log_truncate_on_rotation to on so that old log data isn't mixed with the new in the same
file.

4. The table definition above includes a primary key specification. This is useful to protect against
accidentally importing the same information twice. The COPY command commits all of the data it
imports at one time, so any error will cause the entire import to fail. If you import a partial log file and
later import the file again when it is complete, the primary key violation will cause the import to fail.
Wait until the log is complete and closed before importing. This procedure will also protect against
accidentally importing a partial line that hasn't been completely written, which would also cause COPY
to fail.

19.8.5. Process Title
These settings control how process titles of server processes are modified. Process titles are typically
viewed using programs like ps or, on Windows, Process Explorer. See Section 28.1 for details.

cluster_name (string)

Sets the cluster name that appears in the process title for all server processes in this cluster. The
name can be any string of less than NAMEDATALEN characters (64 characters in a standard build).
Only printable ASCII characters may be used in the cluster_name value. Other characters will be
replaced with question marks (?). No name is shown if this parameter is set to the empty string ''
(which is the default). This parameter can only be set at server start.

update_process_title (boolean)

Enables updating of the process title every time a new SQL command is received by the server. This
setting defaults to on on most platforms, but it defaults to off on Windows due to that platform's
larger overhead for updating the process title. Only superusers can change this setting.

19.9. Run-time Statistics

19.9.1. Query and Index Statistics Collector
These parameters control server-wide statistics collection features. When statistics collection is enabled,
the data that is produced can be accessed via the pg_stat and pg_statio family of system views.
Refer to Chapter 28 for more information.

601

Server Configuration

track_activities (boolean)

Enables the collection of information on the currently executing command of each session, along with
the time when that command began execution. This parameter is on by default. Note that even when
enabled, this information is not visible to all users, only to superusers and the user owning the session
being reported on, so it should not represent a security risk. Only superusers can change this setting.

track_activity_query_size (integer)

Specifies the number of bytes reserved to track the currently executing command for each active
session, for the pg_stat_activity.query field. The default value is 1024. This parameter can
only be set at server start.

track_counts (boolean)

Enables collection of statistics on database activity. This parameter is on by default, because the
autovacuum daemon needs the collected information. Only superusers can change this setting.

track_io_timing (boolean)

Enables timing of database I/O calls. This parameter is off by default, because it will repeatedly query
the operating system for the current time, which may cause significant overhead on some platforms.
You can use the pg_test_timing tool to measure the overhead of timing on your system. I/O timing
information is displayed in pg_stat_database, in the output of EXPLAIN when the BUFFERS option
is used, and by pg_stat_statements. Only superusers can change this setting.

track_functions (enum)

Enables tracking of function call counts and time used. Specify pl to track only procedural-language
functions, all to also track SQL and C language functions. The default is none, which disables
function statistics tracking. Only superusers can change this setting.

Note

SQL-language functions that are simple enough to be “inlined” into the calling query will not
be tracked, regardless of this setting.

stats_temp_directory (string)

Sets the directory to store temporary statistics data in. This can be a path relative to the data directory
or an absolute path. The default is pg_stat_tmp. Pointing this at a RAM-based file system will
decrease physical I/O requirements and can lead to improved performance. This parameter can only
be set in the postgresql.conf file or on the server command line.

19.9.2. Statistics Monitoring
log_statement_stats (boolean)
log_parser_stats (boolean)
log_planner_stats (boolean)
log_executor_stats (boolean)

For each query, output performance statistics of the respective module to the server log. This
is a crude profiling instrument, similar to the Unix getrusage() operating system facility.

602

Server Configuration

log_statement_stats reports total statement statistics, while the others report per-module
statistics. log_statement_stats cannot be enabled together with any of the per-module options.
All of these options are disabled by default. Only superusers can change these settings.

19.10. Automatic Vacuuming
These settings control the behavior of the autovacuum feature. Refer to Section 24.1.6 for more
information. Note that many of these settings can be overridden on a per-table basis; see Storage
Parameters.

autovacuum (boolean)

Controls whether the server should run the autovacuum launcher daemon. This is on by default;
however, track_counts must also be enabled for autovacuum to work. This parameter can only be
set in the postgresql.conf file or on the server command line; however, autovacuuming can be
disabled for individual tables by changing table storage parameters.

Note that even when this parameter is disabled, the system will launch autovacuum processes if
necessary to prevent transaction ID wraparound. See Section 24.1.5 for more information.

log_autovacuum_min_duration (integer)

Causes each action executed by autovacuum to be logged if it ran for at least the specified number
of milliseconds. Setting this to zero logs all autovacuum actions. Minus-one (the default) disables
logging autovacuum actions. For example, if you set this to 250ms then all automatic vacuums and
analyzes that run 250ms or longer will be logged. In addition, when this parameter is set to any value
other than -1, a message will be logged if an autovacuum action is skipped due to a conflicting lock
or a concurrently dropped relation. Enabling this parameter can be helpful in tracking autovacuum
activity. This parameter can only be set in the postgresql.conf file or on the server command
line; but the setting can be overridden for individual tables by changing table storage parameters.

autovacuum_max_workers (integer)

Specifies the maximum number of autovacuum processes (other than the autovacuum launcher) that
may be running at any one time. The default is three. This parameter can only be set at server start.

autovacuum_naptime (integer)

Specifies the minimum delay between autovacuum runs on any given database. In each round the
daemon examines the database and issues VACUUM and ANALYZE commands as needed for tables in
that database. The delay is measured in seconds, and the default is one minute (1min). This parameter
can only be set in the postgresql.conf file or on the server command line.

autovacuum_vacuum_threshold (integer)

Specifies the minimum number of updated or deleted tuples needed to trigger a VACUUM in any one
table. The default is 50 tuples. This parameter can only be set in the postgresql.conf file or on
the server command line; but the setting can be overridden for individual tables by changing table
storage parameters.

autovacuum_analyze_threshold (integer)

Specifies the minimum number of inserted, updated or deleted tuples needed to trigger an ANALYZE
in any one table. The default is 50 tuples. This parameter can only be set in the postgresql.conf

603

Server Configuration

file or on the server command line; but the setting can be overridden for individual tables by changing
table storage parameters.

autovacuum_vacuum_scale_factor (floating point)

Specifies a fraction of the table size to add to autovacuum_vacuum_threshold when deciding
whether to trigger a VACUUM. The default is 0.2 (20% of table size). This parameter can only be set
in the postgresql.conf file or on the server command line; but the setting can be overridden for
individual tables by changing table storage parameters.

autovacuum_analyze_scale_factor (floating point)

Specifies a fraction of the table size to add to autovacuum_analyze_threshold when deciding
whether to trigger an ANALYZE. The default is 0.1 (10% of table size). This parameter can only be
set in the postgresql.conf file or on the server command line; but the setting can be overridden
for individual tables by changing table storage parameters.

autovacuum_freeze_max_age (integer)

Specifies the maximum age (in transactions) that a table's pg_class.relfrozenxid field can
attain before a VACUUM operation is forced to prevent transaction ID wraparound within the table.
Note that the system will launch autovacuum processes to prevent wraparound even when autovacuum
is otherwise disabled.

Vacuum also allows removal of old files from the pg_xact subdirectory, which is why the default is
a relatively low 200 million transactions. This parameter can only be set at server start, but the setting
can be reduced for individual tables by changing table storage parameters. For more information see
Section 24.1.5.

autovacuum_multixact_freeze_max_age (integer)

Specifies the maximum age (in multixacts) that a table's pg_class.relminmxid field can attain
before a VACUUM operation is forced to prevent multixact ID wraparound within the table. Note
that the system will launch autovacuum processes to prevent wraparound even when autovacuum is
otherwise disabled.

Vacuuming multixacts also allows removal of old files from the pg_multixact/members and
pg_multixact/offsets subdirectories, which is why the default is a relatively low 400 million
multixacts. This parameter can only be set at server start, but the setting can be reduced for individual
tables by changing table storage parameters. For more information see Section 24.1.5.1.

autovacuum_vacuum_cost_delay (integer)

Specifies the cost delay value that will be used in automatic VACUUM operations. If -1 is specified, the
regular vacuum_cost_delay value will be used. The default value is 20 milliseconds. This parameter
can only be set in the postgresql.conf file or on the server command line; but the setting can
be overridden for individual tables by changing table storage parameters.

autovacuum_vacuum_cost_limit (integer)

Specifies the cost limit value that will be used in automatic VACUUM operations. If -1 is specified
(which is the default), the regular vacuum_cost_limit value will be used. Note that the value is
distributed proportionally among the running autovacuum workers, if there is more than one, so that
the sum of the limits for each worker does not exceed the value of this variable. This parameter can
only be set in the postgresql.conf file or on the server command line; but the setting can be
overridden for individual tables by changing table storage parameters.

604

Server Configuration

19.11. Client Connection Defaults

19.11.1. Statement Behavior
client_min_messages (enum)

Controls which message levels are sent to the client. Valid values are DEBUG5, DEBUG4, DEBUG3,
DEBUG2, DEBUG1, LOG, NOTICE, WARNING, and ERROR. Each level includes all the levels that
follow it. The later the level, the fewer messages are sent. The default is NOTICE. Note that LOG has
a different rank here than in log_min_messages.

INFO level messages are always sent to the client.

search_path (string)

This variable specifies the order in which schemas are searched when an object (table, data type,
function, etc.) is referenced by a simple name with no schema specified. When there are objects of
identical names in different schemas, the one found first in the search path is used. An object that
is not in any of the schemas in the search path can only be referenced by specifying its containing
schema with a qualified (dotted) name.

The value for search_path must be a comma-separated list of schema names. Any name that is
not an existing schema, or is a schema for which the user does not have USAGE permission, is silently
ignored.

If one of the list items is the special name $user, then the schema having the name returned by
CURRENT_USER is substituted, if there is such a schema and the user has USAGE permission for it.
(If not, $user is ignored.)

The system catalog schema, pg_catalog, is always searched, whether it is mentioned in the path
or not. If it is mentioned in the path then it will be searched in the specified order. If pg_catalog
is not in the path then it will be searched before searching any of the path items.

Likewise, the current session's temporary-table schema, pg_temp_nnn, is always searched if it
exists. It can be explicitly listed in the path by using the alias pg_temp. If it is not listed in the
path then it is searched first (even before pg_catalog). However, the temporary schema is only
searched for relation (table, view, sequence, etc) and data type names. It is never searched for function
or operator names.

When objects are created without specifying a particular target schema, they will be placed in the first
valid schema named in search_path. An error is reported if the search path is empty.

The default value for this parameter is "$user", public. This setting supports shared use of
a database (where no users have private schemas, and all share use of public), private per-user
schemas, and combinations of these. Other effects can be obtained by altering the default search path
setting, either globally or per-user.

For more information on schema handling, see Section 5.8. In particular, the default configuration is
suitable only when the database has a single user or a few mutually-trusting users.

The current effective value of the search path can be examined via the SQL function
current_schemas (see Section 9.25). This is not quite the same as examining the value of
search_path, since current_schemas shows how the items appearing in search_path
were resolved.

605

Server Configuration

row_security (boolean)

This variable controls whether to raise an error in lieu of applying a row security policy. When set to
on, policies apply normally. When set to off, queries fail which would otherwise apply at least one
policy. The default is on. Change to off where limited row visibility could cause incorrect results;
for example, pg_dump makes that change by default. This variable has no effect on roles which bypass
every row security policy, to wit, superusers and roles with the BYPASSRLS attribute.

For more information on row security policies, see CREATE POLICY.

default_tablespace (string)

This variable specifies the default tablespace in which to create objects (tables and indexes) when a
CREATE command does not explicitly specify a tablespace.

The value is either the name of a tablespace, or an empty string to specify using the default tablespace
of the current database. If the value does not match the name of any existing tablespace, PostgreSQL
will automatically use the default tablespace of the current database. If a nondefault tablespace is
specified, the user must have CREATE privilege for it, or creation attempts will fail.

This variable is not used for temporary tables; for them, temp_tablespaces is consulted instead.

This variable is also not used when creating databases. By default, a new database inherits its
tablespace setting from the template database it is copied from.

For more information on tablespaces, see Section 22.6.

temp_tablespaces (string)

This variable specifies tablespaces in which to create temporary objects (temp tables and indexes on
temp tables) when a CREATE command does not explicitly specify a tablespace. Temporary files for
purposes such as sorting large data sets are also created in these tablespaces.

The value is a list of names of tablespaces. When there is more than one name in the list, PostgreSQL
chooses a random member of the list each time a temporary object is to be created; except that within a
transaction, successively created temporary objects are placed in successive tablespaces from the list.
If the selected element of the list is an empty string, PostgreSQL will automatically use the default
tablespace of the current database instead.

When temp_tablespaces is set interactively, specifying a nonexistent tablespace is an error, as
is specifying a tablespace for which the user does not have CREATE privilege. However, when using
a previously set value, nonexistent tablespaces are ignored, as are tablespaces for which the user lacks
CREATE privilege. In particular, this rule applies when using a value set in postgresql.conf.

The default value is an empty string, which results in all temporary objects being created in the default
tablespace of the current database.

See also default_tablespace.

check_function_bodies (boolean)

This parameter is normally on. When set to off, it disables validation of the function body string
during CREATE FUNCTION. Disabling validation avoids side effects of the validation process and
avoids false positives due to problems such as forward references. Set this parameter to off before
loading functions on behalf of other users; pg_dump does so automatically.

606

Server Configuration

default_transaction_isolation (enum)

Each SQL transaction has an isolation level, which can be either “read uncommitted”, “read
committed”, “repeatable read”, or “serializable”. This parameter controls the default isolation level
of each new transaction. The default is “read committed”.

Consult Chapter 13 and SET TRANSACTION for more information.

default_transaction_read_only (boolean)

A read-only SQL transaction cannot alter non-temporary tables. This parameter controls the default
read-only status of each new transaction. The default is off (read/write).

Consult SET TRANSACTION for more information.

default_transaction_deferrable (boolean)

When running at the serializable isolation level, a deferrable read-only SQL transaction may be
delayed before it is allowed to proceed. However, once it begins executing it does not incur any of the
overhead required to ensure serializability; so serialization code will have no reason to force it to abort
because of concurrent updates, making this option suitable for long-running read-only transactions.

This parameter controls the default deferrable status of each new transaction. It currently has no effect
on read-write transactions or those operating at isolation levels lower than serializable. The
default is off.

Consult SET TRANSACTION for more information.

session_replication_role (enum)

Controls firing of replication-related triggers and rules for the current session. Setting this variable
requires superuser privilege and results in discarding any previously cached query plans. Possible
values are origin (the default), replica and local.

The intended use of this setting is that logical replication systems set it to replica when they are
applying replicated changes. The effect of that will be that triggers and rules (that have not been altered
from their default configuration) will not fire on the replica. See the ALTER TABLE clauses ENABLE
TRIGGER and ENABLE RULE for more information.

PostgreSQL treats the settings origin and local the same internally. Third-party replication
systems may use these two values for their internal purposes, for example using local to designate
a session whose changes should not be replicated.

Since foreign keys are implemented as triggers, setting this parameter to replica also disables all
foreign key checks, which can leave data in an inconsistent state if improperly used.

statement_timeout (integer)

Abort any statement that takes more than the specified number of milliseconds, starting from the
time the command arrives at the server from the client. If log_min_error_statement is set
to ERROR or lower, the statement that timed out will also be logged. A value of zero (the default)
turns this off.

Setting statement_timeout in postgresql.conf is not recommended because it would
affect all sessions.

607

Server Configuration

lock_timeout (integer)

Abort any statement that waits longer than the specified number of milliseconds while attempting
to acquire a lock on a table, index, row, or other database object. The time limit applies separately
to each lock acquisition attempt. The limit applies both to explicit locking requests (such as
LOCK TABLE, or SELECT FOR UPDATE without NOWAIT) and to implicitly-acquired locks.
If log_min_error_statement is set to ERROR or lower, the statement that timed out will be
logged. A value of zero (the default) turns this off.

Unlike statement_timeout, this timeout can only occur while waiting for locks. Note that if
statement_timeout is nonzero, it is rather pointless to set lock_timeout to the same or larger
value, since the statement timeout would always trigger first.

Setting lock_timeout in postgresql.conf is not recommended because it would affect all
sessions.

idle_in_transaction_session_timeout (integer)

Terminate any session with an open transaction that has been idle for longer than the specified duration
in milliseconds. This allows any locks held by that session to be released and the connection slot to
be reused; it also allows tuples visible only to this transaction to be vacuumed. See Section 24.1 for
more details about this.

The default value of 0 disables this feature.

vacuum_freeze_table_age (integer)

VACUUM performs an aggressive scan if the table's pg_class.relfrozenxid field has reached
the age specified by this setting. An aggressive scan differs from a regular VACUUM in that it visits
every page that might contain unfrozen XIDs or MXIDs, not just those that might contain dead tuples.
The default is 150 million transactions. Although users can set this value anywhere from zero to
two billions, VACUUM will silently limit the effective value to 95% of autovacuum_freeze_max_age,
so that a periodical manual VACUUM has a chance to run before an anti-wraparound autovacuum is
launched for the table. For more information see Section 24.1.5.

vacuum_freeze_min_age (integer)

Specifies the cutoff age (in transactions) that VACUUM should use to decide whether to freeze row
versions while scanning a table. The default is 50 million transactions. Although users can set this
value anywhere from zero to one billion, VACUUM will silently limit the effective value to half the
value of autovacuum_freeze_max_age, so that there is not an unreasonably short time between forced
autovacuums. For more information see Section 24.1.5.

vacuum_multixact_freeze_table_age (integer)

VACUUM performs an aggressive scan if the table's pg_class.relminmxid field has reached the
age specified by this setting. An aggressive scan differs from a regular VACUUM in that it visits every
page that might contain unfrozen XIDs or MXIDs, not just those that might contain dead tuples. The
default is 150 million multixacts. Although users can set this value anywhere from zero to two billions,
VACUUM will silently limit the effective value to 95% of autovacuum_multixact_freeze_max_age, so
that a periodical manual VACUUM has a chance to run before an anti-wraparound is launched for the
table. For more information see Section 24.1.5.1.

vacuum_multixact_freeze_min_age (integer)

Specifies the cutoff age (in multixacts) that VACUUM should use to decide whether to replace multixact
IDs with a newer transaction ID or multixact ID while scanning a table. The default is 5 million

608

Server Configuration

multixacts. Although users can set this value anywhere from zero to one billion, VACUUM will
silently limit the effective value to half the value of autovacuum_multixact_freeze_max_age, so that
there is not an unreasonably short time between forced autovacuums. For more information see
Section 24.1.5.1.

vacuum_cleanup_index_scale_factor (floating point)

Specifies the fraction of the total number of heap tuples counted in the previous statistics collection that
can be inserted without incurring an index scan at the VACUUM cleanup stage. This setting currently
applies to B-tree indexes only.

If no tuples were deleted from the heap, B-tree indexes are still scanned at the VACUUM cleanup
stage when at least one of the following conditions is met: the index statistics are stale, or the index
contains deleted pages that can be recycled during cleanup. Index statistics are considered to be stale
if the number of newly inserted tuples exceeds the vacuum_cleanup_index_scale_factor
fraction of the total number of heap tuples detected by the previous statistics collection. The total
number of heap tuples is stored in the index meta-page. Note that the meta-page does not include this
data until VACUUM finds no dead tuples, so B-tree index scan at the cleanup stage can only be skipped
if the second and subsequent VACUUM cycles detect no dead tuples.

The value can range from 0 to 10000000000. When
vacuum_cleanup_index_scale_factor is set to 0, index scans are never skipped during
VACUUM cleanup. The default value is 0.1.

bytea_output (enum)

Sets the output format for values of type bytea. Valid values are hex (the default) and escape
(the traditional PostgreSQL format). See Section 8.4 for more information. The bytea type always
accepts both formats on input, regardless of this setting.

xmlbinary (enum)

Sets how binary values are to be encoded in XML. This applies for example when bytea values
are converted to XML by the functions xmlelement or xmlforest. Possible values are base64
and hex, which are both defined in the XML Schema standard. The default is base64. For further
information about XML-related functions, see Section 9.14.

The actual choice here is mostly a matter of taste, constrained only by possible restrictions in client
applications. Both methods support all possible values, although the hex encoding will be somewhat
larger than the base64 encoding.

xmloption (enum)

Sets whether DOCUMENT or CONTENT is implicit when converting between XML and character string
values. See Section 8.13 for a description of this. Valid values are DOCUMENT and CONTENT. The
default is CONTENT.

According to the SQL standard, the command to set this option is

SET XML OPTION { DOCUMENT | CONTENT };

This syntax is also available in PostgreSQL.

gin_pending_list_limit (integer)

Sets the maximum size of the GIN pending list which is used when fastupdate is enabled. If the
list grows larger than this maximum size, it is cleaned up by moving the entries in it to the main

609

Server Configuration

GIN data structure in bulk. The default is four megabytes (4MB). This setting can be overridden for
individual GIN indexes by changing index storage parameters. See Section 66.4.1 and Section 66.5
for more information.

19.11.2. Locale and Formatting
DateStyle (string)

Sets the display format for date and time values, as well as the rules for interpreting ambiguous date
input values. For historical reasons, this variable contains two independent components: the output
format specification (ISO, Postgres, SQL, or German) and the input/output specification for year/
month/day ordering (DMY, MDY, or YMD). These can be set separately or together. The keywords
Euro and European are synonyms for DMY; the keywords US, NonEuro, and NonEuropean
are synonyms for MDY. See Section 8.5 for more information. The built-in default is ISO, MDY,
but initdb will initialize the configuration file with a setting that corresponds to the behavior of the
chosen lc_time locale.

IntervalStyle (enum)

Sets the display format for interval values. The value sql_standard will produce output matching
SQL standard interval literals. The value postgres (which is the default) will produce output
matching PostgreSQL releases prior to 8.4 when the DateStyle parameter was set to ISO. The value
postgres_verbose will produce output matching PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to non-ISO output. The value iso_8601 will produce output
matching the time interval “format with designators” defined in section 4.4.3.2 of ISO 8601.

The IntervalStyle parameter also affects the interpretation of ambiguous interval input. See
Section 8.5.4 for more information.

TimeZone (string)

Sets the time zone for displaying and interpreting time stamps. The built-in default is GMT, but that is
typically overridden in postgresql.conf; initdb will install a setting there corresponding to its
system environment. See Section 8.5.3 for more information.

timezone_abbreviations (string)

Sets the collection of time zone abbreviations that will be accepted by the server for datetime input.
The default is 'Default', which is a collection that works in most of the world; there are also
'Australia' and 'India', and other collections can be defined for a particular installation. See
Section B.4 for more information.

extra_float_digits (integer)

This parameter adjusts the number of digits displayed for floating-point values, including float4,
float8, and geometric data types. The parameter value is added to the standard number of digits
(FLT_DIG or DBL_DIG as appropriate). The value can be set as high as 3, to include partially-
significant digits; this is especially useful for dumping float data that needs to be restored exactly. Or
it can be set negative to suppress unwanted digits. See also Section 8.1.3.

client_encoding (string)

Sets the client-side encoding (character set). The default is to use the database encoding. The character
sets supported by the PostgreSQL server are described in Section 23.3.1.

610

Server Configuration

lc_messages (string)

Sets the language in which messages are displayed. Acceptable values are system-dependent; see
Section 23.1 for more information. If this variable is set to the empty string (which is the default) then
the value is inherited from the execution environment of the server in a system-dependent way.

On some systems, this locale category does not exist. Setting this variable will still work, but there
will be no effect. Also, there is a chance that no translated messages for the desired language exist.
In that case you will continue to see the English messages.

Only superusers can change this setting, because it affects the messages sent to the server log as well
as to the client, and an improper value might obscure the readability of the server logs.

lc_monetary (string)

Sets the locale to use for formatting monetary amounts, for example with the to_char family of
functions. Acceptable values are system-dependent; see Section 23.1 for more information. If this
variable is set to the empty string (which is the default) then the value is inherited from the execution
environment of the server in a system-dependent way.

lc_numeric (string)

Sets the locale to use for formatting numbers, for example with the to_char family of functions.
Acceptable values are system-dependent; see Section 23.1 for more information. If this variable is set
to the empty string (which is the default) then the value is inherited from the execution environment
of the server in a system-dependent way.

lc_time (string)

Sets the locale to use for formatting dates and times, for example with the to_char family of
functions. Acceptable values are system-dependent; see Section 23.1 for more information. If this
variable is set to the empty string (which is the default) then the value is inherited from the execution
environment of the server in a system-dependent way.

default_text_search_config (string)

Selects the text search configuration that is used by those variants of the text search functions that do
not have an explicit argument specifying the configuration. See Chapter 12 for further information.
The built-in default is pg_catalog.simple, but initdb will initialize the configuration file with
a setting that corresponds to the chosen lc_ctype locale, if a configuration matching that locale
can be identified.

19.11.3. Shared Library Preloading
Several settings are available for preloading shared libraries into the server, in order to load additional
functionality or achieve performance benefits. For example, a setting of '$libdir/mylib' would
cause mylib.so (or on some platforms, mylib.sl) to be preloaded from the installation's standard
library directory. The differences between the settings are when they take effect and what privileges are
required to change them.

PostgreSQL procedural language libraries can be preloaded in this way, typically by using the syntax
'$libdir/plXXX' where XXX is pgsql, perl, tcl, or python.

Only shared libraries specifically intended to be used with PostgreSQL can be loaded this way. Every
PostgreSQL-supported library has a “magic block” that is checked to guarantee compatibility. For this

611

Server Configuration

reason, non-PostgreSQL libraries cannot be loaded in this way. You might be able to use operating-system
facilities such as LD_PRELOAD for that.

In general, refer to the documentation of a specific module for the recommended way to load that module.

local_preload_libraries (string)

This variable specifies one or more shared libraries that are to be preloaded at connection start. It
contains a comma-separated list of library names, where each name is interpreted as for the LOAD
command. Whitespace between entries is ignored; surround a library name with double quotes if you
need to include whitespace or commas in the name. The parameter value only takes effect at the start of
the connection. Subsequent changes have no effect. If a specified library is not found, the connection
attempt will fail.

This option can be set by any user. Because of that, the libraries that can be loaded are restricted to
those appearing in the plugins subdirectory of the installation's standard library directory. (It is the
database administrator's responsibility to ensure that only “safe” libraries are installed there.) Entries
in local_preload_libraries can specify this directory explicitly, for example $libdir/
plugins/mylib, or just specify the library name — mylib would have the same effect as
$libdir/plugins/mylib.

The intent of this feature is to allow unprivileged users to load debugging or performance-
measurement libraries into specific sessions without requiring an explicit LOAD command. To that
end, it would be typical to set this parameter using the PGOPTIONS environment variable on the
client or by using ALTER ROLE SET.

However, unless a module is specifically designed to be used in this way by non-superusers, this is
usually not the right setting to use. Look at session_preload_libraries instead.

session_preload_libraries (string)

This variable specifies one or more shared libraries that are to be preloaded at connection start. It
contains a comma-separated list of library names, where each name is interpreted as for the LOAD
command. Whitespace between entries is ignored; surround a library name with double quotes if you
need to include whitespace or commas in the name. The parameter value only takes effect at the start of
the connection. Subsequent changes have no effect. If a specified library is not found, the connection
attempt will fail. Only superusers can change this setting.

The intent of this feature is to allow debugging or performance-measurement libraries to be loaded
into specific sessions without an explicit LOAD command being given. For example, auto_explain
could be enabled for all sessions under a given user name by setting this parameter with ALTER ROLE
SET. Also, this parameter can be changed without restarting the server (but changes only take effect
when a new session is started), so it is easier to add new modules this way, even if they should apply
to all sessions.

Unlike shared_preload_libraries, there is no large performance advantage to loading a library at
session start rather than when it is first used. There is some advantage, however, when connection
pooling is used.

shared_preload_libraries (string)

This variable specifies one or more shared libraries to be preloaded at server start. It contains a
comma-separated list of library names, where each name is interpreted as for the LOAD command.
Whitespace between entries is ignored; surround a library name with double quotes if you need to
include whitespace or commas in the name. This parameter can only be set at server start. If a specified
library is not found, the server will fail to start.

612

Server Configuration

Some libraries need to perform certain operations that can only take place at postmaster start, such
as allocating shared memory, reserving light-weight locks, or starting background workers. Those
libraries must be loaded at server start through this parameter. See the documentation of each library
for details.

Other libraries can also be preloaded. By preloading a shared library, the library startup time is avoided
when the library is first used. However, the time to start each new server process might increase
slightly, even if that process never uses the library. So this parameter is recommended only for libraries
that will be used in most sessions. Also, changing this parameter requires a server restart, so this is
not the right setting to use for short-term debugging tasks, say. Use session_preload_libraries for that
instead.

Note

On Windows hosts, preloading a library at server start will not reduce the time required to
start each new server process; each server process will re-load all preload libraries. However,
shared_preload_libraries is still useful on Windows hosts for libraries that need
to perform operations at postmaster start time.

jit_provider (string)

This variable is the name of the JIT provider library to be used (see Section 32.4.2). The default is
llvmjit. This parameter can only be set at server start.

If set to a non-existent library, JIT will not be available, but no error will be raised. This allows JIT
support to be installed separately from the main PostgreSQL package.

19.11.4. Other Defaults
dynamic_library_path (string)

If a dynamically loadable module needs to be opened and the file name specified in the CREATE
FUNCTION or LOAD command does not have a directory component (i.e., the name does not contain
a slash), the system will search this path for the required file.

The value for dynamic_library_path must be a list of absolute directory paths separated by
colons (or semi-colons on Windows). If a list element starts with the special string $libdir, the
compiled-in PostgreSQL package library directory is substituted for $libdir; this is where the
modules provided by the standard PostgreSQL distribution are installed. (Use pg_config --
pkglibdir to find out the name of this directory.) For example:

dynamic_library_path = '/usr/local/lib/postgresql:/home/my_project/
lib:$libdir'

or, in a Windows environment:

dynamic_library_path = 'C:\tools\postgresql;H:\my_project\lib;
$libdir'

The default value for this parameter is '$libdir'. If the value is set to an empty string, the automatic
path search is turned off.

613

Server Configuration

This parameter can be changed at run time by superusers, but a setting done that way will only persist
until the end of the client connection, so this method should be reserved for development purposes.
The recommended way to set this parameter is in the postgresql.conf configuration file.

gin_fuzzy_search_limit (integer)

Soft upper limit of the size of the set returned by GIN index scans. For more information see
Section 66.5.

19.12. Lock Management
deadlock_timeout (integer)

This is the amount of time, in milliseconds, to wait on a lock before checking to see if there is a
deadlock condition. The check for deadlock is relatively expensive, so the server doesn't run it every
time it waits for a lock. We optimistically assume that deadlocks are not common in production
applications and just wait on the lock for a while before checking for a deadlock. Increasing this value
reduces the amount of time wasted in needless deadlock checks, but slows down reporting of real
deadlock errors. The default is one second (1s), which is probably about the smallest value you would
want in practice. On a heavily loaded server you might want to raise it. Ideally the setting should
exceed your typical transaction time, so as to improve the odds that a lock will be released before the
waiter decides to check for deadlock. Only superusers can change this setting.

When log_lock_waits is set, this parameter also determines the length of time to wait before a log
message is issued about the lock wait. If you are trying to investigate locking delays you might want
to set a shorter than normal deadlock_timeout.

max_locks_per_transaction (integer)

The shared lock table tracks locks on max_locks_per_transaction * (max_connections +
max_prepared_transactions) objects (e.g., tables); hence, no more than this many distinct objects can
be locked at any one time. This parameter controls the average number of object locks allocated for
each transaction; individual transactions can lock more objects as long as the locks of all transactions
fit in the lock table. This is not the number of rows that can be locked; that value is unlimited. The
default, 64, has historically proven sufficient, but you might need to raise this value if you have queries
that touch many different tables in a single transaction, e.g. query of a parent table with many children.
This parameter can only be set at server start.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

max_pred_locks_per_transaction (integer)

The shared predicate lock table tracks locks on max_pred_locks_per_transaction *
(max_connections + max_prepared_transactions) objects (e.g., tables); hence, no more than this many
distinct objects can be locked at any one time. This parameter controls the average number of object
locks allocated for each transaction; individual transactions can lock more objects as long as the locks
of all transactions fit in the lock table. This is not the number of rows that can be locked; that value
is unlimited. The default, 64, has generally been sufficient in testing, but you might need to raise this
value if you have clients that touch many different tables in a single serializable transaction. This
parameter can only be set at server start.

max_pred_locks_per_relation (integer)

This controls how many pages or tuples of a single relation can be predicate-locked before the lock
is promoted to covering the whole relation. Values greater than or equal to zero mean an absolute

614

Server Configuration

limit, while negative values mean max_pred_locks_per_transaction divided by the absolute value of
this setting. The default is -2, which keeps the behavior from previous versions of PostgreSQL. This
parameter can only be set in the postgresql.conf file or on the server command line.

max_pred_locks_per_page (integer)

This controls how many rows on a single page can be predicate-locked before the lock is promoted to
covering the whole page. The default is 2. This parameter can only be set in the postgresql.conf
file or on the server command line.

19.13. Version and Platform Compatibility

19.13.1. Previous PostgreSQL Versions
array_nulls (boolean)

This controls whether the array input parser recognizes unquoted NULL as specifying a null array
element. By default, this is on, allowing array values containing null values to be entered. However,
PostgreSQL versions before 8.2 did not support null values in arrays, and therefore would treat NULL
as specifying a normal array element with the string value “NULL”. For backward compatibility with
applications that require the old behavior, this variable can be turned off.

Note that it is possible to create array values containing null values even when this variable is off.

backslash_quote (enum)

This controls whether a quote mark can be represented by \' in a string literal. The preferred,
SQL-standard way to represent a quote mark is by doubling it ('') but PostgreSQL has historically
also accepted \'. However, use of \' creates security risks because in some client character set
encodings, there are multibyte characters in which the last byte is numerically equivalent to ASCII
\. If client-side code does escaping incorrectly then a SQL-injection attack is possible. This risk can
be prevented by making the server reject queries in which a quote mark appears to be escaped by
a backslash. The allowed values of backslash_quote are on (allow \' always), off (reject
always), and safe_encoding (allow only if client encoding does not allow ASCII \ within a
multibyte character). safe_encoding is the default setting.

Note that in a standard-conforming string literal, \ just means \ anyway. This parameter only affects
the handling of non-standard-conforming literals, including escape string syntax (E'...').

default_with_oids (boolean)

This controls whether CREATE TABLE and CREATE TABLE AS include an OID column in newly-
created tables, if neither WITH OIDS nor WITHOUT OIDS is specified. It also determines whether
OIDs will be included in tables created by SELECT INTO. The parameter is off by default; in
PostgreSQL 8.0 and earlier, it was on by default.

The use of OIDs in user tables is considered deprecated, so most installations should leave this variable
disabled. Applications that require OIDs for a particular table should specify WITH OIDS when
creating the table. This variable can be enabled for compatibility with old applications that do not
follow this behavior.

escape_string_warning (boolean)

When on, a warning is issued if a backslash (\) appears in an ordinary string literal ('...' syntax)
and standard_conforming_strings is off. The default is on.

615

Server Configuration

Applications that wish to use backslash as escape should be modified to use escape string syntax
(E'...'), because the default behavior of ordinary strings is now to treat backslash as an ordinary
character, per SQL standard. This variable can be enabled to help locate code that needs to be changed.

lo_compat_privileges (boolean)

In PostgreSQL releases prior to 9.0, large objects did not have access privileges and were, therefore,
always readable and writable by all users. Setting this variable to on disables the new privilege checks,
for compatibility with prior releases. The default is off. Only superusers can change this setting.

Setting this variable does not disable all security checks related to large objects — only those for
which the default behavior has changed in PostgreSQL 9.0.

operator_precedence_warning (boolean)

When on, the parser will emit a warning for any construct that might have changed meanings since
PostgreSQL 9.4 as a result of changes in operator precedence. This is useful for auditing applications to
see if precedence changes have broken anything; but it is not meant to be kept turned on in production,
since it will warn about some perfectly valid, standard-compliant SQL code. The default is off.

See Section 4.1.6 for more information.

quote_all_identifiers (boolean)

When the database generates SQL, force all identifiers to be quoted, even if they are not
(currently) keywords. This will affect the output of EXPLAIN as well as the results of functions
like pg_get_viewdef. See also the --quote-all-identifiers option of pg_dump and
pg_dumpall.

standard_conforming_strings (boolean)

This controls whether ordinary string literals ('...') treat backslashes literally, as specified in the
SQL standard. Beginning in PostgreSQL 9.1, the default is on (prior releases defaulted to off).
Applications can check this parameter to determine how string literals will be processed. The presence
of this parameter can also be taken as an indication that the escape string syntax (E'...') is
supported. Escape string syntax (Section 4.1.2.2) should be used if an application desires backslashes
to be treated as escape characters.

synchronize_seqscans (boolean)

This allows sequential scans of large tables to synchronize with each other, so that concurrent scans
read the same block at about the same time and hence share the I/O workload. When this is enabled,
a scan might start in the middle of the table and then “wrap around” the end to cover all rows, so as
to synchronize with the activity of scans already in progress. This can result in unpredictable changes
in the row ordering returned by queries that have no ORDER BY clause. Setting this parameter to
off ensures the pre-8.3 behavior in which a sequential scan always starts from the beginning of the
table. The default is on.

19.13.2. Platform and Client Compatibility
transform_null_equals (boolean)

When on, expressions of the form expr = NULL (or NULL = expr) are treated as expr IS
NULL, that is, they return true if expr evaluates to the null value, and false otherwise. The correct
SQL-spec-compliant behavior of expr = NULL is to always return null (unknown). Therefore this
parameter defaults to off.

616

Server Configuration

However, filtered forms in Microsoft Access generate queries that appear to use expr = NULL
to test for null values, so if you use that interface to access the database you might want to turn this
option on. Since expressions of the form expr = NULL always return the null value (using the SQL
standard interpretation), they are not very useful and do not appear often in normal applications so
this option does little harm in practice. But new users are frequently confused about the semantics of
expressions involving null values, so this option is off by default.

Note that this option only affects the exact form = NULL, not other comparison operators or other
expressions that are computationally equivalent to some expression involving the equals operator
(such as IN). Thus, this option is not a general fix for bad programming.

Refer to Section 9.2 for related information.

19.14. Error Handling
exit_on_error (boolean)

If true, any error will terminate the current session. By default, this is set to false, so that only FATAL
errors will terminate the session.

restart_after_crash (boolean)

When set to true, which is the default, PostgreSQL will automatically reinitialize after a backend crash.
Leaving this value set to true is normally the best way to maximize the availability of the database.
However, in some circumstances, such as when PostgreSQL is being invoked by clusterware, it may
be useful to disable the restart so that the clusterware can gain control and take any actions it deems
appropriate.

data_sync_retry (boolean)

When set to false, which is the default, PostgreSQL will raise a PANIC-level error on failure to flush
modified data files to the filesystem. This causes the database server to crash.

On some operating systems, the status of data in the kernel's page cache is unknown after a write-
back failure. In some cases it might have been entirely forgotten, making it unsafe to retry; the second
attempt may be reported as successful, when in fact the data has been lost. In these circumstances, the
only way to avoid data loss is to recover from the WAL after any failure is reported, preferably after
investigating the root cause of the failure and replacing any faulty hardware.

If set to true, PostgreSQL will instead report an error but continue to run so that the data flushing
operation can be retried in a later checkpoint. Only set it to true after investigating the operating
system's treatment of buffered data in case of write-back failure.

19.15. Preset Options
The following “parameters” are read-only, and are determined when PostgreSQL is compiled or when it
is installed. As such, they have been excluded from the sample postgresql.conf file. These options
report various aspects of PostgreSQL behavior that might be of interest to certain applications, particularly
administrative front-ends.

block_size (integer)

Reports the size of a disk block. It is determined by the value of BLCKSZ when building the server.
The default value is 8192 bytes. The meaning of some configuration variables (such as shared_buffers)
is influenced by block_size. See Section 19.4 for information.

617

Server Configuration

data_checksums (boolean)

Reports whether data checksums are enabled for this cluster. See data checksums for more
information.

data_directory_mode (integer)

On Unix systems this parameter reports the permissions of the data directory defined by
(data_directory) at startup. (On Microsoft Windows this parameter will always display 0700). See
group access for more information.

debug_assertions (boolean)

Reports whether PostgreSQL has been built with assertions enabled. That is the case if the
macro USE_ASSERT_CHECKING is defined when PostgreSQL is built (accomplished e.g. by the
configure option --enable-cassert). By default PostgreSQL is built without assertions.

integer_datetimes (boolean)

Reports whether PostgreSQL was built with support for 64-bit-integer dates and times. As of
PostgreSQL 10, this is always on.

lc_collate (string)

Reports the locale in which sorting of textual data is done. See Section 23.1 for more information.
This value is determined when a database is created.

lc_ctype (string)

Reports the locale that determines character classifications. See Section 23.1 for more information.
This value is determined when a database is created. Ordinarily this will be the same as lc_collate,
but for special applications it might be set differently.

max_function_args (integer)

Reports the maximum number of function arguments. It is determined by the value of
FUNC_MAX_ARGS when building the server. The default value is 100 arguments.

max_identifier_length (integer)

Reports the maximum identifier length. It is determined as one less than the value of NAMEDATALEN
when building the server. The default value of NAMEDATALEN is 64; therefore the default
max_identifier_length is 63 bytes, which can be less than 63 characters when using multibyte
encodings.

max_index_keys (integer)

Reports the maximum number of index keys. It is determined by the value of INDEX_MAX_KEYS
when building the server. The default value is 32 keys.

segment_size (integer)

Reports the number of blocks (pages) that can be stored within a file segment. It is determined by the
value of RELSEG_SIZE when building the server. The maximum size of a segment file in bytes is
equal to segment_size multiplied by block_size; by default this is 1GB.

618

Server Configuration

server_encoding (string)

Reports the database encoding (character set). It is determined when the database is created.
Ordinarily, clients need only be concerned with the value of client_encoding.

server_version (string)

Reports the version number of the server. It is determined by the value of PG_VERSION when
building the server.

server_version_num (integer)

Reports the version number of the server as an integer. It is determined by the value of
PG_VERSION_NUM when building the server.

wal_block_size (integer)

Reports the size of a WAL disk block. It is determined by the value of XLOG_BLCKSZ when building
the server. The default value is 8192 bytes.

wal_segment_size (integer)

Reports the size of write ahead log segments. The default value is 16MB. See Section 30.4 for more
information.

19.16. Customized Options
This feature was designed to allow parameters not normally known to PostgreSQL to be added by add-on
modules (such as procedural languages). This allows extension modules to be configured in the standard
ways.

Custom options have two-part names: an extension name, then a dot, then the parameter name proper,
much like qualified names in SQL. An example is plpgsql.variable_conflict.

Because custom options may need to be set in processes that have not loaded the relevant extension
module, PostgreSQL will accept a setting for any two-part parameter name. Such variables are treated as
placeholders and have no function until the module that defines them is loaded. When an extension module
is loaded, it will add its variable definitions, convert any placeholder values according to those definitions,
and issue warnings for any unrecognized placeholders that begin with its extension name.

19.17. Developer Options
The following parameters are intended for work on the PostgreSQL source code, and in some cases to
assist with recovery of severely damaged databases. There should be no reason to use them on a production
database. As such, they have been excluded from the sample postgresql.conf file. Note that many
of these parameters require special source compilation flags to work at all.

allow_system_table_mods (boolean)

Allows modification of the structure of system tables. This is used by initdb. This parameter can
only be set at server start.

ignore_system_indexes (boolean)

Ignore system indexes when reading system tables (but still update the indexes when modifying the
tables). This is useful when recovering from damaged system indexes. This parameter cannot be
changed after session start.

619

Server Configuration

post_auth_delay (integer)

If nonzero, a delay of this many seconds occurs when a new server process is started, after it conducts
the authentication procedure. This is intended to give developers an opportunity to attach to the server
process with a debugger. This parameter cannot be changed after session start.

pre_auth_delay (integer)

If nonzero, a delay of this many seconds occurs just after a new server process is forked, before it
conducts the authentication procedure. This is intended to give developers an opportunity to attach to
the server process with a debugger to trace down misbehavior in authentication. This parameter can
only be set in the postgresql.conf file or on the server command line.

trace_notify (boolean)

Generates a great amount of debugging output for the LISTEN and NOTIFY commands.
client_min_messages or log_min_messages must be DEBUG1 or lower to send this output to the client
or server logs, respectively.

trace_recovery_messages (enum)

Enables logging of recovery-related debugging output that otherwise would not be logged. This
parameter allows the user to override the normal setting of log_min_messages, but only for specific
messages. This is intended for use in debugging Hot Standby. Valid values are DEBUG5, DEBUG4,
DEBUG3, DEBUG2, DEBUG1, and LOG. The default, LOG, does not affect logging decisions at all. The
other values cause recovery-related debug messages of that priority or higher to be logged as though
they had LOG priority; for common settings of log_min_messages this results in unconditionally
sending them to the server log. This parameter can only be set in the postgresql.conf file or
on the server command line.

trace_sort (boolean)

If on, emit information about resource usage during sort operations. This parameter is only available
if the TRACE_SORT macro was defined when PostgreSQL was compiled. (However, TRACE_SORT
is currently defined by default.)

trace_locks (boolean)

If on, emit information about lock usage. Information dumped includes the type of lock operation, the
type of lock and the unique identifier of the object being locked or unlocked. Also included are bit
masks for the lock types already granted on this object as well as for the lock types awaited on this
object. For each lock type a count of the number of granted locks and waiting locks is also dumped
as well as the totals. An example of the log file output is shown here:

LOG: LockAcquire: new: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(AccessShareLock)
LOG: GrantLock: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(2) req(1,0,0,0,0,0,0)=1 grant(1,0,0,0,0,0,0)=1
 wait(0) type(AccessShareLock)
LOG: UnGrantLock: updated: lock(0xb7acd844)
 id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(AccessShareLock)
LOG: CleanUpLock: deleting: lock(0xb7acd844)
 id(24688,24696,0,0,0,1)

620

Server Configuration

 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(INVALID)

Details of the structure being dumped may be found in src/include/storage/lock.h.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was
compiled.

trace_lwlocks (boolean)

If on, emit information about lightweight lock usage. Lightweight locks are intended primarily to
provide mutual exclusion of access to shared-memory data structures.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was
compiled.

trace_userlocks (boolean)

If on, emit information about user lock usage. Output is the same as for trace_locks, only for
advisory locks.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was
compiled.

trace_lock_oidmin (integer)

If set, do not trace locks for tables below this OID. (use to avoid output on system tables)

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was
compiled.

trace_lock_table (integer)

Unconditionally trace locks on this table (OID).

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was
compiled.

debug_deadlocks (boolean)

If set, dumps information about all current locks when a deadlock timeout occurs.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was
compiled.

log_btree_build_stats (boolean)

If set, logs system resource usage statistics (memory and CPU) on various B-tree operations.

This parameter is only available if the BTREE_BUILD_STATS macro was defined when PostgreSQL
was compiled.

wal_consistency_checking (string)

This parameter is intended to be used to check for bugs in the WAL redo routines. When enabled,
full-page images of any buffers modified in conjunction with the WAL record are added to the record.
If the record is subsequently replayed, the system will first apply each record and then test whether
the buffers modified by the record match the stored images. In certain cases (such as hint bits), minor

621

Server Configuration

variations are acceptable, and will be ignored. Any unexpected differences will result in a fatal error,
terminating recovery.

The default value of this setting is the empty string, which disables the feature. It can be set to
all to check all records, or to a comma-separated list of resource managers to check only records
originating from those resource managers. Currently, the supported resource managers are heap,
heap2, btree, hash, gin, gist, sequence, spgist, brin, and generic. Only superusers
can change this setting.

wal_debug (boolean)

If on, emit WAL-related debugging output. This parameter is only available if the WAL_DEBUG macro
was defined when PostgreSQL was compiled.

ignore_checksum_failure (boolean)

Only has effect if data checksums are enabled.

Detection of a checksum failure during a read normally causes PostgreSQL to report an error, aborting
the current transaction. Setting ignore_checksum_failure to on causes the system to ignore
the failure (but still report a warning), and continue processing. This behavior may cause crashes,
propagate or hide corruption, or other serious problems. However, it may allow you to get past the
error and retrieve undamaged tuples that might still be present in the table if the block header is still
sane. If the header is corrupt an error will be reported even if this option is enabled. The default setting
is off, and it can only be changed by a superuser.

zero_damaged_pages (boolean)

Detection of a damaged page header normally causes PostgreSQL to report an error, aborting the
current transaction. Setting zero_damaged_pages to on causes the system to instead report a
warning, zero out the damaged page in memory, and continue processing. This behavior will destroy
data, namely all the rows on the damaged page. However, it does allow you to get past the error and
retrieve rows from any undamaged pages that might be present in the table. It is useful for recovering
data if corruption has occurred due to a hardware or software error. You should generally not set this
on until you have given up hope of recovering data from the damaged pages of a table. Zeroed-out
pages are not forced to disk so it is recommended to recreate the table or the index before turning this
parameter off again. The default setting is off, and it can only be changed by a superuser.

jit_debugging_support (boolean)

If LLVM has the required functionality, register generated functions with GDB. This makes
debugging easier. The default setting is off. This parameter can only be set at server start.

jit_dump_bitcode (boolean)

Writes the generated LLVM IR out to the file system, inside data_directory. This is only useful for
working on the internals of the JIT implementation. The default setting is off. This parameter can
only be changed by a superuser.

jit_expressions (boolean)

Determines whether expressions are JIT compiled, when JIT compilation is activated (see
Section 32.2). The default is on.

jit_profiling_support (boolean)

If LLVM has the required functionality, emit the data needed to allow perf to profile functions
generated by JIT. This writes out files to $HOME/.debug/jit/; the user is responsible for

622

Server Configuration

performing cleanup when desired. The default setting is off. This parameter can only be set at server
start.

jit_tuple_deforming (boolean)

Determines whether tuple deforming is JIT compiled, when JIT compilation is activated (see
Section 32.2). The default is on.

19.18. Short Options
For convenience there are also single letter command-line option switches available for some parameters.
They are described in Table 19.2. Some of these options exist for historical reasons, and their presence as
a single-letter option does not necessarily indicate an endorsement to use the option heavily.

Table 19.2. Short Option Key

Short Option Equivalent

-B x shared_buffers = x

-d x log_min_messages = DEBUGx

-e datestyle = euro

-fb, -fh, -fi, -fm, -fn, -fo, -fs, -ft enable_bitmapscan = off,
enable_hashjoin = off,
enable_indexscan = off,
enable_mergejoin = off,
enable_nestloop = off,
enable_indexonlyscan = off,
enable_seqscan = off, enable_tidscan
= off

-F fsync = off

-h x listen_addresses = x

-i listen_addresses = '*'

-k x unix_socket_directories = x

-l ssl = on

-N x max_connections = x

-O allow_system_table_mods = on

-p x port = x

-P ignore_system_indexes = on

-s log_statement_stats = on

-S x work_mem = x

-tpa, -tpl, -te log_parser_stats = on,
log_planner_stats = on,
log_executor_stats = on

-W x post_auth_delay = x

623

Chapter 20. Client Authentication
When a client application connects to the database server, it specifies which PostgreSQL database user
name it wants to connect as, much the same way one logs into a Unix computer as a particular user. Within
the SQL environment the active database user name determines access privileges to database objects —
see Chapter 21 for more information. Therefore, it is essential to restrict which database users can connect.

Note

As explained in Chapter 21, PostgreSQL actually does privilege management in terms of “roles”.
In this chapter, we consistently use database user to mean “role with the LOGIN privilege”.

Authentication is the process by which the database server establishes the identity of the client, and
by extension determines whether the client application (or the user who runs the client application) is
permitted to connect with the database user name that was requested.

PostgreSQL offers a number of different client authentication methods. The method used to authenticate
a particular client connection can be selected on the basis of (client) host address, database, and user.

PostgreSQL database user names are logically separate from user names of the operating system in which
the server runs. If all the users of a particular server also have accounts on the server's machine, it makes
sense to assign database user names that match their operating system user names. However, a server that
accepts remote connections might have many database users who have no local operating system account,
and in such cases there need be no connection between database user names and OS user names.

20.1. The pg_hba.conf File
Client authentication is controlled by a configuration file, which traditionally is named pg_hba.conf
and is stored in the database cluster's data directory. (HBA stands for host-based authentication.) A default
pg_hba.conf file is installed when the data directory is initialized by initdb. It is possible to place
the authentication configuration file elsewhere, however; see the hba_file configuration parameter.

The general format of the pg_hba.conf file is a set of records, one per line. Blank lines are ignored,
as is any text after the # comment character. Records cannot be continued across lines. A record is made
up of a number of fields which are separated by spaces and/or tabs. Fields can contain white space if the
field value is double-quoted. Quoting one of the keywords in a database, user, or address field (e.g., all
or replication) makes the word lose its special meaning, and just match a database, user, or host with
that name.

Each record specifies a connection type, a client IP address range (if relevant for the connection type),
a database name, a user name, and the authentication method to be used for connections matching these
parameters. The first record with a matching connection type, client address, requested database, and user
name is used to perform authentication. There is no “fall-through” or “backup”: if one record is chosen
and the authentication fails, subsequent records are not considered. If no record matches, access is denied.

A record can have one of the seven formats

local database user auth-method [auth-options]
host database user address auth-method [auth-options]
hostssl database user address auth-method [auth-options]

624

Client Authentication

hostnossl database user address auth-method [auth-options]
host database user IP-address IP-mask auth-method [auth-
options]
hostssl database user IP-address IP-mask auth-method [auth-
options]
hostnossl database user IP-address IP-mask auth-method [auth-
options]

The meaning of the fields is as follows:

local

This record matches connection attempts using Unix-domain sockets. Without a record of this type,
Unix-domain socket connections are disallowed.

host

This record matches connection attempts made using TCP/IP. host records match either SSL or non-
SSL connection attempts.

Note

Remote TCP/IP connections will not be possible unless the server is started with an appropriate
value for the listen_addresses configuration parameter, since the default behavior is to listen
for TCP/IP connections only on the local loopback address localhost.

hostssl

This record matches connection attempts made using TCP/IP, but only when the connection is made
with SSL encryption.

To make use of this option the server must be built with SSL support. Furthermore, SSL must be
enabled by setting the ssl configuration parameter (see Section 18.9 for more information). Otherwise,
the hostssl record is ignored except for logging a warning that it cannot match any connections.

hostnossl

This record type has the opposite behavior of hostssl; it only matches connection attempts made
over TCP/IP that do not use SSL.

database

Specifies which database name(s) this record matches. The value all specifies that it matches all
databases. The value sameuser specifies that the record matches if the requested database has the
same name as the requested user. The value samerole specifies that the requested user must be a
member of the role with the same name as the requested database. (samegroup is an obsolete but
still accepted spelling of samerole.) Superusers are not considered to be members of a role for the
purposes of samerole unless they are explicitly members of the role, directly or indirectly, and not
just by virtue of being a superuser. The value replication specifies that the record matches if
a physical replication connection is requested (note that replication connections do not specify any
particular database). Otherwise, this is the name of a specific PostgreSQL database. Multiple database
names can be supplied by separating them with commas. A separate file containing database names
can be specified by preceding the file name with @.

625

Client Authentication

user

Specifies which database user name(s) this record matches. The value all specifies that it matches
all users. Otherwise, this is either the name of a specific database user, or a group name preceded by
+. (Recall that there is no real distinction between users and groups in PostgreSQL; a + mark really
means “match any of the roles that are directly or indirectly members of this role”, while a name
without a + mark matches only that specific role.) For this purpose, a superuser is only considered to
be a member of a role if they are explicitly a member of the role, directly or indirectly, and not just by
virtue of being a superuser. Multiple user names can be supplied by separating them with commas. A
separate file containing user names can be specified by preceding the file name with @.

address

Specifies the client machine address(es) that this record matches. This field can contain either a host
name, an IP address range, or one of the special key words mentioned below.

An IP address range is specified using standard numeric notation for the range's starting address, then
a slash (/) and a CIDR mask length. The mask length indicates the number of high-order bits of the
client IP address that must match. Bits to the right of this should be zero in the given IP address. There
must not be any white space between the IP address, the /, and the CIDR mask length.

Typical examples of an IPv4 address range specified this way are 172.20.143.89/32 for a single
host, or 172.20.143.0/24 for a small network, or 10.6.0.0/16 for a larger one. An IPv6
address range might look like ::1/128 for a single host (in this case the IPv6 loopback address)
or fe80::7a31:c1ff:0000:0000/96 for a small network. 0.0.0.0/0 represents all IPv4
addresses, and ::0/0 represents all IPv6 addresses. To specify a single host, use a mask length of
32 for IPv4 or 128 for IPv6. In a network address, do not omit trailing zeroes.

An entry given in IPv4 format will match only IPv4 connections, and an entry given in IPv6 format
will match only IPv6 connections, even if the represented address is in the IPv4-in-IPv6 range. Note
that entries in IPv6 format will be rejected if the system's C library does not have support for IPv6
addresses.

You can also write all to match any IP address, samehost to match any of the server's own IP
addresses, or samenet to match any address in any subnet that the server is directly connected to.

If a host name is specified (anything that is not an IP address range or a special key word is treated as a
host name), that name is compared with the result of a reverse name resolution of the client's IP address
(e.g., reverse DNS lookup, if DNS is used). Host name comparisons are case insensitive. If there is a
match, then a forward name resolution (e.g., forward DNS lookup) is performed on the host name to
check whether any of the addresses it resolves to are equal to the client's IP address. If both directions
match, then the entry is considered to match. (The host name that is used in pg_hba.conf should
be the one that address-to-name resolution of the client's IP address returns, otherwise the line won't
be matched. Some host name databases allow associating an IP address with multiple host names, but
the operating system will only return one host name when asked to resolve an IP address.)

A host name specification that starts with a dot (.) matches a suffix of the actual host name. So
.example.com would match foo.example.com (but not just example.com).

When host names are specified in pg_hba.conf, you should make sure that name resolution is
reasonably fast. It can be of advantage to set up a local name resolution cache such as nscd. Also,
you may wish to enable the configuration parameter log_hostname to see the client's host name
instead of the IP address in the log.

This field only applies to host, hostssl, and hostnossl records.

626

Client Authentication

Note

Users sometimes wonder why host names are handled in this seemingly complicated way, with
two name resolutions including a reverse lookup of the client's IP address. This complicates
use of the feature in case the client's reverse DNS entry is not set up or yields some
undesirable host name. It is done primarily for efficiency: this way, a connection attempt
requires at most two resolver lookups, one reverse and one forward. If there is a resolver
problem with some address, it becomes only that client's problem. A hypothetical alternative
implementation that only did forward lookups would have to resolve every host name
mentioned in pg_hba.conf during every connection attempt. That could be quite slow if
many names are listed. And if there is a resolver problem with one of the host names, it
becomes everyone's problem.

Also, a reverse lookup is necessary to implement the suffix matching feature, because the
actual client host name needs to be known in order to match it against the pattern.

Note that this behavior is consistent with other popular implementations of host name-based
access control, such as the Apache HTTP Server and TCP Wrappers.

IP-address
IP-mask

These two fields can be used as an alternative to the IP-address/mask-length notation. Instead
of specifying the mask length, the actual mask is specified in a separate column. For example,
255.0.0.0 represents an IPv4 CIDR mask length of 8, and 255.255.255.255 represents a
CIDR mask length of 32.

These fields only apply to host, hostssl, and hostnossl records.

auth-method

Specifies the authentication method to use when a connection matches this record. The possible
choices are summarized here; details are in Section 20.3.

trust

Allow the connection unconditionally. This method allows anyone that can connect to the
PostgreSQL database server to login as any PostgreSQL user they wish, without the need for a
password or any other authentication. See Section 20.4 for details.

reject

Reject the connection unconditionally. This is useful for “filtering out” certain hosts from a group,
for example a reject line could block a specific host from connecting, while a later line allows
the remaining hosts in a specific network to connect.

scram-sha-256

Perform SCRAM-SHA-256 authentication to verify the user's password. See Section 20.5 for
details.

md5

Perform SCRAM-SHA-256 or MD5 authentication to verify the user's password. See Section 20.5
for details.

627

Client Authentication

password

Require the client to supply an unencrypted password for authentication. Since the password is
sent in clear text over the network, this should not be used on untrusted networks. See Section 20.5
for details.

gss

Use GSSAPI to authenticate the user. This is only available for TCP/IP connections. See
Section 20.6 for details.

sspi

Use SSPI to authenticate the user. This is only available on Windows. See Section 20.7 for details.

ident

Obtain the operating system user name of the client by contacting the ident server on the client
and check if it matches the requested database user name. Ident authentication can only be used
on TCP/IP connections. When specified for local connections, peer authentication will be used
instead. See Section 20.8 for details.

peer

Obtain the client's operating system user name from the operating system and check if it matches
the requested database user name. This is only available for local connections. See Section 20.9
for details.

ldap

Authenticate using an LDAP server. See Section 20.10 for details.

radius

Authenticate using a RADIUS server. See Section 20.11 for details.

cert

Authenticate using SSL client certificates. See Section 20.12 for details.

pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the
operating system. See Section 20.13 for details.

bsd

Authenticate using the BSD Authentication service provided by the operating system. See
Section 20.14 for details.

auth-options

After the auth-method field, there can be field(s) of the form name=value that specify options
for the authentication method. Details about which options are available for which authentication
methods appear below.

In addition to the method-specific options listed below, there is one method-independent
authentication option clientcert, which can be specified in any hostssl record. When set to

628

Client Authentication

1, this option requires the client to present a valid (trusted) SSL certificate, in addition to the other
requirements of the authentication method.

Files included by @ constructs are read as lists of names, which can be separated by either whitespace or
commas. Comments are introduced by #, just as in pg_hba.conf, and nested @ constructs are allowed.
Unless the file name following @ is an absolute path, it is taken to be relative to the directory containing
the referencing file.

Since the pg_hba.conf records are examined sequentially for each connection attempt, the order of the
records is significant. Typically, earlier records will have tight connection match parameters and weaker
authentication methods, while later records will have looser match parameters and stronger authentication
methods. For example, one might wish to use trust authentication for local TCP/IP connections but
require a password for remote TCP/IP connections. In this case a record specifying trust authentication
for connections from 127.0.0.1 would appear before a record specifying password authentication for a
wider range of allowed client IP addresses.

The pg_hba.conf file is read on start-up and when the main server process receives a SIGHUP signal.
If you edit the file on an active system, you will need to signal the postmaster (using pg_ctl reload
or kill -HUP) to make it re-read the file.

Note

The preceding statement is not true on Microsoft Windows: there, any changes in the
pg_hba.conf file are immediately applied by subsequent new connections.

The system view pg_hba_file_rules can be helpful for pre-testing changes to the pg_hba.conf
file, or for diagnosing problems if loading of the file did not have the desired effects. Rows in the view
with non-null error fields indicate problems in the corresponding lines of the file.

Tip

To connect to a particular database, a user must not only pass the pg_hba.conf checks, but must
have the CONNECT privilege for the database. If you wish to restrict which users can connect to
which databases, it's usually easier to control this by granting/revoking CONNECT privilege than
to put the rules in pg_hba.conf entries.

Some examples of pg_hba.conf entries are shown in Example 20.1. See the next section for details
on the different authentication methods.

Example 20.1. Example pg_hba.conf Entries

Allow any user on the local system to connect to any database with
any database user name using Unix-domain sockets (the default for
 local
connections).
#
TYPE DATABASE USER ADDRESS METHOD
local all all trust

The same using local loopback TCP/IP connections.

629

Client Authentication

#
TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 trust

The same as the previous line, but using a separate netmask column
#
TYPE DATABASE USER IP-ADDRESS IP-MASK
 METHOD
host all all 127.0.0.1
 255.255.255.255 trust

The same over IPv6.
#
TYPE DATABASE USER ADDRESS METHOD
host all all ::1/128 trust

The same using a host name (would typically cover both IPv4 and
 IPv6).
#
TYPE DATABASE USER ADDRESS METHOD
host all all localhost trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "postgres" as the same user name that ident reports for
the connection (typically the operating system user name).
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.93.0/24 ident

Allow any user from host 192.168.12.10 to connect to database
"postgres" if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.12.10/32 scram-
sha-256

Allow any user from hosts in the example.com domain to connect to
any database if the user's password is correctly supplied.
#
Require SCRAM authentication for most users, but make an exception
for user 'mike', who uses an older client that doesn't support SCRAM
authentication.
#
TYPE DATABASE USER ADDRESS METHOD
host all mike .example.com md5
host all all .example.com scram-
sha-256

In the absence of preceding "host" lines, these two lines will
reject all connections from 192.168.54.1 (since that entry will be
matched first), but allow GSSAPI connections from anywhere else
on the Internet. The zero mask causes no bits of the host IP
address to be considered, so it matches any host.
#

630

Client Authentication

TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.54.1/32 reject
host all all 0.0.0.0/0 gss

Allow users from 192.168.x.x hosts to connect to any database, if
they pass the ident check. If, for example, ident says the user is
"bryanh" and he requests to connect as PostgreSQL user "guest1", the
connection is allowed if there is an entry in pg_ident.conf for map
"omicron" that says "bryanh" is allowed to connect as "guest1".
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.0.0/16 ident
 map=omicron

If these are the only three lines for local connections, they will
allow local users to connect only to their own databases (databases
with the same name as their database user name) except for
 administrators
and members of role "support", who can connect to all databases.
 The file
$PGDATA/admins contains a list of names of administrators.
 Passwords
are required in all cases.
#
TYPE DATABASE USER ADDRESS METHOD
local sameuser all md5
local all @admins md5
local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names:
local db1,db2,@demodbs all md5

20.2. User Name Maps
When using an external authentication system such as Ident or GSSAPI, the name of the operating system
user that initiated the connection might not be the same as the database user (role) that is to be used. In
this case, a user name map can be applied to map the operating system user name to a database user. To
use user name mapping, specify map=map-name in the options field in pg_hba.conf. This option
is supported for all authentication methods that receive external user names. Since different mappings
might be needed for different connections, the name of the map to be used is specified in the map-name
parameter in pg_hba.conf to indicate which map to use for each individual connection.

User name maps are defined in the ident map file, which by default is named pg_ident.conf and
is stored in the cluster's data directory. (It is possible to place the map file elsewhere, however; see the
ident_file configuration parameter.) The ident map file contains lines of the general form:

map-name system-username database-username

Comments and whitespace are handled in the same way as in pg_hba.conf. The map-name is an
arbitrary name that will be used to refer to this mapping in pg_hba.conf. The other two fields specify

631

Client Authentication

an operating system user name and a matching database user name. The same map-name can be used
repeatedly to specify multiple user-mappings within a single map.

There is no restriction regarding how many database users a given operating system user can correspond
to, nor vice versa. Thus, entries in a map should be thought of as meaning “this operating system user is
allowed to connect as this database user”, rather than implying that they are equivalent. The connection
will be allowed if there is any map entry that pairs the user name obtained from the external authentication
system with the database user name that the user has requested to connect as.

If the system-username field starts with a slash (/), the remainder of the field is treated as a regular
expression. (See Section 9.7.3.1 for details of PostgreSQL's regular expression syntax.) The regular
expression can include a single capture, or parenthesized subexpression, which can then be referenced in
the database-username field as \1 (backslash-one). This allows the mapping of multiple user names
in a single line, which is particularly useful for simple syntax substitutions. For example, these entries

mymap /^(.*)@mydomain\.com$ \1
mymap /^(.*)@otherdomain\.com$ guest

will remove the domain part for users with system user names that end with @mydomain.com, and allow
any user whose system name ends with @otherdomain.com to log in as guest.

Tip

Keep in mind that by default, a regular expression can match just part of a string. It's usually wise to
use ̂ and $, as shown in the above example, to force the match to be to the entire system user name.

The pg_ident.conf file is read on start-up and when the main server process receives a SIGHUP
signal. If you edit the file on an active system, you will need to signal the postmaster (using pg_ctl
reload or kill -HUP) to make it re-read the file.

A pg_ident.conf file that could be used in conjunction with the pg_hba.conf file in Example 20.1
is shown in Example 20.2. In this example, anyone logged in to a machine on the 192.168 network that
does not have the operating system user name bryanh, ann, or robert would not be granted access.
Unix user robert would only be allowed access when he tries to connect as PostgreSQL user bob, not as
robert or anyone else. ann would only be allowed to connect as ann. User bryanh would be allowed
to connect as either bryanh or as guest1.

Example 20.2. An Example pg_ident.conf File

MAPNAME SYSTEM-USERNAME PG-USERNAME

omicron bryanh bryanh
omicron ann ann
bob has user name robert on these machines
omicron robert bob
bryanh can also connect as guest1
omicron bryanh guest1

20.3. Authentication Methods
The following sections describe the authentication methods in more detail.

632

Client Authentication

20.4. Trust Authentication
When trust authentication is specified, PostgreSQL assumes that anyone who can connect to the server
is authorized to access the database with whatever database user name they specify (even superuser names).
Of course, restrictions made in the database and user columns still apply. This method should only
be used when there is adequate operating-system-level protection on connections to the server.

trust authentication is appropriate and very convenient for local connections on a single-user
workstation. It is usually not appropriate by itself on a multiuser machine. However, you might be able
to use trust even on a multiuser machine, if you restrict access to the server's Unix-domain socket
file using file-system permissions. To do this, set the unix_socket_permissions (and possibly
unix_socket_group) configuration parameters as described in Section 19.3. Or you could set the
unix_socket_directories configuration parameter to place the socket file in a suitably restricted
directory.

Setting file-system permissions only helps for Unix-socket connections. Local TCP/IP connections are
not restricted by file-system permissions. Therefore, if you want to use file-system permissions for local
security, remove the host ... 127.0.0.1 ... line from pg_hba.conf, or change it to a non-
trust authentication method.

trust authentication is only suitable for TCP/IP connections if you trust every user on every machine
that is allowed to connect to the server by the pg_hba.conf lines that specify trust. It is seldom
reasonable to use trust for any TCP/IP connections other than those from localhost (127.0.0.1).

20.5. Password Authentication
There are several password-based authentication methods. These methods operate similarly but differ in
how the users' passwords are stored on the server and how the password provided by a client is sent across
the connection.

scram-sha-256

The method scram-sha-256 performs SCRAM-SHA-256 authentication, as described in RFC
76771. It is a challenge-response scheme that prevents password sniffing on untrusted connections
and supports storing passwords on the server in a cryptographically hashed form that is thought to
be secure.

This is the most secure of the currently provided methods, but it is not supported by older client
libraries.

md5

The method md5 uses a custom less secure challenge-response mechanism. It prevents password
sniffing and avoids storing passwords on the server in plain text but provides no protection if an
attacker manages to steal the password hash from the server. Also, the MD5 hash algorithm is
nowadays no longer considered secure against determined attacks.

The md5 method cannot be used with the db_user_namespace feature.

To ease transition from the md5 method to the newer SCRAM method, if md5 is specified as a method
in pg_hba.conf but the user's password on the server is encrypted for SCRAM (see below), then
SCRAM-based authentication will automatically be chosen instead.

1 https://tools.ietf.org/html/rfc7677

633

https://tools.ietf.org/html/rfc7677
https://tools.ietf.org/html/rfc7677
https://tools.ietf.org/html/rfc7677

Client Authentication

password

The method password sends the password in clear-text and is therefore vulnerable to password
“sniffing” attacks. It should always be avoided if possible. If the connection is protected by SSL
encryption then password can be used safely, though. (Though SSL certificate authentication might
be a better choice if one is depending on using SSL).

PostgreSQL database passwords are separate from operating system user passwords. The password for
each database user is stored in the pg_authid system catalog. Passwords can be managed with the SQL
commands CREATE ROLE and ALTER ROLE, e.g., CREATE ROLE foo WITH LOGIN PASSWORD
'secret', or the psql command \password. If no password has been set up for a user, the stored
password is null and password authentication will always fail for that user.

The availability of the different password-based authentication methods depends on how a user's password
on the server is encrypted (or hashed, more accurately). This is controlled by the configuration parameter
password_encryption at the time the password is set. If a password was encrypted using the scram-
sha-256 setting, then it can be used for the authentication methods scram-sha-256 and password
(but password transmission will be in plain text in the latter case). The authentication method specification
md5 will automatically switch to using the scram-sha-256 method in this case, as explained above, so
it will also work. If a password was encrypted using the md5 setting, then it can be used only for the md5
and password authentication method specifications (again, with the password transmitted in plain text
in the latter case). (Previous PostgreSQL releases supported storing the password on the server in plain
text. This is no longer possible.) To check the currently stored password hashes, see the system catalog
pg_authid.

To upgrade an existing installation from md5 to scram-sha-256, after having ensured that all client
libraries in use are new enough to support SCRAM, set password_encryption = 'scram-
sha-256' in postgresql.conf, make all users set new passwords, and change the authentication
method specifications in pg_hba.conf to scram-sha-256.

20.6. GSSAPI Authentication
GSSAPI is an industry-standard protocol for secure authentication defined in RFC 2743. PostgreSQL
supports GSSAPI with Kerberos authentication according to RFC 1964. GSSAPI provides automatic
authentication (single sign-on) for systems that support it. The authentication itself is secure, but the data
sent over the database connection will be sent unencrypted unless SSL is used.

GSSAPI support has to be enabled when PostgreSQL is built; see Chapter 16 for more information.

When GSSAPI uses Kerberos, it uses a standard principal in the format servicename/
hostname@realm. The PostgreSQL server will accept any principal that is included in the keytab used
by the server, but care needs to be taken to specify the correct principal details when making the connection
from the client using the krbsrvname connection parameter. (See also Section 34.1.2.) The installation
default can be changed from the default postgres at build time using ./configure --with-krb-
srvnam=whatever. In most environments, this parameter never needs to be changed. Some Kerberos
implementations might require a different service name, such as Microsoft Active Directory which requires
the service name to be in upper case (POSTGRES).

hostname is the fully qualified host name of the server machine. The service principal's realm is the
preferred realm of the server machine.

Client principals can be mapped to different PostgreSQL database user names with pg_ident.conf.
For example, pgusername@realm could be mapped to just pgusername. Alternatively, you can use
the full username@realm principal as the role name in PostgreSQL without any mapping.

634

Client Authentication

PostgreSQL also supports a parameter to strip the realm from the principal. This method is supported for
backwards compatibility and is strongly discouraged as it is then impossible to distinguish different users
with the same user name but coming from different realms. To enable this, set include_realm to 0.
For simple single-realm installations, doing that combined with setting the krb_realm parameter (which
checks that the principal's realm matches exactly what is in the krb_realm parameter) is still secure; but
this is a less capable approach compared to specifying an explicit mapping in pg_ident.conf.

Make sure that your server keytab file is readable (and preferably only readable, not writable) by
the PostgreSQL server account. (See also Section 18.1.) The location of the key file is specified
by the krb_server_keyfile configuration parameter. The default is /usr/local/pgsql/etc/
krb5.keytab (or whatever directory was specified as sysconfdir at build time). For security
reasons, it is recommended to use a separate keytab just for the PostgreSQL server rather than opening
up permissions on the system keytab file.

The keytab file is generated by the Kerberos software; see the Kerberos documentation for details. The
following example is for MIT-compatible Kerberos 5 implementations:

kadmin% ank -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

When connecting to the database make sure you have a ticket for a principal matching the requested
database user name. For example, for database user name fred, principal fred@EXAMPLE.COM would
be able to connect. To also allow principal fred/users.example.com@EXAMPLE.COM, use a user
name map, as described in Section 20.2.

The following configuration options are supported for GSSAPI:

include_realm

If set to 0, the realm name from the authenticated user principal is stripped off before being passed
through the user name mapping (Section 20.2). This is discouraged and is primarily available for
backwards compatibility, as it is not secure in multi-realm environments unless krb_realm is also
used. It is recommended to leave include_realm set to the default (1) and to provide an explicit
mapping in pg_ident.conf to convert principal names to PostgreSQL user names.

map

Allows for mapping between system and database user names. See Section 20.2 for details. For a
GSSAPI/Kerberos principal, such as username@EXAMPLE.COM (or, less commonly, username/
hostbased@EXAMPLE.COM), the user name used for mapping is username@EXAMPLE.COM
(or username/hostbased@EXAMPLE.COM, respectively), unless include_realm has been
set to 0, in which case username (or username/hostbased) is what is seen as the system user
name when mapping.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that realm
will be accepted. If it is not set, users of any realm can connect, subject to whatever user name mapping
is done.

20.7. SSPI Authentication
SSPI is a Windows technology for secure authentication with single sign-on. PostgreSQL will use SSPI
in negotiate mode, which will use Kerberos when possible and automatically fall back to NTLM in

635

Client Authentication

other cases. SSPI authentication only works when both server and client are running Windows, or, on non-
Windows platforms, when GSSAPI is available.

When using Kerberos authentication, SSPI works the same way GSSAPI does; see Section 20.6 for details.

The following configuration options are supported for SSPI:

include_realm

If set to 0, the realm name from the authenticated user principal is stripped off before being passed
through the user name mapping (Section 20.2). This is discouraged and is primarily available for
backwards compatibility, as it is not secure in multi-realm environments unless krb_realm is also
used. It is recommended to leave include_realm set to the default (1) and to provide an explicit
mapping in pg_ident.conf to convert principal names to PostgreSQL user names.

compat_realm

If set to 1, the domain's SAM-compatible name (also known as the NetBIOS name) is used for the
include_realm option. This is the default. If set to 0, the true realm name from the Kerberos user
principal name is used.

Do not disable this option unless your server runs under a domain account (this includes virtual service
accounts on a domain member system) and all clients authenticating through SSPI are also using
domain accounts, or authentication will fail.

upn_username

If this option is enabled along with compat_realm, the user name from the Kerberos UPN is used
for authentication. If it is disabled (the default), the SAM-compatible user name is used. By default,
these two names are identical for new user accounts.

Note that libpq uses the SAM-compatible name if no explicit user name is specified. If you use libpq
or a driver based on it, you should leave this option disabled or explicitly specify user name in the
connection string.

map

Allows for mapping between system and database user names. See Section 20.2 for details. For a
SSPI/Kerberos principal, such as username@EXAMPLE.COM (or, less commonly, username/
hostbased@EXAMPLE.COM), the user name used for mapping is username@EXAMPLE.COM
(or username/hostbased@EXAMPLE.COM, respectively), unless include_realm has been
set to 0, in which case username (or username/hostbased) is what is seen as the system user
name when mapping.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that realm
will be accepted. If it is not set, users of any realm can connect, subject to whatever user name mapping
is done.

20.8. Ident Authentication
The ident authentication method works by obtaining the client's operating system user name from an ident
server and using it as the allowed database user name (with an optional user name mapping). This is only
supported on TCP/IP connections.

636

Client Authentication

Note

When ident is specified for a local (non-TCP/IP) connection, peer authentication (see Section 20.9)
will be used instead.

The following configuration options are supported for ident:

map

Allows for mapping between system and database user names. See Section 20.2 for details.

The “Identification Protocol” is described in RFC 1413. Virtually every Unix-like operating system ships
with an ident server that listens on TCP port 113 by default. The basic functionality of an ident server is
to answer questions like “What user initiated the connection that goes out of your port X and connects
to my port Y?”. Since PostgreSQL knows both X and Y when a physical connection is established, it
can interrogate the ident server on the host of the connecting client and can theoretically determine the
operating system user for any given connection.

The drawback of this procedure is that it depends on the integrity of the client: if the client machine is
untrusted or compromised, an attacker could run just about any program on port 113 and return any user
name they choose. This authentication method is therefore only appropriate for closed networks where
each client machine is under tight control and where the database and system administrators operate in
close contact. In other words, you must trust the machine running the ident server. Heed the warning:

The Identification Protocol is not intended as an authorization or access control protocol.

—RFC 1413

Some ident servers have a nonstandard option that causes the returned user name to be encrypted, using
a key that only the originating machine's administrator knows. This option must not be used when using
the ident server with PostgreSQL, since PostgreSQL does not have any way to decrypt the returned string
to determine the actual user name.

20.9. Peer Authentication
The peer authentication method works by obtaining the client's operating system user name from the kernel
and using it as the allowed database user name (with optional user name mapping). This method is only
supported on local connections.

The following configuration options are supported for peer:

map

Allows for mapping between system and database user names. See Section 20.2 for details.

Peer authentication is only available on operating systems providing the getpeereid() function, the
SO_PEERCRED socket parameter, or similar mechanisms. Currently that includes Linux, most flavors of
BSD including macOS, and Solaris.

20.10. LDAP Authentication
This authentication method operates similarly to password except that it uses LDAP as the password
verification method. LDAP is used only to validate the user name/password pairs. Therefore the user must
already exist in the database before LDAP can be used for authentication.

637

Client Authentication

LDAP authentication can operate in two modes. In the first mode, which we will call the simple bind mode,
the server will bind to the distinguished name constructed as prefix username suffix. Typically,
the prefix parameter is used to specify cn=, or DOMAIN\ in an Active Directory environment. suffix
is used to specify the remaining part of the DN in a non-Active Directory environment.

In the second mode, which we will call the search+bind mode, the server first binds to the LDAP
directory with a fixed user name and password, specified with ldapbinddn and ldapbindpasswd,
and performs a search for the user trying to log in to the database. If no user and password is configured,
an anonymous bind will be attempted to the directory. The search will be performed over the subtree at
ldapbasedn, and will try to do an exact match of the attribute specified in ldapsearchattribute.
Once the user has been found in this search, the server disconnects and re-binds to the directory as this
user, using the password specified by the client, to verify that the login is correct. This mode is the same as
that used by LDAP authentication schemes in other software, such as Apache mod_authnz_ldap and
pam_ldap. This method allows for significantly more flexibility in where the user objects are located in
the directory, but will cause two separate connections to the LDAP server to be made.

The following configuration options are used in both modes:

ldapserver

Names or IP addresses of LDAP servers to connect to. Multiple servers may be specified, separated
by spaces.

ldapport

Port number on LDAP server to connect to. If no port is specified, the LDAP library's default port
setting will be used.

ldapscheme

Set to ldaps to use LDAPS. This is a non-standard way of using LDAP over SSL, supported by
some LDAP server implementations. See also the ldaptls option for an alternative.

ldaptls

Set to 1 to make the connection between PostgreSQL and the LDAP server use TLS encryption. This
uses the StartTLS operation per RFC 4513. See also the ldapscheme option for an alternative.

Note that using ldapscheme or ldaptls only encrypts the traffic between the PostgreSQL server and
the LDAP server. The connection between the PostgreSQL server and the PostgreSQL client will still be
unencrypted unless SSL is used there as well.

The following options are used in simple bind mode only:

ldapprefix

String to prepend to the user name when forming the DN to bind as, when doing simple bind
authentication.

ldapsuffix

String to append to the user name when forming the DN to bind as, when doing simple bind
authentication.

The following options are used in search+bind mode only:

ldapbasedn

Root DN to begin the search for the user in, when doing search+bind authentication.

638

Client Authentication

ldapbinddn

DN of user to bind to the directory with to perform the search when doing search+bind authentication.

ldapbindpasswd

Password for user to bind to the directory with to perform the search when doing search+bind
authentication.

ldapsearchattribute

Attribute to match against the user name in the search when doing search+bind authentication. If no
attribute is specified, the uid attribute will be used.

ldapsearchfilter

The search filter to use when doing search+bind authentication. Occurrences of $username
will be replaced with the user name. This allows for more flexible search filters than
ldapsearchattribute.

ldapurl

An RFC 4516 LDAP URL. This is an alternative way to write some of the other LDAP options in a
more compact and standard form. The format is

ldap[s]://host[:port]/basedn[?[attribute][?[scope][?[filter]]]]

scope must be one of base, one, sub, typically the last. (The default is base, which is normally
not useful in this application.) attribute can nominate a single attribute, in which case it is used
as a value for ldapsearchattribute. If attribute is empty then filter can be used as a
value for ldapsearchfilter.

The URL scheme ldaps chooses the LDAPS method for making LDAP connections over
SSL, equivalent to using ldapscheme=ldaps. To use encrypted LDAP connections using the
StartTLS operation, use the normal URL scheme ldap and specify the ldaptls option in
addition to ldapurl.

For non-anonymous binds, ldapbinddn and ldapbindpasswd must be specified as separate
options.

LDAP URLs are currently only supported with OpenLDAP, not on Windows.

It is an error to mix configuration options for simple bind with options for search+bind.

When using search+bind mode, the search can be performed using a single attribute
specified with ldapsearchattribute, or using a custom search filter specified with
ldapsearchfilter. Specifying ldapsearchattribute=foo is equivalent to specifying
ldapsearchfilter="(foo=$username)". If neither option is specified the default is
ldapsearchattribute=uid.

Here is an example for a simple-bind LDAP configuration:

host ... ldap ldapserver=ldap.example.net ldapprefix="cn="
 ldapsuffix=", dc=example, dc=net"

639

Client Authentication

When a connection to the database server as database user someuser is requested, PostgreSQL will
attempt to bind to the LDAP server using the DN cn=someuser, dc=example, dc=net and the
password provided by the client. If that connection succeeds, the database access is granted.

Here is an example for a search+bind configuration:

host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example,
 dc=net" ldapsearchattribute=uid

When a connection to the database server as database user someuser is requested, PostgreSQL will
attempt to bind anonymously (since ldapbinddn was not specified) to the LDAP server, perform a
search for (uid=someuser) under the specified base DN. If an entry is found, it will then attempt
to bind using that found information and the password supplied by the client. If that second connection
succeeds, the database access is granted.

Here is the same search+bind configuration written as a URL:

host ... ldap ldapurl="ldap://ldap.example.net/dc=example,dc=net?uid?
sub"

Some other software that supports authentication against LDAP uses the same URL format, so it will be
easier to share the configuration.

Here is an example for a search+bind configuration that uses ldapsearchfilter instead of
ldapsearchattribute to allow authentication by user ID or email address:

host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example,
 dc=net" ldapsearchfilter="(|(uid=$username)(mail=$username))"

Tip

Since LDAP often uses commas and spaces to separate the different parts of a DN, it is often
necessary to use double-quoted parameter values when configuring LDAP options, as shown in
the examples.

20.11. RADIUS Authentication
This authentication method operates similarly to password except that it uses RADIUS as the password
verification method. RADIUS is used only to validate the user name/password pairs. Therefore the user
must already exist in the database before RADIUS can be used for authentication.

When using RADIUS authentication, an Access Request message will be sent to the configured RADIUS
server. This request will be of type Authenticate Only, and include parameters for user name,
password (encrypted) and NAS Identifier. The request will be encrypted using a secret shared
with the server. The RADIUS server will respond to this server with either Access Accept or Access
Reject. There is no support for RADIUS accounting.

Multiple RADIUS servers can be specified, in which case they will be tried sequentially. If a negative
response is received from a server, the authentication will fail. If no response is received, the next server

640

Client Authentication

in the list will be tried. To specify multiple servers, put the names within quotes and separate the server
names with a comma. If multiple servers are specified, all other RADIUS options can also be given as a
comma separate list, to apply individual values to each server. They can also be specified as a single value,
in which case this value will apply to all servers.

The following configuration options are supported for RADIUS:

radiusservers

The name or IP addresses of the RADIUS servers to connect to. This parameter is required.

radiussecrets

The shared secrets used when talking securely to the RADIUS server. This must have exactly the
same value on the PostgreSQL and RADIUS servers. It is recommended that this be a string of at
least 16 characters. This parameter is required.

Note

The encryption vector used will only be cryptographically strong if PostgreSQL is built with
support for OpenSSL. In other cases, the transmission to the RADIUS server should only
be considered obfuscated, not secured, and external security measures should be applied if
necessary.

radiusports

The port number on the RADIUS servers to connect to. If no port is specified, the default port 1812
will be used.

radiusidentifiers

The string used as NAS Identifier in the RADIUS requests. This parameter can be used as a
second parameter identifying for example which database user the user is attempting to authenticate
as, which can be used for policy matching on the RADIUS server. If no identifier is specified, the
default postgresql will be used.

20.12. Certificate Authentication
This authentication method uses SSL client certificates to perform authentication. It is therefore only
available for SSL connections. When using this authentication method, the server will require that the
client provide a valid, trusted certificate. No password prompt will be sent to the client. The cn (Common
Name) attribute of the certificate will be compared to the requested database user name, and if they match
the login will be allowed. User name mapping can be used to allow cn to be different from the database
user name.

The following configuration options are supported for SSL certificate authentication:

map

Allows for mapping between system and database user names. See Section 20.2 for details.

In a pg_hba.conf record specifying certificate authentication, the authentication option clientcert
is assumed to be 1, and it cannot be turned off since a client certificate is necessary for this method. What

641

Client Authentication

the cert method adds to the basic clientcert certificate validity test is a check that the cn attribute
matches the database user name.

20.13. PAM Authentication
This authentication method operates similarly to password except that it uses PAM (Pluggable
Authentication Modules) as the authentication mechanism. The default PAM service name is
postgresql. PAM is used only to validate user name/password pairs and optionally the connected
remote host name or IP address. Therefore the user must already exist in the database before PAM can be
used for authentication. For more information about PAM, please read the Linux-PAM Page2.

The following configuration options are supported for PAM:

pamservice

PAM service name.

pam_use_hostname

Determines whether the remote IP address or the host name is provided to PAM modules through the
PAM_RHOST item. By default, the IP address is used. Set this option to 1 to use the resolved host
name instead. Host name resolution can lead to login delays. (Most PAM configurations don't use this
information, so it is only necessary to consider this setting if a PAM configuration was specifically
created to make use of it.)

Note

If PAM is set up to read /etc/shadow, authentication will fail because the PostgreSQL server
is started by a non-root user. However, this is not an issue when PAM is configured to use LDAP
or other authentication methods.

20.14. BSD Authentication
This authentication method operates similarly to password except that it uses BSD Authentication to
verify the password. BSD Authentication is used only to validate user name/password pairs. Therefore the
user's role must already exist in the database before BSD Authentication can be used for authentication.
The BSD Authentication framework is currently only available on OpenBSD.

BSD Authentication in PostgreSQL uses the auth-postgresql login type and authenticates with the
postgresql login class if that's defined in login.conf. By default that login class does not exist,
and PostgreSQL will use the default login class.

Note

To use BSD Authentication, the PostgreSQL user account (that is, the operating system user
running the server) must first be added to the auth group. The auth group exists by default on
OpenBSD systems.

2 https://www.kernel.org/pub/linux/libs/pam/

642

https://www.kernel.org/pub/linux/libs/pam/
https://www.kernel.org/pub/linux/libs/pam/

Client Authentication

20.15. Authentication Problems
Authentication failures and related problems generally manifest themselves through error messages like
the following:

FATAL: no pg_hba.conf entry for host "123.123.123.123", user "andym",
 database "testdb"

This is what you are most likely to get if you succeed in contacting the server, but it does not want to talk
to you. As the message suggests, the server refused the connection request because it found no matching
entry in its pg_hba.conf configuration file.

FATAL: password authentication failed for user "andym"

Messages like this indicate that you contacted the server, and it is willing to talk to you, but not until you
pass the authorization method specified in the pg_hba.conf file. Check the password you are providing,
or check your Kerberos or ident software if the complaint mentions one of those authentication types.

FATAL: user "andym" does not exist

The indicated database user name was not found.

FATAL: database "testdb" does not exist

The database you are trying to connect to does not exist. Note that if you do not specify a database name,
it defaults to the database user name, which might or might not be the right thing.

Tip

The server log might contain more information about an authentication failure than is reported to
the client. If you are confused about the reason for a failure, check the server log.

643

Chapter 21. Database Roles
PostgreSQL manages database access permissions using the concept of roles. A role can be thought of as
either a database user, or a group of database users, depending on how the role is set up. Roles can own
database objects (for example, tables and functions) and can assign privileges on those objects to other
roles to control who has access to which objects. Furthermore, it is possible to grant membership in a role
to another role, thus allowing the member role to use privileges assigned to another role.

The concept of roles subsumes the concepts of “users” and “groups”. In PostgreSQL versions before 8.1,
users and groups were distinct kinds of entities, but now there are only roles. Any role can act as a user,
a group, or both.

This chapter describes how to create and manage roles. More information about the effects of role
privileges on various database objects can be found in Section 5.6.

21.1. Database Roles
Database roles are conceptually completely separate from operating system users. In practice it might
be convenient to maintain a correspondence, but this is not required. Database roles are global across a
database cluster installation (and not per individual database). To create a role use the CREATE ROLE
SQL command:

CREATE ROLE name;

name follows the rules for SQL identifiers: either unadorned without special characters, or double-quoted.
(In practice, you will usually want to add additional options, such as LOGIN, to the command. More details
appear below.) To remove an existing role, use the analogous DROP ROLE command:

DROP ROLE name;

For convenience, the programs createuser and dropuser are provided as wrappers around these SQL
commands that can be called from the shell command line:

createuser name
dropuser name

To determine the set of existing roles, examine the pg_roles system catalog, for example

SELECT rolname FROM pg_roles;

The psql program's \du meta-command is also useful for listing the existing roles.

In order to bootstrap the database system, a freshly initialized system always contains one predefined role.
This role is always a “superuser”, and by default (unless altered when running initdb) it will have the
same name as the operating system user that initialized the database cluster. Customarily, this role will be
named postgres. In order to create more roles you first have to connect as this initial role.

Every connection to the database server is made using the name of some particular role, and this role
determines the initial access privileges for commands issued in that connection. The role name to use

644

Database Roles

for a particular database connection is indicated by the client that is initiating the connection request in
an application-specific fashion. For example, the psql program uses the -U command line option to
indicate the role to connect as. Many applications assume the name of the current operating system user
by default (including createuser and psql). Therefore it is often convenient to maintain a naming
correspondence between roles and operating system users.

The set of database roles a given client connection can connect as is determined by the client authentication
setup, as explained in Chapter 20. (Thus, a client is not limited to connect as the role matching its operating
system user, just as a person's login name need not match his or her real name.) Since the role identity
determines the set of privileges available to a connected client, it is important to carefully configure
privileges when setting up a multiuser environment.

21.2. Role Attributes
A database role can have a number of attributes that define its privileges and interact with the client
authentication system.

login privilege

Only roles that have the LOGIN attribute can be used as the initial role name for a database connection.
A role with the LOGIN attribute can be considered the same as a “database user”. To create a role
with login privilege, use either:

CREATE ROLE name LOGIN;
CREATE USER name;

(CREATE USER is equivalent to CREATE ROLE except that CREATE USER includes LOGIN by
default, while CREATE ROLE does not.)

superuser status

A database superuser bypasses all permission checks, except the right to log in. This is a dangerous
privilege and should not be used carelessly; it is best to do most of your work as a role that is not a
superuser. To create a new database superuser, use CREATE ROLE name SUPERUSER. You must
do this as a role that is already a superuser.

database creation

A role must be explicitly given permission to create databases (except for superusers, since those
bypass all permission checks). To create such a role, use CREATE ROLE name CREATEDB.

role creation

A role must be explicitly given permission to create more roles (except for superusers, since those
bypass all permission checks). To create such a role, use CREATE ROLE name CREATEROLE.
A role with CREATEROLE privilege can alter and drop other roles, too, as well as grant or revoke
membership in them. However, to create, alter, drop, or change membership of a superuser role,
superuser status is required; CREATEROLE is insufficient for that.

initiating replication

A role must explicitly be given permission to initiate streaming replication (except for superusers,
since those bypass all permission checks). A role used for streaming replication must have LOGIN
permission as well. To create such a role, use CREATE ROLE name REPLICATION LOGIN.

645

Database Roles

password

A password is only significant if the client authentication method requires the user to supply a
password when connecting to the database. The password and md5 authentication methods make
use of passwords. Database passwords are separate from operating system passwords. Specify a
password upon role creation with CREATE ROLE name PASSWORD 'string'.

A role's attributes can be modified after creation with ALTER ROLE. See the reference pages for the
CREATE ROLE and ALTER ROLE commands for details.

Tip

It is good practice to create a role that has the CREATEDB and CREATEROLE privileges, but is
not a superuser, and then use this role for all routine management of databases and roles. This
approach avoids the dangers of operating as a superuser for tasks that do not really require it.

A role can also have role-specific defaults for many of the run-time configuration settings described in
Chapter 19. For example, if for some reason you want to disable index scans (hint: not a good idea) anytime
you connect, you can use:

ALTER ROLE myname SET enable_indexscan TO off;

This will save the setting (but not set it immediately). In subsequent connections by this role it will appear
as though SET enable_indexscan TO off had been executed just before the session started. You
can still alter this setting during the session; it will only be the default. To remove a role-specific default
setting, use ALTER ROLE rolename RESET varname. Note that role-specific defaults attached to
roles without LOGIN privilege are fairly useless, since they will never be invoked.

21.3. Role Membership
It is frequently convenient to group users together to ease management of privileges: that way, privileges
can be granted to, or revoked from, a group as a whole. In PostgreSQL this is done by creating a role that
represents the group, and then granting membership in the group role to individual user roles.

To set up a group role, first create the role:

CREATE ROLE name;

Typically a role being used as a group would not have the LOGIN attribute, though you can set it if you
wish.

Once the group role exists, you can add and remove members using the GRANT and REVOKE commands:

GRANT group_role TO role1, ... ;
REVOKE group_role FROM role1, ... ;

You can grant membership to other group roles, too (since there isn't really any distinction between group
roles and non-group roles). The database will not let you set up circular membership loops. Also, it is not
permitted to grant membership in a role to PUBLIC.

646

Database Roles

The members of a group role can use the privileges of the role in two ways. First, every member of a group
can explicitly do SET ROLE to temporarily “become” the group role. In this state, the database session
has access to the privileges of the group role rather than the original login role, and any database objects
created are considered owned by the group role not the login role. Second, member roles that have the
INHERIT attribute automatically have use of the privileges of roles of which they are members, including
any privileges inherited by those roles. As an example, suppose we have done:

CREATE ROLE joe LOGIN INHERIT;
CREATE ROLE admin NOINHERIT;
CREATE ROLE wheel NOINHERIT;
GRANT admin TO joe;
GRANT wheel TO admin;

Immediately after connecting as role joe, a database session will have use of privileges granted directly
to joe plus any privileges granted to admin, because joe “inherits” admin's privileges. However,
privileges granted to wheel are not available, because even though joe is indirectly a member of wheel,
the membership is via admin which has the NOINHERIT attribute. After:

SET ROLE admin;

the session would have use of only those privileges granted to admin, and not those granted to joe. After:

SET ROLE wheel;

the session would have use of only those privileges granted to wheel, and not those granted to either joe
or admin. The original privilege state can be restored with any of:

SET ROLE joe;
SET ROLE NONE;
RESET ROLE;

Note

The SET ROLE command always allows selecting any role that the original login role is directly
or indirectly a member of. Thus, in the above example, it is not necessary to become admin before
becoming wheel.

Note

In the SQL standard, there is a clear distinction between users and roles, and users do not
automatically inherit privileges while roles do. This behavior can be obtained in PostgreSQL
by giving roles being used as SQL roles the INHERIT attribute, while giving roles being used
as SQL users the NOINHERIT attribute. However, PostgreSQL defaults to giving all roles the
INHERIT attribute, for backward compatibility with pre-8.1 releases in which users always had
use of permissions granted to groups they were members of.

The role attributes LOGIN, SUPERUSER, CREATEDB, and CREATEROLE can be thought of as special
privileges, but they are never inherited as ordinary privileges on database objects are. You must actually

647

Database Roles

SET ROLE to a specific role having one of these attributes in order to make use of the attribute. Continuing
the above example, we might choose to grant CREATEDB and CREATEROLE to the admin role. Then a
session connecting as role joe would not have these privileges immediately, only after doing SET ROLE
admin.

To destroy a group role, use DROP ROLE:

DROP ROLE name;

Any memberships in the group role are automatically revoked (but the member roles are not otherwise
affected).

21.4. Dropping Roles
Because roles can own database objects and can hold privileges to access other objects, dropping a role is
often not just a matter of a quick DROP ROLE. Any objects owned by the role must first be dropped or
reassigned to other owners; and any permissions granted to the role must be revoked.

Ownership of objects can be transferred one at a time using ALTER commands, for example:

ALTER TABLE bobs_table OWNER TO alice;

Alternatively, the REASSIGN OWNED command can be used to reassign ownership of all objects owned
by the role-to-be-dropped to a single other role. Because REASSIGN OWNED cannot access objects in
other databases, it is necessary to run it in each database that contains objects owned by the role. (Note
that the first such REASSIGN OWNED will change the ownership of any shared-across-databases objects,
that is databases or tablespaces, that are owned by the role-to-be-dropped.)

Once any valuable objects have been transferred to new owners, any remaining objects owned by the role-
to-be-dropped can be dropped with the DROP OWNED command. Again, this command cannot access
objects in other databases, so it is necessary to run it in each database that contains objects owned by
the role. Also, DROP OWNED will not drop entire databases or tablespaces, so it is necessary to do that
manually if the role owns any databases or tablespaces that have not been transferred to new owners.

DROP OWNED also takes care of removing any privileges granted to the target role for objects that do
not belong to it. Because REASSIGN OWNED does not touch such objects, it's typically necessary to run
both REASSIGN OWNED and DROP OWNED (in that order!) to fully remove the dependencies of a role
to be dropped.

In short then, the most general recipe for removing a role that has been used to own objects is:

REASSIGN OWNED BY doomed_role TO successor_role;
DROP OWNED BY doomed_role;
-- repeat the above commands in each database of the cluster
DROP ROLE doomed_role;

When not all owned objects are to be transferred to the same successor owner, it's best to handle the
exceptions manually and then perform the above steps to mop up.

If DROP ROLE is attempted while dependent objects still remain, it will issue messages identifying which
objects need to be reassigned or dropped.

648

Database Roles

21.5. Default Roles
PostgreSQL provides a set of default roles which provide access to certain, commonly needed, privileged
capabilities and information. Administrators can GRANT these roles to users and/or other roles in their
environment, providing those users with access to the specified capabilities and information.

The default roles are described in Table 21.1. Note that the specific permissions for each of the default
roles may change in the future as additional capabilities are added. Administrators should monitor the
release notes for changes.

Table 21.1. Default Roles

Role Allowed Access

pg_read_all_settings Read all configuration variables, even those
normally visible only to superusers.

pg_read_all_stats Read all pg_stat_* views and use various statistics
related extensions, even those normally visible only
to superusers.

pg_stat_scan_tables Execute monitoring functions that may take
ACCESS SHARE locks on tables, potentially for a
long time.

pg_signal_backend Send signals to other backends (eg: cancel query,
terminate).

pg_read_server_files Allow reading files from any location the database
can access on the server with COPY and other file-
access functions.

pg_write_server_files Allow writing to files in any location the database
can access on the server with COPY and other file-
access functions.

pg_execute_server_program Allow executing programs on the database server
as the user the database runs as with COPY and
other functions which allow executing a server-side
program.

pg_monitor Read/execute various monitoring views
and functions. This role is a
member of pg_read_all_settings,
pg_read_all_stats and
pg_stat_scan_tables.

The pg_read_server_files, pg_write_server_files and
pg_execute_server_program roles are intended to allow administrators to have trusted, but non-
superuser, roles which are able to access files and run programs on the database server as the user the
database runs as. As these roles are able to access any file on the server file system, they bypass all
database-level permission checks when accessing files directly and they could be used to gain superuser-
level access, therefore care should be taken when granting these roles to users.

The pg_monitor, pg_read_all_settings, pg_read_all_stats and
pg_stat_scan_tables roles are intended to allow administrators to easily configure a role for the
purpose of monitoring the database server. They grant a set of common privileges allowing the role to
read various useful configuration settings, statistics and other system information normally restricted to
superusers.

649

Database Roles

Care should be taken when granting these roles to ensure they are only used where needed and with the
understanding that these roles grant access to privileged information.

Administrators can grant access to these roles to users using the GRANT command:

GRANT pg_signal_backend TO admin_user;

21.6. Function Security
Functions, triggers and row-level security policies allow users to insert code into the backend server that
other users might execute unintentionally. Hence, these mechanisms permit users to “Trojan horse” others
with relative ease. The strongest protection is tight control over who can define objects. Where that is
infeasible, write queries referring only to objects having trusted owners. Remove from search_path
the public schema and any other schemas that permit untrusted users to create objects.

Functions run inside the backend server process with the operating system permissions of the database
server daemon. If the programming language used for the function allows unchecked memory accesses, it
is possible to change the server's internal data structures. Hence, among many other things, such functions
can circumvent any system access controls. Function languages that allow such access are considered
“untrusted”, and PostgreSQL allows only superusers to create functions written in those languages.

650

Chapter 22. Managing Databases
Every instance of a running PostgreSQL server manages one or more databases. Databases are therefore
the topmost hierarchical level for organizing SQL objects (“database objects”). This chapter describes the
properties of databases, and how to create, manage, and destroy them.

22.1. Overview
A database is a named collection of SQL objects (“database objects”). Generally, every database object
(tables, functions, etc.) belongs to one and only one database. (However there are a few system catalogs,
for example pg_database, that belong to a whole cluster and are accessible from each database within
the cluster.) More accurately, a database is a collection of schemas and the schemas contain the tables,
functions, etc. So the full hierarchy is: server, database, schema, table (or some other kind of object, such
as a function).

When connecting to the database server, a client must specify in its connection request the name of
the database it wants to connect to. It is not possible to access more than one database per connection.
However, an application is not restricted in the number of connections it opens to the same or other
databases. Databases are physically separated and access control is managed at the connection level. If
one PostgreSQL server instance is to house projects or users that should be separate and for the most part
unaware of each other, it is therefore recommended to put them into separate databases. If the projects
or users are interrelated and should be able to use each other's resources, they should be put in the same
database but possibly into separate schemas. Schemas are a purely logical structure and who can access
what is managed by the privilege system. More information about managing schemas is in Section 5.8.

Databases are created with the CREATE DATABASE command (see Section 22.2) and destroyed with the
DROP DATABASE command (see Section 22.5). To determine the set of existing databases, examine the
pg_database system catalog, for example

SELECT datname FROM pg_database;

The psql program's \l meta-command and -l command-line option are also useful for listing the existing
databases.

Note

The SQL standard calls databases “catalogs”, but there is no difference in practice.

22.2. Creating a Database
In order to create a database, the PostgreSQL server must be up and running (see Section 18.3).

Databases are created with the SQL command CREATE DATABASE:

CREATE DATABASE name;

where name follows the usual rules for SQL identifiers. The current role automatically becomes the owner
of the new database. It is the privilege of the owner of a database to remove it later (which also removes
all the objects in it, even if they have a different owner).

651

Managing Databases

The creation of databases is a restricted operation. See Section 21.2 for how to grant permission.

Since you need to be connected to the database server in order to execute the CREATE DATABASE
command, the question remains how the first database at any given site can be created. The first database is
always created by the initdb command when the data storage area is initialized. (See Section 18.2.) This
database is called postgres. So to create the first “ordinary” database you can connect to postgres.

A second database, template1, is also created during database cluster initialization. Whenever a new
database is created within the cluster, template1 is essentially cloned. This means that any changes
you make in template1 are propagated to all subsequently created databases. Because of this, avoid
creating objects in template1 unless you want them propagated to every newly created database. More
details appear in Section 22.3.

As a convenience, there is a program you can execute from the shell to create new databases, createdb.

createdb dbname

createdb does no magic. It connects to the postgres database and issues the CREATE DATABASE
command, exactly as described above. The createdb reference page contains the invocation details. Note
that createdb without any arguments will create a database with the current user name.

Note

Chapter 20 contains information about how to restrict who can connect to a given database.

Sometimes you want to create a database for someone else, and have them become the owner of the
new database, so they can configure and manage it themselves. To achieve that, use one of the following
commands:

CREATE DATABASE dbname OWNER rolename;

from the SQL environment, or:

createdb -O rolename dbname

from the shell. Only the superuser is allowed to create a database for someone else (that is, for a role you
are not a member of).

22.3. Template Databases
CREATE DATABASE actually works by copying an existing database. By default, it copies the standard
system database named template1. Thus that database is the “template” from which new databases
are made. If you add objects to template1, these objects will be copied into subsequently created user
databases. This behavior allows site-local modifications to the standard set of objects in databases. For
example, if you install the procedural language PL/Perl in template1, it will automatically be available
in user databases without any extra action being taken when those databases are created.

There is a second standard system database named template0. This database contains the same data
as the initial contents of template1, that is, only the standard objects predefined by your version of
PostgreSQL. template0 should never be changed after the database cluster has been initialized. By
instructing CREATE DATABASE to copy template0 instead of template1, you can create a “virgin”

652

Managing Databases

user database that contains none of the site-local additions in template1. This is particularly handy
when restoring a pg_dump dump: the dump script should be restored in a virgin database to ensure that
one recreates the correct contents of the dumped database, without conflicting with objects that might have
been added to template1 later on.

Another common reason for copying template0 instead of template1 is that new encoding and
locale settings can be specified when copying template0, whereas a copy of template1 must use
the same settings it does. This is because template1 might contain encoding-specific or locale-specific
data, while template0 is known not to.

To create a database by copying template0, use:

CREATE DATABASE dbname TEMPLATE template0;

from the SQL environment, or:

createdb -T template0 dbname

from the shell.

It is possible to create additional template databases, and indeed one can copy any database in a cluster by
specifying its name as the template for CREATE DATABASE. It is important to understand, however, that
this is not (yet) intended as a general-purpose “COPY DATABASE” facility. The principal limitation is that
no other sessions can be connected to the source database while it is being copied. CREATE DATABASE
will fail if any other connection exists when it starts; during the copy operation, new connections to the
source database are prevented.

Two useful flags exist in pg_database for each database: the columns datistemplate and
datallowconn. datistemplate can be set to indicate that a database is intended as a template
for CREATE DATABASE. If this flag is set, the database can be cloned by any user with CREATEDB
privileges; if it is not set, only superusers and the owner of the database can clone it. If datallowconn
is false, then no new connections to that database will be allowed (but existing sessions are not terminated
simply by setting the flag false). The template0 database is normally marked datallowconn =
false to prevent its modification. Both template0 and template1 should always be marked with
datistemplate = true.

Note

template1 and template0 do not have any special status beyond the fact that the name
template1 is the default source database name for CREATE DATABASE. For example, one
could drop template1 and recreate it from template0 without any ill effects. This course of
action might be advisable if one has carelessly added a bunch of junk in template1. (To delete
template1, it must have pg_database.datistemplate = false.)

The postgres database is also created when a database cluster is initialized. This database
is meant as a default database for users and applications to connect to. It is simply a copy of
template1 and can be dropped and recreated if necessary.

22.4. Database Configuration
Recall from Chapter 19 that the PostgreSQL server provides a large number of run-time configuration
variables. You can set database-specific default values for many of these settings.

653

Managing Databases

For example, if for some reason you want to disable the GEQO optimizer for a given database, you'd
ordinarily have to either disable it for all databases or make sure that every connecting client is careful
to issue SET geqo TO off. To make this setting the default within a particular database, you can
execute the command:

ALTER DATABASE mydb SET geqo TO off;

This will save the setting (but not set it immediately). In subsequent connections to this database it will
appear as though SET geqo TO off; had been executed just before the session started. Note that users
can still alter this setting during their sessions; it will only be the default. To undo any such setting, use
ALTER DATABASE dbname RESET varname.

22.5. Destroying a Database
Databases are destroyed with the command DROP DATABASE:

DROP DATABASE name;

Only the owner of the database, or a superuser, can drop a database. Dropping a database removes all
objects that were contained within the database. The destruction of a database cannot be undone.

You cannot execute the DROP DATABASE command while connected to the victim database. You can,
however, be connected to any other database, including the template1 database. template1 would
be the only option for dropping the last user database of a given cluster.

For convenience, there is also a shell program to drop databases, dropdb:

dropdb dbname

(Unlike createdb, it is not the default action to drop the database with the current user name.)

22.6. Tablespaces
Tablespaces in PostgreSQL allow database administrators to define locations in the file system where the
files representing database objects can be stored. Once created, a tablespace can be referred to by name
when creating database objects.

By using tablespaces, an administrator can control the disk layout of a PostgreSQL installation. This is
useful in at least two ways. First, if the partition or volume on which the cluster was initialized runs out
of space and cannot be extended, a tablespace can be created on a different partition and used until the
system can be reconfigured.

Second, tablespaces allow an administrator to use knowledge of the usage pattern of database objects to
optimize performance. For example, an index which is very heavily used can be placed on a very fast,
highly available disk, such as an expensive solid state device. At the same time a table storing archived data
which is rarely used or not performance critical could be stored on a less expensive, slower disk system.

Warning

Even though located outside the main PostgreSQL data directory, tablespaces are an integral part
of the database cluster and cannot be treated as an autonomous collection of data files. They are

654

Managing Databases

dependent on metadata contained in the main data directory, and therefore cannot be attached
to a different database cluster or backed up individually. Similarly, if you lose a tablespace (file
deletion, disk failure, etc), the database cluster might become unreadable or unable to start. Placing
a tablespace on a temporary file system like a RAM disk risks the reliability of the entire cluster.

To define a tablespace, use the CREATE TABLESPACE command, for example::

CREATE TABLESPACE fastspace LOCATION '/ssd1/postgresql/data';

The location must be an existing, empty directory that is owned by the PostgreSQL operating system user.
All objects subsequently created within the tablespace will be stored in files underneath this directory.
The location must not be on removable or transient storage, as the cluster might fail to function if the
tablespace is missing or lost.

Note

There is usually not much point in making more than one tablespace per logical file system,
since you cannot control the location of individual files within a logical file system. However,
PostgreSQL does not enforce any such limitation, and indeed it is not directly aware of the file
system boundaries on your system. It just stores files in the directories you tell it to use.

Creation of the tablespace itself must be done as a database superuser, but after that you can allow ordinary
database users to use it. To do that, grant them the CREATE privilege on it.

Tables, indexes, and entire databases can be assigned to particular tablespaces. To do so, a user with the
CREATE privilege on a given tablespace must pass the tablespace name as a parameter to the relevant
command. For example, the following creates a table in the tablespace space1:

CREATE TABLE foo(i int) TABLESPACE space1;

Alternatively, use the default_tablespace parameter:

SET default_tablespace = space1;
CREATE TABLE foo(i int);

When default_tablespace is set to anything but an empty string, it supplies an implicit
TABLESPACE clause for CREATE TABLE and CREATE INDEX commands that do not have an explicit
one.

There is also a temp_tablespaces parameter, which determines the placement of temporary tables and
indexes, as well as temporary files that are used for purposes such as sorting large data sets. This can be
a list of tablespace names, rather than only one, so that the load associated with temporary objects can
be spread over multiple tablespaces. A random member of the list is picked each time a temporary object
is to be created.

The tablespace associated with a database is used to store the system catalogs of that database. Furthermore,
it is the default tablespace used for tables, indexes, and temporary files created within the database, if
no TABLESPACE clause is given and no other selection is specified by default_tablespace or
temp_tablespaces (as appropriate). If a database is created without specifying a tablespace for it, it
uses the same tablespace as the template database it is copied from.

655

Managing Databases

Two tablespaces are automatically created when the database cluster is initialized. The pg_global
tablespace is used for shared system catalogs. The pg_default tablespace is the default tablespace
of the template1 and template0 databases (and, therefore, will be the default tablespace for other
databases as well, unless overridden by a TABLESPACE clause in CREATE DATABASE).

Once created, a tablespace can be used from any database, provided the requesting user has sufficient
privilege. This means that a tablespace cannot be dropped until all objects in all databases using the
tablespace have been removed.

To remove an empty tablespace, use the DROP TABLESPACE command.

To determine the set of existing tablespaces, examine the pg_tablespace system catalog, for example

SELECT spcname FROM pg_tablespace;

The psql program's \db meta-command is also useful for listing the existing tablespaces.

PostgreSQL makes use of symbolic links to simplify the implementation of tablespaces. This means that
tablespaces can be used only on systems that support symbolic links.

The directory $PGDATA/pg_tblspc contains symbolic links that point to each of the non-built-in
tablespaces defined in the cluster. Although not recommended, it is possible to adjust the tablespace layout
by hand by redefining these links. Under no circumstances perform this operation while the server is
running. Note that in PostgreSQL 9.1 and earlier you will also need to update the pg_tablespace
catalog with the new locations. (If you do not, pg_dump will continue to output the old tablespace
locations.)

656

Chapter 23. Localization
This chapter describes the available localization features from the point of view of the administrator.
PostgreSQL supports two localization facilities:

• Using the locale features of the operating system to provide locale-specific collation order, number
formatting, translated messages, and other aspects. This is covered in Section 23.1 and Section 23.2.

• Providing a number of different character sets to support storing text in all kinds of languages, and
providing character set translation between client and server. This is covered in Section 23.3.

23.1. Locale Support
Locale support refers to an application respecting cultural preferences regarding alphabets, sorting, number
formatting, etc. PostgreSQL uses the standard ISO C and POSIX locale facilities provided by the server
operating system. For additional information refer to the documentation of your system.

23.1.1. Overview
Locale support is automatically initialized when a database cluster is created using initdb. initdb
will initialize the database cluster with the locale setting of its execution environment by default, so if your
system is already set to use the locale that you want in your database cluster then there is nothing else you
need to do. If you want to use a different locale (or you are not sure which locale your system is set to),
you can instruct initdb exactly which locale to use by specifying the --locale option. For example:

initdb --locale=sv_SE

This example for Unix systems sets the locale to Swedish (sv) as spoken in Sweden (SE).
Other possibilities might include en_US (U.S. English) and fr_CA (French Canadian). If more
than one character set can be used for a locale then the specifications can take the form
language_territory.codeset. For example, fr_BE.UTF-8 represents the French language (fr)
as spoken in Belgium (BE), with a UTF-8 character set encoding.

What locales are available on your system under what names depends on what was provided by the
operating system vendor and what was installed. On most Unix systems, the command locale -a will
provide a list of available locales. Windows uses more verbose locale names, such as German_Germany
or Swedish_Sweden.1252, but the principles are the same.

Occasionally it is useful to mix rules from several locales, e.g., use English collation rules but Spanish
messages. To support that, a set of locale subcategories exist that control only certain aspects of the
localization rules:

LC_COLLATE String sort order

LC_CTYPE Character classification (What is a letter? Its upper-
case equivalent?)

LC_MESSAGES Language of messages

LC_MONETARY Formatting of currency amounts

LC_NUMERIC Formatting of numbers

657

Localization

LC_TIME Formatting of dates and times

The category names translate into names of initdb options to override the locale choice for a specific
category. For instance, to set the locale to French Canadian, but use U.S. rules for formatting currency,
use initdb --locale=fr_CA --lc-monetary=en_US.

If you want the system to behave as if it had no locale support, use the special locale name C, or equivalently
POSIX.

Some locale categories must have their values fixed when the database is created. You can use different
settings for different databases, but once a database is created, you cannot change them for that database
anymore. LC_COLLATE and LC_CTYPE are these categories. They affect the sort order of indexes, so they
must be kept fixed, or indexes on text columns would become corrupt. (But you can alleviate this restriction
using collations, as discussed in Section 23.2.) The default values for these categories are determined when
initdb is run, and those values are used when new databases are created, unless specified otherwise in
the CREATE DATABASE command.

The other locale categories can be changed whenever desired by setting the server configuration parameters
that have the same name as the locale categories (see Section 19.11.2 for details). The values that are
chosen by initdb are actually only written into the configuration file postgresql.conf to serve as
defaults when the server is started. If you remove these assignments from postgresql.conf then the
server will inherit the settings from its execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the server,
not by the environment of any client. Therefore, be careful to configure the correct locale settings before
starting the server. A consequence of this is that if client and server are set up in different locales, messages
might appear in different languages depending on where they originated.

Note

When we speak of inheriting the locale from the execution environment, this means the
following on most operating systems: For a given locale category, say the collation, the following
environment variables are consulted in this order until one is found to be set: LC_ALL,
LC_COLLATE (or the variable corresponding to the respective category), LANG. If none of these
environment variables are set then the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGE which
overrides all other locale settings for the purpose of setting the language of messages. If in doubt,
please refer to the documentation of your operating system, in particular the documentation about
gettext.

To enable messages to be translated to the user's preferred language, NLS must have been selected at build
time (configure --enable-nls). All other locale support is built in automatically.

23.1.2. Behavior
The locale settings influence the following SQL features:

• Sort order in queries using ORDER BY or the standard comparison operators on textual data

• The upper, lower, and initcap functions

658

Localization

• Pattern matching operators (LIKE, SIMILAR TO, and POSIX-style regular expressions); locales affect
both case insensitive matching and the classification of characters by character-class regular expressions

• The to_char family of functions

• The ability to use indexes with LIKE clauses

The drawback of using locales other than C or POSIX in PostgreSQL is its performance impact. It slows
character handling and prevents ordinary indexes from being used by LIKE. For this reason use locales
only if you actually need them.

As a workaround to allow PostgreSQL to use indexes with LIKE clauses under a non-C locale, several
custom operator classes exist. These allow the creation of an index that performs a strict character-by-
character comparison, ignoring locale comparison rules. Refer to Section 11.10 for more information.
Another approach is to create indexes using the C collation, as discussed in Section 23.2.

23.1.3. Problems
If locale support doesn't work according to the explanation above, check that the locale support in your
operating system is correctly configured. To check what locales are installed on your system, you can use
the command locale -a if your operating system provides it.

Check that PostgreSQL is actually using the locale that you think it is. The LC_COLLATE and LC_CTYPE
settings are determined when a database is created, and cannot be changed except by creating a new
database. Other locale settings including LC_MESSAGES and LC_MONETARY are initially determined by
the environment the server is started in, but can be changed on-the-fly. You can check the active locale
settings using the SHOW command.

The directory src/test/locale in the source distribution contains a test suite for PostgreSQL's locale
support.

Client applications that handle server-side errors by parsing the text of the error message will obviously
have problems when the server's messages are in a different language. Authors of such applications are
advised to make use of the error code scheme instead.

Maintaining catalogs of message translations requires the on-going efforts of many volunteers that want
to see PostgreSQL speak their preferred language well. If messages in your language are currently not
available or not fully translated, your assistance would be appreciated. If you want to help, refer to
Chapter 55 or write to the developers' mailing list.

23.2. Collation Support
The collation feature allows specifying the sort order and character classification behavior of data per-
column, or even per-operation. This alleviates the restriction that the LC_COLLATE and LC_CTYPE
settings of a database cannot be changed after its creation.

23.2.1. Concepts
Conceptually, every expression of a collatable data type has a collation. (The built-in collatable data types
are text, varchar, and char. User-defined base types can also be marked collatable, and of course a
domain over a collatable data type is collatable.) If the expression is a column reference, the collation of
the expression is the defined collation of the column. If the expression is a constant, the collation is the

659

Localization

default collation of the data type of the constant. The collation of a more complex expression is derived
from the collations of its inputs, as described below.

The collation of an expression can be the “default” collation, which means the locale settings defined for
the database. It is also possible for an expression's collation to be indeterminate. In such cases, ordering
operations and other operations that need to know the collation will fail.

When the database system has to perform an ordering or a character classification, it uses the collation
of the input expression. This happens, for example, with ORDER BY clauses and function or operator
calls such as <. The collation to apply for an ORDER BY clause is simply the collation of the sort key.
The collation to apply for a function or operator call is derived from the arguments, as described below.
In addition to comparison operators, collations are taken into account by functions that convert between
lower and upper case letters, such as lower, upper, and initcap; by pattern matching operators; and
by to_char and related functions.

For a function or operator call, the collation that is derived by examining the argument collations is used
at run time for performing the specified operation. If the result of the function or operator call is of a
collatable data type, the collation is also used at parse time as the defined collation of the function or
operator expression, in case there is a surrounding expression that requires knowledge of its collation.

The collation derivation of an expression can be implicit or explicit. This distinction affects how collations
are combined when multiple different collations appear in an expression. An explicit collation derivation
occurs when a COLLATE clause is used; all other collation derivations are implicit. When multiple
collations need to be combined, for example in a function call, the following rules are used:

1. If any input expression has an explicit collation derivation, then all explicitly derived collations among
the input expressions must be the same, otherwise an error is raised. If any explicitly derived collation
is present, that is the result of the collation combination.

2. Otherwise, all input expressions must have the same implicit collation derivation or the default collation.
If any non-default collation is present, that is the result of the collation combination. Otherwise, the
result is the default collation.

3. If there are conflicting non-default implicit collations among the input expressions, then the
combination is deemed to have indeterminate collation. This is not an error condition unless the
particular function being invoked requires knowledge of the collation it should apply. If it does, an
error will be raised at run-time.

For example, consider this table definition:

CREATE TABLE test1 (
 a text COLLATE "de_DE",
 b text COLLATE "es_ES",
 ...
);

Then in

SELECT a < 'foo' FROM test1;

the < comparison is performed according to de_DE rules, because the expression combines an implicitly
derived collation with the default collation. But in

660

Localization

SELECT a < ('foo' COLLATE "fr_FR") FROM test1;

the comparison is performed using fr_FR rules, because the explicit collation derivation overrides the
implicit one. Furthermore, given

SELECT a < b FROM test1;

the parser cannot determine which collation to apply, since the a and b columns have conflicting implicit
collations. Since the < operator does need to know which collation to use, this will result in an error. The
error can be resolved by attaching an explicit collation specifier to either input expression, thus:

SELECT a < b COLLATE "de_DE" FROM test1;

or equivalently

SELECT a COLLATE "de_DE" < b FROM test1;

On the other hand, the structurally similar case

SELECT a || b FROM test1;

does not result in an error, because the || operator does not care about collations: its result is the same
regardless of the collation.

The collation assigned to a function or operator's combined input expressions is also considered to apply to
the function or operator's result, if the function or operator delivers a result of a collatable data type. So, in

SELECT * FROM test1 ORDER BY a || 'foo';

the ordering will be done according to de_DE rules. But this query:

SELECT * FROM test1 ORDER BY a || b;

results in an error, because even though the || operator doesn't need to know a collation, the ORDER BY
clause does. As before, the conflict can be resolved with an explicit collation specifier:

SELECT * FROM test1 ORDER BY a || b COLLATE "fr_FR";

23.2.2. Managing Collations
A collation is an SQL schema object that maps an SQL name to locales provided by libraries installed in
the operating system. A collation definition has a provider that specifies which library supplies the locale
data. One standard provider name is libc, which uses the locales provided by the operating system C
library. These are the locales that most tools provided by the operating system use. Another provider is
icu, which uses the external ICU library. ICU locales can only be used if support for ICU was configured
when PostgreSQL was built.

A collation object provided by libc maps to a combination of LC_COLLATE and LC_CTYPE settings,
as accepted by the setlocale() system library call. (As the name would suggest, the main purpose of

661

Localization

a collation is to set LC_COLLATE, which controls the sort order. But it is rarely necessary in practice to
have an LC_CTYPE setting that is different from LC_COLLATE, so it is more convenient to collect these
under one concept than to create another infrastructure for setting LC_CTYPE per expression.) Also, a
libc collation is tied to a character set encoding (see Section 23.3). The same collation name may exist
for different encodings.

A collation object provided by icu maps to a named collator provided by the ICU library. ICU does
not support separate “collate” and “ctype” settings, so they are always the same. Also, ICU collations are
independent of the encoding, so there is always only one ICU collation of a given name in a database.

23.2.2.1. Standard Collations

On all platforms, the collations named default, C, and POSIX are available. Additional collations may
be available depending on operating system support. The default collation selects the LC_COLLATE
and LC_CTYPE values specified at database creation time. The C and POSIX collations both specify
“traditional C” behavior, in which only the ASCII letters “A” through “Z” are treated as letters, and sorting
is done strictly by character code byte values.

Additionally, the SQL standard collation name ucs_basic is available for encoding UTF8. It is
equivalent to C and sorts by Unicode code point.

23.2.2.2. Predefined Collations

If the operating system provides support for using multiple locales within a single program (newlocale
and related functions), or if support for ICU is configured, then when a database cluster is initialized,
initdb populates the system catalog pg_collation with collations based on all the locales it finds
in the operating system at the time.

To inspect the currently available locales, use the query SELECT * FROM pg_collation, or the
command \dOS+ in psql.

23.2.2.2.1. libc collations

For example, the operating system might provide a locale named de_DE.utf8. initdb would then
create a collation named de_DE.utf8 for encoding UTF8 that has both LC_COLLATE and LC_CTYPE
set to de_DE.utf8. It will also create a collation with the .utf8 tag stripped off the name. So you could
also use the collation under the name de_DE, which is less cumbersome to write and makes the name less
encoding-dependent. Note that, nevertheless, the initial set of collation names is platform-dependent.

The default set of collations provided by libc map directly to the locales installed in the operating
system, which can be listed using the command locale -a. In case a libc collation is needed
that has different values for LC_COLLATE and LC_CTYPE, or if new locales are installed in the
operating system after the database system was initialized, then a new collation may be created using the
CREATE COLLATION command. New operating system locales can also be imported en masse using
the pg_import_system_collations() function.

Within any particular database, only collations that use that database's encoding are of interest. Other
entries in pg_collation are ignored. Thus, a stripped collation name such as de_DE can be considered
unique within a given database even though it would not be unique globally. Use of the stripped collation
names is recommended, since it will make one less thing you need to change if you decide to change
to another database encoding. Note however that the default, C, and POSIX collations can be used
regardless of the database encoding.

PostgreSQL considers distinct collation objects to be incompatible even when they have identical
properties. Thus for example,

662

Localization

SELECT a COLLATE "C" < b COLLATE "POSIX" FROM test1;

will draw an error even though the C and POSIX collations have identical behaviors. Mixing stripped and
non-stripped collation names is therefore not recommended.

23.2.2.2.2. ICU collations

With ICU, it is not sensible to enumerate all possible locale names. ICU uses a particular naming system
for locales, but there are many more ways to name a locale than there are actually distinct locales. initdb
uses the ICU APIs to extract a set of distinct locales to populate the initial set of collations. Collations
provided by ICU are created in the SQL environment with names in BCP 47 language tag format, with a
“private use” extension -x-icu appended, to distinguish them from libc locales.

Here are some example collations that might be created:

de-x-icu

German collation, default variant

de-AT-x-icu

German collation for Austria, default variant

(There are also, say, de-DE-x-icu or de-CH-x-icu, but as of this writing, they are equivalent
to de-x-icu.)

und-x-icu (for “undefined”)

ICU “root” collation. Use this to get a reasonable language-agnostic sort order.

Some (less frequently used) encodings are not supported by ICU. When the database encoding is one of
these, ICU collation entries in pg_collation are ignored. Attempting to use one will draw an error
along the lines of “collation "de-x-icu" for encoding "WIN874" does not exist”.

23.2.2.3. Creating New Collation Objects

If the standard and predefined collations are not sufficient, users can create their own collation objects
using the SQL command CREATE COLLATION.

The standard and predefined collations are in the schema pg_catalog, like all predefined objects. User-
defined collations should be created in user schemas. This also ensures that they are saved by pg_dump.

23.2.2.3.1. libc collations

New libc collations can be created like this:

CREATE COLLATION german (provider = libc, locale = 'de_DE');

The exact values that are acceptable for the locale clause in this command depend on the operating
system. On Unix-like systems, the command locale -a will show a list.

Since the predefined libc collations already include all collations defined in the operating system when
the database instance is initialized, it is not often necessary to manually create new ones. Reasons
might be if a different naming system is desired (in which case see also Section 23.2.2.3.3) or if

663

Localization

the operating system has been upgraded to provide new locale definitions (in which case see also
pg_import_system_collations()).

23.2.2.3.2. ICU collations

ICU allows collations to be customized beyond the basic language+country set that is preloaded by
initdb. Users are encouraged to define their own collation objects that make use of these facilities
to suit the sorting behavior to their requirements. See http://userguide.icu-project.org/locale and http://
userguide.icu-project.org/collation/api for information on ICU locale naming. The set of acceptable names
and attributes depends on the particular ICU version.

Here are some examples:

CREATE COLLATION "de-u-co-phonebk-x-icu" (provider = icu, locale = 'de-
u-co-phonebk');
CREATE COLLATION "de-u-co-phonebk-x-icu" (provider = icu, locale =
'de@collation=phonebook');

German collation with phone book collation type

The first example selects the ICU locale using a “language tag” per BCP 47. The second example
uses the traditional ICU-specific locale syntax. The first style is preferred going forward, but it is not
supported by older ICU versions.

Note that you can name the collation objects in the SQL environment anything you want. In this
example, we follow the naming style that the predefined collations use, which in turn also follow BCP
47, but that is not required for user-defined collations.

CREATE COLLATION "und-u-co-emoji-x-icu" (provider = icu, locale = 'und-
u-co-emoji');
CREATE COLLATION "und-u-co-emoji-x-icu" (provider = icu, locale =
'@collation=emoji');

Root collation with Emoji collation type, per Unicode Technical Standard #51

Observe how in the traditional ICU locale naming system, the root locale is selected by an empty
string.

CREATE COLLATION digitslast (provider = icu, locale = 'en-u-kr-latn-
digit');
CREATE COLLATION digitslast (provider = icu, locale =
'en@colReorder=latn-digit');

Sort digits after Latin letters. (The default is digits before letters.)

CREATE COLLATION upperfirst (provider = icu, locale = 'en-u-kf-upper');
CREATE COLLATION upperfirst (provider = icu, locale =
'en@colCaseFirst=upper');

Sort upper-case letters before lower-case letters. (The default is lower-case letters first.)

CREATE COLLATION special (provider = icu, locale = 'en-u-kf-upper-kr-
latn-digit');
CREATE COLLATION special (provider = icu, locale =
'en@colCaseFirst=upper;colReorder=latn-digit');

Combines both of the above options.

664

http://userguide.icu-project.org/locale
http://userguide.icu-project.org/collation/api
http://userguide.icu-project.org/collation/api

Localization

CREATE COLLATION numeric (provider = icu, locale = 'en-u-kn-true');
CREATE COLLATION numeric (provider = icu, locale = 'en@colNumeric=yes');

Numeric ordering, sorts sequences of digits by their numeric value, for example: A-21 < A-123
(also known as natural sort).

See Unicode Technical Standard #351 and BCP 472 for details. The list of possible collation types (co
subtag) can be found in the CLDR repository3. The ICU Locale Explorer4 can be used to check the details
of a particular locale definition. The examples using the k* subtags require at least ICU version 54.

Note that while this system allows creating collations that “ignore case” or “ignore accents” or similar
(using the ks key), PostgreSQL does not at the moment allow such collations to act in a truly case- or
accent-insensitive manner. Any strings that compare equal according to the collation but are not byte-wise
equal will be sorted according to their byte values.

Note

By design, ICU will accept almost any string as a locale name and match it to the closest locale
it can provide, using the fallback procedure described in its documentation. Thus, there will be
no direct feedback if a collation specification is composed using features that the given ICU
installation does not actually support. It is therefore recommended to create application-level test
cases to check that the collation definitions satisfy one's requirements.

23.2.2.3.3. Copying Collations

The command CREATE COLLATION can also be used to create a new collation from an existing
collation, which can be useful to be able to use operating-system-independent collation names in
applications, create compatibility names, or use an ICU-provided collation under a more readable name.
For example:

CREATE COLLATION german FROM "de_DE";
CREATE COLLATION french FROM "fr-x-icu";

23.3. Character Set Support
The character set support in PostgreSQL allows you to store text in a variety of character sets (also called
encodings), including single-byte character sets such as the ISO 8859 series and multiple-byte character
sets such as EUC (Extended Unix Code), UTF-8, and Mule internal code. All supported character sets can
be used transparently by clients, but a few are not supported for use within the server (that is, as a server-
side encoding). The default character set is selected while initializing your PostgreSQL database cluster
using initdb. It can be overridden when you create a database, so you can have multiple databases each
with a different character set.

An important restriction, however, is that each database's character set must be compatible with the
database's LC_CTYPE (character classification) and LC_COLLATE (string sort order) locale settings. For
C or POSIX locale, any character set is allowed, but for other libc-provided locales there is only one
character set that will work correctly. (On Windows, however, UTF-8 encoding can be used with any

1 http://unicode.org/reports/tr35/tr35-collation.html
2 https://tools.ietf.org/html/bcp47
3 http://www.unicode.org/repos/cldr/trunk/common/bcp47/collation.xml
4 https://ssl.icu-project.org/icu-bin/locexp

665

http://unicode.org/reports/tr35/tr35-collation.html
https://tools.ietf.org/html/bcp47
http://www.unicode.org/repos/cldr/trunk/common/bcp47/collation.xml
https://ssl.icu-project.org/icu-bin/locexp
http://unicode.org/reports/tr35/tr35-collation.html
https://tools.ietf.org/html/bcp47
http://www.unicode.org/repos/cldr/trunk/common/bcp47/collation.xml
https://ssl.icu-project.org/icu-bin/locexp

Localization

locale.) If you have ICU support configured, ICU-provided locales can be used with most but not all server-
side encodings.

23.3.1. Supported Character Sets

Table 23.1 shows the character sets available for use in PostgreSQL.

Table 23.1. PostgreSQL Character Sets

Name Description Language Server? ICU? Bytes/Char Aliases

BIG5 Big Five Traditional
Chinese

No No 1-2 WIN950,
Windows950

EUC_CN Extended
UNIX Code-
CN

Simplified
Chinese

Yes Yes 1-3

EUC_JP Extended
UNIX Code-
JP

Japanese Yes Yes 1-3

EUC_JIS_2004Extended
UNIX Code-
JP, JIS X
0213

Japanese Yes No 1-3

EUC_KR Extended
UNIX Code-
KR

Korean Yes Yes 1-3

EUC_TW Extended
UNIX Code-
TW

Traditional
Chinese,
Taiwanese

Yes Yes 1-3

GB18030 National
Standard

Chinese No No 1-4

GBK Extended
National
Standard

Simplified
Chinese

No No 1-2 WIN936,
Windows936

ISO_8859_5ISO 8859-5,
ECMA 113

Latin/Cyrillic Yes Yes 1

ISO_8859_6ISO 8859-6,
ECMA 114

Latin/Arabic Yes Yes 1

ISO_8859_7ISO 8859-7,
ECMA 118

Latin/Greek Yes Yes 1

ISO_8859_8ISO 8859-8,
ECMA 121

Latin/
Hebrew

Yes Yes 1

JOHAB JOHAB Korean
(Hangul)

No No 1-3

KOI8R KOI8-R Cyrillic
(Russian)

Yes Yes 1 KOI8

KOI8U KOI8-U Cyrillic
(Ukrainian)

Yes Yes 1

666

Localization

Name Description Language Server? ICU? Bytes/Char Aliases

LATIN1 ISO 8859-1,
ECMA 94

Western
European

Yes Yes 1 ISO88591

LATIN2 ISO 8859-2,
ECMA 94

Central
European

Yes Yes 1 ISO88592

LATIN3 ISO 8859-3,
ECMA 94

South
European

Yes Yes 1 ISO88593

LATIN4 ISO 8859-4,
ECMA 94

North
European

Yes Yes 1 ISO88594

LATIN5 ISO 8859-9,
ECMA 128

Turkish Yes Yes 1 ISO88599

LATIN6 ISO 8859-10,
ECMA 144

Nordic Yes Yes 1 ISO885910

LATIN7 ISO 8859-13 Baltic Yes Yes 1 ISO885913

LATIN8 ISO 8859-14 Celtic Yes Yes 1 ISO885914

LATIN9 ISO 8859-15 LATIN1 with
Euro and
accents

Yes Yes 1 ISO885915

LATIN10 ISO 8859-16,
ASRO SR
14111

Romanian Yes No 1 ISO885916

MULE_INTERNALMule internal
code

Multilingual
Emacs

Yes No 1-4

SJIS Shift JIS Japanese No No 1-2 Mskanji,
ShiftJIS,
WIN932,
Windows932

SHIFT_JIS_2004Shift JIS, JIS
X 0213

Japanese No No 1-2

SQL_ASCII unspecified
(see text)

any Yes No 1

UHC Unified
Hangul Code

Korean No No 1-2 WIN949,
Windows949

UTF8 Unicode, 8-
bit

all Yes Yes 1-4 Unicode

WIN866 Windows
CP866

Cyrillic Yes Yes 1 ALT

WIN874 Windows
CP874

Thai Yes No 1

WIN1250 Windows
CP1250

Central
European

Yes Yes 1

WIN1251 Windows
CP1251

Cyrillic Yes Yes 1 WIN

WIN1252 Windows
CP1252

Western
European

Yes Yes 1

667

Localization

Name Description Language Server? ICU? Bytes/Char Aliases

WIN1253 Windows
CP1253

Greek Yes Yes 1

WIN1254 Windows
CP1254

Turkish Yes Yes 1

WIN1255 Windows
CP1255

Hebrew Yes Yes 1

WIN1256 Windows
CP1256

Arabic Yes Yes 1

WIN1257 Windows
CP1257

Baltic Yes Yes 1

WIN1258 Windows
CP1258

Vietnamese Yes Yes 1 ABC, TCVN,
TCVN5712,
VSCII

Not all client APIs support all the listed character sets. For example, the PostgreSQL JDBC driver does
not support MULE_INTERNAL, LATIN6, LATIN8, and LATIN10.

The SQL_ASCII setting behaves considerably differently from the other settings. When the server
character set is SQL_ASCII, the server interprets byte values 0-127 according to the ASCII standard,
while byte values 128-255 are taken as uninterpreted characters. No encoding conversion will be done
when the setting is SQL_ASCII. Thus, this setting is not so much a declaration that a specific encoding is
in use, as a declaration of ignorance about the encoding. In most cases, if you are working with any non-
ASCII data, it is unwise to use the SQL_ASCII setting because PostgreSQL will be unable to help you
by converting or validating non-ASCII characters.

23.3.2. Setting the Character Set
initdb defines the default character set (encoding) for a PostgreSQL cluster. For example,

initdb -E EUC_JP

sets the default character set to EUC_JP (Extended Unix Code for Japanese). You can use --encoding
instead of -E if you prefer longer option strings. If no -E or --encoding option is given, initdb
attempts to determine the appropriate encoding to use based on the specified or default locale.

You can specify a non-default encoding at database creation time, provided that the encoding is compatible
with the selected locale:

createdb -E EUC_KR -T template0 --lc-collate=ko_KR.euckr --lc-
ctype=ko_KR.euckr korean

This will create a database named korean that uses the character set EUC_KR, and locale ko_KR. Another
way to accomplish this is to use this SQL command:

CREATE DATABASE korean WITH ENCODING 'EUC_KR' LC_COLLATE='ko_KR.euckr'
 LC_CTYPE='ko_KR.euckr' TEMPLATE=template0;

Notice that the above commands specify copying the template0 database. When copying any other
database, the encoding and locale settings cannot be changed from those of the source database, because
that might result in corrupt data. For more information see Section 22.3.

668

Localization

The encoding for a database is stored in the system catalog pg_database. You can see it by using the
psql -l option or the \l command.

$ psql -l
 List of databases
 Name | Owner | Encoding | Collation | Ctype |
 Access Privileges
-----------+----------+-----------+-------------+-------------
+-------------------------------------
 clocaledb | hlinnaka | SQL_ASCII | C | C |
 englishdb | hlinnaka | UTF8 | en_GB.UTF8 | en_GB.UTF8 |
 japanese | hlinnaka | UTF8 | ja_JP.UTF8 | ja_JP.UTF8 |
 korean | hlinnaka | EUC_KR | ko_KR.euckr | ko_KR.euckr |
 postgres | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 |
 template0 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/
hlinnaka,hlinnaka=CTc/hlinnaka}
 template1 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/
hlinnaka,hlinnaka=CTc/hlinnaka}
(7 rows)

Important

On most modern operating systems, PostgreSQL can determine which character set is implied by
the LC_CTYPE setting, and it will enforce that only the matching database encoding is used. On
older systems it is your responsibility to ensure that you use the encoding expected by the locale
you have selected. A mistake in this area is likely to lead to strange behavior of locale-dependent
operations such as sorting.

PostgreSQL will allow superusers to create databases with SQL_ASCII encoding even when
LC_CTYPE is not C or POSIX. As noted above, SQL_ASCII does not enforce that the data stored
in the database has any particular encoding, and so this choice poses risks of locale-dependent
misbehavior. Using this combination of settings is deprecated and may someday be forbidden
altogether.

23.3.3. Automatic Character Set Conversion Between
Server and Client

PostgreSQL supports automatic character set conversion between server and client for certain character set
combinations. The conversion information is stored in the pg_conversion system catalog. PostgreSQL
comes with some predefined conversions, as shown in Table 23.2. You can create a new conversion using
the SQL command CREATE CONVERSION.

Table 23.2. Client/Server Character Set Conversions

Server Character Set Available Client Character Sets

BIG5 not supported as a server encoding

EUC_CN EUC_CN, MULE_INTERNAL, UTF8

EUC_JP EUC_JP, MULE_INTERNAL, SJIS, UTF8

EUC_JIS_2004 EUC_JIS_2004, SHIFT_JIS_2004, UTF8

669

Localization

Server Character Set Available Client Character Sets

EUC_KR EUC_KR, MULE_INTERNAL, UTF8

EUC_TW EUC_TW, BIG5, MULE_INTERNAL, UTF8

GB18030 not supported as a server encoding

GBK not supported as a server encoding

ISO_8859_5 ISO_8859_5, KOI8R, MULE_INTERNAL, UTF8,
WIN866, WIN1251

ISO_8859_6 ISO_8859_6, UTF8

ISO_8859_7 ISO_8859_7, UTF8

ISO_8859_8 ISO_8859_8, UTF8

JOHAB not supported as a server encoding

KOI8R KOI8R, ISO_8859_5, MULE_INTERNAL, UTF8,
WIN866, WIN1251

KOI8U KOI8U, UTF8

LATIN1 LATIN1, MULE_INTERNAL, UTF8

LATIN2 LATIN2, MULE_INTERNAL, UTF8, WIN1250

LATIN3 LATIN3, MULE_INTERNAL, UTF8

LATIN4 LATIN4, MULE_INTERNAL, UTF8

LATIN5 LATIN5, UTF8

LATIN6 LATIN6, UTF8

LATIN7 LATIN7, UTF8

LATIN8 LATIN8, UTF8

LATIN9 LATIN9, UTF8

LATIN10 LATIN10, UTF8

MULE_INTERNAL MULE_INTERNAL, BIG5, EUC_CN, EUC_JP,
EUC_KR, EUC_TW, ISO_8859_5, KOI8R,
LATIN1 to LATIN4, SJIS, WIN866, WIN1250,
WIN1251

SJIS not supported as a server encoding

SHIFT_JIS_2004 not supported as a server encoding

SQL_ASCII any (no conversion will be performed)

UHC not supported as a server encoding

UTF8 all supported encodings

WIN866 WIN866, ISO_8859_5, KOI8R,
MULE_INTERNAL, UTF8, WIN1251

WIN874 WIN874, UTF8

WIN1250 WIN1250, LATIN2, MULE_INTERNAL, UTF8

WIN1251 WIN1251, ISO_8859_5, KOI8R,
MULE_INTERNAL, UTF8, WIN866

WIN1252 WIN1252, UTF8

WIN1253 WIN1253, UTF8

670

Localization

Server Character Set Available Client Character Sets

WIN1254 WIN1254, UTF8

WIN1255 WIN1255, UTF8

WIN1256 WIN1256, UTF8

WIN1257 WIN1257, UTF8

WIN1258 WIN1258, UTF8

To enable automatic character set conversion, you have to tell PostgreSQL the character set (encoding)
you would like to use in the client. There are several ways to accomplish this:

• Using the \encoding command in psql. \encoding allows you to change client encoding on the
fly. For example, to change the encoding to SJIS, type:

\encoding SJIS

• libpq (Section 34.10) has functions to control the client encoding.

• Using SET client_encoding TO. Setting the client encoding can be done with this SQL command:

SET CLIENT_ENCODING TO 'value';

Also you can use the standard SQL syntax SET NAMES for this purpose:

SET NAMES 'value';

To query the current client encoding:

SHOW client_encoding;

To return to the default encoding:

RESET client_encoding;

• Using PGCLIENTENCODING. If the environment variable PGCLIENTENCODING is defined in the
client's environment, that client encoding is automatically selected when a connection to the server is
made. (This can subsequently be overridden using any of the other methods mentioned above.)

• Using the configuration variable client_encoding. If the client_encoding variable is set, that client
encoding is automatically selected when a connection to the server is made. (This can subsequently be
overridden using any of the other methods mentioned above.)

If the conversion of a particular character is not possible — suppose you chose EUC_JP for the server
and LATIN1 for the client, and some Japanese characters are returned that do not have a representation
in LATIN1 — an error is reported.

If the client character set is defined as SQL_ASCII, encoding conversion is disabled, regardless of the
server's character set. Just as for the server, use of SQL_ASCII is unwise unless you are working with
all-ASCII data.

671

Localization

23.3.4. Further Reading
These are good sources to start learning about various kinds of encoding systems.

CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Computing

Contains detailed explanations of EUC_JP, EUC_CN, EUC_KR, EUC_TW.

http://www.unicode.org/

The web site of the Unicode Consortium.

RFC 3629

UTF-8 (8-bit UCS/Unicode Transformation Format) is defined here.

672

http://www.unicode.org/

Chapter 24. Routine Database
Maintenance Tasks

PostgreSQL, like any database software, requires that certain tasks be performed regularly to achieve
optimum performance. The tasks discussed here are required, but they are repetitive in nature and can
easily be automated using standard tools such as cron scripts or Windows' Task Scheduler. It is the database
administrator's responsibility to set up appropriate scripts, and to check that they execute successfully.

One obvious maintenance task is the creation of backup copies of the data on a regular schedule. Without a
recent backup, you have no chance of recovery after a catastrophe (disk failure, fire, mistakenly dropping a
critical table, etc.). The backup and recovery mechanisms available in PostgreSQL are discussed at length
in Chapter 25.

The other main category of maintenance task is periodic “vacuuming” of the database. This activity is
discussed in Section 24.1. Closely related to this is updating the statistics that will be used by the query
planner, as discussed in Section 24.1.3.

Another task that might need periodic attention is log file management. This is discussed in Section 24.3.

check_postgres1 is available for monitoring database health and reporting unusual conditions.
check_postgres integrates with Nagios and MRTG, but can be run standalone too.

PostgreSQL is low-maintenance compared to some other database management systems. Nonetheless,
appropriate attention to these tasks will go far towards ensuring a pleasant and productive experience with
the system.

24.1. Routine Vacuuming
PostgreSQL databases require periodic maintenance known as vacuuming. For many installations, it is
sufficient to let vacuuming be performed by the autovacuum daemon, which is described in Section 24.1.6.
You might need to adjust the autovacuuming parameters described there to obtain best results for your
situation. Some database administrators will want to supplement or replace the daemon's activities with
manually-managed VACUUM commands, which typically are executed according to a schedule by cron or
Task Scheduler scripts. To set up manually-managed vacuuming properly, it is essential to understand the
issues discussed in the next few subsections. Administrators who rely on autovacuuming may still wish to
skim this material to help them understand and adjust autovacuuming.

24.1.1. Vacuuming Basics

PostgreSQL's VACUUM command has to process each table on a regular basis for several reasons:

1. To recover or reuse disk space occupied by updated or deleted rows.

2. To update data statistics used by the PostgreSQL query planner.

3. To update the visibility map, which speeds up index-only scans.

4. To protect against loss of very old data due to transaction ID wraparound or multixact ID wraparound.

1 https://bucardo.org/check_postgres/

673

https://bucardo.org/check_postgres/
https://bucardo.org/check_postgres/

Routine Database Maintenance Tasks

Each of these reasons dictates performing VACUUM operations of varying frequency and scope, as
explained in the following subsections.

There are two variants of VACUUM: standard VACUUM and VACUUM FULL. VACUUM FULL can reclaim
more disk space but runs much more slowly. Also, the standard form of VACUUM can run in parallel
with production database operations. (Commands such as SELECT, INSERT, UPDATE, and DELETE
will continue to function normally, though you will not be able to modify the definition of a table with
commands such as ALTER TABLE while it is being vacuumed.) VACUUM FULL requires exclusive lock
on the table it is working on, and therefore cannot be done in parallel with other use of the table. Generally,
therefore, administrators should strive to use standard VACUUM and avoid VACUUM FULL.

VACUUM creates a substantial amount of I/O traffic, which can cause poor performance for other active
sessions. There are configuration parameters that can be adjusted to reduce the performance impact of
background vacuuming — see Section 19.4.4.

24.1.2. Recovering Disk Space
In PostgreSQL, an UPDATE or DELETE of a row does not immediately remove the old version of the
row. This approach is necessary to gain the benefits of multiversion concurrency control (MVCC, see
Chapter 13): the row version must not be deleted while it is still potentially visible to other transactions.
But eventually, an outdated or deleted row version is no longer of interest to any transaction. The space
it occupies must then be reclaimed for reuse by new rows, to avoid unbounded growth of disk space
requirements. This is done by running VACUUM.

The standard form of VACUUM removes dead row versions in tables and indexes and marks the space
available for future reuse. However, it will not return the space to the operating system, except in the
special case where one or more pages at the end of a table become entirely free and an exclusive table lock
can be easily obtained. In contrast, VACUUM FULL actively compacts tables by writing a complete new
version of the table file with no dead space. This minimizes the size of the table, but can take a long time.
It also requires extra disk space for the new copy of the table, until the operation completes.

The usual goal of routine vacuuming is to do standard VACUUMs often enough to avoid needing VACUUM
FULL. The autovacuum daemon attempts to work this way, and in fact will never issue VACUUM FULL.
In this approach, the idea is not to keep tables at their minimum size, but to maintain steady-state usage of
disk space: each table occupies space equivalent to its minimum size plus however much space gets used
up between vacuumings. Although VACUUM FULL can be used to shrink a table back to its minimum
size and return the disk space to the operating system, there is not much point in this if the table will just
grow again in the future. Thus, moderately-frequent standard VACUUM runs are a better approach than
infrequent VACUUM FULL runs for maintaining heavily-updated tables.

Some administrators prefer to schedule vacuuming themselves, for example doing all the work at night
when load is low. The difficulty with doing vacuuming according to a fixed schedule is that if a table has an
unexpected spike in update activity, it may get bloated to the point that VACUUM FULL is really necessary
to reclaim space. Using the autovacuum daemon alleviates this problem, since the daemon schedules
vacuuming dynamically in response to update activity. It is unwise to disable the daemon completely unless
you have an extremely predictable workload. One possible compromise is to set the daemon's parameters
so that it will only react to unusually heavy update activity, thus keeping things from getting out of hand,
while scheduled VACUUMs are expected to do the bulk of the work when the load is typical.

For those not using autovacuum, a typical approach is to schedule a database-wide VACUUM once a
day during a low-usage period, supplemented by more frequent vacuuming of heavily-updated tables as
necessary. (Some installations with extremely high update rates vacuum their busiest tables as often as
once every few minutes.) If you have multiple databases in a cluster, don't forget to VACUUM each one;
the program vacuumdb might be helpful.

674

Routine Database Maintenance Tasks

Tip

Plain VACUUM may not be satisfactory when a table contains large numbers of dead row versions
as a result of massive update or delete activity. If you have such a table and you need to reclaim the
excess disk space it occupies, you will need to use VACUUM FULL, or alternatively CLUSTER
or one of the table-rewriting variants of ALTER TABLE. These commands rewrite an entire new
copy of the table and build new indexes for it. All these options require exclusive lock. Note that
they also temporarily use extra disk space approximately equal to the size of the table, since the
old copies of the table and indexes can't be released until the new ones are complete.

Tip

If you have a table whose entire contents are deleted on a periodic basis, consider doing it with
TRUNCATE rather than using DELETE followed by VACUUM. TRUNCATE removes the entire
content of the table immediately, without requiring a subsequent VACUUM or VACUUM FULL to
reclaim the now-unused disk space. The disadvantage is that strict MVCC semantics are violated.

24.1.3. Updating Planner Statistics
The PostgreSQL query planner relies on statistical information about the contents of tables in order to
generate good plans for queries. These statistics are gathered by the ANALYZE command, which can be
invoked by itself or as an optional step in VACUUM. It is important to have reasonably accurate statistics,
otherwise poor choices of plans might degrade database performance.

The autovacuum daemon, if enabled, will automatically issue ANALYZE commands whenever the content
of a table has changed sufficiently. However, administrators might prefer to rely on manually-scheduled
ANALYZE operations, particularly if it is known that update activity on a table will not affect the statistics
of “interesting” columns. The daemon schedules ANALYZE strictly as a function of the number of rows
inserted or updated; it has no knowledge of whether that will lead to meaningful statistical changes.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-updated
tables than for seldom-updated ones. But even for a heavily-updated table, there might be no need for
statistics updates if the statistical distribution of the data is not changing much. A simple rule of thumb is to
think about how much the minimum and maximum values of the columns in the table change. For example,
a timestamp column that contains the time of row update will have a constantly-increasing maximum
value as rows are added and updated; such a column will probably need more frequent statistics updates
than, say, a column containing URLs for pages accessed on a website. The URL column might receive
changes just as often, but the statistical distribution of its values probably changes relatively slowly.

It is possible to run ANALYZE on specific tables and even just specific columns of a table, so the flexibility
exists to update some statistics more frequently than others if your application requires it. In practice,
however, it is usually best to just analyze the entire database, because it is a fast operation. ANALYZE uses
a statistically random sampling of the rows of a table rather than reading every single row.

Tip

Although per-column tweaking of ANALYZE frequency might not be very productive, you might
find it worthwhile to do per-column adjustment of the level of detail of the statistics collected
by ANALYZE. Columns that are heavily used in WHERE clauses and have highly irregular data

675

Routine Database Maintenance Tasks

distributions might require a finer-grain data histogram than other columns. See ALTER TABLE
SET STATISTICS, or change the database-wide default using the default_statistics_target
configuration parameter.

Also, by default there is limited information available about the selectivity of functions. However,
if you create an expression index that uses a function call, useful statistics will be gathered about
the function, which can greatly improve query plans that use the expression index.

Tip

The autovacuum daemon does not issue ANALYZE commands for foreign tables, since it has no
means of determining how often that might be useful. If your queries require statistics on foreign
tables for proper planning, it's a good idea to run manually-managed ANALYZE commands on
those tables on a suitable schedule.

24.1.4. Updating The Visibility Map
Vacuum maintains a visibility map for each table to keep track of which pages contain only tuples that are
known to be visible to all active transactions (and all future transactions, until the page is again modified).
This has two purposes. First, vacuum itself can skip such pages on the next run, since there is nothing
to clean up.

Second, it allows PostgreSQL to answer some queries using only the index, without reference to the
underlying table. Since PostgreSQL indexes don't contain tuple visibility information, a normal index scan
fetches the heap tuple for each matching index entry, to check whether it should be seen by the current
transaction. An index-only scan, on the other hand, checks the visibility map first. If it's known that all
tuples on the page are visible, the heap fetch can be skipped. This is most useful on large data sets where
the visibility map can prevent disk accesses. The visibility map is vastly smaller than the heap, so it can
easily be cached even when the heap is very large.

24.1.5. Preventing Transaction ID Wraparound Failures
PostgreSQL's MVCC transaction semantics depend on being able to compare transaction ID (XID)
numbers: a row version with an insertion XID greater than the current transaction's XID is “in the future”
and should not be visible to the current transaction. But since transaction IDs have limited size (32 bits) a
cluster that runs for a long time (more than 4 billion transactions) would suffer transaction ID wraparound:
the XID counter wraps around to zero, and all of a sudden transactions that were in the past appear to be
in the future — which means their output become invisible. In short, catastrophic data loss. (Actually the
data is still there, but that's cold comfort if you cannot get at it.) To avoid this, it is necessary to vacuum
every table in every database at least once every two billion transactions.

The reason that periodic vacuuming solves the problem is that VACUUM will mark rows as frozen,
indicating that they were inserted by a transaction that committed sufficiently far in the past that the
effects of the inserting transaction are certain to be visible to all current and future transactions. Normal
XIDs are compared using modulo-232 arithmetic. This means that for every normal XID, there are two
billion XIDs that are “older” and two billion that are “newer”; another way to say it is that the normal
XID space is circular with no endpoint. Therefore, once a row version has been created with a particular
normal XID, the row version will appear to be “in the past” for the next two billion transactions, no
matter which normal XID we are talking about. If the row version still exists after more than two
billion transactions, it will suddenly appear to be in the future. To prevent this, PostgreSQL reserves a
special XID, FrozenTransactionId, which does not follow the normal XID comparison rules and

676

Routine Database Maintenance Tasks

is always considered older than every normal XID. Frozen row versions are treated as if the inserting XID
were FrozenTransactionId, so that they will appear to be “in the past” to all normal transactions
regardless of wraparound issues, and so such row versions will be valid until deleted, no matter how long
that is.

Note

In PostgreSQL versions before 9.4, freezing was implemented by actually replacing a row's
insertion XID with FrozenTransactionId, which was visible in the row's xmin system
column. Newer versions just set a flag bit, preserving the row's original xmin for possible forensic
use. However, rows with xmin equal to FrozenTransactionId (2) may still be found in
databases pg_upgrade'd from pre-9.4 versions.

Also, system catalogs may contain rows with xmin equal to BootstrapTransactionId
(1), indicating that they were inserted during the first phase of initdb. Like
FrozenTransactionId, this special XID is treated as older than every normal XID.

vacuum_freeze_min_age controls how old an XID value has to be before rows bearing that XID will be
frozen. Increasing this setting may avoid unnecessary work if the rows that would otherwise be frozen will
soon be modified again, but decreasing this setting increases the number of transactions that can elapse
before the table must be vacuumed again.

VACUUM uses the visibility map to determine which pages of a table must be scanned. Normally, it will
skip pages that don't have any dead row versions even if those pages might still have row versions with
old XID values. Therefore, normal VACUUMs won't always freeze every old row version in the table.
Periodically, VACUUM will perform an aggressive vacuum, skipping only those pages which contain neither
dead rows nor any unfrozen XID or MXID values. vacuum_freeze_table_age controls when VACUUM does
that: all-visible but not all-frozen pages are scanned if the number of transactions that have passed since the
last such scan is greater than vacuum_freeze_table_age minus vacuum_freeze_min_age.
Setting vacuum_freeze_table_age to 0 forces VACUUM to use this more aggressive strategy for
all scans.

The maximum time that a table can go unvacuumed is two billion transactions minus the
vacuum_freeze_min_age value at the time of the last aggressive vacuum. If it were to go
unvacuumed for longer than that, data loss could result. To ensure that this does not happen, autovacuum
is invoked on any table that might contain unfrozen rows with XIDs older than the age specified by the
configuration parameter autovacuum_freeze_max_age. (This will happen even if autovacuum is disabled.)

This implies that if a table is not otherwise vacuumed, autovacuum will be invoked on it approximately
once every autovacuum_freeze_max_age minus vacuum_freeze_min_age transactions. For
tables that are regularly vacuumed for space reclamation purposes, this is of little importance. However, for
static tables (including tables that receive inserts, but no updates or deletes), there is no need to vacuum for
space reclamation, so it can be useful to try to maximize the interval between forced autovacuums on very
large static tables. Obviously one can do this either by increasing autovacuum_freeze_max_age or
decreasing vacuum_freeze_min_age.

The effective maximum for vacuum_freeze_table_age is 0.95 *
autovacuum_freeze_max_age; a setting higher than that will be capped to the maximum. A
value higher than autovacuum_freeze_max_age wouldn't make sense because an anti-wraparound
autovacuum would be triggered at that point anyway, and the 0.95 multiplier leaves some breathing room
to run a manual VACUUM before that happens. As a rule of thumb, vacuum_freeze_table_age
should be set to a value somewhat below autovacuum_freeze_max_age, leaving enough gap so
that a regularly scheduled VACUUM or an autovacuum triggered by normal delete and update activity is run

677

Routine Database Maintenance Tasks

in that window. Setting it too close could lead to anti-wraparound autovacuums, even though the table was
recently vacuumed to reclaim space, whereas lower values lead to more frequent aggressive vacuuming.

The sole disadvantage of increasing autovacuum_freeze_max_age (and
vacuum_freeze_table_age along with it) is that the pg_xact and pg_commit_ts
subdirectories of the database cluster will take more space, because it must store the commit
status and (if track_commit_timestamp is enabled) timestamp of all transactions back to the
autovacuum_freeze_max_age horizon. The commit status uses two bits per transaction, so if
autovacuum_freeze_max_age is set to its maximum allowed value of two billion, pg_xact can be
expected to grow to about half a gigabyte and pg_commit_ts to about 20GB. If this is trivial compared
to your total database size, setting autovacuum_freeze_max_age to its maximum allowed value
is recommended. Otherwise, set it depending on what you are willing to allow for pg_xact and
pg_commit_ts storage. (The default, 200 million transactions, translates to about 50MB of pg_xact
storage and about 2GB of pg_commit_ts storage.)

One disadvantage of decreasing vacuum_freeze_min_age is that it might cause VACUUM to do
useless work: freezing a row version is a waste of time if the row is modified soon thereafter (causing
it to acquire a new XID). So the setting should be large enough that rows are not frozen until they are
unlikely to change any more.

To track the age of the oldest unfrozen XIDs in a database, VACUUM stores XID statistics in the
system tables pg_class and pg_database. In particular, the relfrozenxid column of a table's
pg_class row contains the freeze cutoff XID that was used by the last aggressive VACUUM for that
table. All rows inserted by transactions with XIDs older than this cutoff XID are guaranteed to have been
frozen. Similarly, the datfrozenxid column of a database's pg_database row is a lower bound on
the unfrozen XIDs appearing in that database — it is just the minimum of the per-table relfrozenxid
values within the database. A convenient way to examine this information is to execute queries such as:

SELECT c.oid::regclass as table_name,
 greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age
FROM pg_class c
LEFT JOIN pg_class t ON c.reltoastrelid = t.oid
WHERE c.relkind IN ('r', 'm');

SELECT datname, age(datfrozenxid) FROM pg_database;

The age column measures the number of transactions from the cutoff XID to the current transaction's XID.

VACUUM normally only scans pages that have been modified since the last vacuum, but relfrozenxid
can only be advanced when every page of the table that might contain unfrozen XIDs is scanned.
This happens when relfrozenxid is more than vacuum_freeze_table_age transactions old,
when VACUUM's FREEZE option is used, or when all pages that are not already all-frozen happen
to require vacuuming to remove dead row versions. When VACUUM scans every page in the table
that is not already all-frozen, it should set age(relfrozenxid) to a value just a little more than
the vacuum_freeze_min_age setting that was used (more by the number of transactions started
since the VACUUM started). If no relfrozenxid-advancing VACUUM is issued on the table until
autovacuum_freeze_max_age is reached, an autovacuum will soon be forced for the table.

If for some reason autovacuum fails to clear old XIDs from a table, the system will begin to emit warning
messages like this when the database's oldest XIDs reach ten million transactions from the wraparound
point:

WARNING: database "mydb" must be vacuumed within 177009986
 transactions

678

Routine Database Maintenance Tasks

HINT: To avoid a database shutdown, execute a database-wide VACUUM in
 "mydb".

(A manual VACUUM should fix the problem, as suggested by the hint; but note that the VACUUM must be
performed by a superuser, else it will fail to process system catalogs and thus not be able to advance the
database's datfrozenxid.) If these warnings are ignored, the system will shut down and refuse to start
any new transactions once there are fewer than 1 million transactions left until wraparound:

ERROR: database is not accepting commands to avoid wraparound data
 loss in database "mydb"
HINT: Stop the postmaster and vacuum that database in single-user
 mode.

The 1-million-transaction safety margin exists to let the administrator recover without data loss, by
manually executing the required VACUUM commands. However, since the system will not execute
commands once it has gone into the safety shutdown mode, the only way to do this is to stop the server
and start the server in single-user mode to execute VACUUM. The shutdown mode is not enforced in single-
user mode. See the postgres reference page for details about using single-user mode.

24.1.5.1. Multixacts and Wraparound

Multixact IDs are used to support row locking by multiple transactions. Since there is only limited space
in a tuple header to store lock information, that information is encoded as a “multiple transaction ID”,
or multixact ID for short, whenever there is more than one transaction concurrently locking a row.
Information about which transaction IDs are included in any particular multixact ID is stored separately
in the pg_multixact subdirectory, and only the multixact ID appears in the xmax field in the tuple
header. Like transaction IDs, multixact IDs are implemented as a 32-bit counter and corresponding storage,
all of which requires careful aging management, storage cleanup, and wraparound handling. There is a
separate storage area which holds the list of members in each multixact, which also uses a 32-bit counter
and which must also be managed.

Whenever VACUUM scans any part of a table, it will replace any multixact ID it encounters which
is older than vacuum_multixact_freeze_min_age by a different value, which can be the zero value,
a single transaction ID, or a newer multixact ID. For each table, pg_class.relminmxid stores
the oldest possible multixact ID still appearing in any tuple of that table. If this value is older than
vacuum_multixact_freeze_table_age, an aggressive vacuum is forced. As discussed in the previous
section, an aggressive vacuum means that only those pages which are known to be all-frozen will be
skipped. mxid_age() can be used on pg_class.relminmxid to find its age.

Aggressive VACUUM scans, regardless of what causes them, enable advancing the value for that table.
Eventually, as all tables in all databases are scanned and their oldest multixact values are advanced, on-
disk storage for older multixacts can be removed.

As a safety device, an aggressive vacuum scan will occur for any table whose multixact-age is greater than
autovacuum_multixact_freeze_max_age. Aggressive vacuum scans will also occur progressively for all
tables, starting with those that have the oldest multixact-age, if the amount of used member storage space
exceeds the amount 50% of the addressable storage space. Both of these kinds of aggressive scans will
occur even if autovacuum is nominally disabled.

24.1.6. The Autovacuum Daemon
PostgreSQL has an optional but highly recommended feature called autovacuum, whose purpose is to
automate the execution of VACUUM and ANALYZE commands. When enabled, autovacuum checks for

679

Routine Database Maintenance Tasks

tables that have had a large number of inserted, updated or deleted tuples. These checks use the statistics
collection facility; therefore, autovacuum cannot be used unless track_counts is set to true. In the default
configuration, autovacuuming is enabled and the related configuration parameters are appropriately set.

The “autovacuum daemon” actually consists of multiple processes. There is a persistent daemon
process, called the autovacuum launcher, which is in charge of starting autovacuum worker processes
for all databases. The launcher will distribute the work across time, attempting to start one worker
within each database every autovacuum_naptime seconds. (Therefore, if the installation has N
databases, a new worker will be launched every autovacuum_naptime/N seconds.) A maximum of
autovacuum_max_workers worker processes are allowed to run at the same time. If there are more than
autovacuum_max_workers databases to be processed, the next database will be processed as soon
as the first worker finishes. Each worker process will check each table within its database and execute
VACUUM and/or ANALYZE as needed. log_autovacuum_min_duration can be set to monitor autovacuum
workers' activity.

If several large tables all become eligible for vacuuming in a short amount of time, all autovacuum workers
might become occupied with vacuuming those tables for a long period. This would result in other tables
and databases not being vacuumed until a worker becomes available. There is no limit on how many
workers might be in a single database, but workers do try to avoid repeating work that has already been
done by other workers. Note that the number of running workers does not count towards max_connections
or superuser_reserved_connections limits.

Tables whose relfrozenxid value is more than autovacuum_freeze_max_age transactions old are
always vacuumed (this also applies to those tables whose freeze max age has been modified via storage
parameters; see below). Otherwise, if the number of tuples obsoleted since the last VACUUM exceeds the
“vacuum threshold”, the table is vacuumed. The vacuum threshold is defined as:

vacuum threshold = vacuum base threshold + vacuum scale factor *
 number of tuples

where the vacuum base threshold is autovacuum_vacuum_threshold, the vacuum scale factor is
autovacuum_vacuum_scale_factor, and the number of tuples is pg_class.reltuples. The number
of obsolete tuples is obtained from the statistics collector; it is a semi-accurate count updated by each
UPDATE and DELETE operation. (It is only semi-accurate because some information might be lost under
heavy load.) If the relfrozenxid value of the table is more than vacuum_freeze_table_age
transactions old, an aggressive vacuum is performed to freeze old tuples and advance relfrozenxid;
otherwise, only pages that have been modified since the last vacuum are scanned.

For analyze, a similar condition is used: the threshold, defined as:

analyze threshold = analyze base threshold + analyze scale factor *
 number of tuples

is compared to the total number of tuples inserted, updated, or deleted since the last ANALYZE.

Temporary tables cannot be accessed by autovacuum. Therefore, appropriate vacuum and analyze
operations should be performed via session SQL commands.

The default thresholds and scale factors are taken from postgresql.conf, but it is possible to override
them (and many other autovacuum control parameters) on a per-table basis; see Storage Parameters for
more information. If a setting has been changed via a table's storage parameters, that value is used when
processing that table; otherwise the global settings are used. See Section 19.10 for more details on the
global settings.

680

Routine Database Maintenance Tasks

When multiple workers are running, the autovacuum cost delay parameters (see Section 19.4.4) are
“balanced” among all the running workers, so that the total I/O impact on the system is the same
regardless of the number of workers actually running. However, any workers processing tables whose
per-table autovacuum_vacuum_cost_delay or autovacuum_vacuum_cost_limit storage
parameters have been set are not considered in the balancing algorithm.

24.2. Routine Reindexing
In some situations it is worthwhile to rebuild indexes periodically with the REINDEX command or a series
of individual rebuilding steps.

B-tree index pages that have become completely empty are reclaimed for re-use. However, there is still
a possibility of inefficient use of space: if all but a few index keys on a page have been deleted, the page
remains allocated. Therefore, a usage pattern in which most, but not all, keys in each range are eventually
deleted will see poor use of space. For such usage patterns, periodic reindexing is recommended.

The potential for bloat in non-B-tree indexes has not been well researched. It is a good idea to periodically
monitor the index's physical size when using any non-B-tree index type.

Also, for B-tree indexes, a freshly-constructed index is slightly faster to access than one that has been
updated many times because logically adjacent pages are usually also physically adjacent in a newly
built index. (This consideration does not apply to non-B-tree indexes.) It might be worthwhile to reindex
periodically just to improve access speed.

REINDEX can be used safely and easily in all cases. But since the command requires an exclusive table
lock, it is often preferable to execute an index rebuild with a sequence of creation and replacement steps.
Index types that support CREATE INDEX with the CONCURRENTLY option can instead be recreated
that way. If that is successful and the resulting index is valid, the original index can then be replaced
by the newly built one using a combination of ALTER INDEX and DROP INDEX. When an index is
used to enforce uniqueness or other constraints, ALTER TABLE might be necessary to swap the existing
constraint with one enforced by the new index. Review this alternate multistep rebuild approach carefully
before using it as there are limitations on which indexes can be reindexed this way, and errors must be
handled.

24.3. Log File Maintenance
It is a good idea to save the database server's log output somewhere, rather than just discarding it via /
dev/null. The log output is invaluable when diagnosing problems. However, the log output tends to
be voluminous (especially at higher debug levels) so you won't want to save it indefinitely. You need to
rotate the log files so that new log files are started and old ones removed after a reasonable period of time.

If you simply direct the stderr of postgres into a file, you will have log output, but the only way to
truncate the log file is to stop and restart the server. This might be acceptable if you are using PostgreSQL
in a development environment, but few production servers would find this behavior acceptable.

A better approach is to send the server's stderr output to some type of log rotation program. There is a built-
in log rotation facility, which you can use by setting the configuration parameter logging_collector
to true in postgresql.conf. The control parameters for this program are described in Section 19.8.1.
You can also use this approach to capture the log data in machine readable CSV (comma-separated values)
format.

Alternatively, you might prefer to use an external log rotation program if you have one that you are already
using with other server software. For example, the rotatelogs tool included in the Apache distribution can
be used with PostgreSQL. To do this, just pipe the server's stderr output to the desired program. If you

681

Routine Database Maintenance Tasks

start the server with pg_ctl, then stderr is already redirected to stdout, so you just need a pipe command,
for example:

pg_ctl start | rotatelogs /var/log/pgsql_log 86400

Another production-grade approach to managing log output is to send it to syslog and let syslog deal with
file rotation. To do this, set the configuration parameter log_destination to syslog (to log to syslog
only) in postgresql.conf. Then you can send a SIGHUP signal to the syslog daemon whenever you
want to force it to start writing a new log file. If you want to automate log rotation, the logrotate program
can be configured to work with log files from syslog.

On many systems, however, syslog is not very reliable, particularly with large log messages; it might
truncate or drop messages just when you need them the most. Also, on Linux, syslog will flush each
message to disk, yielding poor performance. (You can use a “-” at the start of the file name in the syslog
configuration file to disable syncing.)

Note that all the solutions described above take care of starting new log files at configurable intervals, but
they do not handle deletion of old, no-longer-useful log files. You will probably want to set up a batch
job to periodically delete old log files. Another possibility is to configure the rotation program so that old
log files are overwritten cyclically.

pgBadger2 is an external project that does sophisticated log file analysis. check_postgres3 provides Nagios
alerts when important messages appear in the log files, as well as detection of many other extraordinary
conditions.

2 https://pgbadger.darold.net/
3 https://bucardo.org/check_postgres/

682

https://pgbadger.darold.net/
https://bucardo.org/check_postgres/
https://pgbadger.darold.net/
https://bucardo.org/check_postgres/

Chapter 25. Backup and Restore
As with everything that contains valuable data, PostgreSQL databases should be backed up regularly.
While the procedure is essentially simple, it is important to have a clear understanding of the underlying
techniques and assumptions.

There are three fundamentally different approaches to backing up PostgreSQL data:

• SQL dump

• File system level backup

• Continuous archiving

Each has its own strengths and weaknesses; each is discussed in turn in the following sections.

25.1. SQL Dump
The idea behind this dump method is to generate a file with SQL commands that, when fed back to the
server, will recreate the database in the same state as it was at the time of the dump. PostgreSQL provides
the utility program pg_dump for this purpose. The basic usage of this command is:

pg_dump dbname > dumpfile

As you see, pg_dump writes its result to the standard output. We will see below how this can be useful.
While the above command creates a text file, pg_dump can create files in other formats that allow for
parallelism and more fine-grained control of object restoration.

pg_dump is a regular PostgreSQL client application (albeit a particularly clever one). This means that you
can perform this backup procedure from any remote host that has access to the database. But remember
that pg_dump does not operate with special permissions. In particular, it must have read access to all tables
that you want to back up, so in order to back up the entire database you almost always have to run it as a
database superuser. (If you do not have sufficient privileges to back up the entire database, you can still
back up portions of the database to which you do have access using options such as -n schema or -
t table.)

To specify which database server pg_dump should contact, use the command line options -h host and
-p port. The default host is the local host or whatever your PGHOST environment variable specifies.
Similarly, the default port is indicated by the PGPORT environment variable or, failing that, by the
compiled-in default. (Conveniently, the server will normally have the same compiled-in default.)

Like any other PostgreSQL client application, pg_dump will by default connect with the database user
name that is equal to the current operating system user name. To override this, either specify the -U option
or set the environment variable PGUSER. Remember that pg_dump connections are subject to the normal
client authentication mechanisms (which are described in Chapter 20).

An important advantage of pg_dump over the other backup methods described later is that pg_dump's
output can generally be re-loaded into newer versions of PostgreSQL, whereas file-level backups and
continuous archiving are both extremely server-version-specific. pg_dump is also the only method that
will work when transferring a database to a different machine architecture, such as going from a 32-bit
to a 64-bit server.

683

Backup and Restore

Dumps created by pg_dump are internally consistent, meaning, the dump represents a snapshot of the
database at the time pg_dump began running. pg_dump does not block other operations on the database
while it is working. (Exceptions are those operations that need to operate with an exclusive lock, such as
most forms of ALTER TABLE.)

25.1.1. Restoring the Dump
Text files created by pg_dump are intended to be read in by the psql program. The general command form
to restore a dump is

psql dbname < dumpfile

where dumpfile is the file output by the pg_dump command. The database dbname will not be created
by this command, so you must create it yourself from template0 before executing psql (e.g., with
createdb -T template0 dbname). psql supports options similar to pg_dump for specifying the
database server to connect to and the user name to use. See the psql reference page for more information.
Non-text file dumps are restored using the pg_restore utility.

Before restoring an SQL dump, all the users who own objects or were granted permissions on objects in
the dumped database must already exist. If they do not, the restore will fail to recreate the objects with the
original ownership and/or permissions. (Sometimes this is what you want, but usually it is not.)

By default, the psql script will continue to execute after an SQL error is encountered. You might wish
to run psql with the ON_ERROR_STOP variable set to alter that behavior and have psql exit with an exit
status of 3 if an SQL error occurs:

psql --set ON_ERROR_STOP=on dbname < dumpfile

Either way, you will only have a partially restored database. Alternatively, you can specify that the whole
dump should be restored as a single transaction, so the restore is either fully completed or fully rolled back.
This mode can be specified by passing the -1 or --single-transaction command-line options to
psql. When using this mode, be aware that even a minor error can rollback a restore that has already run
for many hours. However, that might still be preferable to manually cleaning up a complex database after
a partially restored dump.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another, for example:

pg_dump -h host1 dbname | psql -h host2 dbname

Important

The dumps produced by pg_dump are relative to template0. This means that any languages,
procedures, etc. added via template1 will also be dumped by pg_dump. As a result, when
restoring, if you are using a customized template1, you must create the empty database from
template0, as in the example above.

After restoring a backup, it is wise to run ANALYZE on each database so the query optimizer has useful
statistics; see Section 24.1.3 and Section 24.1.6 for more information. For more advice on how to load
large amounts of data into PostgreSQL efficiently, refer to Section 14.4.

684

Backup and Restore

25.1.2. Using pg_dumpall

pg_dump dumps only a single database at a time, and it does not dump information about roles or
tablespaces (because those are cluster-wide rather than per-database). To support convenient dumping of
the entire contents of a database cluster, the pg_dumpall program is provided. pg_dumpall backs up each
database in a given cluster, and also preserves cluster-wide data such as role and tablespace definitions.
The basic usage of this command is:

pg_dumpall > dumpfile

The resulting dump can be restored with psql:

psql -f dumpfile postgres

(Actually, you can specify any existing database name to start from, but if you are loading into an empty
cluster then postgres should usually be used.) It is always necessary to have database superuser access
when restoring a pg_dumpall dump, as that is required to restore the role and tablespace information. If you
use tablespaces, make sure that the tablespace paths in the dump are appropriate for the new installation.

pg_dumpall works by emitting commands to re-create roles, tablespaces, and empty databases, then
invoking pg_dump for each database. This means that while each database will be internally consistent,
the snapshots of different databases are not synchronized.

Cluster-wide data can be dumped alone using the pg_dumpall --globals-only option. This is
necessary to fully backup the cluster if running the pg_dump command on individual databases.

25.1.3. Handling Large Databases

Some operating systems have maximum file size limits that cause problems when creating large pg_dump
output files. Fortunately, pg_dump can write to the standard output, so you can use standard Unix tools to
work around this potential problem. There are several possible methods:

Use compressed dumps. You can use your favorite compression program, for example gzip:

pg_dump dbname | gzip > filename.gz

Reload with:

gunzip -c filename.gz | psql dbname

or:

cat filename.gz | gunzip | psql dbname

Use split. The split command allows you to split the output into smaller files that are acceptable
in size to the underlying file system. For example, to make chunks of 1 megabyte:

685

Backup and Restore

pg_dump dbname | split -b 1m - filename

Reload with:

cat filename* | psql dbname

Use pg_dump's custom dump format. If PostgreSQL was built on a system with the zlib compression
library installed, the custom dump format will compress data as it writes it to the output file. This will
produce dump file sizes similar to using gzip, but it has the added advantage that tables can be restored
selectively. The following command dumps a database using the custom dump format:

pg_dump -Fc dbname > filename

A custom-format dump is not a script for psql, but instead must be restored with pg_restore, for example:

pg_restore -d dbname filename

See the pg_dump and pg_restore reference pages for details.

For very large databases, you might need to combine split with one of the other two approaches.

Use pg_dump's parallel dump feature. To speed up the dump of a large database, you can use
pg_dump's parallel mode. This will dump multiple tables at the same time. You can control the degree of
parallelism with the -j parameter. Parallel dumps are only supported for the "directory" archive format.

pg_dump -j num -F d -f out.dir dbname

You can use pg_restore -j to restore a dump in parallel. This will work for any archive of either the
"custom" or the "directory" archive mode, whether or not it has been created with pg_dump -j.

25.2. File System Level Backup
An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data in the
database; Section 18.2 explains where these files are located. You can use whatever method you prefer
for doing file system backups; for example:

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the
pg_dump method:

1. The database server must be shut down in order to get a usable backup. Half-way measures such
as disallowing all connections will not work (in part because tar and similar tools do not take an
atomic snapshot of the state of the file system, but also because of internal buffering within the server).
Information about stopping the server can be found in Section 18.5. Needless to say, you also need to
shut down the server before restoring the data.

2. If you have dug into the details of the file system layout of the database, you might be tempted to try to
back up or restore only certain individual tables or databases from their respective files or directories.
This will not work because the information contained in these files is not usable without the commit log

686

Backup and Restore

files, pg_xact/*, which contain the commit status of all transactions. A table file is only usable with
this information. Of course it is also impossible to restore only a table and the associated pg_xact
data because that would render all other tables in the database cluster useless. So file system backups
only work for complete backup and restoration of an entire database cluster.

An alternative file-system backup approach is to make a “consistent snapshot” of the data directory, if
the file system supports that functionality (and you are willing to trust that it is implemented correctly).
The typical procedure is to make a “frozen snapshot” of the volume containing the database, then copy
the whole data directory (not just parts, see above) from the snapshot to a backup device, then release the
frozen snapshot. This will work even while the database server is running. However, a backup created in
this way saves the database files in a state as if the database server was not properly shut down; therefore,
when you start the database server on the backed-up data, it will think the previous server instance crashed
and will replay the WAL log. This is not a problem; just be aware of it (and be sure to include the WAL files
in your backup). You can perform a CHECKPOINT before taking the snapshot to reduce recovery time.

If your database is spread across multiple file systems, there might not be any way to obtain exactly-
simultaneous frozen snapshots of all the volumes. For example, if your data files and WAL log are on
different disks, or if tablespaces are on different file systems, it might not be possible to use snapshot
backup because the snapshots must be simultaneous. Read your file system documentation very carefully
before trusting the consistent-snapshot technique in such situations.

If simultaneous snapshots are not possible, one option is to shut down the database server long enough
to establish all the frozen snapshots. Another option is to perform a continuous archiving base backup
(Section 25.3.2) because such backups are immune to file system changes during the backup. This requires
enabling continuous archiving just during the backup process; restore is done using continuous archive
recovery (Section 25.3.4).

Another option is to use rsync to perform a file system backup. This is done by first running rsync while
the database server is running, then shutting down the database server long enough to do an rsync --
checksum. (--checksum is necessary because rsync only has file modification-time granularity of
one second.) The second rsync will be quicker than the first, because it has relatively little data to transfer,
and the end result will be consistent because the server was down. This method allows a file system backup
to be performed with minimal downtime.

Note that a file system backup will typically be larger than an SQL dump. (pg_dump does not need to
dump the contents of indexes for example, just the commands to recreate them.) However, taking a file
system backup might be faster.

25.3. Continuous Archiving and Point-in-Time
Recovery (PITR)

At all times, PostgreSQL maintains a write ahead log (WAL) in the pg_wal/ subdirectory of the cluster's
data directory. The log records every change made to the database's data files. This log exists primarily for
crash-safety purposes: if the system crashes, the database can be restored to consistency by “replaying”
the log entries made since the last checkpoint. However, the existence of the log makes it possible to use
a third strategy for backing up databases: we can combine a file-system-level backup with backup of the
WAL files. If recovery is needed, we restore the file system backup and then replay from the backed-up
WAL files to bring the system to a current state. This approach is more complex to administer than either
of the previous approaches, but it has some significant benefits:

• We do not need a perfectly consistent file system backup as the starting point. Any internal inconsistency
in the backup will be corrected by log replay (this is not significantly different from what happens during
crash recovery). So we do not need a file system snapshot capability, just tar or a similar archiving tool.

687

Backup and Restore

• Since we can combine an indefinitely long sequence of WAL files for replay, continuous backup can be
achieved simply by continuing to archive the WAL files. This is particularly valuable for large databases,
where it might not be convenient to take a full backup frequently.

• It is not necessary to replay the WAL entries all the way to the end. We could stop the replay at any point
and have a consistent snapshot of the database as it was at that time. Thus, this technique supports point-
in-time recovery: it is possible to restore the database to its state at any time since your base backup
was taken.

• If we continuously feed the series of WAL files to another machine that has been loaded with the same
base backup file, we have a warm standby system: at any point we can bring up the second machine
and it will have a nearly-current copy of the database.

Note

pg_dump and pg_dumpall do not produce file-system-level backups and cannot be used as part of
a continuous-archiving solution. Such dumps are logical and do not contain enough information
to be used by WAL replay.

As with the plain file-system-backup technique, this method can only support restoration of an entire
database cluster, not a subset. Also, it requires a lot of archival storage: the base backup might be bulky,
and a busy system will generate many megabytes of WAL traffic that have to be archived. Still, it is the
preferred backup technique in many situations where high reliability is needed.

To recover successfully using continuous archiving (also called “online backup” by many database
vendors), you need a continuous sequence of archived WAL files that extends back at least as far as the
start time of your backup. So to get started, you should set up and test your procedure for archiving WAL
files before you take your first base backup. Accordingly, we first discuss the mechanics of archiving
WAL files.

25.3.1. Setting Up WAL Archiving
In an abstract sense, a running PostgreSQL system produces an indefinitely long sequence of WAL records.
The system physically divides this sequence into WAL segment files, which are normally 16MB apiece
(although the segment size can be altered during initdb). The segment files are given numeric names that
reflect their position in the abstract WAL sequence. When not using WAL archiving, the system normally
creates just a few segment files and then “recycles” them by renaming no-longer-needed segment files to
higher segment numbers. It's assumed that segment files whose contents precede the last checkpoint are
no longer of interest and can be recycled.

When archiving WAL data, we need to capture the contents of each segment file once it is filled, and save
that data somewhere before the segment file is recycled for reuse. Depending on the application and the
available hardware, there could be many different ways of “saving the data somewhere”: we could copy
the segment files to an NFS-mounted directory on another machine, write them onto a tape drive (ensuring
that you have a way of identifying the original name of each file), or batch them together and burn them
onto CDs, or something else entirely. To provide the database administrator with flexibility, PostgreSQL
tries not to make any assumptions about how the archiving will be done. Instead, PostgreSQL lets the
administrator specify a shell command to be executed to copy a completed segment file to wherever it
needs to go. The command could be as simple as a cp, or it could invoke a complex shell script — it's
all up to you.

To enable WAL archiving, set the wal_level configuration parameter to replica or higher,
archive_mode to on, and specify the shell command to use in the archive_command configuration

688

Backup and Restore

parameter. In practice these settings will always be placed in the postgresql.conf file. In
archive_command, %p is replaced by the path name of the file to archive, while %f is replaced by only
the file name. (The path name is relative to the current working directory, i.e., the cluster's data directory.)
Use %% if you need to embed an actual % character in the command. The simplest useful command is
something like:

archive_command = 'test ! -f /mnt/server/archivedir/%f && cp %p /mnt/
server/archivedir/%f' # Unix
archive_command = 'copy "%p" "C:\\server\\archivedir\\%f"' # Windows

which will copy archivable WAL segments to the directory /mnt/server/archivedir. (This is an
example, not a recommendation, and might not work on all platforms.) After the %p and %f parameters
have been replaced, the actual command executed might look like this:

test ! -f /mnt/server/archivedir/00000001000000A900000065
 && cp pg_wal/00000001000000A900000065 /mnt/server/
archivedir/00000001000000A900000065

A similar command will be generated for each new file to be archived.

The archive command will be executed under the ownership of the same user that the PostgreSQL server is
running as. Since the series of WAL files being archived contains effectively everything in your database,
you will want to be sure that the archived data is protected from prying eyes; for example, archive into a
directory that does not have group or world read access.

It is important that the archive command return zero exit status if and only if it succeeds. Upon getting
a zero result, PostgreSQL will assume that the file has been successfully archived, and will remove or
recycle it. However, a nonzero status tells PostgreSQL that the file was not archived; it will try again
periodically until it succeeds.

The archive command should generally be designed to refuse to overwrite any pre-existing archive file.
This is an important safety feature to preserve the integrity of your archive in case of administrator error
(such as sending the output of two different servers to the same archive directory).

It is advisable to test your proposed archive command to ensure that it indeed does not overwrite an existing
file, and that it returns nonzero status in this case. The example command above for Unix ensures this by
including a separate test step. On some Unix platforms, cp has switches such as -i that can be used
to do the same thing less verbosely, but you should not rely on these without verifying that the right exit
status is returned. (In particular, GNU cp will return status zero when -i is used and the target file already
exists, which is not the desired behavior.)

While designing your archiving setup, consider what will happen if the archive command fails repeatedly
because some aspect requires operator intervention or the archive runs out of space. For example, this
could occur if you write to tape without an autochanger; when the tape fills, nothing further can be archived
until the tape is swapped. You should ensure that any error condition or request to a human operator is
reported appropriately so that the situation can be resolved reasonably quickly. The pg_wal/ directory
will continue to fill with WAL segment files until the situation is resolved. (If the file system containing
pg_wal/ fills up, PostgreSQL will do a PANIC shutdown. No committed transactions will be lost, but
the database will remain offline until you free some space.)

The speed of the archiving command is unimportant as long as it can keep up with the average rate at
which your server generates WAL data. Normal operation continues even if the archiving process falls
a little behind. If archiving falls significantly behind, this will increase the amount of data that would be

689

Backup and Restore

lost in the event of a disaster. It will also mean that the pg_wal/ directory will contain large numbers
of not-yet-archived segment files, which could eventually exceed available disk space. You are advised to
monitor the archiving process to ensure that it is working as you intend.

In writing your archive command, you should assume that the file names to be archived can be up to 64
characters long and can contain any combination of ASCII letters, digits, and dots. It is not necessary to
preserve the original relative path (%p) but it is necessary to preserve the file name (%f).

Note that although WAL archiving will allow you to restore any modifications made to the data
in your PostgreSQL database, it will not restore changes made to configuration files (that is,
postgresql.conf, pg_hba.conf and pg_ident.conf), since those are edited manually rather
than through SQL operations. You might wish to keep the configuration files in a location that will
be backed up by your regular file system backup procedures. See Section 19.2 for how to relocate the
configuration files.

The archive command is only invoked on completed WAL segments. Hence, if your server generates
only little WAL traffic (or has slack periods where it does so), there could be a long delay between the
completion of a transaction and its safe recording in archive storage. To put a limit on how old unarchived
data can be, you can set archive_timeout to force the server to switch to a new WAL segment file at least
that often. Note that archived files that are archived early due to a forced switch are still the same length as
completely full files. It is therefore unwise to set a very short archive_timeout — it will bloat your
archive storage. archive_timeout settings of a minute or so are usually reasonable.

Also, you can force a segment switch manually with pg_switch_wal if you want to ensure that a just-
finished transaction is archived as soon as possible. Other utility functions related to WAL management
are listed in Table 9.79.

When wal_level is minimal some SQL commands are optimized to avoid WAL logging, as
described in Section 14.4.7. If archiving or streaming replication were turned on during execution of
one of these statements, WAL would not contain enough information for archive recovery. (Crash
recovery is unaffected.) For this reason, wal_level can only be changed at server start. However,
archive_command can be changed with a configuration file reload. If you wish to temporarily stop
archiving, one way to do it is to set archive_command to the empty string (''). This will cause WAL
files to accumulate in pg_wal/ until a working archive_command is re-established.

25.3.2. Making a Base Backup
The easiest way to perform a base backup is to use the pg_basebackup tool. It can create a base backup
either as regular files or as a tar archive. If more flexibility than pg_basebackup can provide is required,
you can also make a base backup using the low level API (see Section 25.3.3).

It is not necessary to be concerned about the amount of time it takes to make a base backup. However, if
you normally run the server with full_page_writes disabled, you might notice a drop in performance
while the backup runs since full_page_writes is effectively forced on during backup mode.

To make use of the backup, you will need to keep all the WAL segment files generated during
and after the file system backup. To aid you in doing this, the base backup process creates a
backup history file that is immediately stored into the WAL archive area. This file is named after
the first WAL segment file that you need for the file system backup. For example, if the starting
WAL file is 0000000100001234000055CD the backup history file will be named something like
0000000100001234000055CD.007C9330.backup. (The second part of the file name stands for
an exact position within the WAL file, and can ordinarily be ignored.) Once you have safely archived
the file system backup and the WAL segment files used during the backup (as specified in the backup
history file), all archived WAL segments with names numerically less are no longer needed to recover the

690

Backup and Restore

file system backup and can be deleted. However, you should consider keeping several backup sets to be
absolutely certain that you can recover your data.

The backup history file is just a small text file. It contains the label string you gave to pg_basebackup, as
well as the starting and ending times and WAL segments of the backup. If you used the label to identify
the associated dump file, then the archived history file is enough to tell you which dump file to restore.

Since you have to keep around all the archived WAL files back to your last base backup, the interval
between base backups should usually be chosen based on how much storage you want to expend on
archived WAL files. You should also consider how long you are prepared to spend recovering, if recovery
should be necessary — the system will have to replay all those WAL segments, and that could take awhile
if it has been a long time since the last base backup.

25.3.3. Making a Base Backup Using the Low Level API
The procedure for making a base backup using the low level APIs contains a few more steps than the
pg_basebackup method, but is relatively simple. It is very important that these steps are executed in
sequence, and that the success of a step is verified before proceeding to the next step.

Low level base backups can be made in a non-exclusive or an exclusive way. The non-exclusive method
is recommended and the exclusive one is deprecated and will eventually be removed.

25.3.3.1. Making a non-exclusive low level backup

A non-exclusive low level backup is one that allows other concurrent backups to be running (both those
started using the same backup API and those started using pg_basebackup).

1. Ensure that WAL archiving is enabled and working.

2. Connect to the server (it does not matter which database) as a user with rights to run pg_start_backup
(superuser, or a user who has been granted EXECUTE on the function) and issue the command:

SELECT pg_start_backup('label', false, false);

where label is any string you want to use to uniquely identify this backup operation. The connection
calling pg_start_backup must be maintained until the end of the backup, or the backup will be
automatically aborted.

By default, pg_start_backup can take a long time to finish. This is because it performs
a checkpoint, and the I/O required for the checkpoint will be spread out over a significant
period of time, by default half your inter-checkpoint interval (see the configuration parameter
checkpoint_completion_target). This is usually what you want, because it minimizes the impact on
query processing. If you want to start the backup as soon as possible, change the second parameter to
true, which will issue an immediate checkpoint using as much I/O as available.

The third parameter being false tells pg_start_backup to initiate a non-exclusive base backup.

3. Perform the backup, using any convenient file-system-backup tool such as tar or cpio (not pg_dump or
pg_dumpall). It is neither necessary nor desirable to stop normal operation of the database while you
do this. See Section 25.3.3.3 for things to consider during this backup.

4. In the same connection as before, issue the command:

691

Backup and Restore

SELECT * FROM pg_stop_backup(false, true);

This terminates backup mode. On a primary, it also performs an automatic switch to the next WAL
segment. On a standby, it is not possible to automatically switch WAL segments, so you may wish
to run pg_switch_wal on the primary to perform a manual switch. The reason for the switch is to
arrange for the last WAL segment file written during the backup interval to be ready to archive.

The pg_stop_backup will return one row with three values. The second of these fields should be
written to a file named backup_label in the root directory of the backup. The third field should
be written to a file named tablespace_map unless the field is empty. These files are vital to the
backup working, and must be written without modification.

5. Once the WAL segment files active during the backup are archived, you are done. The file identified
by pg_stop_backup's first return value is the last segment that is required to form a complete
set of backup files. On a primary, if archive_mode is enabled and the wait_for_archive
parameter is true, pg_stop_backup does not return until the last segment has been archived. On
a standby, archive_mode must be always in order for pg_stop_backup to wait. Archiving of
these files happens automatically since you have already configured archive_command. In most
cases this happens quickly, but you are advised to monitor your archive system to ensure there are no
delays. If the archive process has fallen behind because of failures of the archive command, it will keep
retrying until the archive succeeds and the backup is complete. If you wish to place a time limit on the
execution of pg_stop_backup, set an appropriate statement_timeout value, but make note
that if pg_stop_backup terminates because of this your backup may not be valid.

If the backup process monitors and ensures that all WAL segment files required for the backup are
successfully archived then the wait_for_archive parameter (which defaults to true) can be set to
false to have pg_stop_backup return as soon as the stop backup record is written to the WAL. By
default, pg_stop_backup will wait until all WAL has been archived, which can take some time.
This option must be used with caution: if WAL archiving is not monitored correctly then the backup
might not include all of the WAL files and will therefore be incomplete and not able to be restored.

25.3.3.2. Making an exclusive low level backup

The process for an exclusive backup is mostly the same as for a non-exclusive one, but it differs in a few
key steps. This type of backup can only be taken on a primary and does not allow concurrent backups.
Prior to PostgreSQL 9.6, this was the only low-level method available, but it is now recommended that all
users upgrade their scripts to use non-exclusive backups if possible.

1. Ensure that WAL archiving is enabled and working.

2. Connect to the server (it does not matter which database) as a user with rights to run pg_start_backup
(superuser, or a user who has been granted EXECUTE on the function) and issue the command:

SELECT pg_start_backup('label');

where label is any string you want to use to uniquely identify this backup operation.
pg_start_backup creates a backup label file, called backup_label, in the cluster directory
with information about your backup, including the start time and label string. The function also creates
a tablespace map file, called tablespace_map, in the cluster directory with information about
tablespace symbolic links in pg_tblspc/ if one or more such link is present. Both files are critical
to the integrity of the backup, should you need to restore from it.

By default, pg_start_backup can take a long time to finish. This is because it performs
a checkpoint, and the I/O required for the checkpoint will be spread out over a significant

692

Backup and Restore

period of time, by default half your inter-checkpoint interval (see the configuration parameter
checkpoint_completion_target). This is usually what you want, because it minimizes the impact on
query processing. If you want to start the backup as soon as possible, use:

SELECT pg_start_backup('label', true);

This forces the checkpoint to be done as quickly as possible.

3. Perform the backup, using any convenient file-system-backup tool such as tar or cpio (not pg_dump or
pg_dumpall). It is neither necessary nor desirable to stop normal operation of the database while you
do this. See Section 25.3.3.3 for things to consider during this backup.

Note that if the server crashes during the backup it may not be possible to restart until the
backup_label file has been manually deleted from the PGDATA directory.

4. Again connect to the database as a user with rights to run pg_stop_backup (superuser, or a user who
has been granted EXECUTE on the function), and issue the command:

SELECT pg_stop_backup();

This function terminates backup mode and performs an automatic switch to the next WAL segment.
The reason for the switch is to arrange for the last WAL segment written during the backup interval
to be ready to archive.

5. Once the WAL segment files active during the backup are archived, you are done. The file identified
by pg_stop_backup's result is the last segment that is required to form a complete set of backup
files. If archive_mode is enabled, pg_stop_backup does not return until the last segment has
been archived. Archiving of these files happens automatically since you have already configured
archive_command. In most cases this happens quickly, but you are advised to monitor your
archive system to ensure there are no delays. If the archive process has fallen behind because of
failures of the archive command, it will keep retrying until the archive succeeds and the backup is
complete. If you wish to place a time limit on the execution of pg_stop_backup, set an appropriate
statement_timeout value, but make note that if pg_stop_backup terminates because of this
your backup may not be valid.

25.3.3.3. Backing up the data directory

Some file system backup tools emit warnings or errors if the files they are trying to copy change while
the copy proceeds. When taking a base backup of an active database, this situation is normal and not an
error. However, you need to ensure that you can distinguish complaints of this sort from real errors. For
example, some versions of rsync return a separate exit code for “vanished source files”, and you can write
a driver script to accept this exit code as a non-error case. Also, some versions of GNU tar return an error
code indistinguishable from a fatal error if a file was truncated while tar was copying it. Fortunately, GNU
tar versions 1.16 and later exit with 1 if a file was changed during the backup, and 2 for other errors. With
GNU tar version 1.23 and later, you can use the warning options --warning=no-file-changed
--warning=no-file-removed to hide the related warning messages.

Be certain that your backup includes all of the files under the database cluster directory (e.g., /usr/
local/pgsql/data). If you are using tablespaces that do not reside underneath this directory, be
careful to include them as well (and be sure that your backup archives symbolic links as links, otherwise
the restore will corrupt your tablespaces).

You should, however, omit from the backup the files within the cluster's pg_wal/ subdirectory. This
slight adjustment is worthwhile because it reduces the risk of mistakes when restoring. This is easy to

693

Backup and Restore

arrange if pg_wal/ is a symbolic link pointing to someplace outside the cluster directory, which is a
common setup anyway for performance reasons. You might also want to exclude postmaster.pid and
postmaster.opts, which record information about the running postmaster, not about the postmaster
which will eventually use this backup. (These files can confuse pg_ctl.)

It is often a good idea to also omit from the backup the files within the cluster's pg_replslot/ directory,
so that replication slots that exist on the master do not become part of the backup. Otherwise, the subsequent
use of the backup to create a standby may result in indefinite retention of WAL files on the standby, and
possibly bloat on the master if hot standby feedback is enabled, because the clients that are using those
replication slots will still be connecting to and updating the slots on the master, not the standby. Even if
the backup is only intended for use in creating a new master, copying the replication slots isn't expected
to be particularly useful, since the contents of those slots will likely be badly out of date by the time the
new master comes on line.

The contents of the directories pg_dynshmem/, pg_notify/, pg_serial/, pg_snapshots/,
pg_stat_tmp/, and pg_subtrans/ (but not the directories themselves) can be omitted from the
backup as they will be initialized on postmaster startup. If stats_temp_directory is set and is under the data
directory then the contents of that directory can also be omitted.

Any file or directory beginning with pgsql_tmp can be omitted from the backup. These files are removed
on postmaster start and the directories will be recreated as needed.

pg_internal.init files can be omitted from the backup whenever a file of that name is found. These
files contain relation cache data that is always rebuilt when recovering.

The backup label file includes the label string you gave to pg_start_backup, as well as the time
at which pg_start_backup was run, and the name of the starting WAL file. In case of confusion it
is therefore possible to look inside a backup file and determine exactly which backup session the dump
file came from. The tablespace map file includes the symbolic link names as they exist in the directory
pg_tblspc/ and the full path of each symbolic link. These files are not merely for your information;
their presence and contents are critical to the proper operation of the system's recovery process.

It is also possible to make a backup while the server is stopped. In this case, you obviously cannot use
pg_start_backup or pg_stop_backup, and you will therefore be left to your own devices to keep
track of which backup is which and how far back the associated WAL files go. It is generally better to
follow the continuous archiving procedure above.

25.3.4. Recovering Using a Continuous Archive Backup
Okay, the worst has happened and you need to recover from your backup. Here is the procedure:

1. Stop the server, if it's running.

2. If you have the space to do so, copy the whole cluster data directory and any tablespaces to a temporary
location in case you need them later. Note that this precaution will require that you have enough free
space on your system to hold two copies of your existing database. If you do not have enough space,
you should at least save the contents of the cluster's pg_wal subdirectory, as it might contain logs
which were not archived before the system went down.

3. Remove all existing files and subdirectories under the cluster data directory and under the root
directories of any tablespaces you are using.

4. Restore the database files from your file system backup. Be sure that they are restored with the right
ownership (the database system user, not root!) and with the right permissions. If you are using
tablespaces, you should verify that the symbolic links in pg_tblspc/ were correctly restored.

694

Backup and Restore

5. Remove any files present in pg_wal/; these came from the file system backup and are therefore
probably obsolete rather than current. If you didn't archive pg_wal/ at all, then recreate it with proper
permissions, being careful to ensure that you re-establish it as a symbolic link if you had it set up that
way before.

6. If you have unarchived WAL segment files that you saved in step 2, copy them into pg_wal/. (It is
best to copy them, not move them, so you still have the unmodified files if a problem occurs and you
have to start over.)

7. Create a recovery command file recovery.conf in the cluster data directory (see Chapter 27). You
might also want to temporarily modify pg_hba.conf to prevent ordinary users from connecting until
you are sure the recovery was successful.

8. Start the server. The server will go into recovery mode and proceed to read through the archived WAL
files it needs. Should the recovery be terminated because of an external error, the server can simply
be restarted and it will continue recovery. Upon completion of the recovery process, the server will
rename recovery.conf to recovery.done (to prevent accidentally re-entering recovery mode
later) and then commence normal database operations.

9. Inspect the contents of the database to ensure you have recovered to the desired state. If not, return to
step 1. If all is well, allow your users to connect by restoring pg_hba.conf to normal.

The key part of all this is to set up a recovery configuration file that describes how you want to recover
and how far the recovery should run. You can use recovery.conf.sample (normally located in
the installation's share/ directory) as a prototype. The one thing that you absolutely must specify in
recovery.conf is the restore_command, which tells PostgreSQL how to retrieve archived WAL
file segments. Like the archive_command, this is a shell command string. It can contain %f, which is
replaced by the name of the desired log file, and %p, which is replaced by the path name to copy the log file
to. (The path name is relative to the current working directory, i.e., the cluster's data directory.) Write %% if
you need to embed an actual % character in the command. The simplest useful command is something like:

restore_command = 'cp /mnt/server/archivedir/%f %p'

which will copy previously archived WAL segments from the directory /mnt/server/archivedir.
Of course, you can use something much more complicated, perhaps even a shell script that requests the
operator to mount an appropriate tape.

It is important that the command return nonzero exit status on failure. The command will be called
requesting files that are not present in the archive; it must return nonzero when so asked. This is not an
error condition. An exception is that if the command was terminated by a signal (other than SIGTERM,
which is used as part of a database server shutdown) or an error by the shell (such as command not found),
then recovery will abort and the server will not start up.

Not all of the requested files will be WAL segment files; you should also expect requests for files with
a suffix of .history. Also be aware that the base name of the %p path will be different from %f; do
not expect them to be interchangeable.

WAL segments that cannot be found in the archive will be sought in pg_wal/; this allows use of recent
un-archived segments. However, segments that are available from the archive will be used in preference
to files in pg_wal/.

Normally, recovery will proceed through all available WAL segments, thereby restoring the database to
the current point in time (or as close as possible given the available WAL segments). Therefore, a normal
recovery will end with a “file not found” message, the exact text of the error message depending upon
your choice of restore_command. You may also see an error message at the start of recovery for a

695

Backup and Restore

file named something like 00000001.history. This is also normal and does not indicate a problem
in simple recovery situations; see Section 25.3.5 for discussion.

If you want to recover to some previous point in time (say, right before the junior DBA dropped your
main transaction table), just specify the required stopping point in recovery.conf. You can specify
the stop point, known as the “recovery target”, either by date/time, named restore point or by completion
of a specific transaction ID. As of this writing only the date/time and named restore point options are very
usable, since there are no tools to help you identify with any accuracy which transaction ID to use.

Note

The stop point must be after the ending time of the base backup, i.e., the end time of
pg_stop_backup. You cannot use a base backup to recover to a time when that backup was
in progress. (To recover to such a time, you must go back to your previous base backup and roll
forward from there.)

If recovery finds corrupted WAL data, recovery will halt at that point and the server will not start. In such
a case the recovery process could be re-run from the beginning, specifying a “recovery target” before the
point of corruption so that recovery can complete normally. If recovery fails for an external reason, such as
a system crash or if the WAL archive has become inaccessible, then the recovery can simply be restarted
and it will restart almost from where it failed. Recovery restart works much like checkpointing in normal
operation: the server periodically forces all its state to disk, and then updates the pg_control file to
indicate that the already-processed WAL data need not be scanned again.

25.3.5. Timelines
The ability to restore the database to a previous point in time creates some complexities that are akin
to science-fiction stories about time travel and parallel universes. For example, in the original history of
the database, suppose you dropped a critical table at 5:15PM on Tuesday evening, but didn't realize your
mistake until Wednesday noon. Unfazed, you get out your backup, restore to the point-in-time 5:14PM
Tuesday evening, and are up and running. In this history of the database universe, you never dropped the
table. But suppose you later realize this wasn't such a great idea, and would like to return to sometime
Wednesday morning in the original history. You won't be able to if, while your database was up-and-
running, it overwrote some of the WAL segment files that led up to the time you now wish you could get
back to. Thus, to avoid this, you need to distinguish the series of WAL records generated after you've done
a point-in-time recovery from those that were generated in the original database history.

To deal with this problem, PostgreSQL has a notion of timelines. Whenever an archive recovery completes,
a new timeline is created to identify the series of WAL records generated after that recovery. The timeline
ID number is part of WAL segment file names so a new timeline does not overwrite the WAL data
generated by previous timelines. It is in fact possible to archive many different timelines. While that might
seem like a useless feature, it's often a lifesaver. Consider the situation where you aren't quite sure what
point-in-time to recover to, and so have to do several point-in-time recoveries by trial and error until you
find the best place to branch off from the old history. Without timelines this process would soon generate
an unmanageable mess. With timelines, you can recover to any prior state, including states in timeline
branches that you abandoned earlier.

Every time a new timeline is created, PostgreSQL creates a “timeline history” file that shows which
timeline it branched off from and when. These history files are necessary to allow the system to pick the
right WAL segment files when recovering from an archive that contains multiple timelines. Therefore,
they are archived into the WAL archive area just like WAL segment files. The history files are just small
text files, so it's cheap and appropriate to keep them around indefinitely (unlike the segment files which are

696

Backup and Restore

large). You can, if you like, add comments to a history file to record your own notes about how and why
this particular timeline was created. Such comments will be especially valuable when you have a thicket
of different timelines as a result of experimentation.

The default behavior of recovery is to recover along the same timeline that was current when the base
backup was taken. If you wish to recover into some child timeline (that is, you want to return to some
state that was itself generated after a recovery attempt), you need to specify the target timeline ID in
recovery.conf. You cannot recover into timelines that branched off earlier than the base backup.

25.3.6. Tips and Examples
Some tips for configuring continuous archiving are given here.

25.3.6.1. Standalone Hot Backups

It is possible to use PostgreSQL's backup facilities to produce standalone hot backups. These are backups
that cannot be used for point-in-time recovery, yet are typically much faster to backup and restore than
pg_dump dumps. (They are also much larger than pg_dump dumps, so in some cases the speed advantage
might be negated.)

As with base backups, the easiest way to produce a standalone hot backup is to use the pg_basebackup
tool. If you include the -X parameter when calling it, all the write-ahead log required to use the backup
will be included in the backup automatically, and no special action is required to restore the backup.

If more flexibility in copying the backup files is needed, a lower level process can be used for standalone
hot backups as well. To prepare for low level standalone hot backups, make sure wal_level is set to
replica or higher, archive_mode to on, and set up an archive_command that performs archiving
only when a switch file exists. For example:

archive_command = 'test ! -f /var/lib/pgsql/backup_in_progress ||
 (test ! -f /var/lib/pgsql/archive/%f && cp %p /var/lib/pgsql/archive/
%f)'

This command will perform archiving when /var/lib/pgsql/backup_in_progress exists, and
otherwise silently return zero exit status (allowing PostgreSQL to recycle the unwanted WAL file).

With this preparation, a backup can be taken using a script like the following:

touch /var/lib/pgsql/backup_in_progress
psql -c "select pg_start_backup('hot_backup');"
tar -cf /var/lib/pgsql/backup.tar /var/lib/pgsql/data/
psql -c "select pg_stop_backup();"
rm /var/lib/pgsql/backup_in_progress
tar -rf /var/lib/pgsql/backup.tar /var/lib/pgsql/archive/

The switch file /var/lib/pgsql/backup_in_progress is created first, enabling archiving of
completed WAL files to occur. After the backup the switch file is removed. Archived WAL files are then
added to the backup so that both base backup and all required WAL files are part of the same tar file.
Please remember to add error handling to your backup scripts.

25.3.6.2. Compressed Archive Logs

If archive storage size is a concern, you can use gzip to compress the archive files:

697

Backup and Restore

archive_command = 'gzip < %p > /var/lib/pgsql/archive/%f'

You will then need to use gunzip during recovery:

restore_command = 'gunzip < /mnt/server/archivedir/%f > %p'

25.3.6.3. archive_command Scripts

Many people choose to use scripts to define their archive_command, so that their
postgresql.conf entry looks very simple:

archive_command = 'local_backup_script.sh "%p" "%f"'

Using a separate script file is advisable any time you want to use more than a single command in the
archiving process. This allows all complexity to be managed within the script, which can be written in a
popular scripting language such as bash or perl.

Examples of requirements that might be solved within a script include:

• Copying data to secure off-site data storage

• Batching WAL files so that they are transferred every three hours, rather than one at a time

• Interfacing with other backup and recovery software

• Interfacing with monitoring software to report errors

Tip

When using an archive_command script, it's desirable to enable logging_collector. Any
messages written to stderr from the script will then appear in the database server log, allowing
complex configurations to be diagnosed easily if they fail.

25.3.7. Caveats
At this writing, there are several limitations of the continuous archiving technique. These will probably
be fixed in future releases:

• If a CREATE DATABASE command is executed while a base backup is being taken, and then the
template database that the CREATE DATABASE copied is modified while the base backup is still in
progress, it is possible that recovery will cause those modifications to be propagated into the created
database as well. This is of course undesirable. To avoid this risk, it is best not to modify any template
databases while taking a base backup.

• CREATE TABLESPACE commands are WAL-logged with the literal absolute path, and will therefore
be replayed as tablespace creations with the same absolute path. This might be undesirable if the log
is being replayed on a different machine. It can be dangerous even if the log is being replayed on the
same machine, but into a new data directory: the replay will still overwrite the contents of the original
tablespace. To avoid potential gotchas of this sort, the best practice is to take a new base backup after
creating or dropping tablespaces.

698

Backup and Restore

It should also be noted that the default WAL format is fairly bulky since it includes many disk page
snapshots. These page snapshots are designed to support crash recovery, since we might need to fix
partially-written disk pages. Depending on your system hardware and software, the risk of partial writes
might be small enough to ignore, in which case you can significantly reduce the total volume of archived
logs by turning off page snapshots using the full_page_writes parameter. (Read the notes and warnings
in Chapter 30 before you do so.) Turning off page snapshots does not prevent use of the logs for PITR
operations. An area for future development is to compress archived WAL data by removing unnecessary
page copies even when full_page_writes is on. In the meantime, administrators might wish to reduce
the number of page snapshots included in WAL by increasing the checkpoint interval parameters as much
as feasible.

699

Chapter 26. High Availability, Load
Balancing, and Replication

Database servers can work together to allow a second server to take over quickly if the primary server fails
(high availability), or to allow several computers to serve the same data (load balancing). Ideally, database
servers could work together seamlessly. Web servers serving static web pages can be combined quite easily
by merely load-balancing web requests to multiple machines. In fact, read-only database servers can be
combined relatively easily too. Unfortunately, most database servers have a read/write mix of requests,
and read/write servers are much harder to combine. This is because though read-only data needs to be
placed on each server only once, a write to any server has to be propagated to all servers so that future
read requests to those servers return consistent results.

This synchronization problem is the fundamental difficulty for servers working together. Because there
is no single solution that eliminates the impact of the sync problem for all use cases, there are multiple
solutions. Each solution addresses this problem in a different way, and minimizes its impact for a specific
workload.

Some solutions deal with synchronization by allowing only one server to modify the data. Servers that can
modify data are called read/write, master or primary servers. Servers that track changes in the master are
called standby or secondary servers. A standby server that cannot be connected to until it is promoted to
a master server is called a warm standby server, and one that can accept connections and serves read-only
queries is called a hot standby server.

Some solutions are synchronous, meaning that a data-modifying transaction is not considered committed
until all servers have committed the transaction. This guarantees that a failover will not lose any data and
that all load-balanced servers will return consistent results no matter which server is queried. In contrast,
asynchronous solutions allow some delay between the time of a commit and its propagation to the other
servers, opening the possibility that some transactions might be lost in the switch to a backup server, and
that load balanced servers might return slightly stale results. Asynchronous communication is used when
synchronous would be too slow.

Solutions can also be categorized by their granularity. Some solutions can deal only with an entire database
server, while others allow control at the per-table or per-database level.

Performance must be considered in any choice. There is usually a trade-off between functionality and
performance. For example, a fully synchronous solution over a slow network might cut performance by
more than half, while an asynchronous one might have a minimal performance impact.

The remainder of this section outlines various failover, replication, and load balancing solutions.

26.1. Comparison of Different Solutions
Shared Disk Failover

Shared disk failover avoids synchronization overhead by having only one copy of the database. It uses
a single disk array that is shared by multiple servers. If the main database server fails, the standby
server is able to mount and start the database as though it were recovering from a database crash. This
allows rapid failover with no data loss.

Shared hardware functionality is common in network storage devices. Using a network file system
is also possible, though care must be taken that the file system has full POSIX behavior (see
Section 18.2.2). One significant limitation of this method is that if the shared disk array fails or

700

High Availability, Load
Balancing, and Replication

becomes corrupt, the primary and standby servers are both nonfunctional. Another issue is that the
standby server should never access the shared storage while the primary server is running.

File System (Block Device) Replication

A modified version of shared hardware functionality is file system replication, where all changes to
a file system are mirrored to a file system residing on another computer. The only restriction is that
the mirroring must be done in a way that ensures the standby server has a consistent copy of the file
system — specifically, writes to the standby must be done in the same order as those on the master.
DRBD is a popular file system replication solution for Linux.

Write-Ahead Log Shipping

Warm and hot standby servers can be kept current by reading a stream of write-ahead log (WAL)
records. If the main server fails, the standby contains almost all of the data of the main server, and
can be quickly made the new master database server. This can be synchronous or asynchronous and
can only be done for the entire database server.

A standby server can be implemented using file-based log shipping (Section 26.2) or streaming
replication (see Section 26.2.5), or a combination of both. For information on hot standby, see
Section 26.5.

Logical Replication

Logical replication allows a database server to send a stream of data modifications to another server.
PostgreSQL logical replication constructs a stream of logical data modifications from the WAL.
Logical replication allows the data changes from individual tables to be replicated. Logical replication
doesn't require a particular server to be designated as a master or a replica but allows data to flow in
multiple directions. For more information on logical replication, see Chapter 31. Through the logical
decoding interface (Chapter 49), third-party extensions can also provide similar functionality.

Trigger-Based Master-Standby Replication

A master-standby replication setup sends all data modification queries to the master server. The master
server asynchronously sends data changes to the standby server. The standby can answer read-only
queries while the master server is running. The standby server is ideal for data warehouse queries.

Slony-I is an example of this type of replication, with per-table granularity, and support for multiple
standby servers. Because it updates the standby server asynchronously (in batches), there is possible
data loss during fail over.

Statement-Based Replication Middleware

With statement-based replication middleware, a program intercepts every SQL query and sends it to
one or all servers. Each server operates independently. Read-write queries must be sent to all servers,
so that every server receives any changes. But read-only queries can be sent to just one server, allowing
the read workload to be distributed among them.

If queries are simply broadcast unmodified, functions like random(), CURRENT_TIMESTAMP,
and sequences can have different values on different servers. This is because each server operates
independently, and because SQL queries are broadcast (and not actual modified rows). If this is
unacceptable, either the middleware or the application must query such values from a single server
and then use those values in write queries. Another option is to use this replication option with a
traditional master-standby setup, i.e. data modification queries are sent only to the master and are
propagated to the standby servers via master-standby replication, not by the replication middleware.
Care must also be taken that all transactions either commit or abort on all servers, perhaps using two-
phase commit (PREPARE TRANSACTION and COMMIT PREPARED). Pgpool-II and Continuent
Tungsten are examples of this type of replication.

701

High Availability, Load
Balancing, and Replication

Asynchronous Multimaster Replication

For servers that are not regularly connected, like laptops or remote servers, keeping data consistent
among servers is a challenge. Using asynchronous multimaster replication, each server works
independently, and periodically communicates with the other servers to identify conflicting
transactions. The conflicts can be resolved by users or conflict resolution rules. Bucardo is an example
of this type of replication.

Synchronous Multimaster Replication

In synchronous multimaster replication, each server can accept write requests, and modified data is
transmitted from the original server to every other server before each transaction commits. Heavy
write activity can cause excessive locking, leading to poor performance. In fact, write performance is
often worse than that of a single server. Read requests can be sent to any server. Some implementations
use shared disk to reduce the communication overhead. Synchronous multimaster replication is best
for mostly read workloads, though its big advantage is that any server can accept write requests —
there is no need to partition workloads between master and standby servers, and because the data
changes are sent from one server to another, there is no problem with non-deterministic functions
like random().

PostgreSQL does not offer this type of replication, though PostgreSQL two-phase commit (PREPARE
TRANSACTION and COMMIT PREPARED) can be used to implement this in application code or
middleware.

Commercial Solutions

Because PostgreSQL is open source and easily extended, a number of companies have taken
PostgreSQL and created commercial closed-source solutions with unique failover, replication, and
load balancing capabilities.

Table 26.1 summarizes the capabilities of the various solutions listed above.

Table 26.1. High Availability, Load Balancing, and Replication Feature Matrix

Feature Shared
Disk
Failover

File
System
Replication

Write-
Ahead
Log
Shipping

Logical
Replication

Trigger-
Based
Master-
Standby
Replication

Statement-
Based
Replication
Middleware

Asynchronous
Multimaster
Replication

Synchronous
Multimaster
Replication

Most
common
implementations

NAS DRBD built-in
streaming
replication

built-in
logical

replication,
pglogical

Londiste,
Slony

pgpool-II Bucardo

Communication
method

shared
disk

disk
blocks

WAL logical
decoding

table rows SQL table rows table rows
and row

locks

No special
hardware
required

 • • • • • • •

Allows
multiple
master
servers

 • • • •

702

High Availability, Load
Balancing, and Replication

Feature Shared
Disk
Failover

File
System
Replication

Write-
Ahead
Log
Shipping

Logical
Replication

Trigger-
Based
Master-
Standby
Replication

Statement-
Based
Replication
Middleware

Asynchronous
Multimaster
Replication

Synchronous
Multimaster
Replication

No master
server
overhead

• • • •

No
waiting
for
multiple
servers

• with
sync off

with
sync off

• •

Master
failure
will never
lose data

• • with
sync on

with
sync on

 • •

Replicas
accept
read-only
queries

 with hot
standby

• • • • •

Per-table
granularity

 • • • •

No
conflict
resolution
necessary

• • • • •

There are a few solutions that do not fit into the above categories:

Data Partitioning

Data partitioning splits tables into data sets. Each set can be modified by only one server. For example,
data can be partitioned by offices, e.g., London and Paris, with a server in each office. If queries
combining London and Paris data are necessary, an application can query both servers, or master/
standby replication can be used to keep a read-only copy of the other office's data on each server.

Multiple-Server Parallel Query Execution

Many of the above solutions allow multiple servers to handle multiple queries, but none allow a
single query to use multiple servers to complete faster. This solution allows multiple servers to work
concurrently on a single query. It is usually accomplished by splitting the data among servers and
having each server execute its part of the query and return results to a central server where they are
combined and returned to the user. Pgpool-II has this capability. Also, this can be implemented using
the PL/Proxy tool set.

26.2. Log-Shipping Standby Servers
Continuous archiving can be used to create a high availability (HA) cluster configuration with one or more
standby servers ready to take over operations if the primary server fails. This capability is widely referred
to as warm standby or log shipping.

703

High Availability, Load
Balancing, and Replication

The primary and standby server work together to provide this capability, though the servers are only loosely
coupled. The primary server operates in continuous archiving mode, while each standby server operates
in continuous recovery mode, reading the WAL files from the primary. No changes to the database tables
are required to enable this capability, so it offers low administration overhead compared to some other
replication solutions. This configuration also has relatively low performance impact on the primary server.

Directly moving WAL records from one database server to another is typically described as log shipping.
PostgreSQL implements file-based log shipping by transferring WAL records one file (WAL segment) at a
time. WAL files (16MB) can be shipped easily and cheaply over any distance, whether it be to an adjacent
system, another system at the same site, or another system on the far side of the globe. The bandwidth
required for this technique varies according to the transaction rate of the primary server. Record-based
log shipping is more granular and streams WAL changes incrementally over a network connection (see
Section 26.2.5).

It should be noted that log shipping is asynchronous, i.e., the WAL records are shipped after transaction
commit. As a result, there is a window for data loss should the primary server suffer a catastrophic failure;
transactions not yet shipped will be lost. The size of the data loss window in file-based log shipping can
be limited by use of the archive_timeout parameter, which can be set as low as a few seconds.
However such a low setting will substantially increase the bandwidth required for file shipping. Streaming
replication (see Section 26.2.5) allows a much smaller window of data loss.

Recovery performance is sufficiently good that the standby will typically be only moments away from full
availability once it has been activated. As a result, this is called a warm standby configuration which offers
high availability. Restoring a server from an archived base backup and rollforward will take considerably
longer, so that technique only offers a solution for disaster recovery, not high availability. A standby server
can also be used for read-only queries, in which case it is called a Hot Standby server. See Section 26.5
for more information.

26.2.1. Planning
It is usually wise to create the primary and standby servers so that they are as similar as possible, at
least from the perspective of the database server. In particular, the path names associated with tablespaces
will be passed across unmodified, so both primary and standby servers must have the same mount paths
for tablespaces if that feature is used. Keep in mind that if CREATE TABLESPACE is executed on the
primary, any new mount point needed for it must be created on the primary and all standby servers before
the command is executed. Hardware need not be exactly the same, but experience shows that maintaining
two identical systems is easier than maintaining two dissimilar ones over the lifetime of the application
and system. In any case the hardware architecture must be the same — shipping from, say, a 32-bit to a
64-bit system will not work.

In general, log shipping between servers running different major PostgreSQL release levels is not possible.
It is the policy of the PostgreSQL Global Development Group not to make changes to disk formats during
minor release upgrades, so it is likely that running different minor release levels on primary and standby
servers will work successfully. However, no formal support for that is offered and you are advised to keep
primary and standby servers at the same release level as much as possible. When updating to a new minor
release, the safest policy is to update the standby servers first — a new minor release is more likely to be
able to read WAL files from a previous minor release than vice versa.

26.2.2. Standby Server Operation
In standby mode, the server continuously applies WAL received from the master server. The standby
server can read WAL from a WAL archive (see restore_command) or directly from the master over a TCP

704

High Availability, Load
Balancing, and Replication

connection (streaming replication). The standby server will also attempt to restore any WAL found in the
standby cluster's pg_wal directory. That typically happens after a server restart, when the standby replays
again WAL that was streamed from the master before the restart, but you can also manually copy files to
pg_wal at any time to have them replayed.

At startup, the standby begins by restoring all WAL available in the archive location, calling
restore_command. Once it reaches the end of WAL available there and restore_command fails,
it tries to restore any WAL available in the pg_wal directory. If that fails, and streaming replication has
been configured, the standby tries to connect to the primary server and start streaming WAL from the
last valid record found in archive or pg_wal. If that fails or streaming replication is not configured, or if
the connection is later disconnected, the standby goes back to step 1 and tries to restore the file from the
archive again. This loop of retries from the archive, pg_wal, and via streaming replication goes on until
the server is stopped or failover is triggered by a trigger file.

Standby mode is exited and the server switches to normal operation when pg_ctl promote is run or a
trigger file is found (trigger_file). Before failover, any WAL immediately available in the archive
or in pg_wal will be restored, but no attempt is made to connect to the master.

26.2.3. Preparing the Master for Standby Servers
Set up continuous archiving on the primary to an archive directory accessible from the standby, as
described in Section 25.3. The archive location should be accessible from the standby even when the master
is down, i.e. it should reside on the standby server itself or another trusted server, not on the master server.

If you want to use streaming replication, set up authentication on the primary server to allow replication
connections from the standby server(s); that is, create a role and provide a suitable entry or entries in
pg_hba.conf with the database field set to replication. Also ensure max_wal_senders is set
to a sufficiently large value in the configuration file of the primary server. If replication slots will be used,
ensure that max_replication_slots is set sufficiently high as well.

Take a base backup as described in Section 25.3.2 to bootstrap the standby server.

26.2.4. Setting Up a Standby Server
To set up the standby server, restore the base backup taken from primary server (see Section 25.3.4).
Create a recovery command file recovery.conf in the standby's cluster data directory, and
turn on standby_mode. Set restore_command to a simple command to copy files from the
WAL archive. If you plan to have multiple standby servers for high availability purposes, set
recovery_target_timeline to latest, to make the standby server follow the timeline change
that occurs at failover to another standby.

Note

Do not use pg_standby or similar tools with the built-in standby mode described here.
restore_command should return immediately if the file does not exist; the server will retry the
command again if necessary. See Section 26.4 for using tools like pg_standby.

If you want to use streaming replication, fill in primary_conninfo with a libpq connection string,
including the host name (or IP address) and any additional details needed to connect to the primary
server. If the primary needs a password for authentication, the password needs to be specified in
primary_conninfo as well.

705

High Availability, Load
Balancing, and Replication

If you're setting up the standby server for high availability purposes, set up WAL archiving, connections
and authentication like the primary server, because the standby server will work as a primary server after
failover.

If you're using a WAL archive, its size can be minimized using the archive_cleanup_command parameter
to remove files that are no longer required by the standby server. The pg_archivecleanup utility is designed
specifically to be used with archive_cleanup_command in typical single-standby configurations,
see pg_archivecleanup. Note however, that if you're using the archive for backup purposes, you need to
retain files needed to recover from at least the latest base backup, even if they're no longer needed by
the standby.

A simple example of a recovery.conf is:

standby_mode = 'on'
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo
 password=foopass'
restore_command = 'cp /path/to/archive/%f %p'
archive_cleanup_command = 'pg_archivecleanup /path/to/archive %r'

You can have any number of standby servers, but if you use streaming replication, make sure you set
max_wal_senders high enough in the primary to allow them to be connected simultaneously.

26.2.5. Streaming Replication
Streaming replication allows a standby server to stay more up-to-date than is possible with file-based log
shipping. The standby connects to the primary, which streams WAL records to the standby as they're
generated, without waiting for the WAL file to be filled.

Streaming replication is asynchronous by default (see Section 26.2.8), in which case there is a small delay
between committing a transaction in the primary and the changes becoming visible in the standby. This
delay is however much smaller than with file-based log shipping, typically under one second assuming the
standby is powerful enough to keep up with the load. With streaming replication, archive_timeout
is not required to reduce the data loss window.

If you use streaming replication without file-based continuous archiving, the server might recycle old WAL
segments before the standby has received them. If this occurs, the standby will need to be reinitialized
from a new base backup. You can avoid this by setting wal_keep_segments to a value large enough to
ensure that WAL segments are not recycled too early, or by configuring a replication slot for the standby.
If you set up a WAL archive that's accessible from the standby, these solutions are not required, since the
standby can always use the archive to catch up provided it retains enough segments.

To use streaming replication, set up a file-based log-shipping standby server as described in Section 26.2.
The step that turns a file-based log-shipping standby into streaming replication standby is setting
primary_conninfo setting in the recovery.conf file to point to the primary server. Set
listen_addresses and authentication options (see pg_hba.conf) on the primary so that the standby server
can connect to the replication pseudo-database on the primary server (see Section 26.2.5.1).

On systems that support the keepalive socket option, setting tcp_keepalives_idle, tcp_keepalives_interval
and tcp_keepalives_count helps the primary promptly notice a broken connection.

Set the maximum number of concurrent connections from the standby servers (see max_wal_senders for
details).

When the standby is started and primary_conninfo is set correctly, the standby will connect to the
primary after replaying all WAL files available in the archive. If the connection is established successfully,
you will see a walreceiver process in the standby, and a corresponding walsender process in the primary.

706

High Availability, Load
Balancing, and Replication

26.2.5.1. Authentication

It is very important that the access privileges for replication be set up so that only trusted users can read the
WAL stream, because it is easy to extract privileged information from it. Standby servers must authenticate
to the primary as a superuser or an account that has the REPLICATION privilege. It is recommended
to create a dedicated user account with REPLICATION and LOGIN privileges for replication. While
REPLICATION privilege gives very high permissions, it does not allow the user to modify any data on
the primary system, which the SUPERUSER privilege does.

Client authentication for replication is controlled by a pg_hba.conf record specifying replication
in the database field. For example, if the standby is running on host IP 192.168.1.100 and the
account name for replication is foo, the administrator can add the following line to the pg_hba.conf
file on the primary:

Allow the user "foo" from host 192.168.1.100 to connect to the
 primary
as a replication standby if the user's password is correctly
 supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host replication foo 192.168.1.100/32 md5

The host name and port number of the primary, connection user name, and password are specified
in the recovery.conf file. The password can also be set in the ~/.pgpass file on the standby
(specify replication in the database field). For example, if the primary is running on host IP
192.168.1.50, port 5432, the account name for replication is foo, and the password is foopass,
the administrator can add the following line to the recovery.conf file on the standby:

The standby connects to the primary that is running on host
 192.168.1.50
and port 5432 as the user "foo" whose password is "foopass".
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo
 password=foopass'

26.2.5.2. Monitoring

An important health indicator of streaming replication is the amount of WAL records generated in the
primary, but not yet applied in the standby. You can calculate this lag by comparing the current WAL
write location on the primary with the last WAL location received by the standby. These locations can
be retrieved using pg_current_wal_lsn on the primary and pg_last_wal_receive_lsn on
the standby, respectively (see Table 9.79 and Table 9.80 for details). The last WAL receive location in
the standby is also displayed in the process status of the WAL receiver process, displayed using the ps
command (see Section 28.1 for details).

You can retrieve a list of WAL sender processes via the pg_stat_replication view. Large differences
between pg_current_wal_lsn and the view's sent_lsn field might indicate that the master server
is under heavy load, while differences between sent_lsn and pg_last_wal_receive_lsn on the
standby might indicate network delay, or that the standby is under heavy load.

On a hot standby, the status of the WAL receiver process can be retrieved via the pg_stat_wal_receiver
view. A large difference between pg_last_wal_replay_lsn and the view's received_lsn
indicates that WAL is being received faster than it can be replayed.

707

High Availability, Load
Balancing, and Replication

26.2.6. Replication Slots
Replication slots provide an automated way to ensure that the master does not remove WAL segments
until they have been received by all standbys, and that the master does not remove rows which could cause
a recovery conflict even when the standby is disconnected.

In lieu of using replication slots, it is possible to prevent the removal of old WAL segments using
wal_keep_segments, or by storing the segments in an archive using archive_command. However, these
methods often result in retaining more WAL segments than required, whereas replication slots retain only
the number of segments known to be needed. An advantage of these methods is that they bound the space
requirement for pg_wal; there is currently no way to do this using replication slots.

Similarly, hot_standby_feedback and vacuum_defer_cleanup_age provide protection against relevant
rows being removed by vacuum, but the former provides no protection during any time period when the
standby is not connected, and the latter often needs to be set to a high value to provide adequate protection.
Replication slots overcome these disadvantages.

26.2.6.1. Querying and manipulating replication slots

Each replication slot has a name, which can contain lower-case letters, numbers, and the underscore
character.

Existing replication slots and their state can be seen in the pg_replication_slots view.

Slots can be created and dropped either via the streaming replication protocol (see Section 53.4) or via
SQL functions (see Section 9.26.6).

26.2.6.2. Configuration Example

You can create a replication slot like this:

postgres=# SELECT * FROM
 pg_create_physical_replication_slot('node_a_slot');
 slot_name | lsn
-------------+-----
 node_a_slot |

postgres=# SELECT slot_name, slot_type, active FROM
 pg_replication_slots;
 slot_name | slot_type | active
-------------+-----------+--------
 node_a_slot | physical | f
(1 row)

To configure the standby to use this slot, primary_slot_name should be configured in the standby's
recovery.conf. Here is a simple example:

standby_mode = 'on'
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo
 password=foopass'
primary_slot_name = 'node_a_slot'

26.2.7. Cascading Replication

708

High Availability, Load
Balancing, and Replication

The cascading replication feature allows a standby server to accept replication connections and stream
WAL records to other standbys, acting as a relay. This can be used to reduce the number of direct
connections to the master and also to minimize inter-site bandwidth overheads.

A standby acting as both a receiver and a sender is known as a cascading standby. Standbys that are more
directly connected to the master are known as upstream servers, while those standby servers further away
are downstream servers. Cascading replication does not place limits on the number or arrangement of
downstream servers, though each standby connects to only one upstream server which eventually links to
a single master/primary server.

A cascading standby sends not only WAL records received from the master but also those restored from
the archive. So even if the replication connection in some upstream connection is terminated, streaming
replication continues downstream for as long as new WAL records are available.

Cascading replication is currently asynchronous. Synchronous replication (see Section 26.2.8) settings
have no effect on cascading replication at present.

Hot Standby feedback propagates upstream, whatever the cascaded arrangement.

If an upstream standby server is promoted to become new master, downstream servers will continue to
stream from the new master if recovery_target_timeline is set to 'latest'.

To use cascading replication, set up the cascading standby so that it can accept replication connections
(that is, set max_wal_senders and hot_standby, and configure host-based authentication). You will also
need to set primary_conninfo in the downstream standby to point to the cascading standby.

26.2.8. Synchronous Replication
PostgreSQL streaming replication is asynchronous by default. If the primary server crashes then some
transactions that were committed may not have been replicated to the standby server, causing data loss.
The amount of data loss is proportional to the replication delay at the time of failover.

Synchronous replication offers the ability to confirm that all changes made by a transaction have been
transferred to one or more synchronous standby servers. This extends that standard level of durability
offered by a transaction commit. This level of protection is referred to as 2-safe replication in computer
science theory, and group-1-safe (group-safe and 1-safe) when synchronous_commit is set to
remote_write.

When requesting synchronous replication, each commit of a write transaction will wait until confirmation
is received that the commit has been written to the write-ahead log on disk of both the primary and standby
server. The only possibility that data can be lost is if both the primary and the standby suffer crashes at
the same time. This can provide a much higher level of durability, though only if the sysadmin is cautious
about the placement and management of the two servers. Waiting for confirmation increases the user's
confidence that the changes will not be lost in the event of server crashes but it also necessarily increases
the response time for the requesting transaction. The minimum wait time is the round-trip time between
primary to standby.

Read only transactions and transaction rollbacks need not wait for replies from standby servers.
Subtransaction commits do not wait for responses from standby servers, only top-level commits. Long
running actions such as data loading or index building do not wait until the very final commit message.
All two-phase commit actions require commit waits, including both prepare and commit.

A synchronous standby can be a physical replication standby or a logical replication subscriber. It can also
be any other physical or logical WAL replication stream consumer that knows how to send the appropriate
feedback messages. Besides the built-in physical and logical replication systems, this includes special

709

High Availability, Load
Balancing, and Replication

programs such as pg_receivewal and pg_recvlogical as well as some third-party replication
systems and custom programs. Check the respective documentation for details on synchronous replication
support.

26.2.8.1. Basic Configuration

Once streaming replication has been configured, configuring synchronous replication requires only
one additional configuration step: synchronous_standby_names must be set to a non-empty value.
synchronous_commit must also be set to on, but since this is the default value, typically no change
is required. (See Section 19.5.1 and Section 19.6.2.) This configuration will cause each commit to wait for
confirmation that the standby has written the commit record to durable storage. synchronous_commit
can be set by individual users, so it can be configured in the configuration file, for particular users or
databases, or dynamically by applications, in order to control the durability guarantee on a per-transaction
basis.

After a commit record has been written to disk on the primary, the WAL record is then sent to
the standby. The standby sends reply messages each time a new batch of WAL data is written to
disk, unless wal_receiver_status_interval is set to zero on the standby. In the case that
synchronous_commit is set to remote_apply, the standby sends reply messages when the commit
record is replayed, making the transaction visible. If the standby is chosen as a synchronous standby,
according to the setting of synchronous_standby_names on the primary, the reply messages from
that standby will be considered along with those from other synchronous standbys to decide when to
release transactions waiting for confirmation that the commit record has been received. These parameters
allow the administrator to specify which standby servers should be synchronous standbys. Note that
the configuration of synchronous replication is mainly on the master. Named standbys must be directly
connected to the master; the master knows nothing about downstream standby servers using cascaded
replication.

Setting synchronous_commit to remote_write will cause each commit to wait for confirmation
that the standby has received the commit record and written it out to its own operating system, but not
for the data to be flushed to disk on the standby. This setting provides a weaker guarantee of durability
than on does: the standby could lose the data in the event of an operating system crash, though not a
PostgreSQL crash. However, it's a useful setting in practice because it can decrease the response time for
the transaction. Data loss could only occur if both the primary and the standby crash and the database of
the primary gets corrupted at the same time.

Setting synchronous_commit to remote_apply will cause each commit to wait until the current
synchronous standbys report that they have replayed the transaction, making it visible to user queries. In
simple cases, this allows for load balancing with causal consistency.

Users will stop waiting if a fast shutdown is requested. However, as when using asynchronous replication,
the server will not fully shutdown until all outstanding WAL records are transferred to the currently
connected standby servers.

26.2.8.2. Multiple Synchronous Standbys

Synchronous replication supports one or more synchronous standby servers; transactions will wait
until all the standby servers which are considered as synchronous confirm receipt of their data.
The number of synchronous standbys that transactions must wait for replies from is specified in
synchronous_standby_names. This parameter also specifies a list of standby names and the method
(FIRST and ANY) to choose synchronous standbys from the listed ones.

The method FIRST specifies a priority-based synchronous replication and makes transaction commits
wait until their WAL records are replicated to the requested number of synchronous standbys chosen
based on their priorities. The standbys whose names appear earlier in the list are given higher priority and

710

High Availability, Load
Balancing, and Replication

will be considered as synchronous. Other standby servers appearing later in this list represent potential
synchronous standbys. If any of the current synchronous standbys disconnects for whatever reason, it will
be replaced immediately with the next-highest-priority standby.

An example of synchronous_standby_names for a priority-based multiple synchronous standbys
is:

synchronous_standby_names = 'FIRST 2 (s1, s2, s3)'

In this example, if four standby servers s1, s2, s3 and s4 are running, the two standbys s1 and s2 will
be chosen as synchronous standbys because their names appear early in the list of standby names. s3 is
a potential synchronous standby and will take over the role of synchronous standby when either of s1 or
s2 fails. s4 is an asynchronous standby since its name is not in the list.

The method ANY specifies a quorum-based synchronous replication and makes transaction commits wait
until their WAL records are replicated to at least the requested number of synchronous standbys in the list.

An example of synchronous_standby_names for a quorum-based multiple synchronous standbys
is:

synchronous_standby_names = 'ANY 2 (s1, s2, s3)'

In this example, if four standby servers s1, s2, s3 and s4 are running, transaction commits will wait for
replies from at least any two standbys of s1, s2 and s3. s4 is an asynchronous standby since its name
is not in the list.

The synchronous states of standby servers can be viewed using the pg_stat_replication view.

26.2.8.3. Planning for Performance

Synchronous replication usually requires carefully planned and placed standby servers to ensure
applications perform acceptably. Waiting doesn't utilize system resources, but transaction locks continue
to be held until the transfer is confirmed. As a result, incautious use of synchronous replication will reduce
performance for database applications because of increased response times and higher contention.

PostgreSQL allows the application developer to specify the durability level required via replication. This
can be specified for the system overall, though it can also be specified for specific users or connections,
or even individual transactions.

For example, an application workload might consist of: 10% of changes are important customer details,
while 90% of changes are less important data that the business can more easily survive if it is lost, such
as chat messages between users.

With synchronous replication options specified at the application level (on the primary) we can offer
synchronous replication for the most important changes, without slowing down the bulk of the total
workload. Application level options are an important and practical tool for allowing the benefits of
synchronous replication for high performance applications.

You should consider that the network bandwidth must be higher than the rate of generation of WAL data.

26.2.8.4. Planning for High Availability

synchronous_standby_names specifies the number and names of synchronous standbys that
transaction commits made when synchronous_commit is set to on, remote_apply or

711

High Availability, Load
Balancing, and Replication

remote_write will wait for responses from. Such transaction commits may never be completed if any
one of synchronous standbys should crash.

The best solution for high availability is to ensure you keep as many synchronous standbys
as requested. This can be achieved by naming multiple potential synchronous standbys using
synchronous_standby_names.

In a priority-based synchronous replication, the standbys whose names appear earlier in the list will be
used as synchronous standbys. Standbys listed after these will take over the role of synchronous standby
if one of current ones should fail.

In a quorum-based synchronous replication, all the standbys appearing in the list will be used as candidates
for synchronous standbys. Even if one of them should fail, the other standbys will keep performing the
role of candidates of synchronous standby.

When a standby first attaches to the primary, it will not yet be properly synchronized. This is described
as catchup mode. Once the lag between standby and primary reaches zero for the first time we move to
real-time streaming state. The catch-up duration may be long immediately after the standby has been
created. If the standby is shut down, then the catch-up period will increase according to the length of time
the standby has been down. The standby is only able to become a synchronous standby once it has reached
streaming state. This state can be viewed using the pg_stat_replication view.

If primary restarts while commits are waiting for acknowledgement, those waiting transactions will be
marked fully committed once the primary database recovers. There is no way to be certain that all standbys
have received all outstanding WAL data at time of the crash of the primary. Some transactions may not
show as committed on the standby, even though they show as committed on the primary. The guarantee
we offer is that the application will not receive explicit acknowledgement of the successful commit of a
transaction until the WAL data is known to be safely received by all the synchronous standbys.

If you really cannot keep as many synchronous standbys as requested then you should decrease
the number of synchronous standbys that transaction commits must wait for responses from in
synchronous_standby_names (or disable it) and reload the configuration file on the primary server.

If the primary is isolated from remaining standby servers you should fail over to the best candidate of
those other remaining standby servers.

If you need to re-create a standby server while transactions are waiting, make sure that the commands
pg_start_backup() and pg_stop_backup() are run in a session with synchronous_commit = off,
otherwise those requests will wait forever for the standby to appear.

26.2.9. Continuous archiving in standby
When continuous WAL archiving is used in a standby, there are two different scenarios: the WAL archive
can be shared between the primary and the standby, or the standby can have its own WAL archive. When
the standby has its own WAL archive, set archive_mode to always, and the standby will call the
archive command for every WAL segment it receives, whether it's by restoring from the archive or by
streaming replication. The shared archive can be handled similarly, but the archive_command must
test if the file being archived exists already, and if the existing file has identical contents. This requires
more care in the archive_command, as it must be careful to not overwrite an existing file with different
contents, but return success if the exactly same file is archived twice. And all that must be done free of
race conditions, if two servers attempt to archive the same file at the same time.

If archive_mode is set to on, the archiver is not enabled during recovery or standby mode. If the
standby server is promoted, it will start archiving after the promotion, but will not archive any WAL it did
not generate itself. To get a complete series of WAL files in the archive, you must ensure that all WAL is

712

High Availability, Load
Balancing, and Replication

archived, before it reaches the standby. This is inherently true with file-based log shipping, as the standby
can only restore files that are found in the archive, but not if streaming replication is enabled. When a
server is not in recovery mode, there is no difference between on and always modes.

26.3. Failover
If the primary server fails then the standby server should begin failover procedures.

If the standby server fails then no failover need take place. If the standby server can be restarted, even some
time later, then the recovery process can also be restarted immediately, taking advantage of restartable
recovery. If the standby server cannot be restarted, then a full new standby server instance should be
created.

If the primary server fails and the standby server becomes the new primary, and then the old primary
restarts, you must have a mechanism for informing the old primary that it is no longer the primary. This
is sometimes known as STONITH (Shoot The Other Node In The Head), which is necessary to avoid
situations where both systems think they are the primary, which will lead to confusion and ultimately data
loss.

Many failover systems use just two systems, the primary and the standby, connected by some kind of
heartbeat mechanism to continually verify the connectivity between the two and the viability of the
primary. It is also possible to use a third system (called a witness server) to prevent some cases of
inappropriate failover, but the additional complexity might not be worthwhile unless it is set up with
sufficient care and rigorous testing.

PostgreSQL does not provide the system software required to identify a failure on the primary and notify
the standby database server. Many such tools exist and are well integrated with the operating system
facilities required for successful failover, such as IP address migration.

Once failover to the standby occurs, there is only a single server in operation. This is known as a degenerate
state. The former standby is now the primary, but the former primary is down and might stay down. To
return to normal operation, a standby server must be recreated, either on the former primary system when
it comes up, or on a third, possibly new, system. The pg_rewind utility can be used to speed up this process
on large clusters. Once complete, the primary and standby can be considered to have switched roles. Some
people choose to use a third server to provide backup for the new primary until the new standby server is
recreated, though clearly this complicates the system configuration and operational processes.

So, switching from primary to standby server can be fast but requires some time to re-prepare the failover
cluster. Regular switching from primary to standby is useful, since it allows regular downtime on each
system for maintenance. This also serves as a test of the failover mechanism to ensure that it will really
work when you need it. Written administration procedures are advised.

To trigger failover of a log-shipping standby server, run pg_ctl promote or create a trigger file with
the file name and path specified by the trigger_file setting in recovery.conf. If you're planning
to use pg_ctl promote to fail over, trigger_file is not required. If you're setting up the reporting
servers that are only used to offload read-only queries from the primary, not for high availability purposes,
you don't need to promote it.

26.4. Alternative Method for Log Shipping
An alternative to the built-in standby mode described in the previous sections is to use a
restore_command that polls the archive location. This was the only option available in versions 8.4
and below. In this setup, set standby_mode off, because you are implementing the polling required for
standby operation yourself. See the pg_standby module for a reference implementation of this.

713

High Availability, Load
Balancing, and Replication

Note that in this mode, the server will apply WAL one file at a time, so if you use the standby server for
queries (see Hot Standby), there is a delay between an action in the master and when the action becomes
visible in the standby, corresponding the time it takes to fill up the WAL file. archive_timeout can be
used to make that delay shorter. Also note that you can't combine streaming replication with this method.

The operations that occur on both primary and standby servers are normal continuous archiving and
recovery tasks. The only point of contact between the two database servers is the archive of WAL files
that both share: primary writing to the archive, standby reading from the archive. Care must be taken to
ensure that WAL archives from separate primary servers do not become mixed together or confused. The
archive need not be large if it is only required for standby operation.

The magic that makes the two loosely coupled servers work together is simply a restore_command
used on the standby that, when asked for the next WAL file, waits for it to become available from the
primary. The restore_command is specified in the recovery.conf file on the standby server.
Normal recovery processing would request a file from the WAL archive, reporting failure if the file was
unavailable. For standby processing it is normal for the next WAL file to be unavailable, so the standby
must wait for it to appear. For files ending in .history there is no need to wait, and a non-zero return
code must be returned. A waiting restore_command can be written as a custom script that loops after
polling for the existence of the next WAL file. There must also be some way to trigger failover, which
should interrupt the restore_command, break the loop and return a file-not-found error to the standby
server. This ends recovery and the standby will then come up as a normal server.

Pseudocode for a suitable restore_command is:

triggered = false;
while (!NextWALFileReady() && !triggered)
{
 sleep(100000L); /* wait for ~0.1 sec */
 if (CheckForExternalTrigger())
 triggered = true;
}
if (!triggered)
 CopyWALFileForRecovery();

A working example of a waiting restore_command is provided in the pg_standby module. It should
be used as a reference on how to correctly implement the logic described above. It can also be extended
as needed to support specific configurations and environments.

The method for triggering failover is an important part of planning and design. One potential option is
the restore_command command. It is executed once for each WAL file, but the process running the
restore_command is created and dies for each file, so there is no daemon or server process, and
signals or a signal handler cannot be used. Therefore, the restore_command is not suitable to trigger
failover. It is possible to use a simple timeout facility, especially if used in conjunction with a known
archive_timeout setting on the primary. However, this is somewhat error prone since a network
problem or busy primary server might be sufficient to initiate failover. A notification mechanism such as
the explicit creation of a trigger file is ideal, if this can be arranged.

26.4.1. Implementation
The short procedure for configuring a standby server using this alternative method is as follows. For full
details of each step, refer to previous sections as noted.

1. Set up primary and standby systems as nearly identical as possible, including two identical copies of
PostgreSQL at the same release level.

714

High Availability, Load
Balancing, and Replication

2. Set up continuous archiving from the primary to a WAL archive directory on the standby server. Ensure
that archive_mode, archive_command and archive_timeout are set appropriately on the primary (see
Section 25.3.1).

3. Make a base backup of the primary server (see Section 25.3.2), and load this data onto the standby.

4. Begin recovery on the standby server from the local WAL archive, using a recovery.conf that
specifies a restore_command that waits as described previously (see Section 25.3.4).

Recovery treats the WAL archive as read-only, so once a WAL file has been copied to the standby system
it can be copied to tape at the same time as it is being read by the standby database server. Thus, running
a standby server for high availability can be performed at the same time as files are stored for longer term
disaster recovery purposes.

For testing purposes, it is possible to run both primary and standby servers on the same system. This does
not provide any worthwhile improvement in server robustness, nor would it be described as HA.

26.4.2. Record-based Log Shipping
It is also possible to implement record-based log shipping using this alternative method, though this
requires custom development, and changes will still only become visible to hot standby queries after a
full WAL file has been shipped.

An external program can call the pg_walfile_name_offset() function (see Section 9.26) to find
out the file name and the exact byte offset within it of the current end of WAL. It can then access the WAL
file directly and copy the data from the last known end of WAL through the current end over to the standby
servers. With this approach, the window for data loss is the polling cycle time of the copying program,
which can be very small, and there is no wasted bandwidth from forcing partially-used segment files to
be archived. Note that the standby servers' restore_command scripts can only deal with whole WAL
files, so the incrementally copied data is not ordinarily made available to the standby servers. It is of use
only when the primary dies — then the last partial WAL file is fed to the standby before allowing it to
come up. The correct implementation of this process requires cooperation of the restore_command
script with the data copying program.

Starting with PostgreSQL version 9.0, you can use streaming replication (see Section 26.2.5) to achieve
the same benefits with less effort.

26.5. Hot Standby
Hot Standby is the term used to describe the ability to connect to the server and run read-only queries
while the server is in archive recovery or standby mode. This is useful both for replication purposes and for
restoring a backup to a desired state with great precision. The term Hot Standby also refers to the ability
of the server to move from recovery through to normal operation while users continue running queries
and/or keep their connections open.

Running queries in hot standby mode is similar to normal query operation, though there are several usage
and administrative differences explained below.

26.5.1. User's Overview
When the hot_standby parameter is set to true on a standby server, it will begin accepting connections
once the recovery has brought the system to a consistent state. All such connections are strictly read-only;
not even temporary tables may be written.

715

High Availability, Load
Balancing, and Replication

The data on the standby takes some time to arrive from the primary server so there will be a measurable
delay between primary and standby. Running the same query nearly simultaneously on both primary and
standby might therefore return differing results. We say that data on the standby is eventually consistent
with the primary. Once the commit record for a transaction is replayed on the standby, the changes made
by that transaction will be visible to any new snapshots taken on the standby. Snapshots may be taken at
the start of each query or at the start of each transaction, depending on the current transaction isolation
level. For more details, see Section 13.2.

Transactions started during hot standby may issue the following commands:

• Query access - SELECT, COPY TO

• Cursor commands - DECLARE, FETCH, CLOSE

• Parameters - SHOW, SET, RESET

• Transaction management commands

• BEGIN, END, ABORT, START TRANSACTION

• SAVEPOINT, RELEASE, ROLLBACK TO SAVEPOINT

• EXCEPTION blocks and other internal subtransactions

• LOCK TABLE, though only when explicitly in one of these modes: ACCESS SHARE, ROW SHARE
or ROW EXCLUSIVE.

• Plans and resources - PREPARE, EXECUTE, DEALLOCATE, DISCARD

• Plugins and extensions - LOAD

• UNLISTEN

Transactions started during hot standby will never be assigned a transaction ID and cannot write to the
system write-ahead log. Therefore, the following actions will produce error messages:

• Data Manipulation Language (DML) - INSERT, UPDATE, DELETE, COPY FROM, TRUNCATE. Note
that there are no allowed actions that result in a trigger being executed during recovery. This restriction
applies even to temporary tables, because table rows cannot be read or written without assigning a
transaction ID, which is currently not possible in a Hot Standby environment.

• Data Definition Language (DDL) - CREATE, DROP, ALTER, COMMENT. This restriction applies even
to temporary tables, because carrying out these operations would require updating the system catalog
tables.

• SELECT ... FOR SHARE | UPDATE, because row locks cannot be taken without updating the
underlying data files.

• Rules on SELECT statements that generate DML commands.

• LOCK that explicitly requests a mode higher than ROW EXCLUSIVE MODE.

• LOCK in short default form, since it requests ACCESS EXCLUSIVE MODE.

• Transaction management commands that explicitly set non-read-only state:

• BEGIN READ WRITE, START TRANSACTION READ WRITE

716

High Availability, Load
Balancing, and Replication

• SET TRANSACTION READ WRITE, SET SESSION CHARACTERISTICS AS TRANSACTION
READ WRITE

• SET transaction_read_only = off

• Two-phase commit commands - PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK
PREPARED because even read-only transactions need to write WAL in the prepare phase (the first phase
of two phase commit).

• Sequence updates - nextval(), setval()

• LISTEN, NOTIFY

In normal operation, “read-only” transactions are allowed to use LISTEN and NOTIFY, so Hot Standby
sessions operate under slightly tighter restrictions than ordinary read-only sessions. It is possible that some
of these restrictions might be loosened in a future release.

During hot standby, the parameter transaction_read_only is always true and may not be changed.
But as long as no attempt is made to modify the database, connections during hot standby will act much
like any other database connection. If failover or switchover occurs, the database will switch to normal
processing mode. Sessions will remain connected while the server changes mode. Once hot standby
finishes, it will be possible to initiate read-write transactions (even from a session begun during hot
standby).

Users will be able to tell whether their session is read-only by issuing SHOW
transaction_read_only. In addition, a set of functions (Table 9.80) allow users to access
information about the standby server. These allow you to write programs that are aware of the current state
of the database. These can be used to monitor the progress of recovery, or to allow you to write complex
programs that restore the database to particular states.

26.5.2. Handling Query Conflicts
The primary and standby servers are in many ways loosely connected. Actions on the primary will have
an effect on the standby. As a result, there is potential for negative interactions or conflicts between them.
The easiest conflict to understand is performance: if a huge data load is taking place on the primary then
this will generate a similar stream of WAL records on the standby, so standby queries may contend for
system resources, such as I/O.

There are also additional types of conflict that can occur with Hot Standby. These conflicts are hard
conflicts in the sense that queries might need to be canceled and, in some cases, sessions disconnected to
resolve them. The user is provided with several ways to handle these conflicts. Conflict cases include:

• Access Exclusive locks taken on the primary server, including both explicit LOCK commands and
various DDL actions, conflict with table accesses in standby queries.

• Dropping a tablespace on the primary conflicts with standby queries using that tablespace for temporary
work files.

• Dropping a database on the primary conflicts with sessions connected to that database on the standby.

• Application of a vacuum cleanup record from WAL conflicts with standby transactions whose snapshots
can still “see” any of the rows to be removed.

• Application of a vacuum cleanup record from WAL conflicts with queries accessing the target page on
the standby, whether or not the data to be removed is visible.

717

High Availability, Load
Balancing, and Replication

On the primary server, these cases simply result in waiting; and the user might choose to cancel either
of the conflicting actions. However, on the standby there is no choice: the WAL-logged action already
occurred on the primary so the standby must not fail to apply it. Furthermore, allowing WAL application to
wait indefinitely may be very undesirable, because the standby's state will become increasingly far behind
the primary's. Therefore, a mechanism is provided to forcibly cancel standby queries that conflict with to-
be-applied WAL records.

An example of the problem situation is an administrator on the primary server running DROP TABLE on
a table that is currently being queried on the standby server. Clearly the standby query cannot continue if
the DROP TABLE is applied on the standby. If this situation occurred on the primary, the DROP TABLE
would wait until the other query had finished. But when DROP TABLE is run on the primary, the primary
doesn't have information about what queries are running on the standby, so it will not wait for any such
standby queries. The WAL change records come through to the standby while the standby query is still
running, causing a conflict. The standby server must either delay application of the WAL records (and
everything after them, too) or else cancel the conflicting query so that the DROP TABLE can be applied.

When a conflicting query is short, it's typically desirable to allow it to complete by delaying WAL
application for a little bit; but a long delay in WAL application is usually not desirable. So the cancel
mechanism has parameters, max_standby_archive_delay and max_standby_streaming_delay, that define
the maximum allowed delay in WAL application. Conflicting queries will be canceled once it has taken
longer than the relevant delay setting to apply any newly-received WAL data. There are two parameters so
that different delay values can be specified for the case of reading WAL data from an archive (i.e., initial
recovery from a base backup or “catching up” a standby server that has fallen far behind) versus reading
WAL data via streaming replication.

In a standby server that exists primarily for high availability, it's best to set the delay parameters relatively
short, so that the server cannot fall far behind the primary due to delays caused by standby queries.
However, if the standby server is meant for executing long-running queries, then a high or even infinite
delay value may be preferable. Keep in mind however that a long-running query could cause other sessions
on the standby server to not see recent changes on the primary, if it delays application of WAL records.

Once the delay specified by max_standby_archive_delay or
max_standby_streaming_delay has been exceeded, conflicting queries will be canceled. This
usually results just in a cancellation error, although in the case of replaying a DROP DATABASE the entire
conflicting session will be terminated. Also, if the conflict is over a lock held by an idle transaction, the
conflicting session is terminated (this behavior might change in the future).

Canceled queries may be retried immediately (after beginning a new transaction, of course). Since query
cancellation depends on the nature of the WAL records being replayed, a query that was canceled may
well succeed if it is executed again.

Keep in mind that the delay parameters are compared to the elapsed time since the WAL data was received
by the standby server. Thus, the grace period allowed to any one query on the standby is never more than
the delay parameter, and could be considerably less if the standby has already fallen behind as a result of
waiting for previous queries to complete, or as a result of being unable to keep up with a heavy update load.

The most common reason for conflict between standby queries and WAL replay is “early cleanup”.
Normally, PostgreSQL allows cleanup of old row versions when there are no transactions that need to
see them to ensure correct visibility of data according to MVCC rules. However, this rule can only be
applied for transactions executing on the master. So it is possible that cleanup on the master will remove
row versions that are still visible to a transaction on the standby.

Experienced users should note that both row version cleanup and row version freezing will potentially
conflict with standby queries. Running a manual VACUUM FREEZE is likely to cause conflicts even on
tables with no updated or deleted rows.

718

High Availability, Load
Balancing, and Replication

Users should be clear that tables that are regularly and heavily updated on the primary server will quickly
cause cancellation of longer running queries on the standby. In such cases the setting of a finite value
for max_standby_archive_delay or max_standby_streaming_delay can be considered
similar to setting statement_timeout.

Remedial possibilities exist if the number of standby-query cancellations is found to be unacceptable.
The first option is to set the parameter hot_standby_feedback, which prevents VACUUM from
removing recently-dead rows and so cleanup conflicts do not occur. If you do this, you should note
that this will delay cleanup of dead rows on the primary, which may result in undesirable table
bloat. However, the cleanup situation will be no worse than if the standby queries were running
directly on the primary server, and you are still getting the benefit of off-loading execution onto the
standby. If standby servers connect and disconnect frequently, you might want to make adjustments
to handle the period when hot_standby_feedback feedback is not being provided. For example,
consider increasing max_standby_archive_delay so that queries are not rapidly canceled by
conflicts in WAL archive files during disconnected periods. You should also consider increasing
max_standby_streaming_delay to avoid rapid cancellations by newly-arrived streaming WAL
entries after reconnection.

Another option is to increase vacuum_defer_cleanup_age on the primary server, so that dead rows will not
be cleaned up as quickly as they normally would be. This will allow more time for queries to execute before
they are canceled on the standby, without having to set a high max_standby_streaming_delay.
However it is difficult to guarantee any specific execution-time window with this approach, since
vacuum_defer_cleanup_age is measured in transactions executed on the primary server.

The number of query cancels and the reason for them can be viewed using the
pg_stat_database_conflicts system view on the standby server. The pg_stat_database
system view also contains summary information.

26.5.3. Administrator's Overview
If hot_standby is on in postgresql.conf (the default value) and there is a recovery.conf
file present, the server will run in Hot Standby mode. However, it may take some time for Hot Standby
connections to be allowed, because the server will not accept connections until it has completed sufficient
recovery to provide a consistent state against which queries can run. During this period, clients that attempt
to connect will be refused with an error message. To confirm the server has come up, either loop trying to
connect from the application, or look for these messages in the server logs:

LOG: entering standby mode

... then some time later ...

LOG: consistent recovery state reached
LOG: database system is ready to accept read only connections

Consistency information is recorded once per checkpoint on the primary. It is not possible to enable hot
standby when reading WAL written during a period when wal_level was not set to replica or
logical on the primary. Reaching a consistent state can also be delayed in the presence of both of these
conditions:

• A write transaction has more than 64 subtransactions

• Very long-lived write transactions

If you are running file-based log shipping ("warm standby"), you might need to wait until the next WAL
file arrives, which could be as long as the archive_timeout setting on the primary.

719

High Availability, Load
Balancing, and Replication

The setting of some parameters on the standby will need reconfiguration if they have been changed on
the primary. For these parameters, the value on the standby must be equal to or greater than the value
on the primary. Therefore, if you want to increase these values, you should do so on all standby servers
first, before applying the changes to the primary server. Conversely, if you want to decrease these values,
you should do so on the primary server first, before applying the changes to all standby servers. If these
parameters are not set high enough then the standby will refuse to start. Higher values can then be supplied
and the server restarted to begin recovery again. These parameters are:

• max_connections

• max_prepared_transactions

• max_locks_per_transaction

• max_worker_processes

It is important that the administrator select appropriate settings for max_standby_archive_delay and
max_standby_streaming_delay. The best choices vary depending on business priorities. For example if
the server is primarily tasked as a High Availability server, then you will want low delay settings, perhaps
even zero, though that is a very aggressive setting. If the standby server is tasked as an additional server
for decision support queries then it might be acceptable to set the maximum delay values to many hours,
or even -1 which means wait forever for queries to complete.

Transaction status "hint bits" written on the primary are not WAL-logged, so data on the standby will likely
re-write the hints again on the standby. Thus, the standby server will still perform disk writes even though
all users are read-only; no changes occur to the data values themselves. Users will still write large sort
temporary files and re-generate relcache info files, so no part of the database is truly read-only during hot
standby mode. Note also that writes to remote databases using dblink module, and other operations outside
the database using PL functions will still be possible, even though the transaction is read-only locally.

The following types of administration commands are not accepted during recovery mode:

• Data Definition Language (DDL) - e.g. CREATE INDEX

• Privilege and Ownership - GRANT, REVOKE, REASSIGN

• Maintenance commands - ANALYZE, VACUUM, CLUSTER, REINDEX

Again, note that some of these commands are actually allowed during "read only" mode transactions on
the primary.

As a result, you cannot create additional indexes that exist solely on the standby, nor statistics that exist
solely on the standby. If these administration commands are needed, they should be executed on the
primary, and eventually those changes will propagate to the standby.

pg_cancel_backend() and pg_terminate_backend() will work on user backends, but not the
Startup process, which performs recovery. pg_stat_activity does not show recovering transactions
as active. As a result, pg_prepared_xacts is always empty during recovery. If you wish to resolve in-
doubt prepared transactions, view pg_prepared_xacts on the primary and issue commands to resolve
transactions there or resolve them after the end of recovery.

pg_locks will show locks held by backends, as normal. pg_locks also shows a virtual transaction
managed by the Startup process that owns all AccessExclusiveLocks held by transactions being
replayed by recovery. Note that the Startup process does not acquire locks to make database changes, and
thus locks other than AccessExclusiveLocks do not show in pg_locks for the Startup process;
they are just presumed to exist.

720

High Availability, Load
Balancing, and Replication

The Nagios plugin check_pgsql will work, because the simple information it checks for exists. The
check_postgres monitoring script will also work, though some reported values could give different or
confusing results. For example, last vacuum time will not be maintained, since no vacuum occurs on the
standby. Vacuums running on the primary do still send their changes to the standby.

WAL file control commands will not work during recovery, e.g. pg_start_backup,
pg_switch_wal etc.

Dynamically loadable modules work, including pg_stat_statements.

Advisory locks work normally in recovery, including deadlock detection. Note that advisory locks are
never WAL logged, so it is impossible for an advisory lock on either the primary or the standby to conflict
with WAL replay. Nor is it possible to acquire an advisory lock on the primary and have it initiate a similar
advisory lock on the standby. Advisory locks relate only to the server on which they are acquired.

Trigger-based replication systems such as Slony, Londiste and Bucardo won't run on the standby at all,
though they will run happily on the primary server as long as the changes are not sent to standby servers
to be applied. WAL replay is not trigger-based so you cannot relay from the standby to any system that
requires additional database writes or relies on the use of triggers.

New OIDs cannot be assigned, though some UUID generators may still work as long as they do not rely
on writing new status to the database.

Currently, temporary table creation is not allowed during read only transactions, so in some cases existing
scripts will not run correctly. This restriction might be relaxed in a later release. This is both a SQL Standard
compliance issue and a technical issue.

DROP TABLESPACE can only succeed if the tablespace is empty. Some standby users may be actively
using the tablespace via their temp_tablespaces parameter. If there are temporary files in the
tablespace, all active queries are canceled to ensure that temporary files are removed, so the tablespace
can be removed and WAL replay can continue.

Running DROP DATABASE or ALTER DATABASE ... SET TABLESPACE on the
primary will generate a WAL entry that will cause all users connected to that database on
the standby to be forcibly disconnected. This action occurs immediately, whatever the setting of
max_standby_streaming_delay. Note that ALTER DATABASE ... RENAME does not
disconnect users, which in most cases will go unnoticed, though might in some cases cause a program
confusion if it depends in some way upon database name.

In normal (non-recovery) mode, if you issue DROP USER or DROP ROLE for a role with login capability
while that user is still connected then nothing happens to the connected user - they remain connected. The
user cannot reconnect however. This behavior applies in recovery also, so a DROP USER on the primary
does not disconnect that user on the standby.

The statistics collector is active during recovery. All scans, reads, blocks, index usage, etc., will be recorded
normally on the standby. Replayed actions will not duplicate their effects on primary, so replaying an
insert will not increment the Inserts column of pg_stat_user_tables. The stats file is deleted at the start of
recovery, so stats from primary and standby will differ; this is considered a feature, not a bug.

Autovacuum is not active during recovery. It will start normally at the end of recovery.

The background writer is active during recovery and will perform restartpoints (similar to checkpoints on
the primary) and normal block cleaning activities. This can include updates of the hint bit information
stored on the standby server. The CHECKPOINT command is accepted during recovery, though it performs
a restartpoint rather than a new checkpoint.

721

High Availability, Load
Balancing, and Replication

26.5.4. Hot Standby Parameter Reference
Various parameters have been mentioned above in Section 26.5.2 and Section 26.5.3.

On the primary, parameters wal_level and vacuum_defer_cleanup_age can be used.
max_standby_archive_delay and max_standby_streaming_delay have no effect if set on the primary.

On the standby, parameters hot_standby, max_standby_archive_delay and max_standby_streaming_delay
can be used. vacuum_defer_cleanup_age has no effect as long as the server remains in standby mode,
though it will become relevant if the standby becomes primary.

26.5.5. Caveats
There are several limitations of Hot Standby. These can and probably will be fixed in future releases:

• Full knowledge of running transactions is required before snapshots can be taken. Transactions that use
large numbers of subtransactions (currently greater than 64) will delay the start of read only connections
until the completion of the longest running write transaction. If this situation occurs, explanatory
messages will be sent to the server log.

• Valid starting points for standby queries are generated at each checkpoint on the master. If the standby
is shut down while the master is in a shutdown state, it might not be possible to re-enter Hot Standby
until the primary is started up, so that it generates further starting points in the WAL logs. This situation
isn't a problem in the most common situations where it might happen. Generally, if the primary is
shut down and not available anymore, that's likely due to a serious failure that requires the standby
being converted to operate as the new primary anyway. And in situations where the primary is being
intentionally taken down, coordinating to make sure the standby becomes the new primary smoothly
is also standard procedure.

• At the end of recovery, AccessExclusiveLocks held by prepared transactions will require twice
the normal number of lock table entries. If you plan on running either a large number of concurrent
prepared transactions that normally take AccessExclusiveLocks, or you plan on having one large
transaction that takes many AccessExclusiveLocks, you are advised to select a larger value
of max_locks_per_transaction, perhaps as much as twice the value of the parameter on the
primary server. You need not consider this at all if your setting of max_prepared_transactions
is 0.

• The Serializable transaction isolation level is not yet available in hot standby. (See Section 13.2.3 and
Section 13.4.1 for details.) An attempt to set a transaction to the serializable isolation level in hot standby
mode will generate an error.

722

Chapter 27. Recovery Configuration
This chapter describes the settings available in the recovery.conf file. They apply only for the duration
of the recovery. They must be reset for any subsequent recovery you wish to perform. They cannot be
changed once recovery has begun.

Settings in recovery.conf are specified in the format name = 'value'. One parameter is specified
per line. Hash marks (#) designate the rest of the line as a comment. To embed a single quote in a parameter
value, write two quotes ('').

A sample file, share/recovery.conf.sample, is provided in the installation's share/ directory.

27.1. Archive Recovery Settings
restore_command (string)

The local shell command to execute to retrieve an archived segment of the WAL file series. This
parameter is required for archive recovery, but optional for streaming replication. Any %f in the string
is replaced by the name of the file to retrieve from the archive, and any %p is replaced by the copy
destination path name on the server. (The path name is relative to the current working directory, i.e.,
the cluster's data directory.) Any %r is replaced by the name of the file containing the last valid restart
point. That is the earliest file that must be kept to allow a restore to be restartable, so this information
can be used to truncate the archive to just the minimum required to support restarting from the current
restore. %r is typically only used by warm-standby configurations (see Section 26.2). Write %% to
embed an actual % character.

It is important for the command to return a zero exit status only if it succeeds. The command will
be asked for file names that are not present in the archive; it must return nonzero when so asked.
Examples:

restore_command = 'cp /mnt/server/archivedir/%f "%p"'
restore_command = 'copy "C:\\server\\archivedir\\%f" "%p"' #
 Windows

An exception is that if the command was terminated by a signal (other than SIGTERM, which is used
as part of a database server shutdown) or an error by the shell (such as command not found), then
recovery will abort and the server will not start up.

archive_cleanup_command (string)

This optional parameter specifies a shell command that will be executed at every restartpoint. The
purpose of archive_cleanup_command is to provide a mechanism for cleaning up old archived
WAL files that are no longer needed by the standby server. Any %r is replaced by the name of the
file containing the last valid restart point. That is the earliest file that must be kept to allow a restore
to be restartable, and so all files earlier than %r may be safely removed. This information can be
used to truncate the archive to just the minimum required to support restart from the current restore.
The pg_archivecleanup module is often used in archive_cleanup_command for single-standby
configurations, for example:

archive_cleanup_command = 'pg_archivecleanup /mnt/server/archivedir
 %r'

Note however that if multiple standby servers are restoring from the same archive directory, you
will need to ensure that you do not delete WAL files until they are no longer needed by any of the

723

Recovery Configuration

servers. archive_cleanup_command would typically be used in a warm-standby configuration
(see Section 26.2). Write %% to embed an actual % character in the command.

If the command returns a nonzero exit status then a warning log message will be written. An exception
is that if the command was terminated by a signal or an error by the shell (such as command not
found), a fatal error will be raised.

recovery_end_command (string)

This parameter specifies a shell command that will be executed once only at the end of recovery. This
parameter is optional. The purpose of the recovery_end_command is to provide a mechanism
for cleanup following replication or recovery. Any %r is replaced by the name of the file containing
the last valid restart point, like in archive_cleanup_command.

If the command returns a nonzero exit status then a warning log message will be written and the
database will proceed to start up anyway. An exception is that if the command was terminated by a
signal or an error by the shell (such as command not found), the database will not proceed with startup.

27.2. Recovery Target Settings
By default, recovery will recover to the end of the WAL log. The following parameters can be used to
specify an earlier stopping point. At most one of recovery_target, recovery_target_lsn,
recovery_target_name, recovery_target_time, or recovery_target_xid can be
used; if more than one of these is specified in the configuration file, the last entry will be used.

recovery_target = 'immediate'

This parameter specifies that recovery should end as soon as a consistent state is reached, i.e. as early as
possible. When restoring from an online backup, this means the point where taking the backup ended.

Technically, this is a string parameter, but 'immediate' is currently the only allowed value.

recovery_target_name (string)

This parameter specifies the named restore point (created with pg_create_restore_point())
to which recovery will proceed.

recovery_target_time (timestamp)

This parameter specifies the time stamp up to which recovery will proceed. The precise stopping point
is also influenced by recovery_target_inclusive.

recovery_target_xid (string)

This parameter specifies the transaction ID up to which recovery will proceed. Keep in mind that
while transaction IDs are assigned sequentially at transaction start, transactions can complete in a
different numeric order. The transactions that will be recovered are those that committed before
(and optionally including) the specified one. The precise stopping point is also influenced by
recovery_target_inclusive.

recovery_target_lsn (pg_lsn)

This parameter specifies the LSN of the write-ahead log location up to which recovery will proceed.
The precise stopping point is also influenced by recovery_target_inclusive. This parameter is parsed
using the system data type pg_lsn.

724

Recovery Configuration

The following options further specify the recovery target, and affect what happens when the target is
reached:

recovery_target_inclusive (boolean)

Specifies whether to stop just after the specified recovery target (true), or just before the recovery
target (false). Applies when recovery_target_lsn, recovery_target_time, or recovery_target_xid is
specified. This setting controls whether transactions having exactly the target WAL location (LSN),
commit time, or transaction ID, respectively, will be included in the recovery. Default is true.

recovery_target_timeline (string)

Specifies recovering into a particular timeline. The default is to recover along the same timeline that
was current when the base backup was taken. Setting this to latest recovers to the latest timeline
found in the archive, which is useful in a standby server. Other than that you only need to set this
parameter in complex re-recovery situations, where you need to return to a state that itself was reached
after a point-in-time recovery. See Section 25.3.5 for discussion.

recovery_target_action (enum)

Specifies what action the server should take once the recovery target is reached. The default is pause,
which means recovery will be paused. promote means the recovery process will finish and the server
will start to accept connections. Finally shutdown will stop the server after reaching the recovery
target.

The intended use of the pause setting is to allow queries to be executed against the database to check
if this recovery target is the most desirable point for recovery. The paused state can be resumed by
using pg_wal_replay_resume() (see Table 9.81), which then causes recovery to end. If this
recovery target is not the desired stopping point, then shut down the server, change the recovery target
settings to a later target and restart to continue recovery.

The shutdown setting is useful to have the instance ready at the exact replay point desired. The
instance will still be able to replay more WAL records (and in fact will have to replay WAL records
since the last checkpoint next time it is started).

Note that because recovery.conf will not be renamed when recovery_target_action is
set to shutdown, any subsequent start will end with immediate shutdown unless the configuration
is changed or the recovery.conf file is removed manually.

This setting has no effect if no recovery target is set. If hot_standby is not enabled, a setting of pause
will act the same as shutdown.

27.3. Standby Server Settings
standby_mode (boolean)

Specifies whether to start the PostgreSQL server as a standby. If this parameter is on, the server will
not stop recovery when the end of archived WAL is reached, but will keep trying to continue recovery
by fetching new WAL segments using restore_command and/or by connecting to the primary
server as specified by the primary_conninfo setting.

primary_conninfo (string)

Specifies a connection string to be used for the standby server to connect with the primary. This
string is in the format described in Section 34.1.1. If any option is unspecified in this string, then the
corresponding environment variable (see Section 34.14) is checked. If the environment variable is not
set either, then defaults are used.

725

Recovery Configuration

The connection string should specify the host name (or address) of the primary server, as well as the
port number if it is not the same as the standby server's default. Also specify a user name corresponding
to a suitably-privileged role on the primary (see Section 26.2.5.1). A password needs to be provided
too, if the primary demands password authentication. It can be provided in the primary_conninfo
string, or in a separate ~/.pgpass file on the standby server (use replication as the database
name). Do not specify a database name in the primary_conninfo string.

This setting has no effect if standby_mode is off.

primary_slot_name (string)

Optionally specifies an existing replication slot to be used when connecting to the primary via
streaming replication to control resource removal on the upstream node (see Section 26.2.6). This
setting has no effect if primary_conninfo is not set.

trigger_file (string)

Specifies a trigger file whose presence ends recovery in the standby. Even if this value is not
set, you can still promote the standby using pg_ctl promote. This setting has no effect if
standby_mode is off.

recovery_min_apply_delay (integer)

By default, a standby server restores WAL records from the primary as soon as possible. It may be
useful to have a time-delayed copy of the data, offering opportunities to correct data loss errors. This
parameter allows you to delay recovery by a fixed period of time, measured in milliseconds if no unit
is specified. For example, if you set this parameter to 5min, the standby will replay each transaction
commit only when the system time on the standby is at least five minutes past the commit time reported
by the master.

It is possible that the replication delay between servers exceeds the value of this parameter, in which
case no delay is added. Note that the delay is calculated between the WAL time stamp as written on
master and the current time on the standby. Delays in transfer because of network lag or cascading
replication configurations may reduce the actual wait time significantly. If the system clocks on master
and standby are not synchronized, this may lead to recovery applying records earlier than expected;
but that is not a major issue because useful settings of this parameter are much larger than typical
time deviations between servers.

The delay occurs only on WAL records for transaction commits. Other records are replayed as quickly
as possible, which is not a problem because MVCC visibility rules ensure their effects are not visible
until the corresponding commit record is applied.

The delay occurs once the database in recovery has reached a consistent state, until the standby is
promoted or triggered. After that the standby will end recovery without further waiting.

This parameter is intended for use with streaming replication deployments; however, if the parameter
is specified it will be honored in all cases. hot_standby_feedback will be delayed by use of
this feature which could lead to bloat on the master; use both together with care.

Warning

Synchronous replication is affected by this setting when synchronous_commit is set to
remote_apply; every COMMIT will need to wait to be applied.

726

Chapter 28. Monitoring Database
Activity

A database administrator frequently wonders, “What is the system doing right now?” This chapter
discusses how to find that out.

Several tools are available for monitoring database activity and analyzing performance. Most of this
chapter is devoted to describing PostgreSQL's statistics collector, but one should not neglect regular
Unix monitoring programs such as ps, top, iostat, and vmstat. Also, once one has identified a
poorly-performing query, further investigation might be needed using PostgreSQL's EXPLAIN command.
Section 14.1 discusses EXPLAIN and other methods for understanding the behavior of an individual query.

28.1. Standard Unix Tools
On most Unix platforms, PostgreSQL modifies its command title as reported by ps, so that individual
server processes can readily be identified. A sample display is

$ ps auxww | grep ^postgres
postgres 15551 0.0 0.1 57536 7132 pts/0 S 18:02 0:00
 postgres -i
postgres 15554 0.0 0.0 57536 1184 ? Ss 18:02 0:00
 postgres: background writer
postgres 15555 0.0 0.0 57536 916 ? Ss 18:02 0:00
 postgres: checkpointer
postgres 15556 0.0 0.0 57536 916 ? Ss 18:02 0:00
 postgres: walwriter
postgres 15557 0.0 0.0 58504 2244 ? Ss 18:02 0:00
 postgres: autovacuum launcher
postgres 15558 0.0 0.0 17512 1068 ? Ss 18:02 0:00
 postgres: stats collector
postgres 15582 0.0 0.0 58772 3080 ? Ss 18:04 0:00
 postgres: joe runbug 127.0.0.1 idle
postgres 15606 0.0 0.0 58772 3052 ? Ss 18:07 0:00
 postgres: tgl regression [local] SELECT waiting
postgres 15610 0.0 0.0 58772 3056 ? Ss 18:07 0:00
 postgres: tgl regression [local] idle in transaction

(The appropriate invocation of ps varies across different platforms, as do the details of what is shown.
This example is from a recent Linux system.) The first process listed here is the master server process. The
command arguments shown for it are the same ones used when it was launched. The next five processes are
background worker processes automatically launched by the master process. (The “stats collector” process
will not be present if you have set the system not to start the statistics collector; likewise the “autovacuum
launcher” process can be disabled.) Each of the remaining processes is a server process handling one client
connection. Each such process sets its command line display in the form

postgres: user database host activity

The user, database, and (client) host items remain the same for the life of the client connection, but the
activity indicator changes. The activity can be idle (i.e., waiting for a client command), idle in
transaction (waiting for client inside a BEGIN block), or a command type name such as SELECT.

727

Monitoring Database Activity

Also, waiting is appended if the server process is presently waiting on a lock held by another session. In
the above example we can infer that process 15606 is waiting for process 15610 to complete its transaction
and thereby release some lock. (Process 15610 must be the blocker, because there is no other active session.
In more complicated cases it would be necessary to look into the pg_locks system view to determine
who is blocking whom.)

If cluster_name has been configured the cluster name will also be shown in ps output:

$ psql -c 'SHOW cluster_name'
 cluster_name

 server1
(1 row)

$ ps aux|grep server1
postgres 27093 0.0 0.0 30096 2752 ? Ss 11:34 0:00
 postgres: server1: background writer
...

If you have turned off update_process_title then the activity indicator is not updated; the process title is
set only once when a new process is launched. On some platforms this saves a measurable amount of per-
command overhead; on others it's insignificant.

Tip

Solaris requires special handling. You must use /usr/ucb/ps, rather than /bin/ps. You
also must use two w flags, not just one. In addition, your original invocation of the postgres
command must have a shorter ps status display than that provided by each server process. If you
fail to do all three things, the ps output for each server process will be the original postgres
command line.

28.2. The Statistics Collector
PostgreSQL's statistics collector is a subsystem that supports collection and reporting of information about
server activity. Presently, the collector can count accesses to tables and indexes in both disk-block and
individual-row terms. It also tracks the total number of rows in each table, and information about vacuum
and analyze actions for each table. It can also count calls to user-defined functions and the total time spent
in each one.

PostgreSQL also supports reporting dynamic information about exactly what is going on in the system
right now, such as the exact command currently being executed by other server processes, and which other
connections exist in the system. This facility is independent of the collector process.

28.2.1. Statistics Collection Configuration
Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration parameters that are normally set in
postgresql.conf. (See Chapter 19 for details about setting configuration parameters.)

The parameter track_activities enables monitoring of the current command being executed by any server
process.

728

Monitoring Database Activity

The parameter track_counts controls whether statistics are collected about table and index accesses.

The parameter track_functions enables tracking of usage of user-defined functions.

The parameter track_io_timing enables monitoring of block read and write times.

Normally these parameters are set in postgresql.conf so that they apply to all server processes, but it
is possible to turn them on or off in individual sessions using the SET command. (To prevent ordinary users
from hiding their activity from the administrator, only superusers are allowed to change these parameters
with SET.)

The statistics collector transmits the collected information to other PostgreSQL processes through
temporary files. These files are stored in the directory named by the stats_temp_directory parameter,
pg_stat_tmp by default. For better performance, stats_temp_directory can be pointed at a
RAM-based file system, decreasing physical I/O requirements. When the server shuts down cleanly, a
permanent copy of the statistics data is stored in the pg_stat subdirectory, so that statistics can be
retained across server restarts. When recovery is performed at server start (e.g. after immediate shutdown,
server crash, and point-in-time recovery), all statistics counters are reset.

28.2.2. Viewing Statistics
Several predefined views, listed in Table 28.1, are available to show the current state of the system. There
are also several other views, listed in Table 28.2, available to show the results of statistics collection.
Alternatively, one can build custom views using the underlying statistics functions, as discussed in
Section 28.2.3.

When using the statistics to monitor collected data, it is important to realize that the information does
not update instantaneously. Each individual server process transmits new statistical counts to the collector
just before going idle; so a query or transaction still in progress does not affect the displayed totals. Also,
the collector itself emits a new report at most once per PGSTAT_STAT_INTERVAL milliseconds (500
ms unless altered while building the server). So the displayed information lags behind actual activity.
However, current-query information collected by track_activities is always up-to-date.

Another important point is that when a server process is asked to display any of these statistics, it first
fetches the most recent report emitted by the collector process and then continues to use this snapshot for
all statistical views and functions until the end of its current transaction. So the statistics will show static
information as long as you continue the current transaction. Similarly, information about the current queries
of all sessions is collected when any such information is first requested within a transaction, and the same
information will be displayed throughout the transaction. This is a feature, not a bug, because it allows
you to perform several queries on the statistics and correlate the results without worrying that the numbers
are changing underneath you. But if you want to see new results with each query, be sure to do the queries
outside any transaction block. Alternatively, you can invoke pg_stat_clear_snapshot(), which
will discard the current transaction's statistics snapshot (if any). The next use of statistical information will
cause a new snapshot to be fetched.

A transaction can also see its own statistics (as yet untransmitted to the
collector) in the views pg_stat_xact_all_tables, pg_stat_xact_sys_tables,
pg_stat_xact_user_tables, and pg_stat_xact_user_functions. These numbers do not
act as stated above; instead they update continuously throughout the transaction.

Table 28.1. Dynamic Statistics Views

View Name Description

pg_stat_activity One row per server process, showing information
related to the current activity of that process, such

729

Monitoring Database Activity

View Name Description

as state and current query. See pg_stat_activity for
details.

pg_stat_replication One row per WAL sender process, showing
statistics about replication to that sender's connected
standby server. See pg_stat_replication for details.

pg_stat_wal_receiver Only one row, showing statistics about the WAL
receiver from that receiver's connected server. See
pg_stat_wal_receiver for details.

pg_stat_subscription At least one row per subscription, showing
information about the subscription workers. See
pg_stat_subscription for details.

pg_stat_ssl One row per connection (regular and replication),
showing information about SSL used on this
connection. See pg_stat_ssl for details.

pg_stat_progress_vacuum One row for each backend (including autovacuum
worker processes) running VACUUM, showing
current progress. See Section 28.4.1.

Table 28.2. Collected Statistics Views

View Name Description

pg_stat_archiver One row only, showing statistics about the WAL
archiver process's activity. See pg_stat_archiver for
details.

pg_stat_bgwriter One row only, showing statistics about
the background writer process's activity. See
pg_stat_bgwriter for details.

pg_stat_database One row per database, showing database-wide
statistics. See pg_stat_database for details.

pg_stat_database_conflicts One row per database, showing database-
wide statistics about query cancels due to
conflict with recovery on standby servers. See
pg_stat_database_conflicts for details.

pg_stat_all_tables One row for each table in the current database,
showing statistics about accesses to that specific
table. See pg_stat_all_tables for details.

pg_stat_sys_tables Same as pg_stat_all_tables, except that
only system tables are shown.

pg_stat_user_tables Same as pg_stat_all_tables, except that
only user tables are shown.

pg_stat_xact_all_tables Similar to pg_stat_all_tables, but counts
actions taken so far within the current
transaction (which are not yet included in
pg_stat_all_tables and related views). The
columns for numbers of live and dead rows and
vacuum and analyze actions are not present in this
view.

730

Monitoring Database Activity

View Name Description

pg_stat_xact_sys_tables Same as pg_stat_xact_all_tables, except
that only system tables are shown.

pg_stat_xact_user_tables Same as pg_stat_xact_all_tables, except
that only user tables are shown.

pg_stat_all_indexes One row for each index in the current database,
showing statistics about accesses to that specific
index. See pg_stat_all_indexes for details.

pg_stat_sys_indexes Same as pg_stat_all_indexes, except that
only indexes on system tables are shown.

pg_stat_user_indexes Same as pg_stat_all_indexes, except that
only indexes on user tables are shown.

pg_statio_all_tables One row for each table in the current database,
showing statistics about I/O on that specific table.
See pg_statio_all_tables for details.

pg_statio_sys_tables Same as pg_statio_all_tables, except that
only system tables are shown.

pg_statio_user_tables Same as pg_statio_all_tables, except that
only user tables are shown.

pg_statio_all_indexes One row for each index in the current database,
showing statistics about I/O on that specific index.
See pg_statio_all_indexes for details.

pg_statio_sys_indexes Same as pg_statio_all_indexes, except
that only indexes on system tables are shown.

pg_statio_user_indexes Same as pg_statio_all_indexes, except
that only indexes on user tables are shown.

pg_statio_all_sequences One row for each sequence in the current database,
showing statistics about I/O on that specific
sequence. See pg_statio_all_sequences for details.

pg_statio_sys_sequences Same as pg_statio_all_sequences, except
that only system sequences are shown. (Presently,
no system sequences are defined, so this view is
always empty.)

pg_statio_user_sequences Same as pg_statio_all_sequences, except
that only user sequences are shown.

pg_stat_user_functions One row for each tracked function, showing
statistics about executions of that function. See
pg_stat_user_functions for details.

pg_stat_xact_user_functions Similar to pg_stat_user_functions, but
counts only calls during the current
transaction (which are not yet included in
pg_stat_user_functions).

The per-index statistics are particularly useful to determine which indexes are being used and how effective
they are.

The pg_statio_ views are primarily useful to determine the effectiveness of the buffer cache. When
the number of actual disk reads is much smaller than the number of buffer hits, then the cache is satisfying

731

Monitoring Database Activity

most read requests without invoking a kernel call. However, these statistics do not give the entire story:
due to the way in which PostgreSQL handles disk I/O, data that is not in the PostgreSQL buffer cache
might still reside in the kernel's I/O cache, and might therefore still be fetched without requiring a physical
read. Users interested in obtaining more detailed information on PostgreSQL I/O behavior are advised to
use the PostgreSQL statistics collector in combination with operating system utilities that allow insight
into the kernel's handling of I/O.

Table 28.3. pg_stat_activity View

Column Type Description

datid oid OID of the database this backend
is connected to

datname name Name of the database this backend
is connected to

pid integer Process ID of this backend

usesysid oid OID of the user logged into this
backend

usename name Name of the user logged into this
backend

application_name text Name of the application that is
connected to this backend

client_addr inet IP address of the client connected
to this backend. If this field is
null, it indicates either that the
client is connected via a Unix
socket on the server machine or
that this is an internal process such
as autovacuum.

client_hostname text Host name of the connected client,
as reported by a reverse DNS
lookup of client_addr. This
field will only be non-null for
IP connections, and only when
log_hostname is enabled.

client_port integer TCP port number that the client is
using for communication with this
backend, or -1 if a Unix socket is
used

backend_start timestamp with time
zone

Time when this process was
started. For client backends, this is
the time the client connected to the
server.

xact_start timestamp with time
zone

Time when this process' current
transaction was started, or null
if no transaction is active. If the
current query is the first of its
transaction, this column is equal to
the query_start column.

732

Monitoring Database Activity

Column Type Description

query_start timestamp with time
zone

Time when the currently active
query was started, or if state is
not active, when the last query
was started

state_change timestamp with time
zone

Time when the state was last
changed

wait_event_type text The type of event for which
the backend is waiting, if any;
otherwise NULL. Possible values
are:

• LWLock: The backend is
waiting for a lightweight lock.
Each such lock protects a
particular data structure in
shared memory. wait_event
will contain a name identifying
the purpose of the lightweight
lock. (Some locks have specific
names; others are part of a
group of locks each with a
similar purpose.)

• Lock: The backend is waiting
for a heavyweight lock.
Heavyweight locks, also known
as lock manager locks or simply
locks, primarily protect SQL-
visible objects such as tables.
However, they are also used
to ensure mutual exclusion
for certain internal operations
such as relation extension.
wait_event will identify the
type of lock awaited.

• BufferPin: The server
process is waiting to access to
a data buffer during a period
when no other process can be
examining that buffer. Buffer
pin waits can be protracted if
another process holds an open
cursor which last read data from
the buffer in question.

• Activity: The server
process is idle. This is
used by system processes
waiting for activity in
their main processing loop.

733

Monitoring Database Activity

Column Type Description

wait_event will identify the
specific wait point.

• Extension: The server
process is waiting for activity
in an extension module. This
category is useful for modules
to track custom waiting points.

• Client: The server process is
waiting for some activity on a
socket from user applications,
and that the server expects
something to happen that is
independent from its internal
processes. wait_event will
identify the specific wait point.

• IPC: The server process is
waiting for some activity from
another process in the server.
wait_event will identify the
specific wait point.

• Timeout: The server process
is waiting for a timeout
to expire. wait_event will
identify the specific wait point.

• IO: The server process is
waiting for a IO to complete.
wait_event will identify the
specific wait point.

wait_event text Wait event name if backend
is currently waiting, otherwise
NULL. See Table 28.4 for details.

state text Current overall state of this
backend. Possible values are:

• active: The backend is
executing a query.

• idle: The backend is waiting
for a new client command.

• idle in transaction:
The backend is in a transaction,
but is not currently executing a
query.

• idle in transaction
(aborted): This state is
similar to idle in

734

Monitoring Database Activity

Column Type Description

transaction, except one of
the statements in the transaction
caused an error.

• fastpath function
call: The backend is
executing a fast-path function.

• disabled: This state is
reported if track_activities is
disabled in this backend.

backend_xid xid Top-level transaction identifier of
this backend, if any.

backend_xmin xid The current backend's xmin
horizon.

query text Text of this backend's most recent
query. If state is active
this field shows the currently
executing query. In all other
states, it shows the last query
that was executed. By default
the query text is truncated at
1024 characters; this value can
be changed via the parameter
track_activity_query_size.

backend_type text Type of current backend.
Possible types are autovacuum
launcher, autovacuum
worker, logical
replication launcher,
logical replication
worker, parallel worker,
background writer,
client backend,
checkpointer, startup,
walreceiver, walsender
and walwriter. In addition,
background workers registered by
extensions may have additional
types.

The pg_stat_activity view will have one row per server process, showing information related to
the current activity of that process.

Note

The wait_event and state columns are independent. If a backend is in the active state, it
may or may not be waiting on some event. If the state is active and wait_event is non-
null, it means that a query is being executed, but is being blocked somewhere in the system.

735

Monitoring Database Activity

Table 28.4. wait_event Description

Wait Event Type Wait Event Name Description

ShmemIndexLock Waiting to find or allocate space
in shared memory.

OidGenLock Waiting to allocate or assign an
OID.

XidGenLock Waiting to allocate or assign a
transaction id.

ProcArrayLock Waiting to get a snapshot or
clearing a transaction id at
transaction end.

SInvalReadLock Waiting to retrieve or
remove messages from shared
invalidation queue.

SInvalWriteLock Waiting to add a message in
shared invalidation queue.

WALBufMappingLock Waiting to replace a page in WAL
buffers.

WALWriteLock Waiting for WAL buffers to be
written to disk.

ControlFileLock Waiting to read or update the
control file or creation of a new
WAL file.

CheckpointLock Waiting to perform checkpoint.

CLogControlLock Waiting to read or update
transaction status.

SubtransControlLock Waiting to read or update sub-
transaction information.

MultiXactGenLock Waiting to read or update shared
multixact state.

MultiXactOffsetControlLockWaiting to read or update
multixact offset mappings.

MultiXactMemberControlLockWaiting to read or update
multixact member mappings.

RelCacheInitLock Waiting to read or write relation
cache initialization file.

CheckpointerCommLock Waiting to manage fsync requests.

TwoPhaseStateLock Waiting to read or update the state
of prepared transactions.

TablespaceCreateLock Waiting to create or drop the
tablespace.

LWLock

BtreeVacuumLock Waiting to read or update
vacuum-related information for a
B-tree index.

736

Monitoring Database Activity

Wait Event Type Wait Event Name Description

AddinShmemInitLock Waiting to manage space
allocation in shared memory.

AutovacuumLock Autovacuum worker or launcher
waiting to update or read the
current state of autovacuum
workers.

AutovacuumScheduleLock Waiting to ensure that the table
it has selected for a vacuum still
needs vacuuming.

SyncScanLock Waiting to get the start location of
a scan on a table for synchronized
scans.

RelationMappingLock Waiting to update the relation
map file used to store catalog to
filenode mapping.

AsyncCtlLock Waiting to read or update shared
notification state.

AsyncQueueLock Waiting to read or update
notification messages.

SerializableXactHashLockWaiting to retrieve or store
information about serializable
transactions.

SerializableFinishedListLockWaiting to access the list of
finished serializable transactions.

SerializablePredicateLockListLockWaiting to perform an operation
on a list of locks held by
serializable transactions.

OldSerXidLock Waiting to read or
record conflicting serializable
transactions.

SyncRepLock Waiting to read or update
information about synchronous
replicas.

BackgroundWorkerLock Waiting to read or update
background worker state.

DynamicSharedMemoryControlLockWaiting to read or update dynamic
shared memory state.

AutoFileLock Waiting to update the
postgresql.auto.conf
file.

ReplicationSlotAllocationLockWaiting to allocate or free a
replication slot.

ReplicationSlotControlLockWaiting to read or update
replication slot state.

737

Monitoring Database Activity

Wait Event Type Wait Event Name Description

CommitTsControlLock Waiting to read or update
transaction commit timestamps.

CommitTsLock Waiting to read or update the
last value set for the transaction
timestamp.

ReplicationOriginLock Waiting to setup, drop or use
replication origin.

MultiXactTruncationLockWaiting to read or truncate
multixact information.

OldSnapshotTimeMapLock Waiting to read or update old
snapshot control information.

BackendRandomLock Waiting to generate a random
number.

LogicalRepWorkerLock Waiting for action on logical
replication worker to finish.

CLogTruncationLock Waiting to truncate the write-
ahead log or waiting for write-
ahead log truncation to finish.

clog Waiting for I/O on a clog
(transaction status) buffer.

commit_timestamp Waiting for I/O on commit
timestamp buffer.

subtrans Waiting for I/O a subtransaction
buffer.

multixact_offset Waiting for I/O on a multixact
offset buffer.

multixact_member Waiting for I/O on a
multixact_member buffer.

async Waiting for I/O on an async
(notify) buffer.

oldserxid Waiting for I/O on an oldserxid
buffer.

wal_insert Waiting to insert WAL into a
memory buffer.

buffer_content Waiting to read or write a data
page in memory.

buffer_io Waiting for I/O on a data page.

replication_origin Waiting to read or update the
replication progress.

replication_slot_io Waiting for I/O on a replication
slot.

proc Waiting to read or update the fast-
path lock information.

738

Monitoring Database Activity

Wait Event Type Wait Event Name Description

buffer_mapping Waiting to associate a data block
with a buffer in the buffer pool.

lock_manager Waiting to add or examine locks
for backends, or waiting to join
or exit a locking group (used by
parallel query).

predicate_lock_manager Waiting to add or examine
predicate lock information.

parallel_query_dsa Waiting for parallel query
dynamic shared memory
allocation lock.

tbm Waiting for TBM shared iterator
lock.

parallel_append Waiting to choose the next
subplan during Parallel Append
plan execution.

parallel_hash_join Waiting to allocate or exchange
a chunk of memory or update
counters during Parallel Hash plan
execution.

relation Waiting to acquire a lock on a
relation.

extend Waiting to extend a relation.

page Waiting to acquire a lock on page
of a relation.

tuple Waiting to acquire a lock on a
tuple.

transactionid Waiting for a transaction to finish.

virtualxid Waiting to acquire a virtual xid
lock.

speculative token Waiting to acquire a speculative
insertion lock.

object Waiting to acquire a lock on a
non-relation database object.

userlock Waiting to acquire a user lock.

Lock

advisory Waiting to acquire an advisory
user lock.

BufferPin BufferPin Waiting to acquire a pin on a
buffer.

ArchiverMain Waiting in main loop of the
archiver process.

Activity

AutoVacuumMain Waiting in main loop of
autovacuum launcher process.

739

Monitoring Database Activity

Wait Event Type Wait Event Name Description

BgWriterHibernate Waiting in background writer
process, hibernating.

BgWriterMain Waiting in main loop of
background writer process
background worker.

CheckpointerMain Waiting in main loop of
checkpointer process.

LogicalApplyMain Waiting in main loop of logical
apply process.

LogicalLauncherMain Waiting in main loop of logical
launcher process.

PgStatMain Waiting in main loop of the
statistics collector process.

RecoveryWalAll Waiting for WAL from any
kind of source (local, archive or
stream) at recovery.

RecoveryWalStream Waiting for WAL from a stream at
recovery.

SysLoggerMain Waiting in main loop of syslogger
process.

WalReceiverMain Waiting in main loop of WAL
receiver process.

WalSenderMain Waiting in main loop of WAL
sender process.

WalWriterMain Waiting in main loop of WAL
writer process.

ClientRead Waiting to read data from the
client.

ClientWrite Waiting to write data to the client.

LibPQWalReceiverConnectWaiting in WAL receiver to
establish connection to remote
server.

LibPQWalReceiverReceiveWaiting in WAL receiver to
receive data from remote server.

SSLOpenServer Waiting for SSL while attempting
connection.

WalReceiverWaitStart Waiting for startup process to
send initial data for streaming
replication.

WalSenderWaitForWAL Waiting for WAL to be flushed in
WAL sender process.

Client

WalSenderWriteData Waiting for any activity when
processing replies from WAL
receiver in WAL sender process.

740

Monitoring Database Activity

Wait Event Type Wait Event Name Description

Extension Extension Waiting in an extension.

BgWorkerShutdown Waiting for background worker to
shut down.

BgWorkerStartup Waiting for background worker to
start up.

BtreePage Waiting for the page number
needed to continue a parallel B-
tree scan to become available.

ClogGroupUpdate Waiting for group leader to update
transaction status at transaction
end.

ExecuteGather Waiting for activity from child
process when executing Gather
node.

Hash/Batch/Allocating Waiting for an elected Parallel
Hash participant to allocate a hash
table.

Hash/Batch/Electing Electing a Parallel Hash
participant to allocate a hash table.

Hash/Batch/Loading Waiting for other Parallel Hash
participants to finish loading a
hash table.

Hash/Build/Allocating Waiting for an elected Parallel
Hash participant to allocate the
initial hash table.

Hash/Build/Electing Electing a Parallel Hash
participant to allocate the initial
hash table.

Hash/Build/
HashingInner

Waiting for other Parallel Hash
participants to finish hashing the
inner relation.

Hash/Build/
HashingOuter

Waiting for other Parallel Hash
participants to finish partitioning
the outer relation.

Hash/GrowBatches/
Allocating

Waiting for an elected Parallel
Hash participant to allocate more
batches.

Hash/GrowBatches/
Deciding

Electing a Parallel Hash
participant to decide on future
batch growth.

Hash/GrowBatches/
Electing

Electing a Parallel Hash
participant to allocate more
batches.

IPC

Hash/GrowBatches/
Finishing

Waiting for an elected Parallel
Hash participant to decide on
future batch growth.

741

Monitoring Database Activity

Wait Event Type Wait Event Name Description

Hash/GrowBatches/
Repartitioning

Waiting for other Parallel
Hash participants to finishing
repartitioning.

Hash/GrowBuckets/
Allocating

Waiting for an elected Parallel
Hash participant to finish
allocating more buckets.

Hash/GrowBuckets/
Electing

Electing a Parallel Hash
participant to allocate more
buckets.

Hash/GrowBuckets/
Reinserting

Waiting for other Parallel Hash
participants to finish inserting
tuples into new buckets.

LogicalSyncData Waiting for logical replication
remote server to send data for
initial table synchronization.

LogicalSyncStateChange Waiting for logical replication
remote server to change state.

MessageQueueInternal Waiting for other process to be
attached in shared message queue.

MessageQueuePutMessage Waiting to write a protocol
message to a shared message
queue.

MessageQueueReceive Waiting to receive bytes from a
shared message queue.

MessageQueueSend Waiting to send bytes to a shared
message queue.

ParallelBitmapScan Waiting for parallel bitmap scan
to become initialized.

ParallelCreateIndexScanWaiting for parallel CREATE
INDEX workers to finish heap
scan.

ParallelFinish Waiting for parallel workers to
finish computing.

ProcArrayGroupUpdate Waiting for group leader to clear
transaction id at transaction end.

ReplicationOriginDrop Waiting for a replication origin to
become inactive to be dropped.

ReplicationSlotDrop Waiting for a replication slot to
become inactive to be dropped.

SafeSnapshot Waiting for a snapshot for a
READ ONLY DEFERRABLE
transaction.

SyncRep Waiting for confirmation from
remote server during synchronous
replication.

742

Monitoring Database Activity

Wait Event Type Wait Event Name Description

BaseBackupThrottle Waiting during base backup when
throttling activity.

PgSleep Waiting in process that called
pg_sleep.

Timeout

RecoveryApplyDelay Waiting to apply WAL at
recovery because it is delayed.

BufFileRead Waiting for a read from a buffered
file.

BufFileWrite Waiting for a write to a buffered
file.

ControlFileRead Waiting for a read from the
control file.

ControlFileSync Waiting for the control file to
reach stable storage.

ControlFileSyncUpdate Waiting for an update to the
control file to reach stable storage.

ControlFileWrite Waiting for a write to the control
file.

ControlFileWriteUpdate Waiting for a write to update the
control file.

CopyFileRead Waiting for a read during a file
copy operation.

CopyFileWrite Waiting for a write during a file
copy operation.

DataFileExtend Waiting for a relation data file to
be extended.

DataFileFlush Waiting for a relation data file to
reach stable storage.

DataFileImmediateSync Waiting for an immediate
synchronization of a relation data
file to stable storage.

DataFilePrefetch Waiting for an asynchronous
prefetch from a relation data file.

DataFileRead Waiting for a read from a relation
data file.

DataFileSync Waiting for changes to a relation
data file to reach stable storage.

DataFileTruncate Waiting for a relation data file to
be truncated.

DataFileWrite Waiting for a write to a relation
data file.

IO

DSMFillZeroWrite Waiting to write zero bytes to a
dynamic shared memory backing
file.

743

Monitoring Database Activity

Wait Event Type Wait Event Name Description

LockFileAddToDataDirReadWaiting for a read while adding a
line to the data directory lock file.

LockFileAddToDataDirSyncWaiting for data to reach stable
storage while adding a line to the
data directory lock file.

LockFileAddToDataDirWriteWaiting for a write while adding a
line to the data directory lock file.

LockFileCreateRead Waiting to read while creating the
data directory lock file.

LockFileCreateSync Waiting for data to reach stable
storage while creating the data
directory lock file.

LockFileCreateWrite Waiting for a write while creating
the data directory lock file.

LockFileReCheckDataDirReadWaiting for a read during recheck
of the data directory lock file.

LogicalRewriteCheckpointSyncWaiting for logical rewrite
mappings to reach stable storage
during a checkpoint.

LogicalRewriteMappingSyncWaiting for mapping data to reach
stable storage during a logical
rewrite.

LogicalRewriteMappingWriteWaiting for a write of mapping
data during a logical rewrite.

LogicalRewriteSync Waiting for logical rewrite
mappings to reach stable storage.

LogicalRewriteWrite Waiting for a write of logical
rewrite mappings.

RelationMapRead Waiting for a read of the relation
map file.

RelationMapSync Waiting for the relation map file to
reach stable storage.

RelationMapWrite Waiting for a write to the relation
map file.

ReorderBufferRead Waiting for a read during reorder
buffer management.

ReorderBufferWrite Waiting for a write during reorder
buffer management.

ReorderLogicalMappingReadWaiting for a read of a logical
mapping during reorder buffer
management.

ReplicationSlotRead Waiting for a read from a
replication slot control file.

744

Monitoring Database Activity

Wait Event Type Wait Event Name Description

ReplicationSlotRestoreSyncWaiting for a replication slot
control file to reach stable storage
while restoring it to memory.

ReplicationSlotSync Waiting for a replication slot
control file to reach stable storage.

ReplicationSlotWrite Waiting for a write to a replication
slot control file.

SLRUFlushSync Waiting for SLRU data to reach
stable storage during a checkpoint
or database shutdown.

SLRURead Waiting for a read of an SLRU
page.

SLRUSync Waiting for SLRU data to reach
stable storage following a page
write.

SLRUWrite Waiting for a write of an SLRU
page.

SnapbuildRead Waiting for a read of a serialized
historical catalog snapshot.

SnapbuildSync Waiting for a serialized historical
catalog snapshot to reach stable
storage.

SnapbuildWrite Waiting for a write of a serialized
historical catalog snapshot.

TimelineHistoryFileSyncWaiting for a timeline history file
received via streaming replication
to reach stable storage.

TimelineHistoryFileWriteWaiting for a write of a timeline
history file received via streaming
replication.

TimelineHistoryRead Waiting for a read of a timeline
history file.

TimelineHistorySync Waiting for a newly created
timeline history file to reach stable
storage.

TimelineHistoryWrite Waiting for a write of a newly
created timeline history file.

TwophaseFileRead Waiting for a read of a two phase
state file.

TwophaseFileSync Waiting for a two phase state file
to reach stable storage.

TwophaseFileWrite Waiting for a write of a two phase
state file.

WALBootstrapSync Waiting for WAL to reach stable
storage during bootstrapping.

745

Monitoring Database Activity

Wait Event Type Wait Event Name Description

WALBootstrapWrite Waiting for a write of a WAL page
during bootstrapping.

WALCopyRead Waiting for a read when creating
a new WAL segment by copying
an existing one.

WALCopySync Waiting a new WAL segment
created by copying an existing one
to reach stable storage.

WALCopyWrite Waiting for a write when creating
a new WAL segment by copying
an existing one.

WALInitSync Waiting for a newly initialized
WAL file to reach stable storage.

WALInitWrite Waiting for a write while
initializing a new WAL file.

WALRead Waiting for a read from a WAL
file.

WALSenderTimelineHistoryReadWaiting for a read from a timeline
history file during walsender
timeline command.

WALSyncMethodAssign Waiting for data to reach stable
storage while assigning WAL
sync method.

WALWrite Waiting for a write to a WAL file.

Note

For tranches registered by extensions, the name is specified by extension and this will be displayed
as wait_event. It is quite possible that user has registered the tranche in one of the backends
(by having allocation in dynamic shared memory) in which case other backends won't have that
information, so we display extension for such cases.

Here is an example of how wait events can be viewed

SELECT pid, wait_event_type, wait_event FROM pg_stat_activity WHERE
 wait_event is NOT NULL;
 pid | wait_event_type | wait_event
------+-----------------+---------------
 2540 | Lock | relation
 6644 | LWLock | ProcArrayLock
(2 rows)

746

Monitoring Database Activity

Table 28.5. pg_stat_replication View

Column Type Description

pid integer Process ID of a WAL sender
process

usesysid oid OID of the user logged into this
WAL sender process

usename name Name of the user logged into this
WAL sender process

application_name text Name of the application that is
connected to this WAL sender

client_addr inet IP address of the client connected
to this WAL sender. If this field is
null, it indicates that the client is
connected via a Unix socket on the
server machine.

client_hostname text Host name of the connected client,
as reported by a reverse DNS
lookup of client_addr. This
field will only be non-null for
IP connections, and only when
log_hostname is enabled.

client_port integer TCP port number that the client
is using for communication with
this WAL sender, or -1 if a Unix
socket is used

backend_start timestamp with time
zone

Time when this process was
started, i.e., when the client
connected to this WAL sender

backend_xmin xid This standby's xmin horizon
reported by
hot_standby_feedback.

state text Current WAL sender state.
Possible values are:

• startup: This WAL sender is
starting up.

• catchup: This WAL sender's
connected standby is catching
up with the primary.

• streaming: This WAL
sender is streaming changes
after its connected standby
server has caught up with the
primary.

• backup: This WAL sender is
sending a backup.

747

Monitoring Database Activity

Column Type Description

• stopping: This WAL sender
is stopping.

sent_lsn pg_lsn Last write-ahead log location sent
on this connection

write_lsn pg_lsn Last write-ahead log location
written to disk by this standby
server

flush_lsn pg_lsn Last write-ahead log location
flushed to disk by this standby
server

replay_lsn pg_lsn Last write-ahead log location
replayed into the database on this
standby server

write_lag interval Time elapsed between flushing
recent WAL locally and receiving
notification that this standby
server has written it (but not yet
flushed it or applied it). This can
be used to gauge the delay that
synchronous_commit level
remote_write incurred while
committing if this server was
configured as a synchronous
standby.

flush_lag interval Time elapsed between flushing
recent WAL locally and receiving
notification that this standby
server has written and flushed it
(but not yet applied it). This can
be used to gauge the delay that
synchronous_commit level
on incurred while committing if
this server was configured as a
synchronous standby.

replay_lag interval Time elapsed between flushing
recent WAL locally and receiving
notification that this standby
server has written, flushed
and applied it. This can be
used to gauge the delay that
synchronous_commit level
remote_apply incurred while
committing if this server was
configured as a synchronous
standby.

sync_priority integer Priority of this standby server for
being chosen as the synchronous
standby in a priority-based
synchronous replication. This has

748

Monitoring Database Activity

Column Type Description

no effect in a quorum-based
synchronous replication.

sync_state text Synchronous state of this standby
server. Possible values are:

• async: This standby server is
asynchronous.

• potential: This standby
server is now asynchronous,
but can potentially become
synchronous if one of current
synchronous ones fails.

• sync: This standby server is
synchronous.

• quorum: This standby server
is considered as a candidate for
quorum standbys.

The pg_stat_replication view will contain one row per WAL sender process, showing statistics
about replication to that sender's connected standby server. Only directly connected standbys are listed;
no information is available about downstream standby servers.

The lag times reported in the pg_stat_replication view are measurements of the time taken for
recent WAL to be written, flushed and replayed and for the sender to know about it. These times represent
the commit delay that was (or would have been) introduced by each synchronous commit level, if the
remote server was configured as a synchronous standby. For an asynchronous standby, the replay_lag
column approximates the delay before recent transactions became visible to queries. If the standby server
has entirely caught up with the sending server and there is no more WAL activity, the most recently
measured lag times will continue to be displayed for a short time and then show NULL.

Lag times work automatically for physical replication. Logical decoding plugins may optionally emit
tracking messages; if they do not, the tracking mechanism will simply display NULL lag.

Note

The reported lag times are not predictions of how long it will take for the standby to catch up with
the sending server assuming the current rate of replay. Such a system would show similar times
while new WAL is being generated, but would differ when the sender becomes idle. In particular,
when the standby has caught up completely, pg_stat_replication shows the time taken
to write, flush and replay the most recent reported WAL location rather than zero as some users
might expect. This is consistent with the goal of measuring synchronous commit and transaction
visibility delays for recent write transactions. To reduce confusion for users expecting a different
model of lag, the lag columns revert to NULL after a short time on a fully replayed idle system.
Monitoring systems should choose whether to represent this as missing data, zero or continue to
display the last known value.

749

Monitoring Database Activity

Table 28.6. pg_stat_wal_receiver View

Column Type Description

pid integer Process ID of the WAL receiver
process

status text Activity status of the WAL
receiver process

receive_start_lsn pg_lsn First write-ahead log location
used when WAL receiver is
started

receive_start_tli integer First timeline number used when
WAL receiver is started

received_lsn pg_lsn Last write-ahead log location
already received and flushed to
disk, the initial value of this field
being the first log location used
when WAL receiver is started

received_tli integer Timeline number of last write-
ahead log location received and
flushed to disk, the initial value
of this field being the timeline
number of the first log location
used when WAL receiver is
started

last_msg_send_time timestamp with time
zone

Send time of last message
received from origin WAL sender

last_msg_receipt_time timestamp with time
zone

Receipt time of last message
received from origin WAL sender

latest_end_lsn pg_lsn Last write-ahead log location
reported to origin WAL sender

latest_end_time timestamp with time
zone

Time of last write-ahead log
location reported to origin WAL
sender

slot_name text Replication slot name used by this
WAL receiver

sender_host text Host of the PostgreSQL instance
this WAL receiver is connected
to. This can be a host name,
an IP address, or a directory
path if the connection is via
Unix socket. (The path case
can be distinguished because it
will always be an absolute path,
beginning with /.)

sender_port integer Port number of the PostgreSQL
instance this WAL receiver is
connected to.

750

Monitoring Database Activity

Column Type Description

conninfo text Connection string used by this
WAL receiver, with security-
sensitive fields obfuscated.

The pg_stat_wal_receiver view will contain only one row, showing statistics about the WAL
receiver from that receiver's connected server.

Table 28.7. pg_stat_subscription View

Column Type Description

subid oid OID of the subscription

subname text Name of the subscription

pid integer Process ID of the subscription
worker process

relid Oid OID of the relation that the worker
is synchronizing; null for the main
apply worker

received_lsn pg_lsn Last write-ahead log location
received, the initial value of this
field being 0

last_msg_send_time timestamp with time
zone

Send time of last message
received from origin WAL sender

last_msg_receipt_time timestamp with time
zone

Receipt time of last message
received from origin WAL sender

latest_end_lsn pg_lsn Last write-ahead log location
reported to origin WAL sender

latest_end_time timestamp with time
zone

Time of last write-ahead log
location reported to origin WAL
sender

The pg_stat_subscription view will contain one row per subscription for main worker (with null
PID if the worker is not running), and additional rows for workers handling the initial data copy of the
subscribed tables.

Table 28.8. pg_stat_ssl View

Column Type Description

pid integer Process ID of a backend or WAL
sender process

ssl boolean True if SSL is used on this
connection

version text Version of SSL in use, or NULL
if SSL is not in use on this
connection

cipher text Name of SSL cipher in use, or
NULL if SSL is not in use on this
connection

751

Monitoring Database Activity

Column Type Description

bits integer Number of bits in the encryption
algorithm used, or NULL if SSL
is not used on this connection

compression boolean True if SSL compression is in use,
false if not, or NULL if SSL is not
in use on this connection

clientdn text Distinguished Name (DN) field
from the client certificate used,
or NULL if no client certificate
was supplied or if SSL is not in
use on this connection. This field
is truncated if the DN field is
longer than NAMEDATALEN (64
characters in a standard build)

The pg_stat_ssl view will contain one row per backend or WAL sender process, showing
statistics about SSL usage on this connection. It can be joined to pg_stat_activity or
pg_stat_replication on the pid column to get more details about the connection.

Table 28.9. pg_stat_archiver View

Column Type Description

archived_count bigint Number of WAL files that have
been successfully archived

last_archived_wal text Name of the last WAL file
successfully archived

last_archived_time timestamp with time
zone

Time of the last successful archive
operation

failed_count bigint Number of failed attempts for
archiving WAL files

last_failed_wal text Name of the WAL file of the last
failed archival operation

last_failed_time timestamp with time
zone

Time of the last failed archival
operation

stats_reset timestamp with time
zone

Time at which these statistics
were last reset

The pg_stat_archiver view will always have a single row, containing data about the archiver process
of the cluster.

Table 28.10. pg_stat_bgwriter View

Column Type Description

checkpoints_timed bigint Number of scheduled checkpoints
that have been performed

checkpoints_req bigint Number of requested checkpoints
that have been performed

checkpoint_write_time double precision Total amount of time that has been
spent in the portion of checkpoint

752

Monitoring Database Activity

Column Type Description

processing where files are written
to disk, in milliseconds

checkpoint_sync_time double precision Total amount of time that has
been spent in the portion of
checkpoint processing where files
are synchronized to disk, in
milliseconds

buffers_checkpoint bigint Number of buffers written during
checkpoints

buffers_clean bigint Number of buffers written by the
background writer

maxwritten_clean bigint Number of times the background
writer stopped a cleaning scan
because it had written too many
buffers

buffers_backend bigint Number of buffers written directly
by a backend

buffers_backend_fsync bigint Number of times a backend had
to execute its own fsync call
(normally the background writer
handles those even when the
backend does its own write)

buffers_alloc bigint Number of buffers allocated

stats_reset timestamp with time
zone

Time at which these statistics
were last reset

The pg_stat_bgwriter view will always have a single row, containing global data for the cluster.

Table 28.11. pg_stat_database View

Column Type Description

datid oid OID of a database

datname name Name of this database

numbackends integer Number of backends currently
connected to this database. This is
the only column in this view that
returns a value reflecting current
state; all other columns return the
accumulated values since the last
reset.

xact_commit bigint Number of transactions in
this database that have been
committed

xact_rollback bigint Number of transactions in this
database that have been rolled
back

753

Monitoring Database Activity

Column Type Description

blks_read bigint Number of disk blocks read in this
database

blks_hit bigint Number of times disk blocks
were found already in the buffer
cache, so that a read was not
necessary (this only includes hits
in the PostgreSQL buffer cache,
not the operating system's file
system cache)

tup_returned bigint Number of rows returned by
queries in this database

tup_fetched bigint Number of rows fetched by
queries in this database

tup_inserted bigint Number of rows inserted by
queries in this database

tup_updated bigint Number of rows updated by
queries in this database

tup_deleted bigint Number of rows deleted by
queries in this database

conflicts bigint Number of queries canceled
due to conflicts with recovery
in this database. (Conflicts
occur only on standby servers;
see pg_stat_database_conflicts
for details.)

temp_files bigint Number of temporary files created
by queries in this database.
All temporary files are counted,
regardless of why the temporary
file was created (e.g., sorting or
hashing), and regardless of the
log_temp_files setting.

temp_bytes bigint Total amount of data written to
temporary files by queries in this
database. All temporary files are
counted, regardless of why the
temporary file was created, and
regardless of the log_temp_files
setting.

deadlocks bigint Number of deadlocks detected in
this database

blk_read_time double precision Time spent reading data file
blocks by backends in this
database, in milliseconds

blk_write_time double precision Time spent writing data file
blocks by backends in this
database, in milliseconds

754

Monitoring Database Activity

Column Type Description

stats_reset timestamp with time
zone

Time at which these statistics
were last reset

The pg_stat_database view will contain one row for each database in the cluster, showing database-
wide statistics.

Table 28.12. pg_stat_database_conflicts View

Column Type Description

datid oid OID of a database

datname name Name of this database

confl_tablespace bigint Number of queries in this database
that have been canceled due to
dropped tablespaces

confl_lock bigint Number of queries in this database
that have been canceled due to
lock timeouts

confl_snapshot bigint Number of queries in this database
that have been canceled due to old
snapshots

confl_bufferpin bigint Number of queries in this database
that have been canceled due to
pinned buffers

confl_deadlock bigint Number of queries in this database
that have been canceled due to
deadlocks

The pg_stat_database_conflicts view will contain one row per database, showing database-
wide statistics about query cancels occurring due to conflicts with recovery on standby servers. This view
will only contain information on standby servers, since conflicts do not occur on master servers.

Table 28.13. pg_stat_all_tables View

Column Type Description

relid oid OID of a table

schemaname name Name of the schema that this table
is in

relname name Name of this table

seq_scan bigint Number of sequential scans
initiated on this table

seq_tup_read bigint Number of live rows fetched by
sequential scans

idx_scan bigint Number of index scans initiated
on this table

idx_tup_fetch bigint Number of live rows fetched by
index scans

n_tup_ins bigint Number of rows inserted

755

Monitoring Database Activity

Column Type Description

n_tup_upd bigint Number of rows updated
(includes HOT updated rows)

n_tup_del bigint Number of rows deleted

n_tup_hot_upd bigint Number of rows HOT updated
(i.e., with no separate index
update required)

n_live_tup bigint Estimated number of live rows

n_dead_tup bigint Estimated number of dead rows

n_mod_since_analyze bigint Estimated number of rows
modified since this table was last
analyzed

last_vacuum timestamp with time
zone

Last time at which this table was
manually vacuumed (not counting
VACUUM FULL)

last_autovacuum timestamp with time
zone

Last time at which this table
was vacuumed by the autovacuum
daemon

last_analyze timestamp with time
zone

Last time at which this table was
manually analyzed

last_autoanalyze timestamp with time
zone

Last time at which this table
was analyzed by the autovacuum
daemon

vacuum_count bigint Number of times this table has
been manually vacuumed (not
counting VACUUM FULL)

autovacuum_count bigint Number of times this table
has been vacuumed by the
autovacuum daemon

analyze_count bigint Number of times this table has
been manually analyzed

autoanalyze_count bigint Number of times this table has
been analyzed by the autovacuum
daemon

The pg_stat_all_tables view will contain one row for each table in the current database (including
TOAST tables), showing statistics about accesses to that specific table. The pg_stat_user_tables
and pg_stat_sys_tables views contain the same information, but filtered to only show user and
system tables respectively.

Table 28.14. pg_stat_all_indexes View

Column Type Description

relid oid OID of the table for this index

indexrelid oid OID of this index

schemaname name Name of the schema this index is
in

756

Monitoring Database Activity

Column Type Description

relname name Name of the table for this index

indexrelname name Name of this index

idx_scan bigint Number of index scans initiated
on this index

idx_tup_read bigint Number of index entries returned
by scans on this index

idx_tup_fetch bigint Number of live table rows fetched
by simple index scans using this
index

The pg_stat_all_indexes view will contain one row for each index in the current database,
showing statistics about accesses to that specific index. The pg_stat_user_indexes and
pg_stat_sys_indexes views contain the same information, but filtered to only show user and system
indexes respectively.

Indexes can be used by simple index scans, “bitmap” index scans, and the optimizer. In a bitmap scan
the output of several indexes can be combined via AND or OR rules, so it is difficult to associate
individual heap row fetches with specific indexes when a bitmap scan is used. Therefore, a bitmap
scan increments the pg_stat_all_indexes.idx_tup_read count(s) for the index(es) it uses,
and it increments the pg_stat_all_tables.idx_tup_fetch count for the table, but it does not
affect pg_stat_all_indexes.idx_tup_fetch. The optimizer also accesses indexes to check for
supplied constants whose values are outside the recorded range of the optimizer statistics because the
optimizer statistics might be stale.

Note

The idx_tup_read and idx_tup_fetch counts can be different even without any use of
bitmap scans, because idx_tup_read counts index entries retrieved from the index while
idx_tup_fetch counts live rows fetched from the table. The latter will be less if any dead or
not-yet-committed rows are fetched using the index, or if any heap fetches are avoided by means
of an index-only scan.

Table 28.15. pg_statio_all_tables View

Column Type Description

relid oid OID of a table

schemaname name Name of the schema that this table
is in

relname name Name of this table

heap_blks_read bigint Number of disk blocks read from
this table

heap_blks_hit bigint Number of buffer hits in this table

idx_blks_read bigint Number of disk blocks read from
all indexes on this table

idx_blks_hit bigint Number of buffer hits in all
indexes on this table

757

Monitoring Database Activity

Column Type Description

toast_blks_read bigint Number of disk blocks read from
this table's TOAST table (if any)

toast_blks_hit bigint Number of buffer hits in this
table's TOAST table (if any)

tidx_blks_read bigint Number of disk blocks read from
this table's TOAST table indexes
(if any)

tidx_blks_hit bigint Number of buffer hits in this
table's TOAST table indexes (if
any)

The pg_statio_all_tables view will contain one row for each table in the current
database (including TOAST tables), showing statistics about I/O on that specific table. The
pg_statio_user_tables and pg_statio_sys_tables views contain the same information,
but filtered to only show user and system tables respectively.

Table 28.16. pg_statio_all_indexes View

Column Type Description

relid oid OID of the table for this index

indexrelid oid OID of this index

schemaname name Name of the schema this index is
in

relname name Name of the table for this index

indexrelname name Name of this index

idx_blks_read bigint Number of disk blocks read from
this index

idx_blks_hit bigint Number of buffer hits in this index

The pg_statio_all_indexes view will contain one row for each index in the current
database, showing statistics about I/O on that specific index. The pg_statio_user_indexes and
pg_statio_sys_indexes views contain the same information, but filtered to only show user and
system indexes respectively.

Table 28.17. pg_statio_all_sequences View

Column Type Description

relid oid OID of a sequence

schemaname name Name of the schema this sequence
is in

relname name Name of this sequence

blks_read bigint Number of disk blocks read from
this sequence

blks_hit bigint Number of buffer hits in this
sequence

The pg_statio_all_sequences view will contain one row for each sequence in the current
database, showing statistics about I/O on that specific sequence.

758

Monitoring Database Activity

Table 28.18. pg_stat_user_functions View

Column Type Description

funcid oid OID of a function

schemaname name Name of the schema this function
is in

funcname name Name of this function

calls bigint Number of times this function has
been called

total_time double precision Total time spent in this function
and all other functions called by it,
in milliseconds

self_time double precision Total time spent in this
function itself, not including
other functions called by it, in
milliseconds

The pg_stat_user_functions view will contain one row for each tracked function, showing
statistics about executions of that function. The track_functions parameter controls exactly which functions
are tracked.

28.2.3. Statistics Functions
Other ways of looking at the statistics can be set up by writing queries that use the same underlying statistics
access functions used by the standard views shown above. For details such as the functions' names, consult
the definitions of the standard views. (For example, in psql you could issue \d+ pg_stat_activity.)
The access functions for per-database statistics take a database OID as an argument to identify which
database to report on. The per-table and per-index functions take a table or index OID. The functions for
per-function statistics take a function OID. Note that only tables, indexes, and functions in the current
database can be seen with these functions.

Additional functions related to statistics collection are listed in Table 28.19.

Table 28.19. Additional Statistics Functions

Function Return Type Description

pg_backend_pid() integer Process ID of the server process
handling the current session

pg_stat_get_activity(integer)setof record Returns a record of information
about the backend with the
specified PID, or one record for
each active backend in the system
if NULL is specified. The fields
returned are a subset of those in
the pg_stat_activity view.

pg_stat_get_snapshot_timestamp()timestamp with time
zone

Returns the timestamp of the
current statistics snapshot

pg_stat_clear_snapshot()void Discard the current statistics
snapshot

759

Monitoring Database Activity

Function Return Type Description

pg_stat_reset() void Reset all statistics counters for the
current database to zero (requires
superuser privileges by default,
but EXECUTE for this function
can be granted to others.)

pg_stat_reset_shared(text)void Reset some cluster-wide statistics
counters to zero, depending
on the argument (requires
superuser privileges by default,
but EXECUTE for this function
can be granted to others). Calling
pg_stat_reset_shared('bgwriter')
will zero all the counters shown in
the pg_stat_bgwriter view.
Calling
pg_stat_reset_shared('archiver')
will zero all the counters shown in
the pg_stat_archiver view.

pg_stat_reset_single_table_counters(oid)void Reset statistics for a single
table or index in the current
database to zero (requires
superuser privileges by default,
but EXECUTE for this function
can be granted to others)

pg_stat_reset_single_function_counters(oid)void Reset statistics for a single
function in the current database
to zero (requires superuser
privileges by default, but
EXECUTE for this function can
be granted to others)

pg_stat_get_activity, the underlying function of the pg_stat_activity view, returns a set
of records containing all the available information about each backend process. Sometimes it may be
more convenient to obtain just a subset of this information. In such cases, an older set of per-backend
statistics access functions can be used; these are shown in Table 28.20. These access functions use a
backend ID number, which ranges from one to the number of currently active backends. The function
pg_stat_get_backend_idset provides a convenient way to generate one row for each active
backend for invoking these functions. For example, to show the PIDs and current queries of all backends:

SELECT pg_stat_get_backend_pid(s.backendid) AS pid,
 pg_stat_get_backend_activity(s.backendid) AS query
 FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;

Table 28.20. Per-Backend Statistics Functions

Function Return Type Description

pg_stat_get_backend_idset()setof integer Set of currently active backend ID
numbers (from 1 to the number of
active backends)

760

Monitoring Database Activity

Function Return Type Description

pg_stat_get_backend_activity(integer)text Text of this backend's most recent
query

pg_stat_get_backend_activity_start(integer)timestamp with time
zone

Time when the most recent query
was started

pg_stat_get_backend_client_addr(integer)inet IP address of the client connected
to this backend

pg_stat_get_backend_client_port(integer)integer TCP port number that the client is
using for communication

pg_stat_get_backend_dbid(integer)oid OID of the database this backend
is connected to

pg_stat_get_backend_pid(integer)integer Process ID of this backend

pg_stat_get_backend_start(integer)timestamp with time
zone

Time when this process was
started

pg_stat_get_backend_userid(integer)oid OID of the user logged into this
backend

pg_stat_get_backend_wait_event_type(integer)text Wait event type name if backend
is currently waiting, otherwise
NULL. See Table 28.4 for details.

pg_stat_get_backend_wait_event(integer)text Wait event name if backend
is currently waiting, otherwise
NULL. See Table 28.4 for details.

pg_stat_get_backend_xact_start(integer)timestamp with time
zone

Time when the current transaction
was started

28.3. Viewing Locks
Another useful tool for monitoring database activity is the pg_locks system table. It allows the database
administrator to view information about the outstanding locks in the lock manager. For example, this
capability can be used to:

• View all the locks currently outstanding, all the locks on relations in a particular database, all the locks
on a particular relation, or all the locks held by a particular PostgreSQL session.

• Determine the relation in the current database with the most ungranted locks (which might be a source
of contention among database clients).

• Determine the effect of lock contention on overall database performance, as well as the extent to which
contention varies with overall database traffic.

Details of the pg_locks view appear in Section 52.73. For more information on locking and managing
concurrency with PostgreSQL, refer to Chapter 13.

28.4. Progress Reporting
PostgreSQL has the ability to report the progress of certain commands during command execution.
Currently, the only command which supports progress reporting is VACUUM. This may be expanded in
the future.

761

Monitoring Database Activity

28.4.1. VACUUM Progress Reporting

Whenever VACUUM is running, the pg_stat_progress_vacuum view will contain one row for each
backend (including autovacuum worker processes) that is currently vacuuming. The tables below describe
the information that will be reported and provide information about how to interpret it. Progress reporting
is not currently supported for VACUUM FULL and backends running VACUUM FULL will not be listed
in this view.

Table 28.21. pg_stat_progress_vacuum View

Column Type Description

pid integer Process ID of backend.

datid oid OID of the database to which this
backend is connected.

datname name Name of the database to which
this backend is connected.

relid oid OID of the table being vacuumed.

phase text Current processing phase of
vacuum. See Table 28.22.

heap_blks_total bigint Total number of heap blocks in
the table. This number is reported
as of the beginning of the scan;
blocks added later will not be
(and need not be) visited by this
VACUUM.

heap_blks_scanned bigint Number of heap blocks scanned.
Because the visibility map is
used to optimize scans, some
blocks will be skipped without
inspection; skipped blocks are
included in this total, so that this
number will eventually become
equal to heap_blks_total
when the vacuum is complete.
This counter only advances when
the phase is scanning heap.

heap_blks_vacuumed bigint Number of heap blocks
vacuumed. Unless the table has
no indexes, this counter only
advances when the phase is
vacuuming heap. Blocks
that contain no dead tuples are
skipped, so the counter may
sometimes skip forward in large
increments.

index_vacuum_count bigint Number of completed index
vacuum cycles.

max_dead_tuples bigint Number of dead tuples that we can
store before needing to perform

762

Monitoring Database Activity

Column Type Description

an index vacuum cycle, based on
maintenance_work_mem.

num_dead_tuples bigint Number of dead tuples collected
since the last index vacuum cycle.

Table 28.22. VACUUM phases

Phase Description

initializing VACUUM is preparing to begin scanning the heap.
This phase is expected to be very brief.

scanning heap VACUUM is currently scanning the heap. It will
prune and defragment each page if required,
and possibly perform freezing activity. The
heap_blks_scanned column can be used to
monitor the progress of the scan.

vacuuming indexes VACUUM is currently vacuuming the indexes. If a
table has any indexes, this will happen at least once
per vacuum, after the heap has been completely
scanned. It may happen multiple times per vacuum
if maintenance_work_mem is insufficient to store
the number of dead tuples found.

vacuuming heap VACUUM is currently vacuuming the heap.
Vacuuming the heap is distinct from scanning the
heap, and occurs after each instance of vacuuming
indexes. If heap_blks_scanned is less than
heap_blks_total, the system will return to
scanning the heap after this phase is completed;
otherwise, it will begin cleaning up indexes after this
phase is completed.

cleaning up indexes VACUUM is currently cleaning up indexes. This
occurs after the heap has been completely scanned
and all vacuuming of the indexes and the heap has
been completed.

truncating heap VACUUM is currently truncating the heap so as to
return empty pages at the end of the relation to
the operating system. This occurs after cleaning up
indexes.

performing final cleanup VACUUM is performing final cleanup. During this
phase, VACUUM will vacuum the free space map,
update statistics in pg_class, and report statistics
to the statistics collector. When this phase is
completed, VACUUM will end.

28.5. Dynamic Tracing
PostgreSQL provides facilities to support dynamic tracing of the database server. This allows an external
utility to be called at specific points in the code and thereby trace execution.

763

Monitoring Database Activity

A number of probes or trace points are already inserted into the source code. These probes are intended to be
used by database developers and administrators. By default the probes are not compiled into PostgreSQL;
the user needs to explicitly tell the configure script to make the probes available.

Currently, the DTrace1 utility is supported, which, at the time of this writing, is available on Solaris,
macOS, FreeBSD, NetBSD, and Oracle Linux. The SystemTap2 project for Linux provides a DTrace
equivalent and can also be used. Supporting other dynamic tracing utilities is theoretically possible by
changing the definitions for the macros in src/include/utils/probes.h.

28.5.1. Compiling for Dynamic Tracing
By default, probes are not available, so you will need to explicitly tell the configure script to make the
probes available in PostgreSQL. To include DTrace support specify --enable-dtrace to configure.
See Section 16.4 for further information.

28.5.2. Built-in Probes
A number of standard probes are provided in the source code, as shown in Table 28.23; Table 28.24 shows
the types used in the probes. More probes can certainly be added to enhance PostgreSQL's observability.

Table 28.23. Built-in DTrace Probes

Name Parameters Description

transaction-start (LocalTransactionId) Probe that fires at the start of
a new transaction. arg0 is the
transaction ID.

transaction-commit (LocalTransactionId) Probe that fires when a transaction
completes successfully. arg0 is the
transaction ID.

transaction-abort (LocalTransactionId) Probe that fires when a transaction
completes unsuccessfully. arg0 is
the transaction ID.

query-start (const char *) Probe that fires when the
processing of a query is started.
arg0 is the query string.

query-done (const char *) Probe that fires when the
processing of a query is complete.
arg0 is the query string.

query-parse-start (const char *) Probe that fires when the parsing
of a query is started. arg0 is the
query string.

query-parse-done (const char *) Probe that fires when the parsing
of a query is complete. arg0 is the
query string.

query-rewrite-start (const char *) Probe that fires when the rewriting
of a query is started. arg0 is the
query string.

1 https://en.wikipedia.org/wiki/DTrace
2 http://sourceware.org/systemtap/

764

https://en.wikipedia.org/wiki/DTrace
http://sourceware.org/systemtap/
https://en.wikipedia.org/wiki/DTrace
http://sourceware.org/systemtap/

Monitoring Database Activity

Name Parameters Description

query-rewrite-done (const char *) Probe that fires when the rewriting
of a query is complete. arg0 is the
query string.

query-plan-start () Probe that fires when the planning
of a query is started.

query-plan-done () Probe that fires when the planning
of a query is complete.

query-execute-start () Probe that fires when the
execution of a query is started.

query-execute-done () Probe that fires when the
execution of a query is complete.

statement-status (const char *) Probe that fires anytime the
server process updates its
pg_stat_activity.status.
arg0 is the new status string.

checkpoint-start (int) Probe that fires when a checkpoint
is started. arg0 holds the
bitwise flags used to distinguish
different checkpoint types, such as
shutdown, immediate or force.

checkpoint-done (int, int, int, int,
int)

Probe that fires when a checkpoint
is complete. (The probes listed
next fire in sequence during
checkpoint processing.) arg0 is
the number of buffers written.
arg1 is the total number of
buffers. arg2, arg3 and arg4
contain the number of WAL
files added, removed and recycled
respectively.

clog-checkpoint-start (bool) Probe that fires when the CLOG
portion of a checkpoint is started.
arg0 is true for normal checkpoint,
false for shutdown checkpoint.

clog-checkpoint-done (bool) Probe that fires when the
CLOG portion of a checkpoint
is complete. arg0 has the
same meaning as for clog-
checkpoint-start.

subtrans-checkpoint-
start

(bool) Probe that fires when the
SUBTRANS portion of a
checkpoint is started. arg0 is true
for normal checkpoint, false for
shutdown checkpoint.

subtrans-checkpoint-
done

(bool) Probe that fires when the
SUBTRANS portion of a
checkpoint is complete. arg0
has the same meaning as

765

Monitoring Database Activity

Name Parameters Description

for subtrans-checkpoint-
start.

multixact-checkpoint-
start

(bool) Probe that fires when the
MultiXact portion of a checkpoint
is started. arg0 is true for normal
checkpoint, false for shutdown
checkpoint.

multixact-checkpoint-
done

(bool) Probe that fires when the
MultiXact portion of a checkpoint
is complete. arg0 has the same
meaning as for multixact-
checkpoint-start.

buffer-checkpoint-
start

(int) Probe that fires when the buffer-
writing portion of a checkpoint
is started. arg0 holds the
bitwise flags used to distinguish
different checkpoint types, such as
shutdown, immediate or force.

buffer-sync-start (int, int) Probe that fires when we begin
to write dirty buffers during
checkpoint (after identifying
which buffers must be written).
arg0 is the total number of buffers.
arg1 is the number that are
currently dirty and need to be
written.

buffer-sync-written (int) Probe that fires after each buffer is
written during checkpoint. arg0 is
the ID number of the buffer.

buffer-sync-done (int, int, int) Probe that fires when all dirty
buffers have been written. arg0
is the total number of buffers.
arg1 is the number of buffers
actually written by the checkpoint
process. arg2 is the number that
were expected to be written (arg1
of buffer-sync-start); any
difference reflects other processes
flushing buffers during the
checkpoint.

buffer-checkpoint-
sync-start

() Probe that fires after dirty buffers
have been written to the kernel,
and before starting to issue fsync
requests.

buffer-checkpoint-done () Probe that fires when syncing of
buffers to disk is complete.

twophase-checkpoint-
start

() Probe that fires when the two-
phase portion of a checkpoint is
started.

766

Monitoring Database Activity

Name Parameters Description

twophase-checkpoint-
done

() Probe that fires when the two-
phase portion of a checkpoint is
complete.

buffer-read-start (ForkNumber,
BlockNumber, Oid, Oid,
Oid, int, bool)

Probe that fires when a buffer read
is started. arg0 and arg1 contain
the fork and block numbers of
the page (but arg1 will be -1
if this is a relation extension
request). arg2, arg3, and arg4
contain the tablespace, database,
and relation OIDs identifying
the relation. arg5 is the ID of
the backend which created the
temporary relation for a local
buffer, or InvalidBackendId
(-1) for a shared buffer. arg6
is true for a relation extension
request, false for normal read.

buffer-read-done (ForkNumber,
BlockNumber, Oid, Oid,
Oid, int, bool, bool)

Probe that fires when a buffer read
is complete. arg0 and arg1 contain
the fork and block numbers of the
page (if this is a relation extension
request, arg1 now contains the
block number of the newly added
block). arg2, arg3, and arg4
contain the tablespace, database,
and relation OIDs identifying
the relation. arg5 is the ID of
the backend which created the
temporary relation for a local
buffer, or InvalidBackendId
(-1) for a shared buffer. arg6
is true for a relation extension
request, false for normal read.
arg7 is true if the buffer was found
in the pool, false if not.

buffer-flush-start (ForkNumber,
BlockNumber, Oid, Oid,
Oid)

Probe that fires before issuing any
write request for a shared buffer.
arg0 and arg1 contain the fork
and block numbers of the page.
arg2, arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation.

buffer-flush-done (ForkNumber,
BlockNumber, Oid, Oid,
Oid)

Probe that fires when a write
request is complete. (Note that this
just reflects the time to pass the
data to the kernel; it's typically not
actually been written to disk yet.)
The arguments are the same as for
buffer-flush-start.

767

Monitoring Database Activity

Name Parameters Description

buffer-write-dirty-
start

(ForkNumber,
BlockNumber, Oid, Oid,
Oid)

Probe that fires when a server
process begins to write a dirty
buffer. (If this happens often,
it implies that shared_buffers is
too small or the background
writer control parameters need
adjustment.) arg0 and arg1
contain the fork and block
numbers of the page. arg2, arg3,
and arg4 contain the tablespace,
database, and relation OIDs
identifying the relation.

buffer-write-dirty-
done

(ForkNumber,
BlockNumber, Oid, Oid,
Oid)

Probe that fires when a dirty-
buffer write is complete. The
arguments are the same as
for buffer-write-dirty-
start.

wal-buffer-write-
dirty-start

() Probe that fires when a server
process begins to write a dirty
WAL buffer because no more
WAL buffer space is available. (If
this happens often, it implies that
wal_buffers is too small.)

wal-buffer-write-
dirty-done

() Probe that fires when a dirty WAL
buffer write is complete.

wal-insert (unsigned char,
unsigned char)

Probe that fires when a WAL
record is inserted. arg0 is the
resource manager (rmid) for the
record. arg1 contains the info
flags.

wal-switch () Probe that fires when a WAL
segment switch is requested.

smgr-md-read-start (ForkNumber,
BlockNumber, Oid, Oid,
Oid, int)

Probe that fires when beginning
to read a block from a relation.
arg0 and arg1 contain the fork
and block numbers of the page.
arg2, arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation.
arg5 is the ID of the backend
which created the temporary
relation for a local buffer, or
InvalidBackendId (-1) for a
shared buffer.

smgr-md-read-done (ForkNumber,
BlockNumber, Oid, Oid,
Oid, int, int, int)

Probe that fires when a block read
is complete. arg0 and arg1 contain
the fork and block numbers of
the page. arg2, arg3, and arg4
contain the tablespace, database,

768

Monitoring Database Activity

Name Parameters Description

and relation OIDs identifying
the relation. arg5 is the ID of
the backend which created the
temporary relation for a local
buffer, or InvalidBackendId
(-1) for a shared buffer. arg6
is the number of bytes actually
read, while arg7 is the number
requested (if these are different it
indicates trouble).

smgr-md-write-start (ForkNumber,
BlockNumber, Oid, Oid,
Oid, int)

Probe that fires when beginning
to write a block to a relation.
arg0 and arg1 contain the fork
and block numbers of the page.
arg2, arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation.
arg5 is the ID of the backend
which created the temporary
relation for a local buffer, or
InvalidBackendId (-1) for a
shared buffer.

smgr-md-write-done (ForkNumber,
BlockNumber, Oid, Oid,
Oid, int, int, int)

Probe that fires when a block write
is complete. arg0 and arg1 contain
the fork and block numbers of
the page. arg2, arg3, and arg4
contain the tablespace, database,
and relation OIDs identifying
the relation. arg5 is the ID of
the backend which created the
temporary relation for a local
buffer, or InvalidBackendId
(-1) for a shared buffer. arg6
is the number of bytes actually
written, while arg7 is the number
requested (if these are different it
indicates trouble).

sort-start (int, bool, int, int,
bool, int)

Probe that fires when a sort
operation is started. arg0 indicates
heap, index or datum sort.
arg1 is true for unique-value
enforcement. arg2 is the number
of key columns. arg3 is the
number of kilobytes of work
memory allowed. arg4 is true if
random access to the sort result
is required. arg5 indicates serial
when 0, parallel worker when 1,
or parallel leader when 2.

sort-done (bool, long) Probe that fires when a sort is
complete. arg0 is true for external

769

Monitoring Database Activity

Name Parameters Description

sort, false for internal sort. arg1
is the number of disk blocks used
for an external sort, or kilobytes of
memory used for an internal sort.

lwlock-acquire (char *, LWLockMode) Probe that fires when an LWLock
has been acquired. arg0 is
the LWLock's tranche. arg1 is
the requested lock mode, either
exclusive or shared.

lwlock-release (char *) Probe that fires when an LWLock
has been released (but note that
any released waiters have not
yet been awakened). arg0 is the
LWLock's tranche.

lwlock-wait-start (char *, LWLockMode) Probe that fires when an LWLock
was not immediately available
and a server process has begun
to wait for the lock to become
available. arg0 is the LWLock's
tranche. arg1 is the requested lock
mode, either exclusive or shared.

lwlock-wait-done (char *, LWLockMode) Probe that fires when a server
process has been released from its
wait for an LWLock (it does not
actually have the lock yet). arg0
is the LWLock's tranche. arg1 is
the requested lock mode, either
exclusive or shared.

lwlock-condacquire (char *, LWLockMode) Probe that fires when an LWLock
was successfully acquired when
the caller specified no waiting.
arg0 is the LWLock's tranche.
arg1 is the requested lock mode,
either exclusive or shared.

lwlock-condacquire-
fail

(char *, LWLockMode) Probe that fires when an LWLock
was not successfully acquired
when the caller specified no
waiting. arg0 is the LWLock's
tranche. arg1 is the requested lock
mode, either exclusive or shared.

lock-wait-start (unsigned int, unsigned
int, unsigned int,
unsigned int, unsigned
int, LOCKMODE)

Probe that fires when a request for
a heavyweight lock (lmgr lock)
has begun to wait because the
lock is not available. arg0 through
arg3 are the tag fields identifying
the object being locked. arg4
indicates the type of object being
locked. arg5 indicates the lock
type being requested.

770

Monitoring Database Activity

Name Parameters Description

lock-wait-done (unsigned int, unsigned
int, unsigned int,
unsigned int, unsigned
int, LOCKMODE)

Probe that fires when a request for
a heavyweight lock (lmgr lock)
has finished waiting (i.e., has
acquired the lock). The arguments
are the same as for lock-wait-
start.

deadlock-found () Probe that fires when a deadlock
is found by the deadlock detector.

Table 28.24. Defined Types Used in Probe Parameters

Type Definition

LocalTransactionId unsigned int

LWLockMode int

LOCKMODE int

BlockNumber unsigned int

Oid unsigned int

ForkNumber int

bool char

28.5.3. Using Probes
The example below shows a DTrace script for analyzing transaction counts in the system, as an alternative
to snapshotting pg_stat_database before and after a performance test:

#!/usr/sbin/dtrace -qs

postgresql$1:::transaction-start
{
 @start["Start"] = count();
 self->ts = timestamp;
}

postgresql$1:::transaction-abort
{
 @abort["Abort"] = count();
}

postgresql$1:::transaction-commit
/self->ts/
{
 @commit["Commit"] = count();
 @time["Total time (ns)"] = sum(timestamp - self->ts);
 self->ts=0;
}

When executed, the example D script gives output such as:

771

Monitoring Database Activity

./txn_count.d `pgrep -n postgres` or ./txn_count.d <PID>
^C

Start 71
Commit 70
Total time (ns) 2312105013

Note

SystemTap uses a different notation for trace scripts than DTrace does, even though the underlying
trace points are compatible. One point worth noting is that at this writing, SystemTap scripts must
reference probe names using double underscores in place of hyphens. This is expected to be fixed
in future SystemTap releases.

You should remember that DTrace scripts need to be carefully written and debugged, otherwise the
trace information collected might be meaningless. In most cases where problems are found it is the
instrumentation that is at fault, not the underlying system. When discussing information found using
dynamic tracing, be sure to enclose the script used to allow that too to be checked and discussed.

28.5.4. Defining New Probes
New probes can be defined within the code wherever the developer desires, though this will require a
recompilation. Below are the steps for inserting new probes:

1. Decide on probe names and data to be made available through the probes

2. Add the probe definitions to src/backend/utils/probes.d

3. Include pg_trace.h if it is not already present in the module(s) containing the probe points, and
insert TRACE_POSTGRESQL probe macros at the desired locations in the source code

4. Recompile and verify that the new probes are available

Example: Here is an example of how you would add a probe to trace all new transactions by transaction
ID.

1. Decide that the probe will be named transaction-start and requires a parameter of type
LocalTransactionId

2. Add the probe definition to src/backend/utils/probes.d:

probe transaction__start(LocalTransactionId);

Note the use of the double underline in the probe name. In a DTrace script using the probe, the double
underline needs to be replaced with a hyphen, so transaction-start is the name to document
for users.

3. At compile time, transaction__start is converted to a macro called
TRACE_POSTGRESQL_TRANSACTION_START (notice the underscores are single here), which is
available by including pg_trace.h. Add the macro call to the appropriate location in the source
code. In this case, it looks like the following:

772

Monitoring Database Activity

TRACE_POSTGRESQL_TRANSACTION_START(vxid.localTransactionId);

4. After recompiling and running the new binary, check that your newly added probe is available by
executing the following DTrace command. You should see similar output:

dtrace -ln transaction-start
 ID PROVIDER MODULE FUNCTION NAME
18705 postgresql49878 postgres StartTransactionCommand
 transaction-start
18755 postgresql49877 postgres StartTransactionCommand
 transaction-start
18805 postgresql49876 postgres StartTransactionCommand
 transaction-start
18855 postgresql49875 postgres StartTransactionCommand
 transaction-start
18986 postgresql49873 postgres StartTransactionCommand
 transaction-start

There are a few things to be careful about when adding trace macros to the C code:

• You should take care that the data types specified for a probe's parameters match the data types of the
variables used in the macro. Otherwise, you will get compilation errors.

• On most platforms, if PostgreSQL is built with --enable-dtrace, the arguments to a trace macro
will be evaluated whenever control passes through the macro, even if no tracing is being done. This is
usually not worth worrying about if you are just reporting the values of a few local variables. But beware
of putting expensive function calls into the arguments. If you need to do that, consider protecting the
macro with a check to see if the trace is actually enabled:

if (TRACE_POSTGRESQL_TRANSACTION_START_ENABLED())
 TRACE_POSTGRESQL_TRANSACTION_START(some_function(...));

Each trace macro has a corresponding ENABLED macro.

773

Chapter 29. Monitoring Disk Usage
This chapter discusses how to monitor the disk usage of a PostgreSQL database system.

29.1. Determining Disk Usage
Each table has a primary heap disk file where most of the data is stored. If the table has any columns with
potentially-wide values, there also might be a TOAST file associated with the table, which is used to store
values too wide to fit comfortably in the main table (see Section 68.2). There will be one valid index on
the TOAST table, if present. There also might be indexes associated with the base table. Each table and
index is stored in a separate disk file — possibly more than one file, if the file would exceed one gigabyte.
Naming conventions for these files are described in Section 68.1.

You can monitor disk space in three ways: using the SQL functions listed in Table 9.84, using the oid2name
module, or using manual inspection of the system catalogs. The SQL functions are the easiest to use and
are generally recommended. The remainder of this section shows how to do it by inspection of the system
catalogs.

Using psql on a recently vacuumed or analyzed database, you can issue queries to see the disk usage of
any table:

SELECT pg_relation_filepath(oid), relpages FROM pg_class WHERE relname
 = 'customer';

 pg_relation_filepath | relpages
----------------------+----------
 base/16384/16806 | 60
(1 row)

Each page is typically 8 kilobytes. (Remember, relpages is only updated by VACUUM, ANALYZE, and
a few DDL commands such as CREATE INDEX.) The file path name is of interest if you want to examine
the table's disk file directly.

To show the space used by TOAST tables, use a query like the following:

SELECT relname, relpages
FROM pg_class,
 (SELECT reltoastrelid
 FROM pg_class
 WHERE relname = 'customer') AS ss
WHERE oid = ss.reltoastrelid OR
 oid = (SELECT indexrelid
 FROM pg_index
 WHERE indrelid = ss.reltoastrelid)
ORDER BY relname;

 relname | relpages
----------------------+----------
 pg_toast_16806 | 0
 pg_toast_16806_index | 1

You can easily display index sizes, too:

774

Monitoring Disk Usage

SELECT c2.relname, c2.relpages
FROM pg_class c, pg_class c2, pg_index i
WHERE c.relname = 'customer' AND
 c.oid = i.indrelid AND
 c2.oid = i.indexrelid
ORDER BY c2.relname;

 relname | relpages
----------------------+----------
 customer_id_indexdex | 26

It is easy to find your largest tables and indexes using this information:

SELECT relname, relpages
FROM pg_class
ORDER BY relpages DESC;

 relname | relpages
----------------------+----------
 bigtable | 3290
 customer | 3144

29.2. Disk Full Failure
The most important disk monitoring task of a database administrator is to make sure the disk doesn't
become full. A filled data disk will not result in data corruption, but it might prevent useful activity from
occurring. If the disk holding the WAL files grows full, database server panic and consequent shutdown
might occur.

If you cannot free up additional space on the disk by deleting other things, you can move some of the
database files to other file systems by making use of tablespaces. See Section 22.6 for more information
about that.

Tip

Some file systems perform badly when they are almost full, so do not wait until the disk is
completely full to take action.

If your system supports per-user disk quotas, then the database will naturally be subject to whatever quota
is placed on the user the server runs as. Exceeding the quota will have the same bad effects as running
out of disk space entirely.

775

Chapter 30. Reliability and the Write-
Ahead Log

This chapter explains how the Write-Ahead Log is used to obtain efficient, reliable operation.

30.1. Reliability
Reliability is an important property of any serious database system, and PostgreSQL does everything
possible to guarantee reliable operation. One aspect of reliable operation is that all data recorded by a
committed transaction should be stored in a nonvolatile area that is safe from power loss, operating system
failure, and hardware failure (except failure of the nonvolatile area itself, of course). Successfully writing
the data to the computer's permanent storage (disk drive or equivalent) ordinarily meets this requirement.
In fact, even if a computer is fatally damaged, if the disk drives survive they can be moved to another
computer with similar hardware and all committed transactions will remain intact.

While forcing data to the disk platters periodically might seem like a simple operation, it is not. Because
disk drives are dramatically slower than main memory and CPUs, several layers of caching exist between
the computer's main memory and the disk platters. First, there is the operating system's buffer cache, which
caches frequently requested disk blocks and combines disk writes. Fortunately, all operating systems give
applications a way to force writes from the buffer cache to disk, and PostgreSQL uses those features. (See
the wal_sync_method parameter to adjust how this is done.)

Next, there might be a cache in the disk drive controller; this is particularly common on RAID controller
cards. Some of these caches are write-through, meaning writes are sent to the drive as soon as they arrive.
Others are write-back, meaning data is sent to the drive at some later time. Such caches can be a reliability
hazard because the memory in the disk controller cache is volatile, and will lose its contents in a power
failure. Better controller cards have battery-backup units (BBUs), meaning the card has a battery that
maintains power to the cache in case of system power loss. After power is restored the data will be written
to the disk drives.

And finally, most disk drives have caches. Some are write-through while some are write-back, and the
same concerns about data loss exist for write-back drive caches as for disk controller caches. Consumer-
grade IDE and SATA drives are particularly likely to have write-back caches that will not survive a power
failure. Many solid-state drives (SSD) also have volatile write-back caches.

These caches can typically be disabled; however, the method for doing this varies by operating system
and drive type:

• On Linux, IDE and SATA drives can be queried using hdparm -I; write caching is enabled if there
is a * next to Write cache. hdparm -W 0 can be used to turn off write caching. SCSI drives can
be queried using sdparm1. Use sdparm --get=WCE to check whether the write cache is enabled and
sdparm --clear=WCE to disable it.

• On FreeBSD, IDE drives can be queried using atacontrol and write caching turned off using
hw.ata.wc=0 in /boot/loader.conf; SCSI drives can be queried using camcontrol
identify, and the write cache both queried and changed using sdparm when available.

• On Solaris, the disk write cache is controlled by format -e. (The Solaris ZFS file system is safe with
disk write-cache enabled because it issues its own disk cache flush commands.)

1 http://sg.danny.cz/sg/sdparm.html

776

http://sg.danny.cz/sg/sdparm.html
http://sg.danny.cz/sg/sdparm.html

Reliability and the Write-Ahead Log

• On Windows, if wal_sync_method is open_datasync (the default), write caching can
be disabled by unchecking My Computer\Open\disk drive\Properties\Hardware
\Properties\Policies\Enable write caching on the disk. Alternatively, set
wal_sync_method to fsync or fsync_writethrough, which prevent write caching.

• On macOS, write caching can be prevented by setting wal_sync_method to
fsync_writethrough.

Recent SATA drives (those following ATAPI-6 or later) offer a drive cache flush command (FLUSH
CACHE EXT), while SCSI drives have long supported a similar command SYNCHRONIZE CACHE.
These commands are not directly accessible to PostgreSQL, but some file systems (e.g., ZFS, ext4) can
use them to flush data to the platters on write-back-enabled drives. Unfortunately, such file systems
behave suboptimally when combined with battery-backup unit (BBU) disk controllers. In such setups,
the synchronize command forces all data from the controller cache to the disks, eliminating much of the
benefit of the BBU. You can run the pg_test_fsync program to see if you are affected. If you are affected,
the performance benefits of the BBU can be regained by turning off write barriers in the file system
or reconfiguring the disk controller, if that is an option. If write barriers are turned off, make sure the
battery remains functional; a faulty battery can potentially lead to data loss. Hopefully file system and disk
controller designers will eventually address this suboptimal behavior.

When the operating system sends a write request to the storage hardware, there is little it can do to make
sure the data has arrived at a truly non-volatile storage area. Rather, it is the administrator's responsibility
to make certain that all storage components ensure integrity for both data and file-system metadata. Avoid
disk controllers that have non-battery-backed write caches. At the drive level, disable write-back caching
if the drive cannot guarantee the data will be written before shutdown. If you use SSDs, be aware that
many of these do not honor cache flush commands by default. You can test for reliable I/O subsystem
behavior using diskchecker.pl2.

Another risk of data loss is posed by the disk platter write operations themselves. Disk platters are divided
into sectors, commonly 512 bytes each. Every physical read or write operation processes a whole sector.
When a write request arrives at the drive, it might be for some multiple of 512 bytes (PostgreSQL typically
writes 8192 bytes, or 16 sectors, at a time), and the process of writing could fail due to power loss at any
time, meaning some of the 512-byte sectors were written while others were not. To guard against such
failures, PostgreSQL periodically writes full page images to permanent WAL storage before modifying
the actual page on disk. By doing this, during crash recovery PostgreSQL can restore partially-written
pages from WAL. If you have file-system software that prevents partial page writes (e.g., ZFS), you can
turn off this page imaging by turning off the full_page_writes parameter. Battery-Backed Unit (BBU) disk
controllers do not prevent partial page writes unless they guarantee that data is written to the BBU as full
(8kB) pages.

PostgreSQL also protects against some kinds of data corruption on storage devices that may occur because
of hardware errors or media failure over time, such as reading/writing garbage data.

• Each individual record in a WAL file is protected by a CRC-32 (32-bit) check that allows us to tell if
record contents are correct. The CRC value is set when we write each WAL record and checked during
crash recovery, archive recovery and replication.

• Data pages are not currently checksummed by default, though full page images recorded in WAL records
will be protected; see initdb for details about enabling data page checksums.

• Internal data structures such as pg_xact, pg_subtrans, pg_multixact, pg_serial,
pg_notify, pg_stat, pg_snapshots are not directly checksummed, nor are pages protected
by full page writes. However, where such data structures are persistent, WAL records are written that

2 https://brad.livejournal.com/2116715.html

777

https://brad.livejournal.com/2116715.html
https://brad.livejournal.com/2116715.html

Reliability and the Write-Ahead Log

allow recent changes to be accurately rebuilt at crash recovery and those WAL records are protected
as discussed above.

• Individual state files in pg_twophase are protected by CRC-32.

• Temporary data files used in larger SQL queries for sorts, materializations and intermediate results are
not currently checksummed, nor will WAL records be written for changes to those files.

PostgreSQL does not protect against correctable memory errors and it is assumed you will operate using
RAM that uses industry standard Error Correcting Codes (ECC) or better protection.

30.2. Write-Ahead Logging (WAL)
Write-Ahead Logging (WAL) is a standard method for ensuring data integrity. A detailed description can
be found in most (if not all) books about transaction processing. Briefly, WAL's central concept is that
changes to data files (where tables and indexes reside) must be written only after those changes have been
logged, that is, after log records describing the changes have been flushed to permanent storage. If we
follow this procedure, we do not need to flush data pages to disk on every transaction commit, because we
know that in the event of a crash we will be able to recover the database using the log: any changes that
have not been applied to the data pages can be redone from the log records. (This is roll-forward recovery,
also known as REDO.)

Tip

Because WAL restores database file contents after a crash, journaled file systems are not necessary
for reliable storage of the data files or WAL files. In fact, journaling overhead can reduce
performance, especially if journaling causes file system data to be flushed to disk. Fortunately,
data flushing during journaling can often be disabled with a file system mount option, e.g.
data=writeback on a Linux ext3 file system. Journaled file systems do improve boot speed
after a crash.

Using WAL results in a significantly reduced number of disk writes, because only the log file needs to
be flushed to disk to guarantee that a transaction is committed, rather than every data file changed by
the transaction. The log file is written sequentially, and so the cost of syncing the log is much less than
the cost of flushing the data pages. This is especially true for servers handling many small transactions
touching different parts of the data store. Furthermore, when the server is processing many small concurrent
transactions, one fsync of the log file may suffice to commit many transactions.

WAL also makes it possible to support on-line backup and point-in-time recovery, as described in
Section 25.3. By archiving the WAL data we can support reverting to any time instant covered by the
available WAL data: we simply install a prior physical backup of the database, and replay the WAL log just
as far as the desired time. What's more, the physical backup doesn't have to be an instantaneous snapshot
of the database state — if it is made over some period of time, then replaying the WAL log for that period
will fix any internal inconsistencies.

30.3. Asynchronous Commit
Asynchronous commit is an option that allows transactions to complete more quickly, at the cost that the
most recent transactions may be lost if the database should crash. In many applications this is an acceptable
trade-off.

As described in the previous section, transaction commit is normally synchronous: the server waits for the
transaction's WAL records to be flushed to permanent storage before returning a success indication to the

778

Reliability and the Write-Ahead Log

client. The client is therefore guaranteed that a transaction reported to be committed will be preserved,
even in the event of a server crash immediately after. However, for short transactions this delay is a
major component of the total transaction time. Selecting asynchronous commit mode means that the server
returns success as soon as the transaction is logically completed, before the WAL records it generated have
actually made their way to disk. This can provide a significant boost in throughput for small transactions.

Asynchronous commit introduces the risk of data loss. There is a short time window between the report
of transaction completion to the client and the time that the transaction is truly committed (that is, it is
guaranteed not to be lost if the server crashes). Thus asynchronous commit should not be used if the
client will take external actions relying on the assumption that the transaction will be remembered. As
an example, a bank would certainly not use asynchronous commit for a transaction recording an ATM's
dispensing of cash. But in many scenarios, such as event logging, there is no need for a strong guarantee
of this kind.

The risk that is taken by using asynchronous commit is of data loss, not data corruption. If the database
should crash, it will recover by replaying WAL up to the last record that was flushed. The database will
therefore be restored to a self-consistent state, but any transactions that were not yet flushed to disk will not
be reflected in that state. The net effect is therefore loss of the last few transactions. Because the transactions
are replayed in commit order, no inconsistency can be introduced — for example, if transaction B made
changes relying on the effects of a previous transaction A, it is not possible for A's effects to be lost while
B's effects are preserved.

The user can select the commit mode of each transaction, so that it is possible to have both synchronous
and asynchronous commit transactions running concurrently. This allows flexible trade-offs between
performance and certainty of transaction durability. The commit mode is controlled by the user-settable
parameter synchronous_commit, which can be changed in any of the ways that a configuration parameter
can be set. The mode used for any one transaction depends on the value of synchronous_commit
when transaction commit begins.

Certain utility commands, for instance DROP TABLE, are forced to commit synchronously regardless of
the setting of synchronous_commit. This is to ensure consistency between the server's file system
and the logical state of the database. The commands supporting two-phase commit, such as PREPARE
TRANSACTION, are also always synchronous.

If the database crashes during the risk window between an asynchronous commit and the writing of the
transaction's WAL records, then changes made during that transaction will be lost. The duration of the
risk window is limited because a background process (the “WAL writer”) flushes unwritten WAL records
to disk every wal_writer_delay milliseconds. The actual maximum duration of the risk window is three
times wal_writer_delay because the WAL writer is designed to favor writing whole pages at a time
during busy periods.

Caution

An immediate-mode shutdown is equivalent to a server crash, and will therefore cause loss of any
unflushed asynchronous commits.

Asynchronous commit provides behavior different from setting fsync = off. fsync is a server-wide setting
that will alter the behavior of all transactions. It disables all logic within PostgreSQL that attempts to
synchronize writes to different portions of the database, and therefore a system crash (that is, a hardware or
operating system crash, not a failure of PostgreSQL itself) could result in arbitrarily bad corruption of the
database state. In many scenarios, asynchronous commit provides most of the performance improvement
that could be obtained by turning off fsync, but without the risk of data corruption.

779

Reliability and the Write-Ahead Log

commit_delay also sounds very similar to asynchronous commit, but it is actually a synchronous commit
method (in fact, commit_delay is ignored during an asynchronous commit). commit_delay causes
a delay just before a transaction flushes WAL to disk, in the hope that a single flush executed by one such
transaction can also serve other transactions committing at about the same time. The setting can be thought
of as a way of increasing the time window in which transactions can join a group about to participate in a
single flush, to amortize the cost of the flush among multiple transactions.

30.4. WAL Configuration
There are several WAL-related configuration parameters that affect database performance. This section
explains their use. Consult Chapter 19 for general information about setting server configuration
parameters.

Checkpoints are points in the sequence of transactions at which it is guaranteed that the heap and index data
files have been updated with all information written before that checkpoint. At checkpoint time, all dirty
data pages are flushed to disk and a special checkpoint record is written to the log file. (The change records
were previously flushed to the WAL files.) In the event of a crash, the crash recovery procedure looks at
the latest checkpoint record to determine the point in the log (known as the redo record) from which it
should start the REDO operation. Any changes made to data files before that point are guaranteed to be
already on disk. Hence, after a checkpoint, log segments preceding the one containing the redo record are
no longer needed and can be recycled or removed. (When WAL archiving is being done, the log segments
must be archived before being recycled or removed.)

The checkpoint requirement of flushing all dirty data pages to disk can cause a significant I/O load. For
this reason, checkpoint activity is throttled so that I/O begins at checkpoint start and completes before the
next checkpoint is due to start; this minimizes performance degradation during checkpoints.

The server's checkpointer process automatically performs a checkpoint every so often. A checkpoint is
begun every checkpoint_timeout seconds, or if max_wal_size is about to be exceeded, whichever comes
first. The default settings are 5 minutes and 1 GB, respectively. If no WAL has been written since the
previous checkpoint, new checkpoints will be skipped even if checkpoint_timeout has passed. (If
WAL archiving is being used and you want to put a lower limit on how often files are archived in order
to bound potential data loss, you should adjust the archive_timeout parameter rather than the checkpoint
parameters.) It is also possible to force a checkpoint by using the SQL command CHECKPOINT.

Reducing checkpoint_timeout and/or max_wal_size causes checkpoints to occur more often.
This allows faster after-crash recovery, since less work will need to be redone. However, one must balance
this against the increased cost of flushing dirty data pages more often. If full_page_writes is set (as is the
default), there is another factor to consider. To ensure data page consistency, the first modification of a
data page after each checkpoint results in logging the entire page content. In that case, a smaller checkpoint
interval increases the volume of output to the WAL log, partially negating the goal of using a smaller
interval, and in any case causing more disk I/O.

Checkpoints are fairly expensive, first because they require writing out all currently dirty buffers, and
second because they result in extra subsequent WAL traffic as discussed above. It is therefore wise to set
the checkpointing parameters high enough so that checkpoints don't happen too often. As a simple sanity
check on your checkpointing parameters, you can set the checkpoint_warning parameter. If checkpoints
happen closer together than checkpoint_warning seconds, a message will be output to the server log
recommending increasing max_wal_size. Occasional appearance of such a message is not cause for
alarm, but if it appears often then the checkpoint control parameters should be increased. Bulk operations
such as large COPY transfers might cause a number of such warnings to appear if you have not set
max_wal_size high enough.

To avoid flooding the I/O system with a burst of page writes, writing dirty buffers during a checkpoint
is spread over a period of time. That period is controlled by checkpoint_completion_target, which is

780

Reliability and the Write-Ahead Log

given as a fraction of the checkpoint interval. The I/O rate is adjusted so that the checkpoint finishes
when the given fraction of checkpoint_timeout seconds have elapsed, or before max_wal_size
is exceeded, whichever is sooner. With the default value of 0.5, PostgreSQL can be expected to
complete each checkpoint in about half the time before the next checkpoint starts. On a system
that's very close to maximum I/O throughput during normal operation, you might want to increase
checkpoint_completion_target to reduce the I/O load from checkpoints. The disadvantage of
this is that prolonging checkpoints affects recovery time, because more WAL segments will need to be
kept around for possible use in recovery. Although checkpoint_completion_target can be set
as high as 1.0, it is best to keep it less than that (perhaps 0.9 at most) since checkpoints include some other
activities besides writing dirty buffers. A setting of 1.0 is quite likely to result in checkpoints not being
completed on time, which would result in performance loss due to unexpected variation in the number of
WAL segments needed.

On Linux and POSIX platforms checkpoint_flush_after allows to force the OS that pages written by the
checkpoint should be flushed to disk after a configurable number of bytes. Otherwise, these pages may
be kept in the OS's page cache, inducing a stall when fsync is issued at the end of a checkpoint. This
setting will often help to reduce transaction latency, but it also can have an adverse effect on performance;
particularly for workloads that are bigger than shared_buffers, but smaller than the OS's page cache.

The number of WAL segment files in pg_wal directory depends on min_wal_size, max_wal_size
and the amount of WAL generated in previous checkpoint cycles. When old log segment files are no
longer needed, they are removed or recycled (that is, renamed to become future segments in the numbered
sequence). If, due to a short-term peak of log output rate, max_wal_size is exceeded, the unneeded
segment files will be removed until the system gets back under this limit. Below that limit, the system
recycles enough WAL files to cover the estimated need until the next checkpoint, and removes the rest.
The estimate is based on a moving average of the number of WAL files used in previous checkpoint cycles.
The moving average is increased immediately if the actual usage exceeds the estimate, so it accommodates
peak usage rather than average usage to some extent. min_wal_size puts a minimum on the amount of
WAL files recycled for future usage; that much WAL is always recycled for future use, even if the system
is idle and the WAL usage estimate suggests that little WAL is needed.

Independently of max_wal_size, wal_keep_segments + 1 most recent WAL files are kept at all times.
Also, if WAL archiving is used, old segments can not be removed or recycled until they are archived. If
WAL archiving cannot keep up with the pace that WAL is generated, or if archive_command fails
repeatedly, old WAL files will accumulate in pg_wal until the situation is resolved. A slow or failed
standby server that uses a replication slot will have the same effect (see Section 26.2.6).

In archive recovery or standby mode, the server periodically performs restartpoints, which are similar to
checkpoints in normal operation: the server forces all its state to disk, updates the pg_control file to
indicate that the already-processed WAL data need not be scanned again, and then recycles any old log
segment files in the pg_wal directory. Restartpoints can't be performed more frequently than checkpoints
in the master because restartpoints can only be performed at checkpoint records. A restartpoint is triggered
when a checkpoint record is reached if at least checkpoint_timeout seconds have passed since the
last restartpoint, or if WAL size is about to exceed max_wal_size. However, because of limitations on
when a restartpoint can be performed, max_wal_size is often exceeded during recovery, by up to one
checkpoint cycle's worth of WAL. (max_wal_size is never a hard limit anyway, so you should always
leave plenty of headroom to avoid running out of disk space.)

There are two commonly used internal WAL functions: XLogInsertRecord and XLogFlush.
XLogInsertRecord is used to place a new record into the WAL buffers in shared memory. If there
is no space for the new record, XLogInsertRecord will have to write (move to kernel cache) a few
filled WAL buffers. This is undesirable because XLogInsertRecord is used on every database low
level modification (for example, row insertion) at a time when an exclusive lock is held on affected data
pages, so the operation needs to be as fast as possible. What is worse, writing WAL buffers might also
force the creation of a new log segment, which takes even more time. Normally, WAL buffers should be

781

Reliability and the Write-Ahead Log

written and flushed by an XLogFlush request, which is made, for the most part, at transaction commit
time to ensure that transaction records are flushed to permanent storage. On systems with high log output,
XLogFlush requests might not occur often enough to prevent XLogInsertRecord from having to do
writes. On such systems one should increase the number of WAL buffers by modifying the wal_buffers
parameter. When full_page_writes is set and the system is very busy, setting wal_buffers higher will
help smooth response times during the period immediately following each checkpoint.

The commit_delay parameter defines for how many microseconds a group commit leader process will
sleep after acquiring a lock within XLogFlush, while group commit followers queue up behind the leader.
This delay allows other server processes to add their commit records to the WAL buffers so that all of
them will be flushed by the leader's eventual sync operation. No sleep will occur if fsync is not enabled,
or if fewer than commit_siblings other sessions are currently in active transactions; this avoids sleeping
when it's unlikely that any other session will commit soon. Note that on some platforms, the resolution
of a sleep request is ten milliseconds, so that any nonzero commit_delay setting between 1 and 10000
microseconds would have the same effect. Note also that on some platforms, sleep operations may take
slightly longer than requested by the parameter.

Since the purpose of commit_delay is to allow the cost of each flush operation to be amortized across
concurrently committing transactions (potentially at the expense of transaction latency), it is necessary to
quantify that cost before the setting can be chosen intelligently. The higher that cost is, the more effective
commit_delay is expected to be in increasing transaction throughput, up to a point. The pg_test_fsync
program can be used to measure the average time in microseconds that a single WAL flush operation takes.
A value of half of the average time the program reports it takes to flush after a single 8kB write operation is
often the most effective setting for commit_delay, so this value is recommended as the starting point to
use when optimizing for a particular workload. While tuning commit_delay is particularly useful when
the WAL log is stored on high-latency rotating disks, benefits can be significant even on storage media
with very fast sync times, such as solid-state drives or RAID arrays with a battery-backed write cache; but
this should definitely be tested against a representative workload. Higher values of commit_siblings
should be used in such cases, whereas smaller commit_siblings values are often helpful on higher
latency media. Note that it is quite possible that a setting of commit_delay that is too high can increase
transaction latency by so much that total transaction throughput suffers.

When commit_delay is set to zero (the default), it is still possible for a form of group commit to occur,
but each group will consist only of sessions that reach the point where they need to flush their commit
records during the window in which the previous flush operation (if any) is occurring. At higher client
counts a “gangway effect” tends to occur, so that the effects of group commit become significant even
when commit_delay is zero, and thus explicitly setting commit_delay tends to help less. Setting
commit_delay can only help when (1) there are some concurrently committing transactions, and (2)
throughput is limited to some degree by commit rate; but with high rotational latency this setting can be
effective in increasing transaction throughput with as few as two clients (that is, a single committing client
with one sibling transaction).

The wal_sync_method parameter determines how PostgreSQL will ask the kernel to force WAL
updates out to disk. All the options should be the same in terms of reliability, with the exception of
fsync_writethrough, which can sometimes force a flush of the disk cache even when other options
do not do so. However, it's quite platform-specific which one will be the fastest. You can test the speeds
of different options using the pg_test_fsync program. Note that this parameter is irrelevant if fsync has
been turned off.

Enabling the wal_debug configuration parameter (provided that PostgreSQL has been compiled with
support for it) will result in each XLogInsertRecord and XLogFlush WAL call being logged to the
server log. This option might be replaced by a more general mechanism in the future.

30.5. WAL Internals

782

Reliability and the Write-Ahead Log

WAL is automatically enabled; no action is required from the administrator except ensuring that the disk-
space requirements for the WAL logs are met, and that any necessary tuning is done (see Section 30.4).

WAL records are appended to the WAL logs as each new record is written. The insert position is described
by a Log Sequence Number (LSN) that is a byte offset into the logs, increasing monotonically with each
new record. LSN values are returned as the datatype pg_lsn. Values can be compared to calculate the
volume of WAL data that separates them, so they are used to measure the progress of replication and
recovery.

WAL logs are stored in the directory pg_wal under the data directory, as a set of segment files, normally
each 16 MB in size (but the size can be changed by altering the --wal-segsize initdb option). Each
segment is divided into pages, normally 8 kB each (this size can be changed via the --with-wal-
blocksize configure option). The log record headers are described in access/xlogrecord.h;
the record content is dependent on the type of event that is being logged. Segment files are given ever-
increasing numbers as names, starting at 000000010000000000000000. The numbers do not wrap,
but it will take a very, very long time to exhaust the available stock of numbers.

It is advantageous if the log is located on a different disk from the main database files. This can be achieved
by moving the pg_wal directory to another location (while the server is shut down, of course) and creating
a symbolic link from the original location in the main data directory to the new location.

The aim of WAL is to ensure that the log is written before database records are altered, but this can
be subverted by disk drives that falsely report a successful write to the kernel, when in fact they have
only cached the data and not yet stored it on the disk. A power failure in such a situation might lead to
irrecoverable data corruption. Administrators should try to ensure that disks holding PostgreSQL's WAL
log files do not make such false reports. (See Section 30.1.)

After a checkpoint has been made and the log flushed, the checkpoint's position is saved in the file
pg_control. Therefore, at the start of recovery, the server first reads pg_control and then the
checkpoint record; then it performs the REDO operation by scanning forward from the log location
indicated in the checkpoint record. Because the entire content of data pages is saved in the log on the first
page modification after a checkpoint (assuming full_page_writes is not disabled), all pages changed since
the checkpoint will be restored to a consistent state.

To deal with the case where pg_control is corrupt, we should support the possibility of scanning
existing log segments in reverse order — newest to oldest — in order to find the latest checkpoint. This has
not been implemented yet. pg_control is small enough (less than one disk page) that it is not subject
to partial-write problems, and as of this writing there have been no reports of database failures due solely
to the inability to read pg_control itself. So while it is theoretically a weak spot, pg_control does
not seem to be a problem in practice.

783

Chapter 31. Logical Replication
Logical replication is a method of replicating data objects and their changes, based upon their replication
identity (usually a primary key). We use the term logical in contrast to physical replication, which uses
exact block addresses and byte-by-byte replication. PostgreSQL supports both mechanisms concurrently,
see Chapter 26. Logical replication allows fine-grained control over both data replication and security.

Logical replication uses a publish and subscribe model with one or more subscribers subscribing to one
or more publications on a publisher node. Subscribers pull data from the publications they subscribe to
and may subsequently re-publish data to allow cascading replication or more complex configurations.

Logical replication of a table typically starts with taking a snapshot of the data on the publisher database
and copying that to the subscriber. Once that is done, the changes on the publisher are sent to the subscriber
as they occur in real-time. The subscriber applies the data in the same order as the publisher so that
transactional consistency is guaranteed for publications within a single subscription. This method of data
replication is sometimes referred to as transactional replication.

The typical use-cases for logical replication are:

• Sending incremental changes in a single database or a subset of a database to subscribers as they occur.

• Firing triggers for individual changes as they arrive on the subscriber.

• Consolidating multiple databases into a single one (for example for analytical purposes).

• Replicating between different major versions of PostgreSQL.

• Replicating between PostgreSQL instances on different platforms (for example Linux to Windows)

• Giving access to replicated data to different groups of users.

• Sharing a subset of the database between multiple databases.

The subscriber database behaves in the same way as any other PostgreSQL instance and can be used as a
publisher for other databases by defining its own publications. When the subscriber is treated as read-only
by application, there will be no conflicts from a single subscription. On the other hand, if there are other
writes done either by an application or by other subscribers to the same set of tables, conflicts can arise.

31.1. Publication
A publication can be defined on any physical replication master. The node where a publication is defined
is referred to as publisher. A publication is a set of changes generated from a table or a group of tables, and
might also be described as a change set or replication set. Each publication exists in only one database.

Publications are different from schemas and do not affect how the table is accessed. Each table can be
added to multiple publications if needed. Publications may currently only contain tables. Objects must be
added explicitly, except when a publication is created for ALL TABLES.

Publications can choose to limit the changes they produce to any combination of INSERT, UPDATE,
DELETE, and TRUNCATE, similar to how triggers are fired by particular event types. By default, all
operation types are replicated.

A published table must have a “replica identity” configured in order to be able to replicate UPDATE and
DELETE operations, so that appropriate rows to update or delete can be identified on the subscriber side. By
default, this is the primary key, if there is one. Another unique index (with certain additional requirements)
can also be set to be the replica identity. If the table does not have any suitable key, then it can be set

784

Logical Replication

to replica identity “full”, which means the entire row becomes the key. This, however, is very inefficient
and should only be used as a fallback if no other solution is possible. If a replica identity other than “full”
is set on the publisher side, a replica identity comprising the same or fewer columns must also be set on
the subscriber side. See REPLICA IDENTITY for details on how to set the replica identity. If a table
without a replica identity is added to a publication that replicates UPDATE or DELETE operations then
subsequent UPDATE or DELETE operations will cause an error on the publisher. INSERT operations can
proceed regardless of any replica identity.

Every publication can have multiple subscribers.

A publication is created using the CREATE PUBLICATION command and may later be altered or dropped
using corresponding commands.

The individual tables can be added and removed dynamically using ALTER PUBLICATION. Both the
ADD TABLE and DROP TABLE operations are transactional; so the table will start or stop replicating at
the correct snapshot once the transaction has committed.

31.2. Subscription
A subscription is the downstream side of logical replication. The node where a subscription is defined
is referred to as the subscriber. A subscription defines the connection to another database and set of
publications (one or more) to which it wants to subscribe.

The subscriber database behaves in the same way as any other PostgreSQL instance and can be used as a
publisher for other databases by defining its own publications.

A subscriber node may have multiple subscriptions if desired. It is possible to define multiple subscriptions
between a single publisher-subscriber pair, in which case care must be taken to ensure that the subscribed
publication objects don't overlap.

Each subscription will receive changes via one replication slot (see Section 26.2.6). Additional temporary
replication slots may be required for the initial data synchronization of pre-existing table data.

A logical replication subscription can be a standby for synchronous replication (see Section 26.2.8).
The standby name is by default the subscription name. An alternative name can be specified as
application_name in the connection information of the subscription.

Subscriptions are dumped by pg_dump if the current user is a superuser. Otherwise a warning is written
and subscriptions are skipped, because non-superusers cannot read all subscription information from the
pg_subscription catalog.

The subscription is added using CREATE SUBSCRIPTION and can be stopped/resumed at any time using
the ALTER SUBSCRIPTION command and removed using DROP SUBSCRIPTION.

When a subscription is dropped and recreated, the synchronization information is lost. This means that the
data has to be resynchronized afterwards.

The schema definitions are not replicated, and the published tables must exist on the subscriber. Only
regular tables may be the target of replication. For example, you can't replicate to a view.

The tables are matched between the publisher and the subscriber using the fully qualified table name.
Replication to differently-named tables on the subscriber is not supported.

Columns of a table are also matched by name. A different order of columns in the target table is allowed,
but the column types have to match. The target table can have additional columns not provided by the
published table. Those will be filled with their default values.

785

Logical Replication

31.2.1. Replication Slot Management
As mentioned earlier, each (active) subscription receives changes from a replication slot on the remote
(publishing) side. Normally, the remote replication slot is created automatically when the subscription is
created using CREATE SUBSCRIPTION and it is dropped automatically when the subscription is dropped
using DROP SUBSCRIPTION. In some situations, however, it can be useful or necessary to manipulate
the subscription and the underlying replication slot separately. Here are some scenarios:

• When creating a subscription, the replication slot already exists. In that case, the subscription can be
created using the create_slot = false option to associate with the existing slot.

• When creating a subscription, the remote host is not reachable or in an unclear state. In that case, the
subscription can be created using the connect = false option. The remote host will then not be
contacted at all. This is what pg_dump uses. The remote replication slot will then have to be created
manually before the subscription can be activated.

• When dropping a subscription, the replication slot should be kept. This could be useful when the
subscriber database is being moved to a different host and will be activated from there. In that case,
disassociate the slot from the subscription using ALTER SUBSCRIPTION before attempting to drop
the subscription.

• When dropping a subscription, the remote host is not reachable. In that case, disassociate the slot from
the subscription using ALTER SUBSCRIPTION before attempting to drop the subscription. If the
remote database instance no longer exists, no further action is then necessary. If, however, the remote
database instance is just unreachable, the replication slot should then be dropped manually; otherwise
it would continue to reserve WAL and might eventually cause the disk to fill up. Such cases should be
carefully investigated.

31.3. Conflicts
Logical replication behaves similarly to normal DML operations in that the data will be updated even if it
was changed locally on the subscriber node. If incoming data violates any constraints the replication will
stop. This is referred to as a conflict. When replicating UPDATE or DELETE operations, missing data will
not produce a conflict and such operations will simply be skipped.

A conflict will produce an error and will stop the replication; it must be resolved manually by the user.
Details about the conflict can be found in the subscriber's server log.

The resolution can be done either by changing data on the subscriber so that it does not conflict with the
incoming change or by skipping the transaction that conflicts with the existing data. The transaction can
be skipped by calling the pg_replication_origin_advance() function with a node_name
corresponding to the subscription name, and a position. The current position of origins can be seen in the
pg_replication_origin_status system view.

31.4. Restrictions
Logical replication currently has the following restrictions or missing functionality. These might be
addressed in future releases.

• The database schema and DDL commands are not replicated. The initial schema can be copied by
hand using pg_dump --schema-only. Subsequent schema changes would need to be kept in sync
manually. (Note, however, that there is no need for the schemas to be absolutely the same on both sides.)
Logical replication is robust when schema definitions change in a live database: When the schema is

786

Logical Replication

changed on the publisher and replicated data starts arriving at the subscriber but does not fit into the
table schema, replication will error until the schema is updated. In many cases, intermittent errors can
be avoided by applying additive schema changes to the subscriber first.

• Sequence data is not replicated. The data in serial or identity columns backed by sequences will of course
be replicated as part of the table, but the sequence itself would still show the start value on the subscriber.
If the subscriber is used as a read-only database, then this should typically not be a problem. If, however,
some kind of switchover or failover to the subscriber database is intended, then the sequences would
need to be updated to the latest values, either by copying the current data from the publisher (perhaps
using pg_dump) or by determining a sufficiently high value from the tables themselves.

• Replication of TRUNCATE commands is supported, but some care must be taken when truncating groups
of tables connected by foreign keys. When replicating a truncate action, the subscriber will truncate
the same group of tables that was truncated on the publisher, either explicitly specified or implicitly
collected via CASCADE, minus tables that are not part of the subscription. This will work correctly if
all affected tables are part of the same subscription. But if some tables to be truncated on the subscriber
have foreign-key links to tables that are not part of the same (or any) subscription, then the application
of the truncate action on the subscriber will fail.

• Large objects (see Chapter 35) are not replicated. There is no workaround for that, other than storing
data in normal tables.

• Replication is only possible from base tables to base tables. That is, the tables on the publication and
on the subscription side must be normal tables, not views, materialized views, partition root tables, or
foreign tables. In the case of partitions, you can therefore replicate a partition hierarchy one-to-one, but
you cannot currently replicate to a differently partitioned setup. Attempts to replicate tables other than
base tables will result in an error.

31.5. Architecture
Logical replication starts by copying a snapshot of the data on the publisher database. Once that is done,
changes on the publisher are sent to the subscriber as they occur in real time. The subscriber applies data
in the order in which commits were made on the publisher so that transactional consistency is guaranteed
for the publications within any single subscription.

Logical replication is built with an architecture similar to physical streaming replication (see
Section 26.2.5). It is implemented by “walsender” and “apply” processes. The walsender process starts
logical decoding (described in Chapter 49) of the WAL and loads the standard logical decoding plugin
(pgoutput). The plugin transforms the changes read from WAL to the logical replication protocol (see
Section 53.5) and filters the data according to the publication specification. The data is then continuously
transferred using the streaming replication protocol to the apply worker, which maps the data to local
tables and applies the individual changes as they are received, in correct transactional order.

The apply process on the subscriber database always runs with session_replication_role set to
replica, which produces the usual effects on triggers and constraints.

The logical replication apply process currently only fires row triggers, not statement triggers. The initial
table synchronization, however, is implemented like a COPY command and thus fires both row and
statement triggers for INSERT.

31.5.1. Initial Snapshot
The initial data in existing subscribed tables are snapshotted and copied in a parallel instance of a special
kind of apply process. This process will create its own temporary replication slot and copy the existing

787

Logical Replication

data. Once existing data is copied, the worker enters synchronization mode, which ensures that the table is
brought up to a synchronized state with the main apply process by streaming any changes that happened
during the initial data copy using standard logical replication. Once the synchronization is done, the control
of the replication of the table is given back to the main apply process where the replication continues as
normal.

31.6. Monitoring
Because logical replication is based on a similar architecture as physical streaming replication, the
monitoring on a publication node is similar to monitoring of a physical replication master (see
Section 26.2.5.2).

The monitoring information about subscription is visible in pg_stat_subscription. This view
contains one row for every subscription worker. A subscription can have zero or more active subscription
workers depending on its state.

Normally, there is a single apply process running for an enabled subscription. A disabled subscription or
a crashed subscription will have zero rows in this view. If the initial data synchronization of any table is
in progress, there will be additional workers for the tables being synchronized.

31.7. Security
The role used for the replication connection must have the REPLICATION attribute (or be a superuser).
Access for the role must be configured in pg_hba.conf and it must have the LOGIN attribute.

In order to be able to copy the initial table data, the role used for the replication connection must have the
SELECT privilege on a published table (or be a superuser).

To create a publication, the user must have the CREATE privilege in the database.

To add tables to a publication, the user must have ownership rights on the table. To create a publication
that publishes all tables automatically, the user must be a superuser.

To create a subscription, the user must be a superuser.

The subscription apply process will run in the local database with the privileges of a superuser.

Privileges are only checked once at the start of a replication connection. They are not re-checked as each
change record is read from the publisher, nor are they re-checked for each change when applied.

31.8. Configuration Settings
Logical replication requires several configuration options to be set.

On the publisher side, wal_level must be set to logical, and max_replication_slots must be
set to at least the number of subscriptions expected to connect, plus some reserve for table synchronization.
And max_wal_senders should be set to at least the same as max_replication_slots plus the
number of physical replicas that are connected at the same time.

The subscriber also requires the max_replication_slots to be set. In this case
it should be set to at least the number of subscriptions that will be added to the
subscriber. max_logical_replication_workers must be set to at least the number
of subscriptions, again plus some reserve for the table synchronization. Additionally the

788

Logical Replication

max_worker_processes may need to be adjusted to accommodate for replication workers, at least
(max_logical_replication_workers + 1). Note that some extensions and parallel queries also
take worker slots from max_worker_processes.

31.9. Quick Setup
First set the configuration options in postgresql.conf:

wal_level = logical

The other required settings have default values that are sufficient for a basic setup.

pg_hba.conf needs to be adjusted to allow replication (the values here depend on your actual network
configuration and user you want to use for connecting):

host all repuser 0.0.0.0/0 md5

Then on the publisher database:

CREATE PUBLICATION mypub FOR TABLE users, departments;

And on the subscriber database:

CREATE SUBSCRIPTION mysub CONNECTION 'dbname=foo host=bar
 user=repuser' PUBLICATION mypub;

The above will start the replication process, which synchronizes the initial table contents of the tables
users and departments and then starts replicating incremental changes to those tables.

789

Chapter 32. Just-in-Time Compilation
(JIT)

This chapter explains what just-in-time compilation is, and how it can be configured in PostgreSQL.

32.1. What is JIT compilation?
Just-in-Time (JIT) compilation is the process of turning some form of interpreted program evaluation into
a native program, and doing so at run time. For example, instead of using general-purpose code that can
evaluate arbitrary SQL expressions to evaluate a particular SQL predicate like WHERE a.col = 3, it
is possible to generate a function that is specific to that expression and can be natively executed by the
CPU, yielding a speedup.

PostgreSQL has builtin support to perform JIT compilation using LLVM1 when PostgreSQL is built with
--with-llvm.

See src/backend/jit/README for further details.

32.1.1. JIT Accelerated Operations
Currently PostgreSQL's JIT implementation has support for accelerating expression evaluation and tuple
deforming. Several other operations could be accelerated in the future.

Expression evaluation is used to evaluate WHERE clauses, target lists, aggregates and projections. It can
be accelerated by generating code specific to each case.

Tuple deforming is the process of transforming an on-disk tuple (see Section 68.6.1) into its in-memory
representation. It can be accelerated by creating a function specific to the table layout and the number of
columns to be extracted.

32.1.2. Inlining
PostgreSQL is very extensible and allows new data types, functions, operators and other database objects to
be defined; see Chapter 38. In fact the built-in objects are implemented using nearly the same mechanisms.
This extensibility implies some overhead, for example due to function calls (see Section 38.3). To reduce
that overhead, JIT compilation can inline the bodies of small functions into the expressions using them.
That allows a significant percentage of the overhead to be optimized away.

32.1.3. Optimization
LLVM has support for optimizing generated code. Some of the optimizations are cheap enough to be
performed whenever JIT is used, while others are only beneficial for longer-running queries. See https://
llvm.org/docs/Passes.html#transform-passes for more details about optimizations.

32.2. When to JIT?
JIT compilation is beneficial primarily for long-running CPU-bound queries. Frequently these will be
analytical queries. For short queries the added overhead of performing JIT compilation will often be higher
than the time it can save.

1 https://llvm.org/

790

https://llvm.org/
https://llvm.org/docs/Passes.html#transform-passes
https://llvm.org/docs/Passes.html#transform-passes
https://llvm.org/

Just-in-Time Compilation (JIT)

To determine whether JIT compilation should be used, the total estimated cost of a query (see Chapter 70
and Section 19.7.2) is used. The estimated cost of the query will be compared with the setting of
jit_above_cost. If the cost is higher, JIT compilation will be performed. Two further decisions are then
needed. Firstly, if the estimated cost is more than the setting of jit_inline_above_cost, short functions
and operators used in the query will be inlined. Secondly, if the estimated cost is more than the setting
of jit_optimize_above_cost, expensive optimizations are applied to improve the generated code. Each of
these options increases the JIT compilation overhead, but can reduce query execution time considerably.

These cost-based decisions will be made at plan time, not execution time. This means that when prepared
statements are in use, and a generic plan is used (see PREPARE), the values of the configuration parameters
in effect at prepare time control the decisions, not the settings at execution time.

Note

If jit is set to off, or if no JIT implementation is available (for example because the server was
compiled without --with-llvm), JIT will not be performed, even if it would be beneficial based
on the above criteria. Setting jit to off has effects at both plan and execution time.

EXPLAIN can be used to see whether JIT is used or not. As an example, here is a query that is not using JIT:

=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
 QUERY PLAN

 Aggregate (cost=16.27..16.29 rows=1 width=8) (actual
 time=0.303..0.303 rows=1 loops=1)
 -> Seq Scan on pg_class (cost=0.00..15.42 rows=342 width=4)
 (actual time=0.017..0.111 rows=356 loops=1)
 Planning Time: 0.116 ms
 Execution Time: 0.365 ms
(4 rows)

Given the cost of the plan, it is entirely reasonable that no JIT was used; the cost of JIT would have been
bigger than the potential savings. Adjusting the cost limits will lead to JIT use:

=# SET jit_above_cost = 10;
SET
=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
 QUERY PLAN

 Aggregate (cost=16.27..16.29 rows=1 width=8) (actual
 time=6.049..6.049 rows=1 loops=1)
 -> Seq Scan on pg_class (cost=0.00..15.42 rows=342 width=4)
 (actual time=0.019..0.052 rows=356 loops=1)
 Planning Time: 0.133 ms
 JIT:
 Functions: 3
 Options: Inlining false, Optimization false, Expressions true,
 Deforming true
 Timing: Generation 1.259 ms, Inlining 0.000 ms, Optimization 0.797
 ms, Emission 5.048 ms, Total 7.104 ms
 Execution Time: 7.416 ms

791

Just-in-Time Compilation (JIT)

As visible here, JIT was used, but inlining and expensive optimization were not. If jit_inline_above_cost
or jit_optimize_above_cost were also lowered, that would change.

32.3. Configuration
The configuration variable jit determines whether JIT compilation is enabled or disabled. If it is enabled,
the configuration variables jit_above_cost, jit_inline_above_cost, and jit_optimize_above_cost determine
whether JIT compilation is performed for a query, and how much effort is spent doing so.

jit_provider determines which JIT implementation is used. It is rarely required to be changed. See
Section 32.4.2.

For development and debugging purposes a few additional configuration parameters exist, as described
in Section 19.17.

32.4. Extensibility

32.4.1. Inlining Support for Extensions
PostgreSQL's JIT implementation can inline the bodies of functions of types C and internal, as well as
operators based on such functions. To do so for functions in extensions, the definitions of those functions
need to be made available. When using PGXS to build an extension against a server that has been compiled
with LLVM JIT support, the relevant files will be built and installed automatically.

The relevant files have to be installed into $pkglibdir/bitcode/$extension/ and a summary of
them into $pkglibdir/bitcode/$extension.index.bc, where $pkglibdir is the directory
returned by pg_config --pkglibdir and $extension is the base name of the extension's shared
library.

Note

For functions built into PostgreSQL itself, the bitcode is installed into $pkglibdir/bitcode/
postgres.

32.4.2. Pluggable JIT Providers
PostgreSQL provides a JIT implementation based on LLVM. The interface to the JIT provider is pluggable
and the provider can be changed without recompiling (although currently, the build process only provides
inlining support data for LLVM). The active provider is chosen via the setting jit_provider.

32.4.2.1. JIT Provider Interface

A JIT provider is loaded by dynamically loading the named shared library. The normal library search path
is used to locate the library. To provide the required JIT provider callbacks and to indicate that the library
is actually a JIT provider, it needs to provide a C function named _PG_jit_provider_init. This
function is passed a struct that needs to be filled with the callback function pointers for individual actions:

struct JitProviderCallbacks
{

792

Just-in-Time Compilation (JIT)

 JitProviderResetAfterErrorCB reset_after_error;
 JitProviderReleaseContextCB release_context;
 JitProviderCompileExprCB compile_expr;
};

extern void _PG_jit_provider_init(JitProviderCallbacks *cb);

793

Chapter 33. Regression Tests
The regression tests are a comprehensive set of tests for the SQL implementation in PostgreSQL. They
test standard SQL operations as well as the extended capabilities of PostgreSQL.

33.1. Running the Tests
The regression tests can be run against an already installed and running server, or using a temporary
installation within the build tree. Furthermore, there is a “parallel” and a “sequential” mode for running
the tests. The sequential method runs each test script alone, while the parallel method starts up multiple
server processes to run groups of tests in parallel. Parallel testing adds confidence that interprocess
communication and locking are working correctly.

33.1.1. Running the Tests Against a Temporary
Installation

To run the parallel regression tests after building but before installation, type:

make check

in the top-level directory. (Or you can change to src/test/regress and run the command there.) At
the end you should see something like:

=======================
 All 115 tests passed.
=======================

or otherwise a note about which tests failed. See Section 33.2 below before assuming that a “failure”
represents a serious problem.

Because this test method runs a temporary server, it will not work if you did the build as the root user,
since the server will not start as root. Recommended procedure is not to do the build as root, or else to
perform testing after completing the installation.

If you have configured PostgreSQL to install into a location where an older PostgreSQL installation already
exists, and you perform make check before installing the new version, you might find that the tests
fail because the new programs try to use the already-installed shared libraries. (Typical symptoms are
complaints about undefined symbols.) If you wish to run the tests before overwriting the old installation,
you'll need to build with configure --disable-rpath. It is not recommended that you use this
option for the final installation, however.

The parallel regression test starts quite a few processes under your user ID. Presently, the maximum
concurrency is twenty parallel test scripts, which means forty processes: there's a server process and a
psql process for each test script. So if your system enforces a per-user limit on the number of processes,
make sure this limit is at least fifty or so, else you might get random-seeming failures in the parallel test.
If you are not in a position to raise the limit, you can cut down the degree of parallelism by setting the
MAX_CONNECTIONS parameter. For example:

794

Regression Tests

make MAX_CONNECTIONS=10 check

runs no more than ten tests concurrently.

33.1.2. Running the Tests Against an Existing
Installation

To run the tests after installation (see Chapter 16), initialize a data area and start the server as explained
in Chapter 18, then type:

make installcheck

or for a parallel test:

make installcheck-parallel

The tests will expect to contact the server at the local host and the default port number, unless directed
otherwise by PGHOST and PGPORT environment variables. The tests will be run in a database named
regression; any existing database by this name will be dropped.

The tests will also transiently create some cluster-wide objects, such as roles and tablespaces. These objects
will have names beginning with regress_. Beware of using installcheck mode in installations that
have any actual users or tablespaces named that way.

33.1.3. Additional Test Suites
The make check and make installcheck commands run only the “core” regression tests, which
test built-in functionality of the PostgreSQL server. The source distribution also contains additional test
suites, most of them having to do with add-on functionality such as optional procedural languages.

To run all test suites applicable to the modules that have been selected to be built, including the core tests,
type one of these commands at the top of the build tree:

make check-world
make installcheck-world

These commands run the tests using temporary servers or an already-installed server, respectively, just as
previously explained for make check and make installcheck. Other considerations are the same
as previously explained for each method. Note that make check-world builds a separate temporary
installation tree for each tested module, so it requires a great deal more time and disk space than make
installcheck-world.

Alternatively, you can run individual test suites by typing make check or make installcheck in
the appropriate subdirectory of the build tree. Keep in mind that make installcheck assumes you've
installed the relevant module(s), not only the core server.

The additional tests that can be invoked this way include:

• Regression tests for optional procedural languages (other than PL/pgSQL, which is tested by the core
tests). These are located under src/pl.

• Regression tests for contrib modules, located under contrib. Not all contrib modules have
tests.

795

Regression Tests

• Regression tests for the ECPG interface library, located in src/interfaces/ecpg/test.

• Tests stressing behavior of concurrent sessions, located in src/test/isolation.

• Tests of client programs under src/bin. See also Section 33.4.

When using installcheck mode, these tests will destroy any existing databases named
pl_regression, contrib_regression, isolation_regression, ecpg1_regression,
or ecpg2_regression, as well as regression.

The TAP-based tests are run only when PostgreSQL was configured with the option --enable-tap-
tests. This is recommended for development, but can be omitted if there is no suitable Perl installation.

Some test suites are not run by default, either because they are not secure to run on a multiuser system or
because they require special software. You can decide which test suites to run additionally by setting the
make or environment variable PG_TEST_EXTRA to a whitespace-separated list, for example:

make check-world PG_TEST_EXTRA='kerberos ldap ssl'

The following values are currently supported:

kerberos

Runs the test suite under src/test/kerberos. This requires an MIT Kerberos installation and
opens TCP/IP listen sockets.

ldap

Runs the test suite under src/test/ldap. This requires an OpenLDAP installation and opens
TCP/IP listen sockets.

ssl

Runs the test suite under src/test/ssl. This opens TCP/IP listen sockets.

Tests for features that are not supported by the current build configuration are not run even if they are
mentioned in PG_TEST_EXTRA.

33.1.4. Locale and Encoding
By default, tests using a temporary installation use the locale defined in the current environment and the
corresponding database encoding as determined by initdb. It can be useful to test different locales by
setting the appropriate environment variables, for example:

make check LANG=C
make check LC_COLLATE=en_US.utf8 LC_CTYPE=fr_CA.utf8

For implementation reasons, setting LC_ALL does not work for this purpose; all the other locale-related
environment variables do work.

When testing against an existing installation, the locale is determined by the existing database cluster and
cannot be set separately for the test run.

You can also choose the database encoding explicitly by setting the variable ENCODING, for example:

796

Regression Tests

make check LANG=C ENCODING=EUC_JP

Setting the database encoding this way typically only makes sense if the locale is C; otherwise the encoding
is chosen automatically from the locale, and specifying an encoding that does not match the locale will
result in an error.

The database encoding can be set for tests against either a temporary or an existing installation, though in
the latter case it must be compatible with the installation's locale.

33.1.5. Extra Tests
The core regression test suite contains a few test files that are not run by default, because they might be
platform-dependent or take a very long time to run. You can run these or other extra test files by setting
the variable EXTRA_TESTS. For example, to run the numeric_big test:

make check EXTRA_TESTS=numeric_big

To run the collation tests:

make check EXTRA_TESTS='collate.icu.utf8 collate.linux.utf8'
 LANG=en_US.utf8

The collate.linux.utf8 test works only on Linux/glibc platforms. The collate.icu.utf8
test only works when support for ICU was built. Both tests will only succeed when run in a database that
uses UTF-8 encoding.

33.1.6. Testing Hot Standby
The source distribution also contains regression tests for the static behavior of Hot Standby. These tests
require a running primary server and a running standby server that is accepting new WAL changes
from the primary (using either file-based log shipping or streaming replication). Those servers are not
automatically created for you, nor is replication setup documented here. Please check the various sections
of the documentation devoted to the required commands and related issues.

To run the Hot Standby tests, first create a database called regression on the primary:

psql -h primary -c "CREATE DATABASE regression"

Next, run the preparatory script src/test/regress/sql/hs_primary_setup.sql on the
primary in the regression database, for example:

psql -h primary -f src/test/regress/sql/hs_primary_setup.sql
 regression

Allow these changes to propagate to the standby.

Now arrange for the default database connection to be to the standby server under test (for example, by
setting the PGHOST and PGPORT environment variables). Finally, run make standbycheck in the
regression directory:

cd src/test/regress

797

Regression Tests

make standbycheck

Some extreme behaviors can also be generated on the primary using the script src/test/regress/
sql/hs_primary_extremes.sql to allow the behavior of the standby to be tested.

33.2. Test Evaluation
Some properly installed and fully functional PostgreSQL installations can “fail” some of these regression
tests due to platform-specific artifacts such as varying floating-point representation and message wording.
The tests are currently evaluated using a simple diff comparison against the outputs generated on a
reference system, so the results are sensitive to small system differences. When a test is reported as “failed”,
always examine the differences between expected and actual results; you might find that the differences
are not significant. Nonetheless, we still strive to maintain accurate reference files across all supported
platforms, so it can be expected that all tests pass.

The actual outputs of the regression tests are in files in the src/test/regress/results directory.
The test script uses diff to compare each output file against the reference outputs stored in the src/
test/regress/expected directory. Any differences are saved for your inspection in src/test/
regress/regression.diffs. (When running a test suite other than the core tests, these files of
course appear in the relevant subdirectory, not src/test/regress.)

If you don't like the diff options that are used by default, set the environment variable
PG_REGRESS_DIFF_OPTS, for instance PG_REGRESS_DIFF_OPTS='-u'. (Or you can run diff
yourself, if you prefer.)

If for some reason a particular platform generates a “failure” for a given test, but inspection of the output
convinces you that the result is valid, you can add a new comparison file to silence the failure report in
future test runs. See Section 33.3 for details.

33.2.1. Error Message Differences
Some of the regression tests involve intentional invalid input values. Error messages can come from either
the PostgreSQL code or from the host platform system routines. In the latter case, the messages can vary
between platforms, but should reflect similar information. These differences in messages will result in a
“failed” regression test that can be validated by inspection.

33.2.2. Locale Differences
If you run the tests against a server that was initialized with a collation-order locale other than C, then there
might be differences due to sort order and subsequent failures. The regression test suite is set up to handle
this problem by providing alternate result files that together are known to handle a large number of locales.

To run the tests in a different locale when using the temporary-installation method, pass the appropriate
locale-related environment variables on the make command line, for example:

make check LANG=de_DE.utf8

(The regression test driver unsets LC_ALL, so it does not work to choose the locale using that variable.) To
use no locale, either unset all locale-related environment variables (or set them to C) or use the following
special invocation:

make check NO_LOCALE=1

798

Regression Tests

When running the tests against an existing installation, the locale setup is determined by the existing
installation. To change it, initialize the database cluster with a different locale by passing the appropriate
options to initdb.

In general, it is advisable to try to run the regression tests in the locale setup that is wanted for production
use, as this will exercise the locale- and encoding-related code portions that will actually be used in
production. Depending on the operating system environment, you might get failures, but then you will at
least know what locale-specific behaviors to expect when running real applications.

33.2.3. Date and Time Differences
Most of the date and time results are dependent on the time zone environment. The reference files are
generated for time zone PST8PDT (Berkeley, California), and there will be apparent failures if the tests
are not run with that time zone setting. The regression test driver sets environment variable PGTZ to
PST8PDT, which normally ensures proper results.

33.2.4. Floating-Point Differences
Some of the tests involve computing 64-bit floating-point numbers (double precision) from table
columns. Differences in results involving mathematical functions of double precision columns
have been observed. The float8 and geometry tests are particularly prone to small differences across
platforms, or even with different compiler optimization settings. Human eyeball comparison is needed to
determine the real significance of these differences which are usually 10 places to the right of the decimal
point.

Some systems display minus zero as -0, while others just show 0.

Some systems signal errors from pow() and exp() differently from the mechanism expected by the
current PostgreSQL code.

33.2.5. Row Ordering Differences
You might see differences in which the same rows are output in a different order than what appears in
the expected file. In most cases this is not, strictly speaking, a bug. Most of the regression test scripts are
not so pedantic as to use an ORDER BY for every single SELECT, and so their result row orderings are
not well-defined according to the SQL specification. In practice, since we are looking at the same queries
being executed on the same data by the same software, we usually get the same result ordering on all
platforms, so the lack of ORDER BY is not a problem. Some queries do exhibit cross-platform ordering
differences, however. When testing against an already-installed server, ordering differences can also be
caused by non-C locale settings or non-default parameter settings, such as custom values of work_mem
or the planner cost parameters.

Therefore, if you see an ordering difference, it's not something to worry about, unless the query does have
an ORDER BY that your result is violating. However, please report it anyway, so that we can add an ORDER
BY to that particular query to eliminate the bogus “failure” in future releases.

You might wonder why we don't order all the regression test queries explicitly to get rid of this issue once
and for all. The reason is that that would make the regression tests less useful, not more, since they'd tend
to exercise query plan types that produce ordered results to the exclusion of those that don't.

33.2.6. Insufficient Stack Depth
If the errors test results in a server crash at the select infinite_recurse() command, it means
that the platform's limit on process stack size is smaller than the max_stack_depth parameter indicates.

799

Regression Tests

This can be fixed by running the server under a higher stack size limit (4MB is recommended with the
default value of max_stack_depth). If you are unable to do that, an alternative is to reduce the value
of max_stack_depth.

On platforms supporting getrlimit(), the server should automatically choose a safe value of
max_stack_depth; so unless you've manually overridden this setting, a failure of this kind is a
reportable bug.

33.2.7. The “random” Test
The random test script is intended to produce random results. In very rare cases, this causes that regression
test to fail. Typing:

diff results/random.out expected/random.out

should produce only one or a few lines of differences. You need not worry unless the random test fails
repeatedly.

33.2.8. Configuration Parameters
When running the tests against an existing installation, some non-default parameter settings could cause the
tests to fail. For example, changing parameters such as enable_seqscan or enable_indexscan
could cause plan changes that would affect the results of tests that use EXPLAIN.

33.3. Variant Comparison Files
Since some of the tests inherently produce environment-dependent results, we have provided ways to
specify alternate “expected” result files. Each regression test can have several comparison files showing
possible results on different platforms. There are two independent mechanisms for determining which
comparison file is used for each test.

The first mechanism allows comparison files to be selected for specific platforms. There is a mapping file,
src/test/regress/resultmap, that defines which comparison file to use for each platform. To
eliminate bogus test “failures” for a particular platform, you first choose or make a variant result file, and
then add a line to the resultmap file.

Each line in the mapping file is of the form

testname:output:platformpattern=comparisonfilename

The test name is just the name of the particular regression test module. The output value indicates which
output file to check. For the standard regression tests, this is always out. The value corresponds to the file
extension of the output file. The platform pattern is a pattern in the style of the Unix tool expr (that is, a
regular expression with an implicit ̂ anchor at the start). It is matched against the platform name as printed
by config.guess. The comparison file name is the base name of the substitute result comparison file.

For example: some systems interpret very small floating-point values as zero, rather than reporting an
underflow error. This causes a few differences in the float8 regression test. Therefore, we provide a
variant comparison file, float8-small-is-zero.out, which includes the results to be expected on
these systems. To silence the bogus “failure” message on OpenBSD platforms, resultmap includes:

800

Regression Tests

float8:out:i.86-.*-openbsd=float8-small-is-zero.out

which will trigger on any machine where the output of config.guess matches i.86-.*-openbsd.
Other lines in resultmap select the variant comparison file for other platforms where it's appropriate.

The second selection mechanism for variant comparison files is much more automatic: it simply uses the
“best match” among several supplied comparison files. The regression test driver script considers both the
standard comparison file for a test, testname.out, and variant files named testname_digit.out
(where the digit is any single digit 0-9). If any such file is an exact match, the test is considered to
pass; otherwise, the one that generates the shortest diff is used to create the failure report. (If resultmap
includes an entry for the particular test, then the base testname is the substitute name given in
resultmap.)

For example, for the char test, the comparison file char.out contains results that are expected in the
C and POSIX locales, while the file char_1.out contains results sorted as they appear in many other
locales.

The best-match mechanism was devised to cope with locale-dependent results, but it can be used in any
situation where the test results cannot be predicted easily from the platform name alone. A limitation of this
mechanism is that the test driver cannot tell which variant is actually “correct” for the current environment;
it will just pick the variant that seems to work best. Therefore it is safest to use this mechanism only for
variant results that you are willing to consider equally valid in all contexts.

33.4. TAP Tests
Various tests, particularly the client program tests under src/bin, use the Perl TAP tools and are run
using the Perl testing program prove. You can pass command-line options to prove by setting the make
variable PROVE_FLAGS, for example:

make -C src/bin check PROVE_FLAGS='--timer'

See the manual page of prove for more information.

The make variable PROVE_TESTS can be used to define a whitespace-separated list of paths relative
to the Makefile invoking prove to run the specified subset of tests instead of the default t/*.pl.
For example:

make check PROVE_TESTS='t/001_test1.pl t/003_test3.pl'

The TAP tests require the Perl module IPC::Run. This module is available from CPAN or an operating
system package.

33.5. Test Coverage Examination
The PostgreSQL source code can be compiled with coverage testing instrumentation, so that it becomes
possible to examine which parts of the code are covered by the regression tests or any other test suite that
is run with the code. This is currently supported when compiling with GCC and requires the gcov and
lcov programs.

A typical workflow would look like this:

801

Regression Tests

./configure --enable-coverage ... OTHER OPTIONS ...
make
make check # or other test suite
make coverage-html

Then point your HTML browser to coverage/index.html. The make commands also work in
subdirectories.

If you don't have lcov or prefer text output over an HTML report, you can also run

make coverage

instead of make coverage-html, which will produce .gcov output files for each source file relevant
to the test. (make coverage and make coverage-html will overwrite each other's files, so mixing
them might be confusing.)

To reset the execution counts between test runs, run:

make coverage-clean

802

Part IV. Client Interfaces
This part describes the client programming interfaces distributed with PostgreSQL. Each of these chapters can be
read independently. Note that there are many other programming interfaces for client programs that are distributed
separately and contain their own documentation (Appendix H lists some of the more popular ones). Readers of this
part should be familiar with using SQL commands to manipulate and query the database (see Part II) and of course
with the programming language that the interface uses.

Table of Contents
34. libpq - C Library ... 808

34.1. Database Connection Control Functions ... 808
34.1.1. Connection Strings .. 815
34.1.2. Parameter Key Words .. 817

34.2. Connection Status Functions .. 822
34.3. Command Execution Functions .. 828

34.3.1. Main Functions ... 828
34.3.2. Retrieving Query Result Information .. 836
34.3.3. Retrieving Other Result Information ... 841
34.3.4. Escaping Strings for Inclusion in SQL Commands 842

34.4. Asynchronous Command Processing ... 845
34.5. Retrieving Query Results Row-By-Row ... 849
34.6. Canceling Queries in Progress .. 850
34.7. The Fast-Path Interface ... 851
34.8. Asynchronous Notification .. 852
34.9. Functions Associated with the COPY Command .. 853

34.9.1. Functions for Sending COPY Data .. 854
34.9.2. Functions for Receiving COPY Data ... 854
34.9.3. Obsolete Functions for COPY .. 855

34.10. Control Functions ... 857
34.11. Miscellaneous Functions .. 859
34.12. Notice Processing ... 862
34.13. Event System .. 863

34.13.1. Event Types ... 864
34.13.2. Event Callback Procedure ... 866
34.13.3. Event Support Functions ... 866
34.13.4. Event Example .. 867

34.14. Environment Variables .. 870
34.15. The Password File .. 872
34.16. The Connection Service File .. 872
34.17. LDAP Lookup of Connection Parameters ... 873
34.18. SSL Support .. 874

34.18.1. Client Verification of Server Certificates .. 874
34.18.2. Client Certificates .. 875
34.18.3. Protection Provided in Different Modes ... 875
34.18.4. SSL Client File Usage .. 877
34.18.5. SSL Library Initialization .. 877

34.19. Behavior in Threaded Programs .. 878
34.20. Building libpq Programs .. 878
34.21. Example Programs ... 880

35. Large Objects .. 892
35.1. Introduction .. 892
35.2. Implementation Features ... 892
35.3. Client Interfaces .. 892

35.3.1. Creating a Large Object ... 893
35.3.2. Importing a Large Object ... 893
35.3.3. Exporting a Large Object ... 894
35.3.4. Opening an Existing Large Object .. 894
35.3.5. Writing Data to a Large Object .. 894
35.3.6. Reading Data from a Large Object ... 895
35.3.7. Seeking in a Large Object .. 895

804

Client Interfaces

35.3.8. Obtaining the Seek Position of a Large Object .. 895
35.3.9. Truncating a Large Object .. 896
35.3.10. Closing a Large Object Descriptor .. 896
35.3.11. Removing a Large Object ... 897

35.4. Server-side Functions ... 897
35.5. Example Program .. 898

36. ECPG - Embedded SQL in C ... 905
36.1. The Concept ... 905
36.2. Managing Database Connections .. 905

36.2.1. Connecting to the Database Server ... 905
36.2.2. Choosing a Connection .. 907
36.2.3. Closing a Connection ... 908

36.3. Running SQL Commands .. 908
36.3.1. Executing SQL Statements .. 908
36.3.2. Using Cursors ... 909
36.3.3. Managing Transactions ... 910
36.3.4. Prepared Statements ... 910

36.4. Using Host Variables ... 911
36.4.1. Overview ... 911
36.4.2. Declare Sections ... 912
36.4.3. Retrieving Query Results .. 912
36.4.4. Type Mapping .. 913
36.4.5. Handling Nonprimitive SQL Data Types ... 920
36.4.6. Indicators ... 925

36.5. Dynamic SQL ... 926
36.5.1. Executing Statements without a Result Set ... 926
36.5.2. Executing a Statement with Input Parameters ... 926
36.5.3. Executing a Statement with a Result Set .. 927

36.6. pgtypes Library ... 928
36.6.1. Character Strings ... 928
36.6.2. The numeric Type ... 928
36.6.3. The date Type .. 932
36.6.4. The timestamp Type .. 936
36.6.5. The interval Type .. 940
36.6.6. The decimal Type ... 941
36.6.7. errno Values of pgtypeslib .. 941
36.6.8. Special Constants of pgtypeslib ... 942

36.7. Using Descriptor Areas ... 943
36.7.1. Named SQL Descriptor Areas ... 943
36.7.2. SQLDA Descriptor Areas ... 945

36.8. Error Handling .. 956
36.8.1. Setting Callbacks .. 957
36.8.2. sqlca ... 958
36.8.3. SQLSTATE vs. SQLCODE .. 960

36.9. Preprocessor Directives ... 964
36.9.1. Including Files .. 964
36.9.2. The define and undef Directives .. 965
36.9.3. ifdef, ifndef, else, elif, and endif Directives .. 965

36.10. Processing Embedded SQL Programs .. 966
36.11. Library Functions ... 967
36.12. Large Objects .. 968
36.13. C++ Applications ... 970

36.13.1. Scope for Host Variables .. 970
36.13.2. C++ Application Development with External C Module 971

805

Client Interfaces

36.14. Embedded SQL Commands ... 973
36.15. Informix Compatibility Mode ... 998

36.15.1. Additional Types ... 999
36.15.2. Additional/Missing Embedded SQL Statements ... 999
36.15.3. Informix-compatible SQLDA Descriptor Areas ... 999
36.15.4. Additional Functions .. 1003
36.15.5. Additional Constants .. 1013

36.16. Internals .. 1014
37. The Information Schema .. 1017

37.1. The Schema .. 1017
37.2. Data Types ... 1017
37.3. information_schema_catalog_name ... 1018
37.4. administrable_role_authorizations ... 1018
37.5. applicable_roles ... 1018
37.6. attributes ... 1019
37.7. character_sets ... 1022
37.8. check_constraint_routine_usage ... 1023
37.9. check_constraints ... 1024
37.10. collations ... 1024
37.11. collation_character_set_applicability .. 1025
37.12. column_domain_usage ... 1025
37.13. column_options ... 1026
37.14. column_privileges ... 1026
37.15. column_udt_usage ... 1027
37.16. columns ... 1027
37.17. constraint_column_usage ... 1032
37.18. constraint_table_usage ... 1032
37.19. data_type_privileges ... 1033
37.20. domain_constraints ... 1034
37.21. domain_udt_usage ... 1034
37.22. domains ... 1035
37.23. element_types ... 1038
37.24. enabled_roles ... 1040
37.25. foreign_data_wrapper_options ... 1041
37.26. foreign_data_wrappers ... 1041
37.27. foreign_server_options ... 1041
37.28. foreign_servers ... 1042
37.29. foreign_table_options ... 1042
37.30. foreign_tables ... 1043
37.31. key_column_usage ... 1043
37.32. parameters ... 1044
37.33. referential_constraints ... 1046
37.34. role_column_grants ... 1047
37.35. role_routine_grants ... 1048
37.36. role_table_grants ... 1049
37.37. role_udt_grants ... 1049
37.38. role_usage_grants ... 1050
37.39. routine_privileges ... 1051
37.40. routines ... 1051
37.41. schemata ... 1057
37.42. sequences ... 1057
37.43. sql_features ... 1058
37.44. sql_implementation_info ... 1059
37.45. sql_languages ... 1059

806

Client Interfaces

37.46. sql_packages ... 1060
37.47. sql_parts ... 1060
37.48. sql_sizing ... 1061
37.49. sql_sizing_profiles ... 1061
37.50. table_constraints ... 1062
37.51. table_privileges ... 1062
37.52. tables ... 1063
37.53. transforms ... 1064
37.54. triggered_update_columns ... 1065
37.55. triggers ... 1065
37.56. udt_privileges ... 1067
37.57. usage_privileges ... 1068
37.58. user_defined_types ... 1068
37.59. user_mapping_options ... 1070
37.60. user_mappings ... 1071
37.61. view_column_usage ... 1071
37.62. view_routine_usage ... 1072
37.63. view_table_usage ... 1072
37.64. views ... 1073

807

Chapter 34. libpq - C Library
libpq is the C application programmer's interface to PostgreSQL. libpq is a set of library functions that
allow client programs to pass queries to the PostgreSQL backend server and to receive the results of these
queries.

libpq is also the underlying engine for several other PostgreSQL application interfaces, including those
written for C++, Perl, Python, Tcl and ECPG. So some aspects of libpq's behavior will be important to you
if you use one of those packages. In particular, Section 34.14, Section 34.15 and Section 34.18 describe
behavior that is visible to the user of any application that uses libpq.

Some short programs are included at the end of this chapter (Section 34.21) to show how to write programs
that use libpq. There are also several complete examples of libpq applications in the directory src/test/
examples in the source code distribution.

Client programs that use libpq must include the header file libpq-fe.h and must link with the libpq
library.

34.1. Database Connection Control Functions
The following functions deal with making a connection to a PostgreSQL backend server. An application
program can have several backend connections open at one time. (One reason to do that is to access
more than one database.) Each connection is represented by a PGconn object, which is obtained from
the function PQconnectdb, PQconnectdbParams, or PQsetdbLogin. Note that these functions
will always return a non-null object pointer, unless perhaps there is too little memory even to allocate
the PGconn object. The PQstatus function should be called to check the return value for a successful
connection before queries are sent via the connection object.

Warning

If untrusted users have access to a database that has not adopted a secure schema usage
pattern, begin each session by removing publicly-writable schemas from search_path. One
can set parameter key word options to value -csearch_path=. Alternately, one can
issue PQexec(conn, "SELECT pg_catalog.set_config('search_path', '',
false)") after connecting. This consideration is not specific to libpq; it applies to every interface
for executing arbitrary SQL commands.

Warning

On Unix, forking a process with open libpq connections can lead to unpredictable results because
the parent and child processes share the same sockets and operating system resources. For this
reason, such usage is not recommended, though doing an exec from the child process to load a
new executable is safe.

Note

On Windows, there is a way to improve performance if a single database connection is
repeatedly started and shutdown. Internally, libpq calls WSAStartup() and WSACleanup()

808

libpq - C Library

for connection startup and shutdown, respectively. WSAStartup() increments an internal
Windows library reference count which is decremented by WSACleanup(). When the reference
count is just one, calling WSACleanup() frees all resources and all DLLs are unloaded. This
is an expensive operation. To avoid this, an application can manually call WSAStartup() so
resources will not be freed when the last database connection is closed.

PQconnectdbParams

Makes a new connection to the database server.

PGconn *PQconnectdbParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

This function opens a new database connection using the parameters taken from two NULL-terminated
arrays. The first, keywords, is defined as an array of strings, each one being a key word. The
second, values, gives the value for each key word. Unlike PQsetdbLogin below, the parameter
set can be extended without changing the function signature, so use of this function (or its nonblocking
analogs PQconnectStartParams and PQconnectPoll) is preferred for new application
programming.

The currently recognized parameter key words are listed in Section 34.1.2.

When expand_dbname is non-zero, the dbname key word value is allowed to be recognized as
a connection string. Only the first occurrence of dbname is expanded this way, any subsequent
dbname value is processed as plain database name. More details on the possible connection string
formats appear in Section 34.1.1.

The passed arrays can be empty to use all default parameters, or can contain one or more parameter
settings. They should be matched in length. Processing will stop at the first NULL element in the
keywords array.

If any parameter is NULL or an empty string, the corresponding environment variable (see
Section 34.14) is checked. If the environment variable is not set either, then the indicated built-in
defaults are used.

In general key words are processed from the beginning of these arrays in index order. The effect
of this is that when key words are repeated, the last processed value is retained. Therefore, through
careful placement of the dbname key word, it is possible to determine what may be overridden by
a conninfo string, and what may not.

PQconnectdb

Makes a new connection to the database server.

PGconn *PQconnectdb(const char *conninfo);

This function opens a new database connection using the parameters taken from the string conninfo.

The passed string can be empty to use all default parameters, or it can contain one or more parameter
settings separated by whitespace, or it can contain a URI. See Section 34.1.1 for details.

809

libpq - C Library

PQsetdbLogin

Makes a new connection to the database server.

PGconn *PQsetdbLogin(const char *pghost,
 const char *pgport,
 const char *pgoptions,
 const char *pgtty,
 const char *dbName,
 const char *login,
 const char *pwd);

This is the predecessor of PQconnectdb with a fixed set of parameters. It has the same functionality
except that the missing parameters will always take on default values. Write NULL or an empty string
for any one of the fixed parameters that is to be defaulted.

If the dbName contains an = sign or has a valid connection URI prefix, it is taken as a conninfo
string in exactly the same way as if it had been passed to PQconnectdb, and the remaining
parameters are then applied as specified for PQconnectdbParams.

PQsetdb

Makes a new connection to the database server.

PGconn *PQsetdb(char *pghost,
 char *pgport,
 char *pgoptions,
 char *pgtty,
 char *dbName);

This is a macro that calls PQsetdbLogin with null pointers for the login and pwd parameters. It
is provided for backward compatibility with very old programs.

PQconnectStartParams
PQconnectStart
PQconnectPoll

 Make a connection to the database server in a nonblocking manner.

PGconn *PQconnectStartParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

PGconn *PQconnectStart(const char *conninfo);

PostgresPollingStatusType PQconnectPoll(PGconn *conn);

These three functions are used to open a connection to a database server such that your application's
thread of execution is not blocked on remote I/O whilst doing so. The point of this approach is
that the waits for I/O to complete can occur in the application's main loop, rather than down inside
PQconnectdbParams or PQconnectdb, and so the application can manage this operation in
parallel with other activities.

810

libpq - C Library

With PQconnectStartParams, the database connection is made using the parameters taken from
the keywords and values arrays, and controlled by expand_dbname, as described above for
PQconnectdbParams.

With PQconnectStart, the database connection is made using the parameters taken from the string
conninfo as described above for PQconnectdb.

Neither PQconnectStartParams nor PQconnectStart nor PQconnectPoll will block,
so long as a number of restrictions are met:

• The hostaddr parameter must be used appropriately to prevent DNS queries from being made.
See the documentation of this parameter in Section 34.1.2 for details.

• If you call PQtrace, ensure that the stream object into which you trace will not block.

• You must ensure that the socket is in the appropriate state before calling PQconnectPoll, as
described below.

To begin a nonblocking connection request, call PQconnectStart or
PQconnectStartParams. If the result is null, then libpq has been unable to allocate a new
PGconn structure. Otherwise, a valid PGconn pointer is returned (though not yet representing a valid
connection to the database). Next call PQstatus(conn). If the result is CONNECTION_BAD, the
connection attempt has already failed, typically because of invalid connection parameters.

If PQconnectStart or PQconnectStartParams succeeds, the next stage is to poll libpq so
that it can proceed with the connection sequence. Use PQsocket(conn) to obtain the descriptor
of the socket underlying the database connection. (Caution: do not assume that the socket remains
the same across PQconnectPoll calls.) Loop thus: If PQconnectPoll(conn) last returned
PGRES_POLLING_READING, wait until the socket is ready to read (as indicated by select(),
poll(), or similar system function). Then call PQconnectPoll(conn) again. Conversely, if
PQconnectPoll(conn) last returned PGRES_POLLING_WRITING, wait until the socket is
ready to write, then call PQconnectPoll(conn) again. On the first iteration, i.e. if you have
yet to call PQconnectPoll, behave as if it last returned PGRES_POLLING_WRITING. Continue
this loop until PQconnectPoll(conn) returns PGRES_POLLING_FAILED, indicating the
connection procedure has failed, or PGRES_POLLING_OK, indicating the connection has been
successfully made.

At any time during connection, the status of the connection can be checked by calling PQstatus.
If this call returns CONNECTION_BAD, then the connection procedure has failed; if the call returns
CONNECTION_OK, then the connection is ready. Both of these states are equally detectable from the
return value of PQconnectPoll, described above. Other states might also occur during (and only
during) an asynchronous connection procedure. These indicate the current stage of the connection
procedure and might be useful to provide feedback to the user for example. These statuses are:

CONNECTION_STARTED

Waiting for connection to be made.

CONNECTION_MADE

Connection OK; waiting to send.

CONNECTION_AWAITING_RESPONSE

Waiting for a response from the server.

811

libpq - C Library

CONNECTION_AUTH_OK

Received authentication; waiting for backend start-up to finish.

CONNECTION_SSL_STARTUP

Negotiating SSL encryption.

CONNECTION_SETENV

Negotiating environment-driven parameter settings.

CONNECTION_CHECK_WRITABLE

Checking if connection is able to handle write transactions.

CONNECTION_CONSUME

Consuming any remaining response messages on connection.

Note that, although these constants will remain (in order to maintain compatibility), an application
should never rely upon these occurring in a particular order, or at all, or on the status always being
one of these documented values. An application might do something like this:

switch(PQstatus(conn))
{
 case CONNECTION_STARTED:
 feedback = "Connecting...";
 break;

 case CONNECTION_MADE:
 feedback = "Connected to server...";
 break;
.
.
.
 default:
 feedback = "Connecting...";
}

The connect_timeout connection parameter is ignored when using PQconnectPoll; it is the
application's responsibility to decide whether an excessive amount of time has elapsed. Otherwise,
PQconnectStart followed by a PQconnectPoll loop is equivalent to PQconnectdb.

Note that when PQconnectStart or PQconnectStartParams returns a non-null pointer, you
must call PQfinish when you are finished with it, in order to dispose of the structure and any
associated memory blocks. This must be done even if the connection attempt fails or is abandoned.

PQconndefaults

Returns the default connection options.

PQconninfoOption *PQconndefaults(void);

typedef struct

812

libpq - C Library

{
 char *keyword; /* The keyword of the option */
 char *envvar; /* Fallback environment variable name */
 char *compiled; /* Fallback compiled in default value */
 char *val; /* Option's current value, or NULL */
 char *label; /* Label for field in connect dialog */
 char *dispchar; /* Indicates how to display this field
 in a connect dialog. Values are:
 "" Display entered value as is
 "*" Password field - hide value
 "D" Debug option - don't show by
 default */
 int dispsize; /* Field size in characters for dialog */
} PQconninfoOption;

Returns a connection options array. This can be used to determine all possible PQconnectdb
options and their current default values. The return value points to an array of PQconninfoOption
structures, which ends with an entry having a null keyword pointer. The null pointer is returned
if memory could not be allocated. Note that the current default values (val fields) will depend on
environment variables and other context. A missing or invalid service file will be silently ignored.
Callers must treat the connection options data as read-only.

After processing the options array, free it by passing it to PQconninfoFree. If this is not done, a
small amount of memory is leaked for each call to PQconndefaults.

PQconninfo

Returns the connection options used by a live connection.

PQconninfoOption *PQconninfo(PGconn *conn);

Returns a connection options array. This can be used to determine all possible PQconnectdb
options and the values that were used to connect to the server. The return value points to an array
of PQconninfoOption structures, which ends with an entry having a null keyword pointer. All
notes above for PQconndefaults also apply to the result of PQconninfo.

PQconninfoParse

Returns parsed connection options from the provided connection string.

PQconninfoOption *PQconninfoParse(const char *conninfo, char
 **errmsg);

Parses a connection string and returns the resulting options as an array; or returns NULL if there is a
problem with the connection string. This function can be used to extract the PQconnectdb options
in the provided connection string. The return value points to an array of PQconninfoOption
structures, which ends with an entry having a null keyword pointer.

All legal options will be present in the result array, but the PQconninfoOption for any option not
present in the connection string will have val set to NULL; default values are not inserted.

If errmsg is not NULL, then *errmsg is set to NULL on success, else to a malloc'd error string
explaining the problem. (It is also possible for *errmsg to be set to NULL and the function to return
NULL; this indicates an out-of-memory condition.)

813

libpq - C Library

After processing the options array, free it by passing it to PQconninfoFree. If this is not done,
some memory is leaked for each call to PQconninfoParse. Conversely, if an error occurs and
errmsg is not NULL, be sure to free the error string using PQfreemem.

PQfinish

Closes the connection to the server. Also frees memory used by the PGconn object.

void PQfinish(PGconn *conn);

Note that even if the server connection attempt fails (as indicated by PQstatus), the application
should call PQfinish to free the memory used by the PGconn object. The PGconn pointer must
not be used again after PQfinish has been called.

PQreset

Resets the communication channel to the server.

void PQreset(PGconn *conn);

This function will close the connection to the server and attempt to reestablish a new connection to the
same server, using all the same parameters previously used. This might be useful for error recovery
if a working connection is lost.

PQresetStart
PQresetPoll

Reset the communication channel to the server, in a nonblocking manner.

int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);

These functions will close the connection to the server and attempt to reestablish a new connection to
the same server, using all the same parameters previously used. This can be useful for error recovery
if a working connection is lost. They differ from PQreset (above) in that they act in a nonblocking
manner. These functions suffer from the same restrictions as PQconnectStartParams,
PQconnectStart and PQconnectPoll.

To initiate a connection reset, call PQresetStart. If it returns 0, the reset has failed. If it returns
1, poll the reset using PQresetPoll in exactly the same way as you would create the connection
using PQconnectPoll.

PQpingParams

PQpingParams reports the status of the server. It accepts connection parameters identical to those of
PQconnectdbParams, described above. It is not necessary to supply correct user name, password,
or database name values to obtain the server status; however, if incorrect values are provided, the
server will log a failed connection attempt.

PGPing PQpingParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

814

libpq - C Library

The function returns one of the following values:

PQPING_OK

The server is running and appears to be accepting connections.

PQPING_REJECT

The server is running but is in a state that disallows connections (startup, shutdown, or crash
recovery).

PQPING_NO_RESPONSE

The server could not be contacted. This might indicate that the server is not running, or that there
is something wrong with the given connection parameters (for example, wrong port number),
or that there is a network connectivity problem (for example, a firewall blocking the connection
request).

PQPING_NO_ATTEMPT

No attempt was made to contact the server, because the supplied parameters were obviously
incorrect or there was some client-side problem (for example, out of memory).

PQping

PQping reports the status of the server. It accepts connection parameters identical to those of
PQconnectdb, described above. It is not necessary to supply correct user name, password, or
database name values to obtain the server status; however, if incorrect values are provided, the server
will log a failed connection attempt.

PGPing PQping(const char *conninfo);

The return values are the same as for PQpingParams.

34.1.1. Connection Strings
Several libpq functions parse a user-specified string to obtain connection parameters. There are two
accepted formats for these strings: plain keyword = value strings and URIs. URIs generally follow
RFC 39861, except that multi-host connection strings are allowed as further described below.

34.1.1.1. Keyword/Value Connection Strings

In the first format, each parameter setting is in the form keyword = value. Spaces around the equal
sign are optional. To write an empty value, or a value containing spaces, surround it with single quotes,
e.g., keyword = 'a value'. Single quotes and backslashes within the value must be escaped with
a backslash, i.e., \' and \\.

Example:

host=localhost port=5432 dbname=mydb connect_timeout=10

The recognized parameter key words are listed in Section 34.1.2.

1 https://tools.ietf.org/html/rfc3986

815

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

libpq - C Library

34.1.1.2. Connection URIs

The general form for a connection URI is:

postgresql://[user[:password]@][netloc][:port][,...][/dbname][?
param1=value1&...]

The URI scheme designator can be either postgresql:// or postgres://. Each of the URI parts
is optional. The following examples illustrate valid URI syntax uses:

postgresql://
postgresql://localhost
postgresql://localhost:5433
postgresql://localhost/mydb
postgresql://user@localhost
postgresql://user:secret@localhost
postgresql://other@localhost/otherdb?
connect_timeout=10&application_name=myapp
postgresql://host1:123,host2:456/somedb?
target_session_attrs=any&application_name=myapp

Components of the hierarchical part of the URI can also be given as parameters. For example:

postgresql:///mydb?host=localhost&port=5433

Percent-encoding may be used to include symbols with special meaning in any of the URI parts, e.g.
replace = with %3D.

Any connection parameters not corresponding to key words listed in Section 34.1.2 are ignored and a
warning message about them is sent to stderr.

For improved compatibility with JDBC connection URIs, instances of parameter ssl=true are translated
into sslmode=require.

The host part may be either host name or an IP address. To specify an IPv6 host address, enclose it in
square brackets:

postgresql://[2001:db8::1234]/database

The host component is interpreted as described for the parameter host. In particular, a Unix-domain socket
connection is chosen if the host part is either empty or starts with a slash, otherwise a TCP/IP connection
is initiated. Note, however, that the slash is a reserved character in the hierarchical part of the URI. So,
to specify a non-standard Unix-domain socket directory, either omit the host specification in the URI and
specify the host as a parameter, or percent-encode the path in the host component of the URI:

postgresql:///dbname?host=/var/lib/postgresql
postgresql://%2Fvar%2Flib%2Fpostgresql/dbname

It is possible to specify multiple host components, each with an optional port component, in a single URI. A
URI of the form postgresql://host1:port1,host2:port2,host3:port3/ is equivalent to

816

libpq - C Library

a connection string of the form host=host1,host2,host3 port=port1,port2,port3. Each
host will be tried in turn until a connection is successfully established.

34.1.1.3. Specifying Multiple Hosts

It is possible to specify multiple hosts to connect to, so that they are tried in the given order. In the Keyword/
Value format, the host, hostaddr, and port options accept a comma-separated list of values. The
same number of elements must be given in each option that is specified, such that e.g. the first hostaddr
corresponds to the first host name, the second hostaddr corresponds to the second host name, and so
forth. As an exception, if only one port is specified, it applies to all the hosts.

In the connection URI format, you can list multiple host:port pairs separated by commas, in the host
component of the URI.

In either format, a single host name can translate to multiple network addresses. A common example of
this is a host that has both an IPv4 and an IPv6 address.

When multiple hosts are specified, or when a single host name is translated to multiple addresses, all the
hosts and addresses will be tried in order, until one succeeds. If none of the hosts can be reached, the
connection fails. If a connection is established successfully, but authentication fails, the remaining hosts
in the list are not tried.

If a password file is used, you can have different passwords for different hosts. All the other connection
options are the same for every host in the list; it is not possible to e.g. specify different usernames for
different hosts.

34.1.2. Parameter Key Words
The currently recognized parameter key words are:

host

Name of host to connect to. If a host name begins with a slash, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored. The default behavior when host is not specified, or is empty, is to connect
to a Unix-domain socket in /tmp (or whatever socket directory was specified when PostgreSQL was
built). On machines without Unix-domain sockets, the default is to connect to localhost.

A comma-separated list of host names is also accepted, in which case each host name in the list is tried
in order; an empty item in the list selects the default behavior as explained above. See Section 34.1.1.3
for details.

hostaddr

Numeric IP address of host to connect to. This should be in the standard IPv4 address format,
e.g., 172.28.40.9. If your machine supports IPv6, you can also use those addresses. TCP/IP
communication is always used when a nonempty string is specified for this parameter.

Using hostaddr instead of host allows the application to avoid a host name look-up, which might
be important in applications with time constraints. However, a host name is required for GSSAPI
or SSPI authentication methods, as well as for verify-full SSL certificate verification. The
following rules are used:

• If host is specified without hostaddr, a host name lookup occurs. (When using
PQconnectPoll, the lookup occurs when PQconnectPoll first considers this host name, and
it may cause PQconnectPoll to block for a significant amount of time.)

817

libpq - C Library

• If hostaddr is specified without host, the value for hostaddr gives the server network
address. The connection attempt will fail if the authentication method requires a host name.

• If both host and hostaddr are specified, the value for hostaddr gives the server network
address. The value for host is ignored unless the authentication method requires it, in which case
it will be used as the host name.

Note that authentication is likely to fail if host is not the name of the server at network address
hostaddr. Also, when both host and hostaddr are specified, host is used to identify the
connection in a password file (see Section 34.15).

A comma-separated list of hostaddr values is also accepted, in which case each host in the list is
tried in order. An empty item in the list causes the corresponding host name to be used, or the default
host name if that is empty as well. See Section 34.1.1.3 for details.

Without either a host name or host address, libpq will connect using a local Unix-domain socket; or
on machines without Unix-domain sockets, it will attempt to connect to localhost.

port

Port number to connect to at the server host, or socket file name extension for Unix-domain
connections. If multiple hosts were given in the host or hostaddr parameters, this parameter may
specify a comma-separated list of ports of the same length as the host list, or it may specify a single
port number to be used for all hosts. An empty string, or an empty item in a comma-separated list,
specifies the default port number established when PostgreSQL was built.

dbname

The database name. Defaults to be the same as the user name. In certain contexts, the value is checked
for extended formats; see Section 34.1.1 for more details on those.

user

PostgreSQL user name to connect as. Defaults to be the same as the operating system name of the
user running the application.

password

Password to be used if the server demands password authentication.

passfile

Specifies the name of the file used to store passwords (see Section 34.15). Defaults to ~/.pgpass,
or %APPDATA%\postgresql\pgpass.conf on Microsoft Windows. (No error is reported if
this file does not exist.)

connect_timeout

Maximum wait for connection, in seconds (write as a decimal integer, e.g. 10). Zero, negative, or not
specified means wait indefinitely. The minimum allowed timeout is 2 seconds, therefore a value of
1 is interpreted as 2. This timeout applies separately to each host name or IP address. For example,
if you specify two hosts and connect_timeout is 5, each host will time out if no connection is
made within 5 seconds, so the total time spent waiting for a connection might be up to 10 seconds.

client_encoding

This sets the client_encoding configuration parameter for this connection. In addition to the
values accepted by the corresponding server option, you can use auto to determine the right encoding
from the current locale in the client (LC_CTYPE environment variable on Unix systems).

818

libpq - C Library

options

Specifies command-line options to send to the server at connection start. For example, setting this
to -c geqo=off sets the session's value of the geqo parameter to off. Spaces within this string
are considered to separate command-line arguments, unless escaped with a backslash (\); write \\
to represent a literal backslash. For a detailed discussion of the available options, consult Chapter 19.

application_name

Specifies a value for the application_name configuration parameter.

fallback_application_name

Specifies a fallback value for the application_name configuration parameter. This value will be used
if no value has been given for application_name via a connection parameter or the PGAPPNAME
environment variable. Specifying a fallback name is useful in generic utility programs that wish to set
a default application name but allow it to be overridden by the user.

keepalives

Controls whether client-side TCP keepalives are used. The default value is 1, meaning on, but you can
change this to 0, meaning off, if keepalives are not wanted. This parameter is ignored for connections
made via a Unix-domain socket.

keepalives_idle

Controls the number of seconds of inactivity after which TCP should send a keepalive message
to the server. A value of zero uses the system default. This parameter is ignored for connections
made via a Unix-domain socket, or if keepalives are disabled. It is only supported on systems where
TCP_KEEPIDLE or an equivalent socket option is available, and on Windows; on other systems, it
has no effect.

keepalives_interval

Controls the number of seconds after which a TCP keepalive message that is not acknowledged by
the server should be retransmitted. A value of zero uses the system default. This parameter is ignored
for connections made via a Unix-domain socket, or if keepalives are disabled. It is only supported on
systems where TCP_KEEPINTVL or an equivalent socket option is available, and on Windows; on
other systems, it has no effect.

keepalives_count

Controls the number of TCP keepalives that can be lost before the client's connection to the server is
considered dead. A value of zero uses the system default. This parameter is ignored for connections
made via a Unix-domain socket, or if keepalives are disabled. It is only supported on systems where
TCP_KEEPCNT or an equivalent socket option is available; on other systems, it has no effect.

tty

Ignored (formerly, this specified where to send server debug output).

replication

This option determines whether the connection should use the replication protocol instead of
the normal protocol. This is what PostgreSQL replication connections as well as tools such as
pg_basebackup use internally, but it can also be used by third-party applications. For a description of
the replication protocol, consult Section 53.4.

819

libpq - C Library

The following values, which are case-insensitive, are supported:

true, on, yes, 1

The connection goes into physical replication mode.

database

The connection goes into logical replication mode, connecting to the database specified in the
dbname parameter.

false, off, no, 0

The connection is a regular one, which is the default behavior.

In physical or logical replication mode, only the simple query protocol can be used.

sslmode

This option determines whether or with what priority a secure SSL TCP/IP connection will be
negotiated with the server. There are six modes:

disable

only try a non-SSL connection

allow

first try a non-SSL connection; if that fails, try an SSL connection

prefer (default)

first try an SSL connection; if that fails, try a non-SSL connection

require

only try an SSL connection. If a root CA file is present, verify the certificate in the same way
as if verify-ca was specified

verify-ca

only try an SSL connection, and verify that the server certificate is issued by a trusted certificate
authority (CA)

verify-full

only try an SSL connection, verify that the server certificate is issued by a trusted CA and that
the requested server host name matches that in the certificate

See Section 34.18 for a detailed description of how these options work.

sslmode is ignored for Unix domain socket communication. If PostgreSQL is compiled without
SSL support, using options require, verify-ca, or verify-full will cause an error, while
options allow and prefer will be accepted but libpq will not actually attempt an SSL connection.

requiressl

This option is deprecated in favor of the sslmode setting.

820

libpq - C Library

If set to 1, an SSL connection to the server is required (this is equivalent to sslmode require).
libpq will then refuse to connect if the server does not accept an SSL connection. If set to 0 (default),
libpq will negotiate the connection type with the server (equivalent to sslmode prefer). This
option is only available if PostgreSQL is compiled with SSL support.

sslcompression

If set to 1, data sent over SSL connections will be compressed. If set to 0, compression will be disabled.
The default is 0. This parameter is ignored if a connection without SSL is made.

SSL compression is nowadays considered insecure and its use is no longer recommended. OpenSSL
1.1.0 disables compression by default, and many operating system distributions disable it in prior
versions as well, so setting this parameter to on will not have any effect if the server does not accept
compression. On the other hand, OpenSSL before 1.0.0 does not support disabling compression, so
this parameter is ignored with those versions, and whether compression is used depends on the server.

If security is not a primary concern, compression can improve throughput if the network is the
bottleneck. Disabling compression can improve response time and throughput if CPU performance
is the limiting factor.

sslcert

This parameter specifies the file name of the client SSL certificate, replacing the default
~/.postgresql/postgresql.crt. This parameter is ignored if an SSL connection is not
made.

sslkey

This parameter specifies the location for the secret key used for the client certificate. It can either
specify a file name that will be used instead of the default ~/.postgresql/postgresql.key,
or it can specify a key obtained from an external “engine” (engines are OpenSSL loadable modules).
An external engine specification should consist of a colon-separated engine name and an engine-
specific key identifier. This parameter is ignored if an SSL connection is not made.

sslrootcert

This parameter specifies the name of a file containing SSL certificate authority (CA) certificate(s).
If the file exists, the server's certificate will be verified to be signed by one of these authorities. The
default is ~/.postgresql/root.crt.

sslcrl

This parameter specifies the file name of the SSL certificate revocation list (CRL). Certificates listed
in this file, if it exists, will be rejected while attempting to authenticate the server's certificate. The
default is ~/.postgresql/root.crl.

requirepeer

This parameter specifies the operating-system user name of the server, for example
requirepeer=postgres. When making a Unix-domain socket connection, if this parameter is
set, the client checks at the beginning of the connection that the server process is running under the
specified user name; if it is not, the connection is aborted with an error. This parameter can be used to
provide server authentication similar to that available with SSL certificates on TCP/IP connections.
(Note that if the Unix-domain socket is in /tmp or another publicly writable location, any user could
start a server listening there. Use this parameter to ensure that you are connected to a server run by a
trusted user.) This option is only supported on platforms for which the peer authentication method
is implemented; see Section 20.9.

821

libpq - C Library

krbsrvname

Kerberos service name to use when authenticating with GSSAPI. This must match the service name
specified in the server configuration for Kerberos authentication to succeed. (See also Section 20.6.)

gsslib

GSS library to use for GSSAPI authentication. Only used on Windows. Set to gssapi to force libpq
to use the GSSAPI library for authentication instead of the default SSPI.

service

Service name to use for additional parameters. It specifies a service name in pg_service.conf
that holds additional connection parameters. This allows applications to specify only a service name
so connection parameters can be centrally maintained. See Section 34.16.

target_session_attrs

If this parameter is set to read-write, only a connection in which read-write transactions are
accepted by default is considered acceptable. The query SHOW transaction_read_only will
be sent upon any successful connection; if it returns on, the connection will be closed. If multiple hosts
were specified in the connection string, any remaining servers will be tried just as if the connection
attempt had failed. The default value of this parameter, any, regards all connections as acceptable.

34.2. Connection Status Functions
These functions can be used to interrogate the status of an existing database connection object.

Tip

 libpq application programmers should be careful to maintain the PGconn abstraction. Use
the accessor functions described below to get at the contents of PGconn. Reference to internal
PGconn fields using libpq-int.h is not recommended because they are subject to change in
the future.

The following functions return parameter values established at connection. These values are fixed for the
life of the connection. If a multi-host connection string is used, the values of PQhost, PQport, and
PQpass can change if a new connection is established using the same PGconn object. Other values are
fixed for the lifetime of the PGconn object.

PQdb

Returns the database name of the connection.

char *PQdb(const PGconn *conn);

PQuser

Returns the user name of the connection.

char *PQuser(const PGconn *conn);

822

libpq - C Library

PQpass

Returns the password of the connection.

char *PQpass(const PGconn *conn);

PQpass will return either the password specified in the connection parameters, or if there was none
and the password was obtained from the password file, it will return that. In the latter case, if multiple
hosts were specified in the connection parameters, it is not possible to rely on the result of PQpass
until the connection is established. The status of the connection can be checked using the function
PQstatus.

PQhost

Returns the server host name of the active connection. This can be a host name, an IP address, or a
directory path if the connection is via Unix socket. (The path case can be distinguished because it will
always be an absolute path, beginning with /.)

char *PQhost(const PGconn *conn);

If the connection parameters specified both host and hostaddr, then PQhost will return the
host information. If only hostaddr was specified, then that is returned. If multiple hosts were
specified in the connection parameters, PQhost returns the host actually connected to.

PQhost returns NULL if the conn argument is NULL. Otherwise, if there is an error producing the
host information (perhaps if the connection has not been fully established or there was an error), it
returns an empty string.

If multiple hosts were specified in the connection parameters, it is not possible to rely on the result
of PQhost until the connection is established. The status of the connection can be checked using
the function PQstatus.

PQport

Returns the port of the active connection.

char *PQport(const PGconn *conn);

If multiple ports were specified in the connection parameters, PQport returns the port actually
connected to.

PQport returns NULL if the conn argument is NULL. Otherwise, if there is an error producing the
port information (perhaps if the connection has not been fully established or there was an error), it
returns an empty string.

If multiple ports were specified in the connection parameters, it is not possible to rely on the result
of PQport until the connection is established. The status of the connection can be checked using
the function PQstatus.

PQtty

Returns the debug TTY of the connection. (This is obsolete, since the server no longer pays attention
to the TTY setting, but the function remains for backward compatibility.)

823

libpq - C Library

char *PQtty(const PGconn *conn);

PQoptions

Returns the command-line options passed in the connection request.

char *PQoptions(const PGconn *conn);

The following functions return status data that can change as operations are executed on the PGconn
object.

PQstatus

Returns the status of the connection.

ConnStatusType PQstatus(const PGconn *conn);

The status can be one of a number of values. However, only two of these are seen outside
of an asynchronous connection procedure: CONNECTION_OK and CONNECTION_BAD. A good
connection to the database has the status CONNECTION_OK. A failed connection attempt is signaled
by status CONNECTION_BAD. Ordinarily, an OK status will remain so until PQfinish, but a
communications failure might result in the status changing to CONNECTION_BAD prematurely. In
that case the application could try to recover by calling PQreset.

See the entry for PQconnectStartParams, PQconnectStart and PQconnectPoll with
regards to other status codes that might be returned.

PQtransactionStatus

Returns the current in-transaction status of the server.

PGTransactionStatusType PQtransactionStatus(const PGconn *conn);

The status can be PQTRANS_IDLE (currently idle), PQTRANS_ACTIVE (a command is in progress),
PQTRANS_INTRANS (idle, in a valid transaction block), or PQTRANS_INERROR (idle, in a failed
transaction block). PQTRANS_UNKNOWN is reported if the connection is bad. PQTRANS_ACTIVE
is reported only when a query has been sent to the server and not yet completed.

PQparameterStatus

Looks up a current parameter setting of the server.

const char *PQparameterStatus(const PGconn *conn, const char
 *paramName);

Certain parameter values are reported by the server automatically at connection startup or whenever
their values change. PQparameterStatus can be used to interrogate these settings. It returns the
current value of a parameter if known, or NULL if the parameter is not known.

Parameters reported as of the current release include server_version, server_encoding,
client_encoding, application_name, is_superuser, session_authorization,

824

libpq - C Library

DateStyle, IntervalStyle, TimeZone, integer_datetimes, and
standard_conforming_strings. (server_encoding, TimeZone, and
integer_datetimes were not reported by releases before 8.0;
standard_conforming_strings was not reported by releases before 8.1; IntervalStyle
was not reported by releases before 8.4; application_name was not reported by releases before
9.0.) Note that server_version, server_encoding and integer_datetimes cannot
change after startup.

Pre-3.0-protocol servers do not report parameter settings, but libpq includes logic to obtain values
for server_version and client_encoding anyway. Applications are encouraged to use
PQparameterStatus rather than ad hoc code to determine these values. (Beware however that
on a pre-3.0 connection, changing client_encoding via SET after connection startup will not
be reflected by PQparameterStatus.) For server_version, see also PQserverVersion,
which returns the information in a numeric form that is much easier to compare against.

If no value for standard_conforming_strings is reported, applications can assume it is off,
that is, backslashes are treated as escapes in string literals. Also, the presence of this parameter can
be taken as an indication that the escape string syntax (E'...') is accepted.

Although the returned pointer is declared const, it in fact points to mutable storage associated with
the PGconn structure. It is unwise to assume the pointer will remain valid across queries.

PQprotocolVersion

Interrogates the frontend/backend protocol being used.

int PQprotocolVersion(const PGconn *conn);

Applications might wish to use this function to determine whether certain features are supported.
Currently, the possible values are 2 (2.0 protocol), 3 (3.0 protocol), or zero (connection bad). The
protocol version will not change after connection startup is complete, but it could theoretically
change during a connection reset. The 3.0 protocol will normally be used when communicating with
PostgreSQL 7.4 or later servers; pre-7.4 servers support only protocol 2.0. (Protocol 1.0 is obsolete
and not supported by libpq.)

PQserverVersion

Returns an integer representing the server version.

int PQserverVersion(const PGconn *conn);

Applications might use this function to determine the version of the database server they are connected
to. The result is formed by multiplying the server's major version number by 10000 and adding the
minor version number. For example, version 10.1 will be returned as 100001, and version 11.0 will
be returned as 110000. Zero is returned if the connection is bad.

Prior to major version 10, PostgreSQL used three-part version numbers in which the first two parts
together represented the major version. For those versions, PQserverVersion uses two digits for
each part; for example version 9.1.5 will be returned as 90105, and version 9.2.0 will be returned as
90200.

Therefore, for purposes of determining feature compatibility, applications should divide the result of
PQserverVersion by 100 not 10000 to determine a logical major version number. In all release
series, only the last two digits differ between minor releases (bug-fix releases).

825

libpq - C Library

PQerrorMessage

 Returns the error message most recently generated by an operation on the connection.

char *PQerrorMessage(const PGconn *conn);

Nearly all libpq functions will set a message for PQerrorMessage if they fail. Note that by libpq
convention, a nonempty PQerrorMessage result can consist of multiple lines, and will include a
trailing newline. The caller should not free the result directly. It will be freed when the associated
PGconn handle is passed to PQfinish. The result string should not be expected to remain the same
across operations on the PGconn structure.

PQsocket

Obtains the file descriptor number of the connection socket to the server. A valid descriptor will be
greater than or equal to 0; a result of -1 indicates that no server connection is currently open. (This
will not change during normal operation, but could change during connection setup or reset.)

int PQsocket(const PGconn *conn);

PQbackendPID

Returns the process ID (PID) of the backend process handling this connection.

int PQbackendPID(const PGconn *conn);

The backend PID is useful for debugging purposes and for comparison to NOTIFY messages (which
include the PID of the notifying backend process). Note that the PID belongs to a process executing
on the database server host, not the local host!

PQconnectionNeedsPassword

Returns true (1) if the connection authentication method required a password, but none was available.
Returns false (0) if not.

int PQconnectionNeedsPassword(const PGconn *conn);

This function can be applied after a failed connection attempt to decide whether to prompt the user
for a password.

PQconnectionUsedPassword

Returns true (1) if the connection authentication method used a password. Returns false (0) if not.

int PQconnectionUsedPassword(const PGconn *conn);

This function can be applied after either a failed or successful connection attempt to detect whether
the server demanded a password.

The following functions return information related to SSL. This information usually doesn't change after
a connection is established.

826

libpq - C Library

PQsslInUse

Returns true (1) if the connection uses SSL, false (0) if not.

int PQsslInUse(const PGconn *conn);

PQsslAttribute

Returns SSL-related information about the connection.

const char *PQsslAttribute(const PGconn *conn, const char
 *attribute_name);

The list of available attributes varies depending on the SSL library being used, and the type of
connection. If an attribute is not available, returns NULL.

The following attributes are commonly available:

library

Name of the SSL implementation in use. (Currently, only "OpenSSL" is implemented)

protocol

SSL/TLS version in use. Common values are "TLSv1", "TLSv1.1" and "TLSv1.2", but an
implementation may return other strings if some other protocol is used.

key_bits

Number of key bits used by the encryption algorithm.

cipher

A short name of the ciphersuite used, e.g. "DHE-RSA-DES-CBC3-SHA". The names are
specific to each SSL implementation.

compression

If SSL compression is in use, returns the name of the compression algorithm, or "on" if
compression is used but the algorithm is not known. If compression is not in use, returns "off".

PQsslAttributeNames

Return an array of SSL attribute names available. The array is terminated by a NULL pointer.

const char * const * PQsslAttributeNames(const PGconn *conn);

PQsslStruct

Return a pointer to an SSL-implementation-specific object describing the connection.

void *PQsslStruct(const PGconn *conn, const char *struct_name);

827

libpq - C Library

The struct(s) available depend on the SSL implementation in use. For OpenSSL, there is one struct,
available under the name "OpenSSL", and it returns a pointer to the OpenSSL SSL struct. To use this
function, code along the following lines could be used:

#include <libpq-fe.h>
#include <openssl/ssl.h>

...

 SSL *ssl;

 dbconn = PQconnectdb(...);
 ...

 ssl = PQsslStruct(dbconn, "OpenSSL");
 if (ssl)
 {
 /* use OpenSSL functions to access ssl */
 }

This structure can be used to verify encryption levels, check server certificates, and more. Refer to
the OpenSSL documentation for information about this structure.

PQgetssl

 Returns the SSL structure used in the connection, or null if SSL is not in use.

void *PQgetssl(const PGconn *conn);

This function is equivalent to PQsslStruct(conn, "OpenSSL"). It should not be used in new
applications, because the returned struct is specific to OpenSSL and will not be available if another
SSL implementation is used. To check if a connection uses SSL, call PQsslInUse instead, and for
more details about the connection, use PQsslAttribute.

34.3. Command Execution Functions
Once a connection to a database server has been successfully established, the functions described here are
used to perform SQL queries and commands.

34.3.1. Main Functions
PQexec

Submits a command to the server and waits for the result.

PGresult *PQexec(PGconn *conn, const char *command);

Returns a PGresult pointer or possibly a null pointer. A non-null pointer will generally be returned
except in out-of-memory conditions or serious errors such as inability to send the command to the
server. The PQresultStatus function should be called to check the return value for any errors
(including the value of a null pointer, in which case it will return PGRES_FATAL_ERROR). Use
PQerrorMessage to get more information about such errors.

828

libpq - C Library

The command string can include multiple SQL commands (separated by semicolons). Multiple queries
sent in a single PQexec call are processed in a single transaction, unless there are explicit BEGIN/COMMIT
commands included in the query string to divide it into multiple transactions. (See Section 53.2.2.1 for
more details about how the server handles multi-query strings.) Note however that the returned PGresult
structure describes only the result of the last command executed from the string. Should one of the
commands fail, processing of the string stops with it and the returned PGresult describes the error
condition.

PQexecParams

Submits a command to the server and waits for the result, with the ability to pass parameters separately
from the SQL command text.

PGresult *PQexecParams(PGconn *conn,
 const char *command,
 int nParams,
 const Oid *paramTypes,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

PQexecParams is like PQexec, but offers additional functionality: parameter values can be
specified separately from the command string proper, and query results can be requested in either text
or binary format. PQexecParams is supported only in protocol 3.0 and later connections; it will
fail when using protocol 2.0.

The function arguments are:

conn

The connection object to send the command through.

command

The SQL command string to be executed. If parameters are used, they are referred to in the
command string as $1, $2, etc.

nParams

The number of parameters supplied; it is the length of the arrays paramTypes[],
paramValues[], paramLengths[], and paramFormats[]. (The array pointers can be
NULL when nParams is zero.)

paramTypes[]

Specifies, by OID, the data types to be assigned to the parameter symbols. If paramTypes is
NULL, or any particular element in the array is zero, the server infers a data type for the parameter
symbol in the same way it would do for an untyped literal string.

paramValues[]

Specifies the actual values of the parameters. A null pointer in this array means the corresponding
parameter is null; otherwise the pointer points to a zero-terminated text string (for text format) or
binary data in the format expected by the server (for binary format).

829

libpq - C Library

paramLengths[]

Specifies the actual data lengths of binary-format parameters. It is ignored for null parameters
and text-format parameters. The array pointer can be null when there are no binary parameters.

paramFormats[]

Specifies whether parameters are text (put a zero in the array entry for the corresponding
parameter) or binary (put a one in the array entry for the corresponding parameter). If the array
pointer is null then all parameters are presumed to be text strings.

Values passed in binary format require knowledge of the internal representation expected
by the backend. For example, integers must be passed in network byte order. Passing
numeric values requires knowledge of the server storage format, as implemented in src/
backend/utils/adt/numeric.c::numeric_send() and src/backend/utils/
adt/numeric.c::numeric_recv().

resultFormat

Specify zero to obtain results in text format, or one to obtain results in binary format. (There is
not currently a provision to obtain different result columns in different formats, although that is
possible in the underlying protocol.)

The primary advantage of PQexecParams over PQexec is that parameter values can be separated from
the command string, thus avoiding the need for tedious and error-prone quoting and escaping.

Unlike PQexec, PQexecParams allows at most one SQL command in the given string. (There can
be semicolons in it, but not more than one nonempty command.) This is a limitation of the underlying
protocol, but has some usefulness as an extra defense against SQL-injection attacks.

Tip

Specifying parameter types via OIDs is tedious, particularly if you prefer not to hard-wire particular
OID values into your program. However, you can avoid doing so even in cases where the server
by itself cannot determine the type of the parameter, or chooses a different type than you want.
In the SQL command text, attach an explicit cast to the parameter symbol to show what data type
you will send. For example:

SELECT * FROM mytable WHERE x = $1::bigint;

This forces parameter $1 to be treated as bigint, whereas by default it would be assigned the
same type as x. Forcing the parameter type decision, either this way or by specifying a numeric
type OID, is strongly recommended when sending parameter values in binary format, because
binary format has less redundancy than text format and so there is less chance that the server will
detect a type mismatch mistake for you.

PQprepare

Submits a request to create a prepared statement with the given parameters, and waits for completion.

PGresult *PQprepare(PGconn *conn,
 const char *stmtName,

830

libpq - C Library

 const char *query,
 int nParams,
 const Oid *paramTypes);

PQprepare creates a prepared statement for later execution with PQexecPrepared. This feature
allows commands to be executed repeatedly without being parsed and planned each time; see
PREPARE for details. PQprepare is supported only in protocol 3.0 and later connections; it will
fail when using protocol 2.0.

The function creates a prepared statement named stmtName from the query string, which must
contain a single SQL command. stmtName can be "" to create an unnamed statement, in which case
any pre-existing unnamed statement is automatically replaced; otherwise it is an error if the statement
name is already defined in the current session. If any parameters are used, they are referred to in the
query as $1, $2, etc. nParams is the number of parameters for which types are pre-specified in the
array paramTypes[]. (The array pointer can be NULL when nParams is zero.) paramTypes[]
specifies, by OID, the data types to be assigned to the parameter symbols. If paramTypes is NULL,
or any particular element in the array is zero, the server assigns a data type to the parameter symbol
in the same way it would do for an untyped literal string. Also, the query can use parameter symbols
with numbers higher than nParams; data types will be inferred for these symbols as well. (See
PQdescribePrepared for a means to find out what data types were inferred.)

As with PQexec, the result is normally a PGresult object whose contents indicate server-side
success or failure. A null result indicates out-of-memory or inability to send the command at all. Use
PQerrorMessage to get more information about such errors.

Prepared statements for use with PQexecPrepared can also be created by executing SQL PREPARE
statements. Also, although there is no libpq function for deleting a prepared statement, the SQL
DEALLOCATE statement can be used for that purpose.

PQexecPrepared

Sends a request to execute a prepared statement with given parameters, and waits for the result.

PGresult *PQexecPrepared(PGconn *conn,
 const char *stmtName,
 int nParams,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

PQexecPrepared is like PQexecParams, but the command to be executed is specified by naming
a previously-prepared statement, instead of giving a query string. This feature allows commands that
will be used repeatedly to be parsed and planned just once, rather than each time they are executed.
The statement must have been prepared previously in the current session. PQexecPrepared is
supported only in protocol 3.0 and later connections; it will fail when using protocol 2.0.

The parameters are identical to PQexecParams, except that the name of a prepared statement is
given instead of a query string, and the paramTypes[] parameter is not present (it is not needed
since the prepared statement's parameter types were determined when it was created).

PQdescribePrepared

Submits a request to obtain information about the specified prepared statement, and waits for
completion.

831

libpq - C Library

PGresult *PQdescribePrepared(PGconn *conn, const char *stmtName);

PQdescribePrepared allows an application to obtain information about a previously prepared
statement. PQdescribePrepared is supported only in protocol 3.0 and later connections; it will
fail when using protocol 2.0.

stmtName can be "" or NULL to reference the unnamed statement, otherwise it must be the name
of an existing prepared statement. On success, a PGresult with status PGRES_COMMAND_OK
is returned. The functions PQnparams and PQparamtype can be applied to this PGresult to
obtain information about the parameters of the prepared statement, and the functions PQnfields,
PQfname, PQftype, etc provide information about the result columns (if any) of the statement.

PQdescribePortal

Submits a request to obtain information about the specified portal, and waits for completion.

PGresult *PQdescribePortal(PGconn *conn, const char *portalName);

PQdescribePortal allows an application to obtain information about a previously created portal.
(libpq does not provide any direct access to portals, but you can use this function to inspect the
properties of a cursor created with a DECLARE CURSOR SQL command.) PQdescribePortal
is supported only in protocol 3.0 and later connections; it will fail when using protocol 2.0.

portalName can be "" or NULL to reference the unnamed portal, otherwise it must be the name
of an existing portal. On success, a PGresult with status PGRES_COMMAND_OK is returned.
The functions PQnfields, PQfname, PQftype, etc can be applied to the PGresult to obtain
information about the result columns (if any) of the portal.

The PGresult structure encapsulates the result returned by the server. libpq application programmers
should be careful to maintain the PGresult abstraction. Use the accessor functions below to get at the
contents of PGresult. Avoid directly referencing the fields of the PGresult structure because they
are subject to change in the future.

PQresultStatus

Returns the result status of the command.

ExecStatusType PQresultStatus(const PGresult *res);

PQresultStatus can return one of the following values:

PGRES_EMPTY_QUERY

The string sent to the server was empty.

PGRES_COMMAND_OK

Successful completion of a command returning no data.

PGRES_TUPLES_OK

Successful completion of a command returning data (such as a SELECT or SHOW).

PGRES_COPY_OUT

Copy Out (from server) data transfer started.

832

libpq - C Library

PGRES_COPY_IN

Copy In (to server) data transfer started.

PGRES_BAD_RESPONSE

The server's response was not understood.

PGRES_NONFATAL_ERROR

A nonfatal error (a notice or warning) occurred.

PGRES_FATAL_ERROR

A fatal error occurred.

PGRES_COPY_BOTH

Copy In/Out (to and from server) data transfer started. This feature is currently used only for
streaming replication, so this status should not occur in ordinary applications.

PGRES_SINGLE_TUPLE

The PGresult contains a single result tuple from the current command. This status occurs only
when single-row mode has been selected for the query (see Section 34.5).

If the result status is PGRES_TUPLES_OK or PGRES_SINGLE_TUPLE, then the functions
described below can be used to retrieve the rows returned by the query. Note that a SELECT command
that happens to retrieve zero rows still shows PGRES_TUPLES_OK. PGRES_COMMAND_OK is for
commands that can never return rows (INSERT or UPDATE without a RETURNING clause, etc.). A
response of PGRES_EMPTY_QUERY might indicate a bug in the client software.

A result of status PGRES_NONFATAL_ERROR will never be returned directly by PQexec or
other query execution functions; results of this kind are instead passed to the notice processor (see
Section 34.12).

PQresStatus

Converts the enumerated type returned by PQresultStatus into a string constant describing the
status code. The caller should not free the result.

char *PQresStatus(ExecStatusType status);

PQresultErrorMessage

Returns the error message associated with the command, or an empty string if there was no error.

char *PQresultErrorMessage(const PGresult *res);

If there was an error, the returned string will include a trailing newline. The caller should not free the
result directly. It will be freed when the associated PGresult handle is passed to PQclear.

Immediately following a PQexec or PQgetResult call, PQerrorMessage (on the connection)
will return the same string as PQresultErrorMessage (on the result). However, a PGresult
will retain its error message until destroyed, whereas the connection's error message will change when
subsequent operations are done. Use PQresultErrorMessage when you want to know the status

833

libpq - C Library

associated with a particular PGresult; use PQerrorMessage when you want to know the status
from the latest operation on the connection.

PQresultVerboseErrorMessage

Returns a reformatted version of the error message associated with a PGresult object.

char *PQresultVerboseErrorMessage(const PGresult *res,
 PGVerbosity verbosity,
 PGContextVisibility
 show_context);

In some situations a client might wish to obtain a more detailed version of a previously-reported error.
PQresultVerboseErrorMessage addresses this need by computing the message that would
have been produced by PQresultErrorMessage if the specified verbosity settings had been in
effect for the connection when the given PGresult was generated. If the PGresult is not an error
result, “PGresult is not an error result” is reported instead. The returned string includes a trailing
newline.

Unlike most other functions for extracting data from a PGresult, the result of this function is a
freshly allocated string. The caller must free it using PQfreemem() when the string is no longer
needed.

A NULL return is possible if there is insufficient memory.

PQresultErrorField

Returns an individual field of an error report.

char *PQresultErrorField(const PGresult *res, int fieldcode);

fieldcode is an error field identifier; see the symbols listed below. NULL is returned if the
PGresult is not an error or warning result, or does not include the specified field. Field values will
normally not include a trailing newline. The caller should not free the result directly. It will be freed
when the associated PGresult handle is passed to PQclear.

The following field codes are available:

PG_DIAG_SEVERITY

The severity; the field contents are ERROR, FATAL, or PANIC (in an error message), or
WARNING, NOTICE, DEBUG, INFO, or LOG (in a notice message), or a localized translation of
one of these. Always present.

PG_DIAG_SEVERITY_NONLOCALIZED

The severity; the field contents are ERROR, FATAL, or PANIC (in an error message), or
WARNING, NOTICE, DEBUG, INFO, or LOG (in a notice message). This is identical to the
PG_DIAG_SEVERITY field except that the contents are never localized. This is present only in
reports generated by PostgreSQL versions 9.6 and later.

PG_DIAG_SQLSTATE

The SQLSTATE code for the error. The SQLSTATE code identifies the type of error that has
occurred; it can be used by front-end applications to perform specific operations (such as error

834

libpq - C Library

handling) in response to a particular database error. For a list of the possible SQLSTATE codes,
see Appendix A. This field is not localizable, and is always present.

PG_DIAG_MESSAGE_PRIMARY

The primary human-readable error message (typically one line). Always present.

PG_DIAG_MESSAGE_DETAIL

Detail: an optional secondary error message carrying more detail about the problem. Might run
to multiple lines.

PG_DIAG_MESSAGE_HINT

Hint: an optional suggestion what to do about the problem. This is intended to differ from detail in
that it offers advice (potentially inappropriate) rather than hard facts. Might run to multiple lines.

PG_DIAG_STATEMENT_POSITION

A string containing a decimal integer indicating an error cursor position as an index into the
original statement string. The first character has index 1, and positions are measured in characters
not bytes.

PG_DIAG_INTERNAL_POSITION

This is defined the same as the PG_DIAG_STATEMENT_POSITION field, but it is used when
the cursor position refers to an internally generated command rather than the one submitted by
the client. The PG_DIAG_INTERNAL_QUERY field will always appear when this field appears.

PG_DIAG_INTERNAL_QUERY

The text of a failed internally-generated command. This could be, for example, a SQL query
issued by a PL/pgSQL function.

PG_DIAG_CONTEXT

An indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The trace is
one entry per line, most recent first.

PG_DIAG_SCHEMA_NAME

If the error was associated with a specific database object, the name of the schema containing
that object, if any.

PG_DIAG_TABLE_NAME

If the error was associated with a specific table, the name of the table. (Refer to the schema name
field for the name of the table's schema.)

PG_DIAG_COLUMN_NAME

If the error was associated with a specific table column, the name of the column. (Refer to the
schema and table name fields to identify the table.)

PG_DIAG_DATATYPE_NAME

If the error was associated with a specific data type, the name of the data type. (Refer to the
schema name field for the name of the data type's schema.)

835

libpq - C Library

PG_DIAG_CONSTRAINT_NAME

If the error was associated with a specific constraint, the name of the constraint. Refer to
fields listed above for the associated table or domain. (For this purpose, indexes are treated as
constraints, even if they weren't created with constraint syntax.)

PG_DIAG_SOURCE_FILE

The file name of the source-code location where the error was reported.

PG_DIAG_SOURCE_LINE

The line number of the source-code location where the error was reported.

PG_DIAG_SOURCE_FUNCTION

The name of the source-code function reporting the error.

Note

The fields for schema name, table name, column name, data type name, and constraint name
are supplied only for a limited number of error types; see Appendix A. Do not assume that
the presence of any of these fields guarantees the presence of another field. Core error sources
observe the interrelationships noted above, but user-defined functions may use these fields in
other ways. In the same vein, do not assume that these fields denote contemporary objects in
the current database.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be treated
as paragraph breaks, not line breaks.

Errors generated internally by libpq will have severity and primary message, but typically no other
fields. Errors returned by a pre-3.0-protocol server will include severity and primary message, and
sometimes a detail message, but no other fields.

Note that error fields are only available from PGresult objects, not PGconn objects; there is no
PQerrorField function.

PQclear

Frees the storage associated with a PGresult. Every command result should be freed via PQclear
when it is no longer needed.

void PQclear(PGresult *res);

You can keep a PGresult object around for as long as you need it; it does not go away when you
issue a new command, nor even if you close the connection. To get rid of it, you must call PQclear.
Failure to do this will result in memory leaks in your application.

34.3.2. Retrieving Query Result Information
These functions are used to extract information from a PGresult object that represents a successful
query result (that is, one that has status PGRES_TUPLES_OK or PGRES_SINGLE_TUPLE). They can

836

libpq - C Library

also be used to extract information from a successful Describe operation: a Describe's result has all the
same column information that actual execution of the query would provide, but it has zero rows. For objects
with other status values, these functions will act as though the result has zero rows and zero columns.

PQntuples

Returns the number of rows (tuples) in the query result. (Note that PGresult objects are limited to
no more than INT_MAX rows, so an int result is sufficient.)

int PQntuples(const PGresult *res);

PQnfields

Returns the number of columns (fields) in each row of the query result.

int PQnfields(const PGresult *res);

PQfname

Returns the column name associated with the given column number. Column numbers start at 0. The
caller should not free the result directly. It will be freed when the associated PGresult handle is
passed to PQclear.

char *PQfname(const PGresult *res,
 int column_number);

NULL is returned if the column number is out of range.

PQfnumber

Returns the column number associated with the given column name.

int PQfnumber(const PGresult *res,
 const char *column_name);

-1 is returned if the given name does not match any column.

The given name is treated like an identifier in an SQL command, that is, it is downcased unless double-
quoted. For example, given a query result generated from the SQL command:

SELECT 1 AS FOO, 2 AS "BAR";

we would have the results:

PQfname(res, 0) foo
PQfname(res, 1) BAR
PQfnumber(res, "FOO") 0
PQfnumber(res, "foo") 0
PQfnumber(res, "BAR") -1
PQfnumber(res, "\"BAR\"") 1

837

libpq - C Library

PQftable

Returns the OID of the table from which the given column was fetched. Column numbers start at 0.

Oid PQftable(const PGresult *res,
 int column_number);

InvalidOid is returned if the column number is out of range, or if the specified column is not a
simple reference to a table column, or when using pre-3.0 protocol. You can query the system table
pg_class to determine exactly which table is referenced.

The type Oid and the constant InvalidOid will be defined when you include the libpq header file.
They will both be some integer type.

PQftablecol

Returns the column number (within its table) of the column making up the specified query result
column. Query-result column numbers start at 0, but table columns have nonzero numbers.

int PQftablecol(const PGresult *res,
 int column_number);

Zero is returned if the column number is out of range, or if the specified column is not a simple
reference to a table column, or when using pre-3.0 protocol.

PQfformat

Returns the format code indicating the format of the given column. Column numbers start at 0.

int PQfformat(const PGresult *res,
 int column_number);

Format code zero indicates textual data representation, while format code one indicates binary
representation. (Other codes are reserved for future definition.)

PQftype

Returns the data type associated with the given column number. The integer returned is the internal
OID number of the type. Column numbers start at 0.

Oid PQftype(const PGresult *res,
 int column_number);

You can query the system table pg_type to obtain the names and properties of the various data
types. The OIDs of the built-in data types are defined in the file src/include/catalog/
pg_type_d.h in the source tree.

PQfmod

Returns the type modifier of the column associated with the given column number. Column numbers
start at 0.

int PQfmod(const PGresult *res,

838

libpq - C Library

 int column_number);

The interpretation of modifier values is type-specific; they typically indicate precision or size limits.
The value -1 is used to indicate “no information available”. Most data types do not use modifiers, in
which case the value is always -1.

PQfsize

Returns the size in bytes of the column associated with the given column number. Column numbers
start at 0.

int PQfsize(const PGresult *res,
 int column_number);

PQfsize returns the space allocated for this column in a database row, in other words the size of the
server's internal representation of the data type. (Accordingly, it is not really very useful to clients.)
A negative value indicates the data type is variable-length.

PQbinaryTuples

Returns 1 if the PGresult contains binary data and 0 if it contains text data.

int PQbinaryTuples(const PGresult *res);

This function is deprecated (except for its use in connection with COPY), because it is possible for
a single PGresult to contain text data in some columns and binary data in others. PQfformat is
preferred. PQbinaryTuples returns 1 only if all columns of the result are binary (format 1).

PQgetvalue

Returns a single field value of one row of a PGresult. Row and column numbers start at 0. The
caller should not free the result directly. It will be freed when the associated PGresult handle is
passed to PQclear.

char *PQgetvalue(const PGresult *res,
 int row_number,
 int column_number);

For data in text format, the value returned by PQgetvalue is a null-terminated character string
representation of the field value. For data in binary format, the value is in the binary representation
determined by the data type's typsend and typreceive functions. (The value is actually followed
by a zero byte in this case too, but that is not ordinarily useful, since the value is likely to contain
embedded nulls.)

An empty string is returned if the field value is null. See PQgetisnull to distinguish null values
from empty-string values.

The pointer returned by PQgetvalue points to storage that is part of the PGresult structure. One
should not modify the data it points to, and one must explicitly copy the data into other storage if it
is to be used past the lifetime of the PGresult structure itself.

PQgetisnull

Tests a field for a null value. Row and column numbers start at 0.

839

libpq - C Library

int PQgetisnull(const PGresult *res,
 int row_number,
 int column_number);

This function returns 1 if the field is null and 0 if it contains a non-null value. (Note that PQgetvalue
will return an empty string, not a null pointer, for a null field.)

PQgetlength

Returns the actual length of a field value in bytes. Row and column numbers start at 0.

int PQgetlength(const PGresult *res,
 int row_number,
 int column_number);

This is the actual data length for the particular data value, that is, the size of the object pointed to by
PQgetvalue. For text data format this is the same as strlen(). For binary format this is essential
information. Note that one should not rely on PQfsize to obtain the actual data length.

PQnparams

Returns the number of parameters of a prepared statement.

int PQnparams(const PGresult *res);

This function is only useful when inspecting the result of PQdescribePrepared. For other types
of queries it will return zero.

PQparamtype

Returns the data type of the indicated statement parameter. Parameter numbers start at 0.

Oid PQparamtype(const PGresult *res, int param_number);

This function is only useful when inspecting the result of PQdescribePrepared. For other types
of queries it will return zero.

PQprint

Prints out all the rows and, optionally, the column names to the specified output stream.

void PQprint(FILE *fout, /* output stream */
 const PGresult *res,
 const PQprintOpt *po);
typedef struct
{
 pqbool header; /* print output field headings and row
 count */
 pqbool align; /* fill align the fields */
 pqbool standard; /* old brain dead format */
 pqbool html3; /* output HTML tables */
 pqbool expanded; /* expand tables */
 pqbool pager; /* use pager for output if needed */

840

libpq - C Library

 char *fieldSep; /* field separator */
 char *tableOpt; /* attributes for HTML table element */
 char *caption; /* HTML table caption */
 char **fieldName; /* null-terminated array of replacement
 field names */
} PQprintOpt;

This function was formerly used by psql to print query results, but this is no longer the case. Note
that it assumes all the data is in text format.

34.3.3. Retrieving Other Result Information
These functions are used to extract other information from PGresult objects.

PQcmdStatus

Returns the command status tag from the SQL command that generated the PGresult.

char *PQcmdStatus(PGresult *res);

Commonly this is just the name of the command, but it might include additional data such as the
number of rows processed. The caller should not free the result directly. It will be freed when the
associated PGresult handle is passed to PQclear.

PQcmdTuples

Returns the number of rows affected by the SQL command.

char *PQcmdTuples(PGresult *res);

This function returns a string containing the number of rows affected by the SQL statement that
generated the PGresult. This function can only be used following the execution of a SELECT,
CREATE TABLE AS, INSERT, UPDATE, DELETE, MOVE, FETCH, or COPY statement, or an
EXECUTE of a prepared query that contains an INSERT, UPDATE, or DELETE statement. If the
command that generated the PGresult was anything else, PQcmdTuples returns an empty string.
The caller should not free the return value directly. It will be freed when the associated PGresult
handle is passed to PQclear.

PQoidValue

Returns the OID of the inserted row, if the SQL command was an INSERT that inserted exactly
one row into a table that has OIDs, or a EXECUTE of a prepared query containing a suitable
INSERT statement. Otherwise, this function returns InvalidOid. This function will also return
InvalidOid if the table affected by the INSERT statement does not contain OIDs.

Oid PQoidValue(const PGresult *res);

PQoidStatus

This function is deprecated in favor of PQoidValue and is not thread-safe. It returns a string with
the OID of the inserted row, while PQoidValue returns the OID value.

char *PQoidStatus(const PGresult *res);

841

libpq - C Library

34.3.4. Escaping Strings for Inclusion in SQL Commands
PQescapeLiteral

char *PQescapeLiteral(PGconn *conn, const char *str, size_t
 length);

PQescapeLiteral escapes a string for use within an SQL command. This is useful when
inserting data values as literal constants in SQL commands. Certain characters (such as quotes and
backslashes) must be escaped to prevent them from being interpreted specially by the SQL parser.
PQescapeLiteral performs this operation.

PQescapeLiteral returns an escaped version of the str parameter in memory allocated with
malloc(). This memory should be freed using PQfreemem() when the result is no longer needed.
A terminating zero byte is not required, and should not be counted in length. (If a terminating
zero byte is found before length bytes are processed, PQescapeLiteral stops at the zero; the
behavior is thus rather like strncpy.) The return string has all special characters replaced so that
they can be properly processed by the PostgreSQL string literal parser. A terminating zero byte is also
added. The single quotes that must surround PostgreSQL string literals are included in the result string.

On error, PQescapeLiteral returns NULL and a suitable message is stored in the conn object.

Tip

It is especially important to do proper escaping when handling strings that were received
from an untrustworthy source. Otherwise there is a security risk: you are vulnerable to “SQL
injection” attacks wherein unwanted SQL commands are fed to your database.

Note that it is not necessary nor correct to do escaping when a data value is passed as a separate
parameter in PQexecParams or its sibling routines.

PQescapeIdentifier

char *PQescapeIdentifier(PGconn *conn, const char *str, size_t
 length);

PQescapeIdentifier escapes a string for use as an SQL identifier, such as a table, column, or
function name. This is useful when a user-supplied identifier might contain special characters that
would otherwise not be interpreted as part of the identifier by the SQL parser, or when the identifier
might contain upper case characters whose case should be preserved.

PQescapeIdentifier returns a version of the str parameter escaped as an SQL identifier
in memory allocated with malloc(). This memory must be freed using PQfreemem() when
the result is no longer needed. A terminating zero byte is not required, and should not be
counted in length. (If a terminating zero byte is found before length bytes are processed,
PQescapeIdentifier stops at the zero; the behavior is thus rather like strncpy.) The return
string has all special characters replaced so that it will be properly processed as an SQL identifier. A
terminating zero byte is also added. The return string will also be surrounded by double quotes.

On error, PQescapeIdentifier returns NULL and a suitable message is stored in the conn
object.

842

libpq - C Library

Tip

As with string literals, to prevent SQL injection attacks, SQL identifiers must be escaped when
they are received from an untrustworthy source.

PQescapeStringConn

size_t PQescapeStringConn(PGconn *conn,
 char *to, const char *from, size_t
 length,
 int *error);

PQescapeStringConn escapes string literals, much like PQescapeLiteral. Unlike
PQescapeLiteral, the caller is responsible for providing an appropriately sized buffer.
Furthermore, PQescapeStringConn does not generate the single quotes that must surround
PostgreSQL string literals; they should be provided in the SQL command that the result is inserted into.
The parameter from points to the first character of the string that is to be escaped, and the length
parameter gives the number of bytes in this string. A terminating zero byte is not required, and should
not be counted in length. (If a terminating zero byte is found before length bytes are processed,
PQescapeStringConn stops at the zero; the behavior is thus rather like strncpy.) to shall point
to a buffer that is able to hold at least one more byte than twice the value of length, otherwise the
behavior is undefined. Behavior is likewise undefined if the to and from strings overlap.

If the error parameter is not NULL, then *error is set to zero on success, nonzero on error.
Presently the only possible error conditions involve invalid multibyte encoding in the source string.
The output string is still generated on error, but it can be expected that the server will reject it as
malformed. On error, a suitable message is stored in the conn object, whether or not error is NULL.

PQescapeStringConn returns the number of bytes written to to, not including the terminating
zero byte.

PQescapeString

PQescapeString is an older, deprecated version of PQescapeStringConn.

size_t PQescapeString (char *to, const char *from, size_t length);

The only difference from PQescapeStringConn is that PQescapeString does not take
PGconn or error parameters. Because of this, it cannot adjust its behavior depending on the
connection properties (such as character encoding) and therefore it might give the wrong results. Also,
it has no way to report error conditions.

PQescapeString can be used safely in client programs that work with only one PostgreSQL
connection at a time (in this case it can find out what it needs to know “behind the scenes”). In other
contexts it is a security hazard and should be avoided in favor of PQescapeStringConn.

PQescapeByteaConn

Escapes binary data for use within an SQL command with the type bytea. As with
PQescapeStringConn, this is only used when inserting data directly into an SQL command string.

843

libpq - C Library

unsigned char *PQescapeByteaConn(PGconn *conn,
 const unsigned char *from,
 size_t from_length,
 size_t *to_length);

Certain byte values must be escaped when used as part of a bytea literal in an SQL statement.
PQescapeByteaConn escapes bytes using either hex encoding or backslash escaping. See
Section 8.4 for more information.

The from parameter points to the first byte of the string that is to be escaped, and the from_length
parameter gives the number of bytes in this binary string. (A terminating zero byte is neither necessary
nor counted.) The to_length parameter points to a variable that will hold the resultant escaped
string length. This result string length includes the terminating zero byte of the result.

PQescapeByteaConn returns an escaped version of the from parameter binary string in memory
allocated with malloc(). This memory should be freed using PQfreemem() when the result is
no longer needed. The return string has all special characters replaced so that they can be properly
processed by the PostgreSQL string literal parser, and the bytea input function. A terminating zero
byte is also added. The single quotes that must surround PostgreSQL string literals are not part of
the result string.

On error, a null pointer is returned, and a suitable error message is stored in the conn object. Currently,
the only possible error is insufficient memory for the result string.

PQescapeBytea

PQescapeBytea is an older, deprecated version of PQescapeByteaConn.

unsigned char *PQescapeBytea(const unsigned char *from,
 size_t from_length,
 size_t *to_length);

The only difference from PQescapeByteaConn is that PQescapeBytea does not take a
PGconn parameter. Because of this, PQescapeBytea can only be used safely in client programs
that use a single PostgreSQL connection at a time (in this case it can find out what it needs to know
“behind the scenes”). It might give the wrong results if used in programs that use multiple database
connections (use PQescapeByteaConn in such cases).

PQunescapeBytea

Converts a string representation of binary data into binary data — the reverse of PQescapeBytea.
This is needed when retrieving bytea data in text format, but not when retrieving it in binary format.

unsigned char *PQunescapeBytea(const unsigned char *from, size_t
 *to_length);

The from parameter points to a string such as might be returned by PQgetvalue when applied
to a bytea column. PQunescapeBytea converts this string representation into its binary
representation. It returns a pointer to a buffer allocated with malloc(), or NULL on error, and puts
the size of the buffer in to_length. The result must be freed using PQfreemem when it is no
longer needed.

This conversion is not exactly the inverse of PQescapeBytea, because the string is not expected to
be “escaped” when received from PQgetvalue. In particular this means there is no need for string
quoting considerations, and so no need for a PGconn parameter.

844

libpq - C Library

34.4. Asynchronous Command Processing
The PQexec function is adequate for submitting commands in normal, synchronous applications. It has
a few deficiencies, however, that can be of importance to some users:

• PQexec waits for the command to be completed. The application might have other work to do (such
as maintaining a user interface), in which case it won't want to block waiting for the response.

• Since the execution of the client application is suspended while it waits for the result, it is hard for the
application to decide that it would like to try to cancel the ongoing command. (It can be done from a
signal handler, but not otherwise.)

• PQexec can return only one PGresult structure. If the submitted command string contains multiple
SQL commands, all but the last PGresult are discarded by PQexec.

• PQexec always collects the command's entire result, buffering it in a single PGresult. While this
simplifies error-handling logic for the application, it can be impractical for results containing many rows.

Applications that do not like these limitations can instead use the underlying
functions that PQexec is built from: PQsendQuery and PQgetResult.
There are also PQsendQueryParams, PQsendPrepare, PQsendQueryPrepared,
PQsendDescribePrepared, and PQsendDescribePortal, which can be used with
PQgetResult to duplicate the functionality of PQexecParams, PQprepare, PQexecPrepared,
PQdescribePrepared, and PQdescribePortal respectively.

PQsendQuery

Submits a command to the server without waiting for the result(s). 1 is returned if the command was
successfully dispatched and 0 if not (in which case, use PQerrorMessage to get more information
about the failure).

int PQsendQuery(PGconn *conn, const char *command);

After successfully calling PQsendQuery, call PQgetResult one or more times to obtain the
results. PQsendQuery cannot be called again (on the same connection) until PQgetResult has
returned a null pointer, indicating that the command is done.

PQsendQueryParams

Submits a command and separate parameters to the server without waiting for the result(s).

int PQsendQueryParams(PGconn *conn,
 const char *command,
 int nParams,
 const Oid *paramTypes,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

This is equivalent to PQsendQuery except that query parameters can be specified separately
from the query string. The function's parameters are handled identically to PQexecParams. Like

845

libpq - C Library

PQexecParams, it will not work on 2.0-protocol connections, and it allows only one command in
the query string.

PQsendPrepare

Sends a request to create a prepared statement with the given parameters, without waiting for
completion.

int PQsendPrepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

This is an asynchronous version of PQprepare: it returns 1 if it was able to dispatch the request,
and 0 if not. After a successful call, call PQgetResult to determine whether the server successfully
created the prepared statement. The function's parameters are handled identically to PQprepare.
Like PQprepare, it will not work on 2.0-protocol connections.

PQsendQueryPrepared

Sends a request to execute a prepared statement with given parameters, without waiting for the
result(s).

int PQsendQueryPrepared(PGconn *conn,
 const char *stmtName,
 int nParams,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

This is similar to PQsendQueryParams, but the command to be executed is specified by naming
a previously-prepared statement, instead of giving a query string. The function's parameters are
handled identically to PQexecPrepared. Like PQexecPrepared, it will not work on 2.0-
protocol connections.

PQsendDescribePrepared

Submits a request to obtain information about the specified prepared statement, without waiting for
completion.

int PQsendDescribePrepared(PGconn *conn, const char *stmtName);

This is an asynchronous version of PQdescribePrepared: it returns 1 if it was able to dispatch the
request, and 0 if not. After a successful call, call PQgetResult to obtain the results. The function's
parameters are handled identically to PQdescribePrepared. Like PQdescribePrepared, it
will not work on 2.0-protocol connections.

PQsendDescribePortal

Submits a request to obtain information about the specified portal, without waiting for completion.

846

libpq - C Library

int PQsendDescribePortal(PGconn *conn, const char *portalName);

This is an asynchronous version of PQdescribePortal: it returns 1 if it was able to dispatch the
request, and 0 if not. After a successful call, call PQgetResult to obtain the results. The function's
parameters are handled identically to PQdescribePortal. Like PQdescribePortal, it will
not work on 2.0-protocol connections.

PQgetResult

Waits for the next result from a prior PQsendQuery, PQsendQueryParams, PQsendPrepare,
PQsendQueryPrepared, PQsendDescribePrepared, or PQsendDescribePortal
call, and returns it. A null pointer is returned when the command is complete and there will be no
more results.

PGresult *PQgetResult(PGconn *conn);

PQgetResult must be called repeatedly until it returns a null pointer, indicating that the command
is done. (If called when no command is active, PQgetResult will just return a null pointer at once.)
Each non-null result from PQgetResult should be processed using the same PGresult accessor
functions previously described. Don't forget to free each result object with PQclear when done with
it. Note that PQgetResult will block only if a command is active and the necessary response data
has not yet been read by PQconsumeInput.

Note

Even when PQresultStatus indicates a fatal error, PQgetResult should be called until
it returns a null pointer, to allow libpq to process the error information completely.

Using PQsendQuery and PQgetResult solves one of PQexec's problems: If a command string
contains multiple SQL commands, the results of those commands can be obtained individually. (This
allows a simple form of overlapped processing, by the way: the client can be handling the results of one
command while the server is still working on later queries in the same command string.)

Another frequently-desired feature that can be obtained with PQsendQuery and PQgetResult is
retrieving large query results a row at a time. This is discussed in Section 34.5.

By itself, calling PQgetResult will still cause the client to block until the server completes the next
SQL command. This can be avoided by proper use of two more functions:

PQconsumeInput

If input is available from the server, consume it.

int PQconsumeInput(PGconn *conn);

PQconsumeInput normally returns 1 indicating “no error”, but returns 0 if there was some kind
of trouble (in which case PQerrorMessage can be consulted). Note that the result does not say
whether any input data was actually collected. After calling PQconsumeInput, the application can
check PQisBusy and/or PQnotifies to see if their state has changed.

PQconsumeInput can be called even if the application is not prepared to deal with a result or
notification just yet. The function will read available data and save it in a buffer, thereby causing a

847

libpq - C Library

select() read-ready indication to go away. The application can thus use PQconsumeInput to
clear the select() condition immediately, and then examine the results at leisure.

PQisBusy

Returns 1 if a command is busy, that is, PQgetResult would block waiting for input. A 0 return
indicates that PQgetResult can be called with assurance of not blocking.

int PQisBusy(PGconn *conn);

PQisBusy will not itself attempt to read data from the server; therefore PQconsumeInput must
be invoked first, or the busy state will never end.

A typical application using these functions will have a main loop that uses select() or poll() to wait
for all the conditions that it must respond to. One of the conditions will be input available from the server,
which in terms of select() means readable data on the file descriptor identified by PQsocket. When
the main loop detects input ready, it should call PQconsumeInput to read the input. It can then call
PQisBusy, followed by PQgetResult if PQisBusy returns false (0). It can also call PQnotifies
to detect NOTIFY messages (see Section 34.8).

A client that uses PQsendQuery/PQgetResult can also attempt to cancel a command that is still being
processed by the server; see Section 34.6. But regardless of the return value of PQcancel, the application
must continue with the normal result-reading sequence using PQgetResult. A successful cancellation
will simply cause the command to terminate sooner than it would have otherwise.

By using the functions described above, it is possible to avoid blocking while waiting for input from the
database server. However, it is still possible that the application will block waiting to send output to the
server. This is relatively uncommon but can happen if very long SQL commands or data values are sent. (It
is much more probable if the application sends data via COPY IN, however.) To prevent this possibility
and achieve completely nonblocking database operation, the following additional functions can be used.

PQsetnonblocking

Sets the nonblocking status of the connection.

int PQsetnonblocking(PGconn *conn, int arg);

Sets the state of the connection to nonblocking if arg is 1, or blocking if arg is 0. Returns 0 if OK,
-1 if error.

In the nonblocking state, calls to PQsendQuery, PQputline, PQputnbytes,
PQputCopyData, and PQendcopy will not block but instead return an error if they need to be
called again.

Note that PQexec does not honor nonblocking mode; if it is called, it will act in blocking fashion
anyway.

PQisnonblocking

Returns the blocking status of the database connection.

int PQisnonblocking(const PGconn *conn);

Returns 1 if the connection is set to nonblocking mode and 0 if blocking.

848

libpq - C Library

PQflush

Attempts to flush any queued output data to the server. Returns 0 if successful (or if the send queue
is empty), -1 if it failed for some reason, or 1 if it was unable to send all the data in the send queue
yet (this case can only occur if the connection is nonblocking).

int PQflush(PGconn *conn);

After sending any command or data on a nonblocking connection, call PQflush. If it returns 1, wait for
the socket to become read- or write-ready. If it becomes write-ready, call PQflush again. If it becomes
read-ready, call PQconsumeInput, then call PQflush again. Repeat until PQflush returns 0. (It is
necessary to check for read-ready and drain the input with PQconsumeInput, because the server can
block trying to send us data, e.g. NOTICE messages, and won't read our data until we read its.) Once
PQflush returns 0, wait for the socket to be read-ready and then read the response as described above.

34.5. Retrieving Query Results Row-By-Row
Ordinarily, libpq collects a SQL command's entire result and returns it to the application as a single
PGresult. This can be unworkable for commands that return a large number of rows. For such cases,
applications can use PQsendQuery and PQgetResult in single-row mode. In this mode, the result
row(s) are returned to the application one at a time, as they are received from the server.

To enter single-row mode, call PQsetSingleRowMode immediately after a successful call of
PQsendQuery (or a sibling function). This mode selection is effective only for the currently executing
query. Then call PQgetResult repeatedly, until it returns null, as documented in Section 34.4. If the
query returns any rows, they are returned as individual PGresult objects, which look like normal
query results except for having status code PGRES_SINGLE_TUPLE instead of PGRES_TUPLES_OK.
After the last row, or immediately if the query returns zero rows, a zero-row object with status
PGRES_TUPLES_OK is returned; this is the signal that no more rows will arrive. (But note that it is still
necessary to continue calling PQgetResult until it returns null.) All of these PGresult objects will
contain the same row description data (column names, types, etc) that an ordinary PGresult object for
the query would have. Each object should be freed with PQclear as usual.

PQsetSingleRowMode

Select single-row mode for the currently-executing query.

int PQsetSingleRowMode(PGconn *conn);

This function can only be called immediately after PQsendQuery or one of its sibling functions,
before any other operation on the connection such as PQconsumeInput or PQgetResult. If
called at the correct time, the function activates single-row mode for the current query and returns
1. Otherwise the mode stays unchanged and the function returns 0. In any case, the mode reverts to
normal after completion of the current query.

Caution

While processing a query, the server may return some rows and then encounter an error,
causing the query to be aborted. Ordinarily, libpq discards any such rows and reports only the
error. But in single-row mode, those rows will have already been returned to the application.
Hence, the application will see some PGRES_SINGLE_TUPLE PGresult objects followed
by a PGRES_FATAL_ERROR object. For proper transactional behavior, the application must be

849

libpq - C Library

designed to discard or undo whatever has been done with the previously-processed rows, if the
query ultimately fails.

34.6. Canceling Queries in Progress
A client application can request cancellation of a command that is still being processed by the server, using
the functions described in this section.

PQgetCancel

Creates a data structure containing the information needed to cancel a command issued through a
particular database connection.

PGcancel *PQgetCancel(PGconn *conn);

PQgetCancel creates a PGcancel object given a PGconn connection object. It will return NULL
if the given conn is NULL or an invalid connection. The PGcancel object is an opaque structure
that is not meant to be accessed directly by the application; it can only be passed to PQcancel or
PQfreeCancel.

PQfreeCancel

Frees a data structure created by PQgetCancel.

void PQfreeCancel(PGcancel *cancel);

PQfreeCancel frees a data object previously created by PQgetCancel.

PQcancel

Requests that the server abandon processing of the current command.

int PQcancel(PGcancel *cancel, char *errbuf, int errbufsize);

The return value is 1 if the cancel request was successfully dispatched and 0 if not. If not, errbuf
is filled with an explanatory error message. errbuf must be a char array of size errbufsize (the
recommended size is 256 bytes).

Successful dispatch is no guarantee that the request will have any effect, however. If the cancellation
is effective, the current command will terminate early and return an error result. If the cancellation
fails (say, because the server was already done processing the command), then there will be no visible
result at all.

PQcancel can safely be invoked from a signal handler, if the errbuf is a local variable in the
signal handler. The PGcancel object is read-only as far as PQcancel is concerned, so it can also
be invoked from a thread that is separate from the one manipulating the PGconn object.

PQrequestCancel

PQrequestCancel is a deprecated variant of PQcancel.

850

libpq - C Library

int PQrequestCancel(PGconn *conn);

Requests that the server abandon processing of the current command. It operates directly on the
PGconn object, and in case of failure stores the error message in the PGconn object (whence it can
be retrieved by PQerrorMessage). Although the functionality is the same, this approach creates
hazards for multiple-thread programs and signal handlers, since it is possible that overwriting the
PGconn's error message will mess up the operation currently in progress on the connection.

34.7. The Fast-Path Interface
PostgreSQL provides a fast-path interface to send simple function calls to the server.

Tip

This interface is somewhat obsolete, as one can achieve similar performance and greater
functionality by setting up a prepared statement to define the function call. Then, executing the
statement with binary transmission of parameters and results substitutes for a fast-path function
call.

The function PQfn requests execution of a server function via the fast-path interface:

PGresult *PQfn(PGconn *conn,
 int fnid,
 int *result_buf,
 int *result_len,
 int result_is_int,
 const PQArgBlock *args,
 int nargs);

typedef struct
{
 int len;
 int isint;
 union
 {
 int *ptr;
 int integer;
 } u;
} PQArgBlock;

The fnid argument is the OID of the function to be executed. args and nargs define the parameters to
be passed to the function; they must match the declared function argument list. When the isint field of a
parameter structure is true, the u.integer value is sent to the server as an integer of the indicated length
(this must be 2 or 4 bytes); proper byte-swapping occurs. When isint is false, the indicated number
of bytes at *u.ptr are sent with no processing; the data must be in the format expected by the server
for binary transmission of the function's argument data type. (The declaration of u.ptr as being of type
int * is historical; it would be better to consider it void *.) result_buf points to the buffer in
which to place the function's return value. The caller must have allocated sufficient space to store the return
value. (There is no check!) The actual result length in bytes will be returned in the integer pointed to by
result_len. If a 2- or 4-byte integer result is expected, set result_is_int to 1, otherwise set it to
0. Setting result_is_int to 1 causes libpq to byte-swap the value if necessary, so that it is delivered as

851

libpq - C Library

a proper int value for the client machine; note that a 4-byte integer is delivered into *result_buf for
either allowed result size. When result_is_int is 0, the binary-format byte string sent by the server
is returned unmodified. (In this case it's better to consider result_buf as being of type void *.)

PQfn always returns a valid PGresult pointer. The result status should be checked before the result is
used. The caller is responsible for freeing the PGresult with PQclear when it is no longer needed.

Note that it is not possible to handle null arguments, null results, nor set-valued results when using this
interface.

34.8. Asynchronous Notification
PostgreSQL offers asynchronous notification via the LISTEN and NOTIFY commands. A client session
registers its interest in a particular notification channel with the LISTEN command (and can stop
listening with the UNLISTEN command). All sessions listening on a particular channel will be notified
asynchronously when a NOTIFY command with that channel name is executed by any session. A
“payload” string can be passed to communicate additional data to the listeners.

libpq applications submit LISTEN, UNLISTEN, and NOTIFY commands as ordinary SQL commands.
The arrival of NOTIFY messages can subsequently be detected by calling PQnotifies.

The function PQnotifies returns the next notification from a list of unhandled notification messages
received from the server. It returns a null pointer if there are no pending notifications. Once a notification
is returned from PQnotifies, it is considered handled and will be removed from the list of notifications.

PGnotify *PQnotifies(PGconn *conn);

typedef struct pgNotify
{
 char *relname; /* notification channel name */
 int be_pid; /* process ID of notifying server
 process */
 char *extra; /* notification payload string */
} PGnotify;

After processing a PGnotify object returned by PQnotifies, be sure to free it with PQfreemem.
It is sufficient to free the PGnotify pointer; the relname and extra fields do not represent separate
allocations. (The names of these fields are historical; in particular, channel names need not have anything
to do with relation names.)

Example 34.2 gives a sample program that illustrates the use of asynchronous notification.

PQnotifies does not actually read data from the server; it just returns messages previously absorbed
by another libpq function. In ancient releases of libpq, the only way to ensure timely receipt of NOTIFY
messages was to constantly submit commands, even empty ones, and then check PQnotifies after each
PQexec. While this still works, it is deprecated as a waste of processing power.

A better way to check for NOTIFY messages when you have no useful commands to execute is to call
PQconsumeInput, then check PQnotifies. You can use select() to wait for data to arrive from
the server, thereby using no CPU power unless there is something to do. (See PQsocket to obtain the file
descriptor number to use with select().) Note that this will work OK whether you submit commands
with PQsendQuery/PQgetResult or simply use PQexec. You should, however, remember to check
PQnotifies after each PQgetResult or PQexec, to see if any notifications came in during the
processing of the command.

852

libpq - C Library

34.9. Functions Associated with the COPY
Command

The COPY command in PostgreSQL has options to read from or write to the network connection used by
libpq. The functions described in this section allow applications to take advantage of this capability by
supplying or consuming copied data.

The overall process is that the application first issues the SQL COPY command via PQexec or one of
the equivalent functions. The response to this (if there is no error in the command) will be a PGresult
object bearing a status code of PGRES_COPY_OUT or PGRES_COPY_IN (depending on the specified
copy direction). The application should then use the functions of this section to receive or transmit data
rows. When the data transfer is complete, another PGresult object is returned to indicate success or
failure of the transfer. Its status will be PGRES_COMMAND_OK for success or PGRES_FATAL_ERROR
if some problem was encountered. At this point further SQL commands can be issued via PQexec. (It
is not possible to execute other SQL commands using the same connection while the COPY operation is
in progress.)

If a COPY command is issued via PQexec in a string that could contain additional commands, the
application must continue fetching results via PQgetResult after completing the COPY sequence. Only
when PQgetResult returns NULL is it certain that the PQexec command string is done and it is safe
to issue more commands.

The functions of this section should be executed only after obtaining a result status of PGRES_COPY_OUT
or PGRES_COPY_IN from PQexec or PQgetResult.

A PGresult object bearing one of these status values carries some additional data about the COPY
operation that is starting. This additional data is available using functions that are also used in connection
with query results:

PQnfields

Returns the number of columns (fields) to be copied.

PQbinaryTuples

0 indicates the overall copy format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary. See COPY for more
information.

PQfformat

Returns the format code (0 for text, 1 for binary) associated with each column of the copy operation.
The per-column format codes will always be zero when the overall copy format is textual, but the
binary format can support both text and binary columns. (However, as of the current implementation
of COPY, only binary columns appear in a binary copy; so the per-column formats always match the
overall format at present.)

Note

These additional data values are only available when using protocol 3.0. When using protocol 2.0,
all these functions will return 0.

853

libpq - C Library

34.9.1. Functions for Sending COPY Data
These functions are used to send data during COPY FROM STDIN. They will fail if called when the
connection is not in COPY_IN state.

PQputCopyData

Sends data to the server during COPY_IN state.

int PQputCopyData(PGconn *conn,
 const char *buffer,
 int nbytes);

Transmits the COPY data in the specified buffer, of length nbytes, to the server. The result is
1 if the data was queued, zero if it was not queued because of full buffers (this will only happen in
nonblocking mode), or -1 if an error occurred. (Use PQerrorMessage to retrieve details if the
return value is -1. If the value is zero, wait for write-ready and try again.)

The application can divide the COPY data stream into buffer loads of any convenient size. Buffer-load
boundaries have no semantic significance when sending. The contents of the data stream must match
the data format expected by the COPY command; see COPY for details.

PQputCopyEnd

Sends end-of-data indication to the server during COPY_IN state.

int PQputCopyEnd(PGconn *conn,
 const char *errormsg);

Ends the COPY_IN operation successfully if errormsg is NULL. If errormsg is not NULL then
the COPY is forced to fail, with the string pointed to by errormsg used as the error message. (One
should not assume that this exact error message will come back from the server, however, as the server
might have already failed the COPY for its own reasons. Also note that the option to force failure does
not work when using pre-3.0-protocol connections.)

The result is 1 if the termination message was sent; or in nonblocking mode, this may only indicate that
the termination message was successfully queued. (In nonblocking mode, to be certain that the data
has been sent, you should next wait for write-ready and call PQflush, repeating until it returns zero.)
Zero indicates that the function could not queue the termination message because of full buffers; this
will only happen in nonblocking mode. (In this case, wait for write-ready and try the PQputCopyEnd
call again.) If a hard error occurs, -1 is returned; you can use PQerrorMessage to retrieve details.

After successfully calling PQputCopyEnd, call PQgetResult to obtain the final result status of
the COPY command. One can wait for this result to be available in the usual way. Then return to
normal operation.

34.9.2. Functions for Receiving COPY Data
These functions are used to receive data during COPY TO STDOUT. They will fail if called when the
connection is not in COPY_OUT state.

PQgetCopyData

Receives data from the server during COPY_OUT state.

854

libpq - C Library

int PQgetCopyData(PGconn *conn,
 char **buffer,
 int async);

Attempts to obtain another row of data from the server during a COPY. Data is always returned one
data row at a time; if only a partial row is available, it is not returned. Successful return of a data row
involves allocating a chunk of memory to hold the data. The buffer parameter must be non-NULL.
*buffer is set to point to the allocated memory, or to NULL in cases where no buffer is returned. A
non-NULL result buffer should be freed using PQfreemem when no longer needed.

When a row is successfully returned, the return value is the number of data bytes in the row (this will
always be greater than zero). The returned string is always null-terminated, though this is probably
only useful for textual COPY. A result of zero indicates that the COPY is still in progress, but no row
is yet available (this is only possible when async is true). A result of -1 indicates that the COPY is
done. A result of -2 indicates that an error occurred (consult PQerrorMessage for the reason).

When async is true (not zero), PQgetCopyData will not block waiting for input; it will return
zero if the COPY is still in progress but no complete row is available. (In this case wait for read-ready
and then call PQconsumeInput before calling PQgetCopyData again.) When async is false
(zero), PQgetCopyData will block until data is available or the operation completes.

After PQgetCopyData returns -1, call PQgetResult to obtain the final result status of the COPY
command. One can wait for this result to be available in the usual way. Then return to normal
operation.

34.9.3. Obsolete Functions for COPY
These functions represent older methods of handling COPY. Although they still work, they are deprecated
due to poor error handling, inconvenient methods of detecting end-of-data, and lack of support for binary
or nonblocking transfers.

PQgetline

Reads a newline-terminated line of characters (transmitted by the server) into a buffer string of size
length.

int PQgetline(PGconn *conn,
 char *buffer,
 int length);

This function copies up to length-1 characters into the buffer and converts the terminating newline
into a zero byte. PQgetline returns EOF at the end of input, 0 if the entire line has been read, and
1 if the buffer is full but the terminating newline has not yet been read.

Note that the application must check to see if a new line consists of the two characters \., which
indicates that the server has finished sending the results of the COPY command. If the application
might receive lines that are more than length-1 characters long, care is needed to be sure it
recognizes the \. line correctly (and does not, for example, mistake the end of a long data line for
a terminator line).

PQgetlineAsync

Reads a row of COPY data (transmitted by the server) into a buffer without blocking.

855

libpq - C Library

int PQgetlineAsync(PGconn *conn,
 char *buffer,
 int bufsize);

This function is similar to PQgetline, but it can be used by applications that must read
COPY data asynchronously, that is, without blocking. Having issued the COPY command and
gotten a PGRES_COPY_OUT response, the application should call PQconsumeInput and
PQgetlineAsync until the end-of-data signal is detected.

Unlike PQgetline, this function takes responsibility for detecting end-of-data.

On each call, PQgetlineAsync will return data if a complete data row is available in libpq's input
buffer. Otherwise, no data is returned until the rest of the row arrives. The function returns -1 if the
end-of-copy-data marker has been recognized, or 0 if no data is available, or a positive number giving
the number of bytes of data returned. If -1 is returned, the caller must next call PQendcopy, and
then return to normal processing.

The data returned will not extend beyond a data-row boundary. If possible a whole row will be returned
at one time. But if the buffer offered by the caller is too small to hold a row sent by the server, then
a partial data row will be returned. With textual data this can be detected by testing whether the last
returned byte is \n or not. (In a binary COPY, actual parsing of the COPY data format will be needed
to make the equivalent determination.) The returned string is not null-terminated. (If you want to add
a terminating null, be sure to pass a bufsize one smaller than the room actually available.)

PQputline

Sends a null-terminated string to the server. Returns 0 if OK and EOF if unable to send the string.

int PQputline(PGconn *conn,
 const char *string);

The COPY data stream sent by a series of calls to PQputline has the same format as that returned
by PQgetlineAsync, except that applications are not obliged to send exactly one data row per
PQputline call; it is okay to send a partial line or multiple lines per call.

Note

Before PostgreSQL protocol 3.0, it was necessary for the application to explicitly send the
two characters \. as a final line to indicate to the server that it had finished sending COPY
data. While this still works, it is deprecated and the special meaning of \. can be expected
to be removed in a future release. It is sufficient to call PQendcopy after having sent the
actual data.

PQputnbytes

Sends a non-null-terminated string to the server. Returns 0 if OK and EOF if unable to send the string.

int PQputnbytes(PGconn *conn,
 const char *buffer,
 int nbytes);

856

libpq - C Library

This is exactly like PQputline, except that the data buffer need not be null-terminated since the
number of bytes to send is specified directly. Use this procedure when sending binary data.

PQendcopy

Synchronizes with the server.

int PQendcopy(PGconn *conn);

This function waits until the server has finished the copying. It should either be issued when the last
string has been sent to the server using PQputline or when the last string has been received from
the server using PGgetline. It must be issued or the server will get “out of sync” with the client.
Upon return from this function, the server is ready to receive the next SQL command. The return
value is 0 on successful completion, nonzero otherwise. (Use PQerrorMessage to retrieve details
if the return value is nonzero.)

When using PQgetResult, the application should respond to a PGRES_COPY_OUT result by
executing PQgetline repeatedly, followed by PQendcopy after the terminator line is seen. It
should then return to the PQgetResult loop until PQgetResult returns a null pointer. Similarly
a PGRES_COPY_IN result is processed by a series of PQputline calls followed by PQendcopy,
then return to the PQgetResult loop. This arrangement will ensure that a COPY command
embedded in a series of SQL commands will be executed correctly.

Older applications are likely to submit a COPY via PQexec and assume that the transaction is done
after PQendcopy. This will work correctly only if the COPY is the only SQL command in the
command string.

34.10. Control Functions
These functions control miscellaneous details of libpq's behavior.

PQclientEncoding

Returns the client encoding.

int PQclientEncoding(const PGconn *conn);

Note that it returns the encoding ID, not a symbolic string such as EUC_JP. If unsuccessful, it returns
-1. To convert an encoding ID to an encoding name, you can use:

char *pg_encoding_to_char(int encoding_id);

PQsetClientEncoding

Sets the client encoding.

int PQsetClientEncoding(PGconn *conn, const char *encoding);

conn is a connection to the server, and encoding is the encoding you want to use. If the function
successfully sets the encoding, it returns 0, otherwise -1. The current encoding for this connection can
be determined by using PQclientEncoding.

857

libpq - C Library

PQsetErrorVerbosity

Determines the verbosity of messages returned by PQerrorMessage and
PQresultErrorMessage.

typedef enum
{
 PQERRORS_TERSE,
 PQERRORS_DEFAULT,
 PQERRORS_VERBOSE
} PGVerbosity;

PGVerbosity PQsetErrorVerbosity(PGconn *conn, PGVerbosity
 verbosity);

PQsetErrorVerbosity sets the verbosity mode, returning the connection's previous setting. In
TERSE mode, returned messages include severity, primary text, and position only; this will normally
fit on a single line. The default mode produces messages that include the above plus any detail, hint,
or context fields (these might span multiple lines). The VERBOSE mode includes all available fields.
Changing the verbosity does not affect the messages available from already-existing PGresult
objects, only subsequently-created ones. (But see PQresultVerboseErrorMessage if you want
to print a previous error with a different verbosity.)

PQsetErrorContextVisibility

Determines the handling of CONTEXT fields in messages returned by PQerrorMessage and
PQresultErrorMessage.

typedef enum
{
 PQSHOW_CONTEXT_NEVER,
 PQSHOW_CONTEXT_ERRORS,
 PQSHOW_CONTEXT_ALWAYS
} PGContextVisibility;

PGContextVisibility PQsetErrorContextVisibility(PGconn *conn,
 PGContextVisibility show_context);

PQsetErrorContextVisibility sets the context display mode, returning the connection's
previous setting. This mode controls whether the CONTEXT field is included in messages (unless
the verbosity setting is TERSE, in which case CONTEXT is never shown). The NEVER mode never
includes CONTEXT, while ALWAYS always includes it if available. In ERRORS mode (the default),
CONTEXT fields are included only for error messages, not for notices and warnings. Changing
this mode does not affect the messages available from already-existing PGresult objects, only
subsequently-created ones. (But see PQresultVerboseErrorMessage if you want to print a
previous error with a different display mode.)

PQtrace

Enables tracing of the client/server communication to a debugging file stream.

void PQtrace(PGconn *conn, FILE *stream);

858

libpq - C Library

Note

On Windows, if the libpq library and an application are compiled with different flags, this
function call will crash the application because the internal representation of the FILE pointers
differ. Specifically, multithreaded/single-threaded, release/debug, and static/dynamic flags
should be the same for the library and all applications using that library.

PQuntrace

Disables tracing started by PQtrace.

void PQuntrace(PGconn *conn);

34.11. Miscellaneous Functions
As always, there are some functions that just don't fit anywhere.

PQfreemem

Frees memory allocated by libpq.

void PQfreemem(void *ptr);

Frees memory allocated by libpq, particularly PQescapeByteaConn, PQescapeBytea,
PQunescapeBytea, and PQnotifies. It is particularly important that this function, rather than
free(), be used on Microsoft Windows. This is because allocating memory in a DLL and releasing it
in the application works only if multithreaded/single-threaded, release/debug, and static/dynamic flags
are the same for the DLL and the application. On non-Microsoft Windows platforms, this function is
the same as the standard library function free().

PQconninfoFree

Frees the data structures allocated by PQconndefaults or PQconninfoParse.

void PQconninfoFree(PQconninfoOption *connOptions);

A simple PQfreemem will not do for this, since the array contains references to subsidiary strings.

PQencryptPasswordConn

Prepares the encrypted form of a PostgreSQL password.

char *PQencryptPasswordConn(PGconn *conn, const char *passwd, const
 char *user, const char *algorithm);

This function is intended to be used by client applications that wish to send commands like ALTER
USER joe PASSWORD 'pwd'. It is good practice not to send the original cleartext password in
such a command, because it might be exposed in command logs, activity displays, and so on. Instead,
use this function to convert the password to encrypted form before it is sent.

859

libpq - C Library

The passwd and user arguments are the cleartext password, and the SQL name of the user it is for.
algorithm specifies the encryption algorithm to use to encrypt the password. Currently supported
algorithms are md5 and scram-sha-256 (on and off are also accepted as aliases for md5, for
compatibility with older server versions). Note that support for scram-sha-256 was introduced
in PostgreSQL version 10, and will not work correctly with older server versions. If algorithm is
NULL, this function will query the server for the current value of the password_encryption setting.
That can block, and will fail if the current transaction is aborted, or if the connection is busy executing
another query. If you wish to use the default algorithm for the server but want to avoid blocking,
query password_encryption yourself before calling PQencryptPasswordConn, and pass
that value as the algorithm.

The return value is a string allocated by malloc. The caller can assume the string doesn't contain any
special characters that would require escaping. Use PQfreemem to free the result when done with it.
On error, returns NULL, and a suitable message is stored in the connection object.

PQencryptPassword

Prepares the md5-encrypted form of a PostgreSQL password.

char *PQencryptPassword(const char *passwd, const char *user);

PQencryptPassword is an older, deprecated version of PQencryptPasswordConn. The
difference is that PQencryptPassword does not require a connection object, and md5 is always
used as the encryption algorithm.

PQmakeEmptyPGresult

Constructs an empty PGresult object with the given status.

PGresult *PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

This is libpq's internal function to allocate and initialize an empty PGresult object. This function
returns NULL if memory could not be allocated. It is exported because some applications find
it useful to generate result objects (particularly objects with error status) themselves. If conn is
not null and status indicates an error, the current error message of the specified connection
is copied into the PGresult. Also, if conn is not null, any event procedures registered in the
connection are copied into the PGresult. (They do not get PGEVT_RESULTCREATE calls, but see
PQfireResultCreateEvents.) Note that PQclear should eventually be called on the object,
just as with a PGresult returned by libpq itself.

PQfireResultCreateEvents

Fires a PGEVT_RESULTCREATE event (see Section 34.13) for each event procedure registered in
the PGresult object. Returns non-zero for success, zero if any event procedure fails.

int PQfireResultCreateEvents(PGconn *conn, PGresult *res);

The conn argument is passed through to event procedures but not used directly. It can be NULL if
the event procedures won't use it.

Event procedures that have already received a PGEVT_RESULTCREATE or PGEVT_RESULTCOPY
event for this object are not fired again.

The main reason that this function is separate from PQmakeEmptyPGresult is that it is often
appropriate to create a PGresult and fill it with data before invoking the event procedures.

860

libpq - C Library

PQcopyResult

Makes a copy of a PGresult object. The copy is not linked to the source result in any way and
PQclear must be called when the copy is no longer needed. If the function fails, NULL is returned.

PGresult *PQcopyResult(const PGresult *src, int flags);

This is not intended to make an exact copy. The returned result is always put into
PGRES_TUPLES_OK status, and does not copy any error message in the source. (It does copy
the command status string, however.) The flags argument determines what else is copied. It is a
bitwise OR of several flags. PG_COPYRES_ATTRS specifies copying the source result's attributes
(column definitions). PG_COPYRES_TUPLES specifies copying the source result's tuples. (This
implies copying the attributes, too.) PG_COPYRES_NOTICEHOOKS specifies copying the source
result's notify hooks. PG_COPYRES_EVENTS specifies copying the source result's events. (But any
instance data associated with the source is not copied.)

PQsetResultAttrs

Sets the attributes of a PGresult object.

int PQsetResultAttrs(PGresult *res, int numAttributes, PGresAttDesc
 *attDescs);

The provided attDescs are copied into the result. If the attDescs pointer is NULL or
numAttributes is less than one, the request is ignored and the function succeeds. If res already
contains attributes, the function will fail. If the function fails, the return value is zero. If the function
succeeds, the return value is non-zero.

PQsetvalue

Sets a tuple field value of a PGresult object.

int PQsetvalue(PGresult *res, int tup_num, int field_num, char
 *value, int len);

The function will automatically grow the result's internal tuples array as needed. However, the
tup_num argument must be less than or equal to PQntuples, meaning this function can only grow
the tuples array one tuple at a time. But any field of any existing tuple can be modified in any order.
If a value at field_num already exists, it will be overwritten. If len is -1 or value is NULL, the
field value will be set to an SQL null value. The value is copied into the result's private storage,
thus is no longer needed after the function returns. If the function fails, the return value is zero. If the
function succeeds, the return value is non-zero.

PQresultAlloc

Allocate subsidiary storage for a PGresult object.

void *PQresultAlloc(PGresult *res, size_t nBytes);

Any memory allocated with this function will be freed when res is cleared. If the function fails, the
return value is NULL. The result is guaranteed to be adequately aligned for any type of data, just as
for malloc.

861

libpq - C Library

PQlibVersion

Return the version of libpq that is being used.

int PQlibVersion(void);

The result of this function can be used to determine, at run time, whether specific functionality is
available in the currently loaded version of libpq. The function can be used, for example, to determine
which connection options are available in PQconnectdb.

The result is formed by multiplying the library's major version number by 10000 and adding the
minor version number. For example, version 10.1 will be returned as 100001, and version 11.0 will
be returned as 110000.

Prior to major version 10, PostgreSQL used three-part version numbers in which the first two parts
together represented the major version. For those versions, PQlibVersion uses two digits for each
part; for example version 9.1.5 will be returned as 90105, and version 9.2.0 will be returned as 90200.

Therefore, for purposes of determining feature compatibility, applications should divide the result of
PQlibVersion by 100 not 10000 to determine a logical major version number. In all release series,
only the last two digits differ between minor releases (bug-fix releases).

Note

This function appeared in PostgreSQL version 9.1, so it cannot be used to detect required
functionality in earlier versions, since calling it will create a link dependency on version 9.1
or later.

34.12. Notice Processing
Notice and warning messages generated by the server are not returned by the query execution functions,
since they do not imply failure of the query. Instead they are passed to a notice handling function,
and execution continues normally after the handler returns. The default notice handling function prints
the message on stderr, but the application can override this behavior by supplying its own handling
function.

For historical reasons, there are two levels of notice handling, called the notice receiver and notice
processor. The default behavior is for the notice receiver to format the notice and pass a string to the
notice processor for printing. However, an application that chooses to provide its own notice receiver will
typically ignore the notice processor layer and just do all the work in the notice receiver.

The function PQsetNoticeReceiver sets or examines the current notice receiver for a connection
object. Similarly, PQsetNoticeProcessor sets or examines the current notice processor.

typedef void (*PQnoticeReceiver) (void *arg, const PGresult *res);

PQnoticeReceiver
PQsetNoticeReceiver(PGconn *conn,
 PQnoticeReceiver proc,
 void *arg);

862

libpq - C Library

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,
 PQnoticeProcessor proc,
 void *arg);

Each of these functions returns the previous notice receiver or processor function pointer, and sets the new
value. If you supply a null function pointer, no action is taken, but the current pointer is returned.

When a notice or warning message is received from the server, or generated internally
by libpq, the notice receiver function is called. It is passed the message in the form
of a PGRES_NONFATAL_ERROR PGresult. (This allows the receiver to extract individual
fields using PQresultErrorField, or obtain a complete preformatted message using
PQresultErrorMessage or PQresultVerboseErrorMessage.) The same void pointer passed
to PQsetNoticeReceiver is also passed. (This pointer can be used to access application-specific state
if needed.)

The default notice receiver simply extracts the message (using PQresultErrorMessage) and passes
it to the notice processor.

The notice processor is responsible for handling a notice or warning message given in text form. It is passed
the string text of the message (including a trailing newline), plus a void pointer that is the same one passed
to PQsetNoticeProcessor. (This pointer can be used to access application-specific state if needed.)

The default notice processor is simply:

static void
defaultNoticeProcessor(void *arg, const char *message)
{
 fprintf(stderr, "%s", message);
}

Once you have set a notice receiver or processor, you should expect that that function could be called as
long as either the PGconn object or PGresult objects made from it exist. At creation of a PGresult,
the PGconn's current notice handling pointers are copied into the PGresult for possible use by functions
like PQgetvalue.

34.13. Event System
libpq's event system is designed to notify registered event handlers about interesting libpq events, such as
the creation or destruction of PGconn and PGresult objects. A principal use case is that this allows
applications to associate their own data with a PGconn or PGresult and ensure that that data is freed
at an appropriate time.

Each registered event handler is associated with two pieces of data, known to libpq only as opaque void
* pointers. There is a passthrough pointer that is provided by the application when the event handler
is registered with a PGconn. The passthrough pointer never changes for the life of the PGconn and
all PGresults generated from it; so if used, it must point to long-lived data. In addition there is an
instance data pointer, which starts out NULL in every PGconn and PGresult. This pointer can be
manipulated using the PQinstanceData, PQsetInstanceData, PQresultInstanceData and
PQsetResultInstanceData functions. Note that unlike the passthrough pointer, instance data of
a PGconn is not automatically inherited by PGresults created from it. libpq does not know what

863

libpq - C Library

passthrough and instance data pointers point to (if anything) and will never attempt to free them — that
is the responsibility of the event handler.

34.13.1. Event Types
The enum PGEventId names the types of events handled by the event system. All its values have names
beginning with PGEVT. For each event type, there is a corresponding event info structure that carries the
parameters passed to the event handlers. The event types are:

PGEVT_REGISTER

The register event occurs when PQregisterEventProc is called. It is the ideal time to initialize
any instanceData an event procedure may need. Only one register event will be fired per event
handler per connection. If the event procedure fails, the registration is aborted.

typedef struct
{
 PGconn *conn;
} PGEventRegister;

When a PGEVT_REGISTER event is received, the evtInfo pointer should be cast to a
PGEventRegister *. This structure contains a PGconn that should be in the CONNECTION_OK
status; guaranteed if one calls PQregisterEventProc right after obtaining a good PGconn.
When returning a failure code, all cleanup must be performed as no PGEVT_CONNDESTROY event
will be sent.

PGEVT_CONNRESET

The connection reset event is fired on completion of PQreset or PQresetPoll. In both cases,
the event is only fired if the reset was successful. If the event procedure fails, the entire connection
reset will fail; the PGconn is put into CONNECTION_BAD status and PQresetPoll will return
PGRES_POLLING_FAILED.

typedef struct
{
 PGconn *conn;
} PGEventConnReset;

When a PGEVT_CONNRESET event is received, the evtInfo pointer should be cast to a
PGEventConnReset *. Although the contained PGconn was just reset, all event data remains
unchanged. This event should be used to reset/reload/requery any associated instanceData.
Note that even if the event procedure fails to process PGEVT_CONNRESET, it will still receive a
PGEVT_CONNDESTROY event when the connection is closed.

PGEVT_CONNDESTROY

The connection destroy event is fired in response to PQfinish. It is the event procedure's
responsibility to properly clean up its event data as libpq has no ability to manage this memory. Failure
to clean up will lead to memory leaks.

typedef struct
{
 PGconn *conn;

864

libpq - C Library

} PGEventConnDestroy;

When a PGEVT_CONNDESTROY event is received, the evtInfo pointer should be cast to a
PGEventConnDestroy *. This event is fired prior to PQfinish performing any other cleanup.
The return value of the event procedure is ignored since there is no way of indicating a failure from
PQfinish. Also, an event procedure failure should not abort the process of cleaning up unwanted
memory.

PGEVT_RESULTCREATE

The result creation event is fired in response to any query execution function that generates a result,
including PQgetResult. This event will only be fired after the result has been created successfully.

typedef struct
{
 PGconn *conn;
 PGresult *result;
} PGEventResultCreate;

When a PGEVT_RESULTCREATE event is received, the evtInfo pointer should be cast to a
PGEventResultCreate *. The conn is the connection used to generate the result. This is the
ideal place to initialize any instanceData that needs to be associated with the result. If the event
procedure fails, the result will be cleared and the failure will be propagated. The event procedure must
not try to PQclear the result object for itself. When returning a failure code, all cleanup must be
performed as no PGEVT_RESULTDESTROY event will be sent.

PGEVT_RESULTCOPY

The result copy event is fired in response to PQcopyResult. This event will only be
fired after the copy is complete. Only event procedures that have successfully handled the
PGEVT_RESULTCREATE or PGEVT_RESULTCOPY event for the source result will receive
PGEVT_RESULTCOPY events.

typedef struct
{
 const PGresult *src;
 PGresult *dest;
} PGEventResultCopy;

When a PGEVT_RESULTCOPY event is received, the evtInfo pointer should be cast to a
PGEventResultCopy *. The src result is what was copied while the dest result is the
copy destination. This event can be used to provide a deep copy of instanceData, since
PQcopyResult cannot do that. If the event procedure fails, the entire copy operation will fail and
the dest result will be cleared. When returning a failure code, all cleanup must be performed as no
PGEVT_RESULTDESTROY event will be sent for the destination result.

PGEVT_RESULTDESTROY

The result destroy event is fired in response to a PQclear. It is the event procedure's responsibility
to properly clean up its event data as libpq has no ability to manage this memory. Failure to clean
up will lead to memory leaks.

typedef struct

865

libpq - C Library

{
 PGresult *result;
} PGEventResultDestroy;

When a PGEVT_RESULTDESTROY event is received, the evtInfo pointer should be cast to a
PGEventResultDestroy *. This event is fired prior to PQclear performing any other cleanup.
The return value of the event procedure is ignored since there is no way of indicating a failure from
PQclear. Also, an event procedure failure should not abort the process of cleaning up unwanted
memory.

34.13.2. Event Callback Procedure
PGEventProc

PGEventProc is a typedef for a pointer to an event procedure, that is, the user callback function
that receives events from libpq. The signature of an event procedure must be

int eventproc(PGEventId evtId, void *evtInfo, void *passThrough)

The evtId parameter indicates which PGEVT event occurred. The evtInfo pointer must be cast
to the appropriate structure type to obtain further information about the event. The passThrough
parameter is the pointer provided to PQregisterEventProc when the event procedure was
registered. The function should return a non-zero value if it succeeds and zero if it fails.

A particular event procedure can be registered only once in any PGconn. This is because the address
of the procedure is used as a lookup key to identify the associated instance data.

Caution

On Windows, functions can have two different addresses: one visible from outside a DLL and
another visible from inside the DLL. One should be careful that only one of these addresses
is used with libpq's event-procedure functions, else confusion will result. The simplest rule
for writing code that will work is to ensure that event procedures are declared static. If the
procedure's address must be available outside its own source file, expose a separate function
to return the address.

34.13.3. Event Support Functions
PQregisterEventProc

Registers an event callback procedure with libpq.

int PQregisterEventProc(PGconn *conn, PGEventProc proc,
 const char *name, void *passThrough);

An event procedure must be registered once on each PGconn you want to receive events about.
There is no limit, other than memory, on the number of event procedures that can be registered with
a connection. The function returns a non-zero value if it succeeds and zero if it fails.

The proc argument will be called when a libpq event is fired. Its memory address is also used
to lookup instanceData. The name argument is used to refer to the event procedure in error

866

libpq - C Library

messages. This value cannot be NULL or a zero-length string. The name string is copied into the
PGconn, so what is passed need not be long-lived. The passThrough pointer is passed to the proc
whenever an event occurs. This argument can be NULL.

PQsetInstanceData

Sets the connection conn's instanceData for procedure proc to data. This returns non-zero
for success and zero for failure. (Failure is only possible if proc has not been properly registered
in conn.)

int PQsetInstanceData(PGconn *conn, PGEventProc proc, void *data);

PQinstanceData

Returns the connection conn's instanceData associated with procedure proc, or NULL if there
is none.

void *PQinstanceData(const PGconn *conn, PGEventProc proc);

PQresultSetInstanceData

Sets the result's instanceData for proc to data. This returns non-zero for success and zero for
failure. (Failure is only possible if proc has not been properly registered in the result.)

int PQresultSetInstanceData(PGresult *res, PGEventProc proc, void
 *data);

PQresultInstanceData

Returns the result's instanceData associated with proc, or NULL if there is none.

void *PQresultInstanceData(const PGresult *res, PGEventProc proc);

34.13.4. Event Example
Here is a skeleton example of managing private data associated with libpq connections and results.

/* required header for libpq events (note: includes libpq-fe.h) */
#include <libpq-events.h>

/* The instanceData */
typedef struct
{
 int n;
 char *str;
} mydata;

/* PGEventProc */
static int myEventProc(PGEventId evtId, void *evtInfo, void
 *passThrough);

867

libpq - C Library

int
main(void)
{
 mydata *data;
 PGresult *res;
 PGconn *conn =
 PQconnectdb("dbname=postgres options=-csearch_path=");

 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 PQfinish(conn);
 return 1;
 }

 /* called once on any connection that should receive events.
 * Sends a PGEVT_REGISTER to myEventProc.
 */
 if (!PQregisterEventProc(conn, myEventProc, "mydata_proc", NULL))
 {
 fprintf(stderr, "Cannot register PGEventProc\n");
 PQfinish(conn);
 return 1;
 }

 /* conn instanceData is available */
 data = PQinstanceData(conn, myEventProc);

 /* Sends a PGEVT_RESULTCREATE to myEventProc */
 res = PQexec(conn, "SELECT 1 + 1");

 /* result instanceData is available */
 data = PQresultInstanceData(res, myEventProc);

 /* If PG_COPYRES_EVENTS is used, sends a PGEVT_RESULTCOPY to
 myEventProc */
 res_copy = PQcopyResult(res, PG_COPYRES_TUPLES |
 PG_COPYRES_EVENTS);

 /* result instanceData is available if PG_COPYRES_EVENTS was
 * used during the PQcopyResult call.
 */
 data = PQresultInstanceData(res_copy, myEventProc);

 /* Both clears send a PGEVT_RESULTDESTROY to myEventProc */
 PQclear(res);
 PQclear(res_copy);

 /* Sends a PGEVT_CONNDESTROY to myEventProc */
 PQfinish(conn);

 return 0;

868

libpq - C Library

}

static int
myEventProc(PGEventId evtId, void *evtInfo, void *passThrough)
{
 switch (evtId)
 {
 case PGEVT_REGISTER:
 {
 PGEventRegister *e = (PGEventRegister *)evtInfo;
 mydata *data = get_mydata(e->conn);

 /* associate app specific data with connection */
 PQsetInstanceData(e->conn, myEventProc, data);
 break;
 }

 case PGEVT_CONNRESET:
 {
 PGEventConnReset *e = (PGEventConnReset *)evtInfo;
 mydata *data = PQinstanceData(e->conn, myEventProc);

 if (data)
 memset(data, 0, sizeof(mydata));
 break;
 }

 case PGEVT_CONNDESTROY:
 {
 PGEventConnDestroy *e = (PGEventConnDestroy *)evtInfo;
 mydata *data = PQinstanceData(e->conn, myEventProc);

 /* free instance data because the conn is being destroyed
 */
 if (data)
 free_mydata(data);
 break;
 }

 case PGEVT_RESULTCREATE:
 {
 PGEventResultCreate *e = (PGEventResultCreate *)evtInfo;
 mydata *conn_data = PQinstanceData(e->conn, myEventProc);
 mydata *res_data = dup_mydata(conn_data);

 /* associate app specific data with result (copy it from
 conn) */
 PQsetResultInstanceData(e->result, myEventProc, res_data);
 break;
 }

 case PGEVT_RESULTCOPY:
 {
 PGEventResultCopy *e = (PGEventResultCopy *)evtInfo;

869

libpq - C Library

 mydata *src_data = PQresultInstanceData(e->src,
 myEventProc);
 mydata *dest_data = dup_mydata(src_data);

 /* associate app specific data with result (copy it from a
 result) */
 PQsetResultInstanceData(e->dest, myEventProc, dest_data);
 break;
 }

 case PGEVT_RESULTDESTROY:
 {
 PGEventResultDestroy *e = (PGEventResultDestroy *)evtInfo;
 mydata *data = PQresultInstanceData(e->result,
 myEventProc);

 /* free instance data because the result is being
 destroyed */
 if (data)
 free_mydata(data);
 break;
 }

 /* unknown event ID, just return true. */
 default:
 break;
 }

 return true; /* event processing succeeded */
}

34.14. Environment Variables
The following environment variables can be used to select default connection parameter values, which
will be used by PQconnectdb, PQsetdbLogin and PQsetdb if no value is directly specified by the
calling code. These are useful to avoid hard-coding database connection information into simple client
applications, for example.

• PGHOST behaves the same as the host connection parameter.

• PGHOSTADDR behaves the same as the hostaddr connection parameter. This can be set instead of or
in addition to PGHOST to avoid DNS lookup overhead.

• PGPORT behaves the same as the port connection parameter.

• PGDATABASE behaves the same as the dbname connection parameter.

• PGUSER behaves the same as the user connection parameter.

• PGPASSWORD behaves the same as the password connection parameter. Use of this environment
variable is not recommended for security reasons, as some operating systems allow non-root users to
see process environment variables via ps; instead consider using a password file (see Section 34.15).

• PGPASSFILE behaves the same as the passfile connection parameter.

870

libpq - C Library

• PGSERVICE behaves the same as the service connection parameter.

• PGSERVICEFILE specifies the name of the per-user connection service file. If not set, it defaults to
~/.pg_service.conf (see Section 34.16).

• PGOPTIONS behaves the same as the options connection parameter.

• PGAPPNAME behaves the same as the application_name connection parameter.

• PGSSLMODE behaves the same as the sslmode connection parameter.

• PGREQUIRESSL behaves the same as the requiressl connection parameter. This environment variable
is deprecated in favor of the PGSSLMODE variable; setting both variables suppresses the effect of this
one.

• PGSSLCOMPRESSION behaves the same as the sslcompression connection parameter.

• PGSSLCERT behaves the same as the sslcert connection parameter.

• PGSSLKEY behaves the same as the sslkey connection parameter.

• PGSSLROOTCERT behaves the same as the sslrootcert connection parameter.

• PGSSLCRL behaves the same as the sslcrl connection parameter.

• PGREQUIREPEER behaves the same as the requirepeer connection parameter.

• PGKRBSRVNAME behaves the same as the krbsrvname connection parameter.

• PGGSSLIB behaves the same as the gsslib connection parameter.

• PGCONNECT_TIMEOUT behaves the same as the connect_timeout connection parameter.

• PGCLIENTENCODING behaves the same as the client_encoding connection parameter.

• PGTARGETSESSIONATTRS behaves the same as the target_session_attrs connection parameter.

The following environment variables can be used to specify default behavior for each PostgreSQL session.
(See also the ALTER ROLE and ALTER DATABASE commands for ways to set default behavior on a
per-user or per-database basis.)

• PGDATESTYLE sets the default style of date/time representation. (Equivalent to SET datestyle
TO)

• PGTZ sets the default time zone. (Equivalent to SET timezone TO)

• PGGEQO sets the default mode for the genetic query optimizer. (Equivalent to SET geqo TO)

Refer to the SQL command SET for information on correct values for these environment variables.

The following environment variables determine internal behavior of libpq; they override compiled-in
defaults.

• PGSYSCONFDIR sets the directory containing the pg_service.conf file and in a future version
possibly other system-wide configuration files.

• PGLOCALEDIR sets the directory containing the locale files for message localization.

871

libpq - C Library

34.15. The Password File
The file .pgpass in a user's home directory can contain passwords to be used if the connection
requires a password (and no password has been specified otherwise). On Microsoft Windows the file
is named %APPDATA%\postgresql\pgpass.conf (where %APPDATA% refers to the Application
Data subdirectory in the user's profile). Alternatively, a password file can be specified using the connection
parameter passfile or the environment variable PGPASSFILE.

This file should contain lines of the following format:

hostname:port:database:username:password

(You can add a reminder comment to the file by copying the line above and preceding it with #.) Each of
the first four fields can be a literal value, or *, which matches anything. The password field from the first
line that matches the current connection parameters will be used. (Therefore, put more-specific entries first
when you are using wildcards.) If an entry needs to contain : or \, escape this character with \. The host
name field is matched to the host connection parameter if that is specified, otherwise to the hostaddr
parameter if that is specified; if neither are given then the host name localhost is searched for. The
host name localhost is also searched for when the connection is a Unix-domain socket connection and
the host parameter matches libpq's default socket directory path. In a standby server, a database field
of replication matches streaming replication connections made to the master server. The database
field is of limited usefulness otherwise, because users have the same password for all databases in the
same cluster.

On Unix systems, the permissions on a password file must disallow any access to world or group; achieve
this by a command such as chmod 0600 ~/.pgpass. If the permissions are less strict than this, the
file will be ignored. On Microsoft Windows, it is assumed that the file is stored in a directory that is secure,
so no special permissions check is made.

34.16. The Connection Service File
The connection service file allows libpq connection parameters to be associated with a single service name.
That service name can then be specified by a libpq connection, and the associated settings will be used.
This allows connection parameters to be modified without requiring a recompile of the libpq application.
The service name can also be specified using the PGSERVICE environment variable.

The connection service file can be a per-user service file at ~/.pg_service.conf or the location
specified by the environment variable PGSERVICEFILE, or it can be a system-wide file at ̀ pg_config
--sysconfdir`/pg_service.conf or in the directory specified by the environment variable
PGSYSCONFDIR. If service definitions with the same name exist in the user and the system file, the user
file takes precedence.

The file uses an “INI file” format where the section name is the service name and the parameters are
connection parameters; see Section 34.1.2 for a list. For example:

comment
[mydb]
host=somehost
port=5433
user=admin

An example file is provided at share/pg_service.conf.sample.

872

libpq - C Library

34.17. LDAP Lookup of Connection Parameters
If libpq has been compiled with LDAP support (option --with-ldap for configure) it is possible
to retrieve connection options like host or dbname via LDAP from a central server. The advantage is
that if the connection parameters for a database change, the connection information doesn't have to be
updated on all client machines.

LDAP connection parameter lookup uses the connection service file pg_service.conf (see
Section 34.16). A line in a pg_service.conf stanza that starts with ldap:// will be recognized as
an LDAP URL and an LDAP query will be performed. The result must be a list of keyword = value
pairs which will be used to set connection options. The URL must conform to RFC 1959 and be of the form

ldap://[hostname[:port]]/search_base?attribute?search_scope?filter

where hostname defaults to localhost and port defaults to 389.

Processing of pg_service.conf is terminated after a successful LDAP lookup, but is continued if the
LDAP server cannot be contacted. This is to provide a fallback with further LDAP URL lines that point to
different LDAP servers, classical keyword = value pairs, or default connection options. If you would
rather get an error message in this case, add a syntactically incorrect line after the LDAP URL.

A sample LDAP entry that has been created with the LDIF file

version:1
dn:cn=mydatabase,dc=mycompany,dc=com
changetype:add
objectclass:top
objectclass:device
cn:mydatabase
description:host=dbserver.mycompany.com
description:port=5439
description:dbname=mydb
description:user=mydb_user
description:sslmode=require

might be queried with the following LDAP URL:

ldap://ldap.mycompany.com/dc=mycompany,dc=com?description?one?
(cn=mydatabase)

You can also mix regular service file entries with LDAP lookups. A complete example for a stanza in
pg_service.conf would be:

only host and port are stored in LDAP, specify dbname and user
 explicitly
[customerdb]
dbname=customer
user=appuser
ldap://ldap.acme.com/cn=dbserver,cn=hosts?pgconnectinfo?base?
(objectclass=*)

873

libpq - C Library

34.18. SSL Support
PostgreSQL has native support for using SSL connections to encrypt client/server communications for
increased security. See Section 18.9 for details about the server-side SSL functionality.

libpq reads the system-wide OpenSSL configuration file. By default, this file is named openssl.cnf
and is located in the directory reported by openssl version -d. This default can be overridden by
setting environment variable OPENSSL_CONF to the name of the desired configuration file.

34.18.1. Client Verification of Server Certificates
By default, PostgreSQL will not perform any verification of the server certificate. This means that it is
possible to spoof the server identity (for example by modifying a DNS record or by taking over the server
IP address) without the client knowing. In order to prevent spoofing, the client must be able to verify the
server's identity via a chain of trust. A chain of trust is established by placing a root (self-signed) certificate
authority (CA) certificate on one computer and a leaf certificate signed by the root certificate on another
computer. It is also possible to use an “intermediate” certificate which is signed by the root certificate and
signs leaf certificates.

To allow the client to verify the identity of the server, place a root certificate on the client and a leaf
certificate signed by the root certificate on the server. To allow the server to verify the identity of the client,
place a root certificate on the server and a leaf certificate signed by the root certificate on the client. One
or more intermediate certificates (usually stored with the leaf certificate) can also be used to link the leaf
certificate to the root certificate.

Once a chain of trust has been established, there are two ways for the client to validate the leaf certificate
sent by the server. If the parameter sslmode is set to verify-ca, libpq will verify that the server is
trustworthy by checking the certificate chain up to the root certificate stored on the client. If sslmode
is set to verify-full, libpq will also verify that the server host name matches the name stored in the
server certificate. The SSL connection will fail if the server certificate cannot be verified. verify-full
is recommended in most security-sensitive environments.

In verify-full mode, the host name is matched against the certificate's Subject Alternative Name
attribute(s), or against the Common Name attribute if no Subject Alternative Name of type dNSName
is present. If the certificate's name attribute starts with an asterisk (*), the asterisk will be treated as
a wildcard, which will match all characters except a dot (.). This means the certificate will not match
subdomains. If the connection is made using an IP address instead of a host name, the IP address will be
matched (without doing any DNS lookups).

To allow server certificate verification, one or more root certificates must be placed in the file
~/.postgresql/root.crt in the user's home directory. (On Microsoft Windows the file is named
%APPDATA%\postgresql\root.crt.) Intermediate certificates should also be added to the file if
they are needed to link the certificate chain sent by the server to the root certificates stored on the client.

Certificate Revocation List (CRL) entries are also checked if the file ~/.postgresql/root.crl
exists (%APPDATA%\postgresql\root.crl on Microsoft Windows).

The location of the root certificate file and the CRL can be changed by setting the connection parameters
sslrootcert and sslcrl or the environment variables PGSSLROOTCERT and PGSSLCRL.

Note

For backwards compatibility with earlier versions of PostgreSQL, if a root CA file exists, the
behavior of sslmode=require will be the same as that of verify-ca, meaning the server

874

libpq - C Library

certificate is validated against the CA. Relying on this behavior is discouraged, and applications
that need certificate validation should always use verify-ca or verify-full.

34.18.2. Client Certificates
If the server attempts to verify the identity of the client by requesting the client's leaf certificate, libpq
will send the certificates stored in file ~/.postgresql/postgresql.crt in the user's home
directory. The certificates must chain to the root certificate trusted by the server. A matching private
key file ~/.postgresql/postgresql.key must also be present. The private key file must not
allow any access to world or group; achieve this by the command chmod 0600 ~/.postgresql/
postgresql.key. On Microsoft Windows these files are named %APPDATA%\postgresql
\postgresql.crt and %APPDATA%\postgresql\postgresql.key, and there is no special
permissions check since the directory is presumed secure. The location of the certificate and key files
can be overridden by the connection parameters sslcert and sslkey or the environment variables
PGSSLCERT and PGSSLKEY.

The first certificate in postgresql.crt must be the client's certificate because it must match the client's
private key. “Intermediate” certificates can be optionally appended to the file — doing so avoids requiring
storage of intermediate certificates on the server (ssl_ca_file).

For instructions on creating certificates, see Section 18.9.5.

34.18.3. Protection Provided in Different Modes
The different values for the sslmode parameter provide different levels of protection. SSL can provide
protection against three types of attacks:

Eavesdropping

If a third party can examine the network traffic between the client and the server, it can read both
connection information (including the user name and password) and the data that is passed. SSL uses
encryption to prevent this.

Man in the middle (MITM)

If a third party can modify the data while passing between the client and server, it can pretend to
be the server and therefore see and modify data even if it is encrypted. The third party can then
forward the connection information and data to the original server, making it impossible to detect
this attack. Common vectors to do this include DNS poisoning and address hijacking, whereby the
client is directed to a different server than intended. There are also several other attack methods that
can accomplish this. SSL uses certificate verification to prevent this, by authenticating the server to
the client.

Impersonation

If a third party can pretend to be an authorized client, it can simply access data it should not have access
to. Typically this can happen through insecure password management. SSL uses client certificates to
prevent this, by making sure that only holders of valid certificates can access the server.

For a connection to be known secure, SSL usage must be configured on both the client and the server
before the connection is made. If it is only configured on the server, the client may end up sending
sensitive information (e.g. passwords) before it knows that the server requires high security. In libpq,

875

libpq - C Library

secure connections can be ensured by setting the sslmode parameter to verify-full or verify-
ca, and providing the system with a root certificate to verify against. This is analogous to using an https
URL for encrypted web browsing.

Once the server has been authenticated, the client can pass sensitive data. This means that up until this
point, the client does not need to know if certificates will be used for authentication, making it safe to
specify that only in the server configuration.

All SSL options carry overhead in the form of encryption and key-exchange, so there is a trade-off that
has to be made between performance and security. Table 34.1 illustrates the risks the different sslmode
values protect against, and what statement they make about security and overhead.

Table 34.1. SSL Mode Descriptions

sslmode Eavesdropping
protection

MITM protection Statement

disable No No I don't care about
security, and I don't want
to pay the overhead of
encryption.

allow Maybe No I don't care about
security, but I will
pay the overhead of
encryption if the server
insists on it.

prefer Maybe No I don't care about
encryption, but I wish
to pay the overhead of
encryption if the server
supports it.

require Yes No I want my data to be
encrypted, and I accept
the overhead. I trust that
the network will make
sure I always connect to
the server I want.

verify-ca Yes Depends on CA-
policy

I want my data
encrypted, and I accept
the overhead. I want to be
sure that I connect to a
server that I trust.

verify-full Yes Yes I want my data
encrypted, and I accept
the overhead. I want to be
sure that I connect to a
server I trust, and that it's
the one I specify.

The difference between verify-ca and verify-full depends on the policy of the root CA. If a
public CA is used, verify-ca allows connections to a server that somebody else may have registered
with the CA. In this case, verify-full should always be used. If a local CA is used, or even a self-
signed certificate, using verify-ca often provides enough protection.

876

libpq - C Library

The default value for sslmode is prefer. As is shown in the table, this makes no sense from a security
point of view, and it only promises performance overhead if possible. It is only provided as the default for
backward compatibility, and is not recommended in secure deployments.

34.18.4. SSL Client File Usage
Table 34.2 summarizes the files that are relevant to the SSL setup on the client.

Table 34.2. Libpq/Client SSL File Usage

File Contents Effect

~/.postgresql/
postgresql.crt

client certificate requested by server

~/.postgresql/
postgresql.key

client private key proves client certificate sent
by owner; does not indicate
certificate owner is trustworthy

~/.postgresql/root.crt trusted certificate authorities checks that server certificate is
signed by a trusted certificate
authority

~/.postgresql/root.crl certificates revoked by certificate
authorities

server certificate must not be on
this list

34.18.5. SSL Library Initialization
If your application initializes libssl and/or libcrypto libraries and libpq is built with SSL support,
you should call PQinitOpenSSL to tell libpq that the libssl and/or libcrypto libraries have
been initialized by your application, so that libpq will not also initialize those libraries. See http://
h41379.www4.hpe.com/doc/83final/ba554_90007/ch04.html for details on the SSL API.

PQinitOpenSSL

Allows applications to select which security libraries to initialize.

void PQinitOpenSSL(int do_ssl, int do_crypto);

When do_ssl is non-zero, libpq will initialize the OpenSSL library before first opening a database
connection. When do_crypto is non-zero, the libcrypto library will be initialized. By default
(if PQinitOpenSSL is not called), both libraries are initialized. When SSL support is not compiled
in, this function is present but does nothing.

If your application uses and initializes either OpenSSL or its underlying libcrypto library, you
must call this function with zeroes for the appropriate parameter(s) before first opening a database
connection. Also be sure that you have done that initialization before opening a database connection.

PQinitSSL

Allows applications to select which security libraries to initialize.

void PQinitSSL(int do_ssl);

This function is equivalent to PQinitOpenSSL(do_ssl, do_ssl). It is sufficient for
applications that initialize both or neither of OpenSSL and libcrypto.

877

http://h41379.www4.hpe.com/doc/83final/ba554_90007/ch04.html
http://h41379.www4.hpe.com/doc/83final/ba554_90007/ch04.html

libpq - C Library

PQinitSSL has been present since PostgreSQL 8.0, while PQinitOpenSSL was added in
PostgreSQL 8.4, so PQinitSSL might be preferable for applications that need to work with older
versions of libpq.

34.19. Behavior in Threaded Programs
libpq is reentrant and thread-safe by default. You might need to use special compiler command-line options
when you compile your application code. Refer to your system's documentation for information about how
to build thread-enabled applications, or look in src/Makefile.global for PTHREAD_CFLAGS and
PTHREAD_LIBS. This function allows the querying of libpq's thread-safe status:

PQisthreadsafe

Returns the thread safety status of the libpq library.

int PQisthreadsafe();

Returns 1 if the libpq is thread-safe and 0 if it is not.

One thread restriction is that no two threads attempt to manipulate the same PGconn object at the
same time. In particular, you cannot issue concurrent commands from different threads through the same
connection object. (If you need to run concurrent commands, use multiple connections.)

PGresult objects are normally read-only after creation, and so can be passed around freely between
threads. However, if you use any of the PGresult-modifying functions described in Section 34.11 or
Section 34.13, it's up to you to avoid concurrent operations on the same PGresult, too.

The deprecated functions PQrequestCancel and PQoidStatus are not thread-safe and should not
be used in multithread programs. PQrequestCancel can be replaced by PQcancel. PQoidStatus
can be replaced by PQoidValue.

If you are using Kerberos inside your application (in addition to inside libpq), you will need
to do locking around Kerberos calls because Kerberos functions are not thread-safe. See function
PQregisterThreadLock in the libpq source code for a way to do cooperative locking between libpq
and your application.

If you experience problems with threaded applications, run the program in src/tools/thread to
see if your platform has thread-unsafe functions. This program is run by configure, but for binary
distributions your library might not match the library used to build the binaries.

34.20. Building libpq Programs
To build (i.e., compile and link) a program using libpq you need to do all of the following things:

• Include the libpq-fe.h header file:

#include <libpq-fe.h>

If you failed to do that then you will normally get error messages from your compiler similar to:

foo.c: In function `main':
foo.c:34: `PGconn' undeclared (first use in this function)

878

libpq - C Library

foo.c:35: `PGresult' undeclared (first use in this function)
foo.c:54: `CONNECTION_BAD' undeclared (first use in this function)
foo.c:68: `PGRES_COMMAND_OK' undeclared (first use in this function)
foo.c:95: `PGRES_TUPLES_OK' undeclared (first use in this function)

• Point your compiler to the directory where the PostgreSQL header files were installed, by supplying
the -Idirectory option to your compiler. (In some cases the compiler will look into the directory
in question by default, so you can omit this option.) For instance, your compile command line could
look like:

cc -c -I/usr/local/pgsql/include testprog.c

If you are using makefiles then add the option to the CPPFLAGS variable:

CPPFLAGS += -I/usr/local/pgsql/include

If there is any chance that your program might be compiled by other users then you should not hardcode
the directory location like that. Instead, you can run the utility pg_config to find out where the header
files are on the local system:

$ pg_config --includedir
/usr/local/include

If you have pkg-config installed, you can run instead:

$ pkg-config --cflags libpq
-I/usr/local/include

Note that this will already include the -I in front of the path.

Failure to specify the correct option to the compiler will result in an error message such as:

testlibpq.c:8:22: libpq-fe.h: No such file or directory

• When linking the final program, specify the option -lpq so that the libpq library gets pulled in, as
well as the option -Ldirectory to point the compiler to the directory where the libpq library resides.
(Again, the compiler will search some directories by default.) For maximum portability, put the -L
option before the -lpq option. For example:

cc -o testprog testprog1.o testprog2.o -L/usr/local/pgsql/lib -lpq

You can find out the library directory using pg_config as well:

$ pg_config --libdir
/usr/local/pgsql/lib

Or again use pkg-config:

$ pkg-config --libs libpq

879

libpq - C Library

-L/usr/local/pgsql/lib -lpq

Note again that this prints the full options, not only the path.

Error messages that point to problems in this area could look like the following:

testlibpq.o: In function `main':
testlibpq.o(.text+0x60): undefined reference to `PQsetdbLogin'
testlibpq.o(.text+0x71): undefined reference to `PQstatus'
testlibpq.o(.text+0xa4): undefined reference to `PQerrorMessage'

This means you forgot -lpq.

/usr/bin/ld: cannot find -lpq

This means you forgot the -L option or did not specify the right directory.

34.21. Example Programs
These examples and others can be found in the directory src/test/examples in the source code
distribution.

Example 34.1. libpq Example Program 1

/*
 * src/test/examples/testlibpq.c
 *
 *
 * testlibpq.c
 *
 * Test the C version of libpq, the PostgreSQL frontend library.
 */
#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 int nFields;

880

libpq - C Library

 int i,
 j;

 /*
 * If the user supplies a parameter on the command line, use it as
 the
 * conninfo string; otherwise default to setting dbname=postgres
 and using
 * environment variables or defaults for all other connection
 parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take
 control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '',
 false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * Should PQclear PGresult whenever it is no longer needed to
 avoid memory
 * leaks
 */
 PQclear(res);

 /*
 * Our test case here involves using a cursor, for which we must
 be inside
 * a transaction block. We could do the whole thing with a single
 * PQexec() of "select * from pg_database", but that's too trivial
 to make
 * a good example.

881

libpq - C Library

 */

 /* Start a transaction block */
 res = PQexec(conn, "BEGIN");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed: %s",
 PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /*
 * Fetch rows from pg_database, the system catalog of databases
 */
 res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from
 pg_database");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR failed: %s",
 PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "FETCH ALL in myportal");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* first, print out the attribute names */
 nFields = PQnfields(res);
 for (i = 0; i < nFields; i++)
 printf("%-15s", PQfname(res, i));
 printf("\n\n");

 /* next, print out the rows */
 for (i = 0; i < PQntuples(res); i++)
 {
 for (j = 0; j < nFields; j++)
 printf("%-15s", PQgetvalue(res, i, j));
 printf("\n");
 }

 PQclear(res);

 /* close the portal ... we don't bother to check for errors ... */
 res = PQexec(conn, "CLOSE myportal");
 PQclear(res);

882

libpq - C Library

 /* end the transaction */
 res = PQexec(conn, "END");
 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Example 34.2. libpq Example Program 2

/*
 * src/test/examples/testlibpq2.c
 *
 *
 * testlibpq2.c
 * Test of the asynchronous notification interface
 *
 * Start this program, then from psql in another window do
 * NOTIFY TBL2;
 * Repeat four times to get this program to exit.
 *
 * Or, if you want to get fancy, try this:
 * populate a database with the following commands
 * (provided in src/test/examples/testlibpq2.sql):
 *
 * CREATE SCHEMA TESTLIBPQ2;
 * SET search_path = TESTLIBPQ2;
 * CREATE TABLE TBL1 (i int4);
 * CREATE TABLE TBL2 (i int4);
 * CREATE RULE r1 AS ON INSERT TO TBL1 DO
 * (INSERT INTO TBL2 VALUES (new.i); NOTIFY TBL2);
 *
 * Start this program, then from psql do this four times:
 *
 * INSERT INTO TESTLIBPQ2.TBL1 VALUES (10);
 */

#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/types.h>
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>

883

libpq - C Library

#endif

#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 PGnotify *notify;
 int nnotifies;

 /*
 * If the user supplies a parameter on the command line, use it as
 the
 * conninfo string; otherwise default to setting dbname=postgres
 and using
 * environment variables or defaults for all other connection
 parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take
 control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '',
 false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);

884

libpq - C Library

 exit_nicely(conn);
 }

 /*
 * Should PQclear PGresult whenever it is no longer needed to
 avoid memory
 * leaks
 */
 PQclear(res);

 /*
 * Issue LISTEN command to enable notifications from the rule's
 NOTIFY.
 */
 res = PQexec(conn, "LISTEN TBL2");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "LISTEN command failed: %s",
 PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /* Quit after four notifies are received. */
 nnotifies = 0;
 while (nnotifies < 4)
 {
 /*
 * Sleep until something happens on the connection. We use
 select(2)
 * to wait for input, but you could also use poll() or similar
 * facilities.
 */
 int sock;
 fd_set input_mask;

 sock = PQsocket(conn);

 if (sock < 0)
 break; /* shouldn't happen */

 FD_ZERO(&input_mask);
 FD_SET(sock, &input_mask);

 if (select(sock + 1, &input_mask, NULL, NULL, NULL) < 0)
 {
 fprintf(stderr, "select() failed: %s\n", strerror(errno));
 exit_nicely(conn);
 }

 /* Now check for input */
 PQconsumeInput(conn);
 while ((notify = PQnotifies(conn)) != NULL)

885

libpq - C Library

 {
 fprintf(stderr,
 "ASYNC NOTIFY of '%s' received from backend PID %d
\n",
 notify->relname, notify->be_pid);
 PQfreemem(notify);
 nnotifies++;
 PQconsumeInput(conn);
 }
 }

 fprintf(stderr, "Done.\n");

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Example 34.3. libpq Example Program 3

/*
 * src/test/examples/testlibpq3.c
 *
 *
 * testlibpq3.c
 * Test out-of-line parameters and binary I/O.
 *
 * Before running this, populate a database with the following
 commands
 * (provided in src/test/examples/testlibpq3.sql):
 *
 * CREATE SCHEMA testlibpq3;
 * SET search_path = testlibpq3;
 * CREATE TABLE test1 (i int4, t text, b bytea);
 * INSERT INTO test1 values (1, 'joe''s place', '\\000\\001\\002\\003\
\004');
 * INSERT INTO test1 values (2, 'ho there', '\\004\\003\\002\\001\
\000');
 *
 * The expected output is:
 *
 * tuple 0: got
 * i = (4 bytes) 1
 * t = (11 bytes) 'joe's place'
 * b = (5 bytes) \000\001\002\003\004
 *
 * tuple 0: got
 * i = (4 bytes) 2
 * t = (8 bytes) 'ho there'
 * b = (5 bytes) \004\003\002\001\000

886

libpq - C Library

 */

#ifdef WIN32
#include <windows.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include "libpq-fe.h"

/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

/*
 * This function prints a query result that is a binary-format fetch
 from
 * a table defined as in the comment above. We split it out because
 the
 * main() function uses it twice.
 */
static void
show_binary_results(PGresult *res)
{
 int i,
 j;
 int i_fnum,
 t_fnum,
 b_fnum;

 /* Use PQfnumber to avoid assumptions about field order in result
 */
 i_fnum = PQfnumber(res, "i");
 t_fnum = PQfnumber(res, "t");
 b_fnum = PQfnumber(res, "b");

 for (i = 0; i < PQntuples(res); i++)
 {
 char *iptr;
 char *tptr;
 char *bptr;
 int blen;
 int ival;

887

libpq - C Library

 /* Get the field values (we ignore possibility they are null!)
 */
 iptr = PQgetvalue(res, i, i_fnum);
 tptr = PQgetvalue(res, i, t_fnum);
 bptr = PQgetvalue(res, i, b_fnum);

 /*
 * The binary representation of INT4 is in network byte order,
 which
 * we'd better coerce to the local byte order.
 */
 ival = ntohl(*((uint32_t *) iptr));

 /*
 * The binary representation of TEXT is, well, text, and since
 libpq
 * was nice enough to append a zero byte to it, it'll work
 just fine
 * as a C string.
 *
 * The binary representation of BYTEA is a bunch of bytes,
 which could
 * include embedded nulls so we have to pay attention to field
 length.
 */
 blen = PQgetlength(res, i, b_fnum);

 printf("tuple %d: got\n", i);
 printf(" i = (%d bytes) %d\n",
 PQgetlength(res, i, i_fnum), ival);
 printf(" t = (%d bytes) '%s'\n",
 PQgetlength(res, i, t_fnum), tptr);
 printf(" b = (%d bytes) ", blen);
 for (j = 0; j < blen; j++)
 printf("\\%03o", bptr[j]);
 printf("\n\n");
 }
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 const char *paramValues[1];
 int paramLengths[1];
 int paramFormats[1];
 uint32_t binaryIntVal;

 /*
 * If the user supplies a parameter on the command line, use it as
 the

888

libpq - C Library

 * conninfo string; otherwise default to setting dbname=postgres
 and using
 * environment variables or defaults for all other connection
 parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take
 control. */
 res = PQexec(conn, "SET search_path = testlibpq3");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /*
 * The point of this program is to illustrate use of
 PQexecParams() with
 * out-of-line parameters, as well as binary transmission of data.
 *
 * This first example transmits the parameters as text, but
 receives the
 * results in binary format. By using out-of-line parameters we
 can avoid
 * a lot of tedious mucking about with quoting and escaping, even
 though
 * the data is text. Notice how we don't have to do anything
 special with
 * the quote mark in the parameter value.
 */

 /* Here is our out-of-line parameter value */
 paramValues[0] = "joe's place";

 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE t = $1",

889

libpq - C Library

 1, /* one param */
 NULL, /* let the backend deduce param type
 */
 paramValues,
 NULL, /* don't need param lengths since text
 */
 NULL, /* default to all text params */
 1); /* ask for binary results */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

 /*
 * In this second example we transmit an integer parameter in
 binary form,
 * and again retrieve the results in binary form.
 *
 * Although we tell PQexecParams we are letting the backend deduce
 * parameter type, we really force the decision by casting the
 parameter
 * symbol in the query text. This is a good safety measure when
 sending
 * binary parameters.
 */

 /* Convert integer value "2" to network byte order */
 binaryIntVal = htonl((uint32_t) 2);

 /* Set up parameter arrays for PQexecParams */
 paramValues[0] = (char *) &binaryIntVal;
 paramLengths[0] = sizeof(binaryIntVal);
 paramFormats[0] = 1; /* binary */

 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE i = $1::int4",
 1, /* one param */
 NULL, /* let the backend deduce param type
 */
 paramValues,
 paramLengths,
 paramFormats,
 1); /* ask for binary results */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));

890

libpq - C Library

 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

891

Chapter 35. Large Objects
PostgreSQL has a large object facility, which provides stream-style access to user data that is stored in a
special large-object structure. Streaming access is useful when working with data values that are too large
to manipulate conveniently as a whole.

This chapter describes the implementation and the programming and query language interfaces to
PostgreSQL large object data. We use the libpq C library for the examples in this chapter, but most
programming interfaces native to PostgreSQL support equivalent functionality. Other interfaces might use
the large object interface internally to provide generic support for large values. This is not described here.

35.1. Introduction
All large objects are stored in a single system table named pg_largeobject. Each large object also has
an entry in the system table pg_largeobject_metadata. Large objects can be created, modified,
and deleted using a read/write API that is similar to standard operations on files.

PostgreSQL also supports a storage system called “TOAST”, which automatically stores values larger than
a single database page into a secondary storage area per table. This makes the large object facility partially
obsolete. One remaining advantage of the large object facility is that it allows values up to 4 TB in size,
whereas TOASTed fields can be at most 1 GB. Also, reading and updating portions of a large object can
be done efficiently, while most operations on a TOASTed field will read or write the whole value as a unit.

35.2. Implementation Features
The large object implementation breaks large objects up into “chunks” and stores the chunks in rows in
the database. A B-tree index guarantees fast searches for the correct chunk number when doing random
access reads and writes.

The chunks stored for a large object do not have to be contiguous. For example, if an application opens a
new large object, seeks to offset 1000000, and writes a few bytes there, this does not result in allocation of
1000000 bytes worth of storage; only of chunks covering the range of data bytes actually written. A read
operation will, however, read out zeroes for any unallocated locations preceding the last existing chunk.
This corresponds to the common behavior of “sparsely allocated” files in Unix file systems.

As of PostgreSQL 9.0, large objects have an owner and a set of access permissions, which can be managed
using GRANT and REVOKE. SELECT privileges are required to read a large object, and UPDATE
privileges are required to write or truncate it. Only the large object's owner (or a database superuser) can
delete, comment on, or change the owner of a large object. To adjust this behavior for compatibility with
prior releases, see the lo_compat_privileges run-time parameter.

35.3. Client Interfaces
This section describes the facilities that PostgreSQL's libpq client interface library provides for accessing
large objects. The PostgreSQL large object interface is modeled after the Unix file-system interface, with
analogues of open, read, write, lseek, etc.

All large object manipulation using these functions must take place within an SQL transaction block, since
large object file descriptors are only valid for the duration of a transaction.

If an error occurs while executing any one of these functions, the function will return an otherwise-
impossible value, typically 0 or -1. A message describing the error is stored in the connection object and
can be retrieved with PQerrorMessage.

892

Large Objects

Client applications that use these functions should include the header file libpq/libpq-fs.h and link
with the libpq library.

35.3.1. Creating a Large Object
 The function

Oid lo_creat(PGconn *conn, int mode);

creates a new large object. The return value is the OID that was assigned to the new large object, or
InvalidOid (zero) on failure. mode is unused and ignored as of PostgreSQL 8.1; however, for backward
compatibility with earlier releases it is best to set it to INV_READ, INV_WRITE, or INV_READ |
INV_WRITE. (These symbolic constants are defined in the header file libpq/libpq-fs.h.)

An example:

inv_oid = lo_creat(conn, INV_READ|INV_WRITE);

 The function

Oid lo_create(PGconn *conn, Oid lobjId);

also creates a new large object. The OID to be assigned can be specified by lobjId; if so, failure occurs
if that OID is already in use for some large object. If lobjId is InvalidOid (zero) then lo_create
assigns an unused OID (this is the same behavior as lo_creat). The return value is the OID that was
assigned to the new large object, or InvalidOid (zero) on failure.

lo_create is new as of PostgreSQL 8.1; if this function is run against an older server version, it will
fail and return InvalidOid.

An example:

inv_oid = lo_create(conn, desired_oid);

35.3.2. Importing a Large Object
 To import an operating system file as a large object, call

Oid lo_import(PGconn *conn, const char *filename);

filename specifies the operating system name of the file to be imported as a large object. The return
value is the OID that was assigned to the new large object, or InvalidOid (zero) on failure. Note that
the file is read by the client interface library, not by the server; so it must exist in the client file system
and be readable by the client application.

 The function

Oid lo_import_with_oid(PGconn *conn, const char *filename, Oid
 lobjId);

893

Large Objects

also imports a new large object. The OID to be assigned can be specified by lobjId; if so, failure
occurs if that OID is already in use for some large object. If lobjId is InvalidOid (zero) then
lo_import_with_oid assigns an unused OID (this is the same behavior as lo_import). The return
value is the OID that was assigned to the new large object, or InvalidOid (zero) on failure.

lo_import_with_oid is new as of PostgreSQL 8.4 and uses lo_create internally which is new in
8.1; if this function is run against 8.0 or before, it will fail and return InvalidOid.

35.3.3. Exporting a Large Object
 To export a large object into an operating system file, call

int lo_export(PGconn *conn, Oid lobjId, const char *filename);

The lobjId argument specifies the OID of the large object to export and the filename argument
specifies the operating system name of the file. Note that the file is written by the client interface library,
not by the server. Returns 1 on success, -1 on failure.

35.3.4. Opening an Existing Large Object
 To open an existing large object for reading or writing, call

int lo_open(PGconn *conn, Oid lobjId, int mode);

The lobjId argument specifies the OID of the large object to open. The mode bits control whether the
object is opened for reading (INV_READ), writing (INV_WRITE), or both. (These symbolic constants
are defined in the header file libpq/libpq-fs.h.) lo_open returns a (non-negative) large object
descriptor for later use in lo_read, lo_write, lo_lseek, lo_lseek64, lo_tell, lo_tell64,
lo_truncate, lo_truncate64, and lo_close. The descriptor is only valid for the duration of the
current transaction. On failure, -1 is returned.

The server currently does not distinguish between modes INV_WRITE and INV_READ | INV_WRITE:
you are allowed to read from the descriptor in either case. However there is a significant difference between
these modes and INV_READ alone: with INV_READ you cannot write on the descriptor, and the data
read from it will reflect the contents of the large object at the time of the transaction snapshot that was
active when lo_open was executed, regardless of later writes by this or other transactions. Reading from
a descriptor opened with INV_WRITE returns data that reflects all writes of other committed transactions
as well as writes of the current transaction. This is similar to the behavior of REPEATABLE READ versus
READ COMMITTED transaction modes for ordinary SQL SELECT commands.

lo_open will fail if SELECT privilege is not available for the large object, or if INV_WRITE is specified
and UPDATE privilege is not available. (Prior to PostgreSQL 11, these privilege checks were instead
performed at the first actual read or write call using the descriptor.) These privilege checks can be disabled
with the lo_compat_privileges run-time parameter.

An example:

inv_fd = lo_open(conn, inv_oid, INV_READ|INV_WRITE);

35.3.5. Writing Data to a Large Object
 The function

894

Large Objects

int lo_write(PGconn *conn, int fd, const char *buf, size_t len);

writes len bytes from buf (which must be of size len) to large object descriptor fd. The fd argument
must have been returned by a previous lo_open. The number of bytes actually written is returned (in
the current implementation, this will always equal len unless there is an error). In the event of an error,
the return value is -1.

Although the len parameter is declared as size_t, this function will reject length values larger than
INT_MAX. In practice, it's best to transfer data in chunks of at most a few megabytes anyway.

35.3.6. Reading Data from a Large Object
 The function

int lo_read(PGconn *conn, int fd, char *buf, size_t len);

reads up to len bytes from large object descriptor fd into buf (which must be of size len). The fd
argument must have been returned by a previous lo_open. The number of bytes actually read is returned;
this will be less than len if the end of the large object is reached first. In the event of an error, the return
value is -1.

Although the len parameter is declared as size_t, this function will reject length values larger than
INT_MAX. In practice, it's best to transfer data in chunks of at most a few megabytes anyway.

35.3.7. Seeking in a Large Object
 To change the current read or write location associated with a large object descriptor, call

int lo_lseek(PGconn *conn, int fd, int offset, int whence);

This function moves the current location pointer for the large object descriptor identified by fd to the new
location specified by offset. The valid values for whence are SEEK_SET (seek from object start),
SEEK_CUR (seek from current position), and SEEK_END (seek from object end). The return value is the
new location pointer, or -1 on error.

 When dealing with large objects that might exceed 2GB in size, instead use

pg_int64 lo_lseek64(PGconn *conn, int fd, pg_int64 offset, int
 whence);

This function has the same behavior as lo_lseek, but it can accept an offset larger than 2GB and/
or deliver a result larger than 2GB. Note that lo_lseek will fail if the new location pointer would be
greater than 2GB.

lo_lseek64 is new as of PostgreSQL 9.3. If this function is run against an older server version, it will
fail and return -1.

35.3.8. Obtaining the Seek Position of a Large Object
 To obtain the current read or write location of a large object descriptor, call

895

Large Objects

int lo_tell(PGconn *conn, int fd);

If there is an error, the return value is -1.

 When dealing with large objects that might exceed 2GB in size, instead use

pg_int64 lo_tell64(PGconn *conn, int fd);

This function has the same behavior as lo_tell, but it can deliver a result larger than 2GB. Note that
lo_tell will fail if the current read/write location is greater than 2GB.

lo_tell64 is new as of PostgreSQL 9.3. If this function is run against an older server version, it will
fail and return -1.

35.3.9. Truncating a Large Object
 To truncate a large object to a given length, call

int lo_truncate(PGcon *conn, int fd, size_t len);

This function truncates the large object descriptor fd to length len. The fd argument must have been
returned by a previous lo_open. If len is greater than the large object's current length, the large object
is extended to the specified length with null bytes ('\0'). On success, lo_truncate returns zero. On
error, the return value is -1.

The read/write location associated with the descriptor fd is not changed.

Although the len parameter is declared as size_t, lo_truncate will reject length values larger than
INT_MAX.

 When dealing with large objects that might exceed 2GB in size, instead use

int lo_truncate64(PGcon *conn, int fd, pg_int64 len);

This function has the same behavior as lo_truncate, but it can accept a len value exceeding 2GB.

lo_truncate is new as of PostgreSQL 8.3; if this function is run against an older server version, it
will fail and return -1.

lo_truncate64 is new as of PostgreSQL 9.3; if this function is run against an older server version,
it will fail and return -1.

35.3.10. Closing a Large Object Descriptor
 A large object descriptor can be closed by calling

int lo_close(PGconn *conn, int fd);

where fd is a large object descriptor returned by lo_open. On success, lo_close returns zero. On
error, the return value is -1.

Any large object descriptors that remain open at the end of a transaction will be closed automatically.

896

Large Objects

35.3.11. Removing a Large Object
 To remove a large object from the database, call

int lo_unlink(PGconn *conn, Oid lobjId);

The lobjId argument specifies the OID of the large object to remove. Returns 1 if successful, -1 on
failure.

35.4. Server-side Functions
Server-side functions tailored for manipulating large objects from SQL are listed in Table 35.1.

Table 35.1. SQL-oriented Large Object Functions

Function Return Type Description Example Result

lo_from_bytea(loid
oid, string
bytea)

oid Create a large
object and store
data there, returning
its OID. Pass 0
to have the system
choose an OID.

lo_from_bytea(0,
'\xffffff00')

24528

 lo_put(loid
oid, offset
bigint, str
bytea)

void Write data at the
given offset.

lo_put(24528,
1, '\xaa')

 lo_get(loid
oid [, from
bigint, for
int])

bytea Extract contents or
a substring thereof.

lo_get(24528,
0, 3)

\xffaaff

There are additional server-side functions corresponding to each of the client-side functions described
earlier; indeed, for the most part the client-side functions are simply interfaces to the equivalent server-
side functions. The ones just as convenient to call via SQL commands are lo_creat, lo_create,
lo_unlink, lo_import, and lo_export. Here are examples of their use:

CREATE TABLE image (
 name text,
 raster oid
);

SELECT lo_creat(-1); -- returns OID of new, empty large object

SELECT lo_create(43213); -- attempts to create large object with OID
 43213

SELECT lo_unlink(173454); -- deletes large object with OID 173454

INSERT INTO image (name, raster)
 VALUES ('beautiful image', lo_import('/etc/motd'));

897

Large Objects

INSERT INTO image (name, raster) -- same as above, but specify OID to
 use
 VALUES ('beautiful image', lo_import('/etc/motd', 68583));

SELECT lo_export(image.raster, '/tmp/motd') FROM image
 WHERE name = 'beautiful image';

The server-side lo_import and lo_export functions behave considerably differently from their
client-side analogs. These two functions read and write files in the server's file system, using the
permissions of the database's owning user. Therefore, by default their use is restricted to superusers. In
contrast, the client-side import and export functions read and write files in the client's file system, using
the permissions of the client program. The client-side functions do not require any database privileges,
except the privilege to read or write the large object in question.

Caution

It is possible to GRANT use of the server-side lo_import and lo_export functions to non-
superusers, but careful consideration of the security implications is required. A malicious user
of such privileges could easily parlay them into becoming superuser (for example by rewriting
server configuration files), or could attack the rest of the server's file system without bothering to
obtain database superuser privileges as such. Access to roles having such privilege must therefore
be guarded just as carefully as access to superuser roles. Nonetheless, if use of server-side
lo_import or lo_export is needed for some routine task, it's safer to use a role with such
privileges than one with full superuser privileges, as that helps to reduce the risk of damage from
accidental errors.

The functionality of lo_read and lo_write is also available via server-side calls, but the names of
the server-side functions differ from the client side interfaces in that they do not contain underscores. You
must call these functions as loread and lowrite.

35.5. Example Program
Example 35.1 is a sample program which shows how the large object interface in libpq can be used. Parts
of the program are commented out but are left in the source for the reader's benefit. This program can also
be found in src/test/examples/testlo.c in the source distribution.

Example 35.1. Large Objects with libpq Example Program

/
*---
 *
 * testlo.c
 * test using large objects with libpq
 *
 * Portions Copyright (c) 1996-2018, PostgreSQL Global Development
 Group
 * Portions Copyright (c) 1994, Regents of the University of
 California
 *

898

Large Objects

 *
 * IDENTIFICATION
 * src/test/examples/testlo.c
 *
 *---
 */
#include <stdio.h>
#include <stdlib.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
 * importFile -
 * import file "in_filename" into database as large object
 "lobjOid"
 *
 */
static Oid
importFile(PGconn *conn, char *filename)
{
 Oid lobjId;
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the file to be read in
 */
 fd = open(filename, O_RDONLY, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "cannot open unix file\"%s\"\n", filename);
 }

 /*
 * create the large object
 */
 lobjId = lo_creat(conn, INV_READ | INV_WRITE);
 if (lobjId == 0)
 fprintf(stderr, "cannot create large object");

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);

 /*

899

Large Objects

 * read in from the Unix file and write to the inversion file
 */
 while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
 {
 tmp = lo_write(conn, lobj_fd, buf, nbytes);
 if (tmp < nbytes)
 fprintf(stderr, "error while reading \"%s\"", filename);
 }

 close(fd);
 lo_close(conn, lobj_fd);

 return lobjId;
}

static void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nread;

 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 nread = 0;
 while (len - nread > 0)
 {
 nbytes = lo_read(conn, lobj_fd, buf, len - nread);
 buf[nbytes] = '\0';
 fprintf(stderr, ">>> %s", buf);
 nread += nbytes;
 if (nbytes <= 0)
 break; /* no more data? */
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

static void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nwritten;
 int i;

900

Large Objects

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 for (i = 0; i < len; i++)
 buf[i] = 'X';
 buf[i] = '\0';

 nwritten = 0;
 while (len - nwritten > 0)
 {
 nbytes = lo_write(conn, lobj_fd, buf + nwritten, len -
 nwritten);
 nwritten += nbytes;
 if (nbytes <= 0)
 {
 fprintf(stderr, "\nWRITE FAILED!\n");
 break;
 }
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

/*
 * exportFile -
 * export large object "lobjOid" to file "out_filename"
 *
 */
static void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the large object
 */
 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 /*
 * open the file to be written to
 */
 fd = open(filename, O_CREAT | O_WRONLY | O_TRUNC, 0666);

901

Large Objects

 if (fd < 0)
 { /* error */
 fprintf(stderr, "cannot open unix file\"%s\"",
 filename);
 }

 /*
 * read in from the inversion file and write to the Unix file
 */
 while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
 {
 tmp = write(fd, buf, nbytes);
 if (tmp < nbytes)
 {
 fprintf(stderr, "error while writing \"%s\"",
 filename);
 }
 }

 lo_close(conn, lobj_fd);
 close(fd);

 return;
}

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 char *in_filename,
 *out_filename;
 char *database;
 Oid lobjOid;
 PGconn *conn;
 PGresult *res;

 if (argc != 4)
 {
 fprintf(stderr, "Usage: %s database_name in_filename
 out_filename\n",
 argv[0]);
 exit(1);
 }

 database = argv[1];
 in_filename = argv[2];
 out_filename = argv[3];

902

Large Objects

 /*
 * set up the connection
 */
 conn = PQsetdb(NULL, NULL, NULL, NULL, database);

 /* check to see that the backend connection was successfully made
 */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take
 control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '',
 false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "begin");
 PQclear(res);
 printf("importing file \"%s\" ...\n", in_filename);
/* lobjOid = importFile(conn, in_filename); */
 lobjOid = lo_import(conn, in_filename);
 if (lobjOid == 0)
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 else
 {
 printf("\tas large object %u.\n", lobjOid);

 printf("picking out bytes 1000-2000 of the large object\n");
 pickout(conn, lobjOid, 1000, 1000);

 printf("overwriting bytes 1000-2000 of the large object with
 X's\n");
 overwrite(conn, lobjOid, 1000, 1000);

 printf("exporting large object to file \"%s\" ...\n",
 out_filename);
/* exportFile(conn, lobjOid, out_filename); */
 if (lo_export(conn, lobjOid, out_filename) < 0)
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 }

 res = PQexec(conn, "end");
 PQclear(res);

903

Large Objects

 PQfinish(conn);
 return 0;
}

904

Chapter 36. ECPG - Embedded SQL in
C

This chapter describes the embedded SQL package for PostgreSQL. It was written by Linus Tolke
(<linus@epact.se>) and Michael Meskes (<meskes@postgresql.org>). Originally it was
written to work with C. It also works with C++, but it does not recognize all C++ constructs yet.

This documentation is quite incomplete. But since this interface is standardized, additional information
can be found in many resources about SQL.

36.1. The Concept
An embedded SQL program consists of code written in an ordinary programming language, in this case C,
mixed with SQL commands in specially marked sections. To build the program, the source code (*.pgc)
is first passed through the embedded SQL preprocessor, which converts it to an ordinary C program (*.c),
and afterwards it can be processed by a C compiler. (For details about the compiling and linking see
Section 36.10). Converted ECPG applications call functions in the libpq library through the embedded
SQL library (ecpglib), and communicate with the PostgreSQL server using the normal frontend-backend
protocol.

Embedded SQL has advantages over other methods for handling SQL commands from C code. First, it
takes care of the tedious passing of information to and from variables in your C program. Second, the
SQL code in the program is checked at build time for syntactical correctness. Third, embedded SQL in C
is specified in the SQL standard and supported by many other SQL database systems. The PostgreSQL
implementation is designed to match this standard as much as possible, and it is usually possible to port
embedded SQL programs written for other SQL databases to PostgreSQL with relative ease.

As already stated, programs written for the embedded SQL interface are normal C programs with special
code inserted to perform database-related actions. This special code always has the form:

EXEC SQL ...;

These statements syntactically take the place of a C statement. Depending on the particular statement, they
can appear at the global level or within a function. Embedded SQL statements follow the case-sensitivity
rules of normal SQL code, and not those of C. Also they allow nested C-style comments that are part of
the SQL standard. The C part of the program, however, follows the C standard of not accepting nested
comments.

The following sections explain all the embedded SQL statements.

36.2. Managing Database Connections
This section describes how to open, close, and switch database connections.

36.2.1. Connecting to the Database Server
One connects to a database using the following statement:

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

905

ECPG - Embedded SQL in C

The target can be specified in the following ways:

• dbname[@hostname][:port]

• tcp:postgresql://hostname[:port][/dbname][?options]

• unix:postgresql://hostname[:port][/dbname][?options]

• an SQL string literal containing one of the above forms

• a reference to a character variable containing one of the above forms (see examples)

• DEFAULT

If you specify the connection target literally (that is, not through a variable reference) and you don't quote
the value, then the case-insensitivity rules of normal SQL are applied. In that case you can also double-
quote the individual parameters separately as needed. In practice, it is probably less error-prone to use a
(single-quoted) string literal or a variable reference. The connection target DEFAULT initiates a connection
to the default database under the default user name. No separate user name or connection name can be
specified in that case.

There are also different ways to specify the user name:

• username

• username/password

• username IDENTIFIED BY password

• username USING password

As above, the parameters username and password can be an SQL identifier, an SQL string literal, or
a reference to a character variable.

The connection-name is used to handle multiple connections in one program. It can be omitted if a
program uses only one connection. The most recently opened connection becomes the current connection,
which is used by default when an SQL statement is to be executed (see later in this chapter).

If untrusted users have access to a database that has not adopted a secure schema usage
pattern, begin each session by removing publicly-writable schemas from search_path. For
example, add options=-csearch_path= to options, or issue EXEC SQL SELECT
pg_catalog.set_config('search_path', '', false); after connecting. This
consideration is not specific to ECPG; it applies to every interface for executing arbitrary SQL commands.

Here are some examples of CONNECT statements:

EXEC SQL CONNECT TO mydb@sql.mydomain.com;

EXEC SQL CONNECT TO unix:postgresql://sql.mydomain.com/mydb AS
 myconnection USER john;

EXEC SQL BEGIN DECLARE SECTION;
const char *target = "mydb@sql.mydomain.com";
const char *user = "john";
const char *passwd = "secret";
EXEC SQL END DECLARE SECTION;
 ...

906

ECPG - Embedded SQL in C

EXEC SQL CONNECT TO :target USER :user USING :passwd;
/* or EXEC SQL CONNECT TO :target USER :user/:passwd; */

The last form makes use of the variant referred to above as character variable reference. You will see in
later sections how C variables can be used in SQL statements when you prefix them with a colon.

Be advised that the format of the connection target is not specified in the SQL standard. So if you want
to develop portable applications, you might want to use something based on the last example above to
encapsulate the connection target string somewhere.

36.2.2. Choosing a Connection
SQL statements in embedded SQL programs are by default executed on the current connection, that is,
the most recently opened one. If an application needs to manage multiple connections, then there are two
ways to handle this.

The first option is to explicitly choose a connection for each SQL statement, for example:

EXEC SQL AT connection-name SELECT ...;

This option is particularly suitable if the application needs to use several connections in mixed order.

If your application uses multiple threads of execution, they cannot share a connection concurrently. You
must either explicitly control access to the connection (using mutexes) or use a connection for each thread.

The second option is to execute a statement to switch the current connection. That statement is:

EXEC SQL SET CONNECTION connection-name;

This option is particularly convenient if many statements are to be executed on the same connection.

Here is an example program managing multiple database connections:

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
EXEC SQL END DECLARE SECTION;

int
main()
{
 EXEC SQL CONNECT TO testdb1 AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;
 EXEC SQL CONNECT TO testdb2 AS con2 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;
 EXEC SQL CONNECT TO testdb3 AS con3 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;

 /* This query would be executed in the last opened database
 "testdb3". */

907

ECPG - Embedded SQL in C

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb3)\n", dbname);

 /* Using "AT" to run a query in "testdb2" */
 EXEC SQL AT con2 SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb2)\n", dbname);

 /* Switch the current connection to "testdb1". */
 EXEC SQL SET CONNECTION con1;

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb1)\n", dbname);

 EXEC SQL DISCONNECT ALL;
 return 0;
}

This example would produce this output:

current=testdb3 (should be testdb3)
current=testdb2 (should be testdb2)
current=testdb1 (should be testdb1)

36.2.3. Closing a Connection
To close a connection, use the following statement:

EXEC SQL DISCONNECT [connection];

The connection can be specified in the following ways:

• connection-name

• DEFAULT

• CURRENT

• ALL

If no connection name is specified, the current connection is closed.

It is good style that an application always explicitly disconnect from every connection it opened.

36.3. Running SQL Commands
Any SQL command can be run from within an embedded SQL application. Below are some examples
of how to do that.

36.3.1. Executing SQL Statements
Creating a table:

EXEC SQL CREATE TABLE foo (number integer, ascii char(16));

908

ECPG - Embedded SQL in C

EXEC SQL CREATE UNIQUE INDEX num1 ON foo(number);
EXEC SQL COMMIT;

Inserting rows:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, 'doodad');
EXEC SQL COMMIT;

Deleting rows:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

Updates:

EXEC SQL UPDATE foo
 SET ascii = 'foobar'
 WHERE number = 9999;
EXEC SQL COMMIT;

SELECT statements that return a single result row can also be executed using EXEC SQL directly.
To handle result sets with multiple rows, an application has to use a cursor; see Section 36.3.2 below.
(As a special case, an application can fetch multiple rows at once into an array host variable; see
Section 36.4.4.3.1.)

Single-row select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = 'doodad';

Also, a configuration parameter can be retrieved with the SHOW command:

EXEC SQL SHOW search_path INTO :var;

The tokens of the form :something are host variables, that is, they refer to variables in the C program.
They are explained in Section 36.4.

36.3.2. Using Cursors
To retrieve a result set holding multiple rows, an application has to declare a cursor and fetch each row
from the cursor. The steps to use a cursor are the following: declare a cursor, open it, fetch a row from
the cursor, repeat, and finally close it.

Select using cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
 SELECT number, ascii FROM foo
 ORDER BY ascii;
EXEC SQL OPEN foo_bar;
EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;

909

ECPG - Embedded SQL in C

EXEC SQL COMMIT;

For more details about declaration of the cursor, see DECLARE, and see FETCH for FETCH command
details.

Note

The ECPG DECLARE command does not actually cause a statement to be sent to the PostgreSQL
backend. The cursor is opened in the backend (using the backend's DECLARE command) at the
point when the OPEN command is executed.

36.3.3. Managing Transactions
In the default mode, statements are committed only when EXEC SQL COMMIT is issued. The embedded
SQL interface also supports autocommit of transactions (similar to psql's default behavior) via the -t
command-line option to ecpg (see ecpg) or via the EXEC SQL SET AUTOCOMMIT TO ON statement.
In autocommit mode, each command is automatically committed unless it is inside an explicit transaction
block. This mode can be explicitly turned off using EXEC SQL SET AUTOCOMMIT TO OFF.

The following transaction management commands are available:

EXEC SQL COMMIT

Commit an in-progress transaction.

EXEC SQL ROLLBACK

Roll back an in-progress transaction.

EXEC SQL PREPARE TRANSACTION transaction_id

Prepare the current transaction for two-phase commit.

EXEC SQL COMMIT PREPARED transaction_id

Commit a transaction that is in prepared state.

EXEC SQL ROLLBACK PREPARED transaction_id

Roll back a transaction that is in prepared state.

EXEC SQL SET AUTOCOMMIT TO ON

Enable autocommit mode.

EXEC SQL SET AUTOCOMMIT TO OFF

Disable autocommit mode. This is the default.

36.3.4. Prepared Statements
When the values to be passed to an SQL statement are not known at compile time, or the same statement
is going to be used many times, then prepared statements can be useful.

The statement is prepared using the command PREPARE. For the values that are not known yet, use the
placeholder “?”:

910

ECPG - Embedded SQL in C

EXEC SQL PREPARE stmt1 FROM "SELECT oid, datname FROM pg_database
 WHERE oid = ?";

If a statement returns a single row, the application can call EXECUTE after PREPARE to execute the
statement, supplying the actual values for the placeholders with a USING clause:

EXEC SQL EXECUTE stmt1 INTO :dboid, :dbname USING 1;

If a statement returns multiple rows, the application can use a cursor declared based on the prepared
statement. To bind input parameters, the cursor must be opened with a USING clause:

EXEC SQL PREPARE stmt1 FROM "SELECT oid,datname FROM pg_database WHERE
 oid > ?";
EXEC SQL DECLARE foo_bar CURSOR FOR stmt1;

/* when end of result set reached, break out of while loop */
EXEC SQL WHENEVER NOT FOUND DO BREAK;

EXEC SQL OPEN foo_bar USING 100;
...
while (1)
{
 EXEC SQL FETCH NEXT FROM foo_bar INTO :dboid, :dbname;
 ...
}
EXEC SQL CLOSE foo_bar;

When you don't need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

For more details about PREPARE, see PREPARE. Also see Section 36.5 for more details about using
placeholders and input parameters.

36.4. Using Host Variables
In Section 36.3 you saw how you can execute SQL statements from an embedded SQL program. Some
of those statements only used fixed values and did not provide a way to insert user-supplied values into
statements or have the program process the values returned by the query. Those kinds of statements are
not really useful in real applications. This section explains in detail how you can pass data between your
C program and the embedded SQL statements using a simple mechanism called host variables. In an
embedded SQL program we consider the SQL statements to be guests in the C program code which is the
host language. Therefore the variables of the C program are called host variables.

Another way to exchange values between PostgreSQL backends and ECPG applications is the use of SQL
descriptors, described in Section 36.7.

36.4.1. Overview
Passing data between the C program and the SQL statements is particularly simple in embedded SQL.
Instead of having the program paste the data into the statement, which entails various complications, such

911

ECPG - Embedded SQL in C

as properly quoting the value, you can simply write the name of a C variable into the SQL statement,
prefixed by a colon. For example:

EXEC SQL INSERT INTO sometable VALUES (:v1, 'foo', :v2);

This statement refers to two C variables named v1 and v2 and also uses a regular SQL string literal, to
illustrate that you are not restricted to use one kind of data or the other.

This style of inserting C variables in SQL statements works anywhere a value expression is expected in
an SQL statement.

36.4.2. Declare Sections
To pass data from the program to the database, for example as parameters in a query, or to pass data from
the database back to the program, the C variables that are intended to contain this data need to be declared
in specially marked sections, so the embedded SQL preprocessor is made aware of them.

This section starts with:

EXEC SQL BEGIN DECLARE SECTION;

and ends with:

EXEC SQL END DECLARE SECTION;

Between those lines, there must be normal C variable declarations, such as:

int x = 4;
char foo[16], bar[16];

As you can see, you can optionally assign an initial value to the variable. The variable's scope is determined
by the location of its declaring section within the program. You can also declare variables with the
following syntax which implicitly creates a declare section:

EXEC SQL int i = 4;

You can have as many declare sections in a program as you like.

The declarations are also echoed to the output file as normal C variables, so there's no need to declare
them again. Variables that are not intended to be used in SQL commands can be declared normally outside
these special sections.

The definition of a structure or union also must be listed inside a DECLARE section. Otherwise the
preprocessor cannot handle these types since it does not know the definition.

36.4.3. Retrieving Query Results
Now you should be able to pass data generated by your program into an SQL command. But how do you
retrieve the results of a query? For that purpose, embedded SQL provides special variants of the usual
commands SELECT and FETCH. These commands have a special INTO clause that specifies which host
variables the retrieved values are to be stored in. SELECT is used for a query that returns only single row,
and FETCH is used for a query that returns multiple rows, using a cursor.

912

ECPG - Embedded SQL in C

Here is an example:

/*
 * assume this table:
 * CREATE TABLE test1 (a int, b varchar(50));
 */

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;

So the INTO clause appears between the select list and the FROM clause. The number of elements in the
select list and the list after INTO (also called the target list) must be equal.

Here is an example using the command FETCH:

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

 ...

do
{
 ...
 EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
 ...
} while (...);

Here the INTO clause appears after all the normal clauses.

36.4.4. Type Mapping
When ECPG applications exchange values between the PostgreSQL server and the C application, such
as when retrieving query results from the server or executing SQL statements with input parameters, the
values need to be converted between PostgreSQL data types and host language variable types (C language
data types, concretely). One of the main points of ECPG is that it takes care of this automatically in most
cases.

In this respect, there are two kinds of data types: Some simple PostgreSQL data types, such as integer
and text, can be read and written by the application directly. Other PostgreSQL data types, such as
timestamp and numeric can only be accessed through special library functions; see Section 36.4.4.2.

913

ECPG - Embedded SQL in C

Table 36.1 shows which PostgreSQL data types correspond to which C data types. When you wish to send
or receive a value of a given PostgreSQL data type, you should declare a C variable of the corresponding
C data type in the declare section.

Table 36.1. Mapping Between PostgreSQL Data Types and C Variable Types

PostgreSQL data type Host variable type

smallint short

integer int

bigint long long int

decimal decimala

numeric numerica

real float

double precision double

smallserial short

serial int

bigserial long long int

oid unsigned int

character(n), varchar(n), text char[n+1], VARCHAR[n+1]b

name char[NAMEDATALEN]

timestamp timestampa

interval intervala

date datea

boolean boolc

bytea char *
aThis type can only be accessed through special library functions; see Section 36.4.4.2.
bdeclared in ecpglib.h
cdeclared in ecpglib.h if not native

36.4.4.1. Handling Character Strings

To handle SQL character string data types, such as varchar and text, there are two possible ways to
declare the host variables.

One way is using char[], an array of char, which is the most common way to handle character data in C.

EXEC SQL BEGIN DECLARE SECTION;
 char str[50];
EXEC SQL END DECLARE SECTION;

Note that you have to take care of the length yourself. If you use this host variable as the target variable
of a query which returns a string with more than 49 characters, a buffer overflow occurs.

The other way is using the VARCHAR type, which is a special type provided by ECPG. The definition on
an array of type VARCHAR is converted into a named struct for every variable. A declaration like:

914

ECPG - Embedded SQL in C

VARCHAR var[180];

is converted into:

struct varchar_var { int len; char arr[180]; } var;

The member arr hosts the string including a terminating zero byte. Thus, to store a string in a VARCHAR
host variable, the host variable has to be declared with the length including the zero byte terminator. The
member len holds the length of the string stored in the arr without the terminating zero byte. When a
host variable is used as input for a query, if strlen(arr) and len are different, the shorter one is used.

VARCHAR can be written in upper or lower case, but not in mixed case.

char and VARCHAR host variables can also hold values of other SQL types, which will be stored in their
string forms.

36.4.4.2. Accessing Special Data Types

ECPG contains some special types that help you to interact easily with some special data types from
the PostgreSQL server. In particular, it has implemented support for the numeric, decimal, date,
timestamp, and interval types. These data types cannot usefully be mapped to primitive host
variable types (such as int, long long int, or char[]), because they have a complex internal
structure. Applications deal with these types by declaring host variables in special types and accessing
them using functions in the pgtypes library. The pgtypes library, described in detail in Section 36.6 contains
basic functions to deal with those types, such that you do not need to send a query to the SQL server just
for adding an interval to a time stamp for example.

The follow subsections describe these special data types. For more details about pgtypes library functions,
see Section 36.6.

36.4.4.2.1. timestamp, date

Here is a pattern for handling timestamp variables in the ECPG host application.

First, the program has to include the header file for the timestamp type:

#include <pgtypes_timestamp.h>

Next, declare a host variable as type timestamp in the declare section:

EXEC SQL BEGIN DECLARE SECTION;
timestamp ts;
EXEC SQL END DECLARE SECTION;

And after reading a value into the host variable, process it using pgtypes library functions.
In following example, the timestamp value is converted into text (ASCII) form with the
PGTYPEStimestamp_to_asc() function:

EXEC SQL SELECT now()::timestamp INTO :ts;

printf("ts = %s\n", PGTYPEStimestamp_to_asc(ts));

This example will show some result like following:

915

ECPG - Embedded SQL in C

ts = 2010-06-27 18:03:56.949343

In addition, the DATE type can be handled in the same way. The program has to include
pgtypes_date.h, declare a host variable as the date type and convert a DATE value into a text form
using PGTYPESdate_to_asc() function. For more details about the pgtypes library functions, see
Section 36.6.

36.4.4.2.2. interval

The handling of the interval type is also similar to the timestamp and date types. It is required,
however, to allocate memory for an interval type value explicitly. In other words, the memory space
for the variable has to be allocated in the heap memory, not in the stack memory.

Here is an example program:

#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_interval.h>

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 interval *in;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;

 in = PGTYPESinterval_new();
 EXEC SQL SELECT '1 min'::interval INTO :in;
 printf("interval = %s\n", PGTYPESinterval_to_asc(in));
 PGTYPESinterval_free(in);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

36.4.4.2.3. numeric, decimal

The handling of the numeric and decimal types is similar to the interval type: It requires defining
a pointer, allocating some memory space on the heap, and accessing the variable using the pgtypes library
functions. For more details about the pgtypes library functions, see Section 36.6.

No functions are provided specifically for the decimal type. An application has to convert it to a
numeric variable using a pgtypes library function to do further processing.

Here is an example program handling numeric and decimal type variables.

#include <stdio.h>
#include <stdlib.h>

916

ECPG - Embedded SQL in C

#include <pgtypes_numeric.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 numeric *num;
 numeric *num2;
 decimal *dec;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;

 num = PGTYPESnumeric_new();
 dec = PGTYPESdecimal_new();

 EXEC SQL SELECT 12.345::numeric(4,2), 23.456::decimal(4,2)
 INTO :num, :dec;

 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 0));
 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 1));
 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 2));

 /* Convert decimal to numeric to show a decimal value. */
 num2 = PGTYPESnumeric_new();
 PGTYPESnumeric_from_decimal(dec, num2);

 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 0));
 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 1));
 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 2));

 PGTYPESnumeric_free(num2);
 PGTYPESdecimal_free(dec);
 PGTYPESnumeric_free(num);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

36.4.4.3. Host Variables with Nonprimitive Types

As a host variable you can also use arrays, typedefs, structs, and pointers.

36.4.4.3.1. Arrays

There are two use cases for arrays as host variables. The first is a way to store some text string in char[]
or VARCHAR[], as explained in Section 36.4.4.1. The second use case is to retrieve multiple rows from
a query result without using a cursor. Without an array, to process a query result consisting of multiple
rows, it is required to use a cursor and the FETCH command. But with array host variables, multiple rows

917

ECPG - Embedded SQL in C

can be received at once. The length of the array has to be defined to be able to accommodate all rows,
otherwise a buffer overflow will likely occur.

Following example scans the pg_database system table and shows all OIDs and names of the available
databases:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 int dbid[8];
 char dbname[8][16];
 int i;
EXEC SQL END DECLARE SECTION;

 memset(dbname, 0, sizeof(char)* 16 * 8);
 memset(dbid, 0, sizeof(int) * 8);

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;

 /* Retrieve multiple rows into arrays at once. */
 EXEC SQL SELECT oid,datname INTO :dbid, :dbname FROM pg_database;

 for (i = 0; i < 8; i++)
 printf("oid=%d, dbname=%s\n", dbid[i], dbname[i]);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

This example shows following result. (The exact values depend on local circumstances.)

oid=1, dbname=template1
oid=11510, dbname=template0
oid=11511, dbname=postgres
oid=313780, dbname=testdb
oid=0, dbname=
oid=0, dbname=
oid=0, dbname=

36.4.4.3.2. Structures

A structure whose member names match the column names of a query result, can be used to retrieve
multiple columns at once. The structure enables handling multiple column values in a single host variable.

The following example retrieves OIDs, names, and sizes of the available databases from the
pg_database system table and using the pg_database_size() function. In this example, a
structure variable dbinfo_t with members whose names match each column in the SELECT result is
used to retrieve one result row without putting multiple host variables in the FETCH statement.

918

ECPG - Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
 typedef struct
 {
 int oid;
 char datname[65];
 long long int size;
 } dbinfo_t;

 dbinfo_t dbval;
EXEC SQL END DECLARE SECTION;

 memset(&dbval, 0, sizeof(dbinfo_t));

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname,
 pg_database_size(oid) AS size FROM pg_database;
 EXEC SQL OPEN cur1;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 /* Fetch multiple columns into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :dbval;

 /* Print members of the structure. */
 printf("oid=%d, datname=%s, size=%lld\n", dbval.oid,
 dbval.datname, dbval.size);
 }

 EXEC SQL CLOSE cur1;

This example shows following result. (The exact values depend on local circumstances.)

oid=1, datname=template1, size=4324580
oid=11510, datname=template0, size=4243460
oid=11511, datname=postgres, size=4324580
oid=313780, datname=testdb, size=8183012

Structure host variables “absorb” as many columns as the structure as fields. Additional columns can be
assigned to other host variables. For example, the above program could also be restructured like this, with
the size variable outside the structure:

EXEC SQL BEGIN DECLARE SECTION;
 typedef struct
 {
 int oid;
 char datname[65];
 } dbinfo_t;

 dbinfo_t dbval;
 long long int size;
EXEC SQL END DECLARE SECTION;

919

ECPG - Embedded SQL in C

 memset(&dbval, 0, sizeof(dbinfo_t));

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname,
 pg_database_size(oid) AS size FROM pg_database;
 EXEC SQL OPEN cur1;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 /* Fetch multiple columns into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :dbval, :size;

 /* Print members of the structure. */
 printf("oid=%d, datname=%s, size=%lld\n", dbval.oid,
 dbval.datname, size);
 }

 EXEC SQL CLOSE cur1;

36.4.4.3.3. Typedefs

Use the typedef keyword to map new types to already existing types.

EXEC SQL BEGIN DECLARE SECTION;
 typedef char mychartype[40];
 typedef long serial_t;
EXEC SQL END DECLARE SECTION;

Note that you could also use:

EXEC SQL TYPE serial_t IS long;

This declaration does not need to be part of a declare section.

36.4.4.3.4. Pointers

You can declare pointers to the most common types. Note however that you cannot use pointers as target
variables of queries without auto-allocation. See Section 36.7 for more information on auto-allocation.

EXEC SQL BEGIN DECLARE SECTION;
 int *intp;
 char **charp;
EXEC SQL END DECLARE SECTION;

36.4.5. Handling Nonprimitive SQL Data Types
This section contains information on how to handle nonscalar and user-defined SQL-level data types in
ECPG applications. Note that this is distinct from the handling of host variables of nonprimitive types,
described in the previous section.

920

ECPG - Embedded SQL in C

36.4.5.1. Arrays

Multi-dimensional SQL-level arrays are not directly supported in ECPG. One-dimensional SQL-level
arrays can be mapped into C array host variables and vice-versa. However, when creating a statement ecpg
does not know the types of the columns, so that it cannot check if a C array is input into a corresponding
SQL-level array. When processing the output of a SQL statement, ecpg has the necessary information and
thus checks if both are arrays.

If a query accesses elements of an array separately, then this avoids the use of arrays in ECPG. Then, a
host variable with a type that can be mapped to the element type should be used. For example, if a column
type is array of integer, a host variable of type int can be used. Also if the element type is varchar
or text, a host variable of type char[] or VARCHAR[] can be used.

Here is an example. Assume the following table:

CREATE TABLE t3 (
 ii integer[]
);

testdb=> SELECT * FROM t3;
 ii

 {1,2,3,4,5}
(1 row)

The following example program retrieves the 4th element of the array and stores it into a host variable
of type int:

EXEC SQL BEGIN DECLARE SECTION;
int ii;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH FROM cur1 INTO :ii ;
 printf("ii=%d\n", ii);
}

EXEC SQL CLOSE cur1;

This example shows the following result:

ii=4

To map multiple array elements to the multiple elements in an array type host variables each element of
array column and each element of the host variable array have to be managed separately, for example:

921

ECPG - Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4]
 FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH FROM cur1
 INTO :ii_a[0], :ii_a[1], :ii_a[2], :ii_a[3];
 ...
}

Note again that

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* WRONG */
 EXEC SQL FETCH FROM cur1 INTO :ii_a;
 ...
}

would not work correctly in this case, because you cannot map an array type column to an array host
variable directly.

Another workaround is to store arrays in their external string representation in host variables of type
char[] or VARCHAR[]. For more details about this representation, see Section 8.15.2. Note that this
means that the array cannot be accessed naturally as an array in the host program (without further
processing that parses the text representation).

36.4.5.2. Composite Types

Composite types are not directly supported in ECPG, but an easy workaround is possible. The available
workarounds are similar to the ones described for arrays above: Either access each attribute separately or
use the external string representation.

For the following examples, assume the following type and table:

CREATE TYPE comp_t AS (intval integer, textval varchar(32));
CREATE TABLE t4 (compval comp_t);

922

ECPG - Embedded SQL in C

INSERT INTO t4 VALUES ((256, 'PostgreSQL'));

The most obvious solution is to access each attribute separately. The following program retrieves data
from the example table by selecting each attribute of the type comp_t separately:

EXEC SQL BEGIN DECLARE SECTION;
int intval;
varchar textval[33];
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list.
 */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval,
 (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Fetch each element of the composite type column into host
 variables. */
 EXEC SQL FETCH FROM cur1 INTO :intval, :textval;

 printf("intval=%d, textval=%s\n", intval, textval.arr);
}

EXEC SQL CLOSE cur1;

To enhance this example, the host variables to store values in the FETCH command can be gathered into one
structure. For more details about the host variable in the structure form, see Section 36.4.4.3.2. To switch
to the structure, the example can be modified as below. The two host variables, intval and textval,
become members of the comp_t structure, and the structure is specified on the FETCH command.

EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{
 int intval;
 varchar textval[33];
} comp_t;

comp_t compval;
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list.
 */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval,
 (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)

923

ECPG - Embedded SQL in C

{
 /* Put all values in the SELECT list into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :compval;

 printf("intval=%d, textval=%s\n", compval.intval,
 compval.textval.arr);
}

EXEC SQL CLOSE cur1;

Although a structure is used in the FETCH command, the attribute names in the SELECT clause are
specified one by one. This can be enhanced by using a * to ask for all attributes of the composite type value.

...
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Put all values in the SELECT list into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :compval;

 printf("intval=%d, textval=%s\n", compval.intval,
 compval.textval.arr);
}
...

This way, composite types can be mapped into structures almost seamlessly, even though ECPG does not
understand the composite type itself.

Finally, it is also possible to store composite type values in their external string representation in host
variables of type char[] or VARCHAR[]. But that way, it is not easily possible to access the fields of
the value from the host program.

36.4.5.3. User-defined Base Types

New user-defined base types are not directly supported by ECPG. You can use the external string
representation and host variables of type char[] or VARCHAR[], and this solution is indeed appropriate
and sufficient for many types.

Here is an example using the data type complex from the example in Section 38.12. The external
string representation of that type is (%f,%f), which is defined in the functions complex_in() and
complex_out() functions in Section 38.12. The following example inserts the complex type values
(1,1) and (3,3) into the columns a and b, and select them from the table after that.

EXEC SQL BEGIN DECLARE SECTION;
 varchar a[64];
 varchar b[64];
EXEC SQL END DECLARE SECTION;

 EXEC SQL INSERT INTO test_complex VALUES ('(1,1)', '(3,3)');

924

ECPG - Embedded SQL in C

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex;
 EXEC SQL OPEN cur1;

 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 EXEC SQL FETCH FROM cur1 INTO :a, :b;
 printf("a=%s, b=%s\n", a.arr, b.arr);
 }

 EXEC SQL CLOSE cur1;

This example shows following result:

a=(1,1), b=(3,3)

Another workaround is avoiding the direct use of the user-defined types in ECPG and instead create a
function or cast that converts between the user-defined type and a primitive type that ECPG can handle.
Note, however, that type casts, especially implicit ones, should be introduced into the type system very
carefully.

For example,

CREATE FUNCTION create_complex(r double, i double) RETURNS complex
LANGUAGE SQL
IMMUTABLE
AS $$ SELECT $1 * complex '(1,0')' + $2 * complex '(0,1)' $$;

After this definition, the following

EXEC SQL BEGIN DECLARE SECTION;
double a, b, c, d;
EXEC SQL END DECLARE SECTION;

a = 1;
b = 2;
c = 3;
d = 4;

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:a, :b),
 create_complex(:c, :d));

has the same effect as

EXEC SQL INSERT INTO test_complex VALUES ('(1,2)', '(3,4)');

36.4.6. Indicators
The examples above do not handle null values. In fact, the retrieval examples will raise an error if they fetch
a null value from the database. To be able to pass null values to the database or retrieve null values from

925

ECPG - Embedded SQL in C

the database, you need to append a second host variable specification to each host variable that contains
data. This second host variable is called the indicator and contains a flag that tells whether the datum
is null, in which case the value of the real host variable is ignored. Here is an example that handles the
retrieval of null values correctly:

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

 ...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;

The indicator variable val_ind will be zero if the value was not null, and it will be negative if the value
was null.

The indicator has another function: if the indicator value is positive, it means that the value is not null, but
it was truncated when it was stored in the host variable.

If the argument -r no_indicator is passed to the preprocessor ecpg, it works in “no-indicator”
mode. In no-indicator mode, if no indicator variable is specified, null values are signaled (on input and
output) for character string types as empty string and for integer types as the lowest possible value for type
(for example, INT_MIN for int).

36.5. Dynamic SQL
In many cases, the particular SQL statements that an application has to execute are known at the time the
application is written. In some cases, however, the SQL statements are composed at run time or provided
by an external source. In these cases you cannot embed the SQL statements directly into the C source code,
but there is a facility that allows you to call arbitrary SQL statements that you provide in a string variable.

36.5.1. Executing Statements without a Result Set
The simplest way to execute an arbitrary SQL statement is to use the command EXECUTE IMMEDIATE.
For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "CREATE TABLE test1 (...);";
EXEC SQL END DECLARE SECTION;

EXEC SQL EXECUTE IMMEDIATE :stmt;

EXECUTE IMMEDIATE can be used for SQL statements that do not return a result set (e.g., DDL,
INSERT, UPDATE, DELETE). You cannot execute statements that retrieve data (e.g., SELECT) this way.
The next section describes how to do that.

36.5.2. Executing a Statement with Input Parameters
A more powerful way to execute arbitrary SQL statements is to prepare them once and execute the prepared
statement as often as you like. It is also possible to prepare a generalized version of a statement and then

926

ECPG - Embedded SQL in C

execute specific versions of it by substituting parameters. When preparing the statement, write question
marks where you want to substitute parameters later. For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "INSERT INTO test1 VALUES(?, ?);";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt USING 42, 'foobar';

When you don't need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

36.5.3. Executing a Statement with a Result Set
To execute an SQL statement with a single result row, EXECUTE can be used. To save the result, add
an INTO clause.

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "SELECT a, b, c FROM test1 WHERE a > ?";
int v1, v2;
VARCHAR v3[50];
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt INTO :v1, :v2, :v3 USING 37;

An EXECUTE command can have an INTO clause, a USING clause, both, or neither.

If a query is expected to return more than one result row, a cursor should be used, as in the following
example. (See Section 36.3.2 for more details about the cursor.)

EXEC SQL BEGIN DECLARE SECTION;
char dbaname[128];
char datname[128];
char *stmt = "SELECT u.usename as dbaname, d.datname "
 " FROM pg_database d, pg_user u "
 " WHERE d.datdba = u.usesysid";
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1 USER testuser;
EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC
 SQL COMMIT;

EXEC SQL PREPARE stmt1 FROM :stmt;

EXEC SQL DECLARE cursor1 CURSOR FOR stmt1;

927

ECPG - Embedded SQL in C

EXEC SQL OPEN cursor1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH cursor1 INTO :dbaname,:datname;
 printf("dbaname=%s, datname=%s\n", dbaname, datname);
}

EXEC SQL CLOSE cursor1;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;

36.6. pgtypes Library
The pgtypes library maps PostgreSQL database types to C equivalents that can be used in C programs.
It also offers functions to do basic calculations with those types within C, i.e., without the help of the
PostgreSQL server. See the following example:

EXEC SQL BEGIN DECLARE SECTION;
 date date1;
 timestamp ts1, tsout;
 interval iv1;
 char *out;
EXEC SQL END DECLARE SECTION;

PGTYPESdate_today(&date1);
EXEC SQL SELECT started, duration INTO :ts1, :iv1 FROM datetbl WHERE
 d=:date1;
PGTYPEStimestamp_add_interval(&ts1, &iv1, &tsout);
out = PGTYPEStimestamp_to_asc(&tsout);
printf("Started + duration: %s\n", out);
PGTYPESchar_free(out);

36.6.1. Character Strings
Some functions such as PGTYPESnumeric_to_asc return a pointer to a freshly allocated character
string. These results should be freed with PGTYPESchar_free instead of free. (This is important only
on Windows, where memory allocation and release sometimes need to be done by the same library.)

36.6.2. The numeric Type
The numeric type offers to do calculations with arbitrary precision. See Section 8.1 for the equivalent
type in the PostgreSQL server. Because of the arbitrary precision this variable needs to be able to expand
and shrink dynamically. That's why you can only create numeric variables on the heap, by means of the
PGTYPESnumeric_new and PGTYPESnumeric_free functions. The decimal type, which is similar
but limited in precision, can be created on the stack as well as on the heap.

The following functions can be used to work with the numeric type:

928

ECPG - Embedded SQL in C

PGTYPESnumeric_new

Request a pointer to a newly allocated numeric variable.

numeric *PGTYPESnumeric_new(void);

PGTYPESnumeric_free

Free a numeric type, release all of its memory.

void PGTYPESnumeric_free(numeric *var);

PGTYPESnumeric_from_asc

Parse a numeric type from its string notation.

numeric *PGTYPESnumeric_from_asc(char *str, char **endptr);

Valid formats are for example: -2, .794, +3.44, 592.49E07 or -32.84e-4. If the value could
be parsed successfully, a valid pointer is returned, else the NULL pointer. At the moment ECPG
always parses the complete string and so it currently does not support to store the address of the first
invalid character in *endptr. You can safely set endptr to NULL.

PGTYPESnumeric_to_asc

Returns a pointer to a string allocated by malloc that contains the string representation of the numeric
type num.

char *PGTYPESnumeric_to_asc(numeric *num, int dscale);

The numeric value will be printed with dscale decimal digits, with rounding applied if necessary.
The result must be freed with PGTYPESchar_free().

PGTYPESnumeric_add

Add two numeric variables into a third one.

int PGTYPESnumeric_add(numeric *var1, numeric *var2, numeric
 *result);

The function adds the variables var1 and var2 into the result variable result. The function returns
0 on success and -1 in case of error.

PGTYPESnumeric_sub

Subtract two numeric variables and return the result in a third one.

int PGTYPESnumeric_sub(numeric *var1, numeric *var2, numeric
 *result);

The function subtracts the variable var2 from the variable var1. The result of the operation is stored
in the variable result. The function returns 0 on success and -1 in case of error.

929

ECPG - Embedded SQL in C

PGTYPESnumeric_mul

Multiply two numeric variables and return the result in a third one.

int PGTYPESnumeric_mul(numeric *var1, numeric *var2, numeric
 *result);

The function multiplies the variables var1 and var2. The result of the operation is stored in the
variable result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_div

Divide two numeric variables and return the result in a third one.

int PGTYPESnumeric_div(numeric *var1, numeric *var2, numeric
 *result);

The function divides the variables var1 by var2. The result of the operation is stored in the variable
result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_cmp

Compare two numeric variables.

int PGTYPESnumeric_cmp(numeric *var1, numeric *var2)

This function compares two numeric variables. In case of error, INT_MAX is returned. On success,
the function returns one of three possible results:

• 1, if var1 is bigger than var2

• -1, if var1 is smaller than var2

• 0, if var1 and var2 are equal

PGTYPESnumeric_from_int

Convert an int variable to a numeric variable.

int PGTYPESnumeric_from_int(signed int int_val, numeric *var);

This function accepts a variable of type signed int and stores it in the numeric variable var. Upon
success, 0 is returned and -1 in case of a failure.

PGTYPESnumeric_from_long

Convert a long int variable to a numeric variable.

int PGTYPESnumeric_from_long(signed long int long_val, numeric
 *var);

This function accepts a variable of type signed long int and stores it in the numeric variable var.
Upon success, 0 is returned and -1 in case of a failure.

930

ECPG - Embedded SQL in C

PGTYPESnumeric_copy

Copy over one numeric variable into another one.

int PGTYPESnumeric_copy(numeric *src, numeric *dst);

This function copies over the value of the variable that src points to into the variable that dst points
to. It returns 0 on success and -1 if an error occurs.

PGTYPESnumeric_from_double

Convert a variable of type double to a numeric.

int PGTYPESnumeric_from_double(double d, numeric *dst);

This function accepts a variable of type double and stores the result in the variable that dst points
to. It returns 0 on success and -1 if an error occurs.

PGTYPESnumeric_to_double

Convert a variable of type numeric to double.

int PGTYPESnumeric_to_double(numeric *nv, double *dp)

The function converts the numeric value from the variable that nv points to into the double variable
that dp points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_int

Convert a variable of type numeric to int.

int PGTYPESnumeric_to_int(numeric *nv, int *ip);

The function converts the numeric value from the variable that nv points to into the integer variable
that ip points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_long

Convert a variable of type numeric to long.

int PGTYPESnumeric_to_long(numeric *nv, long *lp);

The function converts the numeric value from the variable that nv points to into the long integer
variable that lp points to. It returns 0 on success and -1 if an error occurs, including overflow. On
overflow, the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_decimal

Convert a variable of type numeric to decimal.

931

ECPG - Embedded SQL in C

int PGTYPESnumeric_to_decimal(numeric *src, decimal *dst);

The function converts the numeric value from the variable that src points to into the decimal variable
that dst points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_from_decimal

Convert a variable of type decimal to numeric.

int PGTYPESnumeric_from_decimal(decimal *src, numeric *dst);

The function converts the decimal value from the variable that src points to into the numeric variable
that dst points to. It returns 0 on success and -1 if an error occurs. Since the decimal type is
implemented as a limited version of the numeric type, overflow cannot occur with this conversion.

36.6.3. The date Type
The date type in C enables your programs to deal with data of the SQL type date. See Section 8.5 for the
equivalent type in the PostgreSQL server.

The following functions can be used to work with the date type:

PGTYPESdate_from_timestamp

Extract the date part from a timestamp.

date PGTYPESdate_from_timestamp(timestamp dt);

The function receives a timestamp as its only argument and returns the extracted date part from this
timestamp.

PGTYPESdate_from_asc

Parse a date from its textual representation.

date PGTYPESdate_from_asc(char *str, char **endptr);

The function receives a C char* string str and a pointer to a C char* string endptr. At the moment
ECPG always parses the complete string and so it currently does not support to store the address of
the first invalid character in *endptr. You can safely set endptr to NULL.

Note that the function always assumes MDY-formatted dates and there is currently no variable to
change that within ECPG.

Table 36.2 shows the allowed input formats.

Table 36.2. Valid Input Formats for PGTYPESdate_from_asc

Input Result

January 8, 1999 January 8, 1999

932

ECPG - Embedded SQL in C

Input Result

1999-01-08 January 8, 1999

1/8/1999 January 8, 1999

1/18/1999 January 18, 1999

01/02/03 February 1, 2003

1999-Jan-08 January 8, 1999

Jan-08-1999 January 8, 1999

08-Jan-1999 January 8, 1999

99-Jan-08 January 8, 1999

08-Jan-99 January 8, 1999

08-Jan-06 January 8, 2006

Jan-08-99 January 8, 1999

19990108 ISO 8601; January 8, 1999

990108 ISO 8601; January 8, 1999

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

PGTYPESdate_to_asc

Return the textual representation of a date variable.

char *PGTYPESdate_to_asc(date dDate);

The function receives the date dDate as its only parameter. It will output the date in
the form 1999-01-18, i.e., in the YYYY-MM-DD format. The result must be freed with
PGTYPESchar_free().

PGTYPESdate_julmdy

Extract the values for the day, the month and the year from a variable of type date.

void PGTYPESdate_julmdy(date d, int *mdy);

The function receives the date d and a pointer to an array of 3 integer values mdy. The variable name
indicates the sequential order: mdy[0] will be set to contain the number of the month, mdy[1] will
be set to the value of the day and mdy[2] will contain the year.

PGTYPESdate_mdyjul

Create a date value from an array of 3 integers that specify the day, the month and the year of the date.

void PGTYPESdate_mdyjul(int *mdy, date *jdate);

The function receives the array of the 3 integers (mdy) as its first argument and as its second argument
a pointer to a variable of type date that should hold the result of the operation.

933

ECPG - Embedded SQL in C

PGTYPESdate_dayofweek

Return a number representing the day of the week for a date value.

int PGTYPESdate_dayofweek(date d);

The function receives the date variable d as its only argument and returns an integer that indicates
the day of the week for this date.

• 0 - Sunday

• 1 - Monday

• 2 - Tuesday

• 3 - Wednesday

• 4 - Thursday

• 5 - Friday

• 6 - Saturday

PGTYPESdate_today

Get the current date.

void PGTYPESdate_today(date *d);

The function receives a pointer to a date variable (d) that it sets to the current date.

PGTYPESdate_fmt_asc

Convert a variable of type date to its textual representation using a format mask.

int PGTYPESdate_fmt_asc(date dDate, char *fmtstring, char *outbuf);

The function receives the date to convert (dDate), the format mask (fmtstring) and the string
that will hold the textual representation of the date (outbuf).

On success, 0 is returned and a negative value if an error occurred.

The following literals are the field specifiers you can use:

• dd - The number of the day of the month.

• mm - The number of the month of the year.

• yy - The number of the year as a two digit number.

• yyyy - The number of the year as a four digit number.

• ddd - The name of the day (abbreviated).

• mmm - The name of the month (abbreviated).

934

ECPG - Embedded SQL in C

All other characters are copied 1:1 to the output string.

Table 36.3 indicates a few possible formats. This will give you an idea of how to use this function.
All output lines are based on the same date: November 23, 1959.

Table 36.3. Valid Input Formats for PGTYPESdate_fmt_asc

Format Result

mmddyy 112359

ddmmyy 231159

yymmdd 591123

yy/mm/dd 59/11/23

yy mm dd 59 11 23

yy.mm.dd 59.11.23

.mm.yyyy.dd. .11.1959.23.

mmm. dd, yyyy Nov. 23, 1959

mmm dd yyyy Nov 23 1959

yyyy dd mm 1959 23 11

ddd, mmm. dd, yyyy Mon, Nov. 23, 1959

(ddd) mmm. dd, yyyy (Mon) Nov. 23, 1959

PGTYPESdate_defmt_asc

Use a format mask to convert a C char* string to a value of type date.

int PGTYPESdate_defmt_asc(date *d, char *fmt, char *str);

The function receives a pointer to the date value that should hold the result of the operation (d),
the format mask to use for parsing the date (fmt) and the C char* string containing the textual
representation of the date (str). The textual representation is expected to match the format mask.
However you do not need to have a 1:1 mapping of the string to the format mask. The function only
analyzes the sequential order and looks for the literals yy or yyyy that indicate the position of the
year, mm to indicate the position of the month and dd to indicate the position of the day.

Table 36.4 indicates a few possible formats. This will give you an idea of how to use this function.

Table 36.4. Valid Input Formats for rdefmtdate

Format String Result

ddmmyy 21-2-54 1954-02-21

ddmmyy 2-12-54 1954-12-02

ddmmyy 20111954 1954-11-20

ddmmyy 130464 1964-04-13

mmm.dd.yyyy MAR-12-1967 1967-03-12

yy/mm/dd 1954, February 3rd 1954-02-03

mmm.dd.yyyy 041269 1969-04-12

935

ECPG - Embedded SQL in C

Format String Result

yy/mm/dd In the year 2525, in
the month of July,
mankind will be alive
on the 28th day

2525-07-28

dd-mm-yy I said on the 28th of
July in the year 2525

2525-07-28

mmm.dd.yyyy 9/14/58 1958-09-14

yy/mm/dd 47/03/29 1947-03-29

mmm.dd.yyyy oct 28 1975 1975-10-28

mmddyy Nov 14th, 1985 1985-11-14

36.6.4. The timestamp Type
The timestamp type in C enables your programs to deal with data of the SQL type timestamp. See
Section 8.5 for the equivalent type in the PostgreSQL server.

The following functions can be used to work with the timestamp type:

PGTYPEStimestamp_from_asc

Parse a timestamp from its textual representation into a timestamp variable.

timestamp PGTYPEStimestamp_from_asc(char *str, char **endptr);

The function receives the string to parse (str) and a pointer to a C char* (endptr). At the moment
ECPG always parses the complete string and so it currently does not support to store the address of
the first invalid character in *endptr. You can safely set endptr to NULL.

The function returns the parsed timestamp on success. On error, PGTYPESInvalidTimestamp
is returned and errno is set to PGTYPES_TS_BAD_TIMESTAMP. See
PGTYPESInvalidTimestamp for important notes on this value.

In general, the input string can contain any combination of an allowed date specification, a whitespace
character and an allowed time specification. Note that time zones are not supported by ECPG. It can
parse them but does not apply any calculation as the PostgreSQL server does for example. Timezone
specifiers are silently discarded.

Table 36.5 contains a few examples for input strings.

Table 36.5. Valid Input Formats for PGTYPEStimestamp_from_asc

Input Result

1999-01-08 04:05:06 1999-01-08 04:05:06

January 8 04:05:06 1999 PST 1999-01-08 04:05:06

1999-Jan-08 04:05:06.789-8 1999-01-08 04:05:06.789 (time
zone specifier ignored)

J2451187 04:05-08:00 1999-01-08 04:05:00 (time zone
specifier ignored)

936

ECPG - Embedded SQL in C

PGTYPEStimestamp_to_asc

Converts a date to a C char* string.

char *PGTYPEStimestamp_to_asc(timestamp tstamp);

The function receives the timestamp tstamp as its only argument and returns an allocated
string that contains the textual representation of the timestamp. The result must be freed with
PGTYPESchar_free().

PGTYPEStimestamp_current

Retrieve the current timestamp.

void PGTYPEStimestamp_current(timestamp *ts);

The function retrieves the current timestamp and saves it into the timestamp variable that ts points to.

PGTYPEStimestamp_fmt_asc

Convert a timestamp variable to a C char* using a format mask.

int PGTYPEStimestamp_fmt_asc(timestamp *ts, char *output, int
 str_len, char *fmtstr);

The function receives a pointer to the timestamp to convert as its first argument (ts), a pointer to the
output buffer (output), the maximal length that has been allocated for the output buffer (str_len)
and the format mask to use for the conversion (fmtstr).

Upon success, the function returns 0 and a negative value if an error occurred.

You can use the following format specifiers for the format mask. The format specifiers are the same
ones that are used in the strftime function in libc. Any non-format specifier will be copied into
the output buffer.

• %A - is replaced by national representation of the full weekday name.

• %a - is replaced by national representation of the abbreviated weekday name.

• %B - is replaced by national representation of the full month name.

• %b - is replaced by national representation of the abbreviated month name.

• %C - is replaced by (year / 100) as decimal number; single digits are preceded by a zero.

• %c - is replaced by national representation of time and date.

• %D - is equivalent to %m/%d/%y.

• %d - is replaced by the day of the month as a decimal number (01-31).

• %E* %O* - POSIX locale extensions. The sequences %Ec %EC %Ex %EX %Ey %EY %Od %Oe
%OH %OI %Om %OM %OS %Ou %OU %OV %Ow %OW %Oy are supposed to provide alternative
representations.

937

ECPG - Embedded SQL in C

Additionally %OB implemented to represent alternative months names (used standalone, without
day mentioned).

• %e - is replaced by the day of month as a decimal number (1-31); single digits are preceded by
a blank.

• %F - is equivalent to %Y-%m-%d.

• %G - is replaced by a year as a decimal number with century. This year is the one that contains the
greater part of the week (Monday as the first day of the week).

• %g - is replaced by the same year as in %G, but as a decimal number without century (00-99).

• %H - is replaced by the hour (24-hour clock) as a decimal number (00-23).

• %h - the same as %b.

• %I - is replaced by the hour (12-hour clock) as a decimal number (01-12).

• %j - is replaced by the day of the year as a decimal number (001-366).

• %k - is replaced by the hour (24-hour clock) as a decimal number (0-23); single digits are preceded
by a blank.

• %l - is replaced by the hour (12-hour clock) as a decimal number (1-12); single digits are preceded
by a blank.

• %M - is replaced by the minute as a decimal number (00-59).

• %m - is replaced by the month as a decimal number (01-12).

• %n - is replaced by a newline.

• %O* - the same as %E*.

• %p - is replaced by national representation of either “ante meridiem” or “post meridiem” as
appropriate.

• %R - is equivalent to %H:%M.

• %r - is equivalent to %I:%M:%S %p.

• %S - is replaced by the second as a decimal number (00-60).

• %s - is replaced by the number of seconds since the Epoch, UTC.

• %T - is equivalent to %H:%M:%S

• %t - is replaced by a tab.

• %U - is replaced by the week number of the year (Sunday as the first day of the week) as a decimal
number (00-53).

• %u - is replaced by the weekday (Monday as the first day of the week) as a decimal number (1-7).

• %V - is replaced by the week number of the year (Monday as the first day of the week) as a decimal
number (01-53). If the week containing January 1 has four or more days in the new year, then it is
week 1; otherwise it is the last week of the previous year, and the next week is week 1.

938

ECPG - Embedded SQL in C

• %v - is equivalent to %e-%b-%Y.

• %W - is replaced by the week number of the year (Monday as the first day of the week) as a decimal
number (00-53).

• %w - is replaced by the weekday (Sunday as the first day of the week) as a decimal number (0-6).

• %X - is replaced by national representation of the time.

• %x - is replaced by national representation of the date.

• %Y - is replaced by the year with century as a decimal number.

• %y - is replaced by the year without century as a decimal number (00-99).

• %Z - is replaced by the time zone name.

• %z - is replaced by the time zone offset from UTC; a leading plus sign stands for east of UTC,
a minus sign for west of UTC, hours and minutes follow with two digits each and no delimiter
between them (common form for RFC 822 date headers).

• %+ - is replaced by national representation of the date and time.

• %-* - GNU libc extension. Do not do any padding when performing numerical outputs.

• $_* - GNU libc extension. Explicitly specify space for padding.

• %0* - GNU libc extension. Explicitly specify zero for padding.

• %% - is replaced by %.

PGTYPEStimestamp_sub

Subtract one timestamp from another one and save the result in a variable of type interval.

int PGTYPEStimestamp_sub(timestamp *ts1, timestamp *ts2, interval
 *iv);

The function will subtract the timestamp variable that ts2 points to from the timestamp variable that
ts1 points to and will store the result in the interval variable that iv points to.

Upon success, the function returns 0 and a negative value if an error occurred.

PGTYPEStimestamp_defmt_asc

Parse a timestamp value from its textual representation using a formatting mask.

int PGTYPEStimestamp_defmt_asc(char *str, char *fmt, timestamp *d);

The function receives the textual representation of a timestamp in the variable str as well as the
formatting mask to use in the variable fmt. The result will be stored in the variable that d points to.

If the formatting mask fmt is NULL, the function will fall back to the default formatting mask which
is %Y-%m-%d %H:%M:%S.

939

ECPG - Embedded SQL in C

This is the reverse function to PGTYPEStimestamp_fmt_asc. See the documentation there in
order to find out about the possible formatting mask entries.

PGTYPEStimestamp_add_interval

Add an interval variable to a timestamp variable.

int PGTYPEStimestamp_add_interval(timestamp *tin, interval *span,
 timestamp *tout);

The function receives a pointer to a timestamp variable tin and a pointer to an interval variable
span. It adds the interval to the timestamp and saves the resulting timestamp in the variable that
tout points to.

Upon success, the function returns 0 and a negative value if an error occurred.

PGTYPEStimestamp_sub_interval

Subtract an interval variable from a timestamp variable.

int PGTYPEStimestamp_sub_interval(timestamp *tin, interval *span,
 timestamp *tout);

The function subtracts the interval variable that span points to from the timestamp variable that tin
points to and saves the result into the variable that tout points to.

Upon success, the function returns 0 and a negative value if an error occurred.

36.6.5. The interval Type
The interval type in C enables your programs to deal with data of the SQL type interval. See Section 8.5
for the equivalent type in the PostgreSQL server.

The following functions can be used to work with the interval type:

PGTYPESinterval_new

Return a pointer to a newly allocated interval variable.

interval *PGTYPESinterval_new(void);

PGTYPESinterval_free

Release the memory of a previously allocated interval variable.

void PGTYPESinterval_new(interval *intvl);

PGTYPESinterval_from_asc

Parse an interval from its textual representation.

interval *PGTYPESinterval_from_asc(char *str, char **endptr);

940

ECPG - Embedded SQL in C

The function parses the input string str and returns a pointer to an allocated interval variable. At
the moment ECPG always parses the complete string and so it currently does not support to store the
address of the first invalid character in *endptr. You can safely set endptr to NULL.

PGTYPESinterval_to_asc

Convert a variable of type interval to its textual representation.

char *PGTYPESinterval_to_asc(interval *span);

The function converts the interval variable that span points to into a C char*. The output looks like
this example: @ 1 day 12 hours 59 mins 10 secs. The result must be freed with
PGTYPESchar_free().

PGTYPESinterval_copy

Copy a variable of type interval.

int PGTYPESinterval_copy(interval *intvlsrc, interval *intvldest);

The function copies the interval variable that intvlsrc points to into the variable that intvldest
points to. Note that you need to allocate the memory for the destination variable before.

36.6.6. The decimal Type
The decimal type is similar to the numeric type. However it is limited to a maximum precision of 30
significant digits. In contrast to the numeric type which can be created on the heap only, the decimal type
can be created either on the stack or on the heap (by means of the functions PGTYPESdecimal_new
and PGTYPESdecimal_free). There are a lot of other functions that deal with the decimal type in the
Informix compatibility mode described in Section 36.15.

The following functions can be used to work with the decimal type and are not only contained in the
libcompat library.

PGTYPESdecimal_new

Request a pointer to a newly allocated decimal variable.

decimal *PGTYPESdecimal_new(void);

PGTYPESdecimal_free

Free a decimal type, release all of its memory.

void PGTYPESdecimal_free(decimal *var);

36.6.7. errno Values of pgtypeslib
PGTYPES_NUM_BAD_NUMERIC

An argument should contain a numeric variable (or point to a numeric variable) but in fact its in-
memory representation was invalid.

941

ECPG - Embedded SQL in C

PGTYPES_NUM_OVERFLOW

An overflow occurred. Since the numeric type can deal with almost arbitrary precision, converting a
numeric variable into other types might cause overflow.

PGTYPES_NUM_UNDERFLOW

An underflow occurred. Since the numeric type can deal with almost arbitrary precision, converting
a numeric variable into other types might cause underflow.

PGTYPES_NUM_DIVIDE_ZERO

A division by zero has been attempted.

PGTYPES_DATE_BAD_DATE

An invalid date string was passed to the PGTYPESdate_from_asc function.

PGTYPES_DATE_ERR_EARGS

Invalid arguments were passed to the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_ERR_ENOSHORTDATE

An invalid token in the input string was found by the PGTYPESdate_defmt_asc function.

PGTYPES_INTVL_BAD_INTERVAL

An invalid interval string was passed to the PGTYPESinterval_from_asc function, or an invalid
interval value was passed to the PGTYPESinterval_to_asc function.

PGTYPES_DATE_ERR_ENOTDMY

There was a mismatch in the day/month/year assignment in the PGTYPESdate_defmt_asc
function.

PGTYPES_DATE_BAD_DAY

An invalid day of the month value was found by the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_BAD_MONTH

An invalid month value was found by the PGTYPESdate_defmt_asc function.

PGTYPES_TS_BAD_TIMESTAMP

An invalid timestamp string pass passed to the PGTYPEStimestamp_from_asc function, or an
invalid timestamp value was passed to the PGTYPEStimestamp_to_asc function.

PGTYPES_TS_ERR_EINFTIME

An infinite timestamp value was encountered in a context that cannot handle it.

36.6.8. Special Constants of pgtypeslib
PGTYPESInvalidTimestamp

A value of type timestamp representing an invalid time stamp. This is returned by the function
PGTYPEStimestamp_from_asc on parse error. Note that due to the internal representation of

942

ECPG - Embedded SQL in C

the timestamp data type, PGTYPESInvalidTimestamp is also a valid timestamp at the same
time. It is set to 1899-12-31 23:59:59. In order to detect errors, make sure that your application
does not only test for PGTYPESInvalidTimestamp but also for errno != 0 after each call
to PGTYPEStimestamp_from_asc.

36.7. Using Descriptor Areas
An SQL descriptor area is a more sophisticated method for processing the result of a SELECT, FETCH or a
DESCRIBE statement. An SQL descriptor area groups the data of one row of data together with metadata
items into one data structure. The metadata is particularly useful when executing dynamic SQL statements,
where the nature of the result columns might not be known ahead of time. PostgreSQL provides two ways
to use Descriptor Areas: the named SQL Descriptor Areas and the C-structure SQLDAs.

36.7.1. Named SQL Descriptor Areas
A named SQL descriptor area consists of a header, which contains information concerning the entire
descriptor, and one or more item descriptor areas, which basically each describe one column in the result
row.

Before you can use an SQL descriptor area, you need to allocate one:

EXEC SQL ALLOCATE DESCRIPTOR identifier;

The identifier serves as the “variable name” of the descriptor area. When you don't need the descriptor
anymore, you should deallocate it:

EXEC SQL DEALLOCATE DESCRIPTOR identifier;

To use a descriptor area, specify it as the storage target in an INTO clause, instead of listing host variables:

EXEC SQL FETCH NEXT FROM mycursor INTO SQL DESCRIPTOR mydesc;

If the result set is empty, the Descriptor Area will still contain the metadata from the query, i.e. the field
names.

For not yet executed prepared queries, the DESCRIBE statement can be used to get the metadata of the
result set:

EXEC SQL BEGIN DECLARE SECTION;
char *sql_stmt = "SELECT * FROM table1";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;

Before PostgreSQL 9.0, the SQL keyword was optional, so using DESCRIPTOR and SQL DESCRIPTOR
produced named SQL Descriptor Areas. Now it is mandatory, omitting the SQL keyword produces SQLDA
Descriptor Areas, see Section 36.7.2.

In DESCRIBE and FETCH statements, the INTO and USING keywords can be used to similarly: they
produce the result set and the metadata in a Descriptor Area.

943

ECPG - Embedded SQL in C

Now how do you get the data out of the descriptor area? You can think of the descriptor area as a structure
with named fields. To retrieve the value of a field from the header and store it into a host variable, use
the following command:

EXEC SQL GET DESCRIPTOR name :hostvar = field;

Currently, there is only one header field defined: COUNT, which tells how many item descriptor areas exist
(that is, how many columns are contained in the result). The host variable needs to be of an integer type.
To get a field from the item descriptor area, use the following command:

EXEC SQL GET DESCRIPTOR name VALUE num :hostvar = field;

num can be a literal integer or a host variable containing an integer. Possible fields are:

CARDINALITY (integer)

number of rows in the result set

DATA

actual data item (therefore, the data type of this field depends on the query)

DATETIME_INTERVAL_CODE (integer)

When TYPE is 9, DATETIME_INTERVAL_CODE will have a value of 1 for DATE, 2 for TIME, 3
for TIMESTAMP, 4 for TIME WITH TIME ZONE, or 5 for TIMESTAMP WITH TIME ZONE.

DATETIME_INTERVAL_PRECISION (integer)

not implemented

INDICATOR (integer)

the indicator (indicating a null value or a value truncation)

KEY_MEMBER (integer)

not implemented

LENGTH (integer)

length of the datum in characters

NAME (string)

name of the column

NULLABLE (integer)

not implemented

OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

PRECISION (integer)

precision (for type numeric)

944

ECPG - Embedded SQL in C

RETURNED_LENGTH (integer)

length of the datum in characters

RETURNED_OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

SCALE (integer)

scale (for type numeric)

TYPE (integer)

numeric code of the data type of the column

In EXECUTE, DECLARE and OPEN statements, the effect of the INTO and USING keywords are different.
A Descriptor Area can also be manually built to provide the input parameters for a query or a cursor and
USING SQL DESCRIPTOR name is the way to pass the input parameters into a parameterized query.
The statement to build a named SQL Descriptor Area is below:

EXEC SQL SET DESCRIPTOR name VALUE num field = :hostvar;

PostgreSQL supports retrieving more that one record in one FETCH statement and storing the data in host
variables in this case assumes that the variable is an array. E.g.:

EXEC SQL BEGIN DECLARE SECTION;
int id[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH 5 FROM mycursor INTO SQL DESCRIPTOR mydesc;

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :id = DATA;

36.7.2. SQLDA Descriptor Areas
An SQLDA Descriptor Area is a C language structure which can be also used to get the result set and the
metadata of a query. One structure stores one record from the result set.

EXEC SQL include sqlda.h;
sqlda_t *mysqlda;

EXEC SQL FETCH 3 FROM mycursor INTO DESCRIPTOR mysqlda;

Note that the SQL keyword is omitted. The paragraphs about the use cases of the INTO and USING
keywords in Section 36.7.1 also apply here with an addition. In a DESCRIBE statement the DESCRIPTOR
keyword can be completely omitted if the INTO keyword is used:

EXEC SQL DESCRIBE prepared_statement INTO mysqlda;

The general flow of a program that uses SQLDA is:

945

ECPG - Embedded SQL in C

1. Prepare a query, and declare a cursor for it.

2. Declare an SQLDA for the result rows.

3. Declare an SQLDA for the input parameters, and initialize them (memory allocation, parameter
settings).

4. Open a cursor with the input SQLDA.

5. Fetch rows from the cursor, and store them into an output SQLDA.

6. Read values from the output SQLDA into the host variables (with conversion if necessary).

7. Close the cursor.

8. Free the memory area allocated for the input SQLDA.

36.7.2.1. SQLDA Data Structure

SQLDA uses three data structure types: sqlda_t, sqlvar_t, and struct sqlname.

Tip

PostgreSQL's SQLDA has a similar data structure to the one in IBM DB2 Universal Database, so
some technical information on DB2's SQLDA could help understanding PostgreSQL's one better.

36.7.2.1.1. sqlda_t Structure

The structure type sqlda_t is the type of the actual SQLDA. It holds one record. And two or more
sqlda_t structures can be connected in a linked list with the pointer in the desc_next field, thus
representing an ordered collection of rows. So, when two or more rows are fetched, the application can
read them by following the desc_next pointer in each sqlda_t node.

The definition of sqlda_t is:

struct sqlda_struct
{
 char sqldaid[8];
 long sqldabc;
 short sqln;
 short sqld;
 struct sqlda_struct *desc_next;
 struct sqlvar_struct sqlvar[1];
};

typedef struct sqlda_struct sqlda_t;

The meaning of the fields is:

sqldaid

It contains the literal string "SQLDA ".

946

ECPG - Embedded SQL in C

sqldabc

It contains the size of the allocated space in bytes.

sqln

It contains the number of input parameters for a parameterized query in case it's passed into OPEN,
DECLARE or EXECUTE statements using the USING keyword. In case it's used as output of SELECT,
EXECUTE or FETCH statements, its value is the same as sqld statement

sqld

It contains the number of fields in a result set.

desc_next

If the query returns more than one record, multiple linked SQLDA structures are returned, and
desc_next holds a pointer to the next entry in the list.

sqlvar

This is the array of the columns in the result set.

36.7.2.1.2. sqlvar_t Structure

The structure type sqlvar_t holds a column value and metadata such as type and length. The definition
of the type is:

struct sqlvar_struct
{
 short sqltype;
 short sqllen;
 char *sqldata;
 short *sqlind;
 struct sqlname sqlname;
};

typedef struct sqlvar_struct sqlvar_t;

The meaning of the fields is:

sqltype

Contains the type identifier of the field. For values, see enum ECPGttype in ecpgtype.h.

sqllen

Contains the binary length of the field. e.g. 4 bytes for ECPGt_int.

sqldata

Points to the data. The format of the data is described in Section 36.4.4.

sqlind

Points to the null indicator. 0 means not null, -1 means null.

947

ECPG - Embedded SQL in C

sqlname

The name of the field.

36.7.2.1.3. struct sqlname Structure

A struct sqlname structure holds a column name. It is used as a member of the sqlvar_t structure.
The definition of the structure is:

#define NAMEDATALEN 64

struct sqlname
{
 short length;
 char data[NAMEDATALEN];
};

The meaning of the fields is:

length

Contains the length of the field name.

data

Contains the actual field name.

36.7.2.2. Retrieving a Result Set Using an SQLDA

The general steps to retrieve a query result set through an SQLDA are:

1. Declare an sqlda_t structure to receive the result set.

2. Execute FETCH/EXECUTE/DESCRIBE commands to process a query specifying the declared
SQLDA.

3. Check the number of records in the result set by looking at sqln, a member of the sqlda_t
structure.

4. Get the values of each column from sqlvar[0], sqlvar[1], etc., members of the sqlda_t
structure.

5. Go to next row (sqlda_t structure) by following the desc_next pointer, a member of the
sqlda_t structure.

6. Repeat above as you need.

Here is an example retrieving a result set through an SQLDA.

First, declare a sqlda_t structure to receive the result set.

sqlda_t *sqlda1;

Next, specify the SQLDA in a command. This is a FETCH command example.

948

ECPG - Embedded SQL in C

EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

Run a loop following the linked list to retrieve the rows.

sqlda_t *cur_sqlda;

for (cur_sqlda = sqlda1;
 cur_sqlda != NULL;
 cur_sqlda = cur_sqlda->desc_next)
{
 ...
}

Inside the loop, run another loop to retrieve each column data (sqlvar_t structure) of the row.

for (i = 0; i < cur_sqlda->sqld; i++)
{
 sqlvar_t v = cur_sqlda->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;
 ...
}

To get a column value, check the sqltype value, a member of the sqlvar_t structure. Then, switch to
an appropriate way, depending on the column type, to copy data from the sqlvar field to a host variable.

char var_buf[1024];

switch (v.sqltype)
{
 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ?
 sizeof(var_buf) - 1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 ...
}

36.7.2.3. Passing Query Parameters Using an SQLDA

The general steps to use an SQLDA to pass input parameters to a prepared query are:

1. Create a prepared query (prepared statement)

2. Declare a sqlda_t structure as an input SQLDA.

949

ECPG - Embedded SQL in C

3. Allocate memory area (as sqlda_t structure) for the input SQLDA.

4. Set (copy) input values in the allocated memory.

5. Open a cursor with specifying the input SQLDA.

Here is an example.

First, create a prepared statement.

EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid, * FROM pg_database d,
 pg_stat_database s WHERE d.oid = s.datid AND (d.datname = ? OR d.oid
 = ?)";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :query;

Next, allocate memory for an SQLDA, and set the number of input parameters in sqln, a member
variable of the sqlda_t structure. When two or more input parameters are required for the prepared
query, the application has to allocate additional memory space which is calculated by (nr. of params - 1)
* sizeof(sqlvar_t). The example shown here allocates memory space for two input parameters.

sqlda_t *sqlda2;

sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));

sqlda2->sqln = 2; /* number of input variables */

After memory allocation, store the parameter values into the sqlvar[] array. (This is same array used for
retrieving column values when the SQLDA is receiving a result set.) In this example, the input parameters
are "postgres", having a string type, and 1, having an integer type.

sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen = 8;

int intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *) &intval;
sqlda2->sqlvar[1].sqllen = sizeof(intval);

By opening a cursor and specifying the SQLDA that was set up beforehand, the input parameters are
passed to the prepared statement.

EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

Finally, after using input SQLDAs, the allocated memory space must be freed explicitly, unlike SQLDAs
used for receiving query results.

950

ECPG - Embedded SQL in C

free(sqlda2);

36.7.2.4. A Sample Application Using SQLDA

Here is an example program, which describes how to fetch access statistics of the databases, specified by
the input parameters, from the system catalogs.

This application joins two system tables, pg_database and pg_stat_database on the database OID, and
also fetches and shows the database statistics which are retrieved by two input parameters (a database
postgres, and OID 1).

First, declare an SQLDA for input and an SQLDA for output.

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* an output descriptor */
sqlda_t *sqlda2; /* an input descriptor */

Next, connect to the database, prepare a statement, and declare a cursor for the prepared statement.

int
main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char query[1024] = "SELECT d.oid,* FROM pg_database d,
 pg_stat_database s WHERE d.oid=s.datid AND (d.datname=? OR
 d.oid=?)";
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;

 EXEC SQL PREPARE stmt1 FROM :query;
 EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Next, put some values in the input SQLDA for the input parameters. Allocate memory for the input
SQLDA, and set the number of input parameters to sqln. Store type, value, and value length into
sqltype, sqldata, and sqllen in the sqlvar structure.

 /* Create SQLDA structure for input parameters. */
 sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
 memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
 sqlda2->sqln = 2; /* number of input variables */

 sqlda2->sqlvar[0].sqltype = ECPGt_char;
 sqlda2->sqlvar[0].sqldata = "postgres";
 sqlda2->sqlvar[0].sqllen = 8;

 intval = 1;
 sqlda2->sqlvar[1].sqltype = ECPGt_int;
 sqlda2->sqlvar[1].sqldata = (char *)&intval;

951

ECPG - Embedded SQL in C

 sqlda2->sqlvar[1].sqllen = sizeof(intval);

After setting up the input SQLDA, open a cursor with the input SQLDA.

 /* Open a cursor with input parameters. */
 EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

Fetch rows into the output SQLDA from the opened cursor. (Generally, you have to call FETCH repeatedly
in the loop, to fetch all rows in the result set.)

 while (1)
 {
 sqlda_t *cur_sqlda;

 /* Assign descriptor to the cursor */
 EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

Next, retrieve the fetched records from the SQLDA, by following the linked list of the sqlda_t structure.

 for (cur_sqlda = sqlda1 ;
 cur_sqlda != NULL ;
 cur_sqlda = cur_sqlda->desc_next)
 {
 ...

Read each columns in the first record. The number of columns is stored in sqld, the actual data of the
first column is stored in sqlvar[0], both members of the sqlda_t structure.

 /* Print every column in a row. */
 for (i = 0; i < sqlda1->sqld; i++)
 {
 sqlvar_t v = sqlda1->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;

 strncpy(name_buf, v.sqlname.data, v.sqlname.length);
 name_buf[v.sqlname.length] = '\0';

Now, the column data is stored in the variable v. Copy every datum into host variables, looking at
v.sqltype for the type of the column.

 switch (v.sqltype) {
 int intval;
 double doubleval;
 unsigned long long int longlongval;

 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf) <=
 sqllen ? sizeof(var_buf)-1 : sqllen));
 break;

952

ECPG - Embedded SQL in C

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 ...

 default:
 ...
 }

 printf("%s = %s (type: %d)\n", name_buf, var_buf,
 v.sqltype);
 }

Close the cursor after processing all of records, and disconnect from the database.

 EXEC SQL CLOSE cur1;
 EXEC SQL COMMIT;

 EXEC SQL DISCONNECT ALL;

The whole program is shown in Example 36.1.

Example 36.1. Example SQLDA Program

#include <stdlib.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* descriptor for output */
sqlda_t *sqlda2; /* descriptor for input */

EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char query[1024] = "SELECT d.oid,* FROM pg_database d,
 pg_stat_database s WHERE d.oid=s.datid AND (d.datname=? OR
 d.oid=?)";

 int intval;
 unsigned long long int longlongval;
 EXEC SQL END DECLARE SECTION;

953

ECPG - Embedded SQL in C

 EXEC SQL CONNECT TO uptimedb AS con1 USER uptime;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;

 EXEC SQL PREPARE stmt1 FROM :query;
 EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

 /* Create a SQLDA structure for an input parameter */
 sqlda2 = (sqlda_t *)malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
 memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
 sqlda2->sqln = 2; /* a number of input variables */

 sqlda2->sqlvar[0].sqltype = ECPGt_char;
 sqlda2->sqlvar[0].sqldata = "postgres";
 sqlda2->sqlvar[0].sqllen = 8;

 intval = 1;
 sqlda2->sqlvar[1].sqltype = ECPGt_int;
 sqlda2->sqlvar[1].sqldata = (char *) &intval;
 sqlda2->sqlvar[1].sqllen = sizeof(intval);

 /* Open a cursor with input parameters. */
 EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

 while (1)
 {
 sqlda_t *cur_sqlda;

 /* Assign descriptor to the cursor */
 EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

 for (cur_sqlda = sqlda1 ;
 cur_sqlda != NULL ;
 cur_sqlda = cur_sqlda->desc_next)
 {
 int i;
 char name_buf[1024];
 char var_buf[1024];

 /* Print every column in a row. */
 for (i=0 ; i<cur_sqlda->sqld ; i++)
 {
 sqlvar_t v = cur_sqlda->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;

 strncpy(name_buf, v.sqlname.data, v.sqlname.length);
 name_buf[v.sqlname.length] = '\0';

 switch (v.sqltype)
 {
 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));

954

ECPG - Embedded SQL in C

 memcpy(&var_buf, sqldata,
 (sizeof(var_buf)<=sqllen ? sizeof(var_buf)-1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d",
 intval);
 break;

 case ECPGt_long_long: /* bigint */
 memcpy(&longlongval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%lld",
 longlongval);
 break;

 default:
 {
 int i;
 memset(var_buf, 0, sizeof(var_buf));
 for (i = 0; i < sqllen; i++)
 {
 char tmpbuf[16];
 snprintf(tmpbuf, sizeof(tmpbuf), "%02x ",
 (unsigned char) sqldata[i]);
 strncat(var_buf, tmpbuf, sizeof(var_buf));
 }
 }
 break;
 }

 printf("%s = %s (type: %d)\n", name_buf, var_buf,
 v.sqltype);
 }

 printf("\n");
 }
 }

 EXEC SQL CLOSE cur1;
 EXEC SQL COMMIT;

 EXEC SQL DISCONNECT ALL;

 return 0;
}

The output of this example should look something like the following (some numbers will vary).

oid = 1 (type: 1)
datname = template1 (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)

955

ECPG - Embedded SQL in C

datistemplate = t (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datlastsysoid = 11510 (type: 1)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = {=c/uptime,uptime=CTc/uptime} (type: 1)
datid = 1 (type: 1)
datname = template1 (type: 1)
numbackends = 0 (type: 5)
xact_commit = 113606 (type: 9)
xact_rollback = 0 (type: 9)
blks_read = 130 (type: 9)
blks_hit = 7341714 (type: 9)
tup_returned = 38262679 (type: 9)
tup_fetched = 1836281 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

oid = 11511 (type: 1)
datname = postgres (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = f (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datlastsysoid = 11510 (type: 1)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = (type: 1)
datid = 11511 (type: 1)
datname = postgres (type: 1)
numbackends = 0 (type: 5)
xact_commit = 221069 (type: 9)
xact_rollback = 18 (type: 9)
blks_read = 1176 (type: 9)
blks_hit = 13943750 (type: 9)
tup_returned = 77410091 (type: 9)
tup_fetched = 3253694 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

36.8. Error Handling
This section describes how you can handle exceptional conditions and warnings in an embedded SQL
program. There are two nonexclusive facilities for this.

• Callbacks can be configured to handle warning and error conditions using the WHENEVER command.

• Detailed information about the error or warning can be obtained from the sqlca variable.

956

ECPG - Embedded SQL in C

36.8.1. Setting Callbacks
One simple method to catch errors and warnings is to set a specific action to be executed whenever a
particular condition occurs. In general:

EXEC SQL WHENEVER condition action;

condition can be one of the following:

SQLERROR

The specified action is called whenever an error occurs during the execution of an SQL statement.

SQLWARNING

The specified action is called whenever a warning occurs during the execution of an SQL statement.

NOT FOUND

The specified action is called whenever an SQL statement retrieves or affects zero rows. (This
condition is not an error, but you might be interested in handling it specially.)

action can be one of the following:

CONTINUE

This effectively means that the condition is ignored. This is the default.

GOTO label
GO TO label

Jump to the specified label (using a C goto statement).

SQLPRINT

Print a message to standard error. This is useful for simple programs or during prototyping. The details
of the message cannot be configured.

STOP

Call exit(1), which will terminate the program.

DO BREAK

Execute the C statement break. This should only be used in loops or switch statements.

DO CONTINUE

Execute the C statement continue. This should only be used in loops statements. if executed, will
cause the flow of control to return to the top of the loop.

CALL name (args)
DO name (args)

Call the specified C functions with the specified arguments. (This use is different from the meaning
of CALL and DO in the normal PostgreSQL grammar.)

957

ECPG - Embedded SQL in C

The SQL standard only provides for the actions CONTINUE and GOTO (and GO TO).

Here is an example that you might want to use in a simple program. It prints a simple message when a
warning occurs and aborts the program when an error happens:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

The statement EXEC SQL WHENEVER is a directive of the SQL preprocessor, not a C statement. The
error or warning actions that it sets apply to all embedded SQL statements that appear below the point
where the handler is set, unless a different action was set for the same condition between the first EXEC
SQL WHENEVER and the SQL statement causing the condition, regardless of the flow of control in the C
program. So neither of the two following C program excerpts will have the desired effect:

/*
 * WRONG
 */
int main(int argc, char *argv[])
{
 ...
 if (verbose) {
 EXEC SQL WHENEVER SQLWARNING SQLPRINT;
 }
 ...
 EXEC SQL SELECT ...;
 ...
}

/*
 * WRONG
 */
int main(int argc, char *argv[])
{
 ...
 set_error_handler();
 ...
 EXEC SQL SELECT ...;
 ...
}

static void set_error_handler(void)
{
 EXEC SQL WHENEVER SQLERROR STOP;
}

36.8.2. sqlca
For more powerful error handling, the embedded SQL interface provides a global variable with the name
sqlca (SQL communication area) that has the following structure:

struct

958

ECPG - Embedded SQL in C

{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;
 char sqlerrmc[SQLERRMC_LEN];
 } sqlerrm;
 char sqlerrp[8];
 long sqlerrd[6];
 char sqlwarn[8];
 char sqlstate[5];
} sqlca;

(In a multithreaded program, every thread automatically gets its own copy of sqlca. This works similarly
to the handling of the standard C global variable errno.)

sqlca covers both warnings and errors. If multiple warnings or errors occur during the execution of a
statement, then sqlca will only contain information about the last one.

If no error occurred in the last SQL statement, sqlca.sqlcode will be 0 and sqlca.sqlstate
will be "00000". If a warning or error occurred, then sqlca.sqlcode will be negative and
sqlca.sqlstate will be different from "00000". A positive sqlca.sqlcode indicates a harmless
condition, such as that the last query returned zero rows. sqlcode and sqlstate are two different error
code schemes; details appear below.

If the last SQL statement was successful, then sqlca.sqlerrd[1] contains the OID of the processed
row, if applicable, and sqlca.sqlerrd[2] contains the number of processed or returned rows, if
applicable to the command.

In case of an error or warning, sqlca.sqlerrm.sqlerrmc will contain a string that describes the
error. The field sqlca.sqlerrm.sqlerrml contains the length of the error message that is stored
in sqlca.sqlerrm.sqlerrmc (the result of strlen(), not really interesting for a C programmer).
Note that some messages are too long to fit in the fixed-size sqlerrmc array; they will be truncated.

In case of a warning, sqlca.sqlwarn[2] is set to W. (In all other cases, it is set to something different
from W.) If sqlca.sqlwarn[1] is set to W, then a value was truncated when it was stored in a host
variable. sqlca.sqlwarn[0] is set to W if any of the other elements are set to indicate a warning.

The fields sqlcaid, sqlcabc, sqlerrp, and the remaining elements of sqlerrd and sqlwarn
currently contain no useful information.

The structure sqlca is not defined in the SQL standard, but is implemented in several other SQL database
systems. The definitions are similar at the core, but if you want to write portable applications, then you
should investigate the different implementations carefully.

Here is one example that combines the use of WHENEVER and sqlca, printing out the contents of sqlca
when an error occurs. This is perhaps useful for debugging or prototyping applications, before installing
a more “user-friendly” error handler.

EXEC SQL WHENEVER SQLERROR CALL print_sqlca();

void
print_sqlca()

959

ECPG - Embedded SQL in C

{
 fprintf(stderr, "==== sqlca ====\n");
 fprintf(stderr, "sqlcode: %ld\n", sqlca.sqlcode);
 fprintf(stderr, "sqlerrm.sqlerrml: %d\n", sqlca.sqlerrm.sqlerrml);
 fprintf(stderr, "sqlerrm.sqlerrmc: %s\n", sqlca.sqlerrm.sqlerrmc);
 fprintf(stderr, "sqlerrd: %ld %ld %ld %ld %ld %ld\n",
 sqlca.sqlerrd[0],sqlca.sqlerrd[1],sqlca.sqlerrd[2],

 sqlca.sqlerrd[3],sqlca.sqlerrd[4],sqlca.sqlerrd[5]);
 fprintf(stderr, "sqlwarn: %d %d %d %d %d %d %d %d\n",
 sqlca.sqlwarn[0], sqlca.sqlwarn[1], sqlca.sqlwarn[2],

 sqlca.sqlwarn[3], sqlca.sqlwarn[4], sqlca.sqlwarn[5],

 sqlca.sqlwarn[6], sqlca.sqlwarn[7]);
 fprintf(stderr, "sqlstate: %5s\n", sqlca.sqlstate);
 fprintf(stderr, "===============\n");
}

The result could look as follows (here an error due to a misspelled table name):

==== sqlca ====
sqlcode: -400
sqlerrm.sqlerrml: 49
sqlerrm.sqlerrmc: relation "pg_databasep" does not exist on line 38
sqlerrd: 0 0 0 0 0 0
sqlwarn: 0 0 0 0 0 0 0 0
sqlstate: 42P01
===============

36.8.3. SQLSTATE vs. SQLCODE
The fields sqlca.sqlstate and sqlca.sqlcode are two different schemes that provide error codes.
Both are derived from the SQL standard, but SQLCODE has been marked deprecated in the SQL-92 edition
of the standard and has been dropped in later editions. Therefore, new applications are strongly encouraged
to use SQLSTATE.

SQLSTATE is a five-character array. The five characters contain digits or upper-case letters that represent
codes of various error and warning conditions. SQLSTATE has a hierarchical scheme: the first two
characters indicate the general class of the condition, the last three characters indicate a subclass of the
general condition. A successful state is indicated by the code 00000. The SQLSTATE codes are for the
most part defined in the SQL standard. The PostgreSQL server natively supports SQLSTATE error codes;
therefore a high degree of consistency can be achieved by using this error code scheme throughout all
applications. For further information see Appendix A.

SQLCODE, the deprecated error code scheme, is a simple integer. A value of 0 indicates success, a positive
value indicates success with additional information, a negative value indicates an error. The SQL standard
only defines the positive value +100, which indicates that the last command returned or affected zero
rows, and no specific negative values. Therefore, this scheme can only achieve poor portability and does
not have a hierarchical code assignment. Historically, the embedded SQL processor for PostgreSQL has
assigned some specific SQLCODE values for its use, which are listed below with their numeric value and
their symbolic name. Remember that these are not portable to other SQL implementations. To simplify the
porting of applications to the SQLSTATE scheme, the corresponding SQLSTATE is also listed. There is,

960

ECPG - Embedded SQL in C

however, no one-to-one or one-to-many mapping between the two schemes (indeed it is many-to-many),
so you should consult the global SQLSTATE listing in Appendix A in each case.

These are the assigned SQLCODE values:

0 (ECPG_NO_ERROR)

Indicates no error. (SQLSTATE 00000)

100 (ECPG_NOT_FOUND)

This is a harmless condition indicating that the last command retrieved or processed zero rows, or that
you are at the end of the cursor. (SQLSTATE 02000)

When processing a cursor in a loop, you could use this code as a way to detect when to abort the
loop, like this:

while (1)
{
 EXEC SQL FETCH ... ;
 if (sqlca.sqlcode == ECPG_NOT_FOUND)
 break;
}

But WHENEVER NOT FOUND DO BREAK effectively does this internally, so there is usually no
advantage in writing this out explicitly.

-12 (ECPG_OUT_OF_MEMORY)

Indicates that your virtual memory is exhausted. The numeric value is defined as -ENOMEM.
(SQLSTATE YE001)

-200 (ECPG_UNSUPPORTED)

Indicates the preprocessor has generated something that the library does not know about. Perhaps you
are running incompatible versions of the preprocessor and the library. (SQLSTATE YE002)

-201 (ECPG_TOO_MANY_ARGUMENTS)

This means that the command specified more host variables than the command expected. (SQLSTATE
07001 or 07002)

-202 (ECPG_TOO_FEW_ARGUMENTS)

This means that the command specified fewer host variables than the command expected.
(SQLSTATE 07001 or 07002)

-203 (ECPG_TOO_MANY_MATCHES)

This means a query has returned multiple rows but the statement was only prepared to store one result
row (for example, because the specified variables are not arrays). (SQLSTATE 21000)

-204 (ECPG_INT_FORMAT)

The host variable is of type int and the datum in the database is of a different type and contains a value
that cannot be interpreted as an int. The library uses strtol() for this conversion. (SQLSTATE
42804)

961

ECPG - Embedded SQL in C

-205 (ECPG_UINT_FORMAT)

The host variable is of type unsigned int and the datum in the database is of a different type and
contains a value that cannot be interpreted as an unsigned int. The library uses strtoul() for
this conversion. (SQLSTATE 42804)

-206 (ECPG_FLOAT_FORMAT)

The host variable is of type float and the datum in the database is of another type and contains
a value that cannot be interpreted as a float. The library uses strtod() for this conversion.
(SQLSTATE 42804)

-207 (ECPG_NUMERIC_FORMAT)

The host variable is of type numeric and the datum in the database is of another type and contains
a value that cannot be interpreted as a numeric value. (SQLSTATE 42804)

-208 (ECPG_INTERVAL_FORMAT)

The host variable is of type interval and the datum in the database is of another type and contains
a value that cannot be interpreted as an interval value. (SQLSTATE 42804)

-209 (ECPG_DATE_FORMAT)

The host variable is of type date and the datum in the database is of another type and contains a
value that cannot be interpreted as a date value. (SQLSTATE 42804)

-210 (ECPG_TIMESTAMP_FORMAT)

The host variable is of type timestamp and the datum in the database is of another type and contains
a value that cannot be interpreted as a timestamp value. (SQLSTATE 42804)

-211 (ECPG_CONVERT_BOOL)

This means the host variable is of type bool and the datum in the database is neither 't' nor 'f'.
(SQLSTATE 42804)

-212 (ECPG_EMPTY)

The statement sent to the PostgreSQL server was empty. (This cannot normally happen in an
embedded SQL program, so it might point to an internal error.) (SQLSTATE YE002)

-213 (ECPG_MISSING_INDICATOR)

A null value was returned and no null indicator variable was supplied. (SQLSTATE 22002)

-214 (ECPG_NO_ARRAY)

An ordinary variable was used in a place that requires an array. (SQLSTATE 42804)

-215 (ECPG_DATA_NOT_ARRAY)

The database returned an ordinary variable in a place that requires array value. (SQLSTATE 42804)

-216 (ECPG_ARRAY_INSERT)

The value could not be inserted into the array. (SQLSTATE 42804)

962

ECPG - Embedded SQL in C

-220 (ECPG_NO_CONN)

The program tried to access a connection that does not exist. (SQLSTATE 08003)

-221 (ECPG_NOT_CONN)

The program tried to access a connection that does exist but is not open. (This is an internal error.)
(SQLSTATE YE002)

-230 (ECPG_INVALID_STMT)

The statement you are trying to use has not been prepared. (SQLSTATE 26000)

-239 (ECPG_INFORMIX_DUPLICATE_KEY)

Duplicate key error, violation of unique constraint (Informix compatibility mode). (SQLSTATE
23505)

-240 (ECPG_UNKNOWN_DESCRIPTOR)

The descriptor specified was not found. The statement you are trying to use has not been prepared.
(SQLSTATE 33000)

-241 (ECPG_INVALID_DESCRIPTOR_INDEX)

The descriptor index specified was out of range. (SQLSTATE 07009)

-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM)

An invalid descriptor item was requested. (This is an internal error.) (SQLSTATE YE002)

-243 (ECPG_VAR_NOT_NUMERIC)

During the execution of a dynamic statement, the database returned a numeric value and the host
variable was not numeric. (SQLSTATE 07006)

-244 (ECPG_VAR_NOT_CHAR)

During the execution of a dynamic statement, the database returned a non-numeric value and the host
variable was numeric. (SQLSTATE 07006)

-284 (ECPG_INFORMIX_SUBSELECT_NOT_ONE)

A result of the subquery is not single row (Informix compatibility mode). (SQLSTATE 21000)

-400 (ECPG_PGSQL)

Some error caused by the PostgreSQL server. The message contains the error message from the
PostgreSQL server.

-401 (ECPG_TRANS)

The PostgreSQL server signaled that we cannot start, commit, or rollback the transaction.
(SQLSTATE 08007)

-402 (ECPG_CONNECT)

The connection attempt to the database did not succeed. (SQLSTATE 08001)

963

ECPG - Embedded SQL in C

-403 (ECPG_DUPLICATE_KEY)

Duplicate key error, violation of unique constraint. (SQLSTATE 23505)

-404 (ECPG_SUBSELECT_NOT_ONE)

A result for the subquery is not single row. (SQLSTATE 21000)

-602 (ECPG_WARNING_UNKNOWN_PORTAL)

An invalid cursor name was specified. (SQLSTATE 34000)

-603 (ECPG_WARNING_IN_TRANSACTION)

Transaction is in progress. (SQLSTATE 25001)

-604 (ECPG_WARNING_NO_TRANSACTION)

There is no active (in-progress) transaction. (SQLSTATE 25P01)

-605 (ECPG_WARNING_PORTAL_EXISTS)

An existing cursor name was specified. (SQLSTATE 42P03)

36.9. Preprocessor Directives
Several preprocessor directives are available that modify how the ecpg preprocessor parses and processes
a file.

36.9.1. Including Files
To include an external file into your embedded SQL program, use:

EXEC SQL INCLUDE filename;
EXEC SQL INCLUDE <filename>;
EXEC SQL INCLUDE "filename";

The embedded SQL preprocessor will look for a file named filename.h, preprocess it, and include it
in the resulting C output. Thus, embedded SQL statements in the included file are handled correctly.

The ecpg preprocessor will search a file at several directories in following order:

• current directory

• /usr/local/include

• PostgreSQL include directory, defined at build time (e.g., /usr/local/pgsql/include)

• /usr/include

But when EXEC SQL INCLUDE "filename" is used, only the current directory is searched.

In each directory, the preprocessor will first look for the file name as given, and if not found will append
.h to the file name and try again (unless the specified file name already has that suffix).

964

ECPG - Embedded SQL in C

Note that EXEC SQL INCLUDE is not the same as:

#include <filename.h>

because this file would not be subject to SQL command preprocessing. Naturally, you can continue to use
the C #include directive to include other header files.

Note

The include file name is case-sensitive, even though the rest of the EXEC SQL INCLUDE
command follows the normal SQL case-sensitivity rules.

36.9.2. The define and undef Directives
Similar to the directive #define that is known from C, embedded SQL has a similar concept:

EXEC SQL DEFINE name;
EXEC SQL DEFINE name value;

So you can define a name:

EXEC SQL DEFINE HAVE_FEATURE;

And you can also define constants:

EXEC SQL DEFINE MYNUMBER 12;
EXEC SQL DEFINE MYSTRING 'abc';

Use undef to remove a previous definition:

EXEC SQL UNDEF MYNUMBER;

Of course you can continue to use the C versions #define and #undef in your embedded SQL program.
The difference is where your defined values get evaluated. If you use EXEC SQL DEFINE then the ecpg
preprocessor evaluates the defines and substitutes the values. For example if you write:

EXEC SQL DEFINE MYNUMBER 12;
...
EXEC SQL UPDATE Tbl SET col = MYNUMBER;

then ecpg will already do the substitution and your C compiler will never see any name or identifier
MYNUMBER. Note that you cannot use #define for a constant that you are going to use in an embedded
SQL query because in this case the embedded SQL precompiler is not able to see this declaration.

36.9.3. ifdef, ifndef, else, elif, and endif Directives
You can use the following directives to compile code sections conditionally:

965

ECPG - Embedded SQL in C

EXEC SQL ifdef name;

Checks a name and processes subsequent lines if name has been created with EXEC SQL define
name.

EXEC SQL ifndef name;

Checks a name and processes subsequent lines if name has not been created with EXEC SQL
define name.

EXEC SQL else;

Starts processing an alternative section to a section introduced by either EXEC SQL ifdef name
or EXEC SQL ifndef name.

EXEC SQL elif name;

Checks name and starts an alternative section if name has been created with EXEC SQL define
name.

EXEC SQL endif;

Ends an alternative section.

Example:

EXEC SQL ifndef TZVAR;
EXEC SQL SET TIMEZONE TO 'GMT';
EXEC SQL elif TZNAME;
EXEC SQL SET TIMEZONE TO TZNAME;
EXEC SQL else;
EXEC SQL SET TIMEZONE TO TZVAR;
EXEC SQL endif;

36.10. Processing Embedded SQL Programs
Now that you have an idea how to form embedded SQL C programs, you probably want to know how
to compile them. Before compiling you run the file through the embedded SQL C preprocessor, which
converts the SQL statements you used to special function calls. After compiling, you must link with a
special library that contains the needed functions. These functions fetch information from the arguments,
perform the SQL command using the libpq interface, and put the result in the arguments specified for
output.

The preprocessor program is called ecpg and is included in a normal PostgreSQL installation. Embedded
SQL programs are typically named with an extension .pgc. If you have a program file called
prog1.pgc, you can preprocess it by simply calling:

ecpg prog1.pgc

This will create a file called prog1.c. If your input files do not follow the suggested naming pattern, you
can specify the output file explicitly using the -o option.

The preprocessed file can be compiled normally, for example:

966

ECPG - Embedded SQL in C

cc -c prog1.c

The generated C source files include header files from the PostgreSQL installation, so if you installed
PostgreSQL in a location that is not searched by default, you have to add an option such as -I/usr/
local/pgsql/include to the compilation command line.

To link an embedded SQL program, you need to include the libecpg library, like so:

cc -o myprog prog1.o prog2.o ... -lecpg

Again, you might have to add an option like -L/usr/local/pgsql/lib to that command line.

You can use pg_config or pkg-config with package name libecpg to get the paths for your
installation.

If you manage the build process of a larger project using make, it might be convenient to include the
following implicit rule to your makefiles:

ECPG = ecpg

%.c: %.pgc
 $(ECPG) $<

The complete syntax of the ecpg command is detailed in ecpg.

The ecpg library is thread-safe by default. However, you might need to use some threading command-line
options to compile your client code.

36.11. Library Functions
The libecpg library primarily contains “hidden” functions that are used to implement the functionality
expressed by the embedded SQL commands. But there are some functions that can usefully be called
directly. Note that this makes your code unportable.

• ECPGdebug(int on, FILE *stream) turns on debug logging if called with the first argument
non-zero. Debug logging is done on stream. The log contains all SQL statements with all the input
variables inserted, and the results from the PostgreSQL server. This can be very useful when searching
for errors in your SQL statements.

Note

On Windows, if the ecpg libraries and an application are compiled with different flags,
this function call will crash the application because the internal representation of the FILE
pointers differ. Specifically, multithreaded/single-threaded, release/debug, and static/dynamic
flags should be the same for the library and all applications using that library.

• ECPGget_PGconn(const char *connection_name) returns the library database
connection handle identified by the given name. If connection_name is set to NULL, the current
connection handle is returned. If no connection handle can be identified, the function returns NULL. The
returned connection handle can be used to call any other functions from libpq, if necessary.

967

ECPG - Embedded SQL in C

Note

It is a bad idea to manipulate database connection handles made from ecpg directly with libpq
routines.

• ECPGtransactionStatus(const char *connection_name) returns the current
transaction status of the given connection identified by connection_name. See Section 34.2 and
libpq's PQtransactionStatus() for details about the returned status codes.

• ECPGstatus(int lineno, const char* connection_name) returns true if you are
connected to a database and false if not. connection_name can be NULL if a single connection is
being used.

36.12. Large Objects
Large objects are not directly supported by ECPG, but ECPG application can manipulate large objects
through the libpq large object functions, obtaining the necessary PGconn object by calling the
ECPGget_PGconn() function. (However, use of the ECPGget_PGconn() function and touching
PGconn objects directly should be done very carefully and ideally not mixed with other ECPG database
access calls.)

For more details about the ECPGget_PGconn(), see Section 36.11. For information about the large
object function interface, see Chapter 35.

Large object functions have to be called in a transaction block, so when autocommit is off, BEGIN
commands have to be issued explicitly.

Example 36.2 shows an example program that illustrates how to create, write, and read a large object in
an ECPG application.

Example 36.2. ECPG Program Accessing Large Objects

#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <libpq/libpq-fs.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
 PGconn *conn;
 Oid loid;
 int fd;
 char buf[256];
 int buflen = 256;
 char buf2[256];
 int rc;

968

ECPG - Embedded SQL in C

 memset(buf, 1, buflen);

 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;

 conn = ECPGget_PGconn("con1");
 printf("conn = %p\n", conn);

 /* create */
 loid = lo_create(conn, 0);
 if (loid < 0)
 printf("lo_create() failed: %s", PQerrorMessage(conn));

 printf("loid = %d\n", loid);

 /* write test */
 fd = lo_open(conn, loid, INV_READ|INV_WRITE);
 if (fd < 0)
 printf("lo_open() failed: %s", PQerrorMessage(conn));

 printf("fd = %d\n", fd);

 rc = lo_write(conn, fd, buf, buflen);
 if (rc < 0)
 printf("lo_write() failed\n");

 rc = lo_close(conn, fd);
 if (rc < 0)
 printf("lo_close() failed: %s", PQerrorMessage(conn));

 /* read test */
 fd = lo_open(conn, loid, INV_READ);
 if (fd < 0)
 printf("lo_open() failed: %s", PQerrorMessage(conn));

 printf("fd = %d\n", fd);

 rc = lo_read(conn, fd, buf2, buflen);
 if (rc < 0)
 printf("lo_read() failed\n");

 rc = lo_close(conn, fd);
 if (rc < 0)
 printf("lo_close() failed: %s", PQerrorMessage(conn));

 /* check */
 rc = memcmp(buf, buf2, buflen);
 printf("memcmp() = %d\n", rc);

 /* cleanup */
 rc = lo_unlink(conn, loid);
 if (rc < 0)
 printf("lo_unlink() failed: %s", PQerrorMessage(conn));

969

ECPG - Embedded SQL in C

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

36.13. C++ Applications
ECPG has some limited support for C++ applications. This section describes some caveats.

The ecpg preprocessor takes an input file written in C (or something like C) and embedded SQL
commands, converts the embedded SQL commands into C language chunks, and finally generates a .c file.
The header file declarations of the library functions used by the C language chunks that ecpg generates
are wrapped in extern "C" { ... } blocks when used under C++, so they should work seamlessly
in C++.

In general, however, the ecpg preprocessor only understands C; it does not handle the special syntax and
reserved words of the C++ language. So, some embedded SQL code written in C++ application code that
uses complicated features specific to C++ might fail to be preprocessed correctly or might not work as
expected.

A safe way to use the embedded SQL code in a C++ application is hiding the ECPG calls in a C module,
which the C++ application code calls into to access the database, and linking that together with the rest
of the C++ code. See Section 36.13.2 about that.

36.13.1. Scope for Host Variables
The ecpg preprocessor understands the scope of variables in C. In the C language, this is rather simple
because the scopes of variables is based on their code blocks. In C++, however, the class member variables
are referenced in a different code block from the declared position, so the ecpg preprocessor will not
understand the scope of the class member variables.

For example, in the following case, the ecpg preprocessor cannot find any declaration for the variable
dbname in the test method, so an error will occur.

class TestCpp
{
 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
 EXEC SQL END DECLARE SECTION;

 public:
 TestCpp();
 void test();
 ~TestCpp();
};

TestCpp::TestCpp()
{
 EXEC SQL CONNECT TO testdb1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;
}

970

ECPG - Embedded SQL in C

void Test::test()
{
 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current_database = %s\n", dbname);
}

TestCpp::~TestCpp()
{
 EXEC SQL DISCONNECT ALL;
}

This code will result in an error like this:

ecpg test_cpp.pgc
test_cpp.pgc:28: ERROR: variable "dbname" is not declared

To avoid this scope issue, the test method could be modified to use a local variable as intermediate
storage. But this approach is only a poor workaround, because it uglifies the code and reduces performance.

void TestCpp::test()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char tmp[1024];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT current_database() INTO :tmp;
 strlcpy(dbname, tmp, sizeof(tmp));

 printf("current_database = %s\n", dbname);
}

36.13.2. C++ Application Development with External C
Module

If you understand these technical limitations of the ecpg preprocessor in C++, you might come to the
conclusion that linking C objects and C++ objects at the link stage to enable C++ applications to use ECPG
features could be better than writing some embedded SQL commands in C++ code directly. This section
describes a way to separate some embedded SQL commands from C++ application code with a simple
example. In this example, the application is implemented in C++, while C and ECPG is used to connect
to the PostgreSQL server.

Three kinds of files have to be created: a C file (*.pgc), a header file, and a C++ file:

test_mod.pgc

A sub-routine module to execute SQL commands embedded in C. It is going to be converted into
test_mod.c by the preprocessor.

#include "test_mod.h"
#include <stdio.h>

971

ECPG - Embedded SQL in C

void
db_connect()
{
 EXEC SQL CONNECT TO testdb1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '',
 false); EXEC SQL COMMIT;
}

void
db_test()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current_database = %s\n", dbname);
}

void
db_disconnect()
{
 EXEC SQL DISCONNECT ALL;
}

test_mod.h

A header file with declarations of the functions in the C module (test_mod.pgc). It is included
by test_cpp.cpp. This file has to have an extern "C" block around the declarations, because
it will be linked from the C++ module.

#ifdef __cplusplus
extern "C" {
#endif

void db_connect();
void db_test();
void db_disconnect();

#ifdef __cplusplus
}
#endif

test_cpp.cpp

The main code for the application, including the main routine, and in this example a C++ class.

#include "test_mod.h"

class TestCpp
{
 public:

972

ECPG - Embedded SQL in C

 TestCpp();
 void test();
 ~TestCpp();
};

TestCpp::TestCpp()
{
 db_connect();
}

void
TestCpp::test()
{
 db_test();
}

TestCpp::~TestCpp()
{
 db_disconnect();
}

int
main(void)
{
 TestCpp *t = new TestCpp();

 t->test();
 return 0;
}

To build the application, proceed as follows. Convert test_mod.pgc into test_mod.c by running
ecpg, and generate test_mod.o by compiling test_mod.c with the C compiler:

ecpg -o test_mod.c test_mod.pgc
cc -c test_mod.c -o test_mod.o

Next, generate test_cpp.o by compiling test_cpp.cpp with the C++ compiler:

c++ -c test_cpp.cpp -o test_cpp.o

Finally, link these object files, test_cpp.o and test_mod.o, into one executable, using the C++
compiler driver:

c++ test_cpp.o test_mod.o -lecpg -o test_cpp

36.14. Embedded SQL Commands
This section describes all SQL commands that are specific to embedded SQL. Also refer to the SQL
commands listed in SQL Commands, which can also be used in embedded SQL, unless stated otherwise.

973

ECPG - Embedded SQL in C

ALLOCATE DESCRIPTOR
ALLOCATE DESCRIPTOR — allocate an SQL descriptor area

Synopsis

ALLOCATE DESCRIPTOR name

Description

ALLOCATE DESCRIPTOR allocates a new named SQL descriptor area, which can be used to exchange
data between the PostgreSQL server and the host program.

Descriptor areas should be freed after use using the DEALLOCATE DESCRIPTOR command.

Parameters

name

A name of SQL descriptor, case sensitive. This can be an SQL identifier or a host variable.

Examples

EXEC SQL ALLOCATE DESCRIPTOR mydesc;

Compatibility

ALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also
DEALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

974

ECPG - Embedded SQL in C

CONNECT
CONNECT — establish a database connection

Synopsis

CONNECT TO connection_target [AS connection_name]
 [USER connection_user]
CONNECT TO DEFAULT
CONNECT connection_user
DATABASE connection_target

Description

The CONNECT command establishes a connection between the client and the PostgreSQL server.

Parameters

connection_target

connection_target specifies the target server of the connection on one of several forms.

[database_name] [@host] [:port]

Connect over TCP/IP

unix:postgresql://host [:port] / [database_name] [?connection_option]

Connect over Unix-domain sockets

tcp:postgresql://host [:port] / [database_name] [?connection_option]

Connect over TCP/IP

SQL string constant

containing a value in one of the above forms

host variable

host variable of type char[] or VARCHAR[] containing a value in one of the above forms

connection_object

An optional identifier for the connection, so that it can be referred to in other commands. This can
be an SQL identifier or a host variable.

connection_user

The user name for the database connection.

This parameter can also specify user name and password, using one the forms user_name/
password, user_name IDENTIFIED BY password, or user_name USING password.

975

ECPG - Embedded SQL in C

User name and password can be SQL identifiers, string constants, or host variables.

DEFAULT

Use all default connection parameters, as defined by libpq.

Examples

Here a several variants for specifying connection parameters:

EXEC SQL CONNECT TO "connectdb" AS main;
EXEC SQL CONNECT TO "connectdb" AS second;
EXEC SQL CONNECT TO "unix:postgresql://200.46.204.71/connectdb" AS
 main USER connectuser;
EXEC SQL CONNECT TO "unix:postgresql://localhost/connectdb" AS main
 USER connectuser;
EXEC SQL CONNECT TO 'connectdb' AS main;
EXEC SQL CONNECT TO 'unix:postgresql://localhost/connectdb' AS main
 USER :user;
EXEC SQL CONNECT TO :db AS :id;
EXEC SQL CONNECT TO :db USER connectuser USING :pw;
EXEC SQL CONNECT TO @localhost AS main USER connectdb;
EXEC SQL CONNECT TO REGRESSDB1 as main;
EXEC SQL CONNECT TO AS main USER connectdb;
EXEC SQL CONNECT TO connectdb AS :id;
EXEC SQL CONNECT TO connectdb AS main USER connectuser/connectdb;
EXEC SQL CONNECT TO connectdb AS main;
EXEC SQL CONNECT TO connectdb@localhost AS main;
EXEC SQL CONNECT TO tcp:postgresql://localhost/ USER connectdb;
EXEC SQL CONNECT TO tcp:postgresql://localhost/connectdb USER
 connectuser IDENTIFIED BY connectpw;
EXEC SQL CONNECT TO tcp:postgresql://localhost:20/connectdb USER
 connectuser IDENTIFIED BY connectpw;
EXEC SQL CONNECT TO unix:postgresql://localhost/ AS main USER
 connectdb;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb AS main USER
 connectuser;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER
 connectuser IDENTIFIED BY "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER
 connectuser USING "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb?
connect_timeout=14 USER connectuser;

Here is an example program that illustrates the use of host variables to specify connection parameters:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 char *dbname = "testdb"; /* database name */
 char *user = "testuser"; /* connection user name */
 char *connection = "tcp:postgresql://localhost:5432/testdb";

976

ECPG - Embedded SQL in C

 /* connection string */
 char ver[256]; /* buffer to store the version
 string */
EXEC SQL END DECLARE SECTION;

 ECPGdebug(1, stderr);

 EXEC SQL CONNECT TO :dbname USER :user;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;
 EXEC SQL SELECT version() INTO :ver;
 EXEC SQL DISCONNECT;

 printf("version: %s\n", ver);

 EXEC SQL CONNECT TO :connection USER :user;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;
 EXEC SQL SELECT version() INTO :ver;
 EXEC SQL DISCONNECT;

 printf("version: %s\n", ver);

 return 0;
}

Compatibility

CONNECT is specified in the SQL standard, but the format of the connection parameters is implementation-
specific.

See Also
DISCONNECT, SET CONNECTION

977

ECPG - Embedded SQL in C

DEALLOCATE DESCRIPTOR
DEALLOCATE DESCRIPTOR — deallocate an SQL descriptor area

Synopsis

DEALLOCATE DESCRIPTOR name

Description

DEALLOCATE DESCRIPTOR deallocates a named SQL descriptor area.

Parameters

name

The name of the descriptor which is going to be deallocated. It is case sensitive. This can be an SQL
identifier or a host variable.

Examples

EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility

DEALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

978

ECPG - Embedded SQL in C

DECLARE
DECLARE — define a cursor

Synopsis

DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL]
 CURSOR [{ WITH | WITHOUT } HOLD] FOR prepared_name
DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL]
 CURSOR [{ WITH | WITHOUT } HOLD] FOR query

Description

DECLARE declares a cursor for iterating over the result set of a prepared statement. This command has
slightly different semantics from the direct SQL command DECLARE: Whereas the latter executes a query
and prepares the result set for retrieval, this embedded SQL command merely declares a name as a “loop
variable” for iterating over the result set of a query; the actual execution happens when the cursor is opened
with the OPEN command.

Parameters

cursor_name

A cursor name, case sensitive. This can be an SQL identifier or a host variable.

prepared_name

The name of a prepared query, either as an SQL identifier or a host variable.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

For the meaning of the cursor options, see DECLARE.

Examples

Examples declaring a cursor for a query:

EXEC SQL DECLARE C CURSOR FOR SELECT * FROM My_Table;
EXEC SQL DECLARE C CURSOR FOR SELECT Item1 FROM T;
EXEC SQL DECLARE cur1 CURSOR FOR SELECT version();

An example declaring a cursor for a prepared statement:

EXEC SQL PREPARE stmt1 AS SELECT version();
EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Compatibility

DECLARE is specified in the SQL standard.

979

ECPG - Embedded SQL in C

See Also
OPEN, CLOSE, DECLARE

980

ECPG - Embedded SQL in C

DESCRIBE
DESCRIBE — obtain information about a prepared statement or result set

Synopsis

DESCRIBE [OUTPUT] prepared_name USING [SQL]
 DESCRIPTOR descriptor_name
DESCRIBE [OUTPUT] prepared_name INTO [SQL]
 DESCRIPTOR descriptor_name
DESCRIBE [OUTPUT] prepared_name INTO sqlda_name

Description

DESCRIBE retrieves metadata information about the result columns contained in a prepared statement,
without actually fetching a row.

Parameters

prepared_name

The name of a prepared statement. This can be an SQL identifier or a host variable.

descriptor_name

A descriptor name. It is case sensitive. It can be an SQL identifier or a host variable.

sqlda_name

The name of an SQLDA variable.

Examples

EXEC SQL ALLOCATE DESCRIPTOR mydesc;
EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;
EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :charvar = NAME;
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility

DESCRIBE is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

981

ECPG - Embedded SQL in C

DISCONNECT
DISCONNECT — terminate a database connection

Synopsis

DISCONNECT connection_name
DISCONNECT [CURRENT]
DISCONNECT DEFAULT
DISCONNECT ALL

Description

DISCONNECT closes a connection (or all connections) to the database.

Parameters

connection_name

A database connection name established by the CONNECT command.

CURRENT

Close the “current” connection, which is either the most recently opened connection, or the connection
set by the SET CONNECTION command. This is also the default if no argument is given to the
DISCONNECT command.

DEFAULT

Close the default connection.

ALL

Close all open connections.

Examples

int
main(void)
{
 EXEC SQL CONNECT TO testdb AS DEFAULT USER testuser;
 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL CONNECT TO testdb AS con2 USER testuser;
 EXEC SQL CONNECT TO testdb AS con3 USER testuser;

 EXEC SQL DISCONNECT CURRENT; /* close con3 */
 EXEC SQL DISCONNECT DEFAULT; /* close DEFAULT */
 EXEC SQL DISCONNECT ALL; /* close con2 and con1 */

 return 0;
}

982

ECPG - Embedded SQL in C

Compatibility

DISCONNECT is specified in the SQL standard.

See Also
CONNECT, SET CONNECTION

983

ECPG - Embedded SQL in C

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE — dynamically prepare and execute a statement

Synopsis

EXECUTE IMMEDIATE string

Description

EXECUTE IMMEDIATE immediately prepares and executes a dynamically specified SQL statement,
without retrieving result rows.

Parameters

string

A literal C string or a host variable containing the SQL statement to be executed.

Examples

Here is an example that executes an INSERT statement using EXECUTE IMMEDIATE and a host variable
named command:

sprintf(command, "INSERT INTO test (name, amount, letter) VALUES ('db:
 ''r1''', 1, 'f')");
EXEC SQL EXECUTE IMMEDIATE :command;

Compatibility

EXECUTE IMMEDIATE is specified in the SQL standard.

984

ECPG - Embedded SQL in C

GET DESCRIPTOR
GET DESCRIPTOR — get information from an SQL descriptor area

Synopsis

GET DESCRIPTOR descriptor_name :cvariable = descriptor_header_item
 [, ...]
GET DESCRIPTOR descriptor_name VALUE column_number :cvariable
 = descriptor_item [, ...]

Description

GET DESCRIPTOR retrieves information about a query result set from an SQL descriptor area and stores
it into host variables. A descriptor area is typically populated using FETCH or SELECT before using this
command to transfer the information into host language variables.

This command has two forms: The first form retrieves descriptor “header” items, which apply to the result
set in its entirety. One example is the row count. The second form, which requires the column number
as additional parameter, retrieves information about a particular column. Examples are the column name
and the actual column value.

Parameters

descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to retrieve. Only COUNT, to get the number of
columns in the result set, is currently supported.

column_number

The number of the column about which information is to be retrieved. The count starts at 1.

descriptor_item

A token identifying which item of information about a column to retrieve. See Section 36.7.1 for a
list of supported items.

cvariable

A host variable that will receive the data retrieved from the descriptor area.

Examples

An example to retrieve the number of columns in a result set:

EXEC SQL GET DESCRIPTOR d :d_count = COUNT;

An example to retrieve a data length in the first column:

985

ECPG - Embedded SQL in C

EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length =
 RETURNED_OCTET_LENGTH;

An example to retrieve the data body of the second column as a string:

EXEC SQL GET DESCRIPTOR d VALUE 2 :d_data = DATA;

Here is an example for a whole procedure of executing SELECT current_database(); and showing
the number of columns, the column data length, and the column data:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 int d_count;
 char d_data[1024];
 int d_returned_octet_length;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;
 EXEC SQL ALLOCATE DESCRIPTOR d;

 /* Declare, open a cursor, and assign a descriptor to the cursor
 */
 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database();
 EXEC SQL OPEN cur;
 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;

 /* Get a number of total columns */
 EXEC SQL GET DESCRIPTOR d :d_count = COUNT;
 printf("d_count = %d\n", d_count);

 /* Get length of a returned column */
 EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length =
 RETURNED_OCTET_LENGTH;
 printf("d_returned_octet_length = %d\n", d_returned_octet_length);

 /* Fetch the returned column as a string */
 EXEC SQL GET DESCRIPTOR d VALUE 1 :d_data = DATA;
 printf("d_data = %s\n", d_data);

 /* Closing */
 EXEC SQL CLOSE cur;
 EXEC SQL COMMIT;

 EXEC SQL DEALLOCATE DESCRIPTOR d;
 EXEC SQL DISCONNECT ALL;

 return 0;
}

986

ECPG - Embedded SQL in C

When the example is executed, the result will look like this:

d_count = 1
d_returned_octet_length = 6
d_data = testdb

Compatibility

GET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, SET DESCRIPTOR

987

ECPG - Embedded SQL in C

OPEN
OPEN — open a dynamic cursor

Synopsis

OPEN cursor_name
OPEN cursor_name USING value [, ...]
OPEN cursor_name USING SQL DESCRIPTOR descriptor_name

Description

OPEN opens a cursor and optionally binds actual values to the placeholders in the cursor's declaration. The
cursor must previously have been declared with the DECLARE command. The execution of OPEN causes
the query to start executing on the server.

Parameters

cursor_name

The name of the cursor to be opened. This can be an SQL identifier or a host variable.

value

A value to be bound to a placeholder in the cursor. This can be an SQL constant, a host variable, or
a host variable with indicator.

descriptor_name

The name of a descriptor containing values to be bound to the placeholders in the cursor. This can
be an SQL identifier or a host variable.

Examples

EXEC SQL OPEN a;
EXEC SQL OPEN d USING 1, 'test';
EXEC SQL OPEN c1 USING SQL DESCRIPTOR mydesc;
EXEC SQL OPEN :curname1;

Compatibility

OPEN is specified in the SQL standard.

See Also
DECLARE, CLOSE

988

ECPG - Embedded SQL in C

PREPARE
PREPARE — prepare a statement for execution

Synopsis

PREPARE name FROM string

Description

PREPARE prepares a statement dynamically specified as a string for execution. This is different from
the direct SQL statement PREPARE, which can also be used in embedded programs. The EXECUTE
command is used to execute either kind of prepared statement.

Parameters

prepared_name

An identifier for the prepared query.

string

A literal C string or a host variable containing a preparable statement, one of the SELECT, INSERT,
UPDATE, or DELETE.

Examples

char *stmt = "SELECT * FROM test1 WHERE a = ? AND b = ?";

EXEC SQL ALLOCATE DESCRIPTOR outdesc;
EXEC SQL PREPARE foo FROM :stmt;

EXEC SQL EXECUTE foo USING SQL DESCRIPTOR indesc INTO SQL DESCRIPTOR
 outdesc;

Compatibility

PREPARE is specified in the SQL standard.

See Also
EXECUTE

989

ECPG - Embedded SQL in C

SET AUTOCOMMIT
SET AUTOCOMMIT — set the autocommit behavior of the current session

Synopsis

SET AUTOCOMMIT { = | TO } { ON | OFF }

Description

SET AUTOCOMMIT sets the autocommit behavior of the current database session. By default, embedded
SQL programs are not in autocommit mode, so COMMIT needs to be issued explicitly when desired. This
command can change the session to autocommit mode, where each individual statement is committed
implicitly.

Compatibility

SET AUTOCOMMIT is an extension of PostgreSQL ECPG.

990

ECPG - Embedded SQL in C

SET CONNECTION
SET CONNECTION — select a database connection

Synopsis

SET CONNECTION [TO | =] connection_name

Description

SET CONNECTION sets the “current” database connection, which is the one that all commands use unless
overridden.

Parameters

connection_name

A database connection name established by the CONNECT command.

DEFAULT

Set the connection to the default connection.

Examples

EXEC SQL SET CONNECTION TO con2;
EXEC SQL SET CONNECTION = con1;

Compatibility

SET CONNECTION is specified in the SQL standard.

See Also
CONNECT, DISCONNECT

991

ECPG - Embedded SQL in C

SET DESCRIPTOR
SET DESCRIPTOR — set information in an SQL descriptor area

Synopsis

SET DESCRIPTOR descriptor_name descriptor_header_item = value [, ...]
SET DESCRIPTOR descriptor_name VALUE number descriptor_item = value
 [, ...]

Description

SET DESCRIPTOR populates an SQL descriptor area with values. The descriptor area is then typically
used to bind parameters in a prepared query execution.

This command has two forms: The first form applies to the descriptor “header”, which is independent of
a particular datum. The second form assigns values to particular datums, identified by number.

Parameters

descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to set. Only COUNT, to set the number of descriptor
items, is currently supported.

number

The number of the descriptor item to set. The count starts at 1.

descriptor_item

A token identifying which item of information to set in the descriptor. See Section 36.7.1 for a list
of supported items.

value

A value to store into the descriptor item. This can be an SQL constant or a host variable.

Examples

EXEC SQL SET DESCRIPTOR indesc COUNT = 1;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = 2;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = :val1;
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val1, DATA = 'some
 string';
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val2null, DATA
 = :val2;

992

ECPG - Embedded SQL in C

Compatibility

SET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

993

ECPG - Embedded SQL in C

TYPE
TYPE — define a new data type

Synopsis

TYPE type_name IS ctype

Description

The TYPE command defines a new C type. It is equivalent to putting a typedef into a declare section.

This command is only recognized when ecpg is run with the -c option.

Parameters

type_name

The name for the new type. It must be a valid C type name.

ctype

A C type specification.

Examples

EXEC SQL TYPE customer IS
 struct
 {
 varchar name[50];
 int phone;
 };

EXEC SQL TYPE cust_ind IS
 struct ind
 {
 short name_ind;
 short phone_ind;
 };

EXEC SQL TYPE c IS char reference;
EXEC SQL TYPE ind IS union { int integer; short smallint; };
EXEC SQL TYPE intarray IS int[AMOUNT];
EXEC SQL TYPE str IS varchar[BUFFERSIZ];
EXEC SQL TYPE string IS char[11];

Here is an example program that uses EXEC SQL TYPE:

EXEC SQL WHENEVER SQLERROR SQLPRINT;

EXEC SQL TYPE tt IS

994

ECPG - Embedded SQL in C

 struct
 {
 varchar v[256];
 int i;
 };

EXEC SQL TYPE tt_ind IS
 struct ind {
 short v_ind;
 short i_ind;
 };

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 tt t;
 tt_ind t_ind;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;

 EXEC SQL SELECT current_database(), 256 INTO :t:t_ind LIMIT 1;

 printf("t.v = %s\n", t.v.arr);
 printf("t.i = %d\n", t.i);

 printf("t_ind.v_ind = %d\n", t_ind.v_ind);
 printf("t_ind.i_ind = %d\n", t_ind.i_ind);

 EXEC SQL DISCONNECT con1;

 return 0;
}

The output from this program looks like this:

t.v = testdb
t.i = 256
t_ind.v_ind = 0
t_ind.i_ind = 0

Compatibility

The TYPE command is a PostgreSQL extension.

995

ECPG - Embedded SQL in C

VAR
VAR — define a variable

Synopsis

VAR varname IS ctype

Description

The VAR command assigns a new C data type to a host variable. The host variable must be previously
declared in a declare section.

Parameters

varname

A C variable name.

ctype

A C type specification.

Examples

Exec sql begin declare section;
short a;
exec sql end declare section;
EXEC SQL VAR a IS int;

Compatibility

The VAR command is a PostgreSQL extension.

996

ECPG - Embedded SQL in C

WHENEVER
WHENEVER — specify the action to be taken when an SQL statement causes a specific class condition
to be raised

Synopsis

WHENEVER { NOT FOUND | SQLERROR | SQLWARNING } action

Description

Define a behavior which is called on the special cases (Rows not found, SQL warnings or errors) in the
result of SQL execution.

Parameters

See Section 36.8.1 for a description of the parameters.

Examples

EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER NOT FOUND DO CONTINUE;
EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLWARNING DO warn();
EXEC SQL WHENEVER SQLERROR sqlprint;
EXEC SQL WHENEVER SQLERROR CALL print2();
EXEC SQL WHENEVER SQLERROR DO handle_error("select");
EXEC SQL WHENEVER SQLERROR DO sqlnotice(NULL, NONO);
EXEC SQL WHENEVER SQLERROR DO sqlprint();
EXEC SQL WHENEVER SQLERROR GOTO error_label;
EXEC SQL WHENEVER SQLERROR STOP;

A typical application is the use of WHENEVER NOT FOUND BREAK to handle looping through result sets:

int
main(void)
{
 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false);
 EXEC SQL COMMIT;
 EXEC SQL ALLOCATE DESCRIPTOR d;
 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database(), 'hoge',
 256;
 EXEC SQL OPEN cur;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

997

ECPG - Embedded SQL in C

 while (1)
 {
 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;
 ...
 }

 EXEC SQL CLOSE cur;
 EXEC SQL COMMIT;

 EXEC SQL DEALLOCATE DESCRIPTOR d;
 EXEC SQL DISCONNECT ALL;

 return 0;
}

Compatibility

WHENEVER is specified in the SQL standard, but most of the actions are PostgreSQL extensions.

36.15. Informix Compatibility Mode
ecpg can be run in a so-called Informix compatibility mode. If this mode is active, it tries to behave as
if it were the Informix precompiler for Informix E/SQL. Generally spoken this will allow you to use the
dollar sign instead of the EXEC SQL primitive to introduce embedded SQL commands:

$int j = 3;
$CONNECT TO :dbname;
$CREATE TABLE test(i INT PRIMARY KEY, j INT);
$INSERT INTO test(i, j) VALUES (7, :j);
$COMMIT;

Note

There must not be any white space between the $ and a following preprocessor directive, that
is, include, define, ifdef, etc. Otherwise, the preprocessor will parse the token as a host
variable.

There are two compatibility modes: INFORMIX, INFORMIX_SE

When linking programs that use this compatibility mode, remember to link against libcompat that is
shipped with ECPG.

Besides the previously explained syntactic sugar, the Informix compatibility mode ports some functions
for input, output and transformation of data as well as embedded SQL statements known from E/SQL to
ECPG.

Informix compatibility mode is closely connected to the pgtypeslib library of ECPG. pgtypeslib maps SQL
data types to data types within the C host program and most of the additional functions of the Informix
compatibility mode allow you to operate on those C host program types. Note however that the extent of
the compatibility is limited. It does not try to copy Informix behavior; it allows you to do more or less

998

ECPG - Embedded SQL in C

the same operations and gives you functions that have the same name and the same basic behavior but
it is no drop-in replacement if you are using Informix at the moment. Moreover, some of the data types
are different. For example, PostgreSQL's datetime and interval types do not know about ranges like for
example YEAR TO MINUTE so you won't find support in ECPG for that either.

36.15.1. Additional Types
The Informix-special "string" pseudo-type for storing right-trimmed character string data is now supported
in Informix-mode without using typedef. In fact, in Informix-mode, ECPG refuses to process source
files that contain typedef sometype string;

EXEC SQL BEGIN DECLARE SECTION;
string userid; /* this variable will contain trimmed data */
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH MYCUR INTO :userid;

36.15.2. Additional/Missing Embedded SQL Statements
CLOSE DATABASE

This statement closes the current connection. In fact, this is a synonym for ECPG's DISCONNECT
CURRENT:

$CLOSE DATABASE; /* close the current connection */
EXEC SQL CLOSE DATABASE;

FREE cursor_name

Due to the differences how ECPG works compared to Informix's ESQL/C (i.e. which steps are purely
grammar transformations and which steps rely on the underlying run-time library) there is no FREE
cursor_name statement in ECPG. This is because in ECPG, DECLARE CURSOR doesn't translate
to a function call into the run-time library that uses to the cursor name. This means that there's no run-
time bookkeeping of SQL cursors in the ECPG run-time library, only in the PostgreSQL server.

FREE statement_name

FREE statement_name is a synonym for DEALLOCATE PREPARE statement_name.

36.15.3. Informix-compatible SQLDA Descriptor Areas
Informix-compatible mode supports a different structure than the one described in Section 36.7.2. See
below:

struct sqlvar_compat
{
 short sqltype;
 int sqllen;
 char *sqldata;
 short *sqlind;

999

ECPG - Embedded SQL in C

 char *sqlname;
 char *sqlformat;
 short sqlitype;
 short sqlilen;
 char *sqlidata;
 int sqlxid;
 char *sqltypename;
 short sqltypelen;
 short sqlownerlen;
 short sqlsourcetype;
 char *sqlownername;
 int sqlsourceid;
 char *sqlilongdata;
 int sqlflags;
 void *sqlreserved;
};

struct sqlda_compat
{
 short sqld;
 struct sqlvar_compat *sqlvar;
 char desc_name[19];
 short desc_occ;
 struct sqlda_compat *desc_next;
 void *reserved;
};

typedef struct sqlvar_compat sqlvar_t;
typedef struct sqlda_compat sqlda_t;

The global properties are:

sqld

The number of fields in the SQLDA descriptor.

sqlvar

Pointer to the per-field properties.

desc_name

Unused, filled with zero-bytes.

desc_occ

Size of the allocated structure.

desc_next

Pointer to the next SQLDA structure if the result set contains more than one record.

reserved

Unused pointer, contains NULL. Kept for Informix-compatibility.

1000

ECPG - Embedded SQL in C

The per-field properties are below, they are stored in the sqlvar array:

sqltype

Type of the field. Constants are in sqltypes.h

sqllen

Length of the field data.

sqldata

Pointer to the field data. The pointer is of char * type, the data pointed by it is in a binary format.
Example:

int intval;

switch (sqldata->sqlvar[i].sqltype)
{
 case SQLINTEGER:
 intval = *(int *)sqldata->sqlvar[i].sqldata;
 break;
 ...
}

sqlind

Pointer to the NULL indicator. If returned by DESCRIBE or FETCH then it's always a valid pointer.
If used as input for EXECUTE ... USING sqlda; then NULL-pointer value means that the value
for this field is non-NULL. Otherwise a valid pointer and sqlitype has to be properly set. Example:

if (*(int2 *)sqldata->sqlvar[i].sqlind != 0)
 printf("value is NULL\n");

sqlname

Name of the field. 0-terminated string.

sqlformat

Reserved in Informix, value of PQfformat() for the field.

sqlitype

Type of the NULL indicator data. It's always SQLSMINT when returning data from the server. When
the SQLDA is used for a parameterized query, the data is treated according to the set type.

sqlilen

Length of the NULL indicator data.

sqlxid

Extended type of the field, result of PQftype().

1001

ECPG - Embedded SQL in C

sqltypename
sqltypelen
sqlownerlen
sqlsourcetype
sqlownername
sqlsourceid
sqlflags
sqlreserved

Unused.

sqlilongdata

It equals to sqldata if sqllen is larger than 32kB.

Example:

EXEC SQL INCLUDE sqlda.h;

 sqlda_t *sqlda; /* This doesn't need to be under embedded
 DECLARE SECTION */

 EXEC SQL BEGIN DECLARE SECTION;
 char *prep_stmt = "select * from table1";
 int i;
 EXEC SQL END DECLARE SECTION;

 ...

 EXEC SQL PREPARE mystmt FROM :prep_stmt;

 EXEC SQL DESCRIBE mystmt INTO sqlda;

 printf("# of fields: %d\n", sqlda->sqld);
 for (i = 0; i < sqlda->sqld; i++)
 printf("field %d: \"%s\"\n", sqlda->sqlvar[i]->sqlname);

 EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
 EXEC SQL OPEN mycursor;
 EXEC SQL WHENEVER NOT FOUND GOTO out;

 while (1)
 {
 EXEC SQL FETCH mycursor USING sqlda;
 }

 EXEC SQL CLOSE mycursor;

 free(sqlda); /* The main structure is all to be free(),
 * sqlda and sqlda->sqlvar is in one allocated area
 */

For more information, see the sqlda.h header and the src/interfaces/ecpg/test/
compat_informix/sqlda.pgc regression test.

1002

ECPG - Embedded SQL in C

36.15.4. Additional Functions
decadd

Add two decimal type values.

int decadd(decimal *arg1, decimal *arg2, decimal *sum);

The function receives a pointer to the first operand of type decimal (arg1), a pointer to the second
operand of type decimal (arg2) and a pointer to a value of type decimal that will contain the sum
(sum). On success, the function returns 0. ECPG_INFORMIX_NUM_OVERFLOW is returned in case
of overflow and ECPG_INFORMIX_NUM_UNDERFLOW in case of underflow. -1 is returned for other
failures and errno is set to the respective errno number of the pgtypeslib.

deccmp

Compare two variables of type decimal.

int deccmp(decimal *arg1, decimal *arg2);

The function receives a pointer to the first decimal value (arg1), a pointer to the second decimal
value (arg2) and returns an integer value that indicates which is the bigger value.

• 1, if the value that arg1 points to is bigger than the value that var2 points to

• -1, if the value that arg1 points to is smaller than the value that arg2 points to

• 0, if the value that arg1 points to and the value that arg2 points to are equal

deccopy

Copy a decimal value.

void deccopy(decimal *src, decimal *target);

The function receives a pointer to the decimal value that should be copied as the first argument (src)
and a pointer to the target structure of type decimal (target) as the second argument.

deccvasc

Convert a value from its ASCII representation into a decimal type.

int deccvasc(char *cp, int len, decimal *np);

The function receives a pointer to string that contains the string representation of the number to be
converted (cp) as well as its length len. np is a pointer to the decimal value that saves the result
of the operation.

Valid formats are for example: -2, .794, +3.44, 592.49E07 or -32.84e-4.

The function returns 0 on success. If overflow or underflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW is returned. If
the ASCII representation could not be parsed, ECPG_INFORMIX_BAD_NUMERIC is returned or
ECPG_INFORMIX_BAD_EXPONENT if this problem occurred while parsing the exponent.

1003

ECPG - Embedded SQL in C

deccvdbl

Convert a value of type double to a value of type decimal.

int deccvdbl(double dbl, decimal *np);

The function receives the variable of type double that should be converted as its first argument (dbl).
As the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

deccvint

Convert a value of type int to a value of type decimal.

int deccvint(int in, decimal *np);

The function receives the variable of type int that should be converted as its first argument (in). As
the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

deccvlong

Convert a value of type long to a value of type decimal.

int deccvlong(long lng, decimal *np);

The function receives the variable of type long that should be converted as its first argument (lng).
As the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

decdiv

Divide two variables of type decimal.

int decdiv(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1/n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the division fails. If overflow
or underflow occurred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or
ECPG_INFORMIX_NUM_UNDERFLOW respectively. If an attempt to divide by zero is observed, the
function returns ECPG_INFORMIX_DIVIDE_ZERO.

decmul

Multiply two decimal values.

1004

ECPG - Embedded SQL in C

int decmul(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands and
calculates n1*n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the multiplication fails. If
overflow or underflow occurred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or
ECPG_INFORMIX_NUM_UNDERFLOW respectively.

decsub

Subtract one decimal value from another.

int decsub(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1-n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the subtraction fails. If overflow
or underflow occurred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or
ECPG_INFORMIX_NUM_UNDERFLOW respectively.

dectoasc

Convert a variable of type decimal to its ASCII representation in a C char* string.

int dectoasc(decimal *np, char *cp, int len, int right)

The function receives a pointer to a variable of type decimal (np) that it converts to its textual
representation. cp is the buffer that should hold the result of the operation. The parameter right
specifies, how many digits right of the decimal point should be included in the output. The result will
be rounded to this number of decimal digits. Setting right to -1 indicates that all available decimal
digits should be included in the output. If the length of the output buffer, which is indicated by len
is not sufficient to hold the textual representation including the trailing zero byte, only a single *
character is stored in the result and -1 is returned.

The function returns either -1 if the buffer cp was too small or
ECPG_INFORMIX_OUT_OF_MEMORY if memory was exhausted.

dectodbl

Convert a variable of type decimal to a double.

int dectodbl(decimal *np, double *dblp);

The function receives a pointer to the decimal value to convert (np) and a pointer to the double variable
that should hold the result of the operation (dblp).

On success, 0 is returned and a negative value if the conversion failed.

dectoint

Convert a variable to type decimal to an integer.

1005

ECPG - Embedded SQL in C

int dectoint(decimal *np, int *ip);

The function receives a pointer to the decimal value to convert (np) and a pointer to the integer
variable that should hold the result of the operation (ip).

On success, 0 is returned and a negative value if the conversion failed. If an overflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW is returned.

Note that the ECPG implementation differs from the Informix implementation. Informix limits an
integer to the range from -32767 to 32767, while the limits in the ECPG implementation depend on
the architecture (-INT_MAX .. INT_MAX).

dectolong

Convert a variable to type decimal to a long integer.

int dectolong(decimal *np, long *lngp);

The function receives a pointer to the decimal value to convert (np) and a pointer to the long variable
that should hold the result of the operation (lngp).

On success, 0 is returned and a negative value if the conversion failed. If an overflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW is returned.

Note that the ECPG implementation differs from the Informix implementation. Informix limits a
long integer to the range from -2,147,483,647 to 2,147,483,647, while the limits in the ECPG
implementation depend on the architecture (-LONG_MAX .. LONG_MAX).

rdatestr

Converts a date to a C char* string.

int rdatestr(date d, char *str);

The function receives two arguments, the first one is the date to convert (d) and the second one is
a pointer to the target string. The output format is always yyyy-mm-dd, so you need to allocate at
least 11 bytes (including the zero-byte terminator) for the string.

The function returns 0 on success and a negative value in case of error.

Note that ECPG's implementation differs from the Informix implementation. In Informix the format
can be influenced by setting environment variables. In ECPG however, you cannot change the output
format.

rstrdate

Parse the textual representation of a date.

int rstrdate(char *str, date *d);

The function receives the textual representation of the date to convert (str) and a pointer to a variable
of type date (d). This function does not allow you to specify a format mask. It uses the default
format mask of Informix which is mm/dd/yyyy. Internally, this function is implemented by means

1006

ECPG - Embedded SQL in C

of rdefmtdate. Therefore, rstrdate is not faster and if you have the choice you should opt for
rdefmtdate which allows you to specify the format mask explicitly.

The function returns the same values as rdefmtdate.

rtoday

Get the current date.

void rtoday(date *d);

The function receives a pointer to a date variable (d) that it sets to the current date.

Internally this function uses the PGTYPESdate_today function.

rjulmdy

Extract the values for the day, the month and the year from a variable of type date.

int rjulmdy(date d, short mdy[3]);

The function receives the date d and a pointer to an array of 3 short integer values mdy. The variable
name indicates the sequential order: mdy[0] will be set to contain the number of the month, mdy[1]
will be set to the value of the day and mdy[2] will contain the year.

The function always returns 0 at the moment.

Internally the function uses the PGTYPESdate_julmdy function.

rdefmtdate

Use a format mask to convert a character string to a value of type date.

int rdefmtdate(date *d, char *fmt, char *str);

The function receives a pointer to the date value that should hold the result of the operation (d),
the format mask to use for parsing the date (fmt) and the C char* string containing the textual
representation of the date (str). The textual representation is expected to match the format mask.
However you do not need to have a 1:1 mapping of the string to the format mask. The function only
analyzes the sequential order and looks for the literals yy or yyyy that indicate the position of the
year, mm to indicate the position of the month and dd to indicate the position of the day.

The function returns the following values:

• 0 - The function terminated successfully.

• ECPG_INFORMIX_ENOSHORTDATE - The date does not contain delimiters between day, month
and year. In this case the input string must be exactly 6 or 8 bytes long but isn't.

• ECPG_INFORMIX_ENOTDMY - The format string did not correctly indicate the sequential order
of year, month and day.

• ECPG_INFORMIX_BAD_DAY - The input string does not contain a valid day.

• ECPG_INFORMIX_BAD_MONTH - The input string does not contain a valid month.

1007

ECPG - Embedded SQL in C

• ECPG_INFORMIX_BAD_YEAR - The input string does not contain a valid year.

Internally this function is implemented to use the PGTYPESdate_defmt_asc function. See the
reference there for a table of example input.

rfmtdate

Convert a variable of type date to its textual representation using a format mask.

int rfmtdate(date d, char *fmt, char *str);

The function receives the date to convert (d), the format mask (fmt) and the string that will hold the
textual representation of the date (str).

On success, 0 is returned and a negative value if an error occurred.

Internally this function uses the PGTYPESdate_fmt_asc function, see the reference there for
examples.

rmdyjul

Create a date value from an array of 3 short integers that specify the day, the month and the year of
the date.

int rmdyjul(short mdy[3], date *d);

The function receives the array of the 3 short integers (mdy) and a pointer to a variable of type date
that should hold the result of the operation.

Currently the function returns always 0.

Internally the function is implemented to use the function PGTYPESdate_mdyjul.

rdayofweek

Return a number representing the day of the week for a date value.

int rdayofweek(date d);

The function receives the date variable d as its only argument and returns an integer that indicates
the day of the week for this date.

• 0 - Sunday

• 1 - Monday

• 2 - Tuesday

• 3 - Wednesday

• 4 - Thursday

• 5 - Friday

• 6 - Saturday

1008

ECPG - Embedded SQL in C

Internally the function is implemented to use the function PGTYPESdate_dayofweek.

dtcurrent

Retrieve the current timestamp.

void dtcurrent(timestamp *ts);

The function retrieves the current timestamp and saves it into the timestamp variable that ts points to.

dtcvasc

Parses a timestamp from its textual representation into a timestamp variable.

int dtcvasc(char *str, timestamp *ts);

The function receives the string to parse (str) and a pointer to the timestamp variable that should
hold the result of the operation (ts).

The function returns 0 on success and a negative value in case of error.

Internally this function uses the PGTYPEStimestamp_from_asc function. See the reference
there for a table with example inputs.

dtcvfmtasc

Parses a timestamp from its textual representation using a format mask into a timestamp variable.

dtcvfmtasc(char *inbuf, char *fmtstr, timestamp *dtvalue)

The function receives the string to parse (inbuf), the format mask to use (fmtstr) and a pointer to
the timestamp variable that should hold the result of the operation (dtvalue).

This function is implemented by means of the PGTYPEStimestamp_defmt_asc function. See
the documentation there for a list of format specifiers that can be used.

The function returns 0 on success and a negative value in case of error.

dtsub

Subtract one timestamp from another and return a variable of type interval.

int dtsub(timestamp *ts1, timestamp *ts2, interval *iv);

The function will subtract the timestamp variable that ts2 points to from the timestamp variable that
ts1 points to and will store the result in the interval variable that iv points to.

Upon success, the function returns 0 and a negative value if an error occurred.

dttoasc

Convert a timestamp variable to a C char* string.

1009

ECPG - Embedded SQL in C

int dttoasc(timestamp *ts, char *output);

The function receives a pointer to the timestamp variable to convert (ts) and the string that should
hold the result of the operation (output). It converts ts to its textual representation according to
the SQL standard, which is be YYYY-MM-DD HH:MM:SS.

Upon success, the function returns 0 and a negative value if an error occurred.

dttofmtasc

Convert a timestamp variable to a C char* using a format mask.

int dttofmtasc(timestamp *ts, char *output, int str_len, char
 *fmtstr);

The function receives a pointer to the timestamp to convert as its first argument (ts), a pointer to the
output buffer (output), the maximal length that has been allocated for the output buffer (str_len)
and the format mask to use for the conversion (fmtstr).

Upon success, the function returns 0 and a negative value if an error occurred.

Internally, this function uses the PGTYPEStimestamp_fmt_asc function. See the reference there
for information on what format mask specifiers can be used.

intoasc

Convert an interval variable to a C char* string.

int intoasc(interval *i, char *str);

The function receives a pointer to the interval variable to convert (i) and the string that should hold the
result of the operation (str). It converts i to its textual representation according to the SQL standard,
which is be YYYY-MM-DD HH:MM:SS.

Upon success, the function returns 0 and a negative value if an error occurred.

rfmtlong

Convert a long integer value to its textual representation using a format mask.

int rfmtlong(long lng_val, char *fmt, char *outbuf);

The function receives the long value lng_val, the format mask fmt and a pointer to the output
buffer outbuf. It converts the long value according to the format mask to its textual representation.

The format mask can be composed of the following format specifying characters:

• * (asterisk) - if this position would be blank otherwise, fill it with an asterisk.

• & (ampersand) - if this position would be blank otherwise, fill it with a zero.

• # - turn leading zeroes into blanks.

• < - left-justify the number in the string.

1010

ECPG - Embedded SQL in C

• , (comma) - group numbers of four or more digits into groups of three digits separated by a comma.

• . (period) - this character separates the whole-number part of the number from the fractional part.

• - (minus) - the minus sign appears if the number is a negative value.

• + (plus) - the plus sign appears if the number is a positive value.

• (- this replaces the minus sign in front of the negative number. The minus sign will not appear.

•) - this character replaces the minus and is printed behind the negative value.

• $ - the currency symbol.

rupshift

Convert a string to upper case.

void rupshift(char *str);

The function receives a pointer to the string and transforms every lower case character to upper case.

byleng

Return the number of characters in a string without counting trailing blanks.

int byleng(char *str, int len);

The function expects a fixed-length string as its first argument (str) and its length as its second
argument (len). It returns the number of significant characters, that is the length of the string without
trailing blanks.

ldchar

Copy a fixed-length string into a null-terminated string.

void ldchar(char *src, int len, char *dest);

The function receives the fixed-length string to copy (src), its length (len) and a pointer to the
destination memory (dest). Note that you need to reserve at least len+1 bytes for the string that
dest points to. The function copies at most len bytes to the new location (less if the source string
has trailing blanks) and adds the null-terminator.

rgetmsg

int rgetmsg(int msgnum, char *s, int maxsize);

This function exists but is not implemented at the moment!

rtypalign

int rtypalign(int offset, int type);

1011

ECPG - Embedded SQL in C

This function exists but is not implemented at the moment!

rtypmsize

int rtypmsize(int type, int len);

This function exists but is not implemented at the moment!

rtypwidth

int rtypwidth(int sqltype, int sqllen);

This function exists but is not implemented at the moment!

rsetnull

Set a variable to NULL.

int rsetnull(int t, char *ptr);

The function receives an integer that indicates the type of the variable and a pointer to the variable
itself that is cast to a C char* pointer.

The following types exist:

• CCHARTYPE - For a variable of type char or char*

• CSHORTTYPE - For a variable of type short int

• CINTTYPE - For a variable of type int

• CBOOLTYPE - For a variable of type boolean

• CFLOATTYPE - For a variable of type float

• CLONGTYPE - For a variable of type long

• CDOUBLETYPE - For a variable of type double

• CDECIMALTYPE - For a variable of type decimal

• CDATETYPE - For a variable of type date

• CDTIMETYPE - For a variable of type timestamp

Here is an example of a call to this function:

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

rsetnull(CCHARTYPE, (char *) c);
rsetnull(CSHORTTYPE, (char *) &s);
rsetnull(CINTTYPE, (char *) &i);

1012

ECPG - Embedded SQL in C

risnull

Test if a variable is NULL.

int risnull(int t, char *ptr);

The function receives the type of the variable to test (t) as well a pointer to this variable (ptr). Note
that the latter needs to be cast to a char*. See the function rsetnull for a list of possible variable
types.

Here is an example of how to use this function:

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

risnull(CCHARTYPE, (char *) c);
risnull(CSHORTTYPE, (char *) &s);
risnull(CINTTYPE, (char *) &i);

36.15.5. Additional Constants
Note that all constants here describe errors and all of them are defined to represent negative values. In
the descriptions of the different constants you can also find the value that the constants represent in the
current implementation. However you should not rely on this number. You can however rely on the fact
all of them are defined to represent negative values.

ECPG_INFORMIX_NUM_OVERFLOW

Functions return this value if an overflow occurred in a calculation. Internally it is defined as -1200
(the Informix definition).

ECPG_INFORMIX_NUM_UNDERFLOW

Functions return this value if an underflow occurred in a calculation. Internally it is defined as -1201
(the Informix definition).

ECPG_INFORMIX_DIVIDE_ZERO

Functions return this value if an attempt to divide by zero is observed. Internally it is defined as -1202
(the Informix definition).

ECPG_INFORMIX_BAD_YEAR

Functions return this value if a bad value for a year was found while parsing a date. Internally it is
defined as -1204 (the Informix definition).

ECPG_INFORMIX_BAD_MONTH

Functions return this value if a bad value for a month was found while parsing a date. Internally it is
defined as -1205 (the Informix definition).

1013

ECPG - Embedded SQL in C

ECPG_INFORMIX_BAD_DAY

Functions return this value if a bad value for a day was found while parsing a date. Internally it is
defined as -1206 (the Informix definition).

ECPG_INFORMIX_ENOSHORTDATE

Functions return this value if a parsing routine needs a short date representation but did not get the
date string in the right length. Internally it is defined as -1209 (the Informix definition).

ECPG_INFORMIX_DATE_CONVERT

Functions return this value if an error occurred during date formatting. Internally it is defined as -1210
(the Informix definition).

ECPG_INFORMIX_OUT_OF_MEMORY

Functions return this value if memory was exhausted during their operation. Internally it is defined
as -1211 (the Informix definition).

ECPG_INFORMIX_ENOTDMY

Functions return this value if a parsing routine was supposed to get a format mask (like mmddyy) but
not all fields were listed correctly. Internally it is defined as -1212 (the Informix definition).

ECPG_INFORMIX_BAD_NUMERIC

Functions return this value either if a parsing routine cannot parse the textual representation for
a numeric value because it contains errors or if a routine cannot complete a calculation involving
numeric variables because at least one of the numeric variables is invalid. Internally it is defined as
-1213 (the Informix definition).

ECPG_INFORMIX_BAD_EXPONENT

Functions return this value if a parsing routine cannot parse an exponent. Internally it is defined as
-1216 (the Informix definition).

ECPG_INFORMIX_BAD_DATE

Functions return this value if a parsing routine cannot parse a date. Internally it is defined as -1218
(the Informix definition).

ECPG_INFORMIX_EXTRA_CHARS

Functions return this value if a parsing routine is passed extra characters it cannot parse. Internally it
is defined as -1264 (the Informix definition).

36.16. Internals
This section explains how ECPG works internally. This information can occasionally be useful to help
users understand how to use ECPG.

The first four lines written by ecpg to the output are fixed lines. Two are comments and two are include
lines necessary to interface to the library. Then the preprocessor reads through the file and writes output.
Normally it just echoes everything to the output.

1014

ECPG - Embedded SQL in C

When it sees an EXEC SQL statement, it intervenes and changes it. The command starts with EXEC SQL
and ends with ;. Everything in between is treated as an SQL statement and parsed for variable substitution.

Variable substitution occurs when a symbol starts with a colon (:). The variable with that name is looked
up among the variables that were previously declared within a EXEC SQL DECLARE section.

The most important function in the library is ECPGdo, which takes care of executing most commands.
It takes a variable number of arguments. This can easily add up to 50 or so arguments, and we hope this
will not be a problem on any platform.

The arguments are:

A line number

This is the line number of the original line; used in error messages only.

A string

This is the SQL command that is to be issued. It is modified by the input variables, i.e., the variables
that where not known at compile time but are to be entered in the command. Where the variables
should go the string contains ?.

Input variables

Every input variable causes ten arguments to be created. (See below.)

ECPGt_EOIT

An enum telling that there are no more input variables.

Output variables

Every output variable causes ten arguments to be created. (See below.) These variables are filled by
the function.

ECPGt_EORT

An enum telling that there are no more variables.

For every variable that is part of the SQL command, the function gets ten arguments:

1. The type as a special symbol.

2. A pointer to the value or a pointer to the pointer.

3. The size of the variable if it is a char or varchar.

4. The number of elements in the array (for array fetches).

5. The offset to the next element in the array (for array fetches).

6. The type of the indicator variable as a special symbol.

7. A pointer to the indicator variable.

8. 0

9. The number of elements in the indicator array (for array fetches).

1015

ECPG - Embedded SQL in C

10.The offset to the next element in the indicator array (for array fetches).

Note that not all SQL commands are treated in this way. For instance, an open cursor statement like:

EXEC SQL OPEN cursor;

is not copied to the output. Instead, the cursor's DECLARE command is used at the position of the OPEN
command because it indeed opens the cursor.

Here is a complete example describing the output of the preprocessor of a file foo.pgc (details might
change with each particular version of the preprocessor):

EXEC SQL BEGIN DECLARE SECTION;
int index;
int result;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT res INTO :result FROM mytable WHERE index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h>;
#include <ecpglib.h>;

/* exec sql begin declare section */

#line 1 "foo.pgc"

 int index;
 int result;
/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "SELECT res FROM mytable WHERE index = ? ",
 ECPGt_int,&(index),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
 ECPGt_int,&(result),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);
#line 147 "foo.pgc"

(The indentation here is added for readability and not something the preprocessor does.)

1016

Chapter 37. The Information Schema
The information schema consists of a set of views that contain information about the objects defined
in the current database. The information schema is defined in the SQL standard and can therefore be
expected to be portable and remain stable — unlike the system catalogs, which are specific to PostgreSQL
and are modeled after implementation concerns. The information schema views do not, however, contain
information about PostgreSQL-specific features; to inquire about those you need to query the system
catalogs or other PostgreSQL-specific views.

Note

When querying the database for constraint information, it is possible for a standard-compliant
query that expects to return one row to return several. This is because the SQL standard requires
constraint names to be unique within a schema, but PostgreSQL does not enforce this restriction.
PostgreSQL automatically-generated constraint names avoid duplicates in the same schema, but
users can specify such duplicate names.

This problem can appear when querying information schema
views such as check_constraint_routine_usage, check_constraints,
domain_constraints, and referential_constraints. Some other views have
similar issues but contain the table name to help distinguish duplicate rows, e.g.,
constraint_column_usage, constraint_table_usage, table_constraints.

37.1. The Schema
The information schema itself is a schema named information_schema. This schema automatically
exists in all databases. The owner of this schema is the initial database user in the cluster, and that user
naturally has all the privileges on this schema, including the ability to drop it (but the space savings
achieved by that are minuscule).

By default, the information schema is not in the schema search path, so you need to access all objects in
it through qualified names. Since the names of some of the objects in the information schema are generic
names that might occur in user applications, you should be careful if you want to put the information
schema in the path.

37.2. Data Types
The columns of the information schema views use special data types that are defined in the information
schema. These are defined as simple domains over ordinary built-in types. You should not use these types
for work outside the information schema, but your applications must be prepared for them if they select
from the information schema.

These types are:

cardinal_number

A nonnegative integer.

character_data

A character string (without specific maximum length).

1017

The Information Schema

sql_identifier

A character string. This type is used for SQL identifiers, the type character_data is used for
any other kind of text data.

time_stamp

A domain over the type timestamp with time zone

yes_or_no

A character string domain that contains either YES or NO. This is used to represent Boolean (true/false)
data in the information schema. (The information schema was invented before the type boolean was
added to the SQL standard, so this convention is necessary to keep the information schema backward
compatible.)

Every column in the information schema has one of these five types.

37.3. information_schema_catalog_name
information_schema_catalog_name is a table that always contains one row and one column
containing the name of the current database (current catalog, in SQL terminology).

Table 37.1. information_schema_catalog_name Columns

Name Data Type Description

catalog_name sql_identifier Name of the database that
contains this information schema

37.4. administrable_role_authorizations
The view administrable_role_authorizations identifies all roles that the current user has the
admin option for.

Table 37.2. administrable_role_authorizations Columns

Name Data Type Description

grantee sql_identifier Name of the role to which this
role membership was granted
(can be the current user, or a
different role in case of nested role
memberships)

role_name sql_identifier Name of a role

is_grantable yes_or_no Always YES

37.5. applicable_roles
The view applicable_roles identifies all roles whose privileges the current user can use. This means
there is some chain of role grants from the current user to the role in question. The current user itself is
also an applicable role. The set of applicable roles is generally used for permission checking.

1018

The Information Schema

Table 37.3. applicable_roles Columns

Name Data Type Description

grantee sql_identifier Name of the role to which this
role membership was granted
(can be the current user, or a
different role in case of nested role
memberships)

role_name sql_identifier Name of a role

is_grantable yes_or_no YES if the grantee has the admin
option on the role, NO if not

37.6. attributes
The view attributes contains information about the attributes of composite data types defined in the
database. (Note that the view does not give information about table columns, which are sometimes called
attributes in PostgreSQL contexts.) Only those attributes are shown that the current user has access to (by
way of being the owner of or having some privilege on the type).

Table 37.4. attributes Columns

Name Data Type Description

udt_catalog sql_identifier Name of the database containing
the data type (always the current
database)

udt_schema sql_identifier Name of the schema containing
the data type

udt_name sql_identifier Name of the data type

attribute_name sql_identifier Name of the attribute

ordinal_position cardinal_number Ordinal position of the attribute
within the data type (count starts
at 1)

attribute_default character_data Default expression of the attribute

is_nullable yes_or_no YES if the attribute is possibly
nullable, NO if it is known not
nullable.

data_type character_data Data type of the attribute, if it
is a built-in type, or ARRAY if
it is some array (in that case,
see the view element_types),
else USER-DEFINED (in that
case, the type is identified
in attribute_udt_name and
associated columns).

character_maximum_lengthcardinal_number If data_type identifies a
character or bit string type, the
declared maximum length; null
for all other data types or if no
maximum length was declared.

1019

The Information Schema

Name Data Type Description

character_octet_length cardinal_number If data_type identifies a
character type, the maximum
possible length in octets (bytes)
of a datum; null for all other data
types. The maximum octet length
depends on the declared character
maximum length (see above) and
the server encoding.

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Name of the database containing
the collation of the attribute
(always the current database), null
if default or the data type of the
attribute is not collatable

collation_schema sql_identifier Name of the schema containing
the collation of the attribute, null
if default or the data type of the
attribute is not collatable

collation_name sql_identifier Name of the collation of the
attribute, null if default or the
data type of the attribute is not
collatable

numeric_precision cardinal_number If data_type identifies a
numeric type, this column
contains the (declared or implicit)
precision of the type for this
attribute. The precision indicates
the number of significant digits.
It can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

numeric_precision_radix cardinal_number If data_type identifies a
numeric type, this column
indicates in which base
the values in the columns
numeric_precision and
numeric_scale are expressed.
The value is either 2 or 10. For
all other data types, this column is
null.

1020

The Information Schema

Name Data Type Description

numeric_scale cardinal_number If data_type identifies an
exact numeric type, this column
contains the (declared or implicit)
scale of the type for this
attribute. The scale indicates the
number of significant digits to
the right of the decimal point.
It can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

datetime_precision cardinal_number If data_type identifies a date,
time, timestamp, or interval type,
this column contains the (declared
or implicit) fractional seconds
precision of the type for this
attribute, that is, the number
of decimal digits maintained
following the decimal point in the
seconds value. For all other data
types, this column is null.

interval_type character_data If data_type identifies an
interval type, this column contains
the specification which fields the
intervals include for this attribute,
e.g., YEAR TO MONTH, DAY
TO SECOND, etc. If no field
restrictions were specified (that is,
the interval accepts all fields), and
for all other data types, this field
is null.

interval_precision cardinal_number Applies to a feature not
available in PostgreSQL (see
datetime_precision for the
fractional seconds precision of
interval type attributes)

attribute_udt_catalog sql_identifier Name of the database that the
attribute data type is defined in
(always the current database)

attribute_udt_schema sql_identifier Name of the schema that the
attribute data type is defined in

attribute_udt_name sql_identifier Name of the attribute data type

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

1021

The Information Schema

Name Data Type Description

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the column, unique
among the data type descriptors
pertaining to the table. This is
mainly useful for joining with
other instances of such identifiers.
(The specific format of the
identifier is not defined and not
guaranteed to remain the same in
future versions.)

is_derived_reference_attributeyes_or_no Applies to a feature not available
in PostgreSQL

See also under Section 37.16, a similarly structured view, for further information on some of the columns.

37.7. character_sets
The view character_sets identifies the character sets available in the current database. Since
PostgreSQL does not support multiple character sets within one database, this view only shows one, which
is the database encoding.

Take note of how the following terms are used in the SQL standard:

character repertoire

An abstract collection of characters, for example UNICODE, UCS, or LATIN1. Not exposed as an
SQL object, but visible in this view.

character encoding form

An encoding of some character repertoire. Most older character repertoires only use one encoding
form, and so there are no separate names for them (e.g., LATIN1 is an encoding form applicable to
the LATIN1 repertoire). But for example Unicode has the encoding forms UTF8, UTF16, etc. (not
all supported by PostgreSQL). Encoding forms are not exposed as an SQL object, but are visible in
this view.

character set

A named SQL object that identifies a character repertoire, a character encoding, and a default collation.
A predefined character set would typically have the same name as an encoding form, but users
could define other names. For example, the character set UTF8 would typically identify the character
repertoire UCS, encoding form UTF8, and some default collation.

You can think of an “encoding” in PostgreSQL either as a character set or a character encoding form. They
will have the same name, and there can only be one in one database.

1022

The Information Schema

Table 37.5. character_sets Columns

Name Data Type Description

character_set_catalog sql_identifier Character sets are currently not
implemented as schema objects,
so this column is null.

character_set_schema sql_identifier Character sets are currently not
implemented as schema objects,
so this column is null.

character_set_name sql_identifier Name of the character
set, currently implemented as
showing the name of the database
encoding

character_repertoire sql_identifier Character repertoire, showing
UCS if the encoding is UTF8, else
just the encoding name

form_of_use sql_identifier Character encoding form, same as
the database encoding

default_collate_catalog sql_identifier Name of the database containing
the default collation (always the
current database, if any collation
is identified)

default_collate_schema sql_identifier Name of the schema containing
the default collation

default_collate_name sql_identifier Name of the default collation.
The default collation is identified
as the collation that matches the
COLLATE and CTYPE settings of
the current database. If there is no
such collation, then this column
and the associated schema and
catalog columns are null.

37.8. check_constraint_routine_usage
The view check_constraint_routine_usage identifies routines (functions and procedures) that
are used by a check constraint. Only those routines are shown that are owned by a currently enabled role.

Table 37.6. check_constraint_routine_usage Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database containing
the constraint (always the current
database)

constraint_schema sql_identifier Name of the schema containing
the constraint

constraint_name sql_identifier Name of the constraint

1023

The Information Schema

Name Data Type Description

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 37.40 for
more information.

37.9. check_constraints
The view check_constraints contains all check constraints, either defined on a table or on a domain,
that are owned by a currently enabled role. (The owner of the table or domain is the owner of the constraint.)

Table 37.7. check_constraints Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database containing
the constraint (always the current
database)

constraint_schema sql_identifier Name of the schema containing
the constraint

constraint_name sql_identifier Name of the constraint

check_clause character_data The check expression of the check
constraint

37.10. collations
The view collations contains the collations available in the current database.

Table 37.8. collations Columns

Name Data Type Description

collation_catalog sql_identifier Name of the database containing
the collation (always the current
database)

collation_schema sql_identifier Name of the schema containing
the collation

collation_name sql_identifier Name of the default collation

pad_attribute character_data Always NO PAD (The alternative
PAD SPACE is not supported by
PostgreSQL.)

1024

The Information Schema

37.11. collation_character_set_applicability
The view collation_character_set_applicability identifies which character set the
available collations are applicable to. In PostgreSQL, there is only one character set per database (see
explanation in Section 37.7), so this view does not provide much useful information.

Table 37.9. collation_character_set_applicability Columns

Name Data Type Description

collation_catalog sql_identifier Name of the database containing
the collation (always the current
database)

collation_schema sql_identifier Name of the schema containing
the collation

collation_name sql_identifier Name of the default collation

character_set_catalog sql_identifier Character sets are currently not
implemented as schema objects,
so this column is null

character_set_schema sql_identifier Character sets are currently not
implemented as schema objects,
so this column is null

character_set_name sql_identifier Name of the character set

37.12. column_domain_usage
The view column_domain_usage identifies all columns (of a table or a view) that make use of some
domain defined in the current database and owned by a currently enabled role.

Table 37.10. column_domain_usage Columns

Name Data Type Description

domain_catalog sql_identifier Name of the database containing
the domain (always the current
database)

domain_schema sql_identifier Name of the schema containing
the domain

domain_name sql_identifier Name of the domain

table_catalog sql_identifier Name of the database containing
the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

column_name sql_identifier Name of the column

1025

The Information Schema

37.13. column_options
The view column_options contains all the options defined for foreign table columns in the current
database. Only those foreign table columns are shown that the current user has access to (by way of being
the owner or having some privilege).

Table 37.11. column_options Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the foreign table (always
the current database)

table_schema sql_identifier Name of the schema that contains
the foreign table

table_name sql_identifier Name of the foreign table

column_name sql_identifier Name of the column

option_name sql_identifier Name of an option

option_value character_data Value of the option

37.14. column_privileges
The view column_privileges identifies all privileges granted on columns to a currently enabled role
or by a currently enabled role. There is one row for each combination of column, grantor, and grantee.

If a privilege has been granted on an entire table, it will show up in this view as a grant for each column,
but only for the privilege types where column granularity is possible: SELECT, INSERT, UPDATE,
REFERENCES.

Table 37.12. column_privileges Columns

Name Data Type Description

grantor sql_identifier Name of the role that granted the
privilege

grantee sql_identifier Name of the role that the privilege
was granted to

table_catalog sql_identifier Name of the database that
contains the table that contains
the column (always the current
database)

table_schema sql_identifier Name of the schema that contains
the table that contains the column

table_name sql_identifier Name of the table that contains the
column

column_name sql_identifier Name of the column

privilege_type character_data Type of the privilege:
SELECT, INSERT, UPDATE, or
REFERENCES

1026

The Information Schema

Name Data Type Description

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

37.15. column_udt_usage
The view column_udt_usage identifies all columns that use data types owned by a currently enabled
role. Note that in PostgreSQL, built-in data types behave like user-defined types, so they are included here
as well. See also Section 37.16 for details.

Table 37.13. column_udt_usage Columns

Name Data Type Description

udt_catalog sql_identifier Name of the database that the
column data type (the underlying
type of the domain, if applicable)
is defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
column data type (the underlying
type of the domain, if applicable)
is defined in

udt_name sql_identifier Name of the column data type (the
underlying type of the domain, if
applicable)

table_catalog sql_identifier Name of the database containing
the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

column_name sql_identifier Name of the column

37.16. columns
The view columns contains information about all table columns (or view columns) in the database.
System columns (oid, etc.) are not included. Only those columns are shown that the current user has
access to (by way of being the owner or having some privilege).

Table 37.14. columns Columns

Name Data Type Description

table_catalog sql_identifier Name of the database containing
the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

1027

The Information Schema

Name Data Type Description

column_name sql_identifier Name of the column

ordinal_position cardinal_number Ordinal position of the column
within the table (count starts at 1)

column_default character_data Default expression of the column

is_nullable yes_or_no YES if the column is possibly
nullable, NO if it is known not
nullable. A not-null constraint is
one way a column can be known
not nullable, but there can be
others.

data_type character_data Data type of the column, if it
is a built-in type, or ARRAY if
it is some array (in that case,
see the view element_types),
else USER-DEFINED (in that
case, the type is identified
in udt_name and associated
columns). If the column is based
on a domain, this column refers
to the type underlying the domain
(and the domain is identified in
domain_name and associated
columns).

character_maximum_lengthcardinal_number If data_type identifies a
character or bit string type, the
declared maximum length; null
for all other data types or if no
maximum length was declared.

character_octet_length cardinal_number If data_type identifies a
character type, the maximum
possible length in octets (bytes)
of a datum; null for all other data
types. The maximum octet length
depends on the declared character
maximum length (see above) and
the server encoding.

numeric_precision cardinal_number If data_type identifies a
numeric type, this column
contains the (declared or implicit)
precision of the type for this
column. The precision indicates
the number of significant digits.
It can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

1028

The Information Schema

Name Data Type Description

numeric_precision_radix cardinal_number If data_type identifies a
numeric type, this column
indicates in which base
the values in the columns
numeric_precision and
numeric_scale are expressed.
The value is either 2 or 10. For
all other data types, this column is
null.

numeric_scale cardinal_number If data_type identifies an
exact numeric type, this column
contains the (declared or implicit)
scale of the type for this
column. The scale indicates the
number of significant digits to
the right of the decimal point.
It can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

datetime_precision cardinal_number If data_type identifies a date,
time, timestamp, or interval type,
this column contains the (declared
or implicit) fractional seconds
precision of the type for this
column, that is, the number
of decimal digits maintained
following the decimal point in the
seconds value. For all other data
types, this column is null.

interval_type character_data If data_type identifies an
interval type, this column contains
the specification which fields the
intervals include for this column,
e.g., YEAR TO MONTH, DAY
TO SECOND, etc. If no field
restrictions were specified (that is,
the interval accepts all fields), and
for all other data types, this field
is null.

interval_precision cardinal_number Applies to a feature not
available in PostgreSQL (see
datetime_precision for the
fractional seconds precision of
interval type columns)

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

1029

The Information Schema

Name Data Type Description

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Name of the database containing
the collation of the column
(always the current database), null
if default or the data type of the
column is not collatable

collation_schema sql_identifier Name of the schema containing
the collation of the column, null
if default or the data type of the
column is not collatable

collation_name sql_identifier Name of the collation of the
column, null if default or the
data type of the column is not
collatable

domain_catalog sql_identifier If the column has a domain type,
the name of the database that the
domain is defined in (always the
current database), else null.

domain_schema sql_identifier If the column has a domain type,
the name of the schema that the
domain is defined in, else null.

domain_name sql_identifier If the column has a domain type,
the name of the domain, else null.

udt_catalog sql_identifier Name of the database that the
column data type (the underlying
type of the domain, if applicable)
is defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
column data type (the underlying
type of the domain, if applicable)
is defined in

udt_name sql_identifier Name of the column data type (the
underlying type of the domain, if
applicable)

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

1030

The Information Schema

Name Data Type Description

dtd_identifier sql_identifier An identifier of the data type
descriptor of the column, unique
among the data type descriptors
pertaining to the table. This is
mainly useful for joining with
other instances of such identifiers.
(The specific format of the
identifier is not defined and not
guaranteed to remain the same in
future versions.)

is_self_referencing yes_or_no Applies to a feature not available
in PostgreSQL

is_identity yes_or_no If the column is an identity
column, then YES, else NO.

identity_generation character_data If the column is an identity
column, then ALWAYS or
BY DEFAULT, reflecting the
definition of the column.

identity_start character_data If the column is an identity
column, then the start value of the
internal sequence, else null.

identity_increment character_data If the column is an identity
column, then the increment of the
internal sequence, else null.

identity_maximum character_data If the column is an identity
column, then the maximum value
of the internal sequence, else null.

identity_minimum character_data If the column is an identity
column, then the minimum value
of the internal sequence, else null.

identity_cycle yes_or_no If the column is an identity
column, then YES if the internal
sequence cycles or NO if it does
not; otherwise null.

is_generated character_data Applies to a feature not available
in PostgreSQL

generation_expression character_data Applies to a feature not available
in PostgreSQL

is_updatable yes_or_no YES if the column is updatable,
NO if not (Columns in base tables
are always updatable, columns in
views not necessarily)

Since data types can be defined in a variety of ways in SQL, and PostgreSQL contains additional ways to
define data types, their representation in the information schema can be somewhat difficult. The column
data_type is supposed to identify the underlying built-in type of the column. In PostgreSQL, this
means that the type is defined in the system catalog schema pg_catalog. This column might be useful
if the application can handle the well-known built-in types specially (for example, format the numeric

1031

The Information Schema

types differently or use the data in the precision columns). The columns udt_name, udt_schema, and
udt_catalog always identify the underlying data type of the column, even if the column is based on
a domain. (Since PostgreSQL treats built-in types like user-defined types, built-in types appear here as
well. This is an extension of the SQL standard.) These columns should be used if an application wants to
process data differently according to the type, because in that case it wouldn't matter if the column is really
based on a domain. If the column is based on a domain, the identity of the domain is stored in the columns
domain_name, domain_schema, and domain_catalog. If you want to pair up columns with their
associated data types and treat domains as separate types, you could write coalesce(domain_name,
udt_name), etc.

37.17. constraint_column_usage
The view constraint_column_usage identifies all columns in the current database that are used by
some constraint. Only those columns are shown that are contained in a table owned by a currently enabled
role. For a check constraint, this view identifies the columns that are used in the check expression. For a
foreign key constraint, this view identifies the columns that the foreign key references. For a unique or
primary key constraint, this view identifies the constrained columns.

Table 37.15. constraint_column_usage Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the table that contains
the column that is used by some
constraint (always the current
database)

table_schema sql_identifier Name of the schema that contains
the table that contains the column
that is used by some constraint

table_name sql_identifier Name of the table that contains
the column that is used by some
constraint

column_name sql_identifier Name of the column that is used
by some constraint

constraint_catalog sql_identifier Name of the database that
contains the constraint (always the
current database)

constraint_schema sql_identifier Name of the schema that contains
the constraint

constraint_name sql_identifier Name of the constraint

37.18. constraint_table_usage
The view constraint_table_usage identifies all tables in the current database that are used
by some constraint and are owned by a currently enabled role. (This is different from the view
table_constraints, which identifies all table constraints along with the table they are defined on.)
For a foreign key constraint, this view identifies the table that the foreign key references. For a unique or
primary key constraint, this view simply identifies the table the constraint belongs to. Check constraints
and not-null constraints are not included in this view.

1032

The Information Schema

Table 37.16. constraint_table_usage Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the table that is used
by some constraint (always the
current database)

table_schema sql_identifier Name of the schema that contains
the table that is used by some
constraint

table_name sql_identifier Name of the table that is used by
some constraint

constraint_catalog sql_identifier Name of the database that
contains the constraint (always the
current database)

constraint_schema sql_identifier Name of the schema that contains
the constraint

constraint_name sql_identifier Name of the constraint

37.19. data_type_privileges
The view data_type_privileges identifies all data type descriptors that the current user has access
to, by way of being the owner of the described object or having some privilege for it. A data type descriptor
is generated whenever a data type is used in the definition of a table column, a domain, or a function (as
parameter or return type) and stores some information about how the data type is used in that instance (for
example, the declared maximum length, if applicable). Each data type descriptor is assigned an arbitrary
identifier that is unique among the data type descriptor identifiers assigned for one object (table, domain,
function). This view is probably not useful for applications, but it is used to define some other views in
the information schema.

Table 37.17. data_type_privileges Columns

Name Data Type Description

object_catalog sql_identifier Name of the database that
contains the described object
(always the current database)

object_schema sql_identifier Name of the schema that contains
the described object

object_name sql_identifier Name of the described object

object_type character_data The type of the described object:
one of TABLE (the data type
descriptor pertains to a column
of that table), DOMAIN (the data
type descriptors pertains to that
domain), ROUTINE (the data type
descriptor pertains to a parameter
or the return data type of that
function).

1033

The Information Schema

Name Data Type Description

dtd_identifier sql_identifier The identifier of the data type
descriptor, which is unique among
the data type descriptors for that
same object.

37.20. domain_constraints
The view domain_constraints contains all constraints belonging to domains defined in the current
database. Only those domains are shown that the current user has access to (by way of being the owner
or having some privilege).

Table 37.18. domain_constraints Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database that
contains the constraint (always the
current database)

constraint_schema sql_identifier Name of the schema that contains
the constraint

constraint_name sql_identifier Name of the constraint

domain_catalog sql_identifier Name of the database that
contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that contains
the domain

domain_name sql_identifier Name of the domain

is_deferrable yes_or_no YES if the constraint is deferrable,
NO if not

initially_deferred yes_or_no YES if the constraint is deferrable
and initially deferred, NO if not

37.21. domain_udt_usage
The view domain_udt_usage identifies all domains that are based on data types owned by a currently
enabled role. Note that in PostgreSQL, built-in data types behave like user-defined types, so they are
included here as well.

Table 37.19. domain_udt_usage Columns

Name Data Type Description

udt_catalog sql_identifier Name of the database that the
domain data type is defined in
(always the current database)

udt_schema sql_identifier Name of the schema that the
domain data type is defined in

udt_name sql_identifier Name of the domain data type

1034

The Information Schema

Name Data Type Description

domain_catalog sql_identifier Name of the database that
contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that contains
the domain

domain_name sql_identifier Name of the domain

37.22. domains
The view domains contains all domains defined in the current database. Only those domains are shown
that the current user has access to (by way of being the owner or having some privilege).

Table 37.20. domains Columns

Name Data Type Description

domain_catalog sql_identifier Name of the database that
contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that contains
the domain

domain_name sql_identifier Name of the domain

data_type character_data Data type of the domain, if it
is a built-in type, or ARRAY if
it is some array (in that case,
see the view element_types),
else USER-DEFINED (in that
case, the type is identified
in udt_name and associated
columns).

character_maximum_lengthcardinal_number If the domain has a character
or bit string type, the declared
maximum length; null for all other
data types or if no maximum
length was declared.

character_octet_length cardinal_number If the domain has a character type,
the maximum possible length in
octets (bytes) of a datum; null
for all other data types. The
maximum octet length depends on
the declared character maximum
length (see above) and the server
encoding.

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

1035

The Information Schema

Name Data Type Description

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Name of the database containing
the collation of the domain
(always the current database), null
if default or the data type of the
domain is not collatable

collation_schema sql_identifier Name of the schema containing
the collation of the domain, null
if default or the data type of the
domain is not collatable

collation_name sql_identifier Name of the collation of the
domain, null if default or the
data type of the domain is not
collatable

numeric_precision cardinal_number If the domain has a numeric
type, this column contains the
(declared or implicit) precision
of the type for this domain. The
precision indicates the number
of significant digits. It can
be expressed in decimal (base
10) or binary (base 2) terms,
as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

numeric_precision_radix cardinal_number If the domain has a numeric type,
this column indicates in which
base the values in the columns
numeric_precision and
numeric_scale are expressed.
The value is either 2 or 10. For
all other data types, this column is
null.

numeric_scale cardinal_number If the domain has an exact
numeric type, this column
contains the (declared or implicit)
scale of the type for this
domain. The scale indicates the
number of significant digits to
the right of the decimal point.
It can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

1036

The Information Schema

Name Data Type Description

datetime_precision cardinal_number If data_type identifies a date,
time, timestamp, or interval type,
this column contains the (declared
or implicit) fractional seconds
precision of the type for this
domain, that is, the number
of decimal digits maintained
following the decimal point in the
seconds value. For all other data
types, this column is null.

interval_type character_data If data_type identifies an
interval type, this column contains
the specification which fields the
intervals include for this domain,
e.g., YEAR TO MONTH, DAY
TO SECOND, etc. If no field
restrictions were specified (that is,
the interval accepts all fields), and
for all other data types, this field
is null.

interval_precision cardinal_number Applies to a feature not
available in PostgreSQL (see
datetime_precision for the
fractional seconds precision of
interval type domains)

domain_default character_data Default expression of the domain

udt_catalog sql_identifier Name of the database that the
domain data type is defined in
(always the current database)

udt_schema sql_identifier Name of the schema that the
domain data type is defined in

udt_name sql_identifier Name of the domain data type

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the domain, unique
among the data type descriptors
pertaining to the domain (which
is trivial, because a domain only
contains one data type descriptor).
This is mainly useful for joining

1037

The Information Schema

Name Data Type Description

with other instances of such
identifiers. (The specific format of
the identifier is not defined and
not guaranteed to remain the same
in future versions.)

37.23. element_types
The view element_types contains the data type descriptors of the elements of arrays. When a table
column, composite-type attribute, domain, function parameter, or function return value is defined to be of
an array type, the respective information schema view only contains ARRAY in the column data_type.
To obtain information on the element type of the array, you can join the respective view with this view.
For example, to show the columns of a table with data types and array element types, if applicable, you
could do:

SELECT c.column_name, c.data_type, e.data_type AS element_type
FROM information_schema.columns c LEFT JOIN
 information_schema.element_types e
 ON ((c.table_catalog, c.table_schema, c.table_name, 'TABLE',
 c.dtd_identifier)
 = (e.object_catalog, e.object_schema, e.object_name,
 e.object_type, e.collection_type_identifier))
WHERE c.table_schema = '...' AND c.table_name = '...'
ORDER BY c.ordinal_position;

This view only includes objects that the current user has access to, by way of being the owner or having
some privilege.

Table 37.21. element_types Columns

Name Data Type Description

object_catalog sql_identifier Name of the database that
contains the object that uses the
array being described (always the
current database)

object_schema sql_identifier Name of the schema that contains
the object that uses the array being
described

object_name sql_identifier Name of the object that uses the
array being described

object_type character_data The type of the object that uses
the array being described: one
of TABLE (the array is used by
a column of that table), USER-
DEFINED TYPE (the array
is used by an attribute of that
composite type), DOMAIN (the
array is used by that domain),
ROUTINE (the array is used by a

1038

The Information Schema

Name Data Type Description

parameter or the return data type
of that function).

collection_type_identifiersql_identifier The identifier of the data type
descriptor of the array being
described. Use this to join with the
dtd_identifier columns of
other information schema views.

data_type character_data Data type of the array elements, if
it is a built-in type, else USER-
DEFINED (in that case, the type
is identified in udt_name and
associated columns).

character_maximum_lengthcardinal_number Always null, since this
information is not applied to array
element data types in PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied to array
element data types in PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Name of the database containing
the collation of the element type
(always the current database), null
if default or the data type of the
element is not collatable

collation_schema sql_identifier Name of the schema containing
the collation of the element type,
null if default or the data type of
the element is not collatable

collation_name sql_identifier Name of the collation of the
element type, null if default or the
data type of the element is not
collatable

numeric_precision cardinal_number Always null, since this
information is not applied to array
element data types in PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied to array
element data types in PostgreSQL

numeric_scale cardinal_number Always null, since this
information is not applied to array
element data types in PostgreSQL

1039

The Information Schema

Name Data Type Description

datetime_precision cardinal_number Always null, since this
information is not applied to array
element data types in PostgreSQL

interval_type character_data Always null, since this
information is not applied to array
element data types in PostgreSQL

interval_precision cardinal_number Always null, since this
information is not applied to array
element data types in PostgreSQL

domain_default character_data Not yet implemented

udt_catalog sql_identifier Name of the database that the data
type of the elements is defined in
(always the current database)

udt_schema sql_identifier Name of the schema that the data
type of the elements is defined in

udt_name sql_identifier Name of the data type of the
elements

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the element. This is
currently not useful.

37.24. enabled_roles
The view enabled_roles identifies the currently “enabled roles”. The enabled roles are recursively
defined as the current user together with all roles that have been granted to the enabled roles with automatic
inheritance. In other words, these are all roles that the current user has direct or indirect, automatically
inheriting membership in.

For permission checking, the set of “applicable roles” is applied, which can be broader than the set of
enabled roles. So generally, it is better to use the view applicable_roles instead of this one; See
Section 37.5 for details on applicable_roles view.

Table 37.22. enabled_roles Columns

Name Data Type Description

role_name sql_identifier Name of a role

1040

The Information Schema

37.25. foreign_data_wrapper_options
The view foreign_data_wrapper_options contains all the options defined for foreign-data
wrappers in the current database. Only those foreign-data wrappers are shown that the current user has
access to (by way of being the owner or having some privilege).

Table 37.23. foreign_data_wrapper_options Columns

Name Data Type Description

foreign_data_wrapper_catalogsql_identifier Name of the database that the
foreign-data wrapper is defined in
(always the current database)

foreign_data_wrapper_namesql_identifier Name of the foreign-data wrapper

option_name sql_identifier Name of an option

option_value character_data Value of the option

37.26. foreign_data_wrappers
The view foreign_data_wrappers contains all foreign-data wrappers defined in the current
database. Only those foreign-data wrappers are shown that the current user has access to (by way of being
the owner or having some privilege).

Table 37.24. foreign_data_wrappers Columns

Name Data Type Description

foreign_data_wrapper_catalogsql_identifier Name of the database that
contains the foreign-data wrapper
(always the current database)

foreign_data_wrapper_namesql_identifier Name of the foreign-data wrapper

authorization_identifiersql_identifier Name of the owner of the foreign
server

library_name character_data File name of the library that
implementing this foreign-data
wrapper

foreign_data_wrapper_languagecharacter_data Language used to implement this
foreign-data wrapper

37.27. foreign_server_options
The view foreign_server_options contains all the options defined for foreign servers in the
current database. Only those foreign servers are shown that the current user has access to (by way of being
the owner or having some privilege).

Table 37.25. foreign_server_options Columns

Name Data Type Description

foreign_server_catalog sql_identifier Name of the database that the
foreign server is defined in
(always the current database)

1041

The Information Schema

Name Data Type Description

foreign_server_name sql_identifier Name of the foreign server

option_name sql_identifier Name of an option

option_value character_data Value of the option

37.28. foreign_servers
The view foreign_servers contains all foreign servers defined in the current database. Only those
foreign servers are shown that the current user has access to (by way of being the owner or having some
privilege).

Table 37.26. foreign_servers Columns

Name Data Type Description

foreign_server_catalog sql_identifier Name of the database that the
foreign server is defined in
(always the current database)

foreign_server_name sql_identifier Name of the foreign server

foreign_data_wrapper_catalogsql_identifier Name of the database that
contains the foreign-data wrapper
used by the foreign server (always
the current database)

foreign_data_wrapper_namesql_identifier Name of the foreign-data wrapper
used by the foreign server

foreign_server_type character_data Foreign server type information, if
specified upon creation

foreign_server_version character_data Foreign server version
information, if specified upon
creation

authorization_identifiersql_identifier Name of the owner of the foreign
server

37.29. foreign_table_options
The view foreign_table_options contains all the options defined for foreign tables in the current
database. Only those foreign tables are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 37.27. foreign_table_options Columns

Name Data Type Description

foreign_table_catalog sql_identifier Name of the database that
contains the foreign table (always
the current database)

foreign_table_schema sql_identifier Name of the schema that contains
the foreign table

foreign_table_name sql_identifier Name of the foreign table

1042

The Information Schema

Name Data Type Description

option_name sql_identifier Name of an option

option_value character_data Value of the option

37.30. foreign_tables
The view foreign_tables contains all foreign tables defined in the current database. Only those
foreign tables are shown that the current user has access to (by way of being the owner or having some
privilege).

Table 37.28. foreign_tables Columns

Name Data Type Description

foreign_table_catalog sql_identifier Name of the database that the
foreign table is defined in (always
the current database)

foreign_table_schema sql_identifier Name of the schema that contains
the foreign table

foreign_table_name sql_identifier Name of the foreign table

foreign_server_catalog sql_identifier Name of the database that the
foreign server is defined in
(always the current database)

foreign_server_name sql_identifier Name of the foreign server

37.31. key_column_usage
The view key_column_usage identifies all columns in the current database that are restricted by some
unique, primary key, or foreign key constraint. Check constraints are not included in this view. Only those
columns are shown that the current user has access to, by way of being the owner or having some privilege.

Table 37.29. key_column_usage Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database that
contains the constraint (always the
current database)

constraint_schema sql_identifier Name of the schema that contains
the constraint

constraint_name sql_identifier Name of the constraint

table_catalog sql_identifier Name of the database that
contains the table that contains
the column that is restricted by
this constraint (always the current
database)

table_schema sql_identifier Name of the schema that contains
the table that contains the column
that is restricted by this constraint

1043

The Information Schema

Name Data Type Description

table_name sql_identifier Name of the table that contains the
column that is restricted by this
constraint

column_name sql_identifier Name of the column that is
restricted by this constraint

ordinal_position cardinal_number Ordinal position of the column
within the constraint key (count
starts at 1)

position_in_unique_constraintcardinal_number For a foreign-key constraint,
ordinal position of the referenced
column within its unique
constraint (count starts at 1);
otherwise null

37.32. parameters
The view parameters contains information about the parameters (arguments) of all functions in the
current database. Only those functions are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 37.30. parameters Columns

Name Data Type Description

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 37.40 for
more information.

ordinal_position cardinal_number Ordinal position of the parameter
in the argument list of the function
(count starts at 1)

parameter_mode character_data IN for input parameter, OUT for
output parameter, and INOUT for
input/output parameter.

is_result yes_or_no Applies to a feature not available
in PostgreSQL

as_locator yes_or_no Applies to a feature not available
in PostgreSQL

parameter_name sql_identifier Name of the parameter, or null if
the parameter has no name

data_type character_data Data type of the parameter, if it
is a built-in type, or ARRAY if
it is some array (in that case,
see the view element_types),

1044

The Information Schema

Name Data Type Description

else USER-DEFINED (in that
case, the type is identified
in udt_name and associated
columns).

character_maximum_lengthcardinal_number Always null, since this
information is not applied
to parameter data types in
PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied
to parameter data types in
PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Always null, since this
information is not applied
to parameter data types in
PostgreSQL

collation_schema sql_identifier Always null, since this
information is not applied
to parameter data types in
PostgreSQL

collation_name sql_identifier Always null, since this
information is not applied
to parameter data types in
PostgreSQL

numeric_precision cardinal_number Always null, since this
information is not applied
to parameter data types in
PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied
to parameter data types in
PostgreSQL

numeric_scale cardinal_number Always null, since this
information is not applied
to parameter data types in
PostgreSQL

datetime_precision cardinal_number Always null, since this
information is not applied
to parameter data types in
PostgreSQL

1045

The Information Schema

Name Data Type Description

interval_type character_data Always null, since this
information is not applied
to parameter data types in
PostgreSQL

interval_precision cardinal_number Always null, since this
information is not applied
to parameter data types in
PostgreSQL

udt_catalog sql_identifier Name of the database that the data
type of the parameter is defined in
(always the current database)

udt_schema sql_identifier Name of the schema that the data
type of the parameter is defined in

udt_name sql_identifier Name of the data type of the
parameter

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the parameter,
unique among the data type
descriptors pertaining to the
function. This is mainly useful
for joining with other instances
of such identifiers. (The specific
format of the identifier is not
defined and not guaranteed to
remain the same in future
versions.)

parameter_default character_data The default expression of the
parameter, or null if none or if
the function is not owned by a
currently enabled role.

37.33. referential_constraints
The view referential_constraints contains all referential (foreign key) constraints in the current
database. Only those constraints are shown for which the current user has write access to the referencing
table (by way of being the owner or having some privilege other than SELECT).

1046

The Information Schema

Table 37.31. referential_constraints Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database containing
the constraint (always the current
database)

constraint_schema sql_identifier Name of the schema containing
the constraint

constraint_name sql_identifier Name of the constraint

unique_constraint_catalogsql_identifier Name of the database that
contains the unique or primary
key constraint that the foreign key
constraint references (always the
current database)

unique_constraint_schemasql_identifier Name of the schema that contains
the unique or primary key
constraint that the foreign key
constraint references

unique_constraint_name sql_identifier Name of the unique or primary
key constraint that the foreign key
constraint references

match_option character_data Match option of the foreign key
constraint: FULL, PARTIAL, or
NONE.

update_rule character_data Update rule of the foreign
key constraint: CASCADE, SET
NULL, SET DEFAULT,
RESTRICT, or NO ACTION.

delete_rule character_data Delete rule of the foreign
key constraint: CASCADE, SET
NULL, SET DEFAULT,
RESTRICT, or NO ACTION.

37.34. role_column_grants
The view role_column_grants identifies all privileges granted on columns where the grantor or
grantee is a currently enabled role. Further information can be found under column_privileges. The
only effective difference between this view and column_privileges is that this view omits columns
that have been made accessible to the current user by way of a grant to PUBLIC.

Table 37.32. role_column_grants Columns

Name Data Type Description

grantor sql_identifier Name of the role that granted the
privilege

grantee sql_identifier Name of the role that the privilege
was granted to

table_catalog sql_identifier Name of the database that
contains the table that contains

1047

The Information Schema

Name Data Type Description

the column (always the current
database)

table_schema sql_identifier Name of the schema that contains
the table that contains the column

table_name sql_identifier Name of the table that contains the
column

column_name sql_identifier Name of the column

privilege_type character_data Type of the privilege:
SELECT, INSERT, UPDATE, or
REFERENCES

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

37.35. role_routine_grants
The view role_routine_grants identifies all privileges granted on functions where the grantor or
grantee is a currently enabled role. Further information can be found under routine_privileges.
The only effective difference between this view and routine_privileges is that this view omits
functions that have been made accessible to the current user by way of a grant to PUBLIC.

Table 37.33. role_routine_grants Columns

Name Data Type Description

grantor sql_identifier Name of the role that granted the
privilege

grantee sql_identifier Name of the role that the privilege
was granted to

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 37.40 for
more information.

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (might be
duplicated in case of overloading)

privilege_type character_data Always EXECUTE (the only
privilege type for functions)

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

1048

The Information Schema

37.36. role_table_grants
The view role_table_grants identifies all privileges granted on tables or views where the grantor
or grantee is a currently enabled role. Further information can be found under table_privileges.
The only effective difference between this view and table_privileges is that this view omits tables
that have been made accessible to the current user by way of a grant to PUBLIC.

Table 37.34. role_table_grants Columns

Name Data Type Description

grantor sql_identifier Name of the role that granted the
privilege

grantee sql_identifier Name of the role that the privilege
was granted to

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that contains
the table

table_name sql_identifier Name of the table

privilege_type character_data Type of the privilege: SELECT,
INSERT, UPDATE, DELETE,
TRUNCATE, REFERENCES, or
TRIGGER

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

with_hierarchy yes_or_no In the SQL standard, WITH
HIERARCHY OPTION is a
separate (sub-)privilege allowing
certain operations on table
inheritance hierarchies. In
PostgreSQL, this is included in the
SELECT privilege, so this column
shows YES if the privilege is
SELECT, else NO.

37.37. role_udt_grants
The view role_udt_grants is intended to identify USAGE privileges granted on user-defined types
where the grantor or grantee is a currently enabled role. Further information can be found under
udt_privileges. The only effective difference between this view and udt_privileges is that
this view omits objects that have been made accessible to the current user by way of a grant to PUBLIC.
Since data types do not have real privileges in PostgreSQL, but only an implicit grant to PUBLIC, this
view is empty.

1049

The Information Schema

Table 37.35. role_udt_grants Columns

Name Data Type Description

grantor sql_identifier The name of the role that granted
the privilege

grantee sql_identifier The name of the role that the
privilege was granted to

udt_catalog sql_identifier Name of the database containing
the type (always the current
database)

udt_schema sql_identifier Name of the schema containing
the type

udt_name sql_identifier Name of the type

privilege_type character_data Always TYPE USAGE

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

37.38. role_usage_grants
The view role_usage_grants identifies USAGE privileges granted on various kinds of objects
where the grantor or grantee is a currently enabled role. Further information can be found under
usage_privileges. The only effective difference between this view and usage_privileges is
that this view omits objects that have been made accessible to the current user by way of a grant to PUBLIC.

Table 37.36. role_usage_grants Columns

Name Data Type Description

grantor sql_identifier The name of the role that granted
the privilege

grantee sql_identifier The name of the role that the
privilege was granted to

object_catalog sql_identifier Name of the database containing
the object (always the current
database)

object_schema sql_identifier Name of the schema containing
the object, if applicable, else an
empty string

object_name sql_identifier Name of the object

object_type character_data COLLATION or DOMAIN or
FOREIGN DATA WRAPPER
or FOREIGN SERVER or
SEQUENCE

privilege_type character_data Always USAGE

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

1050

The Information Schema

37.39. routine_privileges
The view routine_privileges identifies all privileges granted on functions to a currently enabled
role or by a currently enabled role. There is one row for each combination of function, grantor, and grantee.

Table 37.37. routine_privileges Columns

Name Data Type Description

grantor sql_identifier Name of the role that granted the
privilege

grantee sql_identifier Name of the role that the privilege
was granted to

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 37.40 for
more information.

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (might be
duplicated in case of overloading)

privilege_type character_data Always EXECUTE (the only
privilege type for functions)

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

37.40. routines
The view routines contains all functions and procedures in the current database. Only those functions
and procedures are shown that the current user has access to (by way of being the owner or having some
privilege).

Table 37.38. routines Columns

Name Data Type Description

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. This is a name that

1051

The Information Schema

Name Data Type Description

uniquely identifies the function in
the schema, even if the real name
of the function is overloaded. The
format of the specific name is not
defined, it should only be used to
compare it to other instances of
specific routine names.

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (might be
duplicated in case of overloading)

routine_type character_data FUNCTION for a function,
PROCEDURE for a procedure

module_catalog sql_identifier Applies to a feature not available
in PostgreSQL

module_schema sql_identifier Applies to a feature not available
in PostgreSQL

module_name sql_identifier Applies to a feature not available
in PostgreSQL

udt_catalog sql_identifier Applies to a feature not available
in PostgreSQL

udt_schema sql_identifier Applies to a feature not available
in PostgreSQL

udt_name sql_identifier Applies to a feature not available
in PostgreSQL

data_type character_data Return data type of the function,
if it is a built-in type, or
ARRAY if it is some array
(in that case, see the view
element_types), else USER-
DEFINED (in that case, the type is
identified in type_udt_name
and associated columns). Null for
a procedure.

character_maximum_lengthcardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

1052

The Information Schema

Name Data Type Description

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Always null, since this
information is not applied to
return data types in PostgreSQL

collation_schema sql_identifier Always null, since this
information is not applied to
return data types in PostgreSQL

collation_name sql_identifier Always null, since this
information is not applied to
return data types in PostgreSQL

numeric_precision cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

numeric_scale cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

datetime_precision cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

interval_type character_data Always null, since this
information is not applied to
return data types in PostgreSQL

interval_precision cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

type_udt_catalog sql_identifier Name of the database that the
return data type of the function
is defined in (always the current
database). Null for a procedure.

type_udt_schema sql_identifier Name of the schema that the
return data type of the function is
defined in. Null for a procedure.

type_udt_name sql_identifier Name of the return data type of the
function. Null for a procedure.

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

1053

The Information Schema

Name Data Type Description

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the return data type
of this function, unique among the
data type descriptors pertaining
to the function. This is mainly
useful for joining with other
instances of such identifiers. (The
specific format of the identifier
is not defined and not guaranteed
to remain the same in future
versions.)

routine_body character_data If the function is an SQL function,
then SQL, else EXTERNAL.

routine_definition character_data The source text of the function
(null if the function is not
owned by a currently enabled
role). (According to the SQL
standard, this column is only
applicable if routine_body is
SQL, but in PostgreSQL it will
contain whatever source text was
specified when the function was
created.)

external_name character_data If this function is a C function,
then the external name (link
symbol) of the function; else
null. (This works out to be the
same value that is shown in
routine_definition.)

external_language character_data The language the function is
written in

parameter_style character_data Always GENERAL (The SQL
standard defines other parameter
styles, which are not available in
PostgreSQL.)

is_deterministic yes_or_no If the function is declared
immutable (called deterministic
in the SQL standard), then
YES, else NO. (You cannot
query the other volatility levels
available in PostgreSQL through
the information schema.)

sql_data_access character_data Always MODIFIES, meaning that
the function possibly modifies
SQL data. This information is not
useful for PostgreSQL.

1054

The Information Schema

Name Data Type Description

is_null_call yes_or_no If the function automatically
returns null if any of its arguments
are null, then YES, else NO. Null
for a procedure.

sql_path character_data Applies to a feature not available
in PostgreSQL

schema_level_routine yes_or_no Always YES (The opposite would
be a method of a user-defined
type, which is a feature not
available in PostgreSQL.)

max_dynamic_result_sets cardinal_number Applies to a feature not available
in PostgreSQL

is_user_defined_cast yes_or_no Applies to a feature not available
in PostgreSQL

is_implicitly_invocable yes_or_no Applies to a feature not available
in PostgreSQL

security_type character_data If the function runs with the
privileges of the current user, then
INVOKER, if the function runs
with the privileges of the user who
defined it, then DEFINER.

to_sql_specific_catalog sql_identifier Applies to a feature not available
in PostgreSQL

to_sql_specific_schema sql_identifier Applies to a feature not available
in PostgreSQL

to_sql_specific_name sql_identifier Applies to a feature not available
in PostgreSQL

as_locator yes_or_no Applies to a feature not available
in PostgreSQL

created time_stamp Applies to a feature not available
in PostgreSQL

last_altered time_stamp Applies to a feature not available
in PostgreSQL

new_savepoint_level yes_or_no Applies to a feature not available
in PostgreSQL

is_udt_dependent yes_or_no Currently always NO. The
alternative YES applies to
a feature not available in
PostgreSQL.

result_cast_from_data_typecharacter_data Applies to a feature not available
in PostgreSQL

result_cast_as_locator yes_or_no Applies to a feature not available
in PostgreSQL

result_cast_char_max_lengthcardinal_number Applies to a feature not available
in PostgreSQL

1055

The Information Schema

Name Data Type Description

result_cast_char_octet_lengthcharacter_data Applies to a feature not available
in PostgreSQL

result_cast_char_set_catalogsql_identifier Applies to a feature not available
in PostgreSQL

result_cast_char_set_schemasql_identifier Applies to a feature not available
in PostgreSQL

result_cast_char_set_namesql_identifier Applies to a feature not available
in PostgreSQL

result_cast_collation_catalogsql_identifier Applies to a feature not available
in PostgreSQL

result_cast_collation_schemasql_identifier Applies to a feature not available
in PostgreSQL

result_cast_collation_namesql_identifier Applies to a feature not available
in PostgreSQL

result_cast_numeric_precisioncardinal_number Applies to a feature not available
in PostgreSQL

result_cast_numeric_precision_radixcardinal_number Applies to a feature not available
in PostgreSQL

result_cast_numeric_scalecardinal_number Applies to a feature not available
in PostgreSQL

result_cast_datetime_precisioncharacter_data Applies to a feature not available
in PostgreSQL

result_cast_interval_typecharacter_data Applies to a feature not available
in PostgreSQL

result_cast_interval_precisioncardinal_number Applies to a feature not available
in PostgreSQL

result_cast_type_udt_catalogsql_identifier Applies to a feature not available
in PostgreSQL

result_cast_type_udt_schemasql_identifier Applies to a feature not available
in PostgreSQL

result_cast_type_udt_namesql_identifier Applies to a feature not available
in PostgreSQL

result_cast_scope_catalogsql_identifier Applies to a feature not available
in PostgreSQL

result_cast_scope_schemasql_identifier Applies to a feature not available
in PostgreSQL

result_cast_scope_name sql_identifier Applies to a feature not available
in PostgreSQL

result_cast_maximum_cardinalitycardinal_number Applies to a feature not available
in PostgreSQL

result_cast_dtd_identifiersql_identifier Applies to a feature not available
in PostgreSQL

1056

The Information Schema

37.41. schemata
The view schemata contains all schemas in the current database that the current user has access to (by
way of being the owner or having some privilege).

Table 37.39. schemata Columns

Name Data Type Description

catalog_name sql_identifier Name of the database that the
schema is contained in (always the
current database)

schema_name sql_identifier Name of the schema

schema_owner sql_identifier Name of the owner of the schema

default_character_set_catalogsql_identifier Applies to a feature not available
in PostgreSQL

default_character_set_schemasql_identifier Applies to a feature not available
in PostgreSQL

default_character_set_namesql_identifier Applies to a feature not available
in PostgreSQL

sql_path character_data Applies to a feature not available
in PostgreSQL

37.42. sequences
The view sequences contains all sequences defined in the current database. Only those sequences are
shown that the current user has access to (by way of being the owner or having some privilege).

Table 37.40. sequences Columns

Name Data Type Description

sequence_catalog sql_identifier Name of the database that
contains the sequence (always the
current database)

sequence_schema sql_identifier Name of the schema that contains
the sequence

sequence_name sql_identifier Name of the sequence

data_type character_data The data type of the sequence.

numeric_precision cardinal_number This column contains the
(declared or implicit) precision
of the sequence data type (see
above). The precision indicates
the number of significant digits.
It can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.

numeric_precision_radix cardinal_number This column indicates in which
base the values in the columns

1057

The Information Schema

Name Data Type Description

numeric_precision and
numeric_scale are expressed.
The value is either 2 or 10.

numeric_scale cardinal_number This column contains the
(declared or implicit) scale of
the sequence data type (see
above). The scale indicates the
number of significant digits to
the right of the decimal point.
It can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.

start_value character_data The start value of the sequence

minimum_value character_data The minimum value of the
sequence

maximum_value character_data The maximum value of the
sequence

increment character_data The increment of the sequence

cycle_option yes_or_no YES if the sequence cycles, else
NO

Note that in accordance with the SQL standard, the start, minimum, maximum, and increment values are
returned as character strings.

37.43. sql_features
The table sql_features contains information about which formal features defined in the SQL standard
are supported by PostgreSQL. This is the same information that is presented in Appendix D. There you
can also find some additional background information.

Table 37.41. sql_features Columns

Name Data Type Description

feature_id character_data Identifier string of the feature

feature_name character_data Descriptive name of the feature

sub_feature_id character_data Identifier string of the subfeature,
or a zero-length string if not a
subfeature

sub_feature_name character_data Descriptive name of the
subfeature, or a zero-length string
if not a subfeature

is_supported yes_or_no YES if the feature is fully
supported by the current version
of PostgreSQL, NO if not

is_verified_by character_data Always null, since the
PostgreSQL development group

1058

The Information Schema

Name Data Type Description

does not perform formal testing of
feature conformance

comments character_data Possibly a comment about the
supported status of the feature

37.44. sql_implementation_info
The table sql_implementation_info contains information about various aspects that are left
implementation-defined by the SQL standard. This information is primarily intended for use in the context
of the ODBC interface; users of other interfaces will probably find this information to be of little use. For
this reason, the individual implementation information items are not described here; you will find them
in the description of the ODBC interface.

Table 37.42. sql_implementation_info Columns

Name Data Type Description

implementation_info_id character_data Identifier string of the
implementation information item

implementation_info_namecharacter_data Descriptive name of the
implementation information item

integer_value cardinal_number Value of the implementation
information item, or null if the
value is contained in the column
character_value

character_value character_data Value of the implementation
information item, or null if the
value is contained in the column
integer_value

comments character_data Possibly a comment pertaining
to the implementation information
item

37.45. sql_languages
The table sql_languages contains one row for each SQL language binding that is supported by
PostgreSQL. PostgreSQL supports direct SQL and embedded SQL in C; that is all you will learn from
this table.

This table was removed from the SQL standard in SQL:2008, so there are no entries referring to standards
later than SQL:2003.

Table 37.43. sql_languages Columns

Name Data Type Description

sql_language_source character_data The name of the source of the
language definition; always ISO
9075, that is, the SQL standard

1059

The Information Schema

Name Data Type Description

sql_language_year character_data The year the standard referenced
in sql_language_source
was approved.

sql_language_conformancecharacter_data The standard conformance level
for the language binding. For ISO
9075:2003 this is always CORE.

sql_language_integrity character_data Always null (This value is
relevant to an earlier version of the
SQL standard.)

sql_language_implementationcharacter_data Always null

sql_language_binding_stylecharacter_data The language binding style, either
DIRECT or EMBEDDED

sql_language_programming_languagecharacter_data The programming language, if the
binding style is EMBEDDED, else
null. PostgreSQL only supports
the language C.

37.46. sql_packages
The table sql_packages contains information about which feature packages defined in the SQL
standard are supported by PostgreSQL. Refer to Appendix D for background information on feature
packages.

Table 37.44. sql_packages Columns

Name Data Type Description

feature_id character_data Identifier string of the package

feature_name character_data Descriptive name of the package

is_supported yes_or_no YES if the package is fully
supported by the current version
of PostgreSQL, NO if not

is_verified_by character_data Always null, since the
PostgreSQL development group
does not perform formal testing of
feature conformance

comments character_data Possibly a comment about the
supported status of the package

37.47. sql_parts
The table sql_parts contains information about which of the several parts of the SQL standard are
supported by PostgreSQL.

1060

The Information Schema

Table 37.45. sql_parts Columns

Name Data Type Description

feature_id character_data An identifier string containing the
number of the part

feature_name character_data Descriptive name of the part

is_supported yes_or_no YES if the part is fully
supported by the current version
of PostgreSQL, NO if not

is_verified_by character_data Always null, since the
PostgreSQL development group
does not perform formal testing of
feature conformance

comments character_data Possibly a comment about the
supported status of the part

37.48. sql_sizing
The table sql_sizing contains information about various size limits and maximum values in
PostgreSQL. This information is primarily intended for use in the context of the ODBC interface; users of
other interfaces will probably find this information to be of little use. For this reason, the individual sizing
items are not described here; you will find them in the description of the ODBC interface.

Table 37.46. sql_sizing Columns

Name Data Type Description

sizing_id cardinal_number Identifier of the sizing item

sizing_name character_data Descriptive name of the sizing
item

supported_value cardinal_number Value of the sizing item, or 0 if
the size is unlimited or cannot
be determined, or null if the
features for which the sizing item
is applicable are not supported

comments character_data Possibly a comment pertaining to
the sizing item

37.49. sql_sizing_profiles
The table sql_sizing_profiles contains information about the sql_sizing values that are
required by various profiles of the SQL standard. PostgreSQL does not track any SQL profiles, so this
table is empty.

Table 37.47. sql_sizing_profiles Columns

Name Data Type Description

sizing_id cardinal_number Identifier of the sizing item

sizing_name character_data Descriptive name of the sizing
item

1061

The Information Schema

Name Data Type Description

profile_id character_data Identifier string of a profile

required_value cardinal_number The value required by the SQL
profile for the sizing item, or 0
if the profile places no limit on
the sizing item, or null if the
profile does not require any of the
features for which the sizing item
is applicable

comments character_data Possibly a comment pertaining to
the sizing item within the profile

37.50. table_constraints
The view table_constraints contains all constraints belonging to tables that the current user owns
or has some privilege other than SELECT on.

Table 37.48. table_constraints Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database that
contains the constraint (always the
current database)

constraint_schema sql_identifier Name of the schema that contains
the constraint

constraint_name sql_identifier Name of the constraint

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that contains
the table

table_name sql_identifier Name of the table

constraint_type character_data Type of the constraint: CHECK,
FOREIGN KEY, PRIMARY KEY,
or UNIQUE

is_deferrable yes_or_no YES if the constraint is deferrable,
NO if not

initially_deferred yes_or_no YES if the constraint is deferrable
and initially deferred, NO if not

enforced yes_or_no Applies to a feature not available
in PostgreSQL (currently always
YES)

37.51. table_privileges
The view table_privileges identifies all privileges granted on tables or views to a currently enabled
role or by a currently enabled role. There is one row for each combination of table, grantor, and grantee.

1062

The Information Schema

Table 37.49. table_privileges Columns

Name Data Type Description

grantor sql_identifier Name of the role that granted the
privilege

grantee sql_identifier Name of the role that the privilege
was granted to

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that contains
the table

table_name sql_identifier Name of the table

privilege_type character_data Type of the privilege: SELECT,
INSERT, UPDATE, DELETE,
TRUNCATE, REFERENCES, or
TRIGGER

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

with_hierarchy yes_or_no In the SQL standard, WITH
HIERARCHY OPTION is a
separate (sub-)privilege allowing
certain operations on table
inheritance hierarchies. In
PostgreSQL, this is included in the
SELECT privilege, so this column
shows YES if the privilege is
SELECT, else NO.

37.52. tables
The view tables contains all tables and views defined in the current database. Only those tables and
views are shown that the current user has access to (by way of being the owner or having some privilege).

Table 37.50. tables Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that contains
the table

table_name sql_identifier Name of the table

table_type character_data Type of the table: BASE TABLE
for a persistent base table (the
normal table type), VIEW for a
view, FOREIGN for a foreign
table, or LOCAL TEMPORARY for
a temporary table

1063

The Information Schema

Name Data Type Description

self_referencing_column_namesql_identifier Applies to a feature not available
in PostgreSQL

reference_generation character_data Applies to a feature not available
in PostgreSQL

user_defined_type_catalogsql_identifier If the table is a typed table, the
name of the database that contains
the underlying data type (always
the current database), else null.

user_defined_type_schemasql_identifier If the table is a typed table, the
name of the schema that contains
the underlying data type, else null.

user_defined_type_name sql_identifier If the table is a typed table, the
name of the underlying data type,
else null.

is_insertable_into yes_or_no YES if the table is insertable
into, NO if not (Base tables are
always insertable into, views not
necessarily.)

is_typed yes_or_no YES if the table is a typed table,
NO if not

commit_action character_data Not yet implemented

37.53. transforms
The view transforms contains information about the transforms defined in the current database. More
precisely, it contains a row for each function contained in a transform (the “from SQL” or “to SQL”
function).

Table 37.51. transforms Columns

Name Data Type Description

udt_catalog sql_identifier Name of the database that
contains the type the transform is
for (always the current database)

udt_schema sql_identifier Name of the schema that contains
the type the transform is for

udt_name sql_identifier Name of the type the transform is
for

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 37.40 for
more information.

1064

The Information Schema

Name Data Type Description

group_name sql_identifier The SQL standard allows defining
transforms in “groups”, and
selecting a group at run time.
PostgreSQL does not support this.
Instead, transforms are specific to
a language. As a compromise, this
field contains the language the
transform is for.

transform_type character_data FROM SQL or TO SQL

37.54. triggered_update_columns
For triggers in the current database that specify a column list (like UPDATE OF column1, column2),
the view triggered_update_columns identifies these columns. Triggers that do not specify a
column list are not included in this view. Only those columns are shown that the current user owns or has
some privilege other than SELECT on.

Table 37.52. triggered_update_columns Columns

Name Data Type Description

trigger_catalog sql_identifier Name of the database that
contains the trigger (always the
current database)

trigger_schema sql_identifier Name of the schema that contains
the trigger

trigger_name sql_identifier Name of the trigger

event_object_catalog sql_identifier Name of the database that
contains the table that the trigger
is defined on (always the current
database)

event_object_schema sql_identifier Name of the schema that contains
the table that the trigger is defined
on

event_object_table sql_identifier Name of the table that the trigger
is defined on

event_object_column sql_identifier Name of the column that the
trigger is defined on

37.55. triggers
The view triggers contains all triggers defined in the current database on tables and views that the
current user owns or has some privilege other than SELECT on.

1065

The Information Schema

Table 37.53. triggers Columns

Name Data Type Description

trigger_catalog sql_identifier Name of the database that
contains the trigger (always the
current database)

trigger_schema sql_identifier Name of the schema that contains
the trigger

trigger_name sql_identifier Name of the trigger

event_manipulation character_data Event that fires the trigger
(INSERT, UPDATE, or DELETE)

event_object_catalog sql_identifier Name of the database that
contains the table that the trigger
is defined on (always the current
database)

event_object_schema sql_identifier Name of the schema that contains
the table that the trigger is defined
on

event_object_table sql_identifier Name of the table that the trigger
is defined on

action_order cardinal_number Firing order among triggers
on the same table having the
same event_manipulation,
action_timing, and
action_orientation. In
PostgreSQL, triggers are fired
in name order, so this column
reflects that.

action_condition character_data WHEN condition of the trigger, null
if none (also null if the table is
not owned by a currently enabled
role)

action_statement character_data Statement that is executed
by the trigger (currently
always EXECUTE FUNCTION
function(...))

action_orientation character_data Identifies whether the trigger fires
once for each processed row or
once for each statement (ROW or
STATEMENT)

action_timing character_data Time at which the trigger fires
(BEFORE, AFTER, or INSTEAD
OF)

action_reference_old_tablesql_identifier Name of the “old” transition table,
or null if none

action_reference_new_tablesql_identifier Name of the “new” transition
table, or null if none

1066

The Information Schema

Name Data Type Description

action_reference_old_rowsql_identifier Applies to a feature not available
in PostgreSQL

action_reference_new_rowsql_identifier Applies to a feature not available
in PostgreSQL

created time_stamp Applies to a feature not available
in PostgreSQL

Triggers in PostgreSQL have two incompatibilities with the SQL standard that affect the representation
in the information schema. First, trigger names are local to each table in PostgreSQL, rather than
being independent schema objects. Therefore there can be duplicate trigger names defined in one
schema, so long as they belong to different tables. (trigger_catalog and trigger_schema
are really the values pertaining to the table that the trigger is defined on.) Second, triggers can
be defined to fire on multiple events in PostgreSQL (e.g., ON INSERT OR UPDATE),
whereas the SQL standard only allows one. If a trigger is defined to fire on multiple events, it is
represented as multiple rows in the information schema, one for each type of event. As a consequence
of these two issues, the primary key of the view triggers is really (trigger_catalog,
trigger_schema, event_object_table, trigger_name, event_manipulation)
instead of (trigger_catalog, trigger_schema, trigger_name), which is what the SQL
standard specifies. Nonetheless, if you define your triggers in a manner that conforms with the SQL
standard (trigger names unique in the schema and only one event type per trigger), this will not affect you.

Note

Prior to PostgreSQL 9.1, this view's columns action_timing,
action_reference_old_table, action_reference_new_table,
action_reference_old_row, and action_reference_new_row were named
condition_timing, condition_reference_old_table,
condition_reference_new_table, condition_reference_old_row, and
condition_reference_new_row respectively. That was how they were named in the
SQL:1999 standard. The new naming conforms to SQL:2003 and later.

37.56. udt_privileges
The view udt_privileges identifies USAGE privileges granted on user-defined types to a currently
enabled role or by a currently enabled role. There is one row for each combination of type, grantor, and
grantee. This view shows only composite types (see under Section 37.58 for why); see Section 37.57 for
domain privileges.

Table 37.54. udt_privileges Columns

Name Data Type Description

grantor sql_identifier Name of the role that granted the
privilege

grantee sql_identifier Name of the role that the privilege
was granted to

udt_catalog sql_identifier Name of the database containing
the type (always the current
database)

1067

The Information Schema

Name Data Type Description

udt_schema sql_identifier Name of the schema containing
the type

udt_name sql_identifier Name of the type

privilege_type character_data Always TYPE USAGE

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

37.57. usage_privileges
The view usage_privileges identifies USAGE privileges granted on various kinds of objects to a
currently enabled role or by a currently enabled role. In PostgreSQL, this currently applies to collations,
domains, foreign-data wrappers, foreign servers, and sequences. There is one row for each combination
of object, grantor, and grantee.

Since collations do not have real privileges in PostgreSQL, this view shows implicit non-grantable USAGE
privileges granted by the owner to PUBLIC for all collations. The other object types, however, show real
privileges.

In PostgreSQL, sequences also support SELECT and UPDATE privileges in addition to the USAGE
privilege. These are nonstandard and therefore not visible in the information schema.

Table 37.55. usage_privileges Columns

Name Data Type Description

grantor sql_identifier Name of the role that granted the
privilege

grantee sql_identifier Name of the role that the privilege
was granted to

object_catalog sql_identifier Name of the database containing
the object (always the current
database)

object_schema sql_identifier Name of the schema containing
the object, if applicable, else an
empty string

object_name sql_identifier Name of the object

object_type character_data COLLATION or DOMAIN or
FOREIGN DATA WRAPPER
or FOREIGN SERVER or
SEQUENCE

privilege_type character_data Always USAGE

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

37.58. user_defined_types
The view user_defined_types currently contains all composite types defined in the current database.
Only those types are shown that the current user has access to (by way of being the owner or having some
privilege).

1068

The Information Schema

SQL knows about two kinds of user-defined types: structured types (also known as composite types in
PostgreSQL) and distinct types (not implemented in PostgreSQL). To be future-proof, use the column
user_defined_type_category to differentiate between these. Other user-defined types such
as base types and enums, which are PostgreSQL extensions, are not shown here. For domains, see
Section 37.22 instead.

Table 37.56. user_defined_types Columns

Name Data Type Description

user_defined_type_catalogsql_identifier Name of the database that
contains the type (always the
current database)

user_defined_type_schemasql_identifier Name of the schema that contains
the type

user_defined_type_name sql_identifier Name of the type

user_defined_type_categorycharacter_data Currently always STRUCTURED

is_instantiable yes_or_no Applies to a feature not available
in PostgreSQL

is_final yes_or_no Applies to a feature not available
in PostgreSQL

ordering_form character_data Applies to a feature not available
in PostgreSQL

ordering_category character_data Applies to a feature not available
in PostgreSQL

ordering_routine_catalogsql_identifier Applies to a feature not available
in PostgreSQL

ordering_routine_schema sql_identifier Applies to a feature not available
in PostgreSQL

ordering_routine_name sql_identifier Applies to a feature not available
in PostgreSQL

reference_type character_data Applies to a feature not available
in PostgreSQL

data_type character_data Applies to a feature not available
in PostgreSQL

character_maximum_lengthcardinal_number Applies to a feature not available
in PostgreSQL

character_octet_length cardinal_number Applies to a feature not available
in PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Applies to a feature not available
in PostgreSQL

1069

The Information Schema

Name Data Type Description

collation_schema sql_identifier Applies to a feature not available
in PostgreSQL

collation_name sql_identifier Applies to a feature not available
in PostgreSQL

numeric_precision cardinal_number Applies to a feature not available
in PostgreSQL

numeric_precision_radix cardinal_number Applies to a feature not available
in PostgreSQL

numeric_scale cardinal_number Applies to a feature not available
in PostgreSQL

datetime_precision cardinal_number Applies to a feature not available
in PostgreSQL

interval_type character_data Applies to a feature not available
in PostgreSQL

interval_precision cardinal_number Applies to a feature not available
in PostgreSQL

source_dtd_identifier sql_identifier Applies to a feature not available
in PostgreSQL

ref_dtd_identifier sql_identifier Applies to a feature not available
in PostgreSQL

37.59. user_mapping_options
The view user_mapping_options contains all the options defined for user mappings in the current
database. Only those user mappings are shown where the current user has access to the corresponding
foreign server (by way of being the owner or having some privilege).

Table 37.57. user_mapping_options Columns

Name Data Type Description

authorization_identifiersql_identifier Name of the user being mapped,
or PUBLIC if the mapping is
public

foreign_server_catalog sql_identifier Name of the database that the
foreign server used by this
mapping is defined in (always the
current database)

foreign_server_name sql_identifier Name of the foreign server used
by this mapping

option_name sql_identifier Name of an option

option_value character_data Value of the option. This column
will show as null unless the
current user is the user being
mapped, or the mapping is for
PUBLIC and the current user is
the server owner, or the current

1070

The Information Schema

Name Data Type Description

user is a superuser. The intent is
to protect password information
stored as user mapping option.

37.60. user_mappings
The view user_mappings contains all user mappings defined in the current database. Only those user
mappings are shown where the current user has access to the corresponding foreign server (by way of
being the owner or having some privilege).

Table 37.58. user_mappings Columns

Name Data Type Description

authorization_identifiersql_identifier Name of the user being mapped,
or PUBLIC if the mapping is
public

foreign_server_catalog sql_identifier Name of the database that the
foreign server used by this
mapping is defined in (always the
current database)

foreign_server_name sql_identifier Name of the foreign server used
by this mapping

37.61. view_column_usage
The view view_column_usage identifies all columns that are used in the query expression of a view
(the SELECT statement that defines the view). A column is only included if the table that contains the
column is owned by a currently enabled role.

Note

Columns of system tables are not included. This should be fixed sometime.

Table 37.59. view_column_usage Columns

Name Data Type Description

view_catalog sql_identifier Name of the database that
contains the view (always the
current database)

view_schema sql_identifier Name of the schema that contains
the view

view_name sql_identifier Name of the view

table_catalog sql_identifier Name of the database that
contains the table that contains the
column that is used by the view
(always the current database)

1071

The Information Schema

Name Data Type Description

table_schema sql_identifier Name of the schema that contains
the table that contains the column
that is used by the view

table_name sql_identifier Name of the table that contains the
column that is used by the view

column_name sql_identifier Name of the column that is used
by the view

37.62. view_routine_usage
The view view_routine_usage identifies all routines (functions and procedures) that are used in the
query expression of a view (the SELECT statement that defines the view). A routine is only included if
that routine is owned by a currently enabled role.

Table 37.60. view_routine_usage Columns

Name Data Type Description

table_catalog sql_identifier Name of the database containing
the view (always the current
database)

table_schema sql_identifier Name of the schema containing
the view

table_name sql_identifier Name of the view

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 37.40 for
more information.

37.63. view_table_usage
The view view_table_usage identifies all tables that are used in the query expression of a view (the
SELECT statement that defines the view). A table is only included if that table is owned by a currently
enabled role.

Note

System tables are not included. This should be fixed sometime.

1072

The Information Schema

Table 37.61. view_table_usage Columns

Name Data Type Description

view_catalog sql_identifier Name of the database that
contains the view (always the
current database)

view_schema sql_identifier Name of the schema that contains
the view

view_name sql_identifier Name of the view

table_catalog sql_identifier Name of the database that
contains the table that is used
by the view (always the current
database)

table_schema sql_identifier Name of the schema that contains
the table that is used by the view

table_name sql_identifier Name of the table that is used by
the view

37.64. views
The view views contains all views defined in the current database. Only those views are shown that the
current user has access to (by way of being the owner or having some privilege).

Table 37.62. views Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the view (always the
current database)

table_schema sql_identifier Name of the schema that contains
the view

table_name sql_identifier Name of the view

view_definition character_data Query expression defining the
view (null if the view is not owned
by a currently enabled role)

check_option character_data Applies to a feature not available
in PostgreSQL

is_updatable yes_or_no YES if the view is updatable
(allows UPDATE and DELETE),
NO if not

is_insertable_into yes_or_no YES if the view is insertable into
(allows INSERT), NO if not

is_trigger_updatable yes_or_no YES if the view has an INSTEAD
OF UPDATE trigger defined on it,
NO if not

is_trigger_deletable yes_or_no YES if the view has an INSTEAD
OF DELETE trigger defined on it,
NO if not

1073

The Information Schema

Name Data Type Description

is_trigger_insertable_intoyes_or_no YES if the view has an INSTEAD
OF INSERT trigger defined on it,
NO if not

1074

Part V. Server Programming
This part is about extending the server functionality with user-defined functions, data types, triggers, etc. These are
advanced topics which should probably be approached only after all the other user documentation about PostgreSQL
has been understood. Later chapters in this part describe the server-side programming languages available in the
PostgreSQL distribution as well as general issues concerning server-side programming languages. It is essential to
read at least the earlier sections of Chapter 38 (covering functions) before diving into the material about server-side
programming languages.

Table of Contents
38. Extending SQL .. 1081

38.1. How Extensibility Works .. 1081
38.2. The PostgreSQL Type System .. 1081

38.2.1. Base Types ... 1081
38.2.2. Container Types .. 1081
38.2.3. Domains .. 1082
38.2.4. Pseudo-Types .. 1082
38.2.5. Polymorphic Types .. 1082

38.3. User-defined Functions ... 1083
38.4. User-defined Procedures .. 1083
38.5. Query Language (SQL) Functions ... 1084

38.5.1. Arguments for SQL Functions ... 1085
38.5.2. SQL Functions on Base Types ... 1085
38.5.3. SQL Functions on Composite Types ... 1087
38.5.4. SQL Functions with Output Parameters ... 1090
38.5.5. SQL Functions with Variable Numbers of Arguments 1091
38.5.6. SQL Functions with Default Values for Arguments 1092
38.5.7. SQL Functions as Table Sources .. 1093
38.5.8. SQL Functions Returning Sets ... 1094
38.5.9. SQL Functions Returning TABLE ... 1098
38.5.10. Polymorphic SQL Functions .. 1098
38.5.11. SQL Functions with Collations ... 1100

38.6. Function Overloading ... 1100
38.7. Function Volatility Categories .. 1101
38.8. Procedural Language Functions .. 1103
38.9. Internal Functions .. 1103
38.10. C-Language Functions ... 1103

38.10.1. Dynamic Loading .. 1103
38.10.2. Base Types in C-Language Functions .. 1105
38.10.3. Version 1 Calling Conventions ... 1107
38.10.4. Writing Code .. 1111
38.10.5. Compiling and Linking Dynamically-loaded Functions 1111
38.10.6. Composite-type Arguments .. 1114
38.10.7. Returning Rows (Composite Types) .. 1115
38.10.8. Returning Sets ... 1117
38.10.9. Polymorphic Arguments and Return Types ... 1122
38.10.10. Transform Functions ... 1124
38.10.11. Shared Memory and LWLocks ... 1124
38.10.12. Using C++ for Extensibility ... 1125

38.11. User-defined Aggregates .. 1125
38.11.1. Moving-Aggregate Mode ... 1127
38.11.2. Polymorphic and Variadic Aggregates ... 1128
38.11.3. Ordered-Set Aggregates .. 1130
38.11.4. Partial Aggregation .. 1131
38.11.5. Support Functions for Aggregates ... 1132

38.12. User-defined Types ... 1133
38.12.1. TOAST Considerations ... 1136

38.13. User-defined Operators .. 1137
38.14. Operator Optimization Information .. 1138

38.14.1. COMMUTATOR ... 1138
38.14.2. NEGATOR ... 1139

1076

Server Programming

38.14.3. RESTRICT ... 1139
38.14.4. JOIN ... 1140
38.14.5. HASHES ... 1140
38.14.6. MERGES ... 1141

38.15. Interfacing Extensions To Indexes ... 1142
38.15.1. Index Methods and Operator Classes ... 1142
38.15.2. Index Method Strategies .. 1143
38.15.3. Index Method Support Routines ... 1145
38.15.4. An Example .. 1148
38.15.5. Operator Classes and Operator Families ... 1150
38.15.6. System Dependencies on Operator Classes ... 1153
38.15.7. Ordering Operators ... 1154
38.15.8. Special Features of Operator Classes ... 1154

38.16. Packaging Related Objects into an Extension ... 1155
38.16.1. Defining Extension Objects ... 1156
38.16.2. Extension Files .. 1157
38.16.3. Extension Relocatability .. 1158
38.16.4. Extension Configuration Tables .. 1159
38.16.5. Extension Updates .. 1160
38.16.6. Installing Extensions using Update Scripts .. 1161
38.16.7. Extension Example ... 1162

38.17. Extension Building Infrastructure .. 1163
39. Triggers .. 1167

39.1. Overview of Trigger Behavior .. 1167
39.2. Visibility of Data Changes ... 1170
39.3. Writing Trigger Functions in C .. 1170
39.4. A Complete Trigger Example ... 1173

40. Event Triggers ... 1177
40.1. Overview of Event Trigger Behavior ... 1177
40.2. Event Trigger Firing Matrix ... 1178
40.3. Writing Event Trigger Functions in C .. 1182
40.4. A Complete Event Trigger Example .. 1184
40.5. A Table Rewrite Event Trigger Example .. 1185

41. The Rule System .. 1187
41.1. The Query Tree ... 1187
41.2. Views and the Rule System ... 1189

41.2.1. How SELECT Rules Work .. 1189
41.2.2. View Rules in Non-SELECT Statements .. 1194
41.2.3. The Power of Views in PostgreSQL .. 1195
41.2.4. Updating a View ... 1195

41.3. Materialized Views ... 1196
41.4. Rules on INSERT, UPDATE, and DELETE ... 1199

41.4.1. How Update Rules Work .. 1200
41.4.2. Cooperation with Views ... 1204

41.5. Rules and Privileges ... 1210
41.6. Rules and Command Status ... 1212
41.7. Rules Versus Triggers ... 1213

42. Procedural Languages .. 1216
42.1. Installing Procedural Languages ... 1216

43. PL/pgSQL - SQL Procedural Language .. 1219
43.1. Overview .. 1219

43.1.1. Advantages of Using PL/pgSQL ... 1219
43.1.2. Supported Argument and Result Data Types ... 1220

43.2. Structure of PL/pgSQL ... 1220

1077

Server Programming

43.3. Declarations .. 1222
43.3.1. Declaring Function Parameters ... 1223
43.3.2. ALIAS .. 1225
43.3.3. Copying Types .. 1225
43.3.4. Row Types ... 1226
43.3.5. Record Types .. 1226
43.3.6. Collation of PL/pgSQL Variables ... 1227

43.4. Expressions ... 1228
43.5. Basic Statements .. 1228

43.5.1. Assignment ... 1228
43.5.2. Executing a Command With No Result ... 1229
43.5.3. Executing a Query with a Single-row Result ... 1230
43.5.4. Executing Dynamic Commands .. 1231
43.5.5. Obtaining the Result Status ... 1235
43.5.6. Doing Nothing At All .. 1236

43.6. Control Structures .. 1236
43.6.1. Returning From a Function ... 1237
43.6.2. Returning From a Procedure .. 1239
43.6.3. Calling a Procedure .. 1239
43.6.4. Conditionals ... 1240
43.6.5. Simple Loops .. 1243
43.6.6. Looping Through Query Results ... 1245
43.6.7. Looping Through Arrays ... 1247
43.6.8. Trapping Errors ... 1248
43.6.9. Obtaining Execution Location Information ... 1251

43.7. Cursors ... 1252
43.7.1. Declaring Cursor Variables ... 1252
43.7.2. Opening Cursors .. 1252
43.7.3. Using Cursors ... 1254
43.7.4. Looping Through a Cursor's Result ... 1257

43.8. Transaction Management ... 1258
43.9. Errors and Messages ... 1259

43.9.1. Reporting Errors and Messages .. 1259
43.9.2. Checking Assertions ... 1261

43.10. Trigger Functions ... 1261
43.10.1. Triggers on Data Changes ... 1261
43.10.2. Triggers on Events ... 1270

43.11. PL/pgSQL Under the Hood .. 1270
43.11.1. Variable Substitution .. 1271
43.11.2. Plan Caching ... 1273

43.12. Tips for Developing in PL/pgSQL ... 1274
43.12.1. Handling of Quotation Marks ... 1275
43.12.2. Additional Compile-time Checks .. 1276

43.13. Porting from Oracle PL/SQL .. 1277
43.13.1. Porting Examples ... 1278
43.13.2. Other Things to Watch For .. 1283
43.13.3. Appendix .. 1284

44. PL/Tcl - Tcl Procedural Language ... 1288
44.1. Overview .. 1288
44.2. PL/Tcl Functions and Arguments .. 1288
44.3. Data Values in PL/Tcl .. 1290
44.4. Global Data in PL/Tcl .. 1291
44.5. Database Access from PL/Tcl .. 1291
44.6. Trigger Functions in PL/Tcl ... 1294

1078

Server Programming

44.7. Event Trigger Functions in PL/Tcl .. 1296
44.8. Error Handling in PL/Tcl .. 1296
44.9. Explicit Subtransactions in PL/Tcl .. 1297
44.10. Transaction Management ... 1298
44.11. PL/Tcl Configuration .. 1299
44.12. Tcl Procedure Names .. 1299

45. PL/Perl - Perl Procedural Language ... 1300
45.1. PL/Perl Functions and Arguments ... 1300
45.2. Data Values in PL/Perl ... 1304
45.3. Built-in Functions .. 1305

45.3.1. Database Access from PL/Perl ... 1305
45.3.2. Utility Functions in PL/Perl ... 1309

45.4. Global Values in PL/Perl ... 1310
45.5. Trusted and Untrusted PL/Perl .. 1311
45.6. PL/Perl Triggers .. 1312
45.7. PL/Perl Event Triggers .. 1314
45.8. PL/Perl Under the Hood .. 1314

45.8.1. Configuration .. 1314
45.8.2. Limitations and Missing Features ... 1315

46. PL/Python - Python Procedural Language ... 1317
46.1. Python 2 vs. Python 3 ... 1317
46.2. PL/Python Functions .. 1318
46.3. Data Values .. 1320

46.3.1. Data Type Mapping ... 1320
46.3.2. Null, None ... 1321
46.3.3. Arrays, Lists ... 1321
46.3.4. Composite Types ... 1322
46.3.5. Set-returning Functions ... 1324

46.4. Sharing Data ... 1325
46.5. Anonymous Code Blocks .. 1325
46.6. Trigger Functions ... 1326
46.7. Database Access .. 1327

46.7.1. Database Access Functions .. 1327
46.7.2. Trapping Errors ... 1330

46.8. Explicit Subtransactions .. 1330
46.8.1. Subtransaction Context Managers ... 1331
46.8.2. Older Python Versions ... 1332

46.9. Transaction Management ... 1332
46.10. Utility Functions .. 1333
46.11. Environment Variables .. 1334

47. Server Programming Interface .. 1336
47.1. Interface Functions ... 1336
47.2. Interface Support Functions ... 1372
47.3. Memory Management ... 1381
47.4. Transaction Management ... 1391
47.5. Visibility of Data Changes ... 1394
47.6. Examples .. 1394

48. Background Worker Processes .. 1398
49. Logical Decoding ... 1402

49.1. Logical Decoding Examples ... 1402
49.2. Logical Decoding Concepts ... 1405

49.2.1. Logical Decoding .. 1405
49.2.2. Replication Slots ... 1405
49.2.3. Output Plugins .. 1406

1079

Server Programming

49.2.4. Exported Snapshots .. 1406
49.3. Streaming Replication Protocol Interface .. 1406
49.4. Logical Decoding SQL Interface ... 1406
49.5. System Catalogs Related to Logical Decoding ... 1406
49.6. Logical Decoding Output Plugins ... 1407

49.6.1. Initialization Function ... 1407
49.6.2. Capabilities ... 1407
49.6.3. Output Modes ... 1407
49.6.4. Output Plugin Callbacks ... 1408
49.6.5. Functions for Producing Output ... 1411

49.7. Logical Decoding Output Writers ... 1411
49.8. Synchronous Replication Support for Logical Decoding .. 1411

50. Replication Progress Tracking .. 1412

1080

Chapter 38. Extending SQL
In the sections that follow, we will discuss how you can extend the PostgreSQL SQL query language by
adding:

• functions (starting in Section 38.3)
• aggregates (starting in Section 38.11)
• data types (starting in Section 38.12)
• operators (starting in Section 38.13)
• operator classes for indexes (starting in Section 38.15)
• packages of related objects (starting in Section 38.16)

38.1. How Extensibility Works
PostgreSQL is extensible because its operation is catalog-driven. If you are familiar with standard
relational database systems, you know that they store information about databases, tables, columns, etc., in
what are commonly known as system catalogs. (Some systems call this the data dictionary.) The catalogs
appear to the user as tables like any other, but the DBMS stores its internal bookkeeping in them. One key
difference between PostgreSQL and standard relational database systems is that PostgreSQL stores much
more information in its catalogs: not only information about tables and columns, but also information
about data types, functions, access methods, and so on. These tables can be modified by the user, and since
PostgreSQL bases its operation on these tables, this means that PostgreSQL can be extended by users. By
comparison, conventional database systems can only be extended by changing hardcoded procedures in
the source code or by loading modules specially written by the DBMS vendor.

The PostgreSQL server can moreover incorporate user-written code into itself through dynamic loading.
That is, the user can specify an object code file (e.g., a shared library) that implements a new type or
function, and PostgreSQL will load it as required. Code written in SQL is even more trivial to add to
the server. This ability to modify its operation “on the fly” makes PostgreSQL uniquely suited for rapid
prototyping of new applications and storage structures.

38.2. The PostgreSQL Type System
PostgreSQL data types can be divided into base types, container types, domains, and pseudo-types.

38.2.1. Base Types
Base types are those, like integer, that are implemented below the level of the SQL language (typically
in a low-level language such as C). They generally correspond to what are often known as abstract
data types. PostgreSQL can only operate on such types through functions provided by the user and only
understands the behavior of such types to the extent that the user describes them. The built-in base types
are described in Chapter 8.

Enumerated (enum) types can be considered as a subcategory of base types. The main difference is that
they can be created using just SQL commands, without any low-level programming. Refer to Section 8.7
for more information.

38.2.2. Container Types
PostgreSQL has three kinds of “container” types, which are types that contain multiple values of other
types. These are arrays, composites, and ranges.

1081

Extending SQL

Arrays can hold multiple values that are all of the same type. An array type is automatically created for
each base type, composite type, range type, and domain type. But there are no arrays of arrays. So far as
the type system is concerned, multi-dimensional arrays are the same as one-dimensional arrays. Refer to
Section 8.15 for more information.

Composite types, or row types, are created whenever the user creates a table. It is also possible to use
CREATE TYPE to define a “stand-alone” composite type with no associated table. A composite type is
simply a list of types with associated field names. A value of a composite type is a row or record of field
values. Refer to Section 8.16 for more information.

A range type can hold two values of the same type, which are the lower and upper bounds of the range.
Range types are user-created, although a few built-in ones exist. Refer to Section 8.17 for more information.

38.2.3. Domains
A domain is based on a particular underlying type and for many purposes is interchangeable with its
underlying type. However, a domain can have constraints that restrict its valid values to a subset of what
the underlying type would allow. Domains are created using the SQL command CREATE DOMAIN.
Refer to Section 8.18 for more information.

38.2.4. Pseudo-Types
There are a few “pseudo-types” for special purposes. Pseudo-types cannot appear as columns of tables or
components of container types, but they can be used to declare the argument and result types of functions.
This provides a mechanism within the type system to identify special classes of functions. Table 8.25 lists
the existing pseudo-types.

38.2.5. Polymorphic Types
Five pseudo-types of special interest are anyelement, anyarray, anynonarray, anyenum, and
anyrange, which are collectively called polymorphic types. Any function declared using these types is
said to be a polymorphic function. A polymorphic function can operate on many different data types, with
the specific data type(s) being determined by the data types actually passed to it in a particular call.

Polymorphic arguments and results are tied to each other and are resolved to a specific data type when a
query calling a polymorphic function is parsed. Each position (either argument or return value) declared
as anyelement is allowed to have any specific actual data type, but in any given call they must all be
the same actual type. Each position declared as anyarray can have any array data type, but similarly
they must all be the same type. And similarly, positions declared as anyrange must all be the same
range type. Furthermore, if there are positions declared anyarray and others declared anyelement,
the actual array type in the anyarray positions must be an array whose elements are the same type
appearing in the anyelement positions. Similarly, if there are positions declared anyrange and others
declared anyelement, the actual range type in the anyrange positions must be a range whose subtype
is the same type appearing in the anyelement positions. anynonarray is treated exactly the same as
anyelement, but adds the additional constraint that the actual type must not be an array type. anyenum
is treated exactly the same as anyelement, but adds the additional constraint that the actual type must
be an enum type.

Thus, when more than one argument position is declared with a polymorphic type, the net effect is that
only certain combinations of actual argument types are allowed. For example, a function declared as
equal(anyelement, anyelement) will take any two input values, so long as they are of the same
data type.

When the return value of a function is declared as a polymorphic type, there must be at least one argument
position that is also polymorphic, and the actual data type supplied as the argument determines the actual

1082

Extending SQL

result type for that call. For example, if there were not already an array subscripting mechanism, one could
define a function that implements subscripting as subscript(anyarray, integer) returns
anyelement. This declaration constrains the actual first argument to be an array type, and allows the
parser to infer the correct result type from the actual first argument's type. Another example is that a
function declared as f(anyarray) returns anyenum will only accept arrays of enum types.

Note that anynonarray and anyenum do not represent separate type variables; they are the same type as
anyelement, just with an additional constraint. For example, declaring a function as f(anyelement,
anyenum) is equivalent to declaring it as f(anyenum, anyenum): both actual arguments have to
be the same enum type.

A variadic function (one taking a variable number of arguments, as in Section 38.5.5) can be polymorphic:
this is accomplished by declaring its last parameter as VARIADIC anyarray. For purposes of argument
matching and determining the actual result type, such a function behaves the same as if you had written
the appropriate number of anynonarray parameters.

38.3. User-defined Functions
PostgreSQL provides four kinds of functions:

• query language functions (functions written in SQL) (Section 38.5)

• procedural language functions (functions written in, for example, PL/pgSQL or PL/Tcl) (Section 38.8)

• internal functions (Section 38.9)

• C-language functions (Section 38.10)

Every kind of function can take base types, composite types, or combinations of these as arguments
(parameters). In addition, every kind of function can return a base type or a composite type. Functions can
also be defined to return sets of base or composite values.

Many kinds of functions can take or return certain pseudo-types (such as polymorphic types), but the
available facilities vary. Consult the description of each kind of function for more details.

It's easiest to define SQL functions, so we'll start by discussing those. Most of the concepts presented for
SQL functions will carry over to the other types of functions.

Throughout this chapter, it can be useful to look at the reference page of the CREATE FUNCTION
command to understand the examples better. Some examples from this chapter can be found in
funcs.sql and funcs.c in the src/tutorial directory in the PostgreSQL source distribution.

38.4. User-defined Procedures
A procedure is a database object similar to a function. The difference is that a procedure does not return a
value, so there is no return type declaration. While a function is called as part of a query or DML command,
a procedure is called explicitly using the CALL statement.

The explanations on how to define user-defined functions in the rest of this chapter apply to procedures as
well, except that the CREATE PROCEDURE command is used instead, there is no return type, and some
other features such as strictness don't apply.

Collectively, functions and procedures are also known as routines. There are commands such as ALTER
ROUTINE and DROP ROUTINE that can operate on functions and procedures without having to know
which kind it is. Note, however, that there is no CREATE ROUTINE command.

1083

Extending SQL

38.5. Query Language (SQL) Functions
SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in the list.
In the simple (non-set) case, the first row of the last query's result will be returned. (Bear in mind that “the
first row” of a multirow result is not well-defined unless you use ORDER BY.) If the last query happens
to return no rows at all, the null value will be returned.

Alternatively, an SQL function can be declared to return a set (that is, multiple rows) by specifying
the function's return type as SETOF sometype, or equivalently by declaring it as RETURNS
TABLE(columns). In this case all rows of the last query's result are returned. Further details appear
below.

The body of an SQL function must be a list of SQL statements separated by semicolons. A semicolon after
the last statement is optional. Unless the function is declared to return void, the last statement must be a
SELECT, or an INSERT, UPDATE, or DELETE that has a RETURNING clause.

Any collection of commands in the SQL language can be packaged together and defined as a function.
Besides SELECT queries, the commands can include data modification queries (INSERT, UPDATE, and
DELETE), as well as other SQL commands. (You cannot use transaction control commands, e.g. COMMIT,
SAVEPOINT, and some utility commands, e.g. VACUUM, in SQL functions.) However, the final command
must be a SELECT or have a RETURNING clause that returns whatever is specified as the function's return
type. Alternatively, if you want to define a SQL function that performs actions but has no useful value
to return, you can define it as returning void. For example, this function removes rows with negative
salaries from the emp table:

CREATE FUNCTION clean_emp() RETURNS void AS '
 DELETE FROM emp
 WHERE salary < 0;
' LANGUAGE SQL;

SELECT clean_emp();

 clean_emp

(1 row)

Note

The entire body of a SQL function is parsed before any of it is executed. While a SQL function
can contain commands that alter the system catalogs (e.g., CREATE TABLE), the effects of such
commands will not be visible during parse analysis of later commands in the function. Thus, for
example, CREATE TABLE foo (...); INSERT INTO foo VALUES(...); will not
work as desired if packaged up into a single SQL function, since foo won't exist yet when the
INSERT command is parsed. It's recommended to use PL/pgSQL instead of a SQL function in
this type of situation.

The syntax of the CREATE FUNCTION command requires the function body to be written as a string
constant. It is usually most convenient to use dollar quoting (see Section 4.1.2.4) for the string constant.
If you choose to use regular single-quoted string constant syntax, you must double single quote marks (')
and backslashes (\) (assuming escape string syntax) in the body of the function (see Section 4.1.2.1).

1084

Extending SQL

38.5.1. Arguments for SQL Functions
Arguments of a SQL function can be referenced in the function body using either names or numbers.
Examples of both methods appear below.

To use a name, declare the function argument as having a name, and then just write that name in the
function body. If the argument name is the same as any column name in the current SQL command within
the function, the column name will take precedence. To override this, qualify the argument name with the
name of the function itself, that is function_name.argument_name. (If this would conflict with a
qualified column name, again the column name wins. You can avoid the ambiguity by choosing a different
alias for the table within the SQL command.)

In the older numeric approach, arguments are referenced using the syntax $n: $1 refers to the first input
argument, $2 to the second, and so on. This will work whether or not the particular argument was declared
with a name.

If an argument is of a composite type, then the dot notation, e.g., argname.fieldname or
$1.fieldname, can be used to access attributes of the argument. Again, you might need to qualify the
argument's name with the function name to make the form with an argument name unambiguous.

SQL function arguments can only be used as data values, not as identifiers. Thus for example this is
reasonable:

INSERT INTO mytable VALUES ($1);

but this will not work:

INSERT INTO $1 VALUES (42);

Note

The ability to use names to reference SQL function arguments was added in PostgreSQL 9.2.
Functions to be used in older servers must use the $n notation.

38.5.2. SQL Functions on Base Types
The simplest possible SQL function has no arguments and simply returns a base type, such as integer:

CREATE FUNCTION one() RETURNS integer AS $$
 SELECT 1 AS result;
$$ LANGUAGE SQL;

-- Alternative syntax for string literal:
CREATE FUNCTION one() RETURNS integer AS '
 SELECT 1 AS result;
' LANGUAGE SQL;

SELECT one();

 one

1085

Extending SQL

 1

Notice that we defined a column alias within the function body for the result of the function (with the
name result), but this column alias is not visible outside the function. Hence, the result is labeled one
instead of result.

It is almost as easy to define SQL functions that take base types as arguments:

CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$
 SELECT x + y;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer

 3

Alternatively, we could dispense with names for the arguments and use numbers:

CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer

 3

Here is a more useful function, which might be used to debit a bank account:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric
 AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno;
 SELECT 1;
$$ LANGUAGE SQL;

A user could execute this function to debit account 17 by $100.00 as follows:

SELECT tf1(17, 100.0);

In this example, we chose the name accountno for the first argument, but this is the same as the
name of a column in the bank table. Within the UPDATE command, accountno refers to the column
bank.accountno, so tf1.accountno must be used to refer to the argument. We could of course
avoid this by using a different name for the argument.

In practice one would probably like a more useful result from the function than a constant 1, so a more
likely definition is:

1086

Extending SQL

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric
 AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno;
 SELECT balance FROM bank WHERE accountno = tf1.accountno;
$$ LANGUAGE SQL;

which adjusts the balance and returns the new balance. The same thing could be done in one command
using RETURNING:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric
 AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno
 RETURNING balance;
$$ LANGUAGE SQL;

A SQL function must return exactly its declared result type. This may require inserting an explicit cast.
For example, suppose we wanted the previous add_em function to return type float8 instead. This
won't work:

CREATE FUNCTION add_em(integer, integer) RETURNS float8 AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

even though in other contexts PostgreSQL would be willing to insert an implicit cast to convert integer
to float8. We need to write it as

CREATE FUNCTION add_em(integer, integer) RETURNS float8 AS $$
 SELECT ($1 + $2)::float8;
$$ LANGUAGE SQL;

38.5.3. SQL Functions on Composite Types
When writing functions with arguments of composite types, we must not only specify which argument
we want but also the desired attribute (field) of that argument. For example, suppose that emp is a table
containing employee data, and therefore also the name of the composite type of each row of the table. Here
is a function double_salary that computes what someone's salary would be if it were doubled:

CREATE TABLE emp (
 name text,
 salary numeric,
 age integer,
 cubicle point
);

INSERT INTO emp VALUES ('Bill', 4200, 45, '(2,1)');

1087

Extending SQL

CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
 SELECT $1.salary * 2 AS salary;
$$ LANGUAGE SQL;

SELECT name, double_salary(emp.*) AS dream
 FROM emp
 WHERE emp.cubicle ~= point '(2,1)';

 name | dream
------+-------
 Bill | 8400

Notice the use of the syntax $1.salary to select one field of the argument row value. Also notice how the
calling SELECT command uses table_name.* to select the entire current row of a table as a composite
value. The table row can alternatively be referenced using just the table name, like this:

SELECT name, double_salary(emp) AS dream
 FROM emp
 WHERE emp.cubicle ~= point '(2,1)';

but this usage is deprecated since it's easy to get confused. (See Section 8.16.5 for details about these two
notations for the composite value of a table row.)

Sometimes it is handy to construct a composite argument value on-the-fly. This can be done with the ROW
construct. For example, we could adjust the data being passed to the function:

SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS
 dream
 FROM emp;

It is also possible to build a function that returns a composite type. This is an example of a function that
returns a single emp row:

CREATE FUNCTION new_emp() RETURNS emp AS $$
 SELECT text 'None' AS name,
 1000.0 AS salary,
 25 AS age,
 point '(2,2)' AS cubicle;
$$ LANGUAGE SQL;

In this example we have specified each of the attributes with a constant value, but any computation could
have been substituted for these constants.

Note two important things about defining the function:

• The select list order in the query must be exactly the same as that in which the columns appear in the table
associated with the composite type. (Naming the columns, as we did above, is irrelevant to the system.)

• We must ensure each expression's type matches the corresponding column of the composite type,
inserting a cast if necessary. Otherwise we'll get errors like this:

1088

Extending SQL

ERROR: function declared to return emp returns varchar instead of
 text at column 1

As with the base-type case, the function will not insert any casts automatically.

A different way to define the same function is:

CREATE FUNCTION new_emp() RETURNS emp AS $$
 SELECT ROW('None', 1000.0, 25, '(2,2)')::emp;
$$ LANGUAGE SQL;

Here we wrote a SELECT that returns just a single column of the correct composite type. This isn't really
better in this situation, but it is a handy alternative in some cases — for example, if we need to compute
the result by calling another function that returns the desired composite value. Another example is that if
we are trying to write a function that returns a domain over composite, rather than a plain composite type,
it is always necessary to write it as returning a single column, since there is no other way to produce a
value that is exactly of the domain type.

We could call this function directly either by using it in a value expression:

SELECT new_emp();

 new_emp

 (None,1000.0,25,"(2,2)")

or by calling it as a table function:

SELECT * FROM new_emp();

 name | salary | age | cubicle
------+--------+-----+---------
 None | 1000.0 | 25 | (2,2)

The second way is described more fully in Section 38.5.7.

When you use a function that returns a composite type, you might want only one field (attribute) from its
result. You can do that with syntax like this:

SELECT (new_emp()).name;

 name

 None

The extra parentheses are needed to keep the parser from getting confused. If you try to do it without them,
you get something like this:

SELECT new_emp().name;
ERROR: syntax error at or near "."
LINE 1: SELECT new_emp().name;

1089

Extending SQL

 ^

Another option is to use functional notation for extracting an attribute:

SELECT name(new_emp());

 name

 None

As explained in Section 8.16.5, the field notation and functional notation are equivalent.

Another way to use a function returning a composite type is to pass the result to another function that
accepts the correct row type as input:

CREATE FUNCTION getname(emp) RETURNS text AS $$
 SELECT $1.name;
$$ LANGUAGE SQL;

SELECT getname(new_emp());
 getname

 None
(1 row)

38.5.4. SQL Functions with Output Parameters
An alternative way of describing a function's results is to define it with output parameters, as in this
example:

CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int)
AS 'SELECT x + y'
LANGUAGE SQL;

SELECT add_em(3,7);
 add_em

 10
(1 row)

This is not essentially different from the version of add_em shown in Section 38.5.2. The real value of
output parameters is that they provide a convenient way of defining functions that return several columns.
For example,

CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product
 int)
AS 'SELECT x + y, x * y'
LANGUAGE SQL;

 SELECT * FROM sum_n_product(11,42);
 sum | product

1090

Extending SQL

-----+---------
 53 | 462
(1 row)

What has essentially happened here is that we have created an anonymous composite type for the result
of the function. The above example has the same end result as

CREATE TYPE sum_prod AS (sum int, product int);

CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS 'SELECT $1 + $2, $1 * $2'
LANGUAGE SQL;

but not having to bother with the separate composite type definition is often handy. Notice that the
names attached to the output parameters are not just decoration, but determine the column names of the
anonymous composite type. (If you omit a name for an output parameter, the system will choose a name
on its own.)

Notice that output parameters are not included in the calling argument list when invoking such a function
from SQL. This is because PostgreSQL considers only the input parameters to define the function's calling
signature. That means also that only the input parameters matter when referencing the function for purposes
such as dropping it. We could drop the above function with either of

DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product
 int);
DROP FUNCTION sum_n_product (int, int);

Parameters can be marked as IN (the default), OUT, INOUT, or VARIADIC. An INOUT parameter serves
as both an input parameter (part of the calling argument list) and an output parameter (part of the result
record type). VARIADIC parameters are input parameters, but are treated specially as described next.

38.5.5. SQL Functions with Variable Numbers of
Arguments

SQL functions can be declared to accept variable numbers of arguments, so long as all the “optional”
arguments are of the same data type. The optional arguments will be passed to the function as an array.
The function is declared by marking the last parameter as VARIADIC; this parameter must be declared
as being of an array type. For example:

CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$
 SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT mleast(10, -1, 5, 4.4);
 mleast

 -1
(1 row)

Effectively, all the actual arguments at or beyond the VARIADIC position are gathered up into a one-
dimensional array, as if you had written

1091

Extending SQL

SELECT mleast(ARRAY[10, -1, 5, 4.4]); -- doesn't work

You can't actually write that, though — or at least, it will not match this function definition. A parameter
marked VARIADIC matches one or more occurrences of its element type, not of its own type.

Sometimes it is useful to be able to pass an already-constructed array to a variadic function; this is
particularly handy when one variadic function wants to pass on its array parameter to another one. Also,
this is the only secure way to call a variadic function found in a schema that permits untrusted users to
create objects; see Section 10.3. You can do this by specifying VARIADIC in the call:

SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);

This prevents expansion of the function's variadic parameter into its element type, thereby allowing the
array argument value to match normally. VARIADIC can only be attached to the last actual argument of
a function call.

Specifying VARIADIC in the call is also the only way to pass an empty array to a variadic function, for
example:

SELECT mleast(VARIADIC ARRAY[]::numeric[]);

Simply writing SELECT mleast() does not work because a variadic parameter must match at least
one actual argument. (You could define a second function also named mleast, with no parameters, if
you wanted to allow such calls.)

The array element parameters generated from a variadic parameter are treated as not having any names of
their own. This means it is not possible to call a variadic function using named arguments (Section 4.3),
except when you specify VARIADIC. For example, this will work:

SELECT mleast(VARIADIC arr => ARRAY[10, -1, 5, 4.4]);

but not these:

SELECT mleast(arr => 10);
SELECT mleast(arr => ARRAY[10, -1, 5, 4.4]);

38.5.6. SQL Functions with Default Values for Arguments
Functions can be declared with default values for some or all input arguments. The default values are
inserted whenever the function is called with insufficiently many actual arguments. Since arguments can
only be omitted from the end of the actual argument list, all parameters after a parameter with a default
value have to have default values as well. (Although the use of named argument notation could allow this
restriction to be relaxed, it's still enforced so that positional argument notation works sensibly.) Whether
or not you use it, this capability creates a need for precautions when calling functions in databases where
some users mistrust other users; see Section 10.3.

For example:

CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3)

1092

Extending SQL

RETURNS int
LANGUAGE SQL
AS $$
 SELECT $1 + $2 + $3;
$$;

SELECT foo(10, 20, 30);
 foo

 60
(1 row)

SELECT foo(10, 20);
 foo

 33
(1 row)

SELECT foo(10);
 foo

 15
(1 row)

SELECT foo(); -- fails since there is no default for the first
 argument
ERROR: function foo() does not exist

The = sign can also be used in place of the key word DEFAULT.

38.5.7. SQL Functions as Table Sources
All SQL functions can be used in the FROM clause of a query, but it is particularly useful for functions
returning composite types. If the function is defined to return a base type, the table function produces
a one-column table. If the function is defined to return a composite type, the table function produces a
column for each attribute of the composite type.

Here is an example:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, 'Joe');
INSERT INTO foo VALUES (1, 2, 'Ed');
INSERT INTO foo VALUES (2, 1, 'Mary');

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

 fooid | foosubid | fooname | upper
-------+----------+---------+-------
 1 | 1 | Joe | JOE

1093

Extending SQL

(1 row)

As the example shows, we can work with the columns of the function's result just the same as if they were
columns of a regular table.

Note that we only got one row out of the function. This is because we did not use SETOF. That is described
in the next section.

38.5.8. SQL Functions Returning Sets
When an SQL function is declared as returning SETOF sometype, the function's final query is executed
to completion, and each row it outputs is returned as an element of the result set.

This feature is normally used when calling the function in the FROM clause. In this case each row returned
by the function becomes a row of the table seen by the query. For example, assume that table foo has
the same contents as above, and we say:

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

Then we would get:

 fooid | foosubid | fooname
-------+----------+---------
 1 | 1 | Joe
 1 | 2 | Ed
(2 rows)

It is also possible to return multiple rows with the columns defined by output parameters, like this:

CREATE TABLE tab (y int, z int);
INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8);

CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT
 product int)
RETURNS SETOF record
AS $$
 SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

SELECT * FROM sum_n_product_with_tab(10);
 sum | product
-----+---------
 11 | 10
 13 | 30
 15 | 50
 17 | 70
(4 rows)

1094

Extending SQL

The key point here is that you must write RETURNS SETOF record to indicate that the function returns
multiple rows instead of just one. If there is only one output parameter, write that parameter's type instead
of record.

It is frequently useful to construct a query's result by invoking a set-returning function multiple times, with
the parameters for each invocation coming from successive rows of a table or subquery. The preferred
way to do this is to use the LATERAL key word, which is described in Section 7.2.1.5. Here is an example
using a set-returning function to enumerate elements of a tree structure:

SELECT * FROM nodes;
 name | parent
-----------+--------
 Top |
 Child1 | Top
 Child2 | Top
 Child3 | Top
 SubChild1 | Child1
 SubChild2 | Child1
(6 rows)

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
 SELECT name FROM nodes WHERE parent = $1
$$ LANGUAGE SQL STABLE;

SELECT * FROM listchildren('Top');
 listchildren

 Child1
 Child2
 Child3
(3 rows)

SELECT name, child FROM nodes, LATERAL listchildren(name) AS child;
 name | child
--------+-----------
 Top | Child1
 Top | Child2
 Top | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)

This example does not do anything that we couldn't have done with a simple join, but in more complex
calculations the option to put some of the work into a function can be quite convenient.

Functions returning sets can also be called in the select list of a query. For each row that the query generates
by itself, the set-returning function is invoked, and an output row is generated for each element of the
function's result set. The previous example could also be done with queries like these:

SELECT listchildren('Top');
 listchildren

 Child1

1095

Extending SQL

 Child2
 Child3
(3 rows)

SELECT name, listchildren(name) FROM nodes;
 name | listchildren
--------+--------------
 Top | Child1
 Top | Child2
 Top | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)

In the last SELECT, notice that no output row appears for Child2, Child3, etc. This happens because
listchildren returns an empty set for those arguments, so no result rows are generated. This is the
same behavior as we got from an inner join to the function result when using the LATERAL syntax.

PostgreSQL's behavior for a set-returning function in a query's select list is almost exactly the same as if
the set-returning function had been written in a LATERAL FROM-clause item instead. For example,

SELECT x, generate_series(1,5) AS g FROM tab;

is almost equivalent to

SELECT x, g FROM tab, LATERAL generate_series(1,5) AS g;

It would be exactly the same, except that in this specific example, the planner could choose to put g on
the outside of the nestloop join, since g has no actual lateral dependency on tab. That would result in a
different output row order. Set-returning functions in the select list are always evaluated as though they
are on the inside of a nestloop join with the rest of the FROM clause, so that the function(s) are run to
completion before the next row from the FROM clause is considered.

If there is more than one set-returning function in the query's select list, the behavior is similar to what you
get from putting the functions into a single LATERAL ROWS FROM(...) FROM-clause item. For each
row from the underlying query, there is an output row using the first result from each function, then an
output row using the second result, and so on. If some of the set-returning functions produce fewer outputs
than others, null values are substituted for the missing data, so that the total number of rows emitted for
one underlying row is the same as for the set-returning function that produced the most outputs. Thus the
set-returning functions run “in lockstep” until they are all exhausted, and then execution continues with
the next underlying row.

Set-returning functions can be nested in a select list, although that is not allowed in FROM-clause items.
In such cases, each level of nesting is treated separately, as though it were a separate LATERAL ROWS
FROM(...) item. For example, in

SELECT srf1(srf2(x), srf3(y)), srf4(srf5(z)) FROM tab;

the set-returning functions srf2, srf3, and srf5 would be run in lockstep for each row of tab, and
then srf1 and srf4 would be applied in lockstep to each row produced by the lower functions.

Set-returning functions cannot be used within conditional-evaluation constructs, such as CASE or
COALESCE. For example, consider

1096

Extending SQL

SELECT x, CASE WHEN x > 0 THEN generate_series(1, 5) ELSE 0 END FROM
 tab;

It might seem that this should produce five repetitions of input rows that have x > 0, and a single repetition
of those that do not; but actually, because generate_series(1, 5) would be run in an implicit
LATERAL FROM item before the CASE expression is ever evaluated, it would produce five repetitions of
every input row. To reduce confusion, such cases produce a parse-time error instead.

Note

If a function's last command is INSERT, UPDATE, or DELETE with RETURNING, that command
will always be executed to completion, even if the function is not declared with SETOF or the
calling query does not fetch all the result rows. Any extra rows produced by the RETURNING
clause are silently dropped, but the commanded table modifications still happen (and are all
completed before returning from the function).

Note

Before PostgreSQL 10, putting more than one set-returning function in the same select list did not
behave very sensibly unless they always produced equal numbers of rows. Otherwise, what you got
was a number of output rows equal to the least common multiple of the numbers of rows produced
by the set-returning functions. Also, nested set-returning functions did not work as described
above; instead, a set-returning function could have at most one set-returning argument, and each
nest of set-returning functions was run independently. Also, conditional execution (set-returning
functions inside CASE etc) was previously allowed, complicating things even more. Use of the
LATERAL syntax is recommended when writing queries that need to work in older PostgreSQL
versions, because that will give consistent results across different versions. If you have a query
that is relying on conditional execution of a set-returning function, you may be able to fix it by
moving the conditional test into a custom set-returning function. For example,

SELECT x, CASE WHEN y > 0 THEN generate_series(1, z) ELSE 5 END
 FROM tab;

could become

CREATE FUNCTION case_generate_series(cond bool, start int, fin
 int, els int)
 RETURNS SETOF int AS $$
BEGIN
 IF cond THEN
 RETURN QUERY SELECT generate_series(start, fin);
 ELSE
 RETURN QUERY SELECT els;
 END IF;
END$$ LANGUAGE plpgsql;

SELECT x, case_generate_series(y > 0, 1, z, 5) FROM tab;

This formulation will work the same in all versions of PostgreSQL.

1097

Extending SQL

38.5.9. SQL Functions Returning TABLE
There is another way to declare a function as returning a set, which is to use the syntax RETURNS
TABLE(columns). This is equivalent to using one or more OUT parameters plus marking the function
as returning SETOF record (or SETOF a single output parameter's type, as appropriate). This notation
is specified in recent versions of the SQL standard, and thus may be more portable than using SETOF.

For example, the preceding sum-and-product example could also be done this way:

CREATE FUNCTION sum_n_product_with_tab (x int)
RETURNS TABLE(sum int, product int) AS $$
 SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

It is not allowed to use explicit OUT or INOUT parameters with the RETURNS TABLE notation — you
must put all the output columns in the TABLE list.

38.5.10. Polymorphic SQL Functions
SQL functions can be declared to accept and return the polymorphic types anyelement, anyarray,
anynonarray, anyenum, and anyrange. See Section 38.2.5 for a more detailed explanation of
polymorphic functions. Here is a polymorphic function make_array that builds up an array from two
arbitrary data type elements:

CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS
 $$
 SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS
 textarray;
 intarray | textarray
----------+-----------
 {1,2} | {a,b}
(1 row)

Notice the use of the typecast 'a'::text to specify that the argument is of type text. This is required
if the argument is just a string literal, since otherwise it would be treated as type unknown, and array of
unknown is not a valid type. Without the typecast, you will get errors like this:

ERROR: could not determine polymorphic type because input has type
 "unknown"

It is permitted to have polymorphic arguments with a fixed return type, but the converse is not. For example:

CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS
 $$
 SELECT $1 > $2;
$$ LANGUAGE SQL;

1098

Extending SQL

SELECT is_greater(1, 2);
 is_greater

 f
(1 row)

CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
 SELECT 1;
$$ LANGUAGE SQL;
ERROR: cannot determine result data type
DETAIL: A function returning a polymorphic type must have at least
 one polymorphic argument.

Polymorphism can be used with functions that have output arguments. For example:

CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3
 anyarray)
AS 'select $1, array[$1,$1]' LANGUAGE SQL;

SELECT * FROM dup(22);
 f2 | f3
----+---------
 22 | {22,22}
(1 row)

Polymorphism can also be used with variadic functions. For example:

CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
 SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT anyleast(10, -1, 5, 4);
 anyleast

 -1
(1 row)

SELECT anyleast('abc'::text, 'def');
 anyleast

 abc
(1 row)

CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS
 $$
 SELECT array_to_string($2, $1);
$$ LANGUAGE SQL;

SELECT concat_values('|', 1, 4, 2);
 concat_values

 1|4|2

1099

Extending SQL

(1 row)

38.5.11. SQL Functions with Collations
When a SQL function has one or more parameters of collatable data types, a collation is identified for each
function call depending on the collations assigned to the actual arguments, as described in Section 23.2. If
a collation is successfully identified (i.e., there are no conflicts of implicit collations among the arguments)
then all the collatable parameters are treated as having that collation implicitly. This will affect the
behavior of collation-sensitive operations within the function. For example, using the anyleast function
described above, the result of

SELECT anyleast('abc'::text, 'ABC');

will depend on the database's default collation. In C locale the result will be ABC, but in many other locales
it will be abc. The collation to use can be forced by adding a COLLATE clause to any of the arguments,
for example

SELECT anyleast('abc'::text, 'ABC' COLLATE "C");

Alternatively, if you wish a function to operate with a particular collation regardless of what it is called
with, insert COLLATE clauses as needed in the function definition. This version of anyleast would
always use en_US locale to compare strings:

CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
 SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1)
 g(i);
$$ LANGUAGE SQL;

But note that this will throw an error if applied to a non-collatable data type.

If no common collation can be identified among the actual arguments, then a SQL function treats its
parameters as having their data types' default collation (which is usually the database's default collation,
but could be different for parameters of domain types).

The behavior of collatable parameters can be thought of as a limited form of polymorphism, applicable
only to textual data types.

38.6. Function Overloading
More than one function can be defined with the same SQL name, so long as the arguments they take are
different. In other words, function names can be overloaded. Whether or not you use it, this capability
entails security precautions when calling functions in databases where some users mistrust other users;
see Section 10.3. When a query is executed, the server will determine which function to call from the data
types and the number of the provided arguments. Overloading can also be used to simulate functions with
a variable number of arguments, up to a finite maximum number.

When creating a family of overloaded functions, one should be careful not to create ambiguities. For
instance, given the functions:

CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...

1100

Extending SQL

it is not immediately clear which function would be called with some trivial input like test(1, 1.5).
The currently implemented resolution rules are described in Chapter 10, but it is unwise to design a system
that subtly relies on this behavior.

A function that takes a single argument of a composite type should generally not have the same name
as any attribute (field) of that type. Recall that attribute(table) is considered equivalent to
table.attribute. In the case that there is an ambiguity between a function on a composite type and
an attribute of the composite type, the attribute will always be used. It is possible to override that choice
by schema-qualifying the function name (that is, schema.func(table)) but it's better to avoid the
problem by not choosing conflicting names.

Another possible conflict is between variadic and non-variadic functions. For instance, it is possible to
create both foo(numeric) and foo(VARIADIC numeric[]). In this case it is unclear which one
should be matched to a call providing a single numeric argument, such as foo(10.1). The rule is that
the function appearing earlier in the search path is used, or if the two functions are in the same schema,
the non-variadic one is preferred.

When overloading C-language functions, there is an additional constraint: The C name of each function
in the family of overloaded functions must be different from the C names of all other functions, either
internal or dynamically loaded. If this rule is violated, the behavior is not portable. You might get a run-
time linker error, or one of the functions will get called (usually the internal one). The alternative form of
the AS clause for the SQL CREATE FUNCTION command decouples the SQL function name from the
function name in the C source code. For instance:

CREATE FUNCTION test(int) RETURNS int
 AS 'filename', 'test_1arg'
 LANGUAGE C;
CREATE FUNCTION test(int, int) RETURNS int
 AS 'filename', 'test_2arg'
 LANGUAGE C;

The names of the C functions here reflect one of many possible conventions.

38.7. Function Volatility Categories
Every function has a volatility classification, with the possibilities being VOLATILE, STABLE, or
IMMUTABLE. VOLATILE is the default if the CREATE FUNCTION command does not specify a
category. The volatility category is a promise to the optimizer about the behavior of the function:

• A VOLATILE function can do anything, including modifying the database. It can return different results
on successive calls with the same arguments. The optimizer makes no assumptions about the behavior
of such functions. A query using a volatile function will re-evaluate the function at every row where
its value is needed.

• A STABLE function cannot modify the database and is guaranteed to return the same results given the
same arguments for all rows within a single statement. This category allows the optimizer to optimize
multiple calls of the function to a single call. In particular, it is safe to use an expression containing such
a function in an index scan condition. (Since an index scan will evaluate the comparison value only
once, not once at each row, it is not valid to use a VOLATILE function in an index scan condition.)

• An IMMUTABLE function cannot modify the database and is guaranteed to return the same results given
the same arguments forever. This category allows the optimizer to pre-evaluate the function when a
query calls it with constant arguments. For example, a query like SELECT ... WHERE x = 2 +
2 can be simplified on sight to SELECT ... WHERE x = 4, because the function underlying the
integer addition operator is marked IMMUTABLE.

1101

Extending SQL

For best optimization results, you should label your functions with the strictest volatility category that is
valid for them.

Any function with side-effects must be labeled VOLATILE, so that calls to it cannot be optimized away.
Even a function with no side-effects needs to be labeled VOLATILE if its value can change within a single
query; some examples are random(), currval(), timeofday().

Another important example is that the current_timestamp family of functions qualify as STABLE,
since their values do not change within a transaction.

There is relatively little difference between STABLE and IMMUTABLE categories when considering simple
interactive queries that are planned and immediately executed: it doesn't matter a lot whether a function is
executed once during planning or once during query execution startup. But there is a big difference if the
plan is saved and reused later. Labeling a function IMMUTABLE when it really isn't might allow it to be
prematurely folded to a constant during planning, resulting in a stale value being re-used during subsequent
uses of the plan. This is a hazard when using prepared statements or when using function languages that
cache plans (such as PL/pgSQL).

For functions written in SQL or in any of the standard procedural languages, there is a second important
property determined by the volatility category, namely the visibility of any data changes that have been
made by the SQL command that is calling the function. A VOLATILE function will see such changes, a
STABLE or IMMUTABLE function will not. This behavior is implemented using the snapshotting behavior
of MVCC (see Chapter 13): STABLE and IMMUTABLE functions use a snapshot established as of the
start of the calling query, whereas VOLATILE functions obtain a fresh snapshot at the start of each query
they execute.

Note

Functions written in C can manage snapshots however they want, but it's usually a good idea to
make C functions work this way too.

Because of this snapshotting behavior, a function containing only SELECT commands can safely be
marked STABLE, even if it selects from tables that might be undergoing modifications by concurrent
queries. PostgreSQL will execute all commands of a STABLE function using the snapshot established for
the calling query, and so it will see a fixed view of the database throughout that query.

The same snapshotting behavior is used for SELECT commands within IMMUTABLE functions. It
is generally unwise to select from database tables within an IMMUTABLE function at all, since the
immutability will be broken if the table contents ever change. However, PostgreSQL does not enforce that
you do not do that.

A common error is to label a function IMMUTABLE when its results depend on a configuration parameter.
For example, a function that manipulates timestamps might well have results that depend on the TimeZone
setting. For safety, such functions should be labeled STABLE instead.

Note

PostgreSQL requires that STABLE and IMMUTABLE functions contain no SQL commands other
than SELECT to prevent data modification. (This is not a completely bulletproof test, since such
functions could still call VOLATILE functions that modify the database. If you do that, you will
find that the STABLE or IMMUTABLE function does not notice the database changes applied by
the called function, since they are hidden from its snapshot.)

1102

Extending SQL

38.8. Procedural Language Functions
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically called procedural languages (PLs). Procedural languages aren't built into
the PostgreSQL server; they are offered by loadable modules. See Chapter 42 and following chapters for
more information.

38.9. Internal Functions
Internal functions are functions written in C that have been statically linked into the PostgreSQL server.
The “body” of the function definition specifies the C-language name of the function, which need not be
the same as the name being declared for SQL use. (For reasons of backward compatibility, an empty body
is accepted as meaning that the C-language function name is the same as the SQL name.)

Normally, all internal functions present in the server are declared during the initialization of the database
cluster (see Section 18.2), but a user could use CREATE FUNCTION to create additional alias names
for an internal function. Internal functions are declared in CREATE FUNCTION with language name
internal. For instance, to create an alias for the sqrt function:

CREATE FUNCTION square_root(double precision) RETURNS double precision
 AS 'dsqrt'
 LANGUAGE internal
 STRICT;

(Most internal functions expect to be declared “strict”.)

Note

Not all “predefined” functions are “internal” in the above sense. Some predefined functions are
written in SQL.

38.10. C-Language Functions
User-defined functions can be written in C (or a language that can be made compatible with C, such as C
++). Such functions are compiled into dynamically loadable objects (also called shared libraries) and are
loaded by the server on demand. The dynamic loading feature is what distinguishes “C language” functions
from “internal” functions — the actual coding conventions are essentially the same for both. (Hence, the
standard internal function library is a rich source of coding examples for user-defined C functions.)

Currently only one calling convention is used for C functions (“version 1”). Support for that calling
convention is indicated by writing a PG_FUNCTION_INFO_V1() macro call for the function, as
illustrated below.

38.10.1. Dynamic Loading
The first time a user-defined function in a particular loadable object file is called in a session, the dynamic
loader loads that object file into memory so that the function can be called. The CREATE FUNCTION for
a user-defined C function must therefore specify two pieces of information for the function: the name of
the loadable object file, and the C name (link symbol) of the specific function to call within that object
file. If the C name is not explicitly specified then it is assumed to be the same as the SQL function name.

1103

Extending SQL

The following algorithm is used to locate the shared object file based on the name given in the CREATE
FUNCTION command:

1. If the name is an absolute path, the given file is loaded.

2. If the name starts with the string $libdir, that part is replaced by the PostgreSQL package library
directory name, which is determined at build time.

3. If the name does not contain a directory part, the file is searched for in the path specified by the
configuration variable dynamic_library_path.

4. Otherwise (the file was not found in the path, or it contains a non-absolute directory part), the dynamic
loader will try to take the name as given, which will most likely fail. (It is unreliable to depend on the
current working directory.)

If this sequence does not work, the platform-specific shared library file name extension (often .so) is
appended to the given name and this sequence is tried again. If that fails as well, the load will fail.

It is recommended to locate shared libraries either relative to $libdir or through the dynamic library
path. This simplifies version upgrades if the new installation is at a different location. The actual directory
that $libdir stands for can be found out with the command pg_config --pkglibdir.

The user ID the PostgreSQL server runs as must be able to traverse the path to the file you intend to load.
Making the file or a higher-level directory not readable and/or not executable by the postgres user is a
common mistake.

In any case, the file name that is given in the CREATE FUNCTION command is recorded literally in the
system catalogs, so if the file needs to be loaded again the same procedure is applied.

Note

PostgreSQL will not compile a C function automatically. The object file must be compiled before it
is referenced in a CREATE FUNCTION command. See Section 38.10.5 for additional information.

To ensure that a dynamically loaded object file is not loaded into an incompatible server, PostgreSQL
checks that the file contains a “magic block” with the appropriate contents. This allows the server to detect
obvious incompatibilities, such as code compiled for a different major version of PostgreSQL. To include
a magic block, write this in one (and only one) of the module source files, after having included the header
fmgr.h:

PG_MODULE_MAGIC;

After it is used for the first time, a dynamically loaded object file is retained in memory. Future calls in
the same session to the function(s) in that file will only incur the small overhead of a symbol table lookup.
If you need to force a reload of an object file, for example after recompiling it, begin a fresh session.

Optionally, a dynamically loaded file can contain initialization and finalization functions. If the file
includes a function named _PG_init, that function will be called immediately after loading the file. The
function receives no parameters and should return void. If the file includes a function named _PG_fini,
that function will be called immediately before unloading the file. Likewise, the function receives no
parameters and should return void. Note that _PG_fini will only be called during an unload of the file,

1104

Extending SQL

not during process termination. (Presently, unloads are disabled and will never occur, but this may change
in the future.)

38.10.2. Base Types in C-Language Functions
To know how to write C-language functions, you need to know how PostgreSQL internally represents
base data types and how they can be passed to and from functions. Internally, PostgreSQL regards a base
type as a “blob of memory”. The user-defined functions that you define over a type in turn define the way
that PostgreSQL can operate on it. That is, PostgreSQL will only store and retrieve the data from disk and
use your user-defined functions to input, process, and output the data.

Base types can have one of three internal formats:

• pass by value, fixed-length

• pass by reference, fixed-length

• pass by reference, variable-length

By-value types can only be 1, 2, or 4 bytes in length (also 8 bytes, if sizeof(Datum) is 8 on your
machine). You should be careful to define your types such that they will be the same size (in bytes) on
all architectures. For example, the long type is dangerous because it is 4 bytes on some machines and
8 bytes on others, whereas int type is 4 bytes on most Unix machines. A reasonable implementation of
the int4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

(The actual PostgreSQL C code calls this type int32, because it is a convention in C that intXX means
XX bits. Note therefore also that the C type int8 is 1 byte in size. The SQL type int8 is called int64
in C. See also Table 38.1.)

On the other hand, fixed-length types of any size can be passed by-reference. For example, here is a sample
implementation of a PostgreSQL type:

/* 16-byte structure, passed by reference */
typedef struct
{
 double x, y;
} Point;

Only pointers to such types can be used when passing them in and out of PostgreSQL functions. To return
a value of such a type, allocate the right amount of memory with palloc, fill in the allocated memory,
and return a pointer to it. (Also, if you just want to return the same value as one of your input arguments
that's of the same data type, you can skip the extra palloc and just return the pointer to the input value.)

Finally, all variable-length types must also be passed by reference. All variable-length types must begin
with an opaque length field of exactly 4 bytes, which will be set by SET_VARSIZE; never set this field
directly! All data to be stored within that type must be located in the memory immediately following that
length field. The length field contains the total length of the structure, that is, it includes the size of the
length field itself.

Another important point is to avoid leaving any uninitialized bits within data type values; for example,
take care to zero out any alignment padding bytes that might be present in structs. Without this, logically-

1105

Extending SQL

equivalent constants of your data type might be seen as unequal by the planner, leading to inefficient
(though not incorrect) plans.

Warning

Never modify the contents of a pass-by-reference input value. If you do so you are likely to corrupt
on-disk data, since the pointer you are given might point directly into a disk buffer. The sole
exception to this rule is explained in Section 38.11.

As an example, we can define the type text as follows:

typedef struct {
 int32 length;
 char data[FLEXIBLE_ARRAY_MEMBER];
} text;

The [FLEXIBLE_ARRAY_MEMBER] notation means that the actual length of the data part is not specified
by this declaration.

When manipulating variable-length types, we must be careful to allocate the correct amount of memory
and set the length field correctly. For example, if we wanted to store 40 bytes in a text structure, we
might use a code fragment like this:

#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
SET_VARSIZE(destination, VARHDRSZ + 40);
memcpy(destination->data, buffer, 40);
...

VARHDRSZ is the same as sizeof(int32), but it's considered good style to use the macro VARHDRSZ
to refer to the size of the overhead for a variable-length type. Also, the length field must be set using the
SET_VARSIZE macro, not by simple assignment.

Table 38.1 specifies which C type corresponds to which SQL type when writing a C-language function
that uses a built-in type of PostgreSQL. The “Defined In” column gives the header file that needs to be
included to get the type definition. (The actual definition might be in a different file that is included by the
listed file. It is recommended that users stick to the defined interface.) Note that you should always include
postgres.h first in any source file, because it declares a number of things that you will need anyway.

Table 38.1. Equivalent C Types for Built-in SQL Types

SQL Type C Type Defined In

abstime AbsoluteTime utils/nabstime.h

bigint (int8) int64 postgres.h

boolean bool postgres.h (maybe compiler
built-in)

1106

Extending SQL

SQL Type C Type Defined In

box BOX* utils/geo_decls.h

bytea bytea* postgres.h

"char" char (compiler built-in)

character BpChar* postgres.h

cid CommandId postgres.h

date DateADT utils/date.h

smallint (int2) int16 postgres.h

int2vector int2vector* postgres.h

integer (int4) int32 postgres.h

real (float4) float4* postgres.h

double precision
(float8)

float8* postgres.h

interval Interval* datatype/timestamp.h

lseg LSEG* utils/geo_decls.h

name Name postgres.h

oid Oid postgres.h

oidvector oidvector* postgres.h

path PATH* utils/geo_decls.h

point POINT* utils/geo_decls.h

regproc regproc postgres.h

reltime RelativeTime utils/nabstime.h

text text* postgres.h

tid ItemPointer storage/itemptr.h

time TimeADT utils/date.h

time with time zone TimeTzADT utils/date.h

timestamp Timestamp* datatype/timestamp.h

tinterval TimeInterval utils/nabstime.h

varchar VarChar* postgres.h

xid TransactionId postgres.h

Now that we've gone over all of the possible structures for base types, we can show some examples of
real functions.

38.10.3. Version 1 Calling Conventions
The version-1 calling convention relies on macros to suppress most of the complexity of passing arguments
and results. The C declaration of a version-1 function is always:

Datum funcname(PG_FUNCTION_ARGS)

In addition, the macro call:

1107

Extending SQL

PG_FUNCTION_INFO_V1(funcname);

must appear in the same source file. (Conventionally, it's written just before the function itself.) This macro
call is not needed for internal-language functions, since PostgreSQL assumes that all internal functions
use the version-1 convention. It is, however, required for dynamically-loaded functions.

In a version-1 function, each actual argument is fetched using a PG_GETARG_xxx() macro that
corresponds to the argument's data type. In non-strict functions there needs to be a previous check about
argument null-ness using PG_ARGNULL_xxx(). The result is returned using a PG_RETURN_xxx()
macro for the return type. PG_GETARG_xxx() takes as its argument the number of the function argument
to fetch, where the count starts at 0. PG_RETURN_xxx() takes as its argument the actual value to return.

Here are some examples using the version-1 calling convention:

#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"

PG_MODULE_MAGIC;

/* by value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{
 int32 arg = PG_GETARG_INT32(0);

 PG_RETURN_INT32(arg + 1);
}

/* by reference, fixed length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{
 /* The macros for FLOAT8 hide its pass-by-reference nature. */
 float8 arg = PG_GETARG_FLOAT8(0);

 PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{
 /* Here, the pass-by-reference nature of Point is not hidden. */
 Point *pointx = PG_GETARG_POINT_P(0);

1108

Extending SQL

 Point *pointy = PG_GETARG_POINT_P(1);
 Point *new_point = (Point *) palloc(sizeof(Point));

 new_point->x = pointx->x;
 new_point->y = pointy->y;

 PG_RETURN_POINT_P(new_point);
}

/* by reference, variable length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
 text *t = PG_GETARG_TEXT_PP(0);

 /*
 * VARSIZE_ANY_EXHDR is the size of the struct in bytes, minus the
 * VARHDRSZ or VARHDRSZ_SHORT of its header. Construct the copy
 with a
 * full-length header.
 */
 text *new_t = (text *) palloc(VARSIZE_ANY_EXHDR(t) +
 VARHDRSZ);
 SET_VARSIZE(new_t, VARSIZE_ANY_EXHDR(t) + VARHDRSZ);

 /*
 * VARDATA is a pointer to the data region of the new struct. The
 source
 * could be a short datum, so retrieve its data through
 VARDATA_ANY.
 */
 memcpy((void *) VARDATA(new_t), /* destination */
 (void *) VARDATA_ANY(t), /* source */
 VARSIZE_ANY_EXHDR(t)); /* how many bytes */
 PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{
 text *arg1 = PG_GETARG_TEXT_PP(0);
 text *arg2 = PG_GETARG_TEXT_PP(1);
 int32 arg1_size = VARSIZE_ANY_EXHDR(arg1);
 int32 arg2_size = VARSIZE_ANY_EXHDR(arg2);
 int32 new_text_size = arg1_size + arg2_size + VARHDRSZ;
 text *new_text = (text *) palloc(new_text_size);

 SET_VARSIZE(new_text, new_text_size);
 memcpy(VARDATA(new_text), VARDATA_ANY(arg1), arg1_size);

1109

Extending SQL

 memcpy(VARDATA(new_text) + arg1_size, VARDATA_ANY(arg2),
 arg2_size);
 PG_RETURN_TEXT_P(new_text);
}

Supposing that the above code has been prepared in file funcs.c and compiled into a shared object, we
could define the functions to PostgreSQL with commands like this:

CREATE FUNCTION add_one(integer) RETURNS integer
 AS 'DIRECTORY/funcs', 'add_one'
 LANGUAGE C STRICT;

-- note overloading of SQL function name "add_one"
CREATE FUNCTION add_one(double precision) RETURNS double precision
 AS 'DIRECTORY/funcs', 'add_one_float8'
 LANGUAGE C STRICT;

CREATE FUNCTION makepoint(point, point) RETURNS point
 AS 'DIRECTORY/funcs', 'makepoint'
 LANGUAGE C STRICT;

CREATE FUNCTION copytext(text) RETURNS text
 AS 'DIRECTORY/funcs', 'copytext'
 LANGUAGE C STRICT;

CREATE FUNCTION concat_text(text, text) RETURNS text
 AS 'DIRECTORY/funcs', 'concat_text'
 LANGUAGE C STRICT;

Here, DIRECTORY stands for the directory of the shared library file (for instance the PostgreSQL tutorial
directory, which contains the code for the examples used in this section). (Better style would be to use just
'funcs' in the AS clause, after having added DIRECTORY to the search path. In any case, we can omit
the system-specific extension for a shared library, commonly .so.)

Notice that we have specified the functions as “strict”, meaning that the system should automatically
assume a null result if any input value is null. By doing this, we avoid having to check for null inputs in
the function code. Without this, we'd have to check for null values explicitly, using PG_ARGISNULL().

At first glance, the version-1 coding conventions might appear to be just pointless obscurantism, over using
plain C calling conventions. They do however allow to deal with NULLable arguments/return values, and
“toasted” (compressed or out-of-line) values.

The macro PG_ARGISNULL(n) allows a function to test whether each input is null. (Of course,
doing this is only necessary in functions not declared “strict”.) As with the PG_GETARG_xxx()
macros, the input arguments are counted beginning at zero. Note that one should refrain from executing
PG_GETARG_xxx() until one has verified that the argument isn't null. To return a null result, execute
PG_RETURN_NULL(); this works in both strict and nonstrict functions.

Other options provided by the version-1 interface are two variants of the PG_GETARG_xxx() macros.
The first of these, PG_GETARG_xxx_COPY(), guarantees to return a copy of the specified argument that
is safe for writing into. (The normal macros will sometimes return a pointer to a value that is physically
stored in a table, which must not be written to. Using the PG_GETARG_xxx_COPY() macros guarantees
a writable result.) The second variant consists of the PG_GETARG_xxx_SLICE() macros which take
three arguments. The first is the number of the function argument (as above). The second and third are

1110

Extending SQL

the offset and length of the segment to be returned. Offsets are counted from zero, and a negative length
requests that the remainder of the value be returned. These macros provide more efficient access to parts
of large values in the case where they have storage type “external”. (The storage type of a column can
be specified using ALTER TABLE tablename ALTER COLUMN colname SET STORAGE
storagetype. storagetype is one of plain, external, extended, or main.)

Finally, the version-1 function call conventions make it possible to return set results (Section 38.10.8) and
implement trigger functions (Chapter 39) and procedural-language call handlers (Chapter 56). For more
details see src/backend/utils/fmgr/README in the source distribution.

38.10.4. Writing Code
Before we turn to the more advanced topics, we should discuss some coding rules for PostgreSQL C-
language functions. While it might be possible to load functions written in languages other than C into
PostgreSQL, this is usually difficult (when it is possible at all) because other languages, such as C++,
FORTRAN, or Pascal often do not follow the same calling convention as C. That is, other languages do
not pass argument and return values between functions in the same way. For this reason, we will assume
that your C-language functions are actually written in C.

The basic rules for writing and building C functions are as follows:

• Use pg_config --includedir-server to find out where the PostgreSQL server header files
are installed on your system (or the system that your users will be running on).

• Compiling and linking your code so that it can be dynamically loaded into PostgreSQL always requires
special flags. See Section 38.10.5 for a detailed explanation of how to do it for your particular operating
system.

• Remember to define a “magic block” for your shared library, as described in Section 38.10.1.

• When allocating memory, use the PostgreSQL functions palloc and pfree instead of the
corresponding C library functions malloc and free. The memory allocated by palloc will be freed
automatically at the end of each transaction, preventing memory leaks.

• Always zero the bytes of your structures using memset (or allocate them with palloc0 in the first
place). Even if you assign to each field of your structure, there might be alignment padding (holes in the
structure) that contain garbage values. Without this, it's difficult to support hash indexes or hash joins,
as you must pick out only the significant bits of your data structure to compute a hash. The planner
also sometimes relies on comparing constants via bitwise equality, so you can get undesirable planning
results if logically-equivalent values aren't bitwise equal.

• Most of the internal PostgreSQL types are declared in postgres.h, while the function manager
interfaces (PG_FUNCTION_ARGS, etc.) are in fmgr.h, so you will need to include at least these two
files. For portability reasons it's best to include postgres.h first, before any other system or user
header files. Including postgres.h will also include elog.h and palloc.h for you.

• Symbol names defined within object files must not conflict with each other or with symbols defined
in the PostgreSQL server executable. You will have to rename your functions or variables if you get
error messages to this effect.

38.10.5. Compiling and Linking Dynamically-loaded
Functions

Before you are able to use your PostgreSQL extension functions written in C, they must be compiled and
linked in a special way to produce a file that can be dynamically loaded by the server. To be precise, a
shared library needs to be created.

1111

Extending SQL

For information beyond what is contained in this section you should read the documentation of your
operating system, in particular the manual pages for the C compiler, cc, and the link editor, ld. In addition,
the PostgreSQL source code contains several working examples in the contrib directory. If you rely
on these examples you will make your modules dependent on the availability of the PostgreSQL source
code, however.

Creating shared libraries is generally analogous to linking executables: first the source files are compiled
into object files, then the object files are linked together. The object files need to be created as position-
independent code (PIC), which conceptually means that they can be placed at an arbitrary location in
memory when they are loaded by the executable. (Object files intended for executables are usually not
compiled that way.) The command to link a shared library contains special flags to distinguish it from
linking an executable (at least in theory — on some systems the practice is much uglier).

In the following examples we assume that your source code is in a file foo.c and we will create a shared
library foo.so. The intermediate object file will be called foo.o unless otherwise noted. A shared
library can contain more than one object file, but we only use one here.

FreeBSD

The compiler flag to create PIC is -fPIC. To create shared libraries the compiler flag is -shared.

gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o

This is applicable as of version 3.0 of FreeBSD.

HP-UX

The compiler flag of the system compiler to create PIC is +z. When using GCC it's -fPIC. The
linker flag for shared libraries is -b. So:

cc +z -c foo.c

or:

gcc -fPIC -c foo.c

and then:

ld -b -o foo.sl foo.o

HP-UX uses the extension .sl for shared libraries, unlike most other systems.

Linux

The compiler flag to create PIC is -fPIC. The compiler flag to create a shared library is -shared.
A complete example looks like this:

cc -fPIC -c foo.c
cc -shared -o foo.so foo.o

1112

Extending SQL

macOS

Here is an example. It assumes the developer tools are installed.

cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o

NetBSD

The compiler flag to create PIC is -fPIC. For ELF systems, the compiler with the flag -shared is
used to link shared libraries. On the older non-ELF systems, ld -Bshareable is used.

gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o

OpenBSD

The compiler flag to create PIC is -fPIC. ld -Bshareable is used to link shared libraries.

gcc -fPIC -c foo.c
ld -Bshareable -o foo.so foo.o

Solaris

The compiler flag to create PIC is -KPIC with the Sun compiler and -fPIC with GCC. To link
shared libraries, the compiler option is -G with either compiler or alternatively -shared with GCC.

cc -KPIC -c foo.c
cc -G -o foo.so foo.o

or

gcc -fPIC -c foo.c
gcc -G -o foo.so foo.o

Tip

If this is too complicated for you, you should consider using GNU Libtool1, which hides the
platform differences behind a uniform interface.

The resulting shared library file can then be loaded into PostgreSQL. When specifying the file name to the
CREATE FUNCTION command, one must give it the name of the shared library file, not the intermediate
object file. Note that the system's standard shared-library extension (usually .so or .sl) can be omitted
from the CREATE FUNCTION command, and normally should be omitted for best portability.

Refer back to Section 38.10.1 about where the server expects to find the shared library files.

1 http://www.gnu.org/software/libtool/

1113

http://www.gnu.org/software/libtool/
http://www.gnu.org/software/libtool/

Extending SQL

38.10.6. Composite-type Arguments
Composite types do not have a fixed layout like C structures. Instances of a composite type can contain null
fields. In addition, composite types that are part of an inheritance hierarchy can have different fields than
other members of the same inheritance hierarchy. Therefore, PostgreSQL provides a function interface for
accessing fields of composite types from C.

Suppose we want to write a function to answer the query:

SELECT name, c_overpaid(emp, 1500) AS overpaid
 FROM emp
 WHERE name = 'Bill' OR name = 'Sam';

Using the version-1 calling conventions, we can define c_overpaid as:

#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
 HeapTupleHeader t = PG_GETARG_HEAPTUPLEHEADER(0);
 int32 limit = PG_GETARG_INT32(1);
 bool isnull;
 Datum salary;

 salary = GetAttributeByName(t, "salary", &isnull);
 if (isnull)
 PG_RETURN_BOOL(false);
 /* Alternatively, we might prefer to do PG_RETURN_NULL() for null
 salary. */

 PG_RETURN_BOOL(DatumGetInt32(salary) > limit);
}

GetAttributeByName is the PostgreSQL system function that returns attributes out of the specified
row. It has three arguments: the argument of type HeapTupleHeader passed into the function,
the name of the desired attribute, and a return parameter that tells whether the attribute is null.
GetAttributeByName returns a Datum value that you can convert to the proper data type by using
the appropriate DatumGetXXX() macro. Note that the return value is meaningless if the null flag is set;
always check the null flag before trying to do anything with the result.

There is also GetAttributeByNum, which selects the target attribute by column number instead of
name.

The following command declares the function c_overpaid in SQL:

1114

Extending SQL

CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
 AS 'DIRECTORY/funcs', 'c_overpaid'
 LANGUAGE C STRICT;

Notice we have used STRICT so that we did not have to check whether the input arguments were NULL.

38.10.7. Returning Rows (Composite Types)
To return a row or composite-type value from a C-language function, you can use a special API that
provides macros and functions to hide most of the complexity of building composite data types. To use
this API, the source file must include:

#include "funcapi.h"

There are two ways you can build a composite data value (henceforth a “tuple”): you can build it from an
array of Datum values, or from an array of C strings that can be passed to the input conversion functions of
the tuple's column data types. In either case, you first need to obtain or construct a TupleDesc descriptor
for the tuple structure. When working with Datums, you pass the TupleDesc to BlessTupleDesc,
and then call heap_form_tuple for each row. When working with C strings, you pass the TupleDesc
to TupleDescGetAttInMetadata, and then call BuildTupleFromCStrings for each row. In
the case of a function returning a set of tuples, the setup steps can all be done once during the first call
of the function.

Several helper functions are available for setting up the needed TupleDesc. The recommended way to
do this in most functions returning composite values is to call:

TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
 Oid *resultTypeId,
 TupleDesc *resultTupleDesc)

passing the same fcinfo struct passed to the calling function itself. (This of course requires that you use
the version-1 calling conventions.) resultTypeId can be specified as NULL or as the address of a local
variable to receive the function's result type OID. resultTupleDesc should be the address of a local
TupleDesc variable. Check that the result is TYPEFUNC_COMPOSITE; if so, resultTupleDesc
has been filled with the needed TupleDesc. (If it is not, you can report an error along the lines of
“function returning record called in context that cannot accept type record”.)

Tip

get_call_result_type can resolve the actual type of a polymorphic function result; so it is
useful in functions that return scalar polymorphic results, not only functions that return composites.
The resultTypeId output is primarily useful for functions returning polymorphic scalars.

Note

get_call_result_type has a sibling get_expr_result_type, which can be used to
resolve the expected output type for a function call represented by an expression tree. This can
be used when trying to determine the result type from outside the function itself. There is also
get_func_result_type, which can be used when only the function's OID is available.
However these functions are not able to deal with functions declared to return record, and

1115

Extending SQL

get_func_result_type cannot resolve polymorphic types, so you should preferentially use
get_call_result_type.

Older, now-deprecated functions for obtaining TupleDescs are:

TupleDesc RelationNameGetTupleDesc(const char *relname)

to get a TupleDesc for the row type of a named relation, and:

TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)

to get a TupleDesc based on a type OID. This can be used to get a TupleDesc for a base or composite
type. It will not work for a function that returns record, however, and it cannot resolve polymorphic
types.

Once you have a TupleDesc, call:

TupleDesc BlessTupleDesc(TupleDesc tupdesc)

if you plan to work with Datums, or:

AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)

if you plan to work with C strings. If you are writing a function returning set, you can save the results
of these functions in the FuncCallContext structure — use the tuple_desc or attinmeta field
respectively.

When working with Datums, use:

HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool
 *isnull)

to build a HeapTuple given user data in Datum form.

When working with C strings, use:

HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char
 **values)

to build a HeapTuple given user data in C string form. values is an array of C strings, one for each
attribute of the return row. Each C string should be in the form expected by the input function of the
attribute data type. In order to return a null value for one of the attributes, the corresponding pointer in the
values array should be set to NULL. This function will need to be called again for each row you return.

Once you have built a tuple to return from your function, it must be converted into a Datum. Use:

HeapTupleGetDatum(HeapTuple tuple)

to convert a HeapTuple into a valid Datum. This Datum can be returned directly if you intend to return
just a single row, or it can be used as the current return value in a set-returning function.

1116

Extending SQL

An example appears in the next section.

38.10.8. Returning Sets
There is also a special API that provides support for returning sets (multiple rows) from a C-language
function. A set-returning function must follow the version-1 calling conventions. Also, source files must
include funcapi.h, as above.

A set-returning function (SRF) is called once for each item it returns. The SRF must therefore save
enough state to remember what it was doing and return the next item on each call. The structure
FuncCallContext is provided to help control this process. Within a function, fcinfo->flinfo-
>fn_extra is used to hold a pointer to FuncCallContext across calls.

typedef struct FuncCallContext
{
 /*
 * Number of times we've been called before
 *
 * call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(),
 and
 * incremented for you every time SRF_RETURN_NEXT() is called.
 */
 uint64 call_cntr;

 /*
 * OPTIONAL maximum number of calls
 *
 * max_calls is here for convenience only and setting it is
 optional.
 * If not set, you must provide alternative means to know when the
 * function is done.
 */
 uint64 max_calls;

 /*
 * OPTIONAL pointer to result slot
 *
 * This is obsolete and only present for backward compatibility,
 viz,
 * user-defined SRFs that use the deprecated TupleDescGetSlot().
 */
 TupleTableSlot *slot;

 /*
 * OPTIONAL pointer to miscellaneous user-provided context
 information
 *
 * user_fctx is for use as a pointer to your own data to retain
 * arbitrary context information between calls of your function.
 */
 void *user_fctx;

 /*

1117

Extending SQL

 * OPTIONAL pointer to struct containing attribute type input
 metadata
 *
 * attinmeta is for use when returning tuples (i.e., composite
 data types)
 * and is not used when returning base data types. It is only
 needed
 * if you intend to use BuildTupleFromCStrings() to create the
 return
 * tuple.
 */
 AttInMetadata *attinmeta;

 /*
 * memory context used for structures that must live for multiple
 calls
 *
 * multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you,
 and used
 * by SRF_RETURN_DONE() for cleanup. It is the most appropriate
 memory
 * context for any memory that is to be reused across multiple
 calls
 * of the SRF.
 */
 MemoryContext multi_call_memory_ctx;

 /*
 * OPTIONAL pointer to struct containing tuple description
 *
 * tuple_desc is for use when returning tuples (i.e., composite
 data types)
 * and is only needed if you are going to build the tuples with
 * heap_form_tuple() rather than with BuildTupleFromCStrings().
 Note that
 * the TupleDesc pointer stored here should usually have been run
 through
 * BlessTupleDesc() first.
 */
 TupleDesc tuple_desc;

} FuncCallContext;

An SRF uses several functions and macros that automatically manipulate the FuncCallContext
structure (and expect to find it via fn_extra). Use:

SRF_IS_FIRSTCALL()

to determine if your function is being called for the first or a subsequent time. On the first call (only) use:

SRF_FIRSTCALL_INIT()

to initialize the FuncCallContext. On every function call, including the first, use:

1118

Extending SQL

SRF_PERCALL_SETUP()

to properly set up for using the FuncCallContext and clearing any previously returned data left over
from the previous pass.

If your function has data to return, use:

SRF_RETURN_NEXT(funcctx, result)

to return it to the caller. (result must be of type Datum, either a single value or a tuple prepared as
described above.) Finally, when your function is finished returning data, use:

SRF_RETURN_DONE(funcctx)

to clean up and end the SRF.

The memory context that is current when the SRF is called is a transient context that will be cleared between
calls. This means that you do not need to call pfree on everything you allocated using palloc; it will
go away anyway. However, if you want to allocate any data structures to live across calls, you need to
put them somewhere else. The memory context referenced by multi_call_memory_ctx is a suitable
location for any data that needs to survive until the SRF is finished running. In most cases, this means that
you should switch into multi_call_memory_ctx while doing the first-call setup.

Warning

While the actual arguments to the function remain unchanged between calls, if you detoast
the argument values (which is normally done transparently by the PG_GETARG_xxx macro)
in the transient context then the detoasted copies will be freed on each cycle. Accordingly, if
you keep references to such values in your user_fctx, you must either copy them into the
multi_call_memory_ctx after detoasting, or ensure that you detoast the values only in that
context.

A complete pseudo-code example looks like the following:

Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;
 Datum result;
 further declarations as needed

 if (SRF_IS_FIRSTCALL())
 {
 MemoryContext oldcontext;

 funcctx = SRF_FIRSTCALL_INIT();
 oldcontext = MemoryContextSwitchTo(funcctx-
>multi_call_memory_ctx);
 /* One-time setup code appears here: */
 user code
 if returning composite

1119

Extending SQL

 build TupleDesc, and perhaps AttInMetadata
 endif returning composite
 user code
 MemoryContextSwitchTo(oldcontext);
 }

 /* Each-time setup code appears here: */
 user code
 funcctx = SRF_PERCALL_SETUP();
 user code

 /* this is just one way we might test whether we are done: */
 if (funcctx->call_cntr < funcctx->max_calls)
 {
 /* Here we want to return another item: */
 user code
 obtain result Datum
 SRF_RETURN_NEXT(funcctx, result);
 }
 else
 {
 /* Here we are done returning items and just need to clean up:
 */
 user code
 SRF_RETURN_DONE(funcctx);
 }
}

A complete example of a simple SRF returning a composite type looks like:

PG_FUNCTION_INFO_V1(retcomposite);

Datum
retcomposite(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;
 int call_cntr;
 int max_calls;
 TupleDesc tupdesc;
 AttInMetadata *attinmeta;

 /* stuff done only on the first call of the function */
 if (SRF_IS_FIRSTCALL())
 {
 MemoryContext oldcontext;

 /* create a function context for cross-call persistence */
 funcctx = SRF_FIRSTCALL_INIT();

 /* switch to memory context appropriate for multiple function
 calls */
 oldcontext = MemoryContextSwitchTo(funcctx-
>multi_call_memory_ctx);

1120

Extending SQL

 /* total number of tuples to be returned */
 funcctx->max_calls = PG_GETARG_UINT32(0);

 /* Build a tuple descriptor for our result type */
 if (get_call_result_type(fcinfo, NULL, &tupdesc) !=
 TYPEFUNC_COMPOSITE)
 ereport(ERROR,
 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
 errmsg("function returning record called in
 context "
 "that cannot accept type record")));

 /*
 * generate attribute metadata needed later to produce tuples
 from raw
 * C strings
 */
 attinmeta = TupleDescGetAttInMetadata(tupdesc);
 funcctx->attinmeta = attinmeta;

 MemoryContextSwitchTo(oldcontext);
 }

 /* stuff done on every call of the function */
 funcctx = SRF_PERCALL_SETUP();

 call_cntr = funcctx->call_cntr;
 max_calls = funcctx->max_calls;
 attinmeta = funcctx->attinmeta;

 if (call_cntr < max_calls) /* do when there is more left to
 send */
 {
 char **values;
 HeapTuple tuple;
 Datum result;

 /*
 * Prepare a values array for building the returned tuple.
 * This should be an array of C strings which will
 * be processed later by the type input functions.
 */
 values = (char **) palloc(3 * sizeof(char *));
 values[0] = (char *) palloc(16 * sizeof(char));
 values[1] = (char *) palloc(16 * sizeof(char));
 values[2] = (char *) palloc(16 * sizeof(char));

 snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
 snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
 snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

 /* build a tuple */
 tuple = BuildTupleFromCStrings(attinmeta, values);

1121

Extending SQL

 /* make the tuple into a datum */
 result = HeapTupleGetDatum(tuple);

 /* clean up (this is not really necessary) */
 pfree(values[0]);
 pfree(values[1]);
 pfree(values[2]);
 pfree(values);

 SRF_RETURN_NEXT(funcctx, result);
 }
 else /* do when there is no more left */
 {
 SRF_RETURN_DONE(funcctx);
 }
}

One way to declare this function in SQL is:

CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer);

CREATE OR REPLACE FUNCTION retcomposite(integer, integer)
 RETURNS SETOF __retcomposite
 AS 'filename', 'retcomposite'
 LANGUAGE C IMMUTABLE STRICT;

A different way is to use OUT parameters:

CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
 OUT f1 integer, OUT f2 integer, OUT f3 integer)
 RETURNS SETOF record
 AS 'filename', 'retcomposite'
 LANGUAGE C IMMUTABLE STRICT;

Notice that in this method the output type of the function is formally an anonymous record type.

The directory contrib/tablefunc module in the source distribution contains more examples of set-
returning functions.

38.10.9. Polymorphic Arguments and Return Types
C-language functions can be declared to accept and return the polymorphic types anyelement,
anyarray, anynonarray, anyenum, and anyrange. See Section 38.2.5 for a more detailed
explanation of polymorphic functions. When function arguments or return types are defined as
polymorphic types, the function author cannot know in advance what data type it will be called with, or
need to return. There are two routines provided in fmgr.h to allow a version-1 C function to discover
the actual data types of its arguments and the type it is expected to return. The routines are called
get_fn_expr_rettype(FmgrInfo *flinfo) and get_fn_expr_argtype(FmgrInfo
*flinfo, int argnum). They return the result or argument type OID, or InvalidOid if the
information is not available. The structure flinfo is normally accessed as fcinfo->flinfo. The
parameter argnum is zero based. get_call_result_type can also be used as an alternative to

1122

Extending SQL

get_fn_expr_rettype. There is also get_fn_expr_variadic, which can be used to find out
whether variadic arguments have been merged into an array. This is primarily useful for VARIADIC
"any" functions, since such merging will always have occurred for variadic functions taking ordinary
array types.

For example, suppose we want to write a function to accept a single element of any type, and return a one-
dimensional array of that type:

PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{
 ArrayType *result;
 Oid element_type = get_fn_expr_argtype(fcinfo->flinfo, 0);
 Datum element;
 bool isnull;
 int16 typlen;
 bool typbyval;
 char typalign;
 int ndims;
 int dims[MAXDIM];
 int lbs[MAXDIM];

 if (!OidIsValid(element_type))
 elog(ERROR, "could not determine data type of input");

 /* get the provided element, being careful in case it's NULL */
 isnull = PG_ARGISNULL(0);
 if (isnull)
 element = (Datum) 0;
 else
 element = PG_GETARG_DATUM(0);

 /* we have one dimension */
 ndims = 1;
 /* and one element */
 dims[0] = 1;
 /* and lower bound is 1 */
 lbs[0] = 1;

 /* get required info about the element type */
 get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign);

 /* now build the array */
 result = construct_md_array(&element, &isnull, ndims, dims, lbs,
 element_type, typlen, typbyval,
 typalign);

 PG_RETURN_ARRAYTYPE_P(result);
}

The following command declares the function make_array in SQL:

1123

Extending SQL

CREATE FUNCTION make_array(anyelement) RETURNS anyarray
 AS 'DIRECTORY/funcs', 'make_array'
 LANGUAGE C IMMUTABLE;

There is a variant of polymorphism that is only available to C-language functions: they can be declared
to take parameters of type "any". (Note that this type name must be double-quoted, since it's also a
SQL reserved word.) This works like anyelement except that it does not constrain different "any"
arguments to be the same type, nor do they help determine the function's result type. A C-language
function can also declare its final parameter to be VARIADIC "any". This will match one or more
actual arguments of any type (not necessarily the same type). These arguments will not be gathered into
an array as happens with normal variadic functions; they will just be passed to the function separately. The
PG_NARGS() macro and the methods described above must be used to determine the number of actual
arguments and their types when using this feature. Also, users of such a function might wish to use the
VARIADIC keyword in their function call, with the expectation that the function would treat the array
elements as separate arguments. The function itself must implement that behavior if wanted, after using
get_fn_expr_variadic to detect that the actual argument was marked with VARIADIC.

38.10.10. Transform Functions
Some function calls can be simplified during planning based on properties specific to the function. For
example, int4mul(n, 1) could be simplified to just n. To define such function-specific optimizations,
write a transform function and place its OID in the protransform field of the primary function's
pg_proc entry. The transform function must have the SQL signature protransform(internal)
RETURNS internal. The argument, actually FuncExpr *, is a dummy node representing a call
to the primary function. If the transform function's study of the expression tree proves that a simplified
expression tree can substitute for all possible concrete calls represented thereby, build and return that
simplified expression. Otherwise, return a NULL pointer (not a SQL null).

We make no guarantee that PostgreSQL will never call the primary function in cases that the transform
function could simplify. Ensure rigorous equivalence between the simplified expression and an actual call
to the primary function.

Currently, this facility is not exposed to users at the SQL level because of security concerns, so it is only
practical to use for optimizing built-in functions.

38.10.11. Shared Memory and LWLocks
Add-ins can reserve LWLocks and an allocation of shared memory on server startup. The add-in's shared
library must be preloaded by specifying it in shared_preload_libraries. Shared memory is reserved by
calling:

void RequestAddinShmemSpace(int size)

from your _PG_init function.

LWLocks are reserved by calling:

void RequestNamedLWLockTranche(const char *tranche_name, int
 num_lwlocks)

from _PG_init. This will ensure that an array of num_lwlocks LWLocks is available under the name
tranche_name. Use GetNamedLWLockTranche to get a pointer to this array.

1124

Extending SQL

To avoid possible race-conditions, each backend should use the LWLock AddinShmemInitLock when
connecting to and initializing its allocation of shared memory, as shown here:

static mystruct *ptr = NULL;

if (!ptr)
{
 bool found;

 LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
 ptr = ShmemInitStruct("my struct name", size, &found);
 if (!found)
 {
 initialize contents of shmem area;
 acquire any requested LWLocks using:
 ptr->locks = GetNamedLWLockTranche("my tranche name");
 }
 LWLockRelease(AddinShmemInitLock);
}

38.10.12. Using C++ for Extensibility
Although the PostgreSQL backend is written in C, it is possible to write extensions in C++ if these
guidelines are followed:

• All functions accessed by the backend must present a C interface to the backend; these C functions can
then call C++ functions. For example, extern C linkage is required for backend-accessed functions.
This is also necessary for any functions that are passed as pointers between the backend and C++ code.

• Free memory using the appropriate deallocation method. For example, most backend memory is
allocated using palloc(), so use pfree() to free it. Using C++ delete in such cases will fail.

• Prevent exceptions from propagating into the C code (use a catch-all block at the top level of all extern
C functions). This is necessary even if the C++ code does not explicitly throw any exceptions, because
events like out-of-memory can still throw exceptions. Any exceptions must be caught and appropriate
errors passed back to the C interface. If possible, compile C++ with -fno-exceptions to eliminate
exceptions entirely; in such cases, you must check for failures in your C++ code, e.g. check for NULL
returned by new().

• If calling backend functions from C++ code, be sure that the C++ call stack contains only plain old data
structures (POD). This is necessary because backend errors generate a distant longjmp() that does
not properly unroll a C++ call stack with non-POD objects.

In summary, it is best to place C++ code behind a wall of extern C functions that interface to the
backend, and avoid exception, memory, and call stack leakage.

38.11. User-defined Aggregates
Aggregate functions in PostgreSQL are defined in terms of state values and state transition functions. That
is, an aggregate operates using a state value that is updated as each successive input row is processed.
To define a new aggregate function, one selects a data type for the state value, an initial value for the
state, and a state transition function. The state transition function takes the previous state value and the
aggregate's input value(s) for the current row, and returns a new state value. A final function can also be
specified, in case the desired result of the aggregate is different from the data that needs to be kept in the

1125

Extending SQL

running state value. The final function takes the ending state value and returns whatever is wanted as the
aggregate result. In principle, the transition and final functions are just ordinary functions that could also
be used outside the context of the aggregate. (In practice, it's often helpful for performance reasons to
create specialized transition functions that can only work when called as part of an aggregate.)

Thus, in addition to the argument and result data types seen by a user of the aggregate, there is an internal
state-value data type that might be different from both the argument and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a running
function of the column values from each row. sum is an example of this kind of aggregate. sum starts at
zero and always adds the current row's value to its running total. For example, if we want to make a sum
aggregate to work on a data type for complex numbers, we only need the addition function for that data
type. The aggregate definition would be:

CREATE AGGREGATE sum (complex)
(
 sfunc = complex_add,
 stype = complex,
 initcond = '(0,0)'
);

which we might use like this:

SELECT sum(a) FROM test_complex;

 sum

 (34,53.9)

(Notice that we are relying on function overloading: there is more than one aggregate named sum, but
PostgreSQL can figure out which kind of sum applies to a column of type complex.)

The above definition of sum will return zero (the initial state value) if there are no nonnull input values.
Perhaps we want to return null in that case instead — the SQL standard expects sum to behave that way.
We can do this simply by omitting the initcond phrase, so that the initial state value is null. Ordinarily
this would mean that the sfunc would need to check for a null state-value input. But for sum and some
other simple aggregates like max and min, it is sufficient to insert the first nonnull input value into the
state variable and then start applying the transition function at the second nonnull input value. PostgreSQL
will do that automatically if the initial state value is null and the transition function is marked “strict” (i.e.,
not to be called for null inputs).

Another bit of default behavior for a “strict” transition function is that the previous state value is retained
unchanged whenever a null input value is encountered. Thus, null values are ignored. If you need some
other behavior for null inputs, do not declare your transition function as strict; instead code it to test for
null inputs and do whatever is needed.

avg (average) is a more complex example of an aggregate. It requires two pieces of running state: the
sum of the inputs and the count of the number of inputs. The final result is obtained by dividing these
quantities. Average is typically implemented by using an array as the state value. For example, the built-
in implementation of avg(float8) looks like:

CREATE AGGREGATE avg (float8)
(

1126

Extending SQL

 sfunc = float8_accum,
 stype = float8[],
 finalfunc = float8_avg,
 initcond = '{0,0,0}'
);

Note

float8_accum requires a three-element array, not just two elements, because it accumulates
the sum of squares as well as the sum and count of the inputs. This is so that it can be used for
some other aggregates as well as avg.

Aggregate function calls in SQL allow DISTINCT and ORDER BY options that control which rows are
fed to the aggregate's transition function and in what order. These options are implemented behind the
scenes and are not the concern of the aggregate's support functions.

For further details see the CREATE AGGREGATE command.

38.11.1. Moving-Aggregate Mode
Aggregate functions can optionally support moving-aggregate mode, which allows substantially faster
execution of aggregate functions within windows with moving frame starting points. (See Section 3.5 and
Section 4.2.8 for information about use of aggregate functions as window functions.) The basic idea is that
in addition to a normal “forward” transition function, the aggregate provides an inverse transition function,
which allows rows to be removed from the aggregate's running state value when they exit the window
frame. For example a sum aggregate, which uses addition as the forward transition function, would use
subtraction as the inverse transition function. Without an inverse transition function, the window function
mechanism must recalculate the aggregate from scratch each time the frame starting point moves, resulting
in run time proportional to the number of input rows times the average frame length. With an inverse
transition function, the run time is only proportional to the number of input rows.

The inverse transition function is passed the current state value and the aggregate input value(s) for the
earliest row included in the current state. It must reconstruct what the state value would have been if the
given input row had never been aggregated, but only the rows following it. This sometimes requires that
the forward transition function keep more state than is needed for plain aggregation mode. Therefore, the
moving-aggregate mode uses a completely separate implementation from the plain mode: it has its own
state data type, its own forward transition function, and its own final function if needed. These can be the
same as the plain mode's data type and functions, if there is no need for extra state.

As an example, we could extend the sum aggregate given above to support moving-aggregate mode like
this:

CREATE AGGREGATE sum (complex)
(
 sfunc = complex_add,
 stype = complex,
 initcond = '(0,0)',
 msfunc = complex_add,
 minvfunc = complex_sub,
 mstype = complex,
 minitcond = '(0,0)'
);

1127

Extending SQL

The parameters whose names begin with m define the moving-aggregate implementation. Except for the
inverse transition function minvfunc, they correspond to the plain-aggregate parameters without m.

The forward transition function for moving-aggregate mode is not allowed to return null as the new state
value. If the inverse transition function returns null, this is taken as an indication that the inverse function
cannot reverse the state calculation for this particular input, and so the aggregate calculation will be redone
from scratch for the current frame starting position. This convention allows moving-aggregate mode to be
used in situations where there are some infrequent cases that are impractical to reverse out of the running
state value. The inverse transition function can “punt” on these cases, and yet still come out ahead so long
as it can work for most cases. As an example, an aggregate working with floating-point numbers might
choose to punt when a NaN (not a number) input has to be removed from the running state value.

When writing moving-aggregate support functions, it is important to be sure that the inverse transition
function can reconstruct the correct state value exactly. Otherwise there might be user-visible differences
in results depending on whether the moving-aggregate mode is used. An example of an aggregate for
which adding an inverse transition function seems easy at first, yet where this requirement cannot be met
is sum over float4 or float8 inputs. A naive declaration of sum(float8) could be

CREATE AGGREGATE unsafe_sum (float8)
(
 stype = float8,
 sfunc = float8pl,
 mstype = float8,
 msfunc = float8pl,
 minvfunc = float8mi
);

This aggregate, however, can give wildly different results than it would have without the inverse transition
function. For example, consider

SELECT
 unsafe_sum(x) OVER (ORDER BY n ROWS BETWEEN CURRENT ROW AND 1
 FOLLOWING)
FROM (VALUES (1, 1.0e20::float8),
 (2, 1.0::float8)) AS v (n,x);

This query returns 0 as its second result, rather than the expected answer of 1. The cause is the limited
precision of floating-point values: adding 1 to 1e20 results in 1e20 again, and so subtracting 1e20 from
that yields 0, not 1. Note that this is a limitation of floating-point arithmetic in general, not a limitation
of PostgreSQL.

38.11.2. Polymorphic and Variadic Aggregates
Aggregate functions can use polymorphic state transition functions or final functions, so that the
same functions can be used to implement multiple aggregates. See Section 38.2.5 for an explanation
of polymorphic functions. Going a step further, the aggregate function itself can be specified with
polymorphic input type(s) and state type, allowing a single aggregate definition to serve for multiple input
data types. Here is an example of a polymorphic aggregate:

CREATE AGGREGATE array_accum (anyelement)
(
 sfunc = array_append,

1128

Extending SQL

 stype = anyarray,
 initcond = '{}'
);

Here, the actual state type for any given aggregate call is the array type having the actual input type as
elements. The behavior of the aggregate is to concatenate all the inputs into an array of that type. (Note: the
built-in aggregate array_agg provides similar functionality, with better performance than this definition
would have.)

Here's the output using two different actual data types as arguments:

SELECT attrelid::regclass, array_accum(attname)
 FROM pg_attribute
 WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
 GROUP BY attrelid;

 attrelid | array_accum
---------------+---------------------------------------
 pg_tablespace | {spcname,spcowner,spcacl,spcoptions}
(1 row)

SELECT attrelid::regclass, array_accum(atttypid::regtype)
 FROM pg_attribute
 WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
 GROUP BY attrelid;

 attrelid | array_accum
---------------+---------------------------
 pg_tablespace | {name,oid,aclitem[],text[]}
(1 row)

Ordinarily, an aggregate function with a polymorphic result type has a polymorphic state type, as in
the above example. This is necessary because otherwise the final function cannot be declared sensibly:
it would need to have a polymorphic result type but no polymorphic argument type, which CREATE
FUNCTION will reject on the grounds that the result type cannot be deduced from a call. But sometimes
it is inconvenient to use a polymorphic state type. The most common case is where the aggregate support
functions are to be written in C and the state type should be declared as internal because there is no
SQL-level equivalent for it. To address this case, it is possible to declare the final function as taking extra
“dummy” arguments that match the input arguments of the aggregate. Such dummy arguments are always
passed as null values since no specific value is available when the final function is called. Their only use
is to allow a polymorphic final function's result type to be connected to the aggregate's input type(s). For
example, the definition of the built-in aggregate array_agg is equivalent to

CREATE FUNCTION array_agg_transfn(internal, anynonarray)
 RETURNS internal ...;
CREATE FUNCTION array_agg_finalfn(internal, anynonarray)
 RETURNS anyarray ...;

CREATE AGGREGATE array_agg (anynonarray)
(
 sfunc = array_agg_transfn,
 stype = internal,
 finalfunc = array_agg_finalfn,

1129

Extending SQL

 finalfunc_extra
);

Here, the finalfunc_extra option specifies that the final function receives, in addition to the
state value, extra dummy argument(s) corresponding to the aggregate's input argument(s). The extra
anynonarray argument allows the declaration of array_agg_finalfn to be valid.

An aggregate function can be made to accept a varying number of arguments by declaring its last argument
as a VARIADIC array, in much the same fashion as for regular functions; see Section 38.5.5. The
aggregate's transition function(s) must have the same array type as their last argument. The transition
function(s) typically would also be marked VARIADIC, but this is not strictly required.

Note

Variadic aggregates are easily misused in connection with the ORDER BY option (see
Section 4.2.7), since the parser cannot tell whether the wrong number of actual arguments have
been given in such a combination. Keep in mind that everything to the right of ORDER BY is a
sort key, not an argument to the aggregate. For example, in

SELECT myaggregate(a ORDER BY a, b, c) FROM ...

the parser will see this as a single aggregate function argument and three sort keys. However, the
user might have intended

SELECT myaggregate(a, b, c ORDER BY a) FROM ...

If myaggregate is variadic, both these calls could be perfectly valid.

For the same reason, it's wise to think twice before creating aggregate functions with the same
names and different numbers of regular arguments.

38.11.3. Ordered-Set Aggregates
The aggregates we have been describing so far are “normal” aggregates. PostgreSQL also supports
ordered-set aggregates, which differ from normal aggregates in two key ways. First, in addition to
ordinary aggregated arguments that are evaluated once per input row, an ordered-set aggregate can have
“direct” arguments that are evaluated only once per aggregation operation. Second, the syntax for the
ordinary aggregated arguments specifies a sort ordering for them explicitly. An ordered-set aggregate is
usually used to implement a computation that depends on a specific row ordering, for instance rank or
percentile, so that the sort ordering is a required aspect of any call. For example, the built-in definition of
percentile_disc is equivalent to:

CREATE FUNCTION ordered_set_transition(internal, anyelement)
 RETURNS internal ...;
CREATE FUNCTION percentile_disc_final(internal, float8, anyelement)
 RETURNS anyelement ...;

CREATE AGGREGATE percentile_disc (float8 ORDER BY anyelement)
(
 sfunc = ordered_set_transition,
 stype = internal,

1130

Extending SQL

 finalfunc = percentile_disc_final,
 finalfunc_extra
);

This aggregate takes a float8 direct argument (the percentile fraction) and an aggregated input that can
be of any sortable data type. It could be used to obtain a median household income like this:

SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY income) FROM
 households;
 percentile_disc

 50489

Here, 0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying
across rows.

Unlike the case for normal aggregates, the sorting of input rows for an ordered-set aggregate is not done
behind the scenes, but is the responsibility of the aggregate's support functions. The typical implementation
approach is to keep a reference to a “tuplesort” object in the aggregate's state value, feed the incoming rows
into that object, and then complete the sorting and read out the data in the final function. This design allows
the final function to perform special operations such as injecting additional “hypothetical” rows into the
data to be sorted. While normal aggregates can often be implemented with support functions written in
PL/pgSQL or another PL language, ordered-set aggregates generally have to be written in C, since their
state values aren't definable as any SQL data type. (In the above example, notice that the state value is
declared as type internal — this is typical.) Also, because the final function performs the sort, it is
not possible to continue adding input rows by executing the transition function again later. This means the
final function is not READ_ONLY; it must be declared in CREATE AGGREGATE as READ_WRITE, or
as SHAREABLE if it's possible for additional final-function calls to make use of the already-sorted state.

The state transition function for an ordered-set aggregate receives the current state value plus the
aggregated input values for each row, and returns the updated state value. This is the same definition as for
normal aggregates, but note that the direct arguments (if any) are not provided. The final function receives
the last state value, the values of the direct arguments if any, and (if finalfunc_extra is specified)
null values corresponding to the aggregated input(s). As with normal aggregates, finalfunc_extra
is only really useful if the aggregate is polymorphic; then the extra dummy argument(s) are needed to
connect the final function's result type to the aggregate's input type(s).

Currently, ordered-set aggregates cannot be used as window functions, and therefore there is no need for
them to support moving-aggregate mode.

38.11.4. Partial Aggregation
Optionally, an aggregate function can support partial aggregation. The idea of partial aggregation is to
run the aggregate's state transition function over different subsets of the input data independently, and then
to combine the state values resulting from those subsets to produce the same state value that would have
resulted from scanning all the input in a single operation. This mode can be used for parallel aggregation
by having different worker processes scan different portions of a table. Each worker produces a partial
state value, and at the end those state values are combined to produce a final state value. (In the future
this mode might also be used for purposes such as combining aggregations over local and remote tables;
but that is not implemented yet.)

To support partial aggregation, the aggregate definition must provide a combine function, which takes
two values of the aggregate's state type (representing the results of aggregating over two subsets of the
input rows) and produces a new value of the state type, representing what the state would have been after

1131

Extending SQL

aggregating over the combination of those sets of rows. It is unspecified what the relative order of the
input rows from the two sets would have been. This means that it's usually impossible to define a useful
combine function for aggregates that are sensitive to input row order.

As simple examples, MAX and MIN aggregates can be made to support partial aggregation by specifying
the combine function as the same greater-of-two or lesser-of-two comparison function that is used as their
transition function. SUM aggregates just need an addition function as combine function. (Again, this is the
same as their transition function, unless the state value is wider than the input data type.)

The combine function is treated much like a transition function that happens to take a value of the state
type, not of the underlying input type, as its second argument. In particular, the rules for dealing with null
values and strict functions are similar. Also, if the aggregate definition specifies a non-null initcond,
keep in mind that that will be used not only as the initial state for each partial aggregation run, but also as
the initial state for the combine function, which will be called to combine each partial result into that state.

If the aggregate's state type is declared as internal, it is the combine function's responsibility that its
result is allocated in the correct memory context for aggregate state values. This means in particular that
when the first input is NULL it's invalid to simply return the second input, as that value will be in the wrong
context and will not have sufficient lifespan.

When the aggregate's state type is declared as internal, it is usually also appropriate for the aggregate
definition to provide a serialization function and a deserialization function, which allow such a state
value to be copied from one process to another. Without these functions, parallel aggregation cannot be
performed, and future applications such as local/remote aggregation will probably not work either.

A serialization function must take a single argument of type internal and return a result of type bytea,
which represents the state value packaged up into a flat blob of bytes. Conversely, a deserialization function
reverses that conversion. It must take two arguments of types bytea and internal, and return a result
of type internal. (The second argument is unused and is always zero, but it is required for type-safety
reasons.) The result of the deserialization function should simply be allocated in the current memory
context, as unlike the combine function's result, it is not long-lived.

Worth noting also is that for an aggregate to be executed in parallel, the aggregate itself must be marked
PARALLEL SAFE. The parallel-safety markings on its support functions are not consulted.

38.11.5. Support Functions for Aggregates
A function written in C can detect that it is being called as an aggregate support function by calling
AggCheckCallContext, for example:

if (AggCheckCallContext(fcinfo, NULL))

One reason for checking this is that when it is true, the first input must be a temporary state value and can
therefore safely be modified in-place rather than allocating a new copy. See int8inc() for an example.
(While aggregate transition functions are always allowed to modify the transition value in-place, aggregate
final functions are generally discouraged from doing so; if they do so, the behavior must be declared when
creating the aggregate. See CREATE AGGREGATE for more detail.)

The second argument of AggCheckCallContext can be used to retrieve the memory context in
which aggregate state values are being kept. This is useful for transition functions that wish to use
“expanded” objects (see Section 38.12.1) as their state values. On first call, the transition function should
return an expanded object whose memory context is a child of the aggregate state context, and then
keep returning the same expanded object on subsequent calls. See array_append() for an example.
(array_append() is not the transition function of any built-in aggregate, but it is written to behave
efficiently when used as transition function of a custom aggregate.)

1132

Extending SQL

Another support routine available to aggregate functions written in C is AggGetAggref, which returns
the Aggref parse node that defines the aggregate call. This is mainly useful for ordered-set aggregates,
which can inspect the substructure of the Aggref node to find out what sort ordering they are supposed
to implement. Examples can be found in orderedsetaggs.c in the PostgreSQL source code.

38.12. User-defined Types
As described in Section 38.2, PostgreSQL can be extended to support new data types. This section
describes how to define new base types, which are data types defined below the level of the SQL language.
Creating a new base type requires implementing functions to operate on the type in a low-level language,
usually C.

The examples in this section can be found in complex.sql and complex.c in the src/tutorial
directory of the source distribution. See the README file in that directory for instructions about running
the examples.

 A user-defined type must always have input and output functions. These functions determine how the
type appears in strings (for input by the user and output to the user) and how the type is organized in
memory. The input function takes a null-terminated character string as its argument and returns the internal
(in memory) representation of the type. The output function takes the internal representation of the type
as argument and returns a null-terminated character string. If we want to do anything more with the type
than merely store it, we must provide additional functions to implement whatever operations we'd like to
have for the type.

Suppose we want to define a type complex that represents complex numbers. A natural way to represent
a complex number in memory would be the following C structure:

typedef struct Complex {
 double x;
 double y;
} Complex;

We will need to make this a pass-by-reference type, since it's too large to fit into a single Datum value.

As the external string representation of the type, we choose a string of the form (x,y).

The input and output functions are usually not hard to write, especially the output function. But when
defining the external string representation of the type, remember that you must eventually write a complete
and robust parser for that representation as your input function. For instance:

PG_FUNCTION_INFO_V1(complex_in);

Datum
complex_in(PG_FUNCTION_ARGS)
{
 char *str = PG_GETARG_CSTRING(0);
 double x,
 y;
 Complex *result;

 if (sscanf(str, " (%lf , %lf)", &x, &y) != 2)
 ereport(ERROR,

1133

Extending SQL

 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
 errmsg("invalid input syntax for complex: \"%s\"",
 str)));

 result = (Complex *) palloc(sizeof(Complex));
 result->x = x;
 result->y = y;
 PG_RETURN_POINTER(result);
}

The output function can simply be:

PG_FUNCTION_INFO_V1(complex_out);

Datum
complex_out(PG_FUNCTION_ARGS)
{
 Complex *complex = (Complex *) PG_GETARG_POINTER(0);
 char *result;

 result = psprintf("(%g,%g)", complex->x, complex->y);
 PG_RETURN_CSTRING(result);
}

You should be careful to make the input and output functions inverses of each other. If you do not, you
will have severe problems when you need to dump your data into a file and then read it back in. This is a
particularly common problem when floating-point numbers are involved.

Optionally, a user-defined type can provide binary input and output routines. Binary I/O is normally faster
but less portable than textual I/O. As with textual I/O, it is up to you to define exactly what the external
binary representation is. Most of the built-in data types try to provide a machine-independent binary
representation. For complex, we will piggy-back on the binary I/O converters for type float8:

PG_FUNCTION_INFO_V1(complex_recv);

Datum
complex_recv(PG_FUNCTION_ARGS)
{
 StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
 Complex *result;

 result = (Complex *) palloc(sizeof(Complex));
 result->x = pq_getmsgfloat8(buf);
 result->y = pq_getmsgfloat8(buf);
 PG_RETURN_POINTER(result);
}

PG_FUNCTION_INFO_V1(complex_send);

Datum
complex_send(PG_FUNCTION_ARGS)

1134

Extending SQL

{
 Complex *complex = (Complex *) PG_GETARG_POINTER(0);
 StringInfoData buf;

 pq_begintypsend(&buf);
 pq_sendfloat8(&buf, complex->x);
 pq_sendfloat8(&buf, complex->y);
 PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}

Once we have written the I/O functions and compiled them into a shared library, we can define the
complex type in SQL. First we declare it as a shell type:

CREATE TYPE complex;

This serves as a placeholder that allows us to reference the type while defining its I/O functions. Now we
can define the I/O functions:

CREATE FUNCTION complex_in(cstring)
 RETURNS complex
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_out(complex)
 RETURNS cstring
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_recv(internal)
 RETURNS complex
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_send(complex)
 RETURNS bytea
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

Finally, we can provide the full definition of the data type:

CREATE TYPE complex (
 internallength = 16,
 input = complex_in,
 output = complex_out,
 receive = complex_recv,
 send = complex_send,
 alignment = double
);

 When you define a new base type, PostgreSQL automatically provides support for arrays of that type. The
array type typically has the same name as the base type with the underscore character (_) prepended.

1135

Extending SQL

Once the data type exists, we can declare additional functions to provide useful operations on the data
type. Operators can then be defined atop the functions, and if needed, operator classes can be created to
support indexing of the data type. These additional layers are discussed in following sections.

If the internal representation of the data type is variable-length, the internal representation must follow
the standard layout for variable-length data: the first four bytes must be a char[4] field which is never
accessed directly (customarily named vl_len_). You must use the SET_VARSIZE() macro to store
the total size of the datum (including the length field itself) in this field and VARSIZE() to retrieve it.
(These macros exist because the length field may be encoded depending on platform.)

For further details see the description of the CREATE TYPE command.

38.12.1. TOAST Considerations
If the values of your data type vary in size (in internal form), it's usually desirable to make the data
type TOAST-able (see Section 68.2). You should do this even if the values are always too small to be
compressed or stored externally, because TOAST can save space on small data too, by reducing header
overhead.

To support TOAST storage, the C functions operating on the data type must always be careful to unpack
any toasted values they are handed by using PG_DETOAST_DATUM. (This detail is customarily hidden
by defining type-specific GETARG_DATATYPE_P macros.) Then, when running the CREATE TYPE
command, specify the internal length as variable and select some appropriate storage option other than
plain.

If data alignment is unimportant (either just for a specific function or because the data
type specifies byte alignment anyway) then it's possible to avoid some of the overhead of
PG_DETOAST_DATUM. You can use PG_DETOAST_DATUM_PACKED instead (customarily hidden
by defining a GETARG_DATATYPE_PP macro) and using the macros VARSIZE_ANY_EXHDR and
VARDATA_ANY to access a potentially-packed datum. Again, the data returned by these macros is not
aligned even if the data type definition specifies an alignment. If the alignment is important you must go
through the regular PG_DETOAST_DATUM interface.

Note

Older code frequently declares vl_len_ as an int32 field instead of char[4]. This is OK as
long as the struct definition has other fields that have at least int32 alignment. But it is dangerous
to use such a struct definition when working with a potentially unaligned datum; the compiler may
take it as license to assume the datum actually is aligned, leading to core dumps on architectures
that are strict about alignment.

Another feature that's enabled by TOAST support is the possibility of having an expanded in-memory data
representation that is more convenient to work with than the format that is stored on disk. The regular
or “flat” varlena storage format is ultimately just a blob of bytes; it cannot for example contain pointers,
since it may get copied to other locations in memory. For complex data types, the flat format may be quite
expensive to work with, so PostgreSQL provides a way to “expand” the flat format into a representation
that is more suited to computation, and then pass that format in-memory between functions of the data type.

To use expanded storage, a data type must define an expanded format that follows the rules given in
src/include/utils/expandeddatum.h, and provide functions to “expand” a flat varlena value
into expanded format and “flatten” the expanded format back to the regular varlena representation. Then
ensure that all C functions for the data type can accept either representation, possibly by converting one
into the other immediately upon receipt. This does not require fixing all existing functions for the data

1136

Extending SQL

type at once, because the standard PG_DETOAST_DATUM macro is defined to convert expanded inputs
into regular flat format. Therefore, existing functions that work with the flat varlena format will continue
to work, though slightly inefficiently, with expanded inputs; they need not be converted until and unless
better performance is important.

C functions that know how to work with an expanded representation typically fall into two categories:
those that can only handle expanded format, and those that can handle either expanded or flat varlena
inputs. The former are easier to write but may be less efficient overall, because converting a flat input to
expanded form for use by a single function may cost more than is saved by operating on the expanded
format. When only expanded format need be handled, conversion of flat inputs to expanded form can be
hidden inside an argument-fetching macro, so that the function appears no more complex than one working
with traditional varlena input. To handle both types of input, write an argument-fetching function that will
detoast external, short-header, and compressed varlena inputs, but not expanded inputs. Such a function
can be defined as returning a pointer to a union of the flat varlena format and the expanded format. Callers
can use the VARATT_IS_EXPANDED_HEADER() macro to determine which format they received.

The TOAST infrastructure not only allows regular varlena values to be distinguished from expanded
values, but also distinguishes “read-write” and “read-only” pointers to expanded values. C functions that
only need to examine an expanded value, or will only change it in safe and non-semantically-visible ways,
need not care which type of pointer they receive. C functions that produce a modified version of an input
value are allowed to modify an expanded input value in-place if they receive a read-write pointer, but must
not modify the input if they receive a read-only pointer; in that case they have to copy the value first,
producing a new value to modify. A C function that has constructed a new expanded value should always
return a read-write pointer to it. Also, a C function that is modifying a read-write expanded value in-place
should take care to leave the value in a sane state if it fails partway through.

For examples of working with expanded values, see the standard array infrastructure, particularly src/
backend/utils/adt/array_expanded.c.

38.13. User-defined Operators
Every operator is “syntactic sugar” for a call to an underlying function that does the real work; so you must
first create the underlying function before you can create the operator. However, an operator is not merely
syntactic sugar, because it carries additional information that helps the query planner optimize queries that
use the operator. The next section will be devoted to explaining that additional information.

PostgreSQL supports left unary, right unary, and binary operators. Operators can be overloaded; that is, the
same operator name can be used for different operators that have different numbers and types of operands.
When a query is executed, the system determines the operator to call from the number and types of the
provided operands.

Here is an example of creating an operator for adding two complex numbers. We assume we've already
created the definition of type complex (see Section 38.12). First we need a function that does the work,
then we can define the operator:

CREATE FUNCTION complex_add(complex, complex)
 RETURNS complex
 AS 'filename', 'complex_add'
 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (
 leftarg = complex,
 rightarg = complex,
 function = complex_add,

1137

Extending SQL

 commutator = +
);

Now we could execute a query like this:

SELECT (a + b) AS c FROM test_complex;

 c

 (5.2,6.05)
 (133.42,144.95)

We've shown how to create a binary operator here. To create unary operators, just omit one of leftarg
(for left unary) or rightarg (for right unary). The function clause and the argument clauses are
the only required items in CREATE OPERATOR. The commutator clause shown in the example is an
optional hint to the query optimizer. Further details about commutator and other optimizer hints appear
in the next section.

38.14. Operator Optimization Information
A PostgreSQL operator definition can include several optional clauses that tell the system useful things
about how the operator behaves. These clauses should be provided whenever appropriate, because they
can make for considerable speedups in execution of queries that use the operator. But if you provide them,
you must be sure that they are right! Incorrect use of an optimization clause can result in slow queries,
subtly wrong output, or other Bad Things. You can always leave out an optimization clause if you are not
sure about it; the only consequence is that queries might run slower than they need to.

Additional optimization clauses might be added in future versions of PostgreSQL. The ones described here
are all the ones that release 11.2 understands.

38.14.1. COMMUTATOR
The COMMUTATOR clause, if provided, names an operator that is the commutator of the operator being
defined. We say that operator A is the commutator of operator B if (x A y) equals (y B x) for all possible
input values x, y. Notice that B is also the commutator of A. For example, operators < and > for a particular
data type are usually each others' commutators, and operator + is usually commutative with itself. But
operator - is usually not commutative with anything.

The left operand type of a commutable operator is the same as the right operand type of its commutator,
and vice versa. So the name of the commutator operator is all that PostgreSQL needs to be given to look
up the commutator, and that's all that needs to be provided in the COMMUTATOR clause.

It's critical to provide commutator information for operators that will be used in indexes and join clauses,
because this allows the query optimizer to “flip around” such a clause to the forms needed for different plan
types. For example, consider a query with a WHERE clause like tab1.x = tab2.y, where tab1.x and
tab2.y are of a user-defined type, and suppose that tab2.y is indexed. The optimizer cannot generate
an index scan unless it can determine how to flip the clause around to tab2.y = tab1.x, because the
index-scan machinery expects to see the indexed column on the left of the operator it is given. PostgreSQL
will not simply assume that this is a valid transformation — the creator of the = operator must specify that
it is valid, by marking the operator with commutator information.

When you are defining a self-commutative operator, you just do it. When you are defining a pair of
commutative operators, things are a little trickier: how can the first one to be defined refer to the other
one, which you haven't defined yet? There are two solutions to this problem:

1138

Extending SQL

• One way is to omit the COMMUTATOR clause in the first operator that you define, and then provide one
in the second operator's definition. Since PostgreSQL knows that commutative operators come in pairs,
when it sees the second definition it will automatically go back and fill in the missing COMMUTATOR
clause in the first definition.

• The other, more straightforward way is just to include COMMUTATOR clauses in both definitions.
When PostgreSQL processes the first definition and realizes that COMMUTATOR refers to a nonexistent
operator, the system will make a dummy entry for that operator in the system catalog. This dummy
entry will have valid data only for the operator name, left and right operand types, and result type, since
that's all that PostgreSQL can deduce at this point. The first operator's catalog entry will link to this
dummy entry. Later, when you define the second operator, the system updates the dummy entry with
the additional information from the second definition. If you try to use the dummy operator before it's
been filled in, you'll just get an error message.

38.14.2. NEGATOR
The NEGATOR clause, if provided, names an operator that is the negator of the operator being defined. We
say that operator A is the negator of operator B if both return Boolean results and (x A y) equals NOT (x B
y) for all possible inputs x, y. Notice that B is also the negator of A. For example, < and >= are a negator
pair for most data types. An operator can never validly be its own negator.

Unlike commutators, a pair of unary operators could validly be marked as each other's negators; that would
mean (A x) equals NOT (B x) for all x, or the equivalent for right unary operators.

An operator's negator must have the same left and/or right operand types as the operator to be defined, so
just as with COMMUTATOR, only the operator name need be given in the NEGATOR clause.

Providing a negator is very helpful to the query optimizer since it allows expressions like NOT (x = y)
to be simplified into x <> y. This comes up more often than you might think, because NOT operations
can be inserted as a consequence of other rearrangements.

Pairs of negator operators can be defined using the same methods explained above for commutator pairs.

38.14.3. RESTRICT
The RESTRICT clause, if provided, names a restriction selectivity estimation function for the operator.
(Note that this is a function name, not an operator name.) RESTRICT clauses only make sense for binary
operators that return boolean. The idea behind a restriction selectivity estimator is to guess what fraction
of the rows in a table will satisfy a WHERE-clause condition of the form:

column OP constant

for the current operator and a particular constant value. This assists the optimizer by giving it some idea of
how many rows will be eliminated by WHERE clauses that have this form. (What happens if the constant
is on the left, you might be wondering? Well, that's one of the things that COMMUTATOR is for...)

Writing new restriction selectivity estimation functions is far beyond the scope of this chapter, but
fortunately you can usually just use one of the system's standard estimators for many of your own operators.
These are the standard restriction estimators:

eqsel for =
neqsel for <>
scalarltsel for <
scalarlesel for <=

1139

Extending SQL

scalargtsel for >
scalargesel for >=

You can frequently get away with using either eqsel or neqsel for operators that have very high or
very low selectivity, even if they aren't really equality or inequality. For example, the approximate-equality
geometric operators use eqsel on the assumption that they'll usually only match a small fraction of the
entries in a table.

You can use scalarltsel, scalarlesel, scalargtsel and scalargesel for comparisons on
data types that have some sensible means of being converted into numeric scalars for range comparisons.
If possible, add the data type to those understood by the function convert_to_scalar() in src/
backend/utils/adt/selfuncs.c. (Eventually, this function should be replaced by per-data-type
functions identified through a column of the pg_type system catalog; but that hasn't happened yet.) If
you do not do this, things will still work, but the optimizer's estimates won't be as good as they could be.

There are additional selectivity estimation functions designed for geometric operators in src/backend/
utils/adt/geo_selfuncs.c: areasel, positionsel, and contsel. At this writing these
are just stubs, but you might want to use them (or even better, improve them) anyway.

38.14.4. JOIN
The JOIN clause, if provided, names a join selectivity estimation function for the operator. (Note that this
is a function name, not an operator name.) JOIN clauses only make sense for binary operators that return
boolean. The idea behind a join selectivity estimator is to guess what fraction of the rows in a pair of
tables will satisfy a WHERE-clause condition of the form:

table1.column1 OP table2.column2

for the current operator. As with the RESTRICT clause, this helps the optimizer very substantially by
letting it figure out which of several possible join sequences is likely to take the least work.

As before, this chapter will make no attempt to explain how to write a join selectivity estimator function,
but will just suggest that you use one of the standard estimators if one is applicable:

eqjoinsel for =
neqjoinsel for <>
scalarltjoinsel for <
scalarlejoinsel for <=
scalargtjoinsel for >
scalargejoinsel for >=
areajoinsel for 2D area-based comparisons
positionjoinsel for 2D position-based comparisons
contjoinsel for 2D containment-based comparisons

38.14.5. HASHES
The HASHES clause, if present, tells the system that it is permissible to use the hash join method for a
join based on this operator. HASHES only makes sense for a binary operator that returns boolean, and
in practice the operator must represent equality for some data type or pair of data types.

The assumption underlying hash join is that the join operator can only return true for pairs of left and right
values that hash to the same hash code. If two values get put in different hash buckets, the join will never
compare them at all, implicitly assuming that the result of the join operator must be false. So it never makes
sense to specify HASHES for operators that do not represent some form of equality. In most cases it is only

1140

Extending SQL

practical to support hashing for operators that take the same data type on both sides. However, sometimes
it is possible to design compatible hash functions for two or more data types; that is, functions that will
generate the same hash codes for “equal” values, even though the values have different representations.
For example, it's fairly simple to arrange this property when hashing integers of different widths.

To be marked HASHES, the join operator must appear in a hash index operator family. This is not enforced
when you create the operator, since of course the referencing operator family couldn't exist yet. But
attempts to use the operator in hash joins will fail at run time if no such operator family exists. The system
needs the operator family to find the data-type-specific hash function(s) for the operator's input data type(s).
Of course, you must also create suitable hash functions before you can create the operator family.

Care should be exercised when preparing a hash function, because there are machine-dependent ways in
which it might fail to do the right thing. For example, if your data type is a structure in which there might be
uninteresting pad bits, you cannot simply pass the whole structure to hash_any. (Unless you write your
other operators and functions to ensure that the unused bits are always zero, which is the recommended
strategy.) Another example is that on machines that meet the IEEE floating-point standard, negative zero
and positive zero are different values (different bit patterns) but they are defined to compare equal. If a
float value might contain negative zero then extra steps are needed to ensure it generates the same hash
value as positive zero.

A hash-joinable operator must have a commutator (itself if the two operand data types are the same, or
a related equality operator if they are different) that appears in the same operator family. If this is not
the case, planner errors might occur when the operator is used. Also, it is a good idea (but not strictly
required) for a hash operator family that supports multiple data types to provide equality operators for
every combination of the data types; this allows better optimization.

Note

The function underlying a hash-joinable operator must be marked immutable or stable. If it is
volatile, the system will never attempt to use the operator for a hash join.

Note

If a hash-joinable operator has an underlying function that is marked strict, the function must also
be complete: that is, it should return true or false, never null, for any two nonnull inputs. If this rule
is not followed, hash-optimization of IN operations might generate wrong results. (Specifically,
IN might return false where the correct answer according to the standard would be null; or it might
yield an error complaining that it wasn't prepared for a null result.)

38.14.6. MERGES
The MERGES clause, if present, tells the system that it is permissible to use the merge-join method for a
join based on this operator. MERGES only makes sense for a binary operator that returns boolean, and
in practice the operator must represent equality for some data type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order and then scanning them
in parallel. So, both data types must be capable of being fully ordered, and the join operator must be one
that can only succeed for pairs of values that fall at the “same place” in the sort order. In practice this
means that the join operator must behave like equality. But it is possible to merge-join two distinct data
types so long as they are logically compatible. For example, the smallint-versus-integer equality

1141

Extending SQL

operator is merge-joinable. We only need sorting operators that will bring both data types into a logically
compatible sequence.

To be marked MERGES, the join operator must appear as an equality member of a btree index operator
family. This is not enforced when you create the operator, since of course the referencing operator family
couldn't exist yet. But the operator will not actually be used for merge joins unless a matching operator
family can be found. The MERGES flag thus acts as a hint to the planner that it's worth looking for a
matching operator family.

A merge-joinable operator must have a commutator (itself if the two operand data types are the same,
or a related equality operator if they are different) that appears in the same operator family. If this is not
the case, planner errors might occur when the operator is used. Also, it is a good idea (but not strictly
required) for a btree operator family that supports multiple data types to provide equality operators for
every combination of the data types; this allows better optimization.

Note

The function underlying a merge-joinable operator must be marked immutable or stable. If it is
volatile, the system will never attempt to use the operator for a merge join.

38.15. Interfacing Extensions To Indexes
The procedures described thus far let you define new types, new functions, and new operators. However,
we cannot yet define an index on a column of a new data type. To do this, we must define an operator class
for the new data type. Later in this section, we will illustrate this concept in an example: a new operator
class for the B-tree index method that stores and sorts complex numbers in ascending absolute value order.

Operator classes can be grouped into operator families to show the relationships between semantically
compatible classes. When only a single data type is involved, an operator class is sufficient, so we'll focus
on that case first and then return to operator families.

38.15.1. Index Methods and Operator Classes
The pg_am table contains one row for every index method (internally known as access method). Support
for regular access to tables is built into PostgreSQL, but all index methods are described in pg_am. It is
possible to add a new index access method by writing the necessary code and then creating an entry in
pg_am — but that is beyond the scope of this chapter (see Chapter 61).

The routines for an index method do not directly know anything about the data types that the index method
will operate on. Instead, an operator class identifies the set of operations that the index method needs to
use to work with a particular data type. Operator classes are so called because one thing they specify is the
set of WHERE-clause operators that can be used with an index (i.e., can be converted into an index-scan
qualification). An operator class can also specify some support function that are needed by the internal
operations of the index method, but do not directly correspond to any WHERE-clause operator that can be
used with the index.

It is possible to define multiple operator classes for the same data type and index method. By doing this,
multiple sets of indexing semantics can be defined for a single data type. For example, a B-tree index
requires a sort ordering to be defined for each data type it works on. It might be useful for a complex-
number data type to have one B-tree operator class that sorts the data by complex absolute value, another
that sorts by real part, and so on. Typically, one of the operator classes will be deemed most commonly
useful and will be marked as the default operator class for that data type and index method.

1142

Extending SQL

The same operator class name can be used for several different index methods (for example, both B-tree
and hash index methods have operator classes named int4_ops), but each such class is an independent
entity and must be defined separately.

38.15.2. Index Method Strategies
The operators associated with an operator class are identified by “strategy numbers”, which serve to
identify the semantics of each operator within the context of its operator class. For example, B-trees impose
a strict ordering on keys, lesser to greater, and so operators like “less than” and “greater than or equal to” are
interesting with respect to a B-tree. Because PostgreSQL allows the user to define operators, PostgreSQL
cannot look at the name of an operator (e.g., < or >=) and tell what kind of comparison it is. Instead,
the index method defines a set of “strategies”, which can be thought of as generalized operators. Each
operator class specifies which actual operator corresponds to each strategy for a particular data type and
interpretation of the index semantics.

The B-tree index method defines five strategies, shown in Table 38.2.

Table 38.2. B-tree Strategies

Operation Strategy Number

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

Hash indexes support only equality comparisons, and so they use only one strategy, shown in Table 38.3.

Table 38.3. Hash Strategies

Operation Strategy Number

equal 1

GiST indexes are more flexible: they do not have a fixed set of strategies at all. Instead, the “consistency”
support routine of each particular GiST operator class interprets the strategy numbers however it likes.
As an example, several of the built-in GiST index operator classes index two-dimensional geometric
objects, providing the “R-tree” strategies shown in Table 38.4. Four of these are true two-dimensional
tests (overlaps, same, contains, contained by); four of them consider only the X direction; and the other
four provide the same tests in the Y direction.

Table 38.4. GiST Two-Dimensional “R-tree” Strategies

Operation Strategy Number

strictly left of 1

does not extend to right of 2

overlaps 3

does not extend to left of 4

strictly right of 5

same 6

1143

Extending SQL

Operation Strategy Number

contains 7

contained by 8

does not extend above 9

strictly below 10

strictly above 11

does not extend below 12

SP-GiST indexes are similar to GiST indexes in flexibility: they don't have a fixed set of strategies. Instead
the support routines of each operator class interpret the strategy numbers according to the operator class's
definition. As an example, the strategy numbers used by the built-in operator classes for points are shown
in Table 38.5.

Table 38.5. SP-GiST Point Strategies

Operation Strategy Number

strictly left of 1

strictly right of 5

same 6

contained by 8

strictly below 10

strictly above 11

GIN indexes are similar to GiST and SP-GiST indexes, in that they don't have a fixed set of strategies
either. Instead the support routines of each operator class interpret the strategy numbers according to the
operator class's definition. As an example, the strategy numbers used by the built-in operator class for
arrays are shown in Table 38.6.

Table 38.6. GIN Array Strategies

Operation Strategy Number

overlap 1

contains 2

is contained by 3

equal 4

BRIN indexes are similar to GiST, SP-GiST and GIN indexes in that they don't have a fixed set of strategies
either. Instead the support routines of each operator class interpret the strategy numbers according to the
operator class's definition. As an example, the strategy numbers used by the built-in Minmax operator
classes are shown in Table 38.7.

Table 38.7. BRIN Minmax Strategies

Operation Strategy Number

less than 1

less than or equal 2

equal 3

1144

Extending SQL

Operation Strategy Number

greater than or equal 4

greater than 5

Notice that all the operators listed above return Boolean values. In practice, all operators defined as index
method search operators must return type boolean, since they must appear at the top level of a WHERE
clause to be used with an index. (Some index access methods also support ordering operators, which
typically don't return Boolean values; that feature is discussed in Section 38.15.7.)

38.15.3. Index Method Support Routines
Strategies aren't usually enough information for the system to figure out how to use an index. In practice,
the index methods require additional support routines in order to work. For example, the B-tree index
method must be able to compare two keys and determine whether one is greater than, equal to, or less
than the other. Similarly, the hash index method must be able to compute hash codes for key values. These
operations do not correspond to operators used in qualifications in SQL commands; they are administrative
routines used by the index methods, internally.

Just as with strategies, the operator class identifies which specific functions should play each of these roles
for a given data type and semantic interpretation. The index method defines the set of functions it needs,
and the operator class identifies the correct functions to use by assigning them to the “support function
numbers” specified by the index method.

B-trees require a comparison support function, and allow two additional support functions to be supplied
at the operator class author's option, as shown in Table 38.8. The requirements for these support functions
are explained further in Section 63.3.

Table 38.8. B-tree Support Functions

Function Support Number

Compare two keys and return an integer less than
zero, zero, or greater than zero, indicating whether
the first key is less than, equal to, or greater than the
second

1

Return the addresses of C-callable sort support
function(s) (optional)

2

Compare a test value to a base value plus/minus
an offset, and return true or false according to the
comparison result (optional)

3

Hash indexes require one support function, and allow a second one to be supplied at the operator class
author's option, as shown in Table 38.9.

Table 38.9. Hash Support Functions

Function Support Number

Compute the 32-bit hash value for a key 1

Compute the 64-bit hash value for a key given a
64-bit salt; if the salt is 0, the low 32 bits of the
result must match the value that would have been
computed by function 1 (optional)

2

1145

Extending SQL

GiST indexes have nine support functions, two of which are optional, as shown in Table 38.10. (For more
information see Chapter 64.)

Table 38.10. GiST Support Functions

Function Description Support Number

consistent determine whether key satisfies
the query qualifier

1

union compute union of a set of keys 2

compress compute a compressed
representation of a key or value to
be indexed

3

decompress compute a decompressed
representation of a compressed
key

4

penalty compute penalty for inserting
new key into subtree with given
subtree's key

5

picksplit determine which entries of a page
are to be moved to the new page
and compute the union keys for
resulting pages

6

equal compare two keys and return true
if they are equal

7

distance determine distance from key to
query value (optional)

8

fetch compute original representation
of a compressed key for index-
only scans (optional)

9

SP-GiST indexes require five support functions, as shown in Table 38.11. (For more information see
Chapter 65.)

Table 38.11. SP-GiST Support Functions

Function Description Support Number

config provide basic information about
the operator class

1

choose determine how to insert a new
value into an inner tuple

2

picksplit determine how to partition a set of
values

3

inner_consistent determine which sub-partitions
need to be searched for a query

4

leaf_consistent determine whether key satisfies
the query qualifier

5

GIN indexes have six support functions, three of which are optional, as shown in Table 38.12. (For more
information see Chapter 66.)

1146

Extending SQL

Table 38.12. GIN Support Functions

Function Description Support Number

compare compare two keys and return
an integer less than zero, zero,
or greater than zero, indicating
whether the first key is less than,
equal to, or greater than the second

1

extractValue extract keys from a value to be
indexed

2

extractQuery extract keys from a query
condition

3

consistent determine whether value matches
query condition (Boolean variant)
(optional if support function 6 is
present)

4

comparePartial compare partial key from query
and key from index, and return
an integer less than zero, zero,
or greater than zero, indicating
whether GIN should ignore this
index entry, treat the entry as a
match, or stop the index scan
(optional)

5

triConsistent determine whether value matches
query condition (ternary variant)
(optional if support function 4 is
present)

6

BRIN indexes have four basic support functions, as shown in Table 38.13; those basic functions may
require additional support functions to be provided. (For more information see Section 67.3.)

Table 38.13. BRIN Support Functions

Function Description Support Number

opcInfo return internal information
describing the indexed columns'
summary data

1

add_value add a new value to an existing
summary index tuple

2

consistent determine whether value matches
query condition

3

union compute union of two summary
tuples

4

Unlike search operators, support functions return whichever data type the particular index method expects;
for example in the case of the comparison function for B-trees, a signed integer. The number and types of
the arguments to each support function are likewise dependent on the index method. For B-tree and hash
the comparison and hashing support functions take the same input data types as do the operators included
in the operator class, but this is not the case for most GiST, SP-GiST, GIN, and BRIN support functions.

1147

Extending SQL

38.15.4. An Example
Now that we have seen the ideas, here is the promised example of creating a new operator class. (You
can find a working copy of this example in src/tutorial/complex.c and src/tutorial/
complex.sql in the source distribution.) The operator class encapsulates operators that sort complex
numbers in absolute value order, so we choose the name complex_abs_ops. First, we need a set of
operators. The procedure for defining operators was discussed in Section 38.13. For an operator class on
B-trees, the operators we require are:

• absolute-value less-than (strategy 1)
• absolute-value less-than-or-equal (strategy 2)
• absolute-value equal (strategy 3)
• absolute-value greater-than-or-equal (strategy 4)
• absolute-value greater-than (strategy 5)

The least error-prone way to define a related set of comparison operators is to write the B-tree comparison
support function first, and then write the other functions as one-line wrappers around the support function.
This reduces the odds of getting inconsistent results for corner cases. Following this approach, we first
write:

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

static int
complex_abs_cmp_internal(Complex *a, Complex *b)
{
 double amag = Mag(a),
 bmag = Mag(b);

 if (amag < bmag)
 return -1;
 if (amag > bmag)
 return 1;
 return 0;
}

Now the less-than function looks like:

PG_FUNCTION_INFO_V1(complex_abs_lt);

Datum
complex_abs_lt(PG_FUNCTION_ARGS)
{
 Complex *a = (Complex *) PG_GETARG_POINTER(0);
 Complex *b = (Complex *) PG_GETARG_POINTER(1);

 PG_RETURN_BOOL(complex_abs_cmp_internal(a, b) < 0);
}

The other four functions differ only in how they compare the internal function's result to zero.

Next we declare the functions and the operators based on the functions to SQL:

1148

Extending SQL

CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
 AS 'filename', 'complex_abs_lt'
 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR < (
 leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
 commutator = > , negator = >= ,
 restrict = scalarltsel, join = scalarltjoinsel
);

It is important to specify the correct commutator and negator operators, as well as suitable restriction and
join selectivity functions, otherwise the optimizer will be unable to make effective use of the index.

Other things worth noting are happening here:

• There can only be one operator named, say, = and taking type complex for both operands. In this case
we don't have any other operator = for complex, but if we were building a practical data type we'd
probably want = to be the ordinary equality operation for complex numbers (and not the equality of the
absolute values). In that case, we'd need to use some other operator name for complex_abs_eq.

• Although PostgreSQL can cope with functions having the same SQL name as long as they have different
argument data types, C can only cope with one global function having a given name. So we shouldn't
name the C function something simple like abs_eq. Usually it's a good practice to include the data
type name in the C function name, so as not to conflict with functions for other data types.

• We could have made the SQL name of the function abs_eq, relying on PostgreSQL to distinguish it
by argument data types from any other SQL function of the same name. To keep the example simple,
we make the function have the same names at the C level and SQL level.

The next step is the registration of the support routine required by B-trees. The example C code that
implements this is in the same file that contains the operator functions. This is how we declare the function:

CREATE FUNCTION complex_abs_cmp(complex, complex)
 RETURNS integer
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

Now that we have the required operators and support routine, we can finally create the operator class:

CREATE OPERATOR CLASS complex_abs_ops
 DEFAULT FOR TYPE complex USING btree AS
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 complex_abs_cmp(complex, complex);

And we're done! It should now be possible to create and use B-tree indexes on complex columns.

We could have written the operator entries more verbosely, as in:

 OPERATOR 1 < (complex, complex) ,

1149

Extending SQL

but there is no need to do so when the operators take the same data type we are defining the operator
class for.

The above example assumes that you want to make this new operator class the default B-tree operator
class for the complex data type. If you don't, just leave out the word DEFAULT.

38.15.5. Operator Classes and Operator Families
So far we have implicitly assumed that an operator class deals with only one data type. While there certainly
can be only one data type in a particular index column, it is often useful to index operations that compare
an indexed column to a value of a different data type. Also, if there is use for a cross-data-type operator in
connection with an operator class, it is often the case that the other data type has a related operator class
of its own. It is helpful to make the connections between related classes explicit, because this can aid the
planner in optimizing SQL queries (particularly for B-tree operator classes, since the planner contains a
great deal of knowledge about how to work with them).

To handle these needs, PostgreSQL uses the concept of an operator family. An operator family contains
one or more operator classes, and can also contain indexable operators and corresponding support functions
that belong to the family as a whole but not to any single class within the family. We say that such operators
and functions are “loose” within the family, as opposed to being bound into a specific class. Typically each
operator class contains single-data-type operators while cross-data-type operators are loose in the family.

All the operators and functions in an operator family must have compatible semantics, where the
compatibility requirements are set by the index method. You might therefore wonder why bother to single
out particular subsets of the family as operator classes; and indeed for many purposes the class divisions
are irrelevant and the family is the only interesting grouping. The reason for defining operator classes is
that they specify how much of the family is needed to support any particular index. If there is an index
using an operator class, then that operator class cannot be dropped without dropping the index — but
other parts of the operator family, namely other operator classes and loose operators, could be dropped.
Thus, an operator class should be specified to contain the minimum set of operators and functions that
are reasonably needed to work with an index on a specific data type, and then related but non-essential
operators can be added as loose members of the operator family.

As an example, PostgreSQL has a built-in B-tree operator family integer_ops, which includes operator
classes int8_ops, int4_ops, and int2_ops for indexes on bigint (int8), integer (int4),
and smallint (int2) columns respectively. The family also contains cross-data-type comparison
operators allowing any two of these types to be compared, so that an index on one of these types can be
searched using a comparison value of another type. The family could be duplicated by these definitions:

CREATE OPERATOR FAMILY integer_ops USING btree;

CREATE OPERATOR CLASS int8_ops
DEFAULT FOR TYPE int8 USING btree FAMILY integer_ops AS
 -- standard int8 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint8cmp(int8, int8) ,
 FUNCTION 2 btint8sortsupport(internal) ,
 FUNCTION 3 in_range(int8, int8, int8, boolean, boolean) ;

1150

Extending SQL

CREATE OPERATOR CLASS int4_ops
DEFAULT FOR TYPE int4 USING btree FAMILY integer_ops AS
 -- standard int4 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint4cmp(int4, int4) ,
 FUNCTION 2 btint4sortsupport(internal) ,
 FUNCTION 3 in_range(int4, int4, int4, boolean, boolean) ;

CREATE OPERATOR CLASS int2_ops
DEFAULT FOR TYPE int2 USING btree FAMILY integer_ops AS
 -- standard int2 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint2cmp(int2, int2) ,
 FUNCTION 2 btint2sortsupport(internal) ,
 FUNCTION 3 in_range(int2, int2, int2, boolean, boolean) ;

ALTER OPERATOR FAMILY integer_ops USING btree ADD
 -- cross-type comparisons int8 vs int2
 OPERATOR 1 < (int8, int2) ,
 OPERATOR 2 <= (int8, int2) ,
 OPERATOR 3 = (int8, int2) ,
 OPERATOR 4 >= (int8, int2) ,
 OPERATOR 5 > (int8, int2) ,
 FUNCTION 1 btint82cmp(int8, int2) ,

 -- cross-type comparisons int8 vs int4
 OPERATOR 1 < (int8, int4) ,
 OPERATOR 2 <= (int8, int4) ,
 OPERATOR 3 = (int8, int4) ,
 OPERATOR 4 >= (int8, int4) ,
 OPERATOR 5 > (int8, int4) ,
 FUNCTION 1 btint84cmp(int8, int4) ,

 -- cross-type comparisons int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- cross-type comparisons int4 vs int8
 OPERATOR 1 < (int4, int8) ,
 OPERATOR 2 <= (int4, int8) ,
 OPERATOR 3 = (int4, int8) ,
 OPERATOR 4 >= (int4, int8) ,

1151

Extending SQL

 OPERATOR 5 > (int4, int8) ,
 FUNCTION 1 btint48cmp(int4, int8) ,

 -- cross-type comparisons int2 vs int8
 OPERATOR 1 < (int2, int8) ,
 OPERATOR 2 <= (int2, int8) ,
 OPERATOR 3 = (int2, int8) ,
 OPERATOR 4 >= (int2, int8) ,
 OPERATOR 5 > (int2, int8) ,
 FUNCTION 1 btint28cmp(int2, int8) ,

 -- cross-type comparisons int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ,

 -- cross-type in_range functions
 FUNCTION 3 in_range(int4, int4, int8, boolean, boolean) ,
 FUNCTION 3 in_range(int4, int4, int2, boolean, boolean) ,
 FUNCTION 3 in_range(int2, int2, int8, boolean, boolean) ,
 FUNCTION 3 in_range(int2, int2, int4, boolean, boolean) ;

Notice that this definition “overloads” the operator strategy and support function numbers: each number
occurs multiple times within the family. This is allowed so long as each instance of a particular number
has distinct input data types. The instances that have both input types equal to an operator class's input
type are the primary operators and support functions for that operator class, and in most cases should be
declared as part of the operator class rather than as loose members of the family.

In a B-tree operator family, all the operators in the family must sort compatibly, as is specified in detail in
Section 63.2. For each operator in the family there must be a support function having the same two input
data types as the operator. It is recommended that a family be complete, i.e., for each combination of data
types, all operators are included. Each operator class should include just the non-cross-type operators and
support function for its data type.

To build a multiple-data-type hash operator family, compatible hash support functions must be created
for each data type supported by the family. Here compatibility means that the functions are guaranteed to
return the same hash code for any two values that are considered equal by the family's equality operators,
even when the values are of different types. This is usually difficult to accomplish when the types have
different physical representations, but it can be done in some cases. Furthermore, casting a value from one
data type represented in the operator family to another data type also represented in the operator family via
an implicit or binary coercion cast must not change the computed hash value. Notice that there is only one
support function per data type, not one per equality operator. It is recommended that a family be complete,
i.e., provide an equality operator for each combination of data types. Each operator class should include
just the non-cross-type equality operator and the support function for its data type.

GiST, SP-GiST, and GIN indexes do not have any explicit notion of cross-data-type operations. The set of
operators supported is just whatever the primary support functions for a given operator class can handle.

In BRIN, the requirements depends on the framework that provides the operator classes. For operator
classes based on minmax, the behavior required is the same as for B-tree operator families: all the
operators in the family must sort compatibly, and casts must not change the associated sort ordering.

1152

Extending SQL

Note

Prior to PostgreSQL 8.3, there was no concept of operator families, and so any cross-data-type
operators intended to be used with an index had to be bound directly into the index's operator
class. While this approach still works, it is deprecated because it makes an index's dependencies
too broad, and because the planner can handle cross-data-type comparisons more effectively when
both data types have operators in the same operator family.

38.15.6. System Dependencies on Operator Classes
PostgreSQL uses operator classes to infer the properties of operators in more ways than just whether they
can be used with indexes. Therefore, you might want to create operator classes even if you have no intention
of indexing any columns of your data type.

In particular, there are SQL features such as ORDER BY and DISTINCT that require comparison and
sorting of values. To implement these features on a user-defined data type, PostgreSQL looks for the
default B-tree operator class for the data type. The “equals” member of this operator class defines the
system's notion of equality of values for GROUP BY and DISTINCT, and the sort ordering imposed by
the operator class defines the default ORDER BY ordering.

If there is no default B-tree operator class for a data type, the system will look for a default hash operator
class. But since that kind of operator class only provides equality, it is only able to support grouping not
sorting.

When there is no default operator class for a data type, you will get errors like “could not identify an
ordering operator” if you try to use these SQL features with the data type.

Note

In PostgreSQL versions before 7.4, sorting and grouping operations would implicitly use operators
named =, <, and >. The new behavior of relying on default operator classes avoids having to make
any assumption about the behavior of operators with particular names.

Sorting by a non-default B-tree operator class is possible by specifying the class's less-than operator in
a USING option, for example

SELECT * FROM mytable ORDER BY somecol USING ~<~;

Alternatively, specifying the class's greater-than operator in USING selects a descending-order sort.

Comparison of arrays of a user-defined type also relies on the semantics defined by the type's default B-
tree operator class. If there is no default B-tree operator class, but there is a default hash operator class,
then array equality is supported, but not ordering comparisons.

Another SQL feature that requires even more data-type-specific knowledge is the RANGE offset
PRECEDING/FOLLOWING framing option for window functions (see Section 4.2.8). For a query such as

SELECT sum(x) OVER (ORDER BY x RANGE BETWEEN 5 PRECEDING AND 10
 FOLLOWING)
 FROM mytable;

1153

Extending SQL

it is not sufficient to know how to order by x; the database must also understand how to “subtract 5” or
“add 10” to the current row's value of x to identify the bounds of the current window frame. Comparing
the resulting bounds to other rows' values of x is possible using the comparison operators provided by
the B-tree operator class that defines the ORDER BY ordering — but addition and subtraction operators
are not part of the operator class, so which ones should be used? Hard-wiring that choice would be
undesirable, because different sort orders (different B-tree operator classes) might need different behavior.
Therefore, a B-tree operator class can specify an in_range support function that encapsulates the addition
and subtraction behaviors that make sense for its sort order. It can even provide more than one in_range
support function, in case there is more than one data type that makes sense to use as the offset in RANGE
clauses. If the B-tree operator class associated with the window's ORDER BY clause does not have
a matching in_range support function, the RANGE offset PRECEDING/FOLLOWING option is not
supported.

Another important point is that an equality operator that appears in a hash operator family is a candidate
for hash joins, hash aggregation, and related optimizations. The hash operator family is essential here since
it identifies the hash function(s) to use.

38.15.7. Ordering Operators
Some index access methods (currently, only GiST) support the concept of ordering operators. What
we have been discussing so far are search operators. A search operator is one for which the index can
be searched to find all rows satisfying WHERE indexed_column operator constant. Note that
nothing is promised about the order in which the matching rows will be returned. In contrast, an ordering
operator does not restrict the set of rows that can be returned, but instead determines their order. An
ordering operator is one for which the index can be scanned to return rows in the order represented by
ORDER BY indexed_column operator constant. The reason for defining ordering operators
that way is that it supports nearest-neighbor searches, if the operator is one that measures distance. For
example, a query like

SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;

finds the ten places closest to a given target point. A GiST index on the location column can do this
efficiently because <-> is an ordering operator.

While search operators have to return Boolean results, ordering operators usually return some other type,
such as float or numeric for distances. This type is normally not the same as the data type being indexed.
To avoid hard-wiring assumptions about the behavior of different data types, the definition of an ordering
operator is required to name a B-tree operator family that specifies the sort ordering of the result data type.
As was stated in the previous section, B-tree operator families define PostgreSQL's notion of ordering, so
this is a natural representation. Since the point <-> operator returns float8, it could be specified in an
operator class creation command like this:

OPERATOR 15 <-> (point, point) FOR ORDER BY float_ops

where float_ops is the built-in operator family that includes operations on float8. This declaration
states that the index is able to return rows in order of increasing values of the <-> operator.

38.15.8. Special Features of Operator Classes
There are two special features of operator classes that we have not discussed yet, mainly because they are
not useful with the most commonly used index methods.

1154

Extending SQL

Normally, declaring an operator as a member of an operator class (or family) means that the index method
can retrieve exactly the set of rows that satisfy a WHERE condition using the operator. For example:

SELECT * FROM table WHERE integer_column < 4;

can be satisfied exactly by a B-tree index on the integer column. But there are cases where an index
is useful as an inexact guide to the matching rows. For example, if a GiST index stores only bounding
boxes for geometric objects, then it cannot exactly satisfy a WHERE condition that tests overlap between
nonrectangular objects such as polygons. Yet we could use the index to find objects whose bounding box
overlaps the bounding box of the target object, and then do the exact overlap test only on the objects found
by the index. If this scenario applies, the index is said to be “lossy” for the operator. Lossy index searches
are implemented by having the index method return a recheck flag when a row might or might not really
satisfy the query condition. The core system will then test the original query condition on the retrieved
row to see whether it should be returned as a valid match. This approach works if the index is guaranteed
to return all the required rows, plus perhaps some additional rows, which can be eliminated by performing
the original operator invocation. The index methods that support lossy searches (currently, GiST, SP-GiST
and GIN) allow the support functions of individual operator classes to set the recheck flag, and so this is
essentially an operator-class feature.

Consider again the situation where we are storing in the index only the bounding box of a complex object
such as a polygon. In this case there's not much value in storing the whole polygon in the index entry —
we might as well store just a simpler object of type box. This situation is expressed by the STORAGE
option in CREATE OPERATOR CLASS: we'd write something like:

CREATE OPERATOR CLASS polygon_ops
 DEFAULT FOR TYPE polygon USING gist AS
 ...
 STORAGE box;

At present, only the GiST, GIN and BRIN index methods support a STORAGE type that's different from
the column data type. The GiST compress and decompress support routines must deal with data-
type conversion when STORAGE is used. In GIN, the STORAGE type identifies the type of the “key”
values, which normally is different from the type of the indexed column — for example, an operator
class for integer-array columns might have keys that are just integers. The GIN extractValue and
extractQuery support routines are responsible for extracting keys from indexed values. BRIN is
similar to GIN: the STORAGE type identifies the type of the stored summary values, and operator classes'
support procedures are responsible for interpreting the summary values correctly.

38.16. Packaging Related Objects into an
Extension

A useful extension to PostgreSQL typically includes multiple SQL objects; for example, a new data type
will require new functions, new operators, and probably new index operator classes. It is helpful to collect
all these objects into a single package to simplify database management. PostgreSQL calls such a package
an extension. To define an extension, you need at least a script file that contains the SQL commands to
create the extension's objects, and a control file that specifies a few basic properties of the extension itself.
If the extension includes C code, there will typically also be a shared library file into which the C code
has been built. Once you have these files, a simple CREATE EXTENSION command loads the objects
into your database.

The main advantage of using an extension, rather than just running the SQL script to load a bunch of
“loose” objects into your database, is that PostgreSQL will then understand that the objects of the extension

1155

Extending SQL

go together. You can drop all the objects with a single DROP EXTENSION command (no need to maintain
a separate “uninstall” script). Even more useful, pg_dump knows that it should not dump the individual
member objects of the extension — it will just include a CREATE EXTENSION command in dumps,
instead. This vastly simplifies migration to a new version of the extension that might contain more or
different objects than the old version. Note however that you must have the extension's control, script, and
other files available when loading such a dump into a new database.

PostgreSQL will not let you drop an individual object contained in an extension, except by dropping the
whole extension. Also, while you can change the definition of an extension member object (for example,
via CREATE OR REPLACE FUNCTION for a function), bear in mind that the modified definition will
not be dumped by pg_dump. Such a change is usually only sensible if you concurrently make the same
change in the extension's script file. (But there are special provisions for tables containing configuration
data; see Section 38.16.4.) In production situations, it's generally better to create an extension update script
to perform changes to extension member objects.

The extension script may set privileges on objects that are part of the extension via GRANT and REVOKE
statements. The final set of privileges for each object (if any are set) will be stored in the pg_init_privs
system catalog. When pg_dump is used, the CREATE EXTENSION command will be included in the
dump, followed by the set of GRANT and REVOKE statements necessary to set the privileges on the objects
to what they were at the time the dump was taken.

PostgreSQL does not currently support extension scripts issuing CREATE POLICY or SECURITY
LABEL statements. These are expected to be set after the extension has been created. All RLS policies and
security labels on extension objects will be included in dumps created by pg_dump.

The extension mechanism also has provisions for packaging modification scripts that adjust the definitions
of the SQL objects contained in an extension. For example, if version 1.1 of an extension adds one function
and changes the body of another function compared to 1.0, the extension author can provide an update
script that makes just those two changes. The ALTER EXTENSION UPDATE command can then be used
to apply these changes and track which version of the extension is actually installed in a given database.

The kinds of SQL objects that can be members of an extension are shown in the description of ALTER
EXTENSION. Notably, objects that are database-cluster-wide, such as databases, roles, and tablespaces,
cannot be extension members since an extension is only known within one database. (Although an
extension script is not prohibited from creating such objects, if it does so they will not be tracked as part of
the extension.) Also notice that while a table can be a member of an extension, its subsidiary objects such
as indexes are not directly considered members of the extension. Another important point is that schemas
can belong to extensions, but not vice versa: an extension as such has an unqualified name and does not
exist “within” any schema. The extension's member objects, however, will belong to schemas whenever
appropriate for their object types. It may or may not be appropriate for an extension to own the schema(s)
its member objects are within.

If an extension's script creates any temporary objects (such as temp tables), those objects are treated as
extension members for the remainder of the current session, but are automatically dropped at session end,
as any temporary object would be. This is an exception to the rule that extension member objects cannot
be dropped without dropping the whole extension.

38.16.1. Defining Extension Objects
Widely-distributed extensions should assume little about the database they occupy. In particular, unless
you issued SET search_path = pg_temp, assume each unqualified name could resolve to an object
that a malicious user has defined. Beware of constructs that depend on search_path implicitly: IN
and CASE expression WHEN always select an operator using the search path. In their place, use
OPERATOR(schema.=) ANY and CASE WHEN expression.

1156

Extending SQL

38.16.2. Extension Files
The CREATE EXTENSION command relies on a control file for each extension, which must be named the
same as the extension with a suffix of .control, and must be placed in the installation's SHAREDIR/
extension directory. There must also be at least one SQL script file, which follows the naming pattern
extension--version.sql (for example, foo--1.0.sql for version 1.0 of extension foo). By
default, the script file(s) are also placed in the SHAREDIR/extension directory; but the control file
can specify a different directory for the script file(s).

The file format for an extension control file is the same as for the postgresql.conf file, namely a list
of parameter_name = value assignments, one per line. Blank lines and comments introduced by #
are allowed. Be sure to quote any value that is not a single word or number.

A control file can set the following parameters:

directory (string)

The directory containing the extension's SQL script file(s). Unless an absolute path is given, the name
is relative to the installation's SHAREDIR directory. The default behavior is equivalent to specifying
directory = 'extension'.

default_version (string)

The default version of the extension (the one that will be installed if no version is specified in CREATE
EXTENSION). Although this can be omitted, that will result in CREATE EXTENSION failing if no
VERSION option appears, so you generally don't want to do that.

comment (string)

A comment (any string) about the extension. The comment is applied when initially creating an
extension, but not during extension updates (since that might override user-added comments).
Alternatively, the extension's comment can be set by writing a COMMENT command in the script file.

encoding (string)

The character set encoding used by the script file(s). This should be specified if the script files contain
any non-ASCII characters. Otherwise the files will be assumed to be in the database encoding.

module_pathname (string)

The value of this parameter will be substituted for each occurrence of MODULE_PATHNAME in
the script file(s). If it is not set, no substitution is made. Typically, this is set to $libdir/
shared_library_name and then MODULE_PATHNAME is used in CREATE FUNCTION
commands for C-language functions, so that the script files do not need to hard-wire the name of the
shared library.

requires (string)

A list of names of extensions that this extension depends on, for example requires = 'foo,
bar'. Those extensions must be installed before this one can be installed.

superuser (boolean)

If this parameter is true (which is the default), only superusers can create the extension or update
it to a new version. If it is set to false, just the privileges required to execute the commands in the
installation or update script are required.

1157

Extending SQL

relocatable (boolean)

An extension is relocatable if it is possible to move its contained objects into a different schema
after initial creation of the extension. The default is false, i.e. the extension is not relocatable. See
Section 38.16.3 for more information.

schema (string)

This parameter can only be set for non-relocatable extensions. It forces the extension to be loaded into
exactly the named schema and not any other. The schema parameter is consulted only when initially
creating an extension, not during extension updates. See Section 38.16.3 for more information.

In addition to the primary control file extension.control, an extension can have secondary control
files named in the style extension--version.control. If supplied, these must be located in the
script file directory. Secondary control files follow the same format as the primary control file. Any
parameters set in a secondary control file override the primary control file when installing or updating to
that version of the extension. However, the parameters directory and default_version cannot
be set in a secondary control file.

An extension's SQL script files can contain any SQL commands, except for transaction control commands
(BEGIN, COMMIT, etc) and commands that cannot be executed inside a transaction block (such as
VACUUM). This is because the script files are implicitly executed within a transaction block.

An extension's SQL script files can also contain lines beginning with \echo, which will be ignored
(treated as comments) by the extension mechanism. This provision is commonly used to throw an error
if the script file is fed to psql rather than being loaded via CREATE EXTENSION (see example script in
Section 38.16.7). Without that, users might accidentally load the extension's contents as “loose” objects
rather than as an extension, a state of affairs that's a bit tedious to recover from.

While the script files can contain any characters allowed by the specified encoding, control files should
contain only plain ASCII, because there is no way for PostgreSQL to know what encoding a control file
is in. In practice this is only an issue if you want to use non-ASCII characters in the extension's comment.
Recommended practice in that case is to not use the control file comment parameter, but instead use
COMMENT ON EXTENSION within a script file to set the comment.

38.16.3. Extension Relocatability
Users often wish to load the objects contained in an extension into a different schema than the extension's
author had in mind. There are three supported levels of relocatability:

• A fully relocatable extension can be moved into another schema at any time, even after it's been
loaded into a database. This is done with the ALTER EXTENSION SET SCHEMA command, which
automatically renames all the member objects into the new schema. Normally, this is only possible if
the extension contains no internal assumptions about what schema any of its objects are in. Also, the
extension's objects must all be in one schema to begin with (ignoring objects that do not belong to any
schema, such as procedural languages). Mark a fully relocatable extension by setting relocatable
= true in its control file.

• An extension might be relocatable during installation but not afterwards. This is typically the case
if the extension's script file needs to reference the target schema explicitly, for example in setting
search_path properties for SQL functions. For such an extension, set relocatable = false
in its control file, and use @extschema@ to refer to the target schema in the script file. All occurrences
of this string will be replaced by the actual target schema's name before the script is executed. The user
can set the target schema using the SCHEMA option of CREATE EXTENSION.

1158

Extending SQL

• If the extension does not support relocation at all, set relocatable = false in its control file,
and also set schema to the name of the intended target schema. This will prevent use of the SCHEMA
option of CREATE EXTENSION, unless it specifies the same schema named in the control file. This
choice is typically necessary if the extension contains internal assumptions about schema names that
can't be replaced by uses of @extschema@. The @extschema@ substitution mechanism is available
in this case too, although it is of limited use since the schema name is determined by the control file.

In all cases, the script file will be executed with search_path initially set to point to the target schema; that
is, CREATE EXTENSION does the equivalent of this:

SET LOCAL search_path TO @extschema@;

This allows the objects created by the script file to go into the target schema. The script file can change
search_path if it wishes, but that is generally undesirable. search_path is restored to its previous
setting upon completion of CREATE EXTENSION.

The target schema is determined by the schema parameter in the control file if that is given, otherwise by
the SCHEMA option of CREATE EXTENSION if that is given, otherwise the current default object creation
schema (the first one in the caller's search_path). When the control file schema parameter is used,
the target schema will be created if it doesn't already exist, but in the other two cases it must already exist.

If any prerequisite extensions are listed in requires in the control file, their target schemas are appended
to the initial setting of search_path. This allows their objects to be visible to the new extension's script
file.

Although a non-relocatable extension can contain objects spread across multiple schemas, it is usually
desirable to place all the objects meant for external use into a single schema, which is considered
the extension's target schema. Such an arrangement works conveniently with the default setting of
search_path during creation of dependent extensions.

38.16.4. Extension Configuration Tables
Some extensions include configuration tables, which contain data that might be added or changed by the
user after installation of the extension. Ordinarily, if a table is part of an extension, neither the table's
definition nor its content will be dumped by pg_dump. But that behavior is undesirable for a configuration
table; any data changes made by the user need to be included in dumps, or the extension will behave
differently after a dump and reload.

To solve this problem, an extension's script file can mark a table or a sequence it has created as a
configuration relation, which will cause pg_dump to include the table's or the sequence's contents (not
its definition) in dumps. To do that, call the function pg_extension_config_dump(regclass,
text) after creating the table or the sequence, for example

CREATE TABLE my_config (key text, value text);
CREATE SEQUENCE my_config_seq;

SELECT pg_catalog.pg_extension_config_dump('my_config', '');
SELECT pg_catalog.pg_extension_config_dump('my_config_seq', '');

Any number of tables or sequences can be marked this way. Sequences associated with serial or
bigserial columns can be marked as well.

1159

Extending SQL

When the second argument of pg_extension_config_dump is an empty string, the entire contents
of the table are dumped by pg_dump. This is usually only correct if the table is initially empty as created
by the extension script. If there is a mixture of initial data and user-provided data in the table, the second
argument of pg_extension_config_dump provides a WHERE condition that selects the data to be
dumped. For example, you might do

CREATE TABLE my_config (key text, value text, standard_entry boolean);

SELECT pg_catalog.pg_extension_config_dump('my_config', 'WHERE NOT
 standard_entry');

and then make sure that standard_entry is true only in the rows created by the extension's script.

For sequences, the second argument of pg_extension_config_dump has no effect.

More complicated situations, such as initially-provided rows that might be modified by users, can be
handled by creating triggers on the configuration table to ensure that modified rows are marked correctly.

You can alter the filter condition associated with a configuration table by calling
pg_extension_config_dump again. (This would typically be useful in an extension update script.)
The only way to mark a table as no longer a configuration table is to dissociate it from the extension with
ALTER EXTENSION ... DROP TABLE.

Note that foreign key relationships between these tables will dictate the order in which the tables are
dumped out by pg_dump. Specifically, pg_dump will attempt to dump the referenced-by table before the
referencing table. As the foreign key relationships are set up at CREATE EXTENSION time (prior to data
being loaded into the tables) circular dependencies are not supported. When circular dependencies exist,
the data will still be dumped out but the dump will not be able to be restored directly and user intervention
will be required.

Sequences associated with serial or bigserial columns need to be directly marked to dump their
state. Marking their parent relation is not enough for this purpose.

38.16.5. Extension Updates
One advantage of the extension mechanism is that it provides convenient ways to manage updates to the
SQL commands that define an extension's objects. This is done by associating a version name or number
with each released version of the extension's installation script. In addition, if you want users to be able to
update their databases dynamically from one version to the next, you should provide update scripts that
make the necessary changes to go from one version to the next. Update scripts have names following the
pattern extension--oldversion--newversion.sql (for example, foo--1.0--1.1.sql
contains the commands to modify version 1.0 of extension foo into version 1.1).

Given that a suitable update script is available, the command ALTER EXTENSION UPDATE will update
an installed extension to the specified new version. The update script is run in the same environment that
CREATE EXTENSION provides for installation scripts: in particular, search_path is set up in the
same way, and any new objects created by the script are automatically added to the extension. Also, if the
script chooses to drop extension member objects, they are automatically dissociated from the extension.

If an extension has secondary control files, the control parameters that are used for an update script are
those associated with the script's target (new) version.

The update mechanism can be used to solve an important special case: converting a “loose” collection of
objects into an extension. Before the extension mechanism was added to PostgreSQL (in 9.1), many people

1160

Extending SQL

wrote extension modules that simply created assorted unpackaged objects. Given an existing database
containing such objects, how can we convert the objects into a properly packaged extension? Dropping
them and then doing a plain CREATE EXTENSION is one way, but it's not desirable if the objects have
dependencies (for example, if there are table columns of a data type created by the extension). The way
to fix this situation is to create an empty extension, then use ALTER EXTENSION ADD to attach each
pre-existing object to the extension, then finally create any new objects that are in the current extension
version but were not in the unpackaged release. CREATE EXTENSION supports this case with its FROM
old_version option, which causes it to not run the normal installation script for the target version,
but instead the update script named extension--old_version--target_version.sql. The
choice of the dummy version name to use as old_version is up to the extension author, though
unpackaged is a common convention. If you have multiple prior versions you need to be able to update
into extension style, use multiple dummy version names to identify them.

ALTER EXTENSION is able to execute sequences of update script files to achieve a requested
update. For example, if only foo--1.0--1.1.sql and foo--1.1--2.0.sql are available, ALTER
EXTENSION will apply them in sequence if an update to version 2.0 is requested when 1.0 is currently
installed.

PostgreSQL doesn't assume anything about the properties of version names: for example, it does not know
whether 1.1 follows 1.0. It just matches up the available version names and follows the path that requires
applying the fewest update scripts. (A version name can actually be any string that doesn't contain -- or
leading or trailing -.)

Sometimes it is useful to provide “downgrade” scripts, for example foo--1.1--1.0.sql to allow
reverting the changes associated with version 1.1. If you do that, be careful of the possibility that a
downgrade script might unexpectedly get applied because it yields a shorter path. The risky case is where
there is a “fast path” update script that jumps ahead several versions as well as a downgrade script to
the fast path's start point. It might take fewer steps to apply the downgrade and then the fast path than to
move ahead one version at a time. If the downgrade script drops any irreplaceable objects, this will yield
undesirable results.

To check for unexpected update paths, use this command:

SELECT * FROM pg_extension_update_paths('extension_name');

This shows each pair of distinct known version names for the specified extension, together with the
update path sequence that would be taken to get from the source version to the target version, or NULL
if there is no available update path. The path is shown in textual form with -- separators. You can use
regexp_split_to_array(path,'--') if you prefer an array format.

38.16.6. Installing Extensions using Update Scripts
An extension that has been around for awhile will probably exist in several versions, for which the author
will need to write update scripts. For example, if you have released a foo extension in versions 1.0, 1.1,
and 1.2, there should be update scripts foo--1.0--1.1.sql and foo--1.1--1.2.sql. Before
PostgreSQL 10, it was necessary to also create new script files foo--1.1.sql and foo--1.2.sql
that directly build the newer extension versions, or else the newer versions could not be installed directly,
only by installing 1.0 and then updating. That was tedious and duplicative, but now it's unnecessary,
because CREATE EXTENSION can follow update chains automatically. For example, if only the script
files foo--1.0.sql, foo--1.0--1.1.sql, and foo--1.1--1.2.sql are available then a
request to install version 1.2 is honored by running those three scripts in sequence. The processing is the
same as if you'd first installed 1.0 and then updated to 1.2. (As with ALTER EXTENSION UPDATE,
if multiple pathways are available then the shortest is preferred.) Arranging an extension's script files in
this style can reduce the amount of maintenance effort needed to produce small updates.

1161

Extending SQL

If you use secondary (version-specific) control files with an extension maintained in this style, keep in mind
that each version needs a control file even if it has no stand-alone installation script, as that control file will
determine how the implicit update to that version is performed. For example, if foo--1.0.control
specifies requires = 'bar' but foo's other control files do not, the extension's dependency on bar
will be dropped when updating from 1.0 to another version.

38.16.7. Extension Example
Here is a complete example of an SQL-only extension, a two-element composite type that can store any
type of value in its slots, which are named “k” and “v”. Non-text values are automatically coerced to text
for storage.

The script file pair--1.0.sql looks like this:

-- complain if script is sourced in psql, rather than via CREATE
 EXTENSION
\echo Use "CREATE EXTENSION pair" to load this file. \quit

CREATE TYPE pair AS (k text, v text);

CREATE OR REPLACE FUNCTION pair(text, text)
RETURNS pair LANGUAGE SQL AS 'SELECT ROW($1, $2)::@extschema@.pair;';

CREATE OPERATOR ~> (LEFTARG = text, RIGHTARG = text, FUNCTION = pair);

-- "SET search_path" is easy to get right, but qualified names perform
 better.
CREATE OR REPLACE FUNCTION lower(pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW(lower($1.k), lower($1.v))::@extschema@.pair;'
SET search_path = pg_temp;

CREATE OR REPLACE FUNCTION pair_concat(pair, pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW($1.k OPERATOR(pg_catalog.||) $2.k,
 $1.v OPERATOR(pg_catalog.||) $2.v)::@extschema@.pair;';

The control file pair.control looks like this:

pair extension
comment = 'A key/value pair data type'
default_version = '1.0'
relocatable = false

While you hardly need a makefile to install these two files into the correct directory, you could use a
Makefile containing this:

EXTENSION = pair
DATA = pair--1.0.sql

1162

Extending SQL

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

This makefile relies on PGXS, which is described in Section 38.17. The command make install will
install the control and script files into the correct directory as reported by pg_config.

Once the files are installed, use the CREATE EXTENSION command to load the objects into any particular
database.

38.17. Extension Building Infrastructure
If you are thinking about distributing your PostgreSQL extension modules, setting up a portable
build system for them can be fairly difficult. Therefore the PostgreSQL installation provides a build
infrastructure for extensions, called PGXS, so that simple extension modules can be built simply against
an already installed server. PGXS is mainly intended for extensions that include C code, although it can
be used for pure-SQL extensions too. Note that PGXS is not intended to be a universal build system
framework that can be used to build any software interfacing to PostgreSQL; it simply automates common
build rules for simple server extension modules. For more complicated packages, you might need to write
your own build system.

To use the PGXS infrastructure for your extension, you must write a simple makefile. In the makefile,
you need to set some variables and include the global PGXS makefile. Here is an example that builds
an extension module named isbn_issn, consisting of a shared library containing some C code, an
extension control file, a SQL script, an include file (only needed if other modules might need to access the
extension functions without going via SQL), and a documentation text file:

MODULES = isbn_issn
EXTENSION = isbn_issn
DATA = isbn_issn--1.0.sql
DOCS = README.isbn_issn
HEADERS_isbn_issn = isbn_issn.h

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

The last three lines should always be the same. Earlier in the file, you assign variables or add custom
make rules.

Set one of these three variables to specify what is built:

MODULES

list of shared-library objects to be built from source files with same stem (do not include library
suffixes in this list)

MODULE_big

a shared library to build from multiple source files (list object files in OBJS)

PROGRAM

an executable program to build (list object files in OBJS)

1163

Extending SQL

The following variables can also be set:

EXTENSION

extension name(s); for each name you must provide an extension.control file, which will be
installed into prefix/share/extension

MODULEDIR

subdirectory of prefix/share into which DATA and DOCS files should be installed (if not set,
default is extension if EXTENSION is set, or contrib if not)

DATA

random files to install into prefix/share/$MODULEDIR

DATA_built

random files to install into prefix/share/$MODULEDIR, which need to be built first

DATA_TSEARCH

random files to install under prefix/share/tsearch_data

DOCS

random files to install under prefix/doc/$MODULEDIR

HEADERS
HEADERS_built

Files to (optionally build and) install under prefix/include/server/$MODULEDIR/
$MODULE_big.

Unlike DATA_built, files in HEADERS_built are not removed by the clean target; if you want
them removed, also add them to EXTRA_CLEAN or add your own rules to do it.

HEADERS_$MODULE
HEADERS_built_$MODULE

Files to install (after building if specified) under prefix/include/server/$MODULEDIR/
$MODULE, where $MODULE must be a module name used in MODULES or MODULE_big.

Unlike DATA_built, files in HEADERS_built_$MODULE are not removed by the clean target;
if you want them removed, also add them to EXTRA_CLEAN or add your own rules to do it.

It is legal to use both variables for the same module, or any combination, unless you have two module
names in the MODULES list that differ only by the presence of a prefix built_, which would cause
ambiguity. In that (hopefully unlikely) case, you should use only the HEADERS_built_$MODULE
variables.

SCRIPTS

script files (not binaries) to install into prefix/bin

SCRIPTS_built

script files (not binaries) to install into prefix/bin, which need to be built first

1164

Extending SQL

REGRESS

list of regression test cases (without suffix), see below

REGRESS_OPTS

additional switches to pass to pg_regress

NO_INSTALLCHECK

don't define an installcheck target, useful e.g. if tests require special configuration, or don't use
pg_regress

EXTRA_CLEAN

extra files to remove in make clean

PG_CPPFLAGS

will be prepended to CPPFLAGS

PG_CFLAGS

will be appended to CFLAGS

PG_CXXFLAGS

will be appended to CXXFLAGS

PG_LDFLAGS

will be prepended to LDFLAGS

PG_LIBS

will be added to PROGRAM link line

SHLIB_LINK

will be added to MODULE_big link line

PG_CONFIG

path to pg_config program for the PostgreSQL installation to build against (typically just pg_config
to use the first one in your PATH)

Put this makefile as Makefile in the directory which holds your extension. Then you can do make to
compile, and then make install to install your module. By default, the extension is compiled and
installed for the PostgreSQL installation that corresponds to the first pg_config program found in your
PATH. You can use a different installation by setting PG_CONFIG to point to its pg_config program,
either within the makefile or on the make command line.

You can also run make in a directory outside the source tree of your extension, if you want to keep the
build directory separate. This procedure is also called a VPATH build. Here's how:

mkdir build_dir
cd build_dir

1165

Extending SQL

make -f /path/to/extension/source/tree/Makefile
make -f /path/to/extension/source/tree/Makefile install

Alternatively, you can set up a directory for a VPATH build in a similar way to how it is done for the core
code. One way to do this is using the core script config/prep_buildtree. Once this has been done
you can build by setting the make variable VPATH like this:

make VPATH=/path/to/extension/source/tree
make VPATH=/path/to/extension/source/tree install

This procedure can work with a greater variety of directory layouts.

The scripts listed in the REGRESS variable are used for regression testing of your module, which can
be invoked by make installcheck after doing make install. For this to work you must have
a running PostgreSQL server. The script files listed in REGRESS must appear in a subdirectory named
sql/ in your extension's directory. These files must have extension .sql, which must not be included in
the REGRESS list in the makefile. For each test there should also be a file containing the expected output
in a subdirectory named expected/, with the same stem and extension .out. make installcheck
executes each test script with psql, and compares the resulting output to the matching expected file. Any
differences will be written to the file regression.diffs in diff -c format. Note that trying to run a
test that is missing its expected file will be reported as “trouble”, so make sure you have all expected files.

Tip

The easiest way to create the expected files is to create empty files, then do a test run (which will
of course report differences). Inspect the actual result files found in the results/ directory, then
copy them to expected/ if they match what you expect from the test.

1166

Chapter 39. Triggers
This chapter provides general information about writing trigger functions. Trigger functions can be written
in most of the available procedural languages, including PL/pgSQL (Chapter 43), PL/Tcl (Chapter 44), PL/
Perl (Chapter 45), and PL/Python (Chapter 46). After reading this chapter, you should consult the chapter
for your favorite procedural language to find out the language-specific details of writing a trigger in it.

It is also possible to write a trigger function in C, although most people find it easier to use one of the
procedural languages. It is not currently possible to write a trigger function in the plain SQL function
language.

39.1. Overview of Trigger Behavior
A trigger is a specification that the database should automatically execute a particular function whenever
a certain type of operation is performed. Triggers can be attached to tables (partitioned or not), views,
and foreign tables.

On tables and foreign tables, triggers can be defined to execute either before or after any INSERT,
UPDATE, or DELETE operation, either once per modified row, or once per SQL statement. UPDATE
triggers can moreover be set to fire only if certain columns are mentioned in the SET clause of the UPDATE
statement. Triggers can also fire for TRUNCATE statements. If a trigger event occurs, the trigger's function
is called at the appropriate time to handle the event.

On views, triggers can be defined to execute instead of INSERT, UPDATE, or DELETE operations. Such
INSTEAD OF triggers are fired once for each row that needs to be modified in the view. It is the
responsibility of the trigger's function to perform the necessary modifications to the view's underlying base
table(s) and, where appropriate, return the modified row as it will appear in the view. Triggers on views
can also be defined to execute once per SQL statement, before or after INSERT, UPDATE, or DELETE
operations. However, such triggers are fired only if there is also an INSTEAD OF trigger on the view.
Otherwise, any statement targeting the view must be rewritten into a statement affecting its underlying
base table(s), and then the triggers that will be fired are the ones attached to the base table(s).

The trigger function must be defined before the trigger itself can be created. The trigger function must be
declared as a function taking no arguments and returning type trigger. (The trigger function receives
its input through a specially-passed TriggerData structure, not in the form of ordinary function
arguments.)

Once a suitable trigger function has been created, the trigger is established with CREATE TRIGGER. The
same trigger function can be used for multiple triggers.

PostgreSQL offers both per-row triggers and per-statement triggers. With a per-row trigger, the trigger
function is invoked once for each row that is affected by the statement that fired the trigger. In contrast,
a per-statement trigger is invoked only once when an appropriate statement is executed, regardless of the
number of rows affected by that statement. In particular, a statement that affects zero rows will still result
in the execution of any applicable per-statement triggers. These two types of triggers are sometimes called
row-level triggers and statement-level triggers, respectively. Triggers on TRUNCATE may only be defined
at statement level, not per-row.

Triggers are also classified according to whether they fire before, after, or instead of the operation. These
are referred to as BEFORE triggers, AFTER triggers, and INSTEAD OF triggers respectively. Statement-
level BEFORE triggers naturally fire before the statement starts to do anything, while statement-level
AFTER triggers fire at the very end of the statement. These types of triggers may be defined on tables,
views, or foreign tables. Row-level BEFORE triggers fire immediately before a particular row is operated

1167

Triggers

on, while row-level AFTER triggers fire at the end of the statement (but before any statement-level AFTER
triggers). These types of triggers may only be defined on non-partitioned tables and foreign tables, not
views. INSTEAD OF triggers may only be defined on views, and only at row level; they fire immediately
as each row in the view is identified as needing to be operated on.

A statement that targets a parent table in an inheritance or partitioning hierarchy does not cause the
statement-level triggers of affected child tables to be fired; only the parent table's statement-level triggers
are fired. However, row-level triggers of any affected child tables will be fired.

If an INSERT contains an ON CONFLICT DO UPDATE clause, it is possible that the effects of row-
level BEFORE INSERT triggers and row-level BEFORE UPDATE triggers can both be applied in a way
that is apparent from the final state of the updated row, if an EXCLUDED column is referenced. There need
not be an EXCLUDED column reference for both sets of row-level BEFORE triggers to execute, though.
The possibility of surprising outcomes should be considered when there are both BEFORE INSERT and
BEFORE UPDATE row-level triggers that change a row being inserted/updated (this can be problematic
even if the modifications are more or less equivalent, if they're not also idempotent). Note that statement-
level UPDATE triggers are executed when ON CONFLICT DO UPDATE is specified, regardless
of whether or not any rows were affected by the UPDATE (and regardless of whether the alternative
UPDATE path was ever taken). An INSERT with an ON CONFLICT DO UPDATE clause will execute
statement-level BEFORE INSERT triggers first, then statement-level BEFORE UPDATE triggers, followed
by statement-level AFTER UPDATE triggers and finally statement-level AFTER INSERT triggers.

If an UPDATE on a partitioned table causes a row to move to another partition, it will be performed
as a DELETE from the original partition followed by an INSERT into the new partition. In this case,
all row-level BEFORE UPDATE triggers and all row-level BEFORE DELETE triggers are fired on the
original partition. Then all row-level BEFORE INSERT triggers are fired on the destination partition. The
possibility of surprising outcomes should be considered when all these triggers affect the row being moved.
As far as AFTER ROW triggers are concerned, AFTER DELETE and AFTER INSERT triggers are applied;
but AFTER UPDATE triggers are not applied because the UPDATE has been converted to a DELETE and
an INSERT. As far as statement-level triggers are concerned, none of the DELETE or INSERT triggers
are fired, even if row movement occurs; only the UPDATE triggers defined on the target table used in the
UPDATE statement will be fired.

Trigger functions invoked by per-statement triggers should always return NULL. Trigger functions invoked
by per-row triggers can return a table row (a value of type HeapTuple) to the calling executor, if they
choose. A row-level trigger fired before an operation has the following choices:

• It can return NULL to skip the operation for the current row. This instructs the executor to not perform
the row-level operation that invoked the trigger (the insertion, modification, or deletion of a particular
table row).

• For row-level INSERT and UPDATE triggers only, the returned row becomes the row that will be
inserted or will replace the row being updated. This allows the trigger function to modify the row being
inserted or updated.

A row-level BEFORE trigger that does not intend to cause either of these behaviors must be careful to
return as its result the same row that was passed in (that is, the NEW row for INSERT and UPDATE triggers,
the OLD row for DELETE triggers).

A row-level INSTEAD OF trigger should either return NULL to indicate that it did not modify any data
from the view's underlying base tables, or it should return the view row that was passed in (the NEW row
for INSERT and UPDATE operations, or the OLD row for DELETE operations). A nonnull return value
is used to signal that the trigger performed the necessary data modifications in the view. This will cause
the count of the number of rows affected by the command to be incremented. For INSERT and UPDATE
operations, the trigger may modify the NEW row before returning it. This will change the data returned by

1168

Triggers

INSERT RETURNING or UPDATE RETURNING, and is useful when the view will not show exactly
the same data that was provided.

The return value is ignored for row-level triggers fired after an operation, and so they can return NULL.

If more than one trigger is defined for the same event on the same relation, the triggers will be fired in
alphabetical order by trigger name. In the case of BEFORE and INSTEAD OF triggers, the possibly-
modified row returned by each trigger becomes the input to the next trigger. If any BEFORE or INSTEAD
OF trigger returns NULL, the operation is abandoned for that row and subsequent triggers are not fired
(for that row).

A trigger definition can also specify a Boolean WHEN condition, which will be tested to see whether the
trigger should be fired. In row-level triggers the WHEN condition can examine the old and/or new values
of columns of the row. (Statement-level triggers can also have WHEN conditions, although the feature is
not so useful for them.) In a BEFORE trigger, the WHEN condition is evaluated just before the function
is or would be executed, so using WHEN is not materially different from testing the same condition at the
beginning of the trigger function. However, in an AFTER trigger, the WHEN condition is evaluated just
after the row update occurs, and it determines whether an event is queued to fire the trigger at the end of
statement. So when an AFTER trigger's WHEN condition does not return true, it is not necessary to queue
an event nor to re-fetch the row at end of statement. This can result in significant speedups in statements
that modify many rows, if the trigger only needs to be fired for a few of the rows. INSTEAD OF triggers
do not support WHEN conditions.

Typically, row-level BEFORE triggers are used for checking or modifying the data that will be inserted
or updated. For example, a BEFORE trigger might be used to insert the current time into a timestamp
column, or to check that two elements of the row are consistent. Row-level AFTER triggers are most
sensibly used to propagate the updates to other tables, or make consistency checks against other tables.
The reason for this division of labor is that an AFTER trigger can be certain it is seeing the final value
of the row, while a BEFORE trigger cannot; there might be other BEFORE triggers firing after it. If you
have no specific reason to make a trigger BEFORE or AFTER, the BEFORE case is more efficient, since
the information about the operation doesn't have to be saved until end of statement.

If a trigger function executes SQL commands then these commands might fire triggers again. This is
known as cascading triggers. There is no direct limitation on the number of cascade levels. It is possible
for cascades to cause a recursive invocation of the same trigger; for example, an INSERT trigger might
execute a command that inserts an additional row into the same table, causing the INSERT trigger to be
fired again. It is the trigger programmer's responsibility to avoid infinite recursion in such scenarios.

 When a trigger is being defined, arguments can be specified for it. The purpose of including arguments in
the trigger definition is to allow different triggers with similar requirements to call the same function. As
an example, there could be a generalized trigger function that takes as its arguments two column names
and puts the current user in one and the current time stamp in the other. Properly written, this trigger
function would be independent of the specific table it is triggering on. So the same function could be used
for INSERT events on any table with suitable columns, to automatically track creation of records in a
transaction table for example. It could also be used to track last-update events if defined as an UPDATE
trigger.

Each programming language that supports triggers has its own method for making the trigger input data
available to the trigger function. This input data includes the type of trigger event (e.g., INSERT or
UPDATE) as well as any arguments that were listed in CREATE TRIGGER. For a row-level trigger, the
input data also includes the NEW row for INSERT and UPDATE triggers, and/or the OLD row for UPDATE
and DELETE triggers.

By default, statement-level triggers do not have any way to examine the individual row(s) modified by the
statement. But an AFTER STATEMENT trigger can request that transition tables be created to make the

1169

Triggers

sets of affected rows available to the trigger. AFTER ROW triggers can also request transition tables, so that
they can see the total changes in the table as well as the change in the individual row they are currently being
fired for. The method for examining the transition tables again depends on the programming language that
is being used, but the typical approach is to make the transition tables act like read-only temporary tables
that can be accessed by SQL commands issued within the trigger function.

39.2. Visibility of Data Changes
If you execute SQL commands in your trigger function, and these commands access the table that the
trigger is for, then you need to be aware of the data visibility rules, because they determine whether these
SQL commands will see the data change that the trigger is fired for. Briefly:

• Statement-level triggers follow simple visibility rules: none of the changes made by a statement are
visible to statement-level BEFORE triggers, whereas all modifications are visible to statement-level
AFTER triggers.

• The data change (insertion, update, or deletion) causing the trigger to fire is naturally not visible to SQL
commands executed in a row-level BEFORE trigger, because it hasn't happened yet.

• However, SQL commands executed in a row-level BEFORE trigger will see the effects of data changes
for rows previously processed in the same outer command. This requires caution, since the ordering of
these change events is not in general predictable; a SQL command that affects multiple rows can visit
the rows in any order.

• Similarly, a row-level INSTEAD OF trigger will see the effects of data changes made by previous
firings of INSTEAD OF triggers in the same outer command.

• When a row-level AFTER trigger is fired, all data changes made by the outer command are already
complete, and are visible to the invoked trigger function.

If your trigger function is written in any of the standard procedural languages, then the above statements
apply only if the function is declared VOLATILE. Functions that are declared STABLE or IMMUTABLE
will not see changes made by the calling command in any case.

Further information about data visibility rules can be found in Section 47.5. The example in Section 39.4
contains a demonstration of these rules.

39.3. Writing Trigger Functions in C
This section describes the low-level details of the interface to a trigger function. This information is only
needed when writing trigger functions in C. If you are using a higher-level language then these details
are handled for you. In most cases you should consider using a procedural language before writing your
triggers in C. The documentation of each procedural language explains how to write a trigger in that
language.

Trigger functions must use the “version 1” function manager interface.

When a function is called by the trigger manager, it is not passed any normal arguments, but it is passed a
“context” pointer pointing to a TriggerData structure. C functions can check whether they were called
from the trigger manager or not by executing the macro:

CALLED_AS_TRIGGER(fcinfo)

which expands to:

1170

Triggers

((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))

If this returns true, then it is safe to cast fcinfo->context to type TriggerData * and make use
of the pointed-to TriggerData structure. The function must not alter the TriggerData structure or
any of the data it points to.

struct TriggerData is defined in commands/trigger.h:

typedef struct TriggerData
{
 NodeTag type;
 TriggerEvent tg_event;
 Relation tg_relation;
 HeapTuple tg_trigtuple;
 HeapTuple tg_newtuple;
 Trigger *tg_trigger;
 Buffer tg_trigtuplebuf;
 Buffer tg_newtuplebuf;
 Tuplestorestate *tg_oldtable;
 Tuplestorestate *tg_newtable;
} TriggerData;

where the members are defined as follows:

type

Always T_TriggerData.

tg_event

Describes the event for which the function is called. You can use the following macros to examine
tg_event:

TRIGGER_FIRED_BEFORE(tg_event)

Returns true if the trigger fired before the operation.

TRIGGER_FIRED_AFTER(tg_event)

Returns true if the trigger fired after the operation.

TRIGGER_FIRED_INSTEAD(tg_event)

Returns true if the trigger fired instead of the operation.

TRIGGER_FIRED_FOR_ROW(tg_event)

Returns true if the trigger fired for a row-level event.

TRIGGER_FIRED_FOR_STATEMENT(tg_event)

Returns true if the trigger fired for a statement-level event.

TRIGGER_FIRED_BY_INSERT(tg_event)

Returns true if the trigger was fired by an INSERT command.

1171

Triggers

TRIGGER_FIRED_BY_UPDATE(tg_event)

Returns true if the trigger was fired by an UPDATE command.

TRIGGER_FIRED_BY_DELETE(tg_event)

Returns true if the trigger was fired by a DELETE command.

TRIGGER_FIRED_BY_TRUNCATE(tg_event)

Returns true if the trigger was fired by a TRUNCATE command.

tg_relation

A pointer to a structure describing the relation that the trigger fired for. Look at utils/rel.h for
details about this structure. The most interesting things are tg_relation->rd_att (descriptor
of the relation tuples) and tg_relation->rd_rel->relname (relation name; the type is not
char* but NameData; use SPI_getrelname(tg_relation) to get a char* if you need a
copy of the name).

tg_trigtuple

A pointer to the row for which the trigger was fired. This is the row being inserted, updated, or deleted.
If this trigger was fired for an INSERT or DELETE then this is what you should return from the
function if you don't want to replace the row with a different one (in the case of INSERT) or skip the
operation. For triggers on foreign tables, values of system columns herein are unspecified.

tg_newtuple

A pointer to the new version of the row, if the trigger was fired for an UPDATE, and NULL if it is
for an INSERT or a DELETE. This is what you have to return from the function if the event is an
UPDATE and you don't want to replace this row by a different one or skip the operation. For triggers
on foreign tables, values of system columns herein are unspecified.

tg_trigger

A pointer to a structure of type Trigger, defined in utils/reltrigger.h:

typedef struct Trigger
{
 Oid tgoid;
 char *tgname;
 Oid tgfoid;
 int16 tgtype;
 char tgenabled;
 bool tgisinternal;
 Oid tgconstrrelid;
 Oid tgconstrindid;
 Oid tgconstraint;
 bool tgdeferrable;
 bool tginitdeferred;
 int16 tgnargs;
 int16 tgnattr;
 int16 *tgattr;
 char **tgargs;

1172

Triggers

 char *tgqual;
 char *tgoldtable;
 char *tgnewtable;
} Trigger;

where tgname is the trigger's name, tgnargs is the number of arguments in tgargs, and tgargs
is an array of pointers to the arguments specified in the CREATE TRIGGER statement. The other
members are for internal use only.

tg_trigtuplebuf

The buffer containing tg_trigtuple, or InvalidBuffer if there is no such tuple or it is not
stored in a disk buffer.

tg_newtuplebuf

The buffer containing tg_newtuple, or InvalidBuffer if there is no such tuple or it is not
stored in a disk buffer.

tg_oldtable

A pointer to a structure of type Tuplestorestate containing zero or more rows in the format
specified by tg_relation, or a NULL pointer if there is no OLD TABLE transition relation.

tg_newtable

A pointer to a structure of type Tuplestorestate containing zero or more rows in the format
specified by tg_relation, or a NULL pointer if there is no NEW TABLE transition relation.

To allow queries issued through SPI to reference transition tables, see SPI_register_trigger_data.

A trigger function must return either a HeapTuple pointer or a NULL pointer (not an SQL null value,
that is, do not set isNull true). Be careful to return either tg_trigtuple or tg_newtuple, as
appropriate, if you don't want to modify the row being operated on.

39.4. A Complete Trigger Example
Here is a very simple example of a trigger function written in C. (Examples of triggers written in procedural
languages can be found in the documentation of the procedural languages.)

The function trigf reports the number of rows in the table ttest and skips the actual operation if the
command attempts to insert a null value into the column x. (So the trigger acts as a not-null constraint
but doesn't abort the transaction.)

First, the table definition:

CREATE TABLE ttest (
 x integer
);

This is the source code of the trigger function:

#include "postgres.h"
#include "fmgr.h"

1173

Triggers

#include "executor/spi.h" /* this is what you need to work with
 SPI */
#include "commands/trigger.h" /* ... triggers ... */
#include "utils/rel.h" /* ... and relations */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{
 TriggerData *trigdata = (TriggerData *) fcinfo->context;
 TupleDesc tupdesc;
 HeapTuple rettuple;
 char *when;
 bool checknull = false;
 bool isnull;
 int ret, i;

 /* make sure it's called as a trigger at all */
 if (!CALLED_AS_TRIGGER(fcinfo))
 elog(ERROR, "trigf: not called by trigger manager");

 /* tuple to return to executor */
 if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
 rettuple = trigdata->tg_newtuple;
 else
 rettuple = trigdata->tg_trigtuple;

 /* check for null values */
 if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)
 && TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 checknull = true;

 if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 when = "before";
 else
 when = "after ";

 tupdesc = trigdata->tg_relation->rd_att;

 /* connect to SPI manager */
 if ((ret = SPI_connect()) < 0)
 elog(ERROR, "trigf (fired %s): SPI_connect returned %d", when,
 ret);

 /* get number of rows in table */
 ret = SPI_exec("SELECT count(*) FROM ttest", 0);

 if (ret < 0)
 elog(ERROR, "trigf (fired %s): SPI_exec returned %d", when,
 ret);

1174

Triggers

 /* count(*) returns int8, so be careful to convert */
 i = DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],
 SPI_tuptable->tupdesc,
 1,
 &isnull));

 elog (INFO, "trigf (fired %s): there are %d rows in ttest", when,
 i);

 SPI_finish();

 if (checknull)
 {
 SPI_getbinval(rettuple, tupdesc, 1, &isnull);
 if (isnull)
 rettuple = NULL;
 }

 return PointerGetDatum(rettuple);
}

After you have compiled the source code (see Section 38.10.5), declare the function and the triggers:

CREATE FUNCTION trigf() RETURNS trigger
 AS 'filename'
 LANGUAGE C;

CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
 FOR EACH ROW EXECUTE FUNCTION trigf();

CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
 FOR EACH ROW EXECUTE FUNCTION trigf();

Now you can test the operation of the trigger:

=> INSERT INTO ttest VALUES (NULL);
INFO: trigf (fired before): there are 0 rows in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

=> SELECT * FROM ttest;
 x

(0 rows)

=> INSERT INTO ttest VALUES (1);
INFO: trigf (fired before): there are 0 rows in ttest
INFO: trigf (fired after): there are 1 rows in ttest
 ^^^^^^^^
 remember what we said about visibility.
INSERT 167793 1

1175

Triggers

vac=> SELECT * FROM ttest;
 x

 1
(1 row)

=> INSERT INTO ttest SELECT x * 2 FROM ttest;
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
 ^^^^^^
 remember what we said about visibility.
INSERT 167794 1
=> SELECT * FROM ttest;
 x

 1
 2
(2 rows)

=> UPDATE ttest SET x = NULL WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
UPDATE 0
=> UPDATE ttest SET x = 4 WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
UPDATE 1
vac=> SELECT * FROM ttest;
 x

 1
 4
(2 rows)

=> DELETE FROM ttest;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
 ^^^^^^
 remember what we said about visibility.
DELETE 2
=> SELECT * FROM ttest;
 x

(0 rows)

There are more complex examples in src/test/regress/regress.c and in spi.

1176

Chapter 40. Event Triggers
To supplement the trigger mechanism discussed in Chapter 39, PostgreSQL also provides event triggers.
Unlike regular triggers, which are attached to a single table and capture only DML events, event triggers
are global to a particular database and are capable of capturing DDL events.

Like regular triggers, event triggers can be written in any procedural language that includes event trigger
support, or in C, but not in plain SQL.

40.1. Overview of Event Trigger Behavior
An event trigger fires whenever the event with which it is associated occurs in the database in which
it is defined. Currently, the only supported events are ddl_command_start, ddl_command_end,
table_rewrite and sql_drop. Support for additional events may be added in future releases.

The ddl_command_start event occurs just before the execution of a CREATE, ALTER, DROP,
SECURITY LABEL, COMMENT, GRANT or REVOKE command. No check whether the affected object
exists or doesn't exist is performed before the event trigger fires. As an exception, however, this event
does not occur for DDL commands targeting shared objects — databases, roles, and tablespaces — or for
commands targeting event triggers themselves. The event trigger mechanism does not support these object
types. ddl_command_start also occurs just before the execution of a SELECT INTO command,
since this is equivalent to CREATE TABLE AS.

The ddl_command_end event occurs just after the execution of this same set of commands.
To obtain more details on the DDL operations that took place, use the set-returning function
pg_event_trigger_ddl_commands() from the ddl_command_end event trigger code (see
Section 9.28). Note that the trigger fires after the actions have taken place (but before the transaction
commits), and thus the system catalogs can be read as already changed.

The sql_drop event occurs just before the ddl_command_end event trigger for any operation
that drops database objects. To list the objects that have been dropped, use the set-returning
function pg_event_trigger_dropped_objects() from the sql_drop event trigger code (see
Section 9.28). Note that the trigger is executed after the objects have been deleted from the system catalogs,
so it's not possible to look them up anymore.

The table_rewrite event occurs just before a table is rewritten by some actions of the commands
ALTER TABLE and ALTER TYPE. While other control statements are available to rewrite a table, like
CLUSTER and VACUUM, the table_rewrite event is not triggered by them.

Event triggers (like other functions) cannot be executed in an aborted transaction. Thus, if a DDL command
fails with an error, any associated ddl_command_end triggers will not be executed. Conversely, if a
ddl_command_start trigger fails with an error, no further event triggers will fire, and no attempt will
be made to execute the command itself. Similarly, if a ddl_command_end trigger fails with an error,
the effects of the DDL statement will be rolled back, just as they would be in any other case where the
containing transaction aborts.

For a complete list of commands supported by the event trigger mechanism, see Section 40.2.

Event triggers are created using the command CREATE EVENT TRIGGER. In order to create an event
trigger, you must first create a function with the special return type event_trigger. This function
need not (and may not) return a value; the return type serves merely as a signal that the function is to be
invoked as an event trigger.

1177

Event Triggers

If more than one event trigger is defined for a particular event, they will fire in alphabetical order by
trigger name.

A trigger definition can also specify a WHEN condition so that, for example, a ddl_command_start
trigger can be fired only for particular commands which the user wishes to intercept. A common use of
such triggers is to restrict the range of DDL operations which users may perform.

40.2. Event Trigger Firing Matrix
Table 40.1 lists all commands for which event triggers are supported.

Table 40.1. Event Trigger Support by Command Tag

Command Tag ddl_command_startddl_command_endsql_drop table_rewriteNotes

ALTER
AGGREGATE

X X - -

ALTER
COLLATION

X X - -

ALTER
CONVERSION

X X - -

ALTER
DOMAIN

X X - -

ALTER
EXTENSION

X X - -

ALTER
FOREIGN
DATA
WRAPPER

X X - -

ALTER
FOREIGN
TABLE

X X X -

ALTER
FUNCTION

X X - -

ALTER
LANGUAGE

X X - -

ALTER
OPERATOR

X X - -

ALTER
OPERATOR
CLASS

X X - -

ALTER
OPERATOR
FAMILY

X X - -

ALTER
POLICY

X X - -

ALTER
SCHEMA

X X - -

1178

Event Triggers

Command Tag ddl_command_startddl_command_endsql_drop table_rewriteNotes

ALTER
SEQUENCE

X X - -

ALTER
SERVER

X X - -

ALTER
TABLE

X X X X

ALTER TEXT
SEARCH
CONFIGURATION

X X - -

ALTER TEXT
SEARCH
DICTIONARY

X X - -

ALTER TEXT
SEARCH
PARSER

X X - -

ALTER TEXT
SEARCH
TEMPLATE

X X - -

ALTER
TRIGGER

X X - -

ALTER TYPE X X - X

ALTER USER
MAPPING

X X - -

ALTER VIEW X X - -

CREATE
AGGREGATE

X X - -

COMMENT X X - - Only for
local objects

CREATE
CAST

X X - -

CREATE
COLLATION

X X - -

CREATE
CONVERSION

X X - -

CREATE
DOMAIN

X X - -

CREATE
EXTENSION

X X - -

CREATE
FOREIGN
DATA
WRAPPER

X X - -

CREATE
FOREIGN
TABLE

X X - -

1179

Event Triggers

Command Tag ddl_command_startddl_command_endsql_drop table_rewriteNotes

CREATE
FUNCTION

X X - -

CREATE
INDEX

X X - -

CREATE
LANGUAGE

X X - -

CREATE
OPERATOR

X X - -

CREATE
OPERATOR
CLASS

X X - -

CREATE
OPERATOR
FAMILY

X X - -

CREATE
POLICY

X X - -

CREATE
RULE

X X - -

CREATE
SCHEMA

X X - -

CREATE
SEQUENCE

X X - -

CREATE
SERVER

X X - -

CREATE
STATISTICS

X X - -

CREATE
TABLE

X X - -

CREATE
TABLE AS

X X - -

CREATE
TEXT
SEARCH
CONFIGURATION

X X - -

CREATE
TEXT
SEARCH
DICTIONARY

X X - -

CREATE
TEXT
SEARCH
PARSER

X X - -

CREATE
TEXT

X X - -

1180

Event Triggers

Command Tag ddl_command_startddl_command_endsql_drop table_rewriteNotes

SEARCH
TEMPLATE

CREATE
TRIGGER

X X - -

CREATE
TYPE

X X - -

CREATE
USER
MAPPING

X X - -

CREATE
VIEW

X X - -

DROP
AGGREGATE

X X X -

DROP CAST X X X -

DROP
COLLATION

X X X -

DROP
CONVERSION

X X X -

DROP
DOMAIN

X X X -

DROP
EXTENSION

X X X -

DROP
FOREIGN
DATA
WRAPPER

X X X -

DROP
FOREIGN
TABLE

X X X -

DROP
FUNCTION

X X X -

DROP INDEX X X X -

DROP
LANGUAGE

X X X -

DROP
OPERATOR

X X X -

DROP
OPERATOR
CLASS

X X X -

DROP
OPERATOR
FAMILY

X X X -

DROP OWNED X X X -

1181

Event Triggers

Command Tag ddl_command_startddl_command_endsql_drop table_rewriteNotes

DROP
POLICY

X X X -

DROP RULE X X X -

DROP
SCHEMA

X X X -

DROP
SEQUENCE

X X X -

DROP
SERVER

X X X -

DROP
STATISTICS

X X X -

DROP TABLE X X X -

DROP TEXT
SEARCH
CONFIGURATION

X X X -

DROP TEXT
SEARCH
DICTIONARY

X X X -

DROP TEXT
SEARCH
PARSER

X X X -

DROP TEXT
SEARCH
TEMPLATE

X X X -

DROP
TRIGGER

X X X -

DROP TYPE X X X -

DROP USER
MAPPING

X X X -

DROP VIEW X X X -

GRANT X X - - Only for
local objects

IMPORT
FOREIGN
SCHEMA

X X - -

REVOKE X X - - Only for
local objects

SECURITY
LABEL

X X - - Only for
local objects

SELECT
INTO

X X - -

40.3. Writing Event Trigger Functions in C

1182

Event Triggers

This section describes the low-level details of the interface to an event trigger function. This information
is only needed when writing event trigger functions in C. If you are using a higher-level language then
these details are handled for you. In most cases you should consider using a procedural language before
writing your event triggers in C. The documentation of each procedural language explains how to write
an event trigger in that language.

Event trigger functions must use the “version 1” function manager interface.

When a function is called by the event trigger manager, it is not passed any normal arguments, but it is
passed a “context” pointer pointing to a EventTriggerData structure. C functions can check whether
they were called from the event trigger manager or not by executing the macro:

CALLED_AS_EVENT_TRIGGER(fcinfo)

which expands to:

((fcinfo)->context != NULL && IsA((fcinfo)->context,
 EventTriggerData))

If this returns true, then it is safe to cast fcinfo->context to type EventTriggerData *
and make use of the pointed-to EventTriggerData structure. The function must not alter the
EventTriggerData structure or any of the data it points to.

struct EventTriggerData is defined in commands/event_trigger.h:

typedef struct EventTriggerData
{
 NodeTag type;
 const char *event; /* event name */
 Node *parsetree; /* parse tree */
 const char *tag; /* command tag */
} EventTriggerData;

where the members are defined as follows:

type

Always T_EventTriggerData.

event

Describes the event for which the function is called, one of "ddl_command_start",
"ddl_command_end", "sql_drop", "table_rewrite". See Section 40.1 for the meaning
of these events.

parsetree

A pointer to the parse tree of the command. Check the PostgreSQL source code for details. The parse
tree structure is subject to change without notice.

tag

The command tag associated with the event for which the event trigger is run, for example "CREATE
FUNCTION".

1183

Event Triggers

An event trigger function must return a NULL pointer (not an SQL null value, that is, do not set isNull
true).

40.4. A Complete Event Trigger Example
Here is a very simple example of an event trigger function written in C. (Examples of triggers written in
procedural languages can be found in the documentation of the procedural languages.)

The function noddl raises an exception each time it is called. The event trigger definition associated
the function with the ddl_command_start event. The effect is that all DDL commands (with the
exceptions mentioned in Section 40.1) are prevented from running.

This is the source code of the trigger function:

#include "postgres.h"
#include "commands/event_trigger.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(noddl);

Datum
noddl(PG_FUNCTION_ARGS)
{
 EventTriggerData *trigdata;

 if (!CALLED_AS_EVENT_TRIGGER(fcinfo)) /* internal error */
 elog(ERROR, "not fired by event trigger manager");

 trigdata = (EventTriggerData *) fcinfo->context;

 ereport(ERROR,
 (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
 errmsg("command \"%s\" denied", trigdata->tag)));

 PG_RETURN_NULL();
}

After you have compiled the source code (see Section 38.10.5), declare the function and the triggers:

CREATE FUNCTION noddl() RETURNS event_trigger
 AS 'noddl' LANGUAGE C;

CREATE EVENT TRIGGER noddl ON ddl_command_start
 EXECUTE FUNCTION noddl();

Now you can test the operation of the trigger:

=# \dy
 List of event triggers

1184

Event Triggers

 Name | Event | Owner | Enabled | Function | Tags
-------+-------------------+-------+---------+----------+------
 noddl | ddl_command_start | dim | enabled | noddl |
(1 row)

=# CREATE TABLE foo(id serial);
ERROR: command "CREATE TABLE" denied

In this situation, in order to be able to run some DDL commands when you need to do so, you have to
either drop the event trigger or disable it. It can be convenient to disable the trigger for only the duration
of a transaction:

BEGIN;
ALTER EVENT TRIGGER noddl DISABLE;
CREATE TABLE foo (id serial);
ALTER EVENT TRIGGER noddl ENABLE;
COMMIT;

(Recall that DDL commands on event triggers themselves are not affected by event triggers.)

40.5. A Table Rewrite Event Trigger Example
Thanks to the table_rewrite event, it is possible to implement a table rewriting policy only allowing
the rewrite in maintenance windows.

Here's an example implementing such a policy.

CREATE OR REPLACE FUNCTION no_rewrite()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$

--- Implement local Table Rewriting policy:
--- public.foo is not allowed rewriting, ever
--- other tables are only allowed rewriting between 1am and 6am
--- unless they have more than 100 blocks

DECLARE
 table_oid oid := pg_event_trigger_table_rewrite_oid();
 current_hour integer := extract('hour' from current_time);
 pages integer;
 max_pages integer := 100;
BEGIN
 IF pg_event_trigger_table_rewrite_oid() = 'public.foo'::regclass
 THEN
 RAISE EXCEPTION 'you''re not allowed to rewrite the table %',
 table_oid::regclass;
 END IF;

 SELECT INTO pages relpages FROM pg_class WHERE oid = table_oid;
 IF pages > max_pages
 THEN

1185

Event Triggers

 RAISE EXCEPTION 'rewrites only allowed for table with less
 than % pages',
 max_pages;
 END IF;

 IF current_hour NOT BETWEEN 1 AND 6
 THEN
 RAISE EXCEPTION 'rewrites only allowed between 1am and 6am';
 END IF;
END;
$$;

CREATE EVENT TRIGGER no_rewrite_allowed
 ON table_rewrite
 EXECUTE FUNCTION no_rewrite();

1186

Chapter 41. The Rule System
This chapter discusses the rule system in PostgreSQL. Production rule systems are conceptually simple,
but there are many subtle points involved in actually using them.

Some other database systems define active database rules, which are usually stored procedures and triggers.
In PostgreSQL, these can be implemented using functions and triggers as well.

The rule system (more precisely speaking, the query rewrite rule system) is totally different from stored
procedures and triggers. It modifies queries to take rules into consideration, and then passes the modified
query to the query planner for planning and execution. It is very powerful, and can be used for many things
such as query language procedures, views, and versions. The theoretical foundations and the power of this
rule system are also discussed in [ston90b] and [ong90].

41.1. The Query Tree
To understand how the rule system works it is necessary to know when it is invoked and what its input
and results are.

The rule system is located between the parser and the planner. It takes the output of the parser, one query
tree, and the user-defined rewrite rules, which are also query trees with some extra information, and creates
zero or more query trees as result. So its input and output are always things the parser itself could have
produced and thus, anything it sees is basically representable as an SQL statement.

Now what is a query tree? It is an internal representation of an SQL statement where the single parts that it is
built from are stored separately. These query trees can be shown in the server log if you set the configuration
parameters debug_print_parse, debug_print_rewritten, or debug_print_plan. The
rule actions are also stored as query trees, in the system catalog pg_rewrite. They are not formatted
like the log output, but they contain exactly the same information.

Reading a raw query tree requires some experience. But since SQL representations of query trees are
sufficient to understand the rule system, this chapter will not teach how to read them.

When reading the SQL representations of the query trees in this chapter it is necessary to be able to identify
the parts the statement is broken into when it is in the query tree structure. The parts of a query tree are

the command type

This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE) produced
the query tree.

the range table

The range table is a list of relations that are used in the query. In a SELECT statement these are the
relations given after the FROM key word.

Every range table entry identifies a table or view and tells by which name it is called in the other
parts of the query. In the query tree, the range table entries are referenced by number rather than by
name, so here it doesn't matter if there are duplicate names as it would in an SQL statement. This
can happen after the range tables of rules have been merged in. The examples in this chapter will not
have this situation.

the result relation

This is an index into the range table that identifies the relation where the results of the query go.

1187

The Rule System

SELECT queries don't have a result relation. (The special case of SELECT INTO is mostly identical
to CREATE TABLE followed by INSERT ... SELECT, and is not discussed separately here.)

For INSERT, UPDATE, and DELETE commands, the result relation is the table (or view!) where the
changes are to take effect.

the target list

The target list is a list of expressions that define the result of the query. In the case of a SELECT, these
expressions are the ones that build the final output of the query. They correspond to the expressions
between the key words SELECT and FROM. (* is just an abbreviation for all the column names of a
relation. It is expanded by the parser into the individual columns, so the rule system never sees it.)

DELETE commands don't need a normal target list because they don't produce any result. Instead, the
planner adds a special CTID entry to the empty target list, to allow the executor to find the row to
be deleted. (CTID is added when the result relation is an ordinary table. If it is a view, a whole-row
variable is added instead, by the rule system, as described in Section 41.2.4.)

For INSERT commands, the target list describes the new rows that should go into the result
relation. It consists of the expressions in the VALUES clause or the ones from the SELECT clause in
INSERT ... SELECT. The first step of the rewrite process adds target list entries for any columns
that were not assigned to by the original command but have defaults. Any remaining columns (with
neither a given value nor a default) will be filled in by the planner with a constant null expression.

For UPDATE commands, the target list describes the new rows that should replace the old ones. In
the rule system, it contains just the expressions from the SET column = expression part of
the command. The planner will handle missing columns by inserting expressions that copy the values
from the old row into the new one. Just as for DELETE, a CTID or whole-row variable is added so
that the executor can identify the old row to be updated.

Every entry in the target list contains an expression that can be a constant value, a variable pointing to
a column of one of the relations in the range table, a parameter, or an expression tree made of function
calls, constants, variables, operators, etc.

the qualification

The query's qualification is an expression much like one of those contained in the target list entries.
The result value of this expression is a Boolean that tells whether the operation (INSERT, UPDATE,
DELETE, or SELECT) for the final result row should be executed or not. It corresponds to the WHERE
clause of an SQL statement.

the join tree

The query's join tree shows the structure of the FROM clause. For a simple query like SELECT ...
FROM a, b, c, the join tree is just a list of the FROM items, because we are allowed to join them
in any order. But when JOIN expressions, particularly outer joins, are used, we have to join in the
order shown by the joins. In that case, the join tree shows the structure of the JOIN expressions. The
restrictions associated with particular JOIN clauses (from ON or USING expressions) are stored as
qualification expressions attached to those join-tree nodes. It turns out to be convenient to store the
top-level WHERE expression as a qualification attached to the top-level join-tree item, too. So really
the join tree represents both the FROM and WHERE clauses of a SELECT.

the others

The other parts of the query tree like the ORDER BY clause aren't of interest here. The rule
system substitutes some entries there while applying rules, but that doesn't have much to do with the
fundamentals of the rule system.

1188

The Rule System

41.2. Views and the Rule System
Views in PostgreSQL are implemented using the rule system. In fact, there is essentially no difference
between:

CREATE VIEW myview AS SELECT * FROM mytab;

compared against the two commands:

CREATE TABLE myview (same column list as mytab);
CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD
 SELECT * FROM mytab;

because this is exactly what the CREATE VIEW command does internally. This has some side effects.
One of them is that the information about a view in the PostgreSQL system catalogs is exactly the same
as it is for a table. So for the parser, there is absolutely no difference between a table and a view. They
are the same thing: relations.

41.2.1. How SELECT Rules Work
Rules ON SELECT are applied to all queries as the last step, even if the command given is an INSERT,
UPDATE or DELETE. And they have different semantics from rules on the other command types in that
they modify the query tree in place instead of creating a new one. So SELECT rules are described first.

Currently, there can be only one action in an ON SELECT rule, and it must be an unconditional SELECT
action that is INSTEAD. This restriction was required to make rules safe enough to open them for ordinary
users, and it restricts ON SELECT rules to act like views.

The examples for this chapter are two join views that do some calculations and some more views using
them in turn. One of the two first views is customized later by adding rules for INSERT, UPDATE, and
DELETE operations so that the final result will be a view that behaves like a real table with some magic
functionality. This is not such a simple example to start from and this makes things harder to get into. But
it's better to have one example that covers all the points discussed step by step rather than having many
different ones that might mix up in mind.

For the example, we need a little min function that returns the lower of 2 integer values. We create that as:

CREATE FUNCTION min(integer, integer) RETURNS integer AS $$
 SELECT CASE WHEN $1 < $2 THEN $1 ELSE $2 END
$$ LANGUAGE SQL STRICT;

The real tables we need in the first two rule system descriptions are these:

CREATE TABLE shoe_data (
 shoename text, -- primary key
 sh_avail integer, -- available number of pairs
 slcolor text, -- preferred shoelace color
 slminlen real, -- minimum shoelace length
 slmaxlen real, -- maximum shoelace length
 slunit text -- length unit

1189

The Rule System

);

CREATE TABLE shoelace_data (
 sl_name text, -- primary key
 sl_avail integer, -- available number of pairs
 sl_color text, -- shoelace color
 sl_len real, -- shoelace length
 sl_unit text -- length unit
);

CREATE TABLE unit (
 un_name text, -- primary key
 un_fact real -- factor to transform to cm
);

As you can see, they represent shoe-store data.

The views are created as:

CREATE VIEW shoe AS
 SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
 SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
 SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 min(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

The CREATE VIEW command for the shoelace view (which is the simplest one we have) will create a
relation shoelace and an entry in pg_rewrite that tells that there is a rewrite rule that must be applied

1190

The Rule System

whenever the relation shoelace is referenced in a query's range table. The rule has no rule qualification
(discussed later, with the non-SELECT rules, since SELECT rules currently cannot have them) and it is
INSTEAD. Note that rule qualifications are not the same as query qualifications. The action of our rule
has a query qualification. The action of the rule is one query tree that is a copy of the SELECT statement
in the view creation command.

Note

The two extra range table entries for NEW and OLD that you can see in the pg_rewrite entry
aren't of interest for SELECT rules.

Now we populate unit, shoe_data and shoelace_data and run a simple query on a view:

INSERT INTO unit VALUES ('cm', 1.0);
INSERT INTO unit VALUES ('m', 100.0);
INSERT INTO unit VALUES ('inch', 2.54);

INSERT INTO shoe_data VALUES ('sh1', 2, 'black', 70.0, 90.0, 'cm');
INSERT INTO shoe_data VALUES ('sh2', 0, 'black', 30.0, 40.0, 'inch');
INSERT INTO shoe_data VALUES ('sh3', 4, 'brown', 50.0, 65.0, 'cm');
INSERT INTO shoe_data VALUES ('sh4', 3, 'brown', 40.0, 50.0, 'inch');

INSERT INTO shoelace_data VALUES ('sl1', 5, 'black', 80.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl2', 6, 'black', 100.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl3', 0, 'black', 35.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl4', 8, 'black', 40.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl5', 4, 'brown', 1.0 , 'm');
INSERT INTO shoelace_data VALUES ('sl6', 0, 'brown', 0.9 , 'm');
INSERT INTO shoelace_data VALUES ('sl7', 7, 'brown', 60 , 'cm');
INSERT INTO shoelace_data VALUES ('sl8', 1, 'brown', 40 , 'inch');

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 7 | brown | 60 | cm | 60
 sl3 | 0 | black | 35 | inch | 88.9
 sl4 | 8 | black | 40 | inch | 101.6
 sl8 | 1 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

This is the simplest SELECT you can do on our views, so we take this opportunity to explain the basics of
view rules. The SELECT * FROM shoelace was interpreted by the parser and produced the query tree:

SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm

1191

The Rule System

 FROM shoelace shoelace;

and this is given to the rule system. The rule system walks through the range table and checks if there are
rules for any relation. When processing the range table entry for shoelace (the only one up to now) it
finds the _RETURN rule with the query tree:

SELECT s.sl_name, s.sl_avail,
 s.sl_color, s.sl_len, s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace old, shoelace new,
 shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

To expand the view, the rewriter simply creates a subquery range-table entry containing the rule's action
query tree, and substitutes this range table entry for the original one that referenced the view. The resulting
rewritten query tree is almost the same as if you had typed:

SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) shoelace;

There is one difference however: the subquery's range table has two extra entries shoelace old and
shoelace new. These entries don't participate directly in the query, since they aren't referenced by the
subquery's join tree or target list. The rewriter uses them to store the access privilege check information
that was originally present in the range-table entry that referenced the view. In this way, the executor will
still check that the user has proper privileges to access the view, even though there's no direct use of the
view in the rewritten query.

That was the first rule applied. The rule system will continue checking the remaining range-table entries
in the top query (in this example there are no more), and it will recursively check the range-table entries in
the added subquery to see if any of them reference views. (But it won't expand old or new — otherwise
we'd have infinite recursion!) In this example, there are no rewrite rules for shoelace_data or unit,
so rewriting is complete and the above is the final result given to the planner.

Now we want to write a query that finds out for which shoes currently in the store we have the matching
shoelaces (color and length) and where the total number of exactly matching pairs is greater or equal to two.

SELECT * FROM shoe_ready WHERE total_avail >= 2;

 shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------
 sh1 | 2 | sl1 | 5 | 2
 sh3 | 4 | sl7 | 7 | 4
(2 rows)

1192

The Rule System

The output of the parser this time is the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM shoe_ready shoe_ready
 WHERE shoe_ready.total_avail >= 2;

The first rule applied will be the one for the shoe_ready view and it results in the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 min(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail >= 2;

Similarly, the rules for shoe and shoelace are substituted into the range table of the subquery, leading
to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 min(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM (SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name) rsh,
 (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u

1193

The Rule System

 WHERE s.sl_unit = u.un_name) rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail > 2;

It turns out that the planner will collapse this tree into a two-level query tree: the bottommost SELECT
commands will be “pulled up” into the middle SELECT since there's no need to process them separately.
But the middle SELECT will remain separate from the top, because it contains aggregate functions. If we
pulled those up it would change the behavior of the topmost SELECT, which we don't want. However,
collapsing the query tree is an optimization that the rewrite system doesn't have to concern itself with.

41.2.2. View Rules in Non-SELECT Statements
Two details of the query tree aren't touched in the description of view rules above. These are the command
type and the result relation. In fact, the command type is not needed by view rules, but the result relation
may affect the way in which the query rewriter works, because special care needs to be taken if the result
relation is a view.

There are only a few differences between a query tree for a SELECT and one for any other command.
Obviously, they have a different command type and for a command other than a SELECT, the result
relation points to the range-table entry where the result should go. Everything else is absolutely the same.
So having two tables t1 and t2 with columns a and b, the query trees for the two statements:

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b FROM t2 WHERE t1.a = t2.a;

are nearly identical. In particular:

• The range tables contain entries for the tables t1 and t2.

• The target lists contain one variable that points to column b of the range table entry for table t2.

• The qualification expressions compare the columns a of both range-table entries for equality.

• The join trees show a simple join between t1 and t2.

The consequence is, that both query trees result in similar execution plans: They are both joins over the
two tables. For the UPDATE the missing columns from t1 are added to the target list by the planner and
the final query tree will read as:

UPDATE t1 SET a = t1.a, b = t2.b FROM t2 WHERE t1.a = t2.a;

and thus the executor run over the join will produce exactly the same result set as:

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

But there is a little problem in UPDATE: the part of the executor plan that does the join does not care what
the results from the join are meant for. It just produces a result set of rows. The fact that one is a SELECT
command and the other is an UPDATE is handled higher up in the executor, where it knows that this is
an UPDATE, and it knows that this result should go into table t1. But which of the rows that are there
has to be replaced by the new row?

1194

The Rule System

To resolve this problem, another entry is added to the target list in UPDATE (and also in DELETE)
statements: the current tuple ID (CTID). This is a system column containing the file block number and
position in the block for the row. Knowing the table, the CTID can be used to retrieve the original row of
t1 to be updated. After adding the CTID to the target list, the query actually looks like:

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

Now another detail of PostgreSQL enters the stage. Old table rows aren't overwritten, and this is why
ROLLBACK is fast. In an UPDATE, the new result row is inserted into the table (after stripping the CTID)
and in the row header of the old row, which the CTID pointed to, the cmax and xmax entries are set to the
current command counter and current transaction ID. Thus the old row is hidden, and after the transaction
commits the vacuum cleaner can eventually remove the dead row.

Knowing all that, we can simply apply view rules in absolutely the same way to any command. There
is no difference.

41.2.3. The Power of Views in PostgreSQL
The above demonstrates how the rule system incorporates view definitions into the original query tree. In
the second example, a simple SELECT from one view created a final query tree that is a join of 4 tables
(unit was used twice with different names).

The benefit of implementing views with the rule system is, that the planner has all the information
about which tables have to be scanned plus the relationships between these tables plus the restrictive
qualifications from the views plus the qualifications from the original query in one single query tree. And
this is still the situation when the original query is already a join over views. The planner has to decide
which is the best path to execute the query, and the more information the planner has, the better this
decision can be. And the rule system as implemented in PostgreSQL ensures, that this is all information
available about the query up to that point.

41.2.4. Updating a View
What happens if a view is named as the target relation for an INSERT, UPDATE, or DELETE? Doing the
substitutions described above would give a query tree in which the result relation points at a subquery
range-table entry, which will not work. There are several ways in which PostgreSQL can support the
appearance of updating a view, however.

If the subquery selects from a single base relation and is simple enough, the rewriter can automatically
replace the subquery with the underlying base relation so that the INSERT, UPDATE, or DELETE is applied
to the base relation in the appropriate way. Views that are “simple enough” for this are called automatically
updatable. For detailed information on the kinds of view that can be automatically updated, see CREATE
VIEW.

Alternatively, the operation may be handled by a user-provided INSTEAD OF trigger on the view.
Rewriting works slightly differently in this case. For INSERT, the rewriter does nothing at all with the
view, leaving it as the result relation for the query. For UPDATE and DELETE, it's still necessary to expand
the view query to produce the “old” rows that the command will attempt to update or delete. So the view
is expanded as normal, but another unexpanded range-table entry is added to the query to represent the
view in its capacity as the result relation.

The problem that now arises is how to identify the rows to be updated in the view. Recall that when the
result relation is a table, a special CTID entry is added to the target list to identify the physical locations of
the rows to be updated. This does not work if the result relation is a view, because a view does not have any

1195

The Rule System

CTID, since its rows do not have actual physical locations. Instead, for an UPDATE or DELETE operation,
a special wholerow entry is added to the target list, which expands to include all columns from the view.
The executor uses this value to supply the “old” row to the INSTEAD OF trigger. It is up to the trigger
to work out what to update based on the old and new row values.

Another possibility is for the user to define INSTEAD rules that specify substitute actions for INSERT,
UPDATE, and DELETE commands on a view. These rules will rewrite the command, typically into a
command that updates one or more tables, rather than views. That is the topic of Section 41.4.

Note that rules are evaluated first, rewriting the original query before it is planned and executed. Therefore,
if a view has INSTEAD OF triggers as well as rules on INSERT, UPDATE, or DELETE, then the rules
will be evaluated first, and depending on the result, the triggers may not be used at all.

Automatic rewriting of an INSERT, UPDATE, or DELETE query on a simple view is always tried last.
Therefore, if a view has rules or triggers, they will override the default behavior of automatically updatable
views.

If there are no INSTEAD rules or INSTEAD OF triggers for the view, and the rewriter cannot automatically
rewrite the query as an update on the underlying base relation, an error will be thrown because the executor
cannot update a view as such.

41.3. Materialized Views
Materialized views in PostgreSQL use the rule system like views do, but persist the results in a table-like
form. The main differences between:

CREATE MATERIALIZED VIEW mymatview AS SELECT * FROM mytab;

and:

CREATE TABLE mymatview AS SELECT * FROM mytab;

are that the materialized view cannot subsequently be directly updated and that the query used to create
the materialized view is stored in exactly the same way that a view's query is stored, so that fresh data can
be generated for the materialized view with:

REFRESH MATERIALIZED VIEW mymatview;

The information about a materialized view in the PostgreSQL system catalogs is exactly the same as it is
for a table or view. So for the parser, a materialized view is a relation, just like a table or a view. When
a materialized view is referenced in a query, the data is returned directly from the materialized view, like
from a table; the rule is only used for populating the materialized view.

While access to the data stored in a materialized view is often much faster than accessing the underlying
tables directly or through a view, the data is not always current; yet sometimes current data is not needed.
Consider a table which records sales:

CREATE TABLE invoice (
 invoice_no integer PRIMARY KEY,
 seller_no integer, -- ID of salesperson
 invoice_date date, -- date of sale
 invoice_amt numeric(13,2) -- amount of sale

1196

The Rule System

);

If people want to be able to quickly graph historical sales data, they might want to summarize, and they
may not care about the incomplete data for the current date:

CREATE MATERIALIZED VIEW sales_summary AS
 SELECT
 seller_no,
 invoice_date,
 sum(invoice_amt)::numeric(13,2) as sales_amt
 FROM invoice
 WHERE invoice_date < CURRENT_DATE
 GROUP BY
 seller_no,
 invoice_date
 ORDER BY
 seller_no,
 invoice_date;

CREATE UNIQUE INDEX sales_summary_seller
 ON sales_summary (seller_no, invoice_date);

This materialized view might be useful for displaying a graph in the dashboard created for salespeople. A
job could be scheduled to update the statistics each night using this SQL statement:

REFRESH MATERIALIZED VIEW sales_summary;

Another use for a materialized view is to allow faster access to data brought across from a remote system
through a foreign data wrapper. A simple example using file_fdw is below, with timings, but since
this is using cache on the local system the performance difference compared to access to a remote system
would usually be greater than shown here. Notice we are also exploiting the ability to put an index on
the materialized view, whereas file_fdw does not support indexes; this advantage might not apply for
other sorts of foreign data access.

Setup:

CREATE EXTENSION file_fdw;
CREATE SERVER local_file FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE words (word text NOT NULL)
 SERVER local_file
 OPTIONS (filename '/usr/share/dict/words');
CREATE MATERIALIZED VIEW wrd AS SELECT * FROM words;
CREATE UNIQUE INDEX wrd_word ON wrd (word);
CREATE EXTENSION pg_trgm;
CREATE INDEX wrd_trgm ON wrd USING gist (word gist_trgm_ops);
VACUUM ANALYZE wrd;

Now let's spell-check a word. Using file_fdw directly:

SELECT count(*) FROM words WHERE word = 'caterpiler';

 count

1197

The Rule System

 0
(1 row)

With EXPLAIN ANALYZE, we see:

 Aggregate (cost=21763.99..21764.00 rows=1 width=0) (actual
 time=188.180..188.181 rows=1 loops=1)
 -> Foreign Scan on words (cost=0.00..21761.41 rows=1032 width=0)
 (actual time=188.177..188.177 rows=0 loops=1)
 Filter: (word = 'caterpiler'::text)
 Rows Removed by Filter: 479829
 Foreign File: /usr/share/dict/words
 Foreign File Size: 4953699
 Planning time: 0.118 ms
 Execution time: 188.273 ms

If the materialized view is used instead, the query is much faster:

 Aggregate (cost=4.44..4.45 rows=1 width=0) (actual time=0.042..0.042
 rows=1 loops=1)
 -> Index Only Scan using wrd_word on wrd (cost=0.42..4.44 rows=1
 width=0) (actual time=0.039..0.039 rows=0 loops=1)
 Index Cond: (word = 'caterpiler'::text)
 Heap Fetches: 0
 Planning time: 0.164 ms
 Execution time: 0.117 ms

Either way, the word is spelled wrong, so let's look for what we might have wanted. Again using
file_fdw:

SELECT word FROM words ORDER BY word <-> 'caterpiler' LIMIT 10;

 word

 cater
 caterpillar
 Caterpillar
 caterpillars
 caterpillar's
 Caterpillar's
 caterer
 caterer's
 caters
 catered
(10 rows)

 Limit (cost=11583.61..11583.64 rows=10 width=32) (actual
 time=1431.591..1431.594 rows=10 loops=1)
 -> Sort (cost=11583.61..11804.76 rows=88459 width=32) (actual
 time=1431.589..1431.591 rows=10 loops=1)

1198

The Rule System

 Sort Key: ((word <-> 'caterpiler'::text))
 Sort Method: top-N heapsort Memory: 25kB
 -> Foreign Scan on words (cost=0.00..9672.05 rows=88459
 width=32) (actual time=0.057..1286.455 rows=479829 loops=1)
 Foreign File: /usr/share/dict/words
 Foreign File Size: 4953699
 Planning time: 0.128 ms
 Execution time: 1431.679 ms

Using the materialized view:

 Limit (cost=0.29..1.06 rows=10 width=10) (actual
 time=187.222..188.257 rows=10 loops=1)
 -> Index Scan using wrd_trgm on wrd (cost=0.29..37020.87
 rows=479829 width=10) (actual time=187.219..188.252 rows=10 loops=1)
 Order By: (word <-> 'caterpiler'::text)
 Planning time: 0.196 ms
 Execution time: 198.640 ms

If you can tolerate periodic update of the remote data to the local database, the performance benefit can
be substantial.

41.4. Rules on INSERT, UPDATE, and DELETE
Rules that are defined on INSERT, UPDATE, and DELETE are significantly different from the view rules
described in the previous section. First, their CREATE RULE command allows more:

• They are allowed to have no action.

• They can have multiple actions.

• They can be INSTEAD or ALSO (the default).

• The pseudorelations NEW and OLD become useful.

• They can have rule qualifications.

Second, they don't modify the query tree in place. Instead they create zero or more new query trees and
can throw away the original one.

Caution

In many cases, tasks that could be performed by rules on INSERT/UPDATE/DELETE are better
done with triggers. Triggers are notationally a bit more complicated, but their semantics are much
simpler to understand. Rules tend to have surprising results when the original query contains
volatile functions: volatile functions may get executed more times than expected in the process
of carrying out the rules.

Also, there are some cases that are not supported by these types of rules at all, notably including
WITH clauses in the original query and multiple-assignment sub-SELECTs in the SET list of
UPDATE queries. This is because copying these constructs into a rule query would result in multiple
evaluations of the sub-query, contrary to the express intent of the query's author.

1199

The Rule System

41.4.1. How Update Rules Work
Keep the syntax:

CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command
 ...) }

in mind. In the following, update rules means rules that are defined on INSERT, UPDATE, or DELETE.

Update rules get applied by the rule system when the result relation and the command type of a query
tree are equal to the object and event given in the CREATE RULE command. For update rules, the rule
system creates a list of query trees. Initially the query-tree list is empty. There can be zero (NOTHING key
word), one, or multiple actions. To simplify, we will look at a rule with one action. This rule can have a
qualification or not and it can be INSTEAD or ALSO (the default).

What is a rule qualification? It is a restriction that tells when the actions of the rule should be done and when
not. This qualification can only reference the pseudorelations NEW and/or OLD, which basically represent
the relation that was given as object (but with a special meaning).

So we have three cases that produce the following query trees for a one-action rule.

No qualification, with either ALSO or INSTEAD

the query tree from the rule action with the original query tree's qualification added

Qualification given and ALSO

the query tree from the rule action with the rule qualification and the original query tree's qualification
added

Qualification given and INSTEAD

the query tree from the rule action with the rule qualification and the original query tree's qualification;
and the original query tree with the negated rule qualification added

Finally, if the rule is ALSO, the unchanged original query tree is added to the list. Since only qualified
INSTEAD rules already add the original query tree, we end up with either one or two output query trees
for a rule with one action.

For ON INSERT rules, the original query (if not suppressed by INSTEAD) is done before any actions
added by rules. This allows the actions to see the inserted row(s). But for ON UPDATE and ON DELETE
rules, the original query is done after the actions added by rules. This ensures that the actions can see the
to-be-updated or to-be-deleted rows; otherwise, the actions might do nothing because they find no rows
matching their qualifications.

The query trees generated from rule actions are thrown into the rewrite system again, and maybe more rules
get applied resulting in more or less query trees. So a rule's actions must have either a different command
type or a different result relation than the rule itself is on, otherwise this recursive process will end up in
an infinite loop. (Recursive expansion of a rule will be detected and reported as an error.)

The query trees found in the actions of the pg_rewrite system catalog are only templates. Since they
can reference the range-table entries for NEW and OLD, some substitutions have to be made before they
can be used. For any reference to NEW, the target list of the original query is searched for a corresponding

1200

The Rule System

entry. If found, that entry's expression replaces the reference. Otherwise, NEW means the same as OLD
(for an UPDATE) or is replaced by a null value (for an INSERT). Any reference to OLD is replaced by a
reference to the range-table entry that is the result relation.

After the system is done applying update rules, it applies view rules to the produced query tree(s). Views
cannot insert new update actions so there is no need to apply update rules to the output of view rewriting.

41.4.1.1. A First Rule Step by Step

Say we want to trace changes to the sl_avail column in the shoelace_data relation. So we
set up a log table and a rule that conditionally writes a log entry when an UPDATE is performed on
shoelace_data.

CREATE TABLE shoelace_log (
 sl_name text, -- shoelace changed
 sl_avail integer, -- new available value
 log_who text, -- who did it
 log_when timestamp -- when
);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
 WHERE NEW.sl_avail <> OLD.sl_avail
 DO INSERT INTO shoelace_log VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 current_user,
 current_timestamp
);

Now someone does:

UPDATE shoelace_data SET sl_avail = 6 WHERE sl_name = 'sl7';

and we look at the log table:

SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who | log_when
---------+----------+---------+----------------------------------
 sl7 | 6 | Al | Tue Oct 20 16:14:45 1998 MET DST
(1 row)

That's what we expected. What happened in the background is the following. The parser created the query
tree:

UPDATE shoelace_data SET sl_avail = 6
 FROM shoelace_data shoelace_data
 WHERE shoelace_data.sl_name = 'sl7';

There is a rule log_shoelace that is ON UPDATE with the rule qualification expression:

1201

The Rule System

NEW.sl_avail <> OLD.sl_avail

and the action:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old;

(This looks a little strange since you cannot normally write INSERT ... VALUES ... FROM. The
FROM clause here is just to indicate that there are range-table entries in the query tree for new and old.
These are needed so that they can be referenced by variables in the INSERT command's query tree.)

The rule is a qualified ALSO rule, so the rule system has to return two query trees: the modified rule action
and the original query tree. In step 1, the range table of the original query is incorporated into the rule's
action query tree. This results in:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data;

In step 2, the rule qualification is added to it, so the result set is restricted to rows where sl_avail
changes:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail;

(This looks even stranger, since INSERT ... VALUES doesn't have a WHERE clause either, but the
planner and executor will have no difficulty with it. They need to support this same functionality anyway
for INSERT ... SELECT.)

In step 3, the original query tree's qualification is added, restricting the result set further to only the rows
that would have been touched by the original query:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail
 AND shoelace_data.sl_name = 'sl7';

Step 4 replaces references to NEW by the target list entries from the original query tree or by the matching
variable references from the result relation:

1202

The Rule System

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE 6 <> old.sl_avail
 AND shoelace_data.sl_name = 'sl7';

Step 5 changes OLD references into result relation references:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

That's it. Since the rule is ALSO, we also output the original query tree. In short, the output from the rule
system is a list of two query trees that correspond to these statements:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

UPDATE shoelace_data SET sl_avail = 6
 WHERE sl_name = 'sl7';

These are executed in this order, and that is exactly what the rule was meant to do.

The substitutions and the added qualifications ensure that, if the original query would be, say:

UPDATE shoelace_data SET sl_color = 'green'
 WHERE sl_name = 'sl7';

no log entry would get written. In that case, the original query tree does not contain a target list entry for
sl_avail, so NEW.sl_avail will get replaced by shoelace_data.sl_avail. Thus, the extra
command generated by the rule is:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, shoelace_data.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data
 WHERE shoelace_data.sl_avail <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

and that qualification will never be true.

It will also work if the original query modifies multiple rows. So if someone issued the command:

1203

The Rule System

UPDATE shoelace_data SET sl_avail = 0
 WHERE sl_color = 'black';

four rows in fact get updated (sl1, sl2, sl3, and sl4). But sl3 already has sl_avail = 0. In this
case, the original query trees qualification is different and that results in the extra query tree:

INSERT INTO shoelace_log
SELECT shoelace_data.sl_name, 0,
 current_user, current_timestamp
 FROM shoelace_data
 WHERE 0 <> shoelace_data.sl_avail
 AND shoelace_data.sl_color = 'black';

being generated by the rule. This query tree will surely insert three new log entries. And that's absolutely
correct.

Here we can see why it is important that the original query tree is executed last. If the UPDATE had been
executed first, all the rows would have already been set to zero, so the logging INSERT would not find
any row where 0 <> shoelace_data.sl_avail.

41.4.2. Cooperation with Views
A simple way to protect view relations from the mentioned possibility that someone can try to run INSERT,
UPDATE, or DELETE on them is to let those query trees get thrown away. So we could create the rules:

CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
 DO INSTEAD NOTHING;
CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
 DO INSTEAD NOTHING;
CREATE RULE shoe_del_protect AS ON DELETE TO shoe
 DO INSTEAD NOTHING;

If someone now tries to do any of these operations on the view relation shoe, the rule system will apply
these rules. Since the rules have no actions and are INSTEAD, the resulting list of query trees will be
empty and the whole query will become nothing because there is nothing left to be optimized or executed
after the rule system is done with it.

A more sophisticated way to use the rule system is to create rules that rewrite the query tree into one that
does the right operation on the real tables. To do that on the shoelace view, we create the following rules:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit
);

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace

1204

The Rule System

 DO INSTEAD
 UPDATE shoelace_data
 SET sl_name = NEW.sl_name,
 sl_avail = NEW.sl_avail,
 sl_color = NEW.sl_color,
 sl_len = NEW.sl_len,
 sl_unit = NEW.sl_unit
 WHERE sl_name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
 DO INSTEAD
 DELETE FROM shoelace_data
 WHERE sl_name = OLD.sl_name;

If you want to support RETURNING queries on the view, you need to make the rules include RETURNING
clauses that compute the view rows. This is usually pretty trivial for views on a single table, but it's a bit
tedious for join views such as shoelace. An example for the insert case is:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit
)
 RETURNING
 shoelace_data.*,
 (SELECT shoelace_data.sl_len * u.un_fact
 FROM unit u WHERE shoelace_data.sl_unit = u.un_name);

Note that this one rule supports both INSERT and INSERT RETURNING queries on the view — the
RETURNING clause is simply ignored for INSERT.

Now assume that once in a while, a pack of shoelaces arrives at the shop and a big parts list along with
it. But you don't want to manually update the shoelace view every time. Instead we set up two little
tables: one where you can insert the items from the part list, and one with a special trick. The creation
commands for these are:

CREATE TABLE shoelace_arrive (
 arr_name text,
 arr_quant integer
);

CREATE TABLE shoelace_ok (
 ok_name text,
 ok_quant integer
);

CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
 DO INSTEAD
 UPDATE shoelace

1205

The Rule System

 SET sl_avail = sl_avail + NEW.ok_quant
 WHERE sl_name = NEW.ok_name;

Now you can fill the table shoelace_arrive with the data from the parts list:

SELECT * FROM shoelace_arrive;

 arr_name | arr_quant
----------+-----------
 sl3 | 10
 sl6 | 20
 sl8 | 20
(3 rows)

Take a quick look at the current data:

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl3 | 0 | black | 35 | inch | 88.9
 sl4 | 8 | black | 40 | inch | 101.6
 sl8 | 1 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

Now move the arrived shoelaces in:

INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

and check the results:

SELECT * FROM shoelace ORDER BY sl_name;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl4 | 8 | black | 40 | inch | 101.6
 sl3 | 10 | black | 35 | inch | 88.9
 sl8 | 21 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 20 | brown | 0.9 | m | 90
(8 rows)

SELECT * FROM shoelace_log;

1206

The Rule System

 sl_name | sl_avail | log_who| log_when
---------+----------+--------+----------------------------------
 sl7 | 6 | Al | Tue Oct 20 19:14:45 1998 MET DST
 sl3 | 10 | Al | Tue Oct 20 19:25:16 1998 MET DST
 sl6 | 20 | Al | Tue Oct 20 19:25:16 1998 MET DST
 sl8 | 21 | Al | Tue Oct 20 19:25:16 1998 MET DST
(4 rows)

It's a long way from the one INSERT ... SELECT to these results. And the description of the query-
tree transformation will be the last in this chapter. First, there is the parser's output:

INSERT INTO shoelace_ok
SELECT shoelace_arrive.arr_name, shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

Now the first rule shoelace_ok_ins is applied and turns this into:

UPDATE shoelace
 SET sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace
 WHERE shoelace.sl_name = shoelace_arrive.arr_name;

and throws away the original INSERT on shoelace_ok. This rewritten query is passed to the rule
system again, and the second applied rule shoelace_upd produces:

UPDATE shoelace_data
 SET sl_name = shoelace.sl_name,
 sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant,
 sl_color = shoelace.sl_color,
 sl_len = shoelace.sl_len,
 sl_unit = shoelace.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data
 WHERE shoelace.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = shoelace.sl_name;

Again it's an INSTEAD rule and the previous query tree is trashed. Note that this query still uses the view
shoelace. But the rule system isn't finished with this step, so it continues and applies the _RETURN
rule on it, and we get:

UPDATE shoelace_data
 SET sl_name = s.sl_name,
 sl_avail = s.sl_avail + shoelace_arrive.arr_quant,
 sl_color = s.sl_color,
 sl_len = s.sl_len,
 sl_unit = s.sl_unit

1207

The Rule System

 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data,
 shoelace old, shoelace new,
 shoelace_data s, unit u
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name;

Finally, the rule log_shoelace gets applied, producing the extra query tree:

INSERT INTO shoelace_log
SELECT s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data,
 shoelace old, shoelace new,
 shoelace_data s, unit u,
 shoelace_data old, shoelace_data new
 shoelace_log shoelace_log
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND (s.sl_avail + shoelace_arrive.arr_quant) <> s.sl_avail;

After that the rule system runs out of rules and returns the generated query trees.

So we end up with two final query trees that are equivalent to the SQL statements:

INSERT INTO shoelace_log
SELECT s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND s.sl_avail + shoelace_arrive.arr_quant <> s.sl_avail;

UPDATE shoelace_data
 SET sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive,
 shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.sl_name
 AND shoelace_data.sl_name = s.sl_name;

The result is that data coming from one relation inserted into another, changed into updates on a third,
changed into updating a fourth plus logging that final update in a fifth gets reduced into two queries.

1208

The Rule System

There is a little detail that's a bit ugly. Looking at the two queries, it turns out that the shoelace_data
relation appears twice in the range table where it could definitely be reduced to one. The planner does not
handle it and so the execution plan for the rule systems output of the INSERT will be

Nested Loop
 -> Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive
 -> Seq Scan on shoelace_data

while omitting the extra range table entry would result in a

Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive

which produces exactly the same entries in the log table. Thus, the rule system caused one extra scan on
the table shoelace_data that is absolutely not necessary. And the same redundant scan is done once
more in the UPDATE. But it was a really hard job to make that all possible at all.

Now we make a final demonstration of the PostgreSQL rule system and its power. Say you add some
shoelaces with extraordinary colors to your database:

INSERT INTO shoelace VALUES ('sl9', 0, 'pink', 35.0, 'inch', 0.0);
INSERT INTO shoelace VALUES ('sl10', 1000, 'magenta', 40.0, 'inch',
 0.0);

We would like to make a view to check which shoelace entries do not fit any shoe in color. The view
for this is:

CREATE VIEW shoelace_mismatch AS
 SELECT * FROM shoelace WHERE NOT EXISTS
 (SELECT shoename FROM shoe WHERE slcolor = sl_color);

Its output is:

SELECT * FROM shoelace_mismatch;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl9 | 0 | pink | 35 | inch | 88.9
 sl10 | 1000 | magenta | 40 | inch | 101.6

1209

The Rule System

Now we want to set it up so that mismatching shoelaces that are not in stock are deleted from the database.
To make it a little harder for PostgreSQL, we don't delete it directly. Instead we create one more view:

CREATE VIEW shoelace_can_delete AS
 SELECT * FROM shoelace_mismatch WHERE sl_avail = 0;

and do it this way:

DELETE FROM shoelace WHERE EXISTS
 (SELECT * FROM shoelace_can_delete
 WHERE sl_name = shoelace.sl_name);

Voilà:

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl4 | 8 | black | 40 | inch | 101.6
 sl3 | 10 | black | 35 | inch | 88.9
 sl8 | 21 | brown | 40 | inch | 101.6
 sl10 | 1000 | magenta | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 20 | brown | 0.9 | m | 90
(9 rows)

A DELETE on a view, with a subquery qualification that in total uses 4 nesting/joined views, where one
of them itself has a subquery qualification containing a view and where calculated view columns are used,
gets rewritten into one single query tree that deletes the requested data from a real table.

There are probably only a few situations out in the real world where such a construct is necessary. But it
makes you feel comfortable that it works.

41.5. Rules and Privileges
Due to rewriting of queries by the PostgreSQL rule system, other tables/views than those used in the
original query get accessed. When update rules are used, this can include write access to tables.

Rewrite rules don't have a separate owner. The owner of a relation (table or view) is automatically the
owner of the rewrite rules that are defined for it. The PostgreSQL rule system changes the behavior of the
default access control system. Relations that are used due to rules get checked against the privileges of the
rule owner, not the user invoking the rule. This means that users only need the required privileges for the
tables/views that are explicitly named in their queries.

For example: A user has a list of phone numbers where some of them are private, the others are of interest
for the assistant of the office. The user can construct the following:

CREATE TABLE phone_data (person text, phone text, private boolean);

1210

The Rule System

CREATE VIEW phone_number AS
 SELECT person, CASE WHEN NOT private THEN phone END AS phone
 FROM phone_data;
GRANT SELECT ON phone_number TO assistant;

Nobody except that user (and the database superusers) can access the phone_data table. But because of
the GRANT, the assistant can run a SELECT on the phone_number view. The rule system will rewrite
the SELECT from phone_number into a SELECT from phone_data. Since the user is the owner of
phone_number and therefore the owner of the rule, the read access to phone_data is now checked
against the user's privileges and the query is permitted. The check for accessing phone_number is also
performed, but this is done against the invoking user, so nobody but the user and the assistant can use it.

The privileges are checked rule by rule. So the assistant is for now the only one who can see the public
phone numbers. But the assistant can set up another view and grant access to that to the public. Then,
anyone can see the phone_number data through the assistant's view. What the assistant cannot do is to
create a view that directly accesses phone_data. (Actually the assistant can, but it will not work since
every access will be denied during the permission checks.) And as soon as the user notices that the assistant
opened their phone_number view, the user can revoke the assistant's access. Immediately, any access
to the assistant's view would fail.

One might think that this rule-by-rule checking is a security hole, but in fact it isn't. But if it did not work
this way, the assistant could set up a table with the same columns as phone_number and copy the data
to there once per day. Then it's the assistant's own data and the assistant can grant access to everyone they
want. A GRANT command means, “I trust you”. If someone you trust does the thing above, it's time to
think it over and then use REVOKE.

Note that while views can be used to hide the contents of certain columns using the technique shown
above, they cannot be used to reliably conceal the data in unseen rows unless the security_barrier
flag has been set. For example, the following view is insecure:

CREATE VIEW phone_number AS
 SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';

This view might seem secure, since the rule system will rewrite any SELECT from phone_number into
a SELECT from phone_data and add the qualification that only entries where phone does not begin
with 412 are wanted. But if the user can create their own functions, it is not difficult to convince the planner
to execute the user-defined function prior to the NOT LIKE expression. For example:

CREATE FUNCTION tricky(text, text) RETURNS bool AS $$
BEGIN
 RAISE NOTICE '% => %', $1, $2;
 RETURN true;
END
$$ LANGUAGE plpgsql COST 0.0000000000000000000001;

SELECT * FROM phone_number WHERE tricky(person, phone);

Every person and phone number in the phone_data table will be printed as a NOTICE, because the
planner will choose to execute the inexpensive tricky function before the more expensive NOT LIKE.
Even if the user is prevented from defining new functions, built-in functions can be used in similar attacks.
(For example, most casting functions include their input values in the error messages they produce.)

Similar considerations apply to update rules. In the examples of the previous section, the owner of the
tables in the example database could grant the privileges SELECT, INSERT, UPDATE, and DELETE on

1211

The Rule System

the shoelace view to someone else, but only SELECT on shoelace_log. The rule action to write log
entries will still be executed successfully, and that other user could see the log entries. But they could not
create fake entries, nor could they manipulate or remove existing ones. In this case, there is no possibility
of subverting the rules by convincing the planner to alter the order of operations, because the only rule
which references shoelace_log is an unqualified INSERT. This might not be true in more complex
scenarios.

When it is necessary for a view to provide row level security, the security_barrier attribute should
be applied to the view. This prevents maliciously-chosen functions and operators from being passed values
from rows until after the view has done its work. For example, if the view shown above had been created
like this, it would be secure:

CREATE VIEW phone_number WITH (security_barrier) AS
 SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';

Views created with the security_barrier may perform far worse than views created without this
option. In general, there is no way to avoid this: the fastest possible plan must be rejected if it may
compromise security. For this reason, this option is not enabled by default.

The query planner has more flexibility when dealing with functions that have no side effects. Such
functions are referred to as LEAKPROOF, and include many simple, commonly used operators, such as
many equality operators. The query planner can safely allow such functions to be evaluated at any point in
the query execution process, since invoking them on rows invisible to the user will not leak any information
about the unseen rows. Further, functions which do not take arguments or which are not passed any
arguments from the security barrier view do not have to be marked as LEAKPROOF to be pushed down,
as they never receive data from the view. In contrast, a function that might throw an error depending on
the values received as arguments (such as one that throws an error in the event of overflow or division by
zero) is not leak-proof, and could provide significant information about the unseen rows if applied before
the security view's row filters.

It is important to understand that even a view created with the security_barrier option is intended
to be secure only in the limited sense that the contents of the invisible tuples will not be passed to possibly-
insecure functions. The user may well have other means of making inferences about the unseen data; for
example, they can see the query plan using EXPLAIN, or measure the run time of queries against the view.
A malicious attacker might be able to infer something about the amount of unseen data, or even gain some
information about the data distribution or most common values (since these things may affect the run time
of the plan; or even, since they are also reflected in the optimizer statistics, the choice of plan). If these
types of "covert channel" attacks are of concern, it is probably unwise to grant any access to the data at all.

41.6. Rules and Command Status
The PostgreSQL server returns a command status string, such as INSERT 149592 1, for each command
it receives. This is simple enough when there are no rules involved, but what happens when the query is
rewritten by rules?

Rules affect the command status as follows:

• If there is no unconditional INSTEAD rule for the query, then the originally given query will be executed,
and its command status will be returned as usual. (But note that if there were any conditional INSTEAD
rules, the negation of their qualifications will have been added to the original query. This might reduce
the number of rows it processes, and if so the reported status will be affected.)

• If there is any unconditional INSTEAD rule for the query, then the original query will not be executed
at all. In this case, the server will return the command status for the last query that was inserted by an

1212

The Rule System

INSTEAD rule (conditional or unconditional) and is of the same command type (INSERT, UPDATE, or
DELETE) as the original query. If no query meeting those requirements is added by any rule, then the
returned command status shows the original query type and zeroes for the row-count and OID fields.

The programmer can ensure that any desired INSTEAD rule is the one that sets the command status in the
second case, by giving it the alphabetically last rule name among the active rules, so that it gets applied last.

41.7. Rules Versus Triggers
Many things that can be done using triggers can also be implemented using the PostgreSQL rule system.
One of the things that cannot be implemented by rules are some kinds of constraints, especially foreign
keys. It is possible to place a qualified rule that rewrites a command to NOTHING if the value of a column
does not appear in another table. But then the data is silently thrown away and that's not a good idea.
If checks for valid values are required, and in the case of an invalid value an error message should be
generated, it must be done by a trigger.

In this chapter, we focused on using rules to update views. All of the update rule examples in this chapter
can also be implemented using INSTEAD OF triggers on the views. Writing such triggers is often easier
than writing rules, particularly if complex logic is required to perform the update.

For the things that can be implemented by both, which is best depends on the usage of the database. A
trigger is fired once for each affected row. A rule modifies the query or generates an additional query. So
if many rows are affected in one statement, a rule issuing one extra command is likely to be faster than
a trigger that is called for every single row and must re-determine what to do many times. However, the
trigger approach is conceptually far simpler than the rule approach, and is easier for novices to get right.

Here we show an example of how the choice of rules versus triggers plays out in one situation. There
are two tables:

CREATE TABLE computer (
 hostname text, -- indexed
 manufacturer text -- indexed
);

CREATE TABLE software (
 software text, -- indexed
 hostname text -- indexed
);

Both tables have many thousands of rows and the indexes on hostname are unique. The rule or trigger
should implement a constraint that deletes rows from software that reference a deleted computer. The
trigger would use this command:

DELETE FROM software WHERE hostname = $1;

Since the trigger is called for each individual row deleted from computer, it can prepare and save the
plan for this command and pass the hostname value in the parameter. The rule would be written as:

CREATE RULE computer_del AS ON DELETE TO computer
 DO DELETE FROM software WHERE hostname = OLD.hostname;

Now we look at different types of deletes. In the case of a:

1213

The Rule System

DELETE FROM computer WHERE hostname = 'mypc.local.net';

the table computer is scanned by index (fast), and the command issued by the trigger would also use an
index scan (also fast). The extra command from the rule would be:

DELETE FROM software WHERE computer.hostname = 'mypc.local.net'
 AND software.hostname = computer.hostname;

Since there are appropriate indexes set up, the planner will create a plan of

Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule implementation.

With the next delete we want to get rid of all the 2000 computers where the hostname starts with old.
There are two possible commands to do that. One is:

DELETE FROM computer WHERE hostname >= 'old'
 AND hostname < 'ole'

The command added by the rule will be:

DELETE FROM software WHERE computer.hostname >= 'old' AND
 computer.hostname < 'ole'
 AND software.hostname = computer.hostname;

with the plan

Hash Join
 -> Seq Scan on software
 -> Hash
 -> Index Scan using comp_hostidx on computer

The other possible command is:

DELETE FROM computer WHERE hostname ~ '^old';

which results in the following executing plan for the command added by the rule:

Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

This shows, that the planner does not realize that the qualification for hostname in computer could
also be used for an index scan on software when there are multiple qualification expressions combined
with AND, which is what it does in the regular-expression version of the command. The trigger will get
invoked once for each of the 2000 old computers that have to be deleted, and that will result in one index

1214

The Rule System

scan over computer and 2000 index scans over software. The rule implementation will do it with
two commands that use indexes. And it depends on the overall size of the table software whether the
rule will still be faster in the sequential scan situation. 2000 command executions from the trigger over the
SPI manager take some time, even if all the index blocks will soon be in the cache.

The last command we look at is:

DELETE FROM computer WHERE manufacturer = 'bim';

Again this could result in many rows to be deleted from computer. So the trigger will again run many
commands through the executor. The command generated by the rule will be:

DELETE FROM software WHERE computer.manufacturer = 'bim'
 AND software.hostname = computer.hostname;

The plan for that command will again be the nested loop over two index scans, only using a different
index on computer:

Nestloop
 -> Index Scan using comp_manufidx on computer
 -> Index Scan using soft_hostidx on software

In any of these cases, the extra commands from the rule system will be more or less independent from the
number of affected rows in a command.

The summary is, rules will only be significantly slower than triggers if their actions result in large and
badly qualified joins, a situation where the planner fails.

1215

Chapter 42. Procedural Languages
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically called procedural languages (PLs). For a function written in a procedural
language, the database server has no built-in knowledge about how to interpret the function's source text.
Instead, the task is passed to a special handler that knows the details of the language. The handler could
either do all the work of parsing, syntax analysis, execution, etc. itself, or it could serve as “glue” between
PostgreSQL and an existing implementation of a programming language. The handler itself is a C language
function compiled into a shared object and loaded on demand, just like any other C function.

There are currently four procedural languages available in the standard PostgreSQL distribution: PL/
pgSQL (Chapter 43), PL/Tcl (Chapter 44), PL/Perl (Chapter 45), and PL/Python (Chapter 46). There
are additional procedural languages available that are not included in the core distribution. Appendix H
has information about finding them. In addition other languages can be defined by users; the basics of
developing a new procedural language are covered in Chapter 56.

42.1. Installing Procedural Languages
A procedural language must be “installed” into each database where it is to be used. But procedural
languages installed in the database template1 are automatically available in all subsequently created
databases, since their entries in template1 will be copied by CREATE DATABASE. So the database
administrator can decide which languages are available in which databases and can make some languages
available by default if desired.

For the languages supplied with the standard distribution, it is only necessary to execute CREATE
EXTENSION language_name to install the language into the current database. The manual procedure
described below is only recommended for installing languages that have not been packaged as extensions.

Manual Procedural Language Installation

A procedural language is installed in a database in five steps, which must be carried out by a database
superuser. In most cases the required SQL commands should be packaged as the installation script of an
“extension”, so that CREATE EXTENSION can be used to execute them.

1. The shared object for the language handler must be compiled and installed into an appropriate library
directory. This works in the same way as building and installing modules with regular user-defined
C functions does; see Section 38.10.5. Often, the language handler will depend on an external library
that provides the actual programming language engine; if so, that must be installed as well.

2. The handler must be declared with the command

CREATE FUNCTION handler_function_name()
 RETURNS language_handler
 AS 'path-to-shared-object'
 LANGUAGE C;

The special return type of language_handler tells the database system that this function does
not return one of the defined SQL data types and is not directly usable in SQL statements.

3. (Optional) Optionally, the language handler can provide an “inline” handler function that executes
anonymous code blocks (DO commands) written in this language. If an inline handler function is
provided by the language, declare it with a command like

1216

Procedural Languages

CREATE FUNCTION inline_function_name(internal)
 RETURNS void
 AS 'path-to-shared-object'
 LANGUAGE C;

4. (Optional) Optionally, the language handler can provide a “validator” function that checks a function
definition for correctness without actually executing it. The validator function is called by CREATE
FUNCTION if it exists. If a validator function is provided by the language, declare it with a command
like

CREATE FUNCTION validator_function_name(oid)
 RETURNS void
 AS 'path-to-shared-object'
 LANGUAGE C STRICT;

5. Finally, the PL must be declared with the command

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE language-name
 HANDLER handler_function_name
 [INLINE inline_function_name]
 [VALIDATOR validator_function_name] ;

The optional key word TRUSTED specifies that the language does not grant access to data that the user
would not otherwise have. Trusted languages are designed for ordinary database users (those without
superuser privilege) and allows them to safely create functions and procedures. Since PL functions
are executed inside the database server, the TRUSTED flag should only be given for languages that
do not allow access to database server internals or the file system. The languages PL/pgSQL, PL/Tcl,
and PL/Perl are considered trusted; the languages PL/TclU, PL/PerlU, and PL/PythonU are designed
to provide unlimited functionality and should not be marked trusted.

Example 42.1 shows how the manual installation procedure would work with the language PL/Perl.

Example 42.1. Manual Installation of PL/Perl

The following command tells the database server where to find the shared object for the PL/Perl language's
call handler function:

CREATE FUNCTION plperl_call_handler() RETURNS language_handler AS
 '$libdir/plperl' LANGUAGE C;

PL/Perl has an inline handler function and a validator function, so we declare those too:

CREATE FUNCTION plperl_inline_handler(internal) RETURNS void AS
 '$libdir/plperl' LANGUAGE C;

CREATE FUNCTION plperl_validator(oid) RETURNS void AS
 '$libdir/plperl' LANGUAGE C STRICT;

The command:

1217

Procedural Languages

CREATE TRUSTED PROCEDURAL LANGUAGE plperl
 HANDLER plperl_call_handler
 INLINE plperl_inline_handler
 VALIDATOR plperl_validator;

then defines that the previously declared functions should be invoked for functions and procedures where
the language attribute is plperl.

In a default PostgreSQL installation, the handler for the PL/pgSQL language is built and installed into the
“library” directory; furthermore, the PL/pgSQL language itself is installed in all databases. If Tcl support
is configured in, the handlers for PL/Tcl and PL/TclU are built and installed in the library directory, but the
language itself is not installed in any database by default. Likewise, the PL/Perl and PL/PerlU handlers are
built and installed if Perl support is configured, and the PL/PythonU handler is installed if Python support
is configured, but these languages are not installed by default.

1218

Chapter 43. PL/pgSQL - SQL
Procedural Language
43.1. Overview

PL/pgSQL is a loadable procedural language for the PostgreSQL database system. The design goals of
PL/pgSQL were to create a loadable procedural language that

• can be used to create functions and triggers,

• adds control structures to the SQL language,

• can perform complex computations,

• inherits all user-defined types, functions, and operators,

• can be defined to be trusted by the server,

• is easy to use.

Functions created with PL/pgSQL can be used anywhere that built-in functions could be used. For example,
it is possible to create complex conditional computation functions and later use them to define operators
or use them in index expressions.

In PostgreSQL 9.0 and later, PL/pgSQL is installed by default. However it is still a loadable module, so
especially security-conscious administrators could choose to remove it.

43.1.1. Advantages of Using PL/pgSQL
SQL is the language PostgreSQL and most other relational databases use as query language. It's portable
and easy to learn. But every SQL statement must be executed individually by the database server.

That means that your client application must send each query to the database server, wait for it to be
processed, receive and process the results, do some computation, then send further queries to the server.
All this incurs interprocess communication and will also incur network overhead if your client is on a
different machine than the database server.

With PL/pgSQL you can group a block of computation and a series of queries inside the database server,
thus having the power of a procedural language and the ease of use of SQL, but with considerable savings
of client/server communication overhead.

• Extra round trips between client and server are eliminated

• Intermediate results that the client does not need do not have to be marshaled or transferred between
server and client

• Multiple rounds of query parsing can be avoided

This can result in a considerable performance increase as compared to an application that does not use
stored functions.

Also, with PL/pgSQL you can use all the data types, operators and functions of SQL.

1219

PL/pgSQL - SQL
Procedural Language

43.1.2. Supported Argument and Result Data Types
Functions written in PL/pgSQL can accept as arguments any scalar or array data type supported by the
server, and they can return a result of any of these types. They can also accept or return any composite type
(row type) specified by name. It is also possible to declare a PL/pgSQL function as accepting record,
which means that any composite type will do as input, or as returning record, which means that the
result is a row type whose columns are determined by specification in the calling query, as discussed in
Section 7.2.1.4.

PL/pgSQL functions can be declared to accept a variable number of arguments by using the VARIADIC
marker. This works exactly the same way as for SQL functions, as discussed in Section 38.5.5.

PL/pgSQL functions can also be declared to accept and return the polymorphic types anyelement,
anyarray, anynonarray, anyenum, and anyrange. The actual data types handled by a
polymorphic function can vary from call to call, as discussed in Section 38.2.5. An example is shown in
Section 43.3.1.

PL/pgSQL functions can also be declared to return a “set” (or table) of any data type that can be returned
as a single instance. Such a function generates its output by executing RETURN NEXT for each desired
element of the result set, or by using RETURN QUERY to output the result of evaluating a query.

Finally, a PL/pgSQL function can be declared to return void if it has no useful return value. (Alternatively,
it could be written as a procedure in that case.)

PL/pgSQL functions can also be declared with output parameters in place of an explicit specification of
the return type. This does not add any fundamental capability to the language, but it is often convenient,
especially for returning multiple values. The RETURNS TABLE notation can also be used in place of
RETURNS SETOF.

Specific examples appear in Section 43.3.1 and Section 43.6.1.

43.2. Structure of PL/pgSQL
Functions written in PL/pgSQL are defined to the server by executing CREATE FUNCTION commands.
Such a command would normally look like, say,

CREATE FUNCTION somefunc(integer, text) RETURNS integer
AS 'function body text'
LANGUAGE plpgsql;

The function body is simply a string literal so far as CREATE FUNCTION is concerned. It is often helpful
to use dollar quoting (see Section 4.1.2.4) to write the function body, rather than the normal single quote
syntax. Without dollar quoting, any single quotes or backslashes in the function body must be escaped by
doubling them. Almost all the examples in this chapter use dollar-quoted literals for their function bodies.

PL/pgSQL is a block-structured language. The complete text of a function body must be a block. A block
is defined as:

[<<label>>]
[DECLARE
 declarations]
BEGIN

1220

PL/pgSQL - SQL
Procedural Language

 statements
END [label];

Each declaration and each statement within a block is terminated by a semicolon. A block that appears
within another block must have a semicolon after END, as shown above; however the final END that
concludes a function body does not require a semicolon.

Tip

A common mistake is to write a semicolon immediately after BEGIN. This is incorrect and will
result in a syntax error.

A label is only needed if you want to identify the block for use in an EXIT statement, or to qualify
the names of the variables declared in the block. If a label is given after END, it must match the label at
the block's beginning.

All key words are case-insensitive. Identifiers are implicitly converted to lower case unless double-quoted,
just as they are in ordinary SQL commands.

Comments work the same way in PL/pgSQL code as in ordinary SQL. A double dash (--) starts a comment
that extends to the end of the line. A /* starts a block comment that extends to the matching occurrence
of */. Block comments nest.

Any statement in the statement section of a block can be a subblock. Subblocks can be used for logical
grouping or to localize variables to a small group of statements. Variables declared in a subblock mask any
similarly-named variables of outer blocks for the duration of the subblock; but you can access the outer
variables anyway if you qualify their names with their block's label. For example:

CREATE FUNCTION somefunc() RETURNS integer AS $$
<< outerblock >>
DECLARE
 quantity integer := 30;
BEGIN
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 30
 quantity := 50;
 --
 -- Create a subblock
 --
 DECLARE
 quantity integer := 80;
 BEGIN
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 80
 RAISE NOTICE 'Outer quantity here is %', outerblock.quantity;
 -- Prints 50
 END;

 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 50

 RETURN quantity;
END;
$$ LANGUAGE plpgsql;

1221

PL/pgSQL - SQL
Procedural Language

Note

There is actually a hidden “outer block” surrounding the body of any PL/pgSQL function. This
block provides the declarations of the function's parameters (if any), as well as some special
variables such as FOUND (see Section 43.5.5). The outer block is labeled with the function's name,
meaning that parameters and special variables can be qualified with the function's name.

It is important not to confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the
similarly-named SQL commands for transaction control. PL/pgSQL's BEGIN/END are only for grouping;
they do not start or end a transaction. See Section 43.8 for information on managing transactions in PL/
pgSQL. Also, a block containing an EXCEPTION clause effectively forms a subtransaction that can be
rolled back without affecting the outer transaction. For more about that see Section 43.6.8.

43.3. Declarations
All variables used in a block must be declared in the declarations section of the block. (The only exceptions
are that the loop variable of a FOR loop iterating over a range of integer values is automatically declared
as an integer variable, and likewise the loop variable of a FOR loop iterating over a cursor's result is
automatically declared as a record variable.)

PL/pgSQL variables can have any SQL data type, such as integer, varchar, and char.

Here are some examples of variable declarations:

user_id integer;
quantity numeric(5);
url varchar;
myrow tablename%ROWTYPE;
myfield tablename.columnname%TYPE;
arow RECORD;

The general syntax of a variable declaration is:

name [CONSTANT] type [COLLATE collation_name] [NOT NULL]
 [{ DEFAULT | := | = } expression];

The DEFAULT clause, if given, specifies the initial value assigned to the variable when the block is
entered. If the DEFAULT clause is not given then the variable is initialized to the SQL null value. The
CONSTANT option prevents the variable from being assigned to after initialization, so that its value will
remain constant for the duration of the block. The COLLATE option specifies a collation to use for the
variable (see Section 43.3.6). If NOT NULL is specified, an assignment of a null value results in a run-
time error. All variables declared as NOT NULL must have a nonnull default value specified. Equal (=)
can be used instead of PL/SQL-compliant :=.

A variable's default value is evaluated and assigned to the variable each time the block is entered (not just
once per function call). So, for example, assigning now() to a variable of type timestamp causes the
variable to have the time of the current function call, not the time when the function was precompiled.

Examples:

1222

PL/pgSQL - SQL
Procedural Language

quantity integer DEFAULT 32;
url varchar := 'http://mysite.com';
user_id CONSTANT integer := 10;

43.3.1. Declaring Function Parameters
Parameters passed to functions are named with the identifiers $1, $2, etc. Optionally, aliases can be
declared for $n parameter names for increased readability. Either the alias or the numeric identifier can
then be used to refer to the parameter value.

There are two ways to create an alias. The preferred way is to give a name to the parameter in the CREATE
FUNCTION command, for example:

CREATE FUNCTION sales_tax(subtotal real) RETURNS real AS $$
BEGIN
 RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

The other way is to explicitly declare an alias, using the declaration syntax

name ALIAS FOR $n;

The same example in this style looks like:

CREATE FUNCTION sales_tax(real) RETURNS real AS $$
DECLARE
 subtotal ALIAS FOR $1;
BEGIN
 RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Note

These two examples are not perfectly equivalent. In the first case, subtotal could be referenced
as sales_tax.subtotal, but in the second case it could not. (Had we attached a label to the
inner block, subtotal could be qualified with that label, instead.)

Some more examples:

CREATE FUNCTION instr(varchar, integer) RETURNS integer AS $$
DECLARE
 v_string ALIAS FOR $1;
 index ALIAS FOR $2;
BEGIN
 -- some computations using v_string and index here
END;
$$ LANGUAGE plpgsql;

1223

PL/pgSQL - SQL
Procedural Language

CREATE FUNCTION concat_selected_fields(in_t sometablename) RETURNS
 text AS $$
BEGIN
 RETURN in_t.f1 || in_t.f3 || in_t.f5 || in_t.f7;
END;
$$ LANGUAGE plpgsql;

When a PL/pgSQL function is declared with output parameters, the output parameters are given $n names
and optional aliases in just the same way as the normal input parameters. An output parameter is effectively
a variable that starts out NULL; it should be assigned to during the execution of the function. The final
value of the parameter is what is returned. For instance, the sales-tax example could also be done this way:

CREATE FUNCTION sales_tax(subtotal real, OUT tax real) AS $$
BEGIN
 tax := subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Notice that we omitted RETURNS real — we could have included it, but it would be redundant.

Output parameters are most useful when returning multiple values. A trivial example is:

CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int)
 AS $$
BEGIN
 sum := x + y;
 prod := x * y;
END;
$$ LANGUAGE plpgsql;

As discussed in Section 38.5.4, this effectively creates an anonymous record type for the function's results.
If a RETURNS clause is given, it must say RETURNS record.

Another way to declare a PL/pgSQL function is with RETURNS TABLE, for example:

CREATE FUNCTION extended_sales(p_itemno int)
RETURNS TABLE(quantity int, total numeric) AS $$
BEGIN
 RETURN QUERY SELECT s.quantity, s.quantity * s.price FROM sales AS
 s
 WHERE s.itemno = p_itemno;
END;
$$ LANGUAGE plpgsql;

This is exactly equivalent to declaring one or more OUT parameters and specifying RETURNS SETOF
sometype.

When the return type of a PL/pgSQL function is declared as a polymorphic type (anyelement,
anyarray, anynonarray, anyenum, or anyrange), a special parameter $0 is created. Its data type
is the actual return type of the function, as deduced from the actual input types (see Section 38.2.5). This
allows the function to access its actual return type as shown in Section 43.3.3. $0 is initialized to null
and can be modified by the function, so it can be used to hold the return value if desired, though that is

1224

PL/pgSQL - SQL
Procedural Language

not required. $0 can also be given an alias. For example, this function works on any data type that has
a + operator:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3
 anyelement)
RETURNS anyelement AS $$
DECLARE
 result ALIAS FOR $0;
BEGIN
 result := v1 + v2 + v3;
 RETURN result;
END;
$$ LANGUAGE plpgsql;

The same effect can be obtained by declaring one or more output parameters as polymorphic types. In
this case the special $0 parameter is not used; the output parameters themselves serve the same purpose.
For example:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3
 anyelement,
 OUT sum anyelement)
AS $$
BEGIN
 sum := v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;

43.3.2. ALIAS

newname ALIAS FOR oldname;

The ALIAS syntax is more general than is suggested in the previous section: you can declare an alias for
any variable, not just function parameters. The main practical use for this is to assign a different name for
variables with predetermined names, such as NEW or OLD within a trigger function.

Examples:

DECLARE
 prior ALIAS FOR old;
 updated ALIAS FOR new;

Since ALIAS creates two different ways to name the same object, unrestricted use can be confusing. It's
best to use it only for the purpose of overriding predetermined names.

43.3.3. Copying Types

variable%TYPE

%TYPE provides the data type of a variable or table column. You can use this to declare variables that will
hold database values. For example, let's say you have a column named user_id in your users table.
To declare a variable with the same data type as users.user_id you write:

1225

PL/pgSQL - SQL
Procedural Language

user_id users.user_id%TYPE;

By using %TYPE you don't need to know the data type of the structure you are referencing, and most
importantly, if the data type of the referenced item changes in the future (for instance: you change the type
of user_id from integer to real), you might not need to change your function definition.

%TYPE is particularly valuable in polymorphic functions, since the data types needed for internal variables
can change from one call to the next. Appropriate variables can be created by applying %TYPE to the
function's arguments or result placeholders.

43.3.4. Row Types

name table_name%ROWTYPE;
name composite_type_name;

A variable of a composite type is called a row variable (or row-type variable). Such a variable can hold
a whole row of a SELECT or FOR query result, so long as that query's column set matches the declared
type of the variable. The individual fields of the row value are accessed using the usual dot notation, for
example rowvar.field.

A row variable can be declared to have the same type as the rows of an existing table or view, by using
the table_name%ROWTYPE notation; or it can be declared by giving a composite type's name. (Since
every table has an associated composite type of the same name, it actually does not matter in PostgreSQL
whether you write %ROWTYPE or not. But the form with %ROWTYPE is more portable.)

Parameters to a function can be composite types (complete table rows). In that case, the corresponding
identifier $n will be a row variable, and fields can be selected from it, for example $1.user_id.

Here is an example of using composite types. table1 and table2 are existing tables having at least
the mentioned fields:

CREATE FUNCTION merge_fields(t_row table1) RETURNS text AS $$
DECLARE
 t2_row table2%ROWTYPE;
BEGIN
 SELECT * INTO t2_row FROM table2 WHERE ... ;
 RETURN t_row.f1 || t2_row.f3 || t_row.f5 || t2_row.f7;
END;
$$ LANGUAGE plpgsql;

SELECT merge_fields(t.*) FROM table1 t WHERE ... ;

43.3.5. Record Types

name RECORD;

Record variables are similar to row-type variables, but they have no predefined structure. They take on the
actual row structure of the row they are assigned during a SELECT or FOR command. The substructure of
a record variable can change each time it is assigned to. A consequence of this is that until a record variable
is first assigned to, it has no substructure, and any attempt to access a field in it will draw a run-time error.

1226

PL/pgSQL - SQL
Procedural Language

Note that RECORD is not a true data type, only a placeholder. One should also realize that when a PL/
pgSQL function is declared to return type record, this is not quite the same concept as a record variable,
even though such a function might use a record variable to hold its result. In both cases the actual row
structure is unknown when the function is written, but for a function returning record the actual structure
is determined when the calling query is parsed, whereas a record variable can change its row structure
on-the-fly.

43.3.6. Collation of PL/pgSQL Variables
When a PL/pgSQL function has one or more parameters of collatable data types, a collation is identified
for each function call depending on the collations assigned to the actual arguments, as described in
Section 23.2. If a collation is successfully identified (i.e., there are no conflicts of implicit collations among
the arguments) then all the collatable parameters are treated as having that collation implicitly. This will
affect the behavior of collation-sensitive operations within the function. For example, consider

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
BEGIN
 RETURN a < b;
END;
$$ LANGUAGE plpgsql;

SELECT less_than(text_field_1, text_field_2) FROM table1;
SELECT less_than(text_field_1, text_field_2 COLLATE "C") FROM table1;

The first use of less_than will use the common collation of text_field_1 and text_field_2
for the comparison, while the second use will use C collation.

Furthermore, the identified collation is also assumed as the collation of any local variables that are of
collatable types. Thus this function would not work any differently if it were written as

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
DECLARE
 local_a text := a;
 local_b text := b;
BEGIN
 RETURN local_a < local_b;
END;
$$ LANGUAGE plpgsql;

If there are no parameters of collatable data types, or no common collation can be identified for them, then
parameters and local variables use the default collation of their data type (which is usually the database's
default collation, but could be different for variables of domain types).

A local variable of a collatable data type can have a different collation associated with it by including the
COLLATE option in its declaration, for example

DECLARE
 local_a text COLLATE "en_US";

This option overrides the collation that would otherwise be given to the variable according to the rules
above.

1227

PL/pgSQL - SQL
Procedural Language

Also, of course explicit COLLATE clauses can be written inside a function if it is desired to force a particular
collation to be used in a particular operation. For example,

CREATE FUNCTION less_than_c(a text, b text) RETURNS boolean AS $$
BEGIN
 RETURN a < b COLLATE "C";
END;
$$ LANGUAGE plpgsql;

This overrides the collations associated with the table columns, parameters, or local variables used in the
expression, just as would happen in a plain SQL command.

43.4. Expressions
All expressions used in PL/pgSQL statements are processed using the server's main SQL executor. For
example, when you write a PL/pgSQL statement like

IF expression THEN ...

PL/pgSQL will evaluate the expression by feeding a query like

SELECT expression

to the main SQL engine. While forming the SELECT command, any occurrences of PL/pgSQL variable
names are replaced by parameters, as discussed in detail in Section 43.11.1. This allows the query plan for
the SELECT to be prepared just once and then reused for subsequent evaluations with different values of
the variables. Thus, what really happens on first use of an expression is essentially a PREPARE command.
For example, if we have declared two integer variables x and y, and we write

IF x < y THEN ...

what happens behind the scenes is equivalent to

PREPARE statement_name(integer, integer) AS SELECT $1 < $2;

and then this prepared statement is EXECUTEd for each execution of the IF statement, with the current
values of the PL/pgSQL variables supplied as parameter values. Normally these details are not important
to a PL/pgSQL user, but they are useful to know when trying to diagnose a problem. More information
appears in Section 43.11.2.

43.5. Basic Statements
In this section and the following ones, we describe all the statement types that are explicitly understood by
PL/pgSQL. Anything not recognized as one of these statement types is presumed to be an SQL command
and is sent to the main database engine to execute, as described in Section 43.5.2 and Section 43.5.3.

43.5.1. Assignment
An assignment of a value to a PL/pgSQL variable is written as:

1228

PL/pgSQL - SQL
Procedural Language

variable { := | = } expression;

As explained previously, the expression in such a statement is evaluated by means of an SQL SELECT
command sent to the main database engine. The expression must yield a single value (possibly a row value,
if the variable is a row or record variable). The target variable can be a simple variable (optionally qualified
with a block name), a field of a row or record variable, or an element of an array that is a simple variable
or field. Equal (=) can be used instead of PL/SQL-compliant :=.

If the expression's result data type doesn't match the variable's data type, the value will be coerced as
though by an assignment cast (see Section 10.4). If no assignment cast is known for the pair of data types
involved, the PL/pgSQL interpreter will attempt to convert the result value textually, that is by applying
the result type's output function followed by the variable type's input function. Note that this could result
in run-time errors generated by the input function, if the string form of the result value is not acceptable
to the input function.

Examples:

tax := subtotal * 0.06;
my_record.user_id := 20;

43.5.2. Executing a Command With No Result
For any SQL command that does not return rows, for example INSERT without a RETURNING clause,
you can execute the command within a PL/pgSQL function just by writing the command.

Any PL/pgSQL variable name appearing in the command text is treated as a parameter, and then the current
value of the variable is provided as the parameter value at run time. This is exactly like the processing
described earlier for expressions; for details see Section 43.11.1.

When executing a SQL command in this way, PL/pgSQL may cache and re-use the execution plan for the
command, as discussed in Section 43.11.2.

Sometimes it is useful to evaluate an expression or SELECT query but discard the result, for example
when calling a function that has side-effects but no useful result value. To do this in PL/pgSQL, use the
PERFORM statement:

PERFORM query;

This executes query and discards the result. Write the query the same way you would write an SQL
SELECT command, but replace the initial keyword SELECT with PERFORM. For WITH queries, use
PERFORM and then place the query in parentheses. (In this case, the query can only return one row.) PL/
pgSQL variables will be substituted into the query just as for commands that return no result, and the plan
is cached in the same way. Also, the special variable FOUND is set to true if the query produced at least
one row, or false if it produced no rows (see Section 43.5.5).

Note

One might expect that writing SELECT directly would accomplish this result, but at present the
only accepted way to do it is PERFORM. A SQL command that can return rows, such as SELECT,
will be rejected as an error unless it has an INTO clause as discussed in the next section.

1229

PL/pgSQL - SQL
Procedural Language

An example:

PERFORM create_mv('cs_session_page_requests_mv', my_query);

43.5.3. Executing a Query with a Single-row Result
The result of a SQL command yielding a single row (possibly of multiple columns) can be assigned to
a record variable, row-type variable, or list of scalar variables. This is done by writing the base SQL
command and adding an INTO clause. For example,

SELECT select_expressions INTO [STRICT] target FROM ...;
INSERT ... RETURNING expressions INTO [STRICT] target;
UPDATE ... RETURNING expressions INTO [STRICT] target;
DELETE ... RETURNING expressions INTO [STRICT] target;

where target can be a record variable, a row variable, or a comma-separated list of simple variables and
record/row fields. PL/pgSQL variables will be substituted into the rest of the query, and the plan is cached,
just as described above for commands that do not return rows. This works for SELECT, INSERT/UPDATE/
DELETE with RETURNING, and utility commands that return row-set results (such as EXPLAIN). Except
for the INTO clause, the SQL command is the same as it would be written outside PL/pgSQL.

Tip

Note that this interpretation of SELECT with INTO is quite different from PostgreSQL's regular
SELECT INTO command, wherein the INTO target is a newly created table. If you want to create
a table from a SELECT result inside a PL/pgSQL function, use the syntax CREATE TABLE ...
AS SELECT.

If a row or a variable list is used as target, the query's result columns must exactly match the structure of
the target as to number and data types, or else a run-time error occurs. When a record variable is the target,
it automatically configures itself to the row type of the query result columns.

The INTO clause can appear almost anywhere in the SQL command. Customarily it is written either just
before or just after the list of select_expressions in a SELECT command, or at the end of the
command for other command types. It is recommended that you follow this convention in case the PL/
pgSQL parser becomes stricter in future versions.

If STRICT is not specified in the INTO clause, then target will be set to the first row returned by the
query, or to nulls if the query returned no rows. (Note that “the first row” is not well-defined unless you've
used ORDER BY.) Any result rows after the first row are discarded. You can check the special FOUND
variable (see Section 43.5.5) to determine whether a row was returned:

SELECT * INTO myrec FROM emp WHERE empname = myname;
IF NOT FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
END IF;

If the STRICT option is specified, the query must return exactly one row or a run-time error will be
reported, either NO_DATA_FOUND (no rows) or TOO_MANY_ROWS (more than one row). You can use an
exception block if you wish to catch the error, for example:

1230

PL/pgSQL - SQL
Procedural Language

BEGIN
 SELECT * INTO STRICT myrec FROM emp WHERE empname = myname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
 WHEN TOO_MANY_ROWS THEN
 RAISE EXCEPTION 'employee % not unique', myname;
END;

Successful execution of a command with STRICT always sets FOUND to true.

For INSERT/UPDATE/DELETE with RETURNING, PL/pgSQL reports an error for more than one returned
row, even when STRICT is not specified. This is because there is no option such as ORDER BY with
which to determine which affected row should be returned.

If print_strict_params is enabled for the function, then when an error is thrown because the
requirements of STRICT are not met, the DETAIL part of the error message will include information
about the parameters passed to the query. You can change the print_strict_params setting
for all functions by setting plpgsql.print_strict_params, though only subsequent function
compilations will be affected. You can also enable it on a per-function basis by using a compiler option,
for example:

CREATE FUNCTION get_userid(username text) RETURNS int
AS $$
#print_strict_params on
DECLARE
userid int;
BEGIN
 SELECT users.userid INTO STRICT userid
 FROM users WHERE users.username = get_userid.username;
 RETURN userid;
END
$$ LANGUAGE plpgsql;

On failure, this function might produce an error message such as

ERROR: query returned no rows
DETAIL: parameters: $1 = 'nosuchuser'
CONTEXT: PL/pgSQL function get_userid(text) line 6 at SQL statement

Note

The STRICT option matches the behavior of Oracle PL/SQL's SELECT INTO and related
statements.

To handle cases where you need to process multiple result rows from a SQL query, see Section 43.6.6.

43.5.4. Executing Dynamic Commands
Oftentimes you will want to generate dynamic commands inside your PL/pgSQL functions, that is,
commands that will involve different tables or different data types each time they are executed. PL/pgSQL's

1231

PL/pgSQL - SQL
Procedural Language

normal attempts to cache plans for commands (as discussed in Section 43.11.2) will not work in such
scenarios. To handle this sort of problem, the EXECUTE statement is provided:

EXECUTE command-string [INTO [STRICT] target] [USING expression
 [, ...]];

where command-string is an expression yielding a string (of type text) containing the command
to be executed. The optional target is a record variable, a row variable, or a comma-separated list of
simple variables and record/row fields, into which the results of the command will be stored. The optional
USING expressions supply values to be inserted into the command.

No substitution of PL/pgSQL variables is done on the computed command string. Any required variable
values must be inserted in the command string as it is constructed; or you can use parameters as described
below.

Also, there is no plan caching for commands executed via EXECUTE. Instead, the command is always
planned each time the statement is run. Thus the command string can be dynamically created within the
function to perform actions on different tables and columns.

The INTO clause specifies where the results of a SQL command returning rows should be assigned. If a
row or variable list is provided, it must exactly match the structure of the query's results (when a record
variable is used, it will configure itself to match the result structure automatically). If multiple rows are
returned, only the first will be assigned to the INTO variable. If no rows are returned, NULL is assigned
to the INTO variable(s). If no INTO clause is specified, the query results are discarded.

If the STRICT option is given, an error is reported unless the query produces exactly one row.

The command string can use parameter values, which are referenced in the command as $1, $2, etc. These
symbols refer to values supplied in the USING clause. This method is often preferable to inserting data
values into the command string as text: it avoids run-time overhead of converting the values to text and
back, and it is much less prone to SQL-injection attacks since there is no need for quoting or escaping.
An example is:

EXECUTE 'SELECT count(*) FROM mytable WHERE inserted_by = $1 AND
 inserted <= $2'
 INTO c
 USING checked_user, checked_date;

Note that parameter symbols can only be used for data values — if you want to use dynamically determined
table or column names, you must insert them into the command string textually. For example, if the
preceding query needed to be done against a dynamically selected table, you could do this:

EXECUTE 'SELECT count(*) FROM '
 || quote_ident(tabname)
 || ' WHERE inserted_by = $1 AND inserted <= $2'
 INTO c
 USING checked_user, checked_date;

A cleaner approach is to use format()'s %I specification for table or column names (strings separated
by a newline are concatenated):

EXECUTE format('SELECT count(*) FROM %I '
 'WHERE inserted_by = $1 AND inserted <= $2', tabname)

1232

PL/pgSQL - SQL
Procedural Language

 INTO c
 USING checked_user, checked_date;

Another restriction on parameter symbols is that they only work in SELECT, INSERT, UPDATE, and
DELETE commands. In other statement types (generically called utility statements), you must insert values
textually even if they are just data values.

An EXECUTE with a simple constant command string and some USING parameters, as in the first
example above, is functionally equivalent to just writing the command directly in PL/pgSQL and allowing
replacement of PL/pgSQL variables to happen automatically. The important difference is that EXECUTE
will re-plan the command on each execution, generating a plan that is specific to the current parameter
values; whereas PL/pgSQL may otherwise create a generic plan and cache it for re-use. In situations where
the best plan depends strongly on the parameter values, it can be helpful to use EXECUTE to positively
ensure that a generic plan is not selected.

SELECT INTO is not currently supported within EXECUTE; instead, execute a plain SELECT command
and specify INTO as part of the EXECUTE itself.

Note

The PL/pgSQL EXECUTE statement is not related to the EXECUTE SQL statement supported
by the PostgreSQL server. The server's EXECUTE statement cannot be used directly within PL/
pgSQL functions (and is not needed).

Example 43.1. Quoting Values In Dynamic Queries

When working with dynamic commands you will often have to handle escaping of single quotes. The
recommended method for quoting fixed text in your function body is dollar quoting. (If you have legacy
code that does not use dollar quoting, please refer to the overview in Section 43.12.1, which can save you
some effort when translating said code to a more reasonable scheme.)

Dynamic values require careful handling since they might contain quote characters. An example using
format() (this assumes that you are dollar quoting the function body so quote marks need not be
doubled):

EXECUTE format('UPDATE tbl SET %I = $1 '
 'WHERE key = $2', colname) USING newvalue, keyvalue;

It is also possible to call the quoting functions directly:

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_literal(newvalue)
 || ' WHERE key = '
 || quote_literal(keyvalue);

This example demonstrates the use of the quote_ident and quote_literal functions (see
Section 9.4). For safety, expressions containing column or table identifiers should be passed through
quote_ident before insertion in a dynamic query. Expressions containing values that should be literal
strings in the constructed command should be passed through quote_literal. These functions take

1233

PL/pgSQL - SQL
Procedural Language

the appropriate steps to return the input text enclosed in double or single quotes respectively, with any
embedded special characters properly escaped.

Because quote_literal is labeled STRICT, it will always return null when called with a null
argument. In the above example, if newvalue or keyvalue were null, the entire dynamic query
string would become null, leading to an error from EXECUTE. You can avoid this problem by using the
quote_nullable function, which works the same as quote_literal except that when called with
a null argument it returns the string NULL. For example,

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_nullable(newvalue)
 || ' WHERE key = '
 || quote_nullable(keyvalue);

If you are dealing with values that might be null, you should usually use quote_nullable in place
of quote_literal.

As always, care must be taken to ensure that null values in a query do not deliver unintended results. For
example the WHERE clause

'WHERE key = ' || quote_nullable(keyvalue)

will never succeed if keyvalue is null, because the result of using the equality operator = with a null
operand is always null. If you wish null to work like an ordinary key value, you would need to rewrite
the above as

'WHERE key IS NOT DISTINCT FROM ' || quote_nullable(keyvalue)

(At present, IS NOT DISTINCT FROM is handled much less efficiently than =, so don't do this unless
you must. See Section 9.2 for more information on nulls and IS DISTINCT.)

Note that dollar quoting is only useful for quoting fixed text. It would be a very bad idea to try to write
this example as:

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = $$'
 || newvalue
 || '$$ WHERE key = '
 || quote_literal(keyvalue);

because it would break if the contents of newvalue happened to contain $$. The same objection would
apply to any other dollar-quoting delimiter you might pick. So, to safely quote text that is not known in
advance, you must use quote_literal, quote_nullable, or quote_ident, as appropriate.

Dynamic SQL statements can also be safely constructed using the format function (see Section 9.4.1).
For example:

EXECUTE format('UPDATE tbl SET %I = %L '
 'WHERE key = %L', colname, newvalue, keyvalue);

1234

PL/pgSQL - SQL
Procedural Language

%I is equivalent to quote_ident, and %L is equivalent to quote_nullable. The format function
can be used in conjunction with the USING clause:

EXECUTE format('UPDATE tbl SET %I = $1 WHERE key = $2', colname)
 USING newvalue, keyvalue;

This form is better because the variables are handled in their native data type format, rather than
unconditionally converting them to text and quoting them via %L. It is also more efficient.

A much larger example of a dynamic command and EXECUTE can be seen in Example 43.10, which builds
and executes a CREATE FUNCTION command to define a new function.

43.5.5. Obtaining the Result Status
There are several ways to determine the effect of a command. The first method is to use the GET
DIAGNOSTICS command, which has the form:

GET [CURRENT] DIAGNOSTICS variable { = | := } item [, ...];

This command allows retrieval of system status indicators. CURRENT is a noise word (but see also GET
STACKED DIAGNOSTICS in Section 43.6.8.1). Each item is a key word identifying a status value to be
assigned to the specified variable (which should be of the right data type to receive it). The currently
available status items are shown in Table 43.1. Colon-equal (:=) can be used instead of the SQL-standard
= token. An example:

GET DIAGNOSTICS integer_var = ROW_COUNT;

Table 43.1. Available Diagnostics Items

Name Type Description

ROW_COUNT bigint the number of rows processed by
the most recent SQL command

RESULT_OID oid the OID of the last row inserted
by the most recent SQL command
(only useful after an INSERT
command into a table having
OIDs)

PG_CONTEXT text line(s) of text describing
the current call stack (see
Section 43.6.9)

The second method to determine the effects of a command is to check the special variable named FOUND,
which is of type boolean. FOUND starts out false within each PL/pgSQL function call. It is set by each
of the following types of statements:

• A SELECT INTO statement sets FOUND true if a row is assigned, false if no row is returned.

• A PERFORM statement sets FOUND true if it produces (and discards) one or more rows, false if no row
is produced.

• UPDATE, INSERT, and DELETE statements set FOUND true if at least one row is affected, false if no
row is affected.

1235

PL/pgSQL - SQL
Procedural Language

• A FETCH statement sets FOUND true if it returns a row, false if no row is returned.

• A MOVE statement sets FOUND true if it successfully repositions the cursor, false otherwise.

• A FOR or FOREACH statement sets FOUND true if it iterates one or more times, else false. FOUND is
set this way when the loop exits; inside the execution of the loop, FOUND is not modified by the loop
statement, although it might be changed by the execution of other statements within the loop body.

• RETURN QUERY and RETURN QUERY EXECUTE statements set FOUND true if the query returns at
least one row, false if no row is returned.

Other PL/pgSQL statements do not change the state of FOUND. Note in particular that EXECUTE changes
the output of GET DIAGNOSTICS, but does not change FOUND.

FOUND is a local variable within each PL/pgSQL function; any changes to it affect only the current
function.

43.5.6. Doing Nothing At All
Sometimes a placeholder statement that does nothing is useful. For example, it can indicate that one arm
of an if/then/else chain is deliberately empty. For this purpose, use the NULL statement:

NULL;

For example, the following two fragments of code are equivalent:

BEGIN
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN
 NULL; -- ignore the error
END;

BEGIN
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN -- ignore the error
END;

Which is preferable is a matter of taste.

Note

In Oracle's PL/SQL, empty statement lists are not allowed, and so NULL statements are required
for situations such as this. PL/pgSQL allows you to just write nothing, instead.

43.6. Control Structures
Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL's
control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.

1236

PL/pgSQL - SQL
Procedural Language

43.6.1. Returning From a Function
There are two commands available that allow you to return data from a function: RETURN and RETURN
NEXT.

43.6.1.1. RETURN

RETURN expression;

RETURN with an expression terminates the function and returns the value of expression to the caller.
This form is used for PL/pgSQL functions that do not return a set.

In a function that returns a scalar type, the expression's result will automatically be cast into the function's
return type as described for assignments. But to return a composite (row) value, you must write an
expression delivering exactly the requested column set. This may require use of explicit casting.

If you declared the function with output parameters, write just RETURN with no expression. The current
values of the output parameter variables will be returned.

If you declared the function to return void, a RETURN statement can be used to exit the function early;
but do not write an expression following RETURN.

The return value of a function cannot be left undefined. If control reaches the end of the top-level block
of the function without hitting a RETURN statement, a run-time error will occur. This restriction does
not apply to functions with output parameters and functions returning void, however. In those cases a
RETURN statement is automatically executed if the top-level block finishes.

Some examples:

-- functions returning a scalar type
RETURN 1 + 2;
RETURN scalar_var;

-- functions returning a composite type
RETURN composite_type_var;
RETURN (1, 2, 'three'::text); -- must cast columns to correct types

43.6.1.2. RETURN NEXT and RETURN QUERY

RETURN NEXT expression;
RETURN QUERY query;
RETURN QUERY EXECUTE command-string [USING expression [, ...]];

When a PL/pgSQL function is declared to return SETOF sometype, the procedure to follow is slightly
different. In that case, the individual items to return are specified by a sequence of RETURN NEXT or
RETURN QUERY commands, and then a final RETURN command with no argument is used to indicate
that the function has finished executing. RETURN NEXT can be used with both scalar and composite data
types; with a composite result type, an entire “table” of results will be returned. RETURN QUERY appends
the results of executing a query to the function's result set. RETURN NEXT and RETURN QUERY can be
freely intermixed in a single set-returning function, in which case their results will be concatenated.

RETURN NEXT and RETURN QUERY do not actually return from the function — they simply append
zero or more rows to the function's result set. Execution then continues with the next statement in the PL/

1237

PL/pgSQL - SQL
Procedural Language

pgSQL function. As successive RETURN NEXT or RETURN QUERY commands are executed, the result
set is built up. A final RETURN, which should have no argument, causes control to exit the function (or
you can just let control reach the end of the function).

RETURN QUERY has a variant RETURN QUERY EXECUTE, which specifies the query to be executed
dynamically. Parameter expressions can be inserted into the computed query string via USING, in just the
same way as in the EXECUTE command.

If you declared the function with output parameters, write just RETURN NEXT with no expression. On
each execution, the current values of the output parameter variable(s) will be saved for eventual return as
a row of the result. Note that you must declare the function as returning SETOF record when there
are multiple output parameters, or SETOF sometype when there is just one output parameter of type
sometype, in order to create a set-returning function with output parameters.

Here is an example of a function using RETURN NEXT:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, 'three');
INSERT INTO foo VALUES (4, 5, 'six');

CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS
$BODY$
DECLARE
 r foo%rowtype;
BEGIN
 FOR r IN
 SELECT * FROM foo WHERE fooid > 0
 LOOP
 -- can do some processing here
 RETURN NEXT r; -- return current row of SELECT
 END LOOP;
 RETURN;
END
$BODY$
LANGUAGE plpgsql;

SELECT * FROM get_all_foo();

Here is an example of a function using RETURN QUERY:

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS
$BODY$
BEGIN
 RETURN QUERY SELECT flightid
 FROM flight
 WHERE flightdate >= $1
 AND flightdate < ($1 + 1);

 -- Since execution is not finished, we can check whether rows were
 returned
 -- and raise exception if not.
 IF NOT FOUND THEN
 RAISE EXCEPTION 'No flight at %.', $1;

1238

PL/pgSQL - SQL
Procedural Language

 END IF;

 RETURN;
 END
$BODY$
LANGUAGE plpgsql;

-- Returns available flights or raises exception if there are no
-- available flights.
SELECT * FROM get_available_flightid(CURRENT_DATE);

Note

The current implementation of RETURN NEXT and RETURN QUERY stores the entire result set
before returning from the function, as discussed above. That means that if a PL/pgSQL function
produces a very large result set, performance might be poor: data will be written to disk to avoid
memory exhaustion, but the function itself will not return until the entire result set has been
generated. A future version of PL/pgSQL might allow users to define set-returning functions that
do not have this limitation. Currently, the point at which data begins being written to disk is
controlled by the work_mem configuration variable. Administrators who have sufficient memory
to store larger result sets in memory should consider increasing this parameter.

43.6.2. Returning From a Procedure
A procedure does not have a return value. A procedure can therefore end without a RETURN statement. If
you wish to use a RETURN statement to exit the code early, write just RETURN with no expression.

If the procedure has output parameters, the final values of the output parameter variables will be returned
to the caller.

43.6.3. Calling a Procedure
A PL/pgSQL function, procedure, or DO block can call a procedure using CALL. Output parameters are
handled differently from the way that CALL works in plain SQL. Each INOUT parameter of the procedure
must correspond to a variable in the CALL statement, and whatever the procedure returns is assigned back
to that variable after it returns. For example:

CREATE PROCEDURE triple(INOUT x int)
LANGUAGE plpgsql
AS $$
BEGIN
 x := x * 3;
END;
$$;

DO $$
DECLARE myvar int := 5;
BEGIN
 CALL triple(myvar);
 RAISE NOTICE 'myvar = %', myvar; -- prints 15

1239

PL/pgSQL - SQL
Procedural Language

END
$$;

43.6.4. Conditionals
IF and CASE statements let you execute alternative commands based on certain conditions. PL/pgSQL
has three forms of IF:

• IF ... THEN ... END IF

• IF ... THEN ... ELSE ... END IF

• IF ... THEN ... ELSIF ... THEN ... ELSE ... END IF

and two forms of CASE:

• CASE ... WHEN ... THEN ... ELSE ... END CASE

• CASE WHEN ... THEN ... ELSE ... END CASE

43.6.4.1. IF-THEN

IF boolean-expression THEN
 statements
END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END IF will be
executed if the condition is true. Otherwise, they are skipped.

Example:

IF v_user_id <> 0 THEN
 UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

43.6.4.2. IF-THEN-ELSE

IF boolean-expression THEN
 statements
ELSE
 statements
END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements that
should be executed if the condition is not true. (Note this includes the case where the condition evaluates
to NULL.)

Examples:

IF parentid IS NULL OR parentid = ''
THEN
 RETURN fullname;

1240

PL/pgSQL - SQL
Procedural Language

ELSE
 RETURN hp_true_filename(parentid) || '/' || fullname;
END IF;

IF v_count > 0 THEN
 INSERT INTO users_count (count) VALUES (v_count);
 RETURN 't';
ELSE
 RETURN 'f';
END IF;

43.6.4.3. IF-THEN-ELSIF

IF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
 ...
]
]
[ELSE
 statements]
END IF;

Sometimes there are more than just two alternatives. IF-THEN-ELSIF provides a convenient method of
checking several alternatives in turn. The IF conditions are tested successively until the first one that is true
is found. Then the associated statement(s) are executed, after which control passes to the next statement
after END IF. (Any subsequent IF conditions are not tested.) If none of the IF conditions is true, then
the ELSE block (if any) is executed.

Here is an example:

IF number = 0 THEN
 result := 'zero';
ELSIF number > 0 THEN
 result := 'positive';
ELSIF number < 0 THEN
 result := 'negative';
ELSE
 -- hmm, the only other possibility is that number is null
 result := 'NULL';
END IF;

The key word ELSIF can also be spelled ELSEIF.

An alternative way of accomplishing the same task is to nest IF-THEN-ELSE statements, as in the
following example:

IF demo_row.sex = 'm' THEN

1241

PL/pgSQL - SQL
Procedural Language

 pretty_sex := 'man';
ELSE
 IF demo_row.sex = 'f' THEN
 pretty_sex := 'woman';
 END IF;
END IF;

However, this method requires writing a matching END IF for each IF, so it is much more cumbersome
than using ELSIF when there are many alternatives.

43.6.4.4. Simple CASE

CASE search-expression
 WHEN expression [, expression [...]] THEN
 statements
 [WHEN expression [, expression [...]] THEN
 statements
 ...]
 [ELSE
 statements]
END CASE;

The simple form of CASE provides conditional execution based on equality of operands. The search-
expression is evaluated (once) and successively compared to each expression in the WHEN clauses.
If a match is found, then the corresponding statements are executed, and then control passes to the
next statement after END CASE. (Subsequent WHEN expressions are not evaluated.) If no match is found,
the ELSE statements are executed; but if ELSE is not present, then a CASE_NOT_FOUND exception
is raised.

Here is a simple example:

CASE x
 WHEN 1, 2 THEN
 msg := 'one or two';
 ELSE
 msg := 'other value than one or two';
END CASE;

43.6.4.5. Searched CASE

CASE
 WHEN boolean-expression THEN
 statements
 [WHEN boolean-expression THEN
 statements
 ...]
 [ELSE
 statements]
END CASE;

The searched form of CASE provides conditional execution based on truth of Boolean expressions.
Each WHEN clause's boolean-expression is evaluated in turn, until one is found that yields true.

1242

PL/pgSQL - SQL
Procedural Language

Then the corresponding statements are executed, and then control passes to the next statement after
END CASE. (Subsequent WHEN expressions are not evaluated.) If no true result is found, the ELSE
statements are executed; but if ELSE is not present, then a CASE_NOT_FOUND exception is raised.

Here is an example:

CASE
 WHEN x BETWEEN 0 AND 10 THEN
 msg := 'value is between zero and ten';
 WHEN x BETWEEN 11 AND 20 THEN
 msg := 'value is between eleven and twenty';
END CASE;

This form of CASE is entirely equivalent to IF-THEN-ELSIF, except for the rule that reaching an omitted
ELSE clause results in an error rather than doing nothing.

43.6.5. Simple Loops
With the LOOP, EXIT, CONTINUE, WHILE, FOR, and FOREACH statements, you can arrange for your
PL/pgSQL function to repeat a series of commands.

43.6.5.1. LOOP

[<<label>>]
LOOP
 statements
END LOOP [label];

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or RETURN
statement. The optional label can be used by EXIT and CONTINUE statements within nested loops to
specify which loop those statements refer to.

43.6.5.2. EXIT

EXIT [label] [WHEN boolean-expression];

If no label is given, the innermost loop is terminated and the statement following END LOOP is executed
next. If label is given, it must be the label of the current or some outer level of nested loop or block. Then
the named loop or block is terminated and control continues with the statement after the loop's/block's
corresponding END.

If WHEN is specified, the loop exit occurs only if boolean-expression is true. Otherwise, control
passes to the statement after EXIT.

EXIT can be used with all types of loops; it is not limited to use with unconditional loops.

When used with a BEGIN block, EXIT passes control to the next statement after the end of the block.
Note that a label must be used for this purpose; an unlabeled EXIT is never considered to match a BEGIN
block. (This is a change from pre-8.4 releases of PostgreSQL, which would allow an unlabeled EXIT to
match a BEGIN block.)

Examples:

1243

PL/pgSQL - SQL
Procedural Language

LOOP
 -- some computations
 IF count > 0 THEN
 EXIT; -- exit loop
 END IF;
END LOOP;

LOOP
 -- some computations
 EXIT WHEN count > 0; -- same result as previous example
END LOOP;

<<ablock>>
BEGIN
 -- some computations
 IF stocks > 100000 THEN
 EXIT ablock; -- causes exit from the BEGIN block
 END IF;
 -- computations here will be skipped when stocks > 100000
END;

43.6.5.3. CONTINUE

CONTINUE [label] [WHEN boolean-expression];

If no label is given, the next iteration of the innermost loop is begun. That is, all statements remaining in
the loop body are skipped, and control returns to the loop control expression (if any) to determine whether
another loop iteration is needed. If label is present, it specifies the label of the loop whose execution
will be continued.

If WHEN is specified, the next iteration of the loop is begun only if boolean-expression is true.
Otherwise, control passes to the statement after CONTINUE.

CONTINUE can be used with all types of loops; it is not limited to use with unconditional loops.

Examples:

LOOP
 -- some computations
 EXIT WHEN count > 100;
 CONTINUE WHEN count < 50;
 -- some computations for count IN [50 .. 100]
END LOOP;

43.6.5.4. WHILE

[<<label>>]
WHILE boolean-expression LOOP
 statements
END LOOP [label];

1244

PL/pgSQL - SQL
Procedural Language

The WHILE statement repeats a sequence of statements so long as the boolean-expression evaluates
to true. The expression is checked just before each entry to the loop body.

For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
 -- some computations here
END LOOP;

WHILE NOT done LOOP
 -- some computations here
END LOOP;

43.6.5.5. FOR (Integer Variant)

[<<label>>]
FOR name IN [REVERSE] expression .. expression [BY expression]
 LOOP
 statements
END LOOP [label];

This form of FOR creates a loop that iterates over a range of integer values. The variable name is
automatically defined as type integer and exists only inside the loop (any existing definition of the
variable name is ignored within the loop). The two expressions giving the lower and upper bound of the
range are evaluated once when entering the loop. If the BY clause isn't specified the iteration step is 1,
otherwise it's the value specified in the BY clause, which again is evaluated once on loop entry. If REVERSE
is specified then the step value is subtracted, rather than added, after each iteration.

Some examples of integer FOR loops:

FOR i IN 1..10 LOOP
 -- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop
END LOOP;

FOR i IN REVERSE 10..1 LOOP
 -- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop
END LOOP;

FOR i IN REVERSE 10..1 BY 2 LOOP
 -- i will take on the values 10,8,6,4,2 within the loop
END LOOP;

If the lower bound is greater than the upper bound (or less than, in the REVERSE case), the loop body is
not executed at all. No error is raised.

If a label is attached to the FOR loop then the integer loop variable can be referenced with a qualified
name, using that label.

43.6.6. Looping Through Query Results
Using a different type of FOR loop, you can iterate through the results of a query and manipulate that data
accordingly. The syntax is:

1245

PL/pgSQL - SQL
Procedural Language

[<<label>>]
FOR target IN query LOOP
 statements
END LOOP [label];

The target is a record variable, row variable, or comma-separated list of scalar variables. The target
is successively assigned each row resulting from the query and the loop body is executed for each row.
Here is an example:

CREATE FUNCTION cs_refresh_mviews() RETURNS integer AS $$
DECLARE
 mviews RECORD;
BEGIN
 RAISE NOTICE 'Refreshing materialized views...';

 FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY
 sort_key LOOP

 -- Now "mviews" has one record from cs_materialized_views

 RAISE NOTICE 'Refreshing materialized view %s ...',
 quote_ident(mviews.mv_name);
 EXECUTE format('TRUNCATE TABLE %I', mviews.mv_name);
 EXECUTE format('INSERT INTO %I %s', mviews.mv_name,
 mviews.mv_query);
 END LOOP;

 RAISE NOTICE 'Done refreshing materialized views.';
 RETURN 1;
END;
$$ LANGUAGE plpgsql;

If the loop is terminated by an EXIT statement, the last assigned row value is still accessible after the loop.

The query used in this type of FOR statement can be any SQL command that returns rows to the
caller: SELECT is the most common case, but you can also use INSERT, UPDATE, or DELETE with a
RETURNING clause. Some utility commands such as EXPLAIN will work too.

PL/pgSQL variables are substituted into the query text, and the query plan is cached for possible re-use,
as discussed in detail in Section 43.11.1 and Section 43.11.2.

The FOR-IN-EXECUTE statement is another way to iterate over rows:

[<<label>>]
FOR target IN EXECUTE text_expression [USING expression [, ...]]
 LOOP
 statements
END LOOP [label];

This is like the previous form, except that the source query is specified as a string expression, which is
evaluated and replanned on each entry to the FOR loop. This allows the programmer to choose the speed
of a preplanned query or the flexibility of a dynamic query, just as with a plain EXECUTE statement. As
with EXECUTE, parameter values can be inserted into the dynamic command via USING.

1246

PL/pgSQL - SQL
Procedural Language

Another way to specify the query whose results should be iterated through is to declare it as a cursor. This
is described in Section 43.7.4.

43.6.7. Looping Through Arrays
The FOREACH loop is much like a FOR loop, but instead of iterating through the rows returned by a
SQL query, it iterates through the elements of an array value. (In general, FOREACH is meant for looping
through components of a composite-valued expression; variants for looping through composites besides
arrays may be added in future.) The FOREACH statement to loop over an array is:

[<<label>>]
FOREACH target [SLICE number] IN ARRAY expression LOOP
 statements
END LOOP [label];

Without SLICE, or if SLICE 0 is specified, the loop iterates through individual elements of the array
produced by evaluating the expression. The target variable is assigned each element value in
sequence, and the loop body is executed for each element. Here is an example of looping through the
elements of an integer array:

CREATE FUNCTION sum(int[]) RETURNS int8 AS $$
DECLARE
 s int8 := 0;
 x int;
BEGIN
 FOREACH x IN ARRAY $1
 LOOP
 s := s + x;
 END LOOP;
 RETURN s;
END;
$$ LANGUAGE plpgsql;

The elements are visited in storage order, regardless of the number of array dimensions. Although the
target is usually just a single variable, it can be a list of variables when looping through an array of
composite values (records). In that case, for each array element, the variables are assigned from successive
columns of the composite value.

With a positive SLICE value, FOREACH iterates through slices of the array rather than single elements.
The SLICE value must be an integer constant not larger than the number of dimensions of the array.
The target variable must be an array, and it receives successive slices of the array value, where each
slice is of the number of dimensions specified by SLICE. Here is an example of iterating through one-
dimensional slices:

CREATE FUNCTION scan_rows(int[]) RETURNS void AS $$
DECLARE
 x int[];
BEGIN
 FOREACH x SLICE 1 IN ARRAY $1
 LOOP
 RAISE NOTICE 'row = %', x;
 END LOOP;

1247

PL/pgSQL - SQL
Procedural Language

END;
$$ LANGUAGE plpgsql;

SELECT scan_rows(ARRAY[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);

NOTICE: row = {1,2,3}
NOTICE: row = {4,5,6}
NOTICE: row = {7,8,9}
NOTICE: row = {10,11,12}

43.6.8. Trapping Errors
By default, any error occurring in a PL/pgSQL function aborts execution of the function, and indeed of
the surrounding transaction as well. You can trap errors and recover from them by using a BEGIN block
with an EXCEPTION clause. The syntax is an extension of the normal syntax for a BEGIN block:

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
EXCEPTION
 WHEN condition [OR condition ...] THEN
 handler_statements
 [WHEN condition [OR condition ...] THEN
 handler_statements
 ...]
END;

If no error occurs, this form of block simply executes all the statements, and then control passes
to the next statement after END. But if an error occurs within the statements, further processing
of the statements is abandoned, and control passes to the EXCEPTION list. The list is searched
for the first condition matching the error that occurred. If a match is found, the corresponding
handler_statements are executed, and then control passes to the next statement after END. If no
match is found, the error propagates out as though the EXCEPTION clause were not there at all: the error
can be caught by an enclosing block with EXCEPTION, or if there is none it aborts processing of the
function.

The condition names can be any of those shown in Appendix A. A category name matches
any error within its category. The special condition name OTHERS matches every error type except
QUERY_CANCELED and ASSERT_FAILURE. (It is possible, but often unwise, to trap those two error
types by name.) Condition names are not case-sensitive. Also, an error condition can be specified by
SQLSTATE code; for example these are equivalent:

WHEN division_by_zero THEN ...
WHEN SQLSTATE '22012' THEN ...

If a new error occurs within the selected handler_statements, it cannot be caught by this
EXCEPTION clause, but is propagated out. A surrounding EXCEPTION clause could catch it.

When an error is caught by an EXCEPTION clause, the local variables of the PL/pgSQL function remain
as they were when the error occurred, but all changes to persistent database state within the block are rolled
back. As an example, consider this fragment:

1248

PL/pgSQL - SQL
Procedural Language

INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones');
BEGIN
 UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones';
 x := x + 1;
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN
 RAISE NOTICE 'caught division_by_zero';
 RETURN x;
END;

When control reaches the assignment to y, it will fail with a division_by_zero error. This will be
caught by the EXCEPTION clause. The value returned in the RETURN statement will be the incremented
value of x, but the effects of the UPDATE command will have been rolled back. The INSERT command
preceding the block is not rolled back, however, so the end result is that the database contains Tom Jones
not Joe Jones.

Tip

A block containing an EXCEPTION clause is significantly more expensive to enter and exit than
a block without one. Therefore, don't use EXCEPTION without need.

Example 43.2. Exceptions with UPDATE/INSERT

This example uses exception handling to perform either UPDATE or INSERT, as appropriate. It is
recommended that applications use INSERT with ON CONFLICT DO UPDATE rather than actually
using this pattern. This example serves primarily to illustrate use of PL/pgSQL control flow structures:

CREATE TABLE db (a INT PRIMARY KEY, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN
 LOOP
 -- first try to update the key
 UPDATE db SET b = data WHERE a = key;
 IF found THEN
 RETURN;
 END IF;
 -- not there, so try to insert the key
 -- if someone else inserts the same key concurrently,
 -- we could get a unique-key failure
 BEGIN
 INSERT INTO db(a,b) VALUES (key, data);
 RETURN;
 EXCEPTION WHEN unique_violation THEN
 -- Do nothing, and loop to try the UPDATE again.
 END;
 END LOOP;
END;

1249

PL/pgSQL - SQL
Procedural Language

$$
LANGUAGE plpgsql;

SELECT merge_db(1, 'david');
SELECT merge_db(1, 'dennis');

This coding assumes the unique_violation error is caused by the INSERT, and not by, say, an
INSERT in a trigger function on the table. It might also misbehave if there is more than one unique index
on the table, since it will retry the operation regardless of which index caused the error. More safety could
be had by using the features discussed next to check that the trapped error was the one expected.

43.6.8.1. Obtaining Information About an Error

Exception handlers frequently need to identify the specific error that occurred. There are two ways to
get information about the current exception in PL/pgSQL: special variables and the GET STACKED
DIAGNOSTICS command.

Within an exception handler, the special variable SQLSTATE contains the error code that corresponds to
the exception that was raised (refer to Table A.1 for a list of possible error codes). The special variable
SQLERRM contains the error message associated with the exception. These variables are undefined outside
exception handlers.

Within an exception handler, one may also retrieve information about the current exception by using the
GET STACKED DIAGNOSTICS command, which has the form:

GET STACKED DIAGNOSTICS variable { = | := } item [, ...];

Each item is a key word identifying a status value to be assigned to the specified variable (which
should be of the right data type to receive it). The currently available status items are shown in Table 43.2.

Table 43.2. Error Diagnostics Items

Name Type Description

RETURNED_SQLSTATE text the SQLSTATE error code of the
exception

COLUMN_NAME text the name of the column related to
exception

CONSTRAINT_NAME text the name of the constraint related
to exception

PG_DATATYPE_NAME text the name of the data type related
to exception

MESSAGE_TEXT text the text of the exception's primary
message

TABLE_NAME text the name of the table related to
exception

SCHEMA_NAME text the name of the schema related to
exception

PG_EXCEPTION_DETAIL text the text of the exception's detail
message, if any

PG_EXCEPTION_HINT text the text of the exception's hint
message, if any

1250

PL/pgSQL - SQL
Procedural Language

Name Type Description

PG_EXCEPTION_CONTEXT text line(s) of text describing the call
stack at the time of the exception
(see Section 43.6.9)

If the exception did not set a value for an item, an empty string will be returned.

Here is an example:

DECLARE
 text_var1 text;
 text_var2 text;
 text_var3 text;
BEGIN
 -- some processing which might cause an exception
 ...
EXCEPTION WHEN OTHERS THEN
 GET STACKED DIAGNOSTICS text_var1 = MESSAGE_TEXT,
 text_var2 = PG_EXCEPTION_DETAIL,
 text_var3 = PG_EXCEPTION_HINT;
END;

43.6.9. Obtaining Execution Location Information
The GET DIAGNOSTICS command, previously described in Section 43.5.5, retrieves information about
current execution state (whereas the GET STACKED DIAGNOSTICS command discussed above reports
information about the execution state as of a previous error). Its PG_CONTEXT status item is useful for
identifying the current execution location. PG_CONTEXT returns a text string with line(s) of text describing
the call stack. The first line refers to the current function and currently executing GET DIAGNOSTICS
command. The second and any subsequent lines refer to calling functions further up the call stack. For
example:

CREATE OR REPLACE FUNCTION outer_func() RETURNS integer AS $$
BEGIN
 RETURN inner_func();
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION inner_func() RETURNS integer AS $$
DECLARE
 stack text;
BEGIN
 GET DIAGNOSTICS stack = PG_CONTEXT;
 RAISE NOTICE E'--- Call Stack ---\n%', stack;
 RETURN 1;
END;
$$ LANGUAGE plpgsql;

SELECT outer_func();

NOTICE: --- Call Stack ---
PL/pgSQL function inner_func() line 5 at GET DIAGNOSTICS

1251

PL/pgSQL - SQL
Procedural Language

PL/pgSQL function outer_func() line 3 at RETURN
CONTEXT: PL/pgSQL function outer_func() line 3 at RETURN
 outer_func

 1
(1 row)

GET STACKED DIAGNOSTICS ... PG_EXCEPTION_CONTEXT returns the same sort of stack
trace, but describing the location at which an error was detected, rather than the current location.

43.7. Cursors
Rather than executing a whole query at once, it is possible to set up a cursor that encapsulates the query,
and then read the query result a few rows at a time. One reason for doing this is to avoid memory overrun
when the result contains a large number of rows. (However, PL/pgSQL users do not normally need to
worry about that, since FOR loops automatically use a cursor internally to avoid memory problems.) A
more interesting usage is to return a reference to a cursor that a function has created, allowing the caller
to read the rows. This provides an efficient way to return large row sets from functions.

43.7.1. Declaring Cursor Variables
All access to cursors in PL/pgSQL goes through cursor variables, which are always of the special data type
refcursor. One way to create a cursor variable is just to declare it as a variable of type refcursor.
Another way is to use the cursor declaration syntax, which in general is:

name [[NO] SCROLL] CURSOR [(arguments)] FOR query;

(FOR can be replaced by IS for Oracle compatibility.) If SCROLL is specified, the cursor will be capable of
scrolling backward; if NO SCROLL is specified, backward fetches will be rejected; if neither specification
appears, it is query-dependent whether backward fetches will be allowed. arguments, if specified, is a
comma-separated list of pairs name datatype that define names to be replaced by parameter values
in the given query. The actual values to substitute for these names will be specified later, when the cursor
is opened.

Some examples:

DECLARE
 curs1 refcursor;
 curs2 CURSOR FOR SELECT * FROM tenk1;
 curs3 CURSOR (key integer) FOR SELECT * FROM tenk1 WHERE unique1 =
 key;

All three of these variables have the data type refcursor, but the first can be used with any query, while
the second has a fully specified query already bound to it, and the last has a parameterized query bound to
it. (key will be replaced by an integer parameter value when the cursor is opened.) The variable curs1
is said to be unbound since it is not bound to any particular query.

43.7.2. Opening Cursors
Before a cursor can be used to retrieve rows, it must be opened. (This is the equivalent action to the SQL
command DECLARE CURSOR.) PL/pgSQL has three forms of the OPEN statement, two of which use
unbound cursor variables while the third uses a bound cursor variable.

1252

PL/pgSQL - SQL
Procedural Language

Note

Bound cursor variables can also be used without explicitly opening the cursor, via the FOR
statement described in Section 43.7.4.

43.7.2.1. OPEN FOR query

OPEN unbound_cursorvar [[NO] SCROLL] FOR query;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open already,
and it must have been declared as an unbound cursor variable (that is, as a simple refcursor variable).
The query must be a SELECT, or something else that returns rows (such as EXPLAIN). The query is treated
in the same way as other SQL commands in PL/pgSQL: PL/pgSQL variable names are substituted, and the
query plan is cached for possible reuse. When a PL/pgSQL variable is substituted into the cursor query,
the value that is substituted is the one it has at the time of the OPEN; subsequent changes to the variable
will not affect the cursor's behavior. The SCROLL and NO SCROLL options have the same meanings as
for a bound cursor.

An example:

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;

43.7.2.2. OPEN FOR EXECUTE

OPEN unbound_cursorvar [[NO] SCROLL] FOR EXECUTE query_string
 [USING expression [, ...]];

The cursor variable is opened and given the specified query to execute. The cursor cannot be open already,
and it must have been declared as an unbound cursor variable (that is, as a simple refcursor variable).
The query is specified as a string expression, in the same way as in the EXECUTE command. As usual,
this gives flexibility so the query plan can vary from one run to the next (see Section 43.11.2), and it also
means that variable substitution is not done on the command string. As with EXECUTE, parameter values
can be inserted into the dynamic command via format() and USING. The SCROLL and NO SCROLL
options have the same meanings as for a bound cursor.

An example:

OPEN curs1 FOR EXECUTE format('SELECT * FROM %I WHERE col1 =
 $1',tabname) USING keyvalue;

In this example, the table name is inserted into the query via format(). The comparison value for col1
is inserted via a USING parameter, so it needs no quoting.

43.7.2.3. Opening a Bound Cursor

OPEN bound_cursorvar [([argument_name :=] argument_value
 [, ...])];

1253

PL/pgSQL - SQL
Procedural Language

This form of OPEN is used to open a cursor variable whose query was bound to it when it was declared.
The cursor cannot be open already. A list of actual argument value expressions must appear if and only if
the cursor was declared to take arguments. These values will be substituted in the query.

The query plan for a bound cursor is always considered cacheable; there is no equivalent of EXECUTE in
this case. Notice that SCROLL and NO SCROLL cannot be specified in OPEN, as the cursor's scrolling
behavior was already determined.

Argument values can be passed using either positional or named notation. In positional notation, all
arguments are specified in order. In named notation, each argument's name is specified using := to separate
it from the argument expression. Similar to calling functions, described in Section 4.3, it is also allowed
to mix positional and named notation.

Examples (these use the cursor declaration examples above):

OPEN curs2;
OPEN curs3(42);
OPEN curs3(key := 42);

Because variable substitution is done on a bound cursor's query, there are really two ways to pass values
into the cursor: either with an explicit argument to OPEN, or implicitly by referencing a PL/pgSQL variable
in the query. However, only variables declared before the bound cursor was declared will be substituted
into it. In either case the value to be passed is determined at the time of the OPEN. For example, another
way to get the same effect as the curs3 example above is

DECLARE
 key integer;
 curs4 CURSOR FOR SELECT * FROM tenk1 WHERE unique1 = key;
BEGIN
 key := 42;
 OPEN curs4;

43.7.3. Using Cursors
Once a cursor has been opened, it can be manipulated with the statements described here.

These manipulations need not occur in the same function that opened the cursor to begin with. You
can return a refcursor value out of a function and let the caller operate on the cursor. (Internally, a
refcursor value is simply the string name of a so-called portal containing the active query for the
cursor. This name can be passed around, assigned to other refcursor variables, and so on, without
disturbing the portal.)

All portals are implicitly closed at transaction end. Therefore a refcursor value is usable to reference
an open cursor only until the end of the transaction.

43.7.3.1. FETCH

FETCH [direction { FROM | IN }] cursor INTO target;

FETCH retrieves the next row from the cursor into a target, which might be a row variable, a record
variable, or a comma-separated list of simple variables, just like SELECT INTO. If there is no next row,
the target is set to NULL(s). As with SELECT INTO, the special variable FOUND can be checked to see
whether a row was obtained or not.

1254

PL/pgSQL - SQL
Procedural Language

The direction clause can be any of the variants allowed in the SQL FETCH command except the ones
that can fetch more than one row; namely, it can be NEXT, PRIOR, FIRST, LAST, ABSOLUTE count,
RELATIVE count, FORWARD, or BACKWARD. Omitting direction is the same as specifying NEXT.
In the forms using a count, the count can be any integer-valued expression (unlike the SQL FETCH
command, which only allows an integer constant). direction values that require moving backward are
likely to fail unless the cursor was declared or opened with the SCROLL option.

cursor must be the name of a refcursor variable that references an open cursor portal.

Examples:

FETCH curs1 INTO rowvar;
FETCH curs2 INTO foo, bar, baz;
FETCH LAST FROM curs3 INTO x, y;
FETCH RELATIVE -2 FROM curs4 INTO x;

43.7.3.2. MOVE

MOVE [direction { FROM | IN }] cursor;

MOVE repositions a cursor without retrieving any data. MOVE works exactly like the FETCH command,
except it only repositions the cursor and does not return the row moved to. As with SELECT INTO, the
special variable FOUND can be checked to see whether there was a next row to move to.

Examples:

MOVE curs1;
MOVE LAST FROM curs3;
MOVE RELATIVE -2 FROM curs4;
MOVE FORWARD 2 FROM curs4;

43.7.3.3. UPDATE/DELETE WHERE CURRENT OF

UPDATE table SET ... WHERE CURRENT OF cursor;
DELETE FROM table WHERE CURRENT OF cursor;

When a cursor is positioned on a table row, that row can be updated or deleted using the cursor to identify
the row. There are restrictions on what the cursor's query can be (in particular, no grouping) and it's best
to use FOR UPDATE in the cursor. For more information see the DECLARE reference page.

An example:

UPDATE foo SET dataval = myval WHERE CURRENT OF curs1;

43.7.3.4. CLOSE

CLOSE cursor;

CLOSE closes the portal underlying an open cursor. This can be used to release resources earlier than end
of transaction, or to free up the cursor variable to be opened again.

1255

PL/pgSQL - SQL
Procedural Language

An example:

CLOSE curs1;

43.7.3.5. Returning Cursors

PL/pgSQL functions can return cursors to the caller. This is useful to return multiple rows or columns,
especially with very large result sets. To do this, the function opens the cursor and returns the cursor name
to the caller (or simply opens the cursor using a portal name specified by or otherwise known to the caller).
The caller can then fetch rows from the cursor. The cursor can be closed by the caller, or it will be closed
automatically when the transaction closes.

The portal name used for a cursor can be specified by the programmer or automatically generated. To
specify a portal name, simply assign a string to the refcursor variable before opening it. The string
value of the refcursor variable will be used by OPEN as the name of the underlying portal. However,
if the refcursor variable is null, OPEN automatically generates a name that does not conflict with any
existing portal, and assigns it to the refcursor variable.

Note

A bound cursor variable is initialized to the string value representing its name, so that the portal
name is the same as the cursor variable name, unless the programmer overrides it by assignment
before opening the cursor. But an unbound cursor variable defaults to the null value initially, so it
will receive an automatically-generated unique name, unless overridden.

The following example shows one way a cursor name can be supplied by the caller:

CREATE TABLE test (col text);
INSERT INTO test VALUES ('123');

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS '
BEGIN
 OPEN $1 FOR SELECT col FROM test;
 RETURN $1;
END;
' LANGUAGE plpgsql;

BEGIN;
SELECT reffunc('funccursor');
FETCH ALL IN funccursor;
COMMIT;

The following example uses automatic cursor name generation:

CREATE FUNCTION reffunc2() RETURNS refcursor AS '
DECLARE
 ref refcursor;
BEGIN
 OPEN ref FOR SELECT col FROM test;
 RETURN ref;

1256

PL/pgSQL - SQL
Procedural Language

END;
' LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;
SELECT reffunc2();

 reffunc2

 <unnamed cursor 1>
(1 row)

FETCH ALL IN "<unnamed cursor 1>";
COMMIT;

The following example shows one way to return multiple cursors from a single function:

CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF refcursor
 AS $$
BEGIN
 OPEN $1 FOR SELECT * FROM table_1;
 RETURN NEXT $1;
 OPEN $2 FOR SELECT * FROM table_2;
 RETURN NEXT $2;
END;
$$ LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;

SELECT * FROM myfunc('a', 'b');

FETCH ALL FROM a;
FETCH ALL FROM b;
COMMIT;

43.7.4. Looping Through a Cursor's Result
There is a variant of the FOR statement that allows iterating through the rows returned by a cursor. The
syntax is:

[<<label>>]
FOR recordvar IN bound_cursorvar [([argument_name
 :=] argument_value [, ...])] LOOP
 statements
END LOOP [label];

The cursor variable must have been bound to some query when it was declared, and it cannot be open
already. The FOR statement automatically opens the cursor, and it closes the cursor again when the loop
exits. A list of actual argument value expressions must appear if and only if the cursor was declared to
take arguments. These values will be substituted in the query, in just the same way as during an OPEN
(see Section 43.7.2.3).

1257

PL/pgSQL - SQL
Procedural Language

The variable recordvar is automatically defined as type record and exists only inside the loop (any
existing definition of the variable name is ignored within the loop). Each row returned by the cursor is
successively assigned to this record variable and the loop body is executed.

43.8. Transaction Management
In procedures invoked by the CALL command as well as in anonymous code blocks (DO command),
it is possible to end transactions using the commands COMMIT and ROLLBACK. A new transaction is
started automatically after a transaction is ended using these commands, so there is no separate START
TRANSACTION command. (Note that BEGIN and END have different meanings in PL/pgSQL.)

Here is a simple example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plpgsql
AS $$
BEGIN
 FOR i IN 0..9 LOOP
 INSERT INTO test1 (a) VALUES (i);
 IF i % 2 = 0 THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;
 END LOOP;
END
$$;

CALL transaction_test1();

Transaction control is only possible in CALL or DO invocations from the top level or nested CALL or DO
invocations without any other intervening command. For example, if the call stack is CALL proc1()

→ CALL proc2() → CALL proc3(), then the second and third procedures can perform transaction
control actions. But if the call stack is CALL proc1() → SELECT func2() → CALL proc3(),
then the last procedure cannot do transaction control, because of the SELECT in between.

Special considerations apply to cursor loops. Consider this example:

CREATE PROCEDURE transaction_test2()
LANGUAGE plpgsql
AS $$
DECLARE
 r RECORD;
BEGIN
 FOR r IN SELECT * FROM test2 ORDER BY x LOOP
 INSERT INTO test1 (a) VALUES (r.x);
 COMMIT;
 END LOOP;
END;
$$;

CALL transaction_test2();

1258

PL/pgSQL - SQL
Procedural Language

Normally, cursors are automatically closed at transaction commit. However, a cursor created as part of a
loop like this is automatically converted to a holdable cursor by the first COMMIT or ROLLBACK. That
means that the cursor is fully evaluated at the first COMMIT or ROLLBACK rather than row by row. The
cursor is still removed automatically after the loop, so this is mostly invisible to the user.

Transaction commands are not allowed in cursor loops driven by commands that are not read-only (for
example UPDATE ... RETURNING).

A transaction cannot be ended inside a block with exception handlers.

43.9. Errors and Messages

43.9.1. Reporting Errors and Messages
Use the RAISE statement to report messages and raise errors.

RAISE [level] 'format' [, expression [, ...]] [USING option
 = expression [, ...]];
RAISE [level] condition_name [USING option = expression [, ...]];
RAISE [level] SQLSTATE 'sqlstate' [USING option = expression
 [, ...]];
RAISE [level] USING option = expression [, ...];
RAISE ;

The level option specifies the error severity. Allowed levels are DEBUG, LOG, INFO, NOTICE,
WARNING, and EXCEPTION, with EXCEPTION being the default. EXCEPTION raises an error (which
normally aborts the current transaction); the other levels only generate messages of different priority levels.
Whether messages of a particular priority are reported to the client, written to the server log, or both is
controlled by the log_min_messages and client_min_messages configuration variables. See Chapter 19
for more information.

After level if any, you can write a format (which must be a simple string literal, not an expression).
The format string specifies the error message text to be reported. The format string can be followed by
optional argument expressions to be inserted into the message. Inside the format string, % is replaced by
the string representation of the next optional argument's value. Write %% to emit a literal %. The number
of arguments must match the number of % placeholders in the format string, or an error is raised during
the compilation of the function.

In this example, the value of v_job_id will replace the % in the string:

RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;

You can attach additional information to the error report by writing USING followed by option =
expression items. Each expression can be any string-valued expression. The allowed option
key words are:

MESSAGE

Sets the error message text. This option can't be used in the form of RAISE that includes a format
string before USING.

DETAIL

Supplies an error detail message.

1259

PL/pgSQL - SQL
Procedural Language

HINT

Supplies a hint message.

ERRCODE

Specifies the error code (SQLSTATE) to report, either by condition name, as shown in Appendix A,
or directly as a five-character SQLSTATE code.

COLUMN
CONSTRAINT
DATATYPE
TABLE
SCHEMA

Supplies the name of a related object.

This example will abort the transaction with the given error message and hint:

RAISE EXCEPTION 'Nonexistent ID --> %', user_id
 USING HINT = 'Please check your user ID';

These two examples show equivalent ways of setting the SQLSTATE:

RAISE 'Duplicate user ID: %', user_id USING ERRCODE =
 'unique_violation';
RAISE 'Duplicate user ID: %', user_id USING ERRCODE = '23505';

There is a second RAISE syntax in which the main argument is the condition name or SQLSTATE to
be reported, for example:

RAISE division_by_zero;
RAISE SQLSTATE '22012';

In this syntax, USING can be used to supply a custom error message, detail, or hint. Another way to do
the earlier example is

RAISE unique_violation USING MESSAGE = 'Duplicate user ID: ' ||
 user_id;

Still another variant is to write RAISE USING or RAISE level USING and put everything else into
the USING list.

The last variant of RAISE has no parameters at all. This form can only be used inside a BEGIN block's
EXCEPTION clause; it causes the error currently being handled to be re-thrown.

Note

Before PostgreSQL 9.1, RAISE without parameters was interpreted as re-throwing the error from
the block containing the active exception handler. Thus an EXCEPTION clause nested within that
handler could not catch it, even if the RAISE was within the nested EXCEPTION clause's block.
This was deemed surprising as well as being incompatible with Oracle's PL/SQL.

1260

PL/pgSQL - SQL
Procedural Language

If no condition name nor SQLSTATE is specified in a RAISE EXCEPTION command, the default is
to use RAISE_EXCEPTION (P0001). If no message text is specified, the default is to use the condition
name or SQLSTATE as message text.

Note

When specifying an error code by SQLSTATE code, you are not limited to the predefined error
codes, but can select any error code consisting of five digits and/or upper-case ASCII letters, other
than 00000. It is recommended that you avoid throwing error codes that end in three zeroes,
because these are category codes and can only be trapped by trapping the whole category.

43.9.2. Checking Assertions
The ASSERT statement is a convenient shorthand for inserting debugging checks into PL/pgSQL
functions.

ASSERT condition [, message];

The condition is a Boolean expression that is expected to always evaluate to true; if it does, the ASSERT
statement does nothing further. If the result is false or null, then an ASSERT_FAILURE exception is
raised. (If an error occurs while evaluating the condition, it is reported as a normal error.)

If the optional message is provided, it is an expression whose result (if not null) replaces the default error
message text “assertion failed”, should the condition fail. The message expression is not evaluated
in the normal case where the assertion succeeds.

Testing of assertions can be enabled or disabled via the configuration parameter
plpgsql.check_asserts, which takes a Boolean value; the default is on. If this parameter is off
then ASSERT statements do nothing.

Note that ASSERT is meant for detecting program bugs, not for reporting ordinary error conditions. Use
the RAISE statement, described above, for that.

43.10. Trigger Functions
PL/pgSQL can be used to define trigger functions on data changes or database events. A trigger function
is created with the CREATE FUNCTION command, declaring it as a function with no arguments and a
return type of trigger (for data change triggers) or event_trigger (for database event triggers).
Special local variables named TG_something are automatically defined to describe the condition that
triggered the call.

43.10.1. Triggers on Data Changes
A data change trigger is declared as a function with no arguments and a return type of trigger. Note that
the function must be declared with no arguments even if it expects to receive some arguments specified in
CREATE TRIGGER — such arguments are passed via TG_ARGV, as described below.

When a PL/pgSQL function is called as a trigger, several special variables are created automatically in
the top-level block. They are:

1261

PL/pgSQL - SQL
Procedural Language

NEW

Data type RECORD; variable holding the new database row for INSERT/UPDATE operations in row-
level triggers. This variable is null in statement-level triggers and for DELETE operations.

OLD

Data type RECORD; variable holding the old database row for UPDATE/DELETE operations in row-
level triggers. This variable is null in statement-level triggers and for INSERT operations.

TG_NAME

Data type name; variable that contains the name of the trigger actually fired.

TG_WHEN

Data type text; a string of BEFORE, AFTER, or INSTEAD OF, depending on the trigger's definition.

TG_LEVEL

Data type text; a string of either ROW or STATEMENT depending on the trigger's definition.

TG_OP

Data type text; a string of INSERT, UPDATE, DELETE, or TRUNCATE telling for which operation
the trigger was fired.

TG_RELID

Data type oid; the object ID of the table that caused the trigger invocation.

TG_RELNAME

Data type name; the name of the table that caused the trigger invocation. This is now deprecated, and
could disappear in a future release. Use TG_TABLE_NAME instead.

TG_TABLE_NAME

Data type name; the name of the table that caused the trigger invocation.

TG_TABLE_SCHEMA

Data type name; the name of the schema of the table that caused the trigger invocation.

TG_NARGS

Data type integer; the number of arguments given to the trigger function in the CREATE TRIGGER
statement.

TG_ARGV[]

Data type array of text; the arguments from the CREATE TRIGGER statement. The index counts
from 0. Invalid indexes (less than 0 or greater than or equal to tg_nargs) result in a null value.

A trigger function must return either NULL or a record/row value having exactly the structure of the table
the trigger was fired for.

Row-level triggers fired BEFORE can return null to signal the trigger manager to skip the rest of the
operation for this row (i.e., subsequent triggers are not fired, and the INSERT/UPDATE/DELETE does

1262

PL/pgSQL - SQL
Procedural Language

not occur for this row). If a nonnull value is returned then the operation proceeds with that row value.
Returning a row value different from the original value of NEW alters the row that will be inserted or
updated. Thus, if the trigger function wants the triggering action to succeed normally without altering the
row value, NEW (or a value equal thereto) has to be returned. To alter the row to be stored, it is possible to
replace single values directly in NEW and return the modified NEW, or to build a complete new record/row
to return. In the case of a before-trigger on DELETE, the returned value has no direct effect, but it has to
be nonnull to allow the trigger action to proceed. Note that NEW is null in DELETE triggers, so returning
that is usually not sensible. The usual idiom in DELETE triggers is to return OLD.

INSTEAD OF triggers (which are always row-level triggers, and may only be used on views) can return
null to signal that they did not perform any updates, and that the rest of the operation for this row should
be skipped (i.e., subsequent triggers are not fired, and the row is not counted in the rows-affected status
for the surrounding INSERT/UPDATE/DELETE). Otherwise a nonnull value should be returned, to signal
that the trigger performed the requested operation. For INSERT and UPDATE operations, the return value
should be NEW, which the trigger function may modify to support INSERT RETURNING and UPDATE
RETURNING (this will also affect the row value passed to any subsequent triggers, or passed to a special
EXCLUDED alias reference within an INSERT statement with an ON CONFLICT DO UPDATE clause).
For DELETE operations, the return value should be OLD.

The return value of a row-level trigger fired AFTER or a statement-level trigger fired BEFORE or AFTER
is always ignored; it might as well be null. However, any of these types of triggers might still abort the
entire operation by raising an error.

Example 43.3 shows an example of a trigger function in PL/pgSQL.

Example 43.3. A PL/pgSQL Trigger Function

This example trigger ensures that any time a row is inserted or updated in the table, the current user name
and time are stamped into the row. And it checks that an employee's name is given and that the salary
is a positive value.

CREATE TABLE emp (
 empname text,
 salary integer,
 last_date timestamp,
 last_user text
);

CREATE FUNCTION emp_stamp() RETURNS trigger AS emp_stamp
 BEGIN
 -- Check that empname and salary are given
 IF NEW.empname IS NULL THEN
 RAISE EXCEPTION 'empname cannot be null';
 END IF;
 IF NEW.salary IS NULL THEN
 RAISE EXCEPTION '% cannot have null salary', NEW.empname;
 END IF;

 -- Who works for us when they must pay for it?
 IF NEW.salary < 0 THEN
 RAISE EXCEPTION '% cannot have a negative salary',
 NEW.empname;
 END IF;

1263

PL/pgSQL - SQL
Procedural Language

 -- Remember who changed the payroll when
 NEW.last_date := current_timestamp;
 NEW.last_user := current_user;
 RETURN NEW;
 END;
emp_stamp LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
 FOR EACH ROW EXECUTE FUNCTION emp_stamp();

Another way to log changes to a table involves creating a new table that holds a row for each insert, update,
or delete that occurs. This approach can be thought of as auditing changes to a table. Example 43.4 shows
an example of an audit trigger function in PL/pgSQL.

Example 43.4. A PL/pgSQL Trigger Function For Auditing

This example trigger ensures that any insert, update or delete of a row in the emp table is recorded (i.e.,
audited) in the emp_audit table. The current time and user name are stamped into the row, together with
the type of operation performed on it.

CREATE TABLE emp (
 empname text NOT NULL,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS
 emp_audit
 BEGIN
 --
 -- Create a row in emp_audit to reflect the operation
 performed on emp,
 -- making use of the special variable TG_OP to work out the
 operation.
 --
 IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_audit SELECT 'D', now(), user, OLD.*;
 ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_audit SELECT 'U', now(), user, NEW.*;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp_audit SELECT 'I', now(), user, NEW.*;
 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER
 trigger
 END;
emp_audit LANGUAGE plpgsql;

1264

PL/pgSQL - SQL
Procedural Language

CREATE TRIGGER emp_audit
AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW EXECUTE FUNCTION process_emp_audit();

A variation of the previous example uses a view joining the main table to the audit table, to show when
each entry was last modified. This approach still records the full audit trail of changes to the table, but
also presents a simplified view of the audit trail, showing just the last modified timestamp derived from
the audit trail for each entry. Example 43.5 shows an example of an audit trigger on a view in PL/pgSQL.

Example 43.5. A PL/pgSQL View Trigger Function For Auditing

This example uses a trigger on the view to make it updatable, and ensure that any insert, update or delete
of a row in the view is recorded (i.e., audited) in the emp_audit table. The current time and user name
are recorded, together with the type of operation performed, and the view displays the last modified time
of each row.

CREATE TABLE emp (
 empname text PRIMARY KEY,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer,
 stamp timestamp NOT NULL
);

CREATE VIEW emp_view AS
 SELECT e.empname,
 e.salary,
 max(ea.stamp) AS last_updated
 FROM emp e
 LEFT JOIN emp_audit ea ON ea.empname = e.empname
 GROUP BY 1, 2;

CREATE OR REPLACE FUNCTION update_emp_view() RETURNS TRIGGER AS $$
 BEGIN
 --
 -- Perform the required operation on emp, and create a row in
 emp_audit
 -- to reflect the change made to emp.
 --
 IF (TG_OP = 'DELETE') THEN
 DELETE FROM emp WHERE empname = OLD.empname;
 IF NOT FOUND THEN RETURN NULL; END IF;

 OLD.last_updated = now();
 INSERT INTO emp_audit VALUES('D', user, OLD.*);
 RETURN OLD;
 ELSIF (TG_OP = 'UPDATE') THEN

1265

PL/pgSQL - SQL
Procedural Language

 UPDATE emp SET salary = NEW.salary WHERE empname =
 OLD.empname;
 IF NOT FOUND THEN RETURN NULL; END IF;

 NEW.last_updated = now();
 INSERT INTO emp_audit VALUES('U', user, NEW.*);
 RETURN NEW;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp VALUES(NEW.empname, NEW.salary);

 NEW.last_updated = now();
 INSERT INTO emp_audit VALUES('I', user, NEW.*);
 RETURN NEW;
 END IF;
 END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_view
 FOR EACH ROW EXECUTE FUNCTION update_emp_view();

One use of triggers is to maintain a summary table of another table. The resulting summary can be used
in place of the original table for certain queries — often with vastly reduced run times. This technique
is commonly used in Data Warehousing, where the tables of measured or observed data (called fact
tables) might be extremely large. Example 43.6 shows an example of a trigger function in PL/pgSQL that
maintains a summary table for a fact table in a data warehouse.

Example 43.6. A PL/pgSQL Trigger Function For Maintaining A Summary Table

The schema detailed here is partly based on the Grocery Store example from The Data Warehouse Toolkit
by Ralph Kimball.

--
-- Main tables - time dimension and sales fact.
--
CREATE TABLE time_dimension (
 time_key integer NOT NULL,
 day_of_week integer NOT NULL,
 day_of_month integer NOT NULL,
 month integer NOT NULL,
 quarter integer NOT NULL,
 year integer NOT NULL
);
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);

CREATE TABLE sales_fact (
 time_key integer NOT NULL,
 product_key integer NOT NULL,
 store_key integer NOT NULL,
 amount_sold numeric(12,2) NOT NULL,
 units_sold integer NOT NULL,
 amount_cost numeric(12,2) NOT NULL
);

1266

PL/pgSQL - SQL
Procedural Language

CREATE INDEX sales_fact_time ON sales_fact(time_key);

--
-- Summary table - sales by time.
--
CREATE TABLE sales_summary_bytime (
 time_key integer NOT NULL,
 amount_sold numeric(15,2) NOT NULL,
 units_sold numeric(12) NOT NULL,
 amount_cost numeric(15,2) NOT NULL
);
CREATE UNIQUE INDEX sales_summary_bytime_key ON
 sales_summary_bytime(time_key);

--
-- Function and trigger to amend summarized column(s) on UPDATE,
 INSERT, DELETE.
--
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS
 TRIGGER
AS $maint_sales_summary_bytime$
 DECLARE
 delta_time_key integer;
 delta_amount_sold numeric(15,2);
 delta_units_sold numeric(12);
 delta_amount_cost numeric(15,2);
 BEGIN

 -- Work out the increment/decrement amount(s).
 IF (TG_OP = 'DELETE') THEN

 delta_time_key = OLD.time_key;
 delta_amount_sold = -1 * OLD.amount_sold;
 delta_units_sold = -1 * OLD.units_sold;
 delta_amount_cost = -1 * OLD.amount_cost;

 ELSIF (TG_OP = 'UPDATE') THEN

 -- forbid updates that change the time_key -
 -- (probably not too onerous, as DELETE + INSERT is how
 most
 -- changes will be made).
 IF (OLD.time_key != NEW.time_key) THEN
 RAISE EXCEPTION 'Update of time_key : % -> % not
 allowed',
 OLD.time_key,
 NEW.time_key;
 END IF;

 delta_time_key = OLD.time_key;
 delta_amount_sold = NEW.amount_sold - OLD.amount_sold;
 delta_units_sold = NEW.units_sold - OLD.units_sold;
 delta_amount_cost = NEW.amount_cost - OLD.amount_cost;

1267

PL/pgSQL - SQL
Procedural Language

 ELSIF (TG_OP = 'INSERT') THEN

 delta_time_key = NEW.time_key;
 delta_amount_sold = NEW.amount_sold;
 delta_units_sold = NEW.units_sold;
 delta_amount_cost = NEW.amount_cost;

 END IF;

 -- Insert or update the summary row with the new values.
 <<insert_update>>
 LOOP
 UPDATE sales_summary_bytime
 SET amount_sold = amount_sold + delta_amount_sold,
 units_sold = units_sold + delta_units_sold,
 amount_cost = amount_cost + delta_amount_cost
 WHERE time_key = delta_time_key;

 EXIT insert_update WHEN found;

 BEGIN
 INSERT INTO sales_summary_bytime (
 time_key,
 amount_sold,
 units_sold,
 amount_cost)
 VALUES (
 delta_time_key,
 delta_amount_sold,
 delta_units_sold,
 delta_amount_cost
);

 EXIT insert_update;

 EXCEPTION
 WHEN UNIQUE_VIOLATION THEN
 -- do nothing
 END;
 END LOOP insert_update;

 RETURN NULL;

 END;
$maint_sales_summary_bytime$ LANGUAGE plpgsql;

CREATE TRIGGER maint_sales_summary_bytime
AFTER INSERT OR UPDATE OR DELETE ON sales_fact
 FOR EACH ROW EXECUTE FUNCTION maint_sales_summary_bytime();

INSERT INTO sales_fact VALUES(1,1,1,10,3,15);
INSERT INTO sales_fact VALUES(1,2,1,20,5,35);
INSERT INTO sales_fact VALUES(2,2,1,40,15,135);

1268

PL/pgSQL - SQL
Procedural Language

INSERT INTO sales_fact VALUES(2,3,1,10,1,13);
SELECT * FROM sales_summary_bytime;
DELETE FROM sales_fact WHERE product_key = 1;
SELECT * FROM sales_summary_bytime;
UPDATE sales_fact SET units_sold = units_sold * 2;
SELECT * FROM sales_summary_bytime;

AFTER triggers can also make use of transition tables to inspect the entire set of rows changed by the
triggering statement. The CREATE TRIGGER command assigns names to one or both transition tables, and
then the function can refer to those names as though they were read-only temporary tables. Example 43.7
shows an example.

Example 43.7. Auditing with Transition Tables

This example produces the same results as Example 43.4, but instead of using a trigger that fires for every
row, it uses a trigger that fires once per statement, after collecting the relevant information in a transition
table. This can be significantly faster than the row-trigger approach when the invoking statement has
modified many rows. Notice that we must make a separate trigger declaration for each kind of event, since
the REFERENCING clauses must be different for each case. But this does not stop us from using a single
trigger function if we choose. (In practice, it might be better to use three separate functions and avoid the
run-time tests on TG_OP.)

CREATE TABLE emp (
 empname text NOT NULL,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS
 emp_audit
 BEGIN
 --
 -- Create rows in emp_audit to reflect the operations
 performed on emp,
 -- making use of the special variable TG_OP to work out the
 operation.
 --
 IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_audit
 SELECT 'D', now(), user, o.* FROM old_table o;
 ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_audit
 SELECT 'U', now(), user, n.* FROM new_table n;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp_audit
 SELECT 'I', now(), user, n.* FROM new_table n;

1269

PL/pgSQL - SQL
Procedural Language

 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER
 trigger
 END;
emp_audit LANGUAGE plpgsql;

CREATE TRIGGER emp_audit_ins
 AFTER INSERT ON emp
 REFERENCING NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_upd
 AFTER UPDATE ON emp
 REFERENCING OLD TABLE AS old_table NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_del
 AFTER DELETE ON emp
 REFERENCING OLD TABLE AS old_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();

43.10.2. Triggers on Events
PL/pgSQL can be used to define event triggers. PostgreSQL requires that a function that is to be called as
an event trigger must be declared as a function with no arguments and a return type of event_trigger.

When a PL/pgSQL function is called as an event trigger, several special variables are created automatically
in the top-level block. They are:

TG_EVENT

Data type text; a string representing the event the trigger is fired for.

TG_TAG

Data type text; variable that contains the command tag for which the trigger is fired.

Example 43.8 shows an example of an event trigger function in PL/pgSQL.

Example 43.8. A PL/pgSQL Event Trigger Function

This example trigger simply raises a NOTICE message each time a supported command is executed.

CREATE OR REPLACE FUNCTION snitch() RETURNS event_trigger AS $$
BEGIN
 RAISE NOTICE 'snitch: % %', tg_event, tg_tag;
END;
$$ LANGUAGE plpgsql;

CREATE EVENT TRIGGER snitch ON ddl_command_start EXECUTE FUNCTION
 snitch();

43.11. PL/pgSQL Under the Hood
This section discusses some implementation details that are frequently important for PL/pgSQL users to
know.

1270

PL/pgSQL - SQL
Procedural Language

43.11.1. Variable Substitution
SQL statements and expressions within a PL/pgSQL function can refer to variables and parameters of
the function. Behind the scenes, PL/pgSQL substitutes query parameters for such references. Parameters
will only be substituted in places where a parameter or column reference is syntactically allowed. As an
extreme case, consider this example of poor programming style:

INSERT INTO foo (foo) VALUES (foo);

The first occurrence of foo must syntactically be a table name, so it will not be substituted, even if the
function has a variable named foo. The second occurrence must be the name of a column of the table, so
it will not be substituted either. Only the third occurrence is a candidate to be a reference to the function's
variable.

Note

PostgreSQL versions before 9.0 would try to substitute the variable in all three cases, leading to
syntax errors.

Since the names of variables are syntactically no different from the names of table columns, there can be
ambiguity in statements that also refer to tables: is a given name meant to refer to a table column, or a
variable? Let's change the previous example to

INSERT INTO dest (col) SELECT foo + bar FROM src;

Here, dest and src must be table names, and col must be a column of dest, but foo and bar might
reasonably be either variables of the function or columns of src.

By default, PL/pgSQL will report an error if a name in a SQL statement could refer to either a variable
or a table column. You can fix such a problem by renaming the variable or column, or by qualifying the
ambiguous reference, or by telling PL/pgSQL which interpretation to prefer.

The simplest solution is to rename the variable or column. A common coding rule is to use a different
naming convention for PL/pgSQL variables than you use for column names. For example, if you
consistently name function variables v_something while none of your column names start with v_,
no conflicts will occur.

Alternatively you can qualify ambiguous references to make them clear. In the above example, src.foo
would be an unambiguous reference to the table column. To create an unambiguous reference to a variable,
declare it in a labeled block and use the block's label (see Section 43.2). For example,

<<block>>
DECLARE
 foo int;
BEGIN
 foo := ...;
 INSERT INTO dest (col) SELECT block.foo + bar FROM src;

Here block.foo means the variable even if there is a column foo in src. Function parameters, as well
as special variables such as FOUND, can be qualified by the function's name, because they are implicitly
declared in an outer block labeled with the function's name.

1271

PL/pgSQL - SQL
Procedural Language

Sometimes it is impractical to fix all the ambiguous references in a large body of PL/pgSQL code. In
such cases you can specify that PL/pgSQL should resolve ambiguous references as the variable (which is
compatible with PL/pgSQL's behavior before PostgreSQL 9.0), or as the table column (which is compatible
with some other systems such as Oracle).

To change this behavior on a system-wide basis, set the configuration parameter
plpgsql.variable_conflict to one of error, use_variable, or use_column (where
error is the factory default). This parameter affects subsequent compilations of statements in PL/pgSQL
functions, but not statements already compiled in the current session. Because changing this setting can
cause unexpected changes in the behavior of PL/pgSQL functions, it can only be changed by a superuser.

You can also set the behavior on a function-by-function basis, by inserting one of these special commands
at the start of the function text:

#variable_conflict error
#variable_conflict use_variable
#variable_conflict use_column

These commands affect only the function they are written in, and override the setting of
plpgsql.variable_conflict. An example is

CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
 #variable_conflict use_variable
 DECLARE
 curtime timestamp := now();
 BEGIN
 UPDATE users SET last_modified = curtime, comment = comment
 WHERE users.id = id;
 END;
$$ LANGUAGE plpgsql;

In the UPDATE command, curtime, comment, and id will refer to the function's variable and
parameters whether or not users has columns of those names. Notice that we had to qualify the reference
to users.id in the WHERE clause to make it refer to the table column. But we did not have to qualify
the reference to comment as a target in the UPDATE list, because syntactically that must be a column
of users. We could write the same function without depending on the variable_conflict setting
in this way:

CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
 <<fn>>
 DECLARE
 curtime timestamp := now();
 BEGIN
 UPDATE users SET last_modified = fn.curtime, comment =
 stamp_user.comment
 WHERE users.id = stamp_user.id;
 END;
$$ LANGUAGE plpgsql;

Variable substitution does not happen in the command string given to EXECUTE or one of its variants. If
you need to insert a varying value into such a command, do so as part of constructing the string value, or
use USING, as illustrated in Section 43.5.4.

1272

PL/pgSQL - SQL
Procedural Language

Variable substitution currently works only in SELECT, INSERT, UPDATE, and DELETE commands,
because the main SQL engine allows query parameters only in these commands. To use a non-constant
name or value in other statement types (generically called utility statements), you must construct the utility
statement as a string and EXECUTE it.

43.11.2. Plan Caching
The PL/pgSQL interpreter parses the function's source text and produces an internal binary instruction
tree the first time the function is called (within each session). The instruction tree fully translates the PL/
pgSQL statement structure, but individual SQL expressions and SQL commands used in the function are
not translated immediately.

 As each expression and SQL command is first executed in the function, the PL/pgSQL interpreter parses
and analyzes the command to create a prepared statement, using the SPI manager's SPI_prepare
function. Subsequent visits to that expression or command reuse the prepared statement. Thus, a function
with conditional code paths that are seldom visited will never incur the overhead of analyzing those
commands that are never executed within the current session. A disadvantage is that errors in a specific
expression or command cannot be detected until that part of the function is reached in execution. (Trivial
syntax errors will be detected during the initial parsing pass, but anything deeper will not be detected until
execution.)

PL/pgSQL (or more precisely, the SPI manager) can furthermore attempt to cache the execution plan
associated with any particular prepared statement. If a cached plan is not used, then a fresh execution plan
is generated on each visit to the statement, and the current parameter values (that is, PL/pgSQL variable
values) can be used to optimize the selected plan. If the statement has no parameters, or is executed many
times, the SPI manager will consider creating a generic plan that is not dependent on specific parameter
values, and caching that for re-use. Typically this will happen only if the execution plan is not very sensitive
to the values of the PL/pgSQL variables referenced in it. If it is, generating a plan each time is a net win.
See PREPARE for more information about the behavior of prepared statements.

Because PL/pgSQL saves prepared statements and sometimes execution plans in this way, SQL commands
that appear directly in a PL/pgSQL function must refer to the same tables and columns on every execution;
that is, you cannot use a parameter as the name of a table or column in an SQL command. To get around
this restriction, you can construct dynamic commands using the PL/pgSQL EXECUTE statement — at the
price of performing new parse analysis and constructing a new execution plan on every execution.

The mutable nature of record variables presents another problem in this connection. When fields of a
record variable are used in expressions or statements, the data types of the fields must not change from one
call of the function to the next, since each expression will be analyzed using the data type that is present
when the expression is first reached. EXECUTE can be used to get around this problem when necessary.

If the same function is used as a trigger for more than one table, PL/pgSQL prepares and caches statements
independently for each such table — that is, there is a cache for each trigger function and table combination,
not just for each function. This alleviates some of the problems with varying data types; for instance, a
trigger function will be able to work successfully with a column named key even if it happens to have
different types in different tables.

Likewise, functions having polymorphic argument types have a separate statement cache for each
combination of actual argument types they have been invoked for, so that data type differences do not
cause unexpected failures.

Statement caching can sometimes have surprising effects on the interpretation of time-sensitive values.
For example there is a difference between what these two functions do:

1273

PL/pgSQL - SQL
Procedural Language

CREATE FUNCTION logfunc1(logtxt text) RETURNS void AS $$
 BEGIN
 INSERT INTO logtable VALUES (logtxt, 'now');
 END;
$$ LANGUAGE plpgsql;

and:

CREATE FUNCTION logfunc2(logtxt text) RETURNS void AS $$
 DECLARE
 curtime timestamp;
 BEGIN
 curtime := 'now';
 INSERT INTO logtable VALUES (logtxt, curtime);
 END;
$$ LANGUAGE plpgsql;

In the case of logfunc1, the PostgreSQL main parser knows when analyzing the INSERT that the string
'now' should be interpreted as timestamp, because the target column of logtable is of that type.
Thus, 'now' will be converted to a timestamp constant when the INSERT is analyzed, and then used
in all invocations of logfunc1 during the lifetime of the session. Needless to say, this isn't what the
programmer wanted. A better idea is to use the now() or current_timestamp function.

In the case of logfunc2, the PostgreSQL main parser does not know what type 'now' should become
and therefore it returns a data value of type text containing the string now. During the ensuing assignment
to the local variable curtime, the PL/pgSQL interpreter casts this string to the timestamp type by
calling the text_out and timestamp_in functions for the conversion. So, the computed time stamp
is updated on each execution as the programmer expects. Even though this happens to work as expected,
it's not terribly efficient, so use of the now() function would still be a better idea.

43.12. Tips for Developing in PL/pgSQL
One good way to develop in PL/pgSQL is to use the text editor of your choice to create your functions,
and in another window, use psql to load and test those functions. If you are doing it this way, it is a good
idea to write the function using CREATE OR REPLACE FUNCTION. That way you can just reload the
file to update the function definition. For example:

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $$

$$ LANGUAGE plpgsql;

While running psql, you can load or reload such a function definition file with:

\i filename.sql

and then immediately issue SQL commands to test the function.

Another good way to develop in PL/pgSQL is with a GUI database access tool that facilitates development
in a procedural language. One example of such a tool is pgAdmin, although others exist. These tools often
provide convenient features such as escaping single quotes and making it easier to recreate and debug
functions.

1274

PL/pgSQL - SQL
Procedural Language

43.12.1. Handling of Quotation Marks
The code of a PL/pgSQL function is specified in CREATE FUNCTION as a string literal. If you write
the string literal in the ordinary way with surrounding single quotes, then any single quotes inside the
function body must be doubled; likewise any backslashes must be doubled (assuming escape string syntax
is used). Doubling quotes is at best tedious, and in more complicated cases the code can become downright
incomprehensible, because you can easily find yourself needing half a dozen or more adjacent quote
marks. It's recommended that you instead write the function body as a “dollar-quoted” string literal (see
Section 4.1.2.4). In the dollar-quoting approach, you never double any quote marks, but instead take care
to choose a different dollar-quoting delimiter for each level of nesting you need. For example, you might
write the CREATE FUNCTION command as:

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $PROC$

$PROC$ LANGUAGE plpgsql;

Within this, you might use quote marks for simple literal strings in SQL commands and $$ to delimit
fragments of SQL commands that you are assembling as strings. If you need to quote text that includes
$$, you could use Q, and so on.

The following chart shows what you have to do when writing quote marks without dollar quoting. It might
be useful when translating pre-dollar quoting code into something more comprehensible.

1 quotation mark

To begin and end the function body, for example:

CREATE FUNCTION foo() RETURNS integer AS '

' LANGUAGE plpgsql;

Anywhere within a single-quoted function body, quote marks must appear in pairs.

2 quotation marks

For string literals inside the function body, for example:

a_output := ''Blah'';
SELECT * FROM users WHERE f_name=''foobar'';

In the dollar-quoting approach, you'd just write:

a_output := 'Blah';
SELECT * FROM users WHERE f_name='foobar';

which is exactly what the PL/pgSQL parser would see in either case.

4 quotation marks

When you need a single quotation mark in a string constant inside the function body, for example:

a_output := a_output || '' AND name LIKE ''''foobar'''' AND xyz''

1275

PL/pgSQL - SQL
Procedural Language

The value actually appended to a_output would be: AND name LIKE 'foobar' AND xyz.

In the dollar-quoting approach, you'd write:

a_output := a_output || $$ AND name LIKE 'foobar' AND xyz$$

being careful that any dollar-quote delimiters around this are not just $$.

6 quotation marks

When a single quotation mark in a string inside the function body is adjacent to the end of that string
constant, for example:

a_output := a_output || '' AND name LIKE ''''foobar''''''

The value appended to a_output would then be: AND name LIKE 'foobar'.

In the dollar-quoting approach, this becomes:

a_output := a_output || $$ AND name LIKE 'foobar'$$

10 quotation marks

When you want two single quotation marks in a string constant (which accounts for 8 quotation marks)
and this is adjacent to the end of that string constant (2 more). You will probably only need that if you
are writing a function that generates other functions, as in Example 43.10. For example:

a_output := a_output || '' if v_'' ||
 referrer_keys.kind || '' like ''''''''''
 || referrer_keys.key_string || ''''''''''
 then return '''''' || referrer_keys.referrer_type
 || ''''''; end if;'';

The value of a_output would then be:

if v_... like ''...'' then return ''...''; end if;

In the dollar-quoting approach, this becomes:

a_output := a_output || $$ if v_$$ || referrer_keys.kind || $$ like
 '$$
 || referrer_keys.key_string || $$'
 then return '$$ || referrer_keys.referrer_type
 || $$'; end if;$$;

where we assume we only need to put single quote marks into a_output, because it will be re-
quoted before use.

43.12.2. Additional Compile-time Checks
To aid the user in finding instances of simple but common problems before they cause harm, PL/pgSQL
provides additional checks. When enabled, depending on the configuration, they can be used to emit

1276

PL/pgSQL - SQL
Procedural Language

either a WARNING or an ERROR during the compilation of a function. A function which has received a
WARNING can be executed without producing further messages, so you are advised to test in a separate
development environment.

These additional checks are enabled through the configuration variables plpgsql.extra_warnings
for warnings and plpgsql.extra_errors for errors. Both can be set either to a comma-separated
list of checks, "none" or "all". The default is "none". Currently the list of available checks includes
only one:

shadowed_variables

Checks if a declaration shadows a previously defined variable.

The following example shows the effect of plpgsql.extra_warnings set to
shadowed_variables:

SET plpgsql.extra_warnings TO 'shadowed_variables';

CREATE FUNCTION foo(f1 int) RETURNS int AS $$
DECLARE
f1 int;
BEGIN
RETURN f1;
END
$$ LANGUAGE plpgsql;
WARNING: variable "f1" shadows a previously defined variable
LINE 3: f1 int;
 ^
CREATE FUNCTION

43.13. Porting from Oracle PL/SQL
This section explains differences between PostgreSQL's PL/pgSQL language and Oracle's PL/SQL
language, to help developers who port applications from Oracle® to PostgreSQL.

PL/pgSQL is similar to PL/SQL in many aspects. It is a block-structured, imperative language, and all
variables have to be declared. Assignments, loops, and conditionals are similar. The main differences you
should keep in mind when porting from PL/SQL to PL/pgSQL are:

• If a name used in a SQL command could be either a column name of a table or a reference to
a variable of the function, PL/SQL treats it as a column name. This corresponds to PL/pgSQL's
plpgsql.variable_conflict = use_column behavior, which is not the default, as explained
in Section 43.11.1. It's often best to avoid such ambiguities in the first place, but if you have to port a
large amount of code that depends on this behavior, setting variable_conflict may be the best
solution.

• In PostgreSQL the function body must be written as a string literal. Therefore you need to use dollar
quoting or escape single quotes in the function body. (See Section 43.12.1.)

• Data type names often need translation. For example, in Oracle string values are commonly declared as
being of type varchar2, which is a non-SQL-standard type. In PostgreSQL, use type varchar or
text instead. Similarly, replace type number with numeric, or use some other numeric data type
if there's a more appropriate one.

1277

PL/pgSQL - SQL
Procedural Language

• Instead of packages, use schemas to organize your functions into groups.

• Since there are no packages, there are no package-level variables either. This is somewhat annoying.
You can keep per-session state in temporary tables instead.

• Integer FOR loops with REVERSE work differently: PL/SQL counts down from the second number to
the first, while PL/pgSQL counts down from the first number to the second, requiring the loop bounds
to be swapped when porting. This incompatibility is unfortunate but is unlikely to be changed. (See
Section 43.6.5.5.)

• FOR loops over queries (other than cursors) also work differently: the target variable(s) must have been
declared, whereas PL/SQL always declares them implicitly. An advantage of this is that the variable
values are still accessible after the loop exits.

• There are various notational differences for the use of cursor variables.

43.13.1. Porting Examples
Example 43.9 shows how to port a simple function from PL/SQL to PL/pgSQL.

Example 43.9. Porting a Simple Function from PL/SQL to PL/pgSQL

Here is an Oracle PL/SQL function:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar2,
 v_version varchar2)
RETURN varchar2 IS
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || '/' || v_version;
END;
/
show errors;

Let's go through this function and see the differences compared to PL/pgSQL:

• The type name varchar2 has to be changed to varchar or text. In the examples in this section,
we'll use varchar, but text is often a better choice if you do not need specific string length limits.

• The RETURN key word in the function prototype (not the function body) becomes RETURNS in
PostgreSQL. Also, IS becomes AS, and you need to add a LANGUAGE clause because PL/pgSQL is
not the only possible function language.

• In PostgreSQL, the function body is considered to be a string literal, so you need to use quote marks or
dollar quotes around it. This substitutes for the terminating / in the Oracle approach.

• The show errors command does not exist in PostgreSQL, and is not needed since errors are reported
automatically.

This is how this function would look when ported to PostgreSQL:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,

1278

PL/pgSQL - SQL
Procedural Language

 v_version varchar)
RETURNS varchar AS $$
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || '/' || v_version;
END;
$$ LANGUAGE plpgsql;

Example 43.10 shows how to port a function that creates another function and how to handle the ensuing
quoting problems.

Example 43.10. Porting a Function that Creates Another Function from PL/SQL
to PL/pgSQL

The following procedure grabs rows from a SELECT statement and builds a large function with the results
in IF statements, for the sake of efficiency.

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
 CURSOR referrer_keys IS
 SELECT * FROM cs_referrer_keys
 ORDER BY try_order;
 func_cmd VARCHAR(4000);
BEGIN
 func_cmd := 'CREATE OR REPLACE FUNCTION
 cs_find_referrer_type(v_host IN VARCHAR2,
 v_domain IN VARCHAR2, v_url IN VARCHAR2) RETURN
 VARCHAR2 IS BEGIN';

 FOR referrer_key IN referrer_keys LOOP
 func_cmd := func_cmd ||
 ' IF v_' || referrer_key.kind
 || ' LIKE ''' || referrer_key.key_string
 || ''' THEN RETURN ''' || referrer_key.referrer_type
 || '''; END IF;';
 END LOOP;

 func_cmd := func_cmd || ' RETURN NULL; END;';

 EXECUTE IMMEDIATE func_cmd;
END;
/
show errors;

Here is how this function would end up in PostgreSQL:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc() AS $func$
DECLARE
 referrer_keys CURSOR IS
 SELECT * FROM cs_referrer_keys

1279

PL/pgSQL - SQL
Procedural Language

 ORDER BY try_order;
 func_body text;
 func_cmd text;
BEGIN
 func_body := 'BEGIN';

 FOR referrer_key IN referrer_keys LOOP
 func_body := func_body ||
 ' IF v_' || referrer_key.kind
 || ' LIKE ' || quote_literal(referrer_key.key_string)
 || ' THEN RETURN ' ||
 quote_literal(referrer_key.referrer_type)
 || '; END IF;' ;
 END LOOP;

 func_body := func_body || ' RETURN NULL; END;';

 func_cmd :=
 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host
 varchar,
 v_domain
 varchar,
 v_url varchar)
 RETURNS varchar AS '
 || quote_literal(func_body)
 || ' LANGUAGE plpgsql;' ;

 EXECUTE func_cmd;
END;
$func$ LANGUAGE plpgsql;

Notice how the body of the function is built separately and passed through quote_literal to
double any quote marks in it. This technique is needed because we cannot safely use dollar quoting
for defining the new function: we do not know for sure what strings will be interpolated from
the referrer_key.key_string field. (We are assuming here that referrer_key.kind can
be trusted to always be host, domain, or url, but referrer_key.key_string might be
anything, in particular it might contain dollar signs.) This function is actually an improvement on the
Oracle original, because it will not generate broken code when referrer_key.key_string or
referrer_key.referrer_type contain quote marks.

Example 43.11 shows how to port a function with OUT parameters and string manipulation. PostgreSQL
does not have a built-in instr function, but you can create one using a combination of other functions.
In Section 43.13.3 there is a PL/pgSQL implementation of instr that you can use to make your porting
easier.

Example 43.11. Porting a Procedure With String Manipulation and OUT
Parameters from PL/SQL to PL/pgSQL

The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host, path,
and query).

This is the Oracle version:

1280

PL/pgSQL - SQL
Procedural Language

CREATE OR REPLACE PROCEDURE cs_parse_url(
 v_url IN VARCHAR2,
 v_host OUT VARCHAR2, -- This will be passed back
 v_path OUT VARCHAR2, -- This one too
 v_query OUT VARCHAR2) -- And this one
IS
 a_pos1 INTEGER;
 a_pos2 INTEGER;
BEGIN
 v_host := NULL;
 v_path := NULL;
 v_query := NULL;
 a_pos1 := instr(v_url, '//');

 IF a_pos1 = 0 THEN
 RETURN;
 END IF;
 a_pos2 := instr(v_url, '/', a_pos1 + 2);
 IF a_pos2 = 0 THEN
 v_host := substr(v_url, a_pos1 + 2);
 v_path := '/';
 RETURN;
 END IF;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, '?', a_pos2 + 1);

 IF a_pos1 = 0 THEN
 v_path := substr(v_url, a_pos2);
 RETURN;
 END IF;

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
END;
/
show errors;

Here is a possible translation into PL/pgSQL:

CREATE OR REPLACE FUNCTION cs_parse_url(
 v_url IN VARCHAR,
 v_host OUT VARCHAR, -- This will be passed back
 v_path OUT VARCHAR, -- This one too
 v_query OUT VARCHAR) -- And this one
AS $$
DECLARE
 a_pos1 INTEGER;
 a_pos2 INTEGER;
BEGIN
 v_host := NULL;
 v_path := NULL;
 v_query := NULL;

1281

PL/pgSQL - SQL
Procedural Language

 a_pos1 := instr(v_url, '//');

 IF a_pos1 = 0 THEN
 RETURN;
 END IF;
 a_pos2 := instr(v_url, '/', a_pos1 + 2);
 IF a_pos2 = 0 THEN
 v_host := substr(v_url, a_pos1 + 2);
 v_path := '/';
 RETURN;
 END IF;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, '?', a_pos2 + 1);

 IF a_pos1 = 0 THEN
 v_path := substr(v_url, a_pos2);
 RETURN;
 END IF;

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
END;
$$ LANGUAGE plpgsql;

This function could be used like this:

SELECT * FROM cs_parse_url('http://foobar.com/query.cgi?baz');

Example 43.12 shows how to port a procedure that uses numerous features that are specific to Oracle.

Example 43.12. Porting a Procedure from PL/SQL to PL/pgSQL

The Oracle version:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
 a_running_job_count INTEGER;
BEGIN
 LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

 SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE
 end_stamp IS NULL;

 IF a_running_job_count > 0 THEN
 COMMIT; -- free lock
 raise_application_error(-20000,
 'Unable to create a new job: a job is currently
 running.');
 END IF;

 DELETE FROM cs_active_job;
 INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

1282

PL/pgSQL - SQL
Procedural Language

 BEGIN
 INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id,
 sysdate);
 EXCEPTION
 WHEN dup_val_on_index THEN NULL; -- don't worry if it already
 exists
 END;
 COMMIT;
END;
/
show errors

This is how we could port this procedure to PL/pgSQL:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id integer) AS $$
DECLARE
 a_running_job_count integer;
BEGIN
 LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

 SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE
 end_stamp IS NULL;

 IF a_running_job_count > 0 THEN
 COMMIT; -- free lock
 RAISE EXCEPTION 'Unable to create a new job: a job is
 currently running'; -- 1

 END IF;

 DELETE FROM cs_active_job;
 INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

 BEGIN
 INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id,
 now());
 EXCEPTION
 WHEN unique_violation THEN -- 2

 -- don't worry if it already exists
 END;
 COMMIT;
END;
$$ LANGUAGE plpgsql;

1 The syntax of RAISE is considerably different from Oracle's statement, although the basic case
RAISE exception_name works similarly.

2 The exception names supported by PL/pgSQL are different from Oracle's. The set of built-in
exception names is much larger (see Appendix A). There is not currently a way to declare user-
defined exception names, although you can throw user-chosen SQLSTATE values instead.

43.13.2. Other Things to Watch For
This section explains a few other things to watch for when porting Oracle PL/SQL functions to
PostgreSQL.

1283

PL/pgSQL - SQL
Procedural Language

43.13.2.1. Implicit Rollback after Exceptions

In PL/pgSQL, when an exception is caught by an EXCEPTION clause, all database changes since the
block's BEGIN are automatically rolled back. That is, the behavior is equivalent to what you'd get in Oracle
with:

BEGIN
 SAVEPOINT s1;
 ... code here ...
EXCEPTION
 WHEN ... THEN
 ROLLBACK TO s1;
 ... code here ...
 WHEN ... THEN
 ROLLBACK TO s1;
 ... code here ...
END;

If you are translating an Oracle procedure that uses SAVEPOINT and ROLLBACK TO in this style,
your task is easy: just omit the SAVEPOINT and ROLLBACK TO. If you have a procedure that uses
SAVEPOINT and ROLLBACK TO in a different way then some actual thought will be required.

43.13.2.2. EXECUTE

The PL/pgSQL version of EXECUTE works similarly to the PL/SQL version, but you have to remember
to use quote_literal and quote_ident as described in Section 43.5.4. Constructs of the type
EXECUTE 'SELECT * FROM $1'; will not work reliably unless you use these functions.

43.13.2.3. Optimizing PL/pgSQL Functions

PostgreSQL gives you two function creation modifiers to optimize execution: “volatility” (whether the
function always returns the same result when given the same arguments) and “strictness” (whether the
function returns null if any argument is null). Consult the CREATE FUNCTION reference page for details.

When making use of these optimization attributes, your CREATE FUNCTION statement might look
something like this:

CREATE FUNCTION foo(...) RETURNS integer AS $$
...
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

43.13.3. Appendix
This section contains the code for a set of Oracle-compatible instr functions that you can use to simplify
your porting efforts.

--
-- instr functions that mimic Oracle's counterpart
-- Syntax: instr(string1, string2 [, n [, m]])
-- where [] denotes optional parameters.

1284

PL/pgSQL - SQL
Procedural Language

--
-- Search string1, beginning at the nth character, for the mth
 occurrence
-- of string2. If n is negative, search backwards, starting at the
 abs(n)'th
-- character from the end of string1.
-- If n is not passed, assume 1 (search starts at first character).
-- If m is not passed, assume 1 (find first occurrence).
-- Returns starting index of string2 in string1, or 0 if string2 is
 not found.
--

CREATE FUNCTION instr(varchar, varchar) RETURNS integer AS $$
BEGIN
 RETURN instr($1, $2, 1);
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
 beg_index integer)
RETURNS integer AS $$
DECLARE
 pos integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 length integer;
 ss_length integer;
BEGIN
 IF beg_index > 0 THEN
 temp_str := substring(string FROM beg_index);
 pos := position(string_to_search_for IN temp_str);

 IF pos = 0 THEN
 RETURN 0;
 ELSE
 RETURN pos + beg_index - 1;
 END IF;
 ELSIF beg_index < 0 THEN
 ss_length := char_length(string_to_search_for);
 length := char_length(string);
 beg := length + 1 + beg_index;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 IF string_to_search_for = temp_str THEN
 RETURN beg;
 END IF;

 beg := beg - 1;
 END LOOP;

 RETURN 0;
 ELSE

1285

PL/pgSQL - SQL
Procedural Language

 RETURN 0;
 END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
 beg_index integer, occur_index integer)
RETURNS integer AS $$
DECLARE
 pos integer NOT NULL DEFAULT 0;
 occur_number integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 i integer;
 length integer;
 ss_length integer;
BEGIN
 IF occur_index <= 0 THEN
 RAISE 'argument ''%'' is out of range', occur_index
 USING ERRCODE = '22003';
 END IF;

 IF beg_index > 0 THEN
 beg := beg_index - 1;
 FOR i IN 1..occur_index LOOP
 temp_str := substring(string FROM beg + 1);
 pos := position(string_to_search_for IN temp_str);
 IF pos = 0 THEN
 RETURN 0;
 END IF;
 beg := beg + pos;
 END LOOP;

 RETURN beg;
 ELSIF beg_index < 0 THEN
 ss_length := char_length(string_to_search_for);
 length := char_length(string);
 beg := length + 1 + beg_index;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 IF string_to_search_for = temp_str THEN
 occur_number := occur_number + 1;
 IF occur_number = occur_index THEN
 RETURN beg;
 END IF;
 END IF;

 beg := beg - 1;
 END LOOP;

 RETURN 0;
 ELSE

1286

PL/pgSQL - SQL
Procedural Language

 RETURN 0;
 END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

1287

Chapter 44. PL/Tcl - Tcl Procedural
Language

PL/Tcl is a loadable procedural language for the PostgreSQL database system that enables the Tcl
language1 to be used to write PostgreSQL functions.

44.1. Overview
PL/Tcl offers most of the capabilities a function writer has in the C language, with a few restrictions, and
with the addition of the powerful string processing libraries that are available for Tcl.

One compelling good restriction is that everything is executed from within the safety of the context of a
Tcl interpreter. In addition to the limited command set of safe Tcl, only a few commands are available to
access the database via SPI and to raise messages via elog(). PL/Tcl provides no way to access internals
of the database server or to gain OS-level access under the permissions of the PostgreSQL server process,
as a C function can do. Thus, unprivileged database users can be trusted to use this language; it does not
give them unlimited authority.

The other notable implementation restriction is that Tcl functions cannot be used to create input/output
functions for new data types.

Sometimes it is desirable to write Tcl functions that are not restricted to safe Tcl. For example, one might
want a Tcl function that sends email. To handle these cases, there is a variant of PL/Tcl called PL/TclU
(for untrusted Tcl). This is exactly the same language except that a full Tcl interpreter is used. If PL/TclU
is used, it must be installed as an untrusted procedural language so that only database superusers can
create functions in it. The writer of a PL/TclU function must take care that the function cannot be used
to do anything unwanted, since it will be able to do anything that could be done by a user logged in as
the database administrator.

The shared object code for the PL/Tcl and PL/TclU call handlers is automatically built and installed in
the PostgreSQL library directory if Tcl support is specified in the configuration step of the installation
procedure. To install PL/Tcl and/or PL/TclU in a particular database, use the CREATE EXTENSION
command, for example CREATE EXTENSION pltcl or CREATE EXTENSION pltclu.

44.2. PL/Tcl Functions and Arguments
To create a function in the PL/Tcl language, use the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-types) RETURNS return-type AS $$
 # PL/Tcl function body
$$ LANGUAGE pltcl;

PL/TclU is the same, except that the language has to be specified as pltclu.

The body of the function is simply a piece of Tcl script. When the function is called, the argument values
are passed to the Tcl script as variables named 1 ... n. The result is returned from the Tcl code in the usual
way, with a return statement. In a procedure, the return value from the Tcl code is ignored.

1 http://www.tcl.tk/

1288

http://www.tcl.tk/
http://www.tcl.tk/
http://www.tcl.tk/

PL/Tcl - Tcl Procedural Language

For example, a function returning the greater of two integer values could be defined as:

CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
 if {$1 > $2} {return $1}
 return $2
$$ LANGUAGE pltcl STRICT;

Note the clause STRICT, which saves us from having to think about null input values: if a null value is
passed, the function will not be called at all, but will just return a null result automatically.

In a nonstrict function, if the actual value of an argument is null, the corresponding $n variable will be
set to an empty string. To detect whether a particular argument is null, use the function argisnull. For
example, suppose that we wanted tcl_max with one null and one nonnull argument to return the nonnull
argument, rather than null:

CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
 if {[argisnull 1]} {
 if {[argisnull 2]} { return_null }
 return $2
 }
 if {[argisnull 2]} { return $1 }
 if {$1 > $2} {return $1}
 return $2
$$ LANGUAGE pltcl;

As shown above, to return a null value from a PL/Tcl function, execute return_null. This can be done
whether the function is strict or not.

Composite-type arguments are passed to the function as Tcl arrays. The element names of the array are
the attribute names of the composite type. If an attribute in the passed row has the null value, it will not
appear in the array. Here is an example:

CREATE TABLE employee (
 name text,
 salary integer,
 age integer
);

CREATE FUNCTION overpaid(employee) RETURNS boolean AS $$
 if {200000.0 < $1(salary)} {
 return "t"
 }
 if {$1(age) < 30 && 100000.0 < $1(salary)} {
 return "t"
 }
 return "f"
$$ LANGUAGE pltcl;

PL/Tcl functions can return composite-type results, too. To do this, the Tcl code must return a list of
column name/value pairs matching the expected result type. Any column names omitted from the list are
returned as nulls, and an error is raised if there are unexpected column names. Here is an example:

1289

PL/Tcl - Tcl Procedural Language

CREATE FUNCTION square_cube(in int, out squared int, out cubed int) AS
 $$
 return [list squared [expr {$1 * $1}] cubed [expr {$1 * $1 * $1}]]
$$ LANGUAGE pltcl;

Output arguments of procedures are returned in the same way, for example:

CREATE PROCEDURE tcl_triple(INOUT a integer, INOUT b integer) AS $$
 return [list a [expr {$1 * 3}] b [expr {$2 * 3}]]
$$ LANGUAGE pltcl;

CALL tcl_triple(5, 10);

Tip

The result list can be made from an array representation of the desired tuple with the array get
Tcl command. For example:

CREATE FUNCTION raise_pay(employee, delta int) RETURNS employee
 AS $$
 set 1(salary) [expr {$1(salary) + $2}]
 return [array get 1]
$$ LANGUAGE pltcl;

PL/Tcl functions can return sets. To do this, the Tcl code should call return_next once per row to be
returned, passing either the appropriate value when returning a scalar type, or a list of column name/value
pairs when returning a composite type. Here is an example returning a scalar type:

CREATE FUNCTION sequence(int, int) RETURNS SETOF int AS $$
 for {set i $1} {$i < $2} {incr i} {
 return_next $i
 }
$$ LANGUAGE pltcl;

and here is one returning a composite type:

CREATE FUNCTION table_of_squares(int, int) RETURNS TABLE (x int, x2
 int) AS $$
 for {set i $1} {$i < $2} {incr i} {
 return_next [list x $i x2 [expr {$i * $i}]]
 }
$$ LANGUAGE pltcl;

44.3. Data Values in PL/Tcl
The argument values supplied to a PL/Tcl function's code are simply the input arguments converted to
text form (just as if they had been displayed by a SELECT statement). Conversely, the return and
return_next commands will accept any string that is acceptable input format for the function's declared
result type, or for the specified column of a composite result type.

1290

PL/Tcl - Tcl Procedural Language

44.4. Global Data in PL/Tcl
Sometimes it is useful to have some global data that is held between two calls to a function or is shared
between different functions. This is easily done in PL/Tcl, but there are some restrictions that must be
understood.

For security reasons, PL/Tcl executes functions called by any one SQL role in a separate Tcl interpreter for
that role. This prevents accidental or malicious interference by one user with the behavior of another user's
PL/Tcl functions. Each such interpreter will have its own values for any “global” Tcl variables. Thus, two
PL/Tcl functions will share the same global variables if and only if they are executed by the same SQL
role. In an application wherein a single session executes code under multiple SQL roles (via SECURITY
DEFINER functions, use of SET ROLE, etc) you may need to take explicit steps to ensure that PL/Tcl
functions can share data. To do that, make sure that functions that should communicate are owned by the
same user, and mark them SECURITY DEFINER. You must of course take care that such functions can't
be used to do anything unintended.

All PL/TclU functions used in a session execute in the same Tcl interpreter, which of course is distinct
from the interpreter(s) used for PL/Tcl functions. So global data is automatically shared between PL/TclU
functions. This is not considered a security risk because all PL/TclU functions execute at the same trust
level, namely that of a database superuser.

To help protect PL/Tcl functions from unintentionally interfering with each other, a global array is made
available to each function via the upvar command. The global name of this variable is the function's
internal name, and the local name is GD. It is recommended that GD be used for persistent private data of a
function. Use regular Tcl global variables only for values that you specifically intend to be shared among
multiple functions. (Note that the GD arrays are only global within a particular interpreter, so they do not
bypass the security restrictions mentioned above.)

An example of using GD appears in the spi_execp example below.

44.5. Database Access from PL/Tcl
The following commands are available to access the database from the body of a PL/Tcl function:

spi_exec ?-count n? ?-array name? command ?loop-body?

Executes an SQL command given as a string. An error in the command causes an error to be raised.
Otherwise, the return value of spi_exec is the number of rows processed (selected, inserted,
updated, or deleted) by the command, or zero if the command is a utility statement. In addition, if
the command is a SELECT statement, the values of the selected columns are placed in Tcl variables
as described below.

The optional -count value tells spi_exec the maximum number of rows to process in the
command. The effect of this is comparable to setting up a query as a cursor and then saying FETCH n.

If the command is a SELECT statement, the values of the result columns are placed into Tcl variables
named after the columns. If the -array option is given, the column values are instead stored into
elements of the named associative array, with the column names used as array indexes. In addition,
the current row number within the result (counting from zero) is stored into the array element named
“.tupno”, unless that name is in use as a column name in the result.

If the command is a SELECT statement and no loop-body script is given, then only the first row of
results are stored into Tcl variables or array elements; remaining rows, if any, are ignored. No storing

1291

PL/Tcl - Tcl Procedural Language

occurs if the query returns no rows. (This case can be detected by checking the result of spi_exec.)
For example:

spi_exec "SELECT count(*) AS cnt FROM pg_proc"

will set the Tcl variable $cnt to the number of rows in the pg_proc system catalog.

If the optional loop-body argument is given, it is a piece of Tcl script that is executed once for each
row in the query result. (loop-body is ignored if the given command is not a SELECT.) The values
of the current row's columns are stored into Tcl variables or array elements before each iteration. For
example:

spi_exec -array C "SELECT * FROM pg_class" {
 elog DEBUG "have table $C(relname)"
}

will print a log message for every row of pg_class. This feature works similarly to other Tcl looping
constructs; in particular continue and break work in the usual way inside the loop body.

If a column of a query result is null, the target variable for it is “unset” rather than being set.

spi_prepare query typelist

Prepares and saves a query plan for later execution. The saved plan will be retained for the life of
the current session.

The query can use parameters, that is, placeholders for values to be supplied whenever the plan is
actually executed. In the query string, refer to parameters by the symbols $1 ... $n. If the query uses
parameters, the names of the parameter types must be given as a Tcl list. (Write an empty list for
typelist if no parameters are used.)

The return value from spi_prepare is a query ID to be used in subsequent calls to spi_execp.
See spi_execp for an example.

spi_execp ?-count n? ?-array name? ?-nulls string? queryid ?value-
list? ?loop-body?

Executes a query previously prepared with spi_prepare. queryid is the ID returned by
spi_prepare. If the query references parameters, a value-list must be supplied. This is a Tcl
list of actual values for the parameters. The list must be the same length as the parameter type list
previously given to spi_prepare. Omit value-list if the query has no parameters.

The optional value for -nulls is a string of spaces and 'n' characters telling spi_execp which
of the parameters are null values. If given, it must have exactly the same length as the value-list.
If it is not given, all the parameter values are nonnull.

Except for the way in which the query and its parameters are specified, spi_execp works just like
spi_exec. The -count, -array, and loop-body options are the same, and so is the result
value.

Here's an example of a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS $$
 if {![info exists GD(plan)]} {

1292

PL/Tcl - Tcl Procedural Language

 # prepare the saved plan on the first call
 set GD(plan) [spi_prepare \
 "SELECT count(*) AS cnt FROM t1 WHERE num >= \$1
 AND num <= \$2" \
 [list int4 int4]]
 }
 spi_execp -count 1 $GD(plan) [list $1 $2]
 return $cnt
$$ LANGUAGE pltcl;

We need backslashes inside the query string given to spi_prepare to ensure that the $n markers
will be passed through to spi_prepare as-is, and not replaced by Tcl variable substitution.

spi_lastoid

Returns the OID of the row inserted by the last spi_exec or spi_execp, if the command was a
single-row INSERT and the modified table contained OIDs. (If not, you get zero.)

subtransaction command

The Tcl script contained in command is executed within a SQL subtransaction. If the script returns
an error, that entire subtransaction is rolled back before returning the error out to the surrounding Tcl
code. See Section 44.9 for more details and an example.

quote string

Doubles all occurrences of single quote and backslash characters in the given string. This can be
used to safely quote strings that are to be inserted into SQL commands given to spi_exec or
spi_prepare. For example, think about an SQL command string like:

"SELECT '$val' AS ret"

where the Tcl variable val actually contains doesn't. This would result in the final command
string:

SELECT 'doesn't' AS ret

which would cause a parse error during spi_exec or spi_prepare. To work properly, the
submitted command should contain:

SELECT 'doesn''t' AS ret

which can be formed in PL/Tcl using:

"SELECT '[quote $val]' AS ret"

One advantage of spi_execp is that you don't have to quote parameter values like this, since the
parameters are never parsed as part of an SQL command string.

elog level msg

Emits a log or error message. Possible levels are DEBUG, LOG, INFO, NOTICE, WARNING, ERROR,
and FATAL. ERROR raises an error condition; if this is not trapped by the surrounding Tcl code,

1293

PL/Tcl - Tcl Procedural Language

the error propagates out to the calling query, causing the current transaction or subtransaction to be
aborted. This is effectively the same as the Tcl error command. FATAL aborts the transaction and
causes the current session to shut down. (There is probably no good reason to use this error level
in PL/Tcl functions, but it's provided for completeness.) The other levels only generate messages of
different priority levels. Whether messages of a particular priority are reported to the client, written to
the server log, or both is controlled by the log_min_messages and client_min_messages configuration
variables. See Chapter 19 and Section 44.8 for more information.

44.6. Trigger Functions in PL/Tcl
Trigger functions can be written in PL/Tcl. PostgreSQL requires that a function that is to be called as a
trigger must be declared as a function with no arguments and a return type of trigger.

The information from the trigger manager is passed to the function body in the following variables:

$TG_name

The name of the trigger from the CREATE TRIGGER statement.

$TG_relid

The object ID of the table that caused the trigger function to be invoked.

$TG_table_name

The name of the table that caused the trigger function to be invoked.

$TG_table_schema

The schema of the table that caused the trigger function to be invoked.

$TG_relatts

A Tcl list of the table column names, prefixed with an empty list element. So looking up a column
name in the list with Tcl's lsearch command returns the element's number starting with 1 for the first
column, the same way the columns are customarily numbered in PostgreSQL. (Empty list elements
also appear in the positions of columns that have been dropped, so that the attribute numbering is
correct for columns to their right.)

$TG_when

The string BEFORE, AFTER, or INSTEAD OF, depending on the type of trigger event.

$TG_level

The string ROW or STATEMENT depending on the type of trigger event.

$TG_op

The string INSERT, UPDATE, DELETE, or TRUNCATE depending on the type of trigger event.

$NEW

An associative array containing the values of the new table row for INSERT or UPDATE actions, or
empty for DELETE. The array is indexed by column name. Columns that are null will not appear in
the array. This is not set for statement-level triggers.

1294

PL/Tcl - Tcl Procedural Language

$OLD

An associative array containing the values of the old table row for UPDATE or DELETE actions, or
empty for INSERT. The array is indexed by column name. Columns that are null will not appear in
the array. This is not set for statement-level triggers.

$args

A Tcl list of the arguments to the function as given in the CREATE TRIGGER statement. These
arguments are also accessible as $1 ... $n in the function body.

The return value from a trigger function can be one of the strings OK or SKIP, or a list of column name/
value pairs. If the return value is OK, the operation (INSERT/UPDATE/DELETE) that fired the trigger will
proceed normally. SKIP tells the trigger manager to silently suppress the operation for this row. If a list is
returned, it tells PL/Tcl to return a modified row to the trigger manager; the contents of the modified row are
specified by the column names and values in the list. Any columns not mentioned in the list are set to null.
Returning a modified row is only meaningful for row-level BEFORE INSERT or UPDATE triggers, for
which the modified row will be inserted instead of the one given in $NEW; or for row-level INSTEAD OF
INSERT or UPDATE triggers where the returned row is used as the source data for INSERT RETURNING
or UPDATE RETURNING clauses. In row-level BEFORE DELETE or INSTEAD OF DELETE triggers,
returning a modified row has the same effect as returning OK, that is the operation proceeds. The trigger
return value is ignored for all other types of triggers.

Tip

The result list can be made from an array representation of the modified tuple with the array
get Tcl command.

Here's a little example trigger function that forces an integer value in a table to keep track of the number
of updates that are performed on the row. For new rows inserted, the value is initialized to 0 and then
incremented on every update operation.

CREATE FUNCTION trigfunc_modcount() RETURNS trigger AS $$
 switch $TG_op {
 INSERT {
 set NEW($1) 0
 }
 UPDATE {
 set NEW($1) $OLD($1)
 incr NEW($1)
 }
 default {
 return OK
 }
 }
 return [array get NEW]
$$ LANGUAGE pltcl;

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab

1295

PL/Tcl - Tcl Procedural Language

 FOR EACH ROW EXECUTE FUNCTION trigfunc_modcount('modcnt');

Notice that the trigger function itself does not know the column name; that's supplied from the trigger
arguments. This lets the trigger function be reused with different tables.

44.7. Event Trigger Functions in PL/Tcl
Event trigger functions can be written in PL/Tcl. PostgreSQL requires that a function that is to be called as
an event trigger must be declared as a function with no arguments and a return type of event_trigger.

The information from the trigger manager is passed to the function body in the following variables:

$TG_event

The name of the event the trigger is fired for.

$TG_tag

The command tag for which the trigger is fired.

The return value of the trigger function is ignored.

Here's a little example event trigger function that simply raises a NOTICE message each time a supported
command is executed:

CREATE OR REPLACE FUNCTION tclsnitch() RETURNS event_trigger AS $$
 elog NOTICE "tclsnitch: $TG_event $TG_tag"
$$ LANGUAGE pltcl;

CREATE EVENT TRIGGER tcl_a_snitch ON ddl_command_start EXECUTE
 FUNCTION tclsnitch();

44.8. Error Handling in PL/Tcl
Tcl code within or called from a PL/Tcl function can raise an error, either by executing some invalid
operation or by generating an error using the Tcl error command or PL/Tcl's elog command. Such
errors can be caught within Tcl using the Tcl catch command. If an error is not caught but is allowed
to propagate out to the top level of execution of the PL/Tcl function, it is reported as a SQL error in the
function's calling query.

Conversely, SQL errors that occur within PL/Tcl's spi_exec, spi_prepare, and spi_execp
commands are reported as Tcl errors, so they are catchable by Tcl's catch command. (Each of these
PL/Tcl commands runs its SQL operation in a subtransaction, which is rolled back on error, so that any
partially-completed operation is automatically cleaned up.) Again, if an error propagates out to the top
level without being caught, it turns back into a SQL error.

Tcl provides an errorCode variable that can represent additional information about an error in a form
that is easy for Tcl programs to interpret. The contents are in Tcl list format, and the first word identifies
the subsystem or library reporting the error; beyond that the contents are left to the individual subsystem or
library. For database errors reported by PL/Tcl commands, the first word is POSTGRES, the second word
is the PostgreSQL version number, and additional words are field name/value pairs providing detailed
information about the error. Fields SQLSTATE, condition, and message are always supplied (the

1296

PL/Tcl - Tcl Procedural Language

first two represent the error code and condition name as shown in Appendix A). Fields that may be
present include detail, hint, context, schema, table, column, datatype, constraint,
statement, cursor_position, filename, lineno, and funcname.

A convenient way to work with PL/Tcl's errorCode information is to load it into an array, so that the
field names become array subscripts. Code for doing that might look like

if {[catch { spi_exec $sql_command }]} {
 if {[lindex $::errorCode 0] == "POSTGRES"} {
 array set errorArray $::errorCode
 if {$errorArray(condition) == "undefined_table"} {
 # deal with missing table
 } else {
 # deal with some other type of SQL error
 }
 }
}

(The double colons explicitly specify that errorCode is a global variable.)

44.9. Explicit Subtransactions in PL/Tcl
Recovering from errors caused by database access as described in Section 44.8 can lead to an undesirable
situation where some operations succeed before one of them fails, and after recovering from that error
the data is left in an inconsistent state. PL/Tcl offers a solution to this problem in the form of explicit
subtransactions.

Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
 if [catch {
 spi_exec "UPDATE accounts SET balance = balance - 100 WHERE
 account_name = 'joe'"
 spi_exec "UPDATE accounts SET balance = balance + 100 WHERE
 account_name = 'mary'"
 } errormsg] {
 set result [format "error transferring funds: %s" $errormsg]
 } else {
 set result "funds transferred successfully"
 }
 spi_exec "INSERT INTO operations (result) VALUES ('[quote
 $result]')"
$$ LANGUAGE pltcl;

If the second UPDATE statement results in an exception being raised, this function will log the failure, but
the result of the first UPDATE will nevertheless be committed. In other words, the funds will be withdrawn
from Joe's account, but will not be transferred to Mary's account. This happens because each spi_exec
is a separate subtransaction, and only one of those subtransactions got rolled back.

To handle such cases, you can wrap multiple database operations in an explicit subtransaction, which will
succeed or roll back as a whole. PL/Tcl provides a subtransaction command to manage this. We
can rewrite our function as:

1297

PL/Tcl - Tcl Procedural Language

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
 if [catch {
 subtransaction {
 spi_exec "UPDATE accounts SET balance = balance - 100
 WHERE account_name = 'joe'"
 spi_exec "UPDATE accounts SET balance = balance + 100
 WHERE account_name = 'mary'"
 }
 } errormsg] {
 set result [format "error transferring funds: %s" $errormsg]
 } else {
 set result "funds transferred successfully"
 }
 spi_exec "INSERT INTO operations (result) VALUES ('[quote
 $result]')"
$$ LANGUAGE pltcl;

Note that use of catch is still required for this purpose. Otherwise the error would propagate to
the top level of the function, preventing the desired insertion into the operations table. The
subtransaction command does not trap errors, it only assures that all database operations executed
inside its scope will be rolled back together when an error is reported.

A rollback of an explicit subtransaction occurs on any error reported by the contained Tcl code, not only
errors originating from database access. Thus a regular Tcl exception raised inside a subtransaction
command will also cause the subtransaction to be rolled back. However, non-error exits out of the contained
Tcl code (for instance, due to return) do not cause a rollback.

44.10. Transaction Management
In a procedure called from the top level or an anonymous code block (DO command) called from the top
level it is possible to control transactions. To commit the current transaction, call the commit command.
To roll back the current transaction, call the rollback command. (Note that it is not possible to run
the SQL commands COMMIT or ROLLBACK via spi_exec or similar. It has to be done using these
functions.) After a transaction is ended, a new transaction is automatically started, so there is no separate
command for that.

Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE pltcl
AS $$
for {set i 0} {$i < 10} {incr i} {
 spi_exec "INSERT INTO test1 (a) VALUES ($i)"
 if {$i % 2 == 0} {
 commit
 } else {
 rollback
 }
}
$$;

CALL transaction_test1();

1298

PL/Tcl - Tcl Procedural Language

Transactions cannot be ended when an explicit subtransaction is active.

44.11. PL/Tcl Configuration
This section lists configuration parameters that affect PL/Tcl.

pltcl.start_proc (string)

This parameter, if set to a nonempty string, specifies the name (possibly schema-qualified) of a
parameterless PL/Tcl function that is to be executed whenever a new Tcl interpreter is created for PL/
Tcl. Such a function can perform per-session initialization, such as loading additional Tcl code. A
new Tcl interpreter is created when a PL/Tcl function is first executed in a database session, or when
an additional interpreter has to be created because a PL/Tcl function is called by a new SQL role.

The referenced function must be written in the pltcl language, and must not be marked SECURITY
DEFINER. (These restrictions ensure that it runs in the interpreter it's supposed to initialize.) The
current user must have permission to call it, too.

If the function fails with an error it will abort the function call that caused the new interpreter to be
created and propagate out to the calling query, causing the current transaction or subtransaction to
be aborted. Any actions already done within Tcl won't be undone; however, that interpreter won't be
used again. If the language is used again the initialization will be attempted again within a fresh Tcl
interpreter.

Only superusers can change this setting. Although this setting can be changed within a session, such
changes will not affect Tcl interpreters that have already been created.

pltclu.start_proc (string)

This parameter is exactly like pltcl.start_proc, except that it applies to PL/TclU. The
referenced function must be written in the pltclu language.

44.12. Tcl Procedure Names
In PostgreSQL, the same function name can be used for different function definitions as long as the
number of arguments or their types differ. Tcl, however, requires all procedure names to be distinct. PL/
Tcl deals with this by making the internal Tcl procedure names contain the object ID of the function from
the system table pg_proc as part of their name. Thus, PostgreSQL functions with the same name and
different argument types will be different Tcl procedures, too. This is not normally a concern for a PL/Tcl
programmer, but it might be visible when debugging.

1299

Chapter 45. PL/Perl - Perl Procedural
Language

PL/Perl is a loadable procedural language that enables you to write PostgreSQL functions in the Perl
programming language1.

The main advantage to using PL/Perl is that this allows use, within stored functions, of the manyfold
“string munging” operators and functions available for Perl. Parsing complex strings might be easier using
Perl than it is with the string functions and control structures provided in PL/pgSQL.

To install PL/Perl in a particular database, use CREATE EXTENSION plperl.

Tip

If a language is installed into template1, all subsequently created databases will have the
language installed automatically.

Note

Users of source packages must specially enable the build of PL/Perl during the installation process.
(Refer to Chapter 16 for more information.) Users of binary packages might find PL/Perl in a
separate subpackage.

45.1. PL/Perl Functions and Arguments
To create a function in the PL/Perl language, use the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-types) RETURNS return-type AS $$
 # PL/Perl function body
$$ LANGUAGE plperl;

The body of the function is ordinary Perl code. In fact, the PL/Perl glue code wraps it inside a Perl
subroutine. A PL/Perl function is called in a scalar context, so it can't return a list. You can return non-
scalar values (arrays, records, and sets) by returning a reference, as discussed below.

In a PL/Perl procedure, any return value from the Perl code is ignored.

PL/Perl also supports anonymous code blocks called with the DO statement:

DO $$
 # PL/Perl code
$$ LANGUAGE plperl;

1 http://www.perl.org

1300

http://www.perl.org
http://www.perl.org
http://www.perl.org

PL/Perl - Perl Procedural Language

An anonymous code block receives no arguments, and whatever value it might return is discarded.
Otherwise it behaves just like a function.

Note

The use of named nested subroutines is dangerous in Perl, especially if they refer to lexical
variables in the enclosing scope. Because a PL/Perl function is wrapped in a subroutine, any named
subroutine you place inside one will be nested. In general, it is far safer to create anonymous
subroutines which you call via a coderef. For more information, see the entries for Variable
"%s" will not stay shared and Variable "%s" is not available in the
perldiag man page, or search the Internet for “perl nested named subroutine”.

The syntax of the CREATE FUNCTION command requires the function body to be written as a string
constant. It is usually most convenient to use dollar quoting (see Section 4.1.2.4) for the string constant. If
you choose to use escape string syntax E'', you must double any single quote marks (') and backslashes
(\) used in the body of the function (see Section 4.1.2.1).

Arguments and results are handled as in any other Perl subroutine: arguments are passed in @_, and a result
value is returned with return or as the last expression evaluated in the function.

For example, a function returning the greater of two integer values could be defined as:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
 if ($_[0] > $_[1]) { return $_[0]; }
 return $_[1];
$$ LANGUAGE plperl;

Note

Arguments will be converted from the database's encoding to UTF-8 for use inside PL/Perl, and
then converted from UTF-8 back to the database encoding upon return.

If an SQL null value is passed to a function, the argument value will appear as “undefined” in Perl.
The above function definition will not behave very nicely with null inputs (in fact, it will act as though
they are zeroes). We could add STRICT to the function definition to make PostgreSQL do something
more reasonable: if a null value is passed, the function will not be called at all, but will just return a
null result automatically. Alternatively, we could check for undefined inputs in the function body. For
example, suppose that we wanted perl_max with one null and one nonnull argument to return the nonnull
argument, rather than a null value:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
 my ($x, $y) = @_;
 if (not defined $x) {
 return undef if not defined $y;
 return $y;
 }
 return $x if not defined $y;
 return $x if $x > $y;
 return $y;

1301

PL/Perl - Perl Procedural Language

$$ LANGUAGE plperl;

As shown above, to return an SQL null value from a PL/Perl function, return an undefined value. This can
be done whether the function is strict or not.

Anything in a function argument that is not a reference is a string, which is in the standard PostgreSQL
external text representation for the relevant data type. In the case of ordinary numeric or text types, Perl
will just do the right thing and the programmer will normally not have to worry about it. However, in other
cases the argument will need to be converted into a form that is more usable in Perl. For example, the
decode_bytea function can be used to convert an argument of type bytea into unescaped binary.

Similarly, values passed back to PostgreSQL must be in the external text representation format. For
example, the encode_bytea function can be used to escape binary data for a return value of type
bytea.

Perl can return PostgreSQL arrays as references to Perl arrays. Here is an example:

CREATE OR REPLACE function returns_array()
RETURNS text[][] AS $$
 return [['a"b','c,d'],['e\\f','g']];
$$ LANGUAGE plperl;

select returns_array();

Perl passes PostgreSQL arrays as a blessed PostgreSQL::InServer::ARRAY object. This object
may be treated as an array reference or a string, allowing for backward compatibility with Perl code written
for PostgreSQL versions below 9.1 to run. For example:

CREATE OR REPLACE FUNCTION concat_array_elements(text[]) RETURNS TEXT
 AS $$
 my $arg = shift;
 my $result = "";
 return undef if (!defined $arg);

 # as an array reference
 for (@$arg) {
 $result .= $_;
 }

 # also works as a string
 $result .= $arg;

 return $result;
$$ LANGUAGE plperl;

SELECT concat_array_elements(ARRAY['PL','/','Perl']);

Note

Multidimensional arrays are represented as references to lower-dimensional arrays of references
in a way common to every Perl programmer.

1302

PL/Perl - Perl Procedural Language

Composite-type arguments are passed to the function as references to hashes. The keys of the hash are the
attribute names of the composite type. Here is an example:

CREATE TABLE employee (
 name text,
 basesalary integer,
 bonus integer
);

CREATE FUNCTION empcomp(employee) RETURNS integer AS $$
 my ($emp) = @_;
 return $emp->{basesalary} + $emp->{bonus};
$$ LANGUAGE plperl;

SELECT name, empcomp(employee.*) FROM employee;

A PL/Perl function can return a composite-type result using the same approach: return a reference to a
hash that has the required attributes. For example:

CREATE TYPE testrowperl AS (f1 integer, f2 text, f3 text);

CREATE OR REPLACE FUNCTION perl_row() RETURNS testrowperl AS $$
 return {f2 => 'hello', f1 => 1, f3 => 'world'};
$$ LANGUAGE plperl;

SELECT * FROM perl_row();

Any columns in the declared result data type that are not present in the hash will be returned as null values.

Similarly, output arguments of procedures can be returned as a hash reference:

CREATE PROCEDURE perl_triple(INOUT a integer, INOUT b integer) AS $$
 my ($a, $b) = @_;
 return {a => $a * 3, b => $b * 3};
$$ LANGUAGE plperl;

CALL perl_triple(5, 10);

PL/Perl functions can also return sets of either scalar or composite types. Usually you'll want to return rows
one at a time, both to speed up startup time and to keep from queuing up the entire result set in memory.
You can do this with return_next as illustrated below. Note that after the last return_next, you
must put either return or (better) return undef.

CREATE OR REPLACE FUNCTION perl_set_int(int)
RETURNS SETOF INTEGER AS $$
 foreach (0..$_[0]) {
 return_next($_);
 }
 return undef;
$$ LANGUAGE plperl;

1303

PL/Perl - Perl Procedural Language

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set()
RETURNS SETOF testrowperl AS $$
 return_next({ f1 => 1, f2 => 'Hello', f3 => 'World' });
 return_next({ f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' });
 return_next({ f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' });
 return undef;
$$ LANGUAGE plperl;

For small result sets, you can return a reference to an array that contains either scalars, references to arrays,
or references to hashes for simple types, array types, and composite types, respectively. Here are some
simple examples of returning the entire result set as an array reference:

CREATE OR REPLACE FUNCTION perl_set_int(int) RETURNS SETOF INTEGER AS
 $$
 return [0..$_[0]];
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set() RETURNS SETOF testrowperl AS $$
 return [
 { f1 => 1, f2 => 'Hello', f3 => 'World' },
 { f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' },
 { f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' }
];
$$ LANGUAGE plperl;

SELECT * FROM perl_set();

If you wish to use the strict pragma with your code you have a few options. For temporary global
use you can SET plperl.use_strict to true. This will affect subsequent compilations of PL/Perl
functions, but not functions already compiled in the current session. For permanent global use you can set
plperl.use_strict to true in the postgresql.conf file.

For permanent use in specific functions you can simply put:

use strict;

at the top of the function body.

The feature pragma is also available to use if your Perl is version 5.10.0 or higher.

45.2. Data Values in PL/Perl
The argument values supplied to a PL/Perl function's code are simply the input arguments converted to
text form (just as if they had been displayed by a SELECT statement). Conversely, the return and
return_next commands will accept any string that is acceptable input format for the function's declared
return type.

1304

PL/Perl - Perl Procedural Language

45.3. Built-in Functions

45.3.1. Database Access from PL/Perl
Access to the database itself from your Perl function can be done via the following functions:

spi_exec_query(query [, max-rows])

spi_exec_query executes an SQL command and returns the entire row set as a reference to an
array of hash references. You should only use this command when you know that the result set will
be relatively small. Here is an example of a query (SELECT command) with the optional maximum
number of rows:

$rv = spi_exec_query('SELECT * FROM my_table', 5);

This returns up to 5 rows from the table my_table. If my_table has a column my_column, you
can get that value from row $i of the result like this:

$foo = $rv->{rows}[$i]->{my_column};

The total number of rows returned from a SELECT query can be accessed like this:

$nrows = $rv->{processed}

Here is an example using a different command type:

$query = "INSERT INTO my_table VALUES (1, 'test')";
$rv = spi_exec_query($query);

You can then access the command status (e.g., SPI_OK_INSERT) like this:

$res = $rv->{status};

To get the number of rows affected, do:

$nrows = $rv->{processed};

Here is a complete example:

CREATE TABLE test (
 i int,
 v varchar
);

INSERT INTO test (i, v) VALUES (1, 'first line');
INSERT INTO test (i, v) VALUES (2, 'second line');
INSERT INTO test (i, v) VALUES (3, 'third line');
INSERT INTO test (i, v) VALUES (4, 'immortal');

1305

PL/Perl - Perl Procedural Language

CREATE OR REPLACE FUNCTION test_munge() RETURNS SETOF test AS $$
 my $rv = spi_exec_query('select i, v from test;');
 my $status = $rv->{status};
 my $nrows = $rv->{processed};
 foreach my $rn (0 .. $nrows - 1) {
 my $row = $rv->{rows}[$rn];
 $row->{i} += 200 if defined($row->{i});
 $row->{v} =~ tr/A-Za-z/a-zA-Z/ if (defined($row->{v}));
 return_next($row);
 }
 return undef;
$$ LANGUAGE plperl;

SELECT * FROM test_munge();

spi_query(command)
spi_fetchrow(cursor)
spi_cursor_close(cursor)

spi_query and spi_fetchrow work together as a pair for row sets which might be large, or for
cases where you wish to return rows as they arrive. spi_fetchrow works only with spi_query.
The following example illustrates how you use them together:

CREATE TYPE foo_type AS (the_num INTEGER, the_text TEXT);

CREATE OR REPLACE FUNCTION lotsa_md5 (INTEGER) RETURNS SETOF
 foo_type AS $$
 use Digest::MD5 qw(md5_hex);
 my $file = '/usr/share/dict/words';
 my $t = localtime;
 elog(NOTICE, "opening file $file at $t");
 open my $fh, '<', $file # ooh, it's a file access!
 or elog(ERROR, "cannot open $file for reading: $!");
 my @words = <$fh>;
 close $fh;
 $t = localtime;
 elog(NOTICE, "closed file $file at $t");
 chomp(@words);
 my $row;
 my $sth = spi_query("SELECT * FROM generate_series(1,$_[0]) AS
 b(a)");
 while (defined ($row = spi_fetchrow($sth))) {
 return_next({
 the_num => $row->{a},
 the_text => md5_hex($words[rand @words])
 });
 }
 return;
$$ LANGUAGE plperlu;

SELECT * from lotsa_md5(500);

Normally, spi_fetchrow should be repeated until it returns undef, indicating that there
are no more rows to read. The cursor returned by spi_query is automatically freed when

1306

PL/Perl - Perl Procedural Language

spi_fetchrow returns undef. If you do not wish to read all the rows, instead call
spi_cursor_close to free the cursor. Failure to do so will result in memory leaks.

spi_prepare(command, argument types)
spi_query_prepared(plan, arguments)
spi_exec_prepared(plan [, attributes], arguments)
spi_freeplan(plan)

spi_prepare, spi_query_prepared, spi_exec_prepared, and spi_freeplan
implement the same functionality but for prepared queries. spi_prepare accepts a query string
with numbered argument placeholders ($1, $2, etc) and a string list of argument types:

$plan = spi_prepare('SELECT * FROM test WHERE id > $1 AND name =
 $2',
 'INTEGER',
 'TEXT');

Once a query plan is prepared by a call to spi_prepare, the plan can be used instead of
the string query, either in spi_exec_prepared, where the result is the same as returned
by spi_exec_query, or in spi_query_prepared which returns a cursor exactly as
spi_query does, which can be later passed to spi_fetchrow. The optional second parameter
to spi_exec_prepared is a hash reference of attributes; the only attribute currently supported is
limit, which sets the maximum number of rows returned by a query.

The advantage of prepared queries is that is it possible to use one prepared plan for more than one
query execution. After the plan is not needed anymore, it can be freed with spi_freeplan:

CREATE OR REPLACE FUNCTION init() RETURNS VOID AS $$
 $_SHARED{my_plan} = spi_prepare('SELECT (now() + $1)::date
 AS now',
 'INTERVAL');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION add_time(INTERVAL) RETURNS TEXT AS $$
 return spi_exec_prepared(
 $_SHARED{my_plan},
 $_[0]
)->{rows}->[0]->{now};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION done() RETURNS VOID AS $$
 spi_freeplan($_SHARED{my_plan});
 undef $_SHARED{my_plan};
$$ LANGUAGE plperl;

SELECT init();
SELECT add_time('1 day'), add_time('2 days'), add_time('3 days');
SELECT done();

 add_time | add_time | add_time
------------+------------+------------
 2005-12-10 | 2005-12-11 | 2005-12-12

1307

PL/Perl - Perl Procedural Language

Note that the parameter subscript in spi_prepare is defined via $1, $2, $3, etc, so avoid declaring
query strings in double quotes that might easily lead to hard-to-catch bugs.

Another example illustrates usage of an optional parameter in spi_exec_prepared:

CREATE TABLE hosts AS SELECT id, ('192.168.1.'||id)::inet AS
 address
 FROM generate_series(1,3) AS id;

CREATE OR REPLACE FUNCTION init_hosts_query() RETURNS VOID AS $$
 $_SHARED{plan} = spi_prepare('SELECT * FROM hosts
 WHERE address << $1',
 'inet');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION query_hosts(inet) RETURNS SETOF hosts AS
 $$
 return spi_exec_prepared(
 $_SHARED{plan},
 {limit => 2},
 $_[0]
)->{rows};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION release_hosts_query() RETURNS VOID AS $$
 spi_freeplan($_SHARED{plan});
 undef $_SHARED{plan};
$$ LANGUAGE plperl;

SELECT init_hosts_query();
SELECT query_hosts('192.168.1.0/30');
SELECT release_hosts_query();

 query_hosts

 (1,192.168.1.1)
 (2,192.168.1.2)
(2 rows)

spi_commit()
spi_rollback()

Commit or roll back the current transaction. This can only be called in a procedure or anonymous code
block (DO command) called from the top level. (Note that it is not possible to run the SQL commands
COMMIT or ROLLBACK via spi_exec_query or similar. It has to be done using these functions.)
After a transaction is ended, a new transaction is automatically started, so there is no separate function
for that.

Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plperl
AS $$

1308

PL/Perl - Perl Procedural Language

foreach my $i (0..9) {
 spi_exec_query("INSERT INTO test1 (a) VALUES ($i)");
 if ($i % 2 == 0) {
 spi_commit();
 } else {
 spi_rollback();
 }
}
$$;

CALL transaction_test1();

45.3.2. Utility Functions in PL/Perl
elog(level, msg)

Emit a log or error message. Possible levels are DEBUG, LOG, INFO, NOTICE, WARNING, and
ERROR. ERROR raises an error condition; if this is not trapped by the surrounding Perl code, the error
propagates out to the calling query, causing the current transaction or subtransaction to be aborted.
This is effectively the same as the Perl die command. The other levels only generate messages of
different priority levels. Whether messages of a particular priority are reported to the client, written to
the server log, or both is controlled by the log_min_messages and client_min_messages configuration
variables. See Chapter 19 for more information.

quote_literal(string)

Return the given string suitably quoted to be used as a string literal in an SQL statement string.
Embedded single-quotes and backslashes are properly doubled. Note that quote_literal returns
undef on undef input; if the argument might be undef, quote_nullable is often more suitable.

quote_nullable(string)

Return the given string suitably quoted to be used as a string literal in an SQL statement string; or, if
the argument is undef, return the unquoted string "NULL". Embedded single-quotes and backslashes
are properly doubled.

quote_ident(string)

Return the given string suitably quoted to be used as an identifier in an SQL statement string. Quotes
are added only if necessary (i.e., if the string contains non-identifier characters or would be case-
folded). Embedded quotes are properly doubled.

decode_bytea(string)

Return the unescaped binary data represented by the contents of the given string, which should be
bytea encoded.

encode_bytea(string)

Return the bytea encoded form of the binary data contents of the given string.

encode_array_literal(array)
encode_array_literal(array, delimiter)

Returns the contents of the referenced array as a string in array literal format (see Section 8.15.2).
Returns the argument value unaltered if it's not a reference to an array. The delimiter used between
elements of the array literal defaults to ", " if a delimiter is not specified or is undef.

1309

PL/Perl - Perl Procedural Language

encode_typed_literal(value, typename)

Converts a Perl variable to the value of the data type passed as a second argument and returns a string
representation of this value. Correctly handles nested arrays and values of composite types.

encode_array_constructor(array)

Returns the contents of the referenced array as a string in array constructor format (see Section 4.2.12).
Individual values are quoted using quote_nullable. Returns the argument value, quoted using
quote_nullable, if it's not a reference to an array.

looks_like_number(string)

Returns a true value if the content of the given string looks like a number, according to Perl, returns
false otherwise. Returns undef if the argument is undef. Leading and trailing space is ignored. Inf
and Infinity are regarded as numbers.

is_array_ref(argument)

Returns a true value if the given argument may be treated as an array reference, that is, if ref of the
argument is ARRAY or PostgreSQL::InServer::ARRAY. Returns false otherwise.

45.4. Global Values in PL/Perl
You can use the global hash %_SHARED to store data, including code references, between function calls
for the lifetime of the current session.

Here is a simple example for shared data:

CREATE OR REPLACE FUNCTION set_var(name text, val text) RETURNS text
 AS $$
 if ($_SHARED{$_[0]} = $_[1]) {
 return 'ok';
 } else {
 return "cannot set shared variable $_[0] to $_[1]";
 }
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION get_var(name text) RETURNS text AS $$
 return $_SHARED{$_[0]};
$$ LANGUAGE plperl;

SELECT set_var('sample', 'Hello, PL/Perl! How''s tricks?');
SELECT get_var('sample');

Here is a slightly more complicated example using a code reference:

CREATE OR REPLACE FUNCTION myfuncs() RETURNS void AS $$
 $_SHARED{myquote} = sub {
 my $arg = shift;
 $arg =~ s/(['\\])/\\$1/g;
 return "'$arg'";
 };

1310

PL/Perl - Perl Procedural Language

$$ LANGUAGE plperl;

SELECT myfuncs(); /* initializes the function */

/* Set up a function that uses the quote function */

CREATE OR REPLACE FUNCTION use_quote(TEXT) RETURNS text AS $$
 my $text_to_quote = shift;
 my $qfunc = $_SHARED{myquote};
 return &$qfunc($text_to_quote);
$$ LANGUAGE plperl;

(You could have replaced the above with the one-liner return $_SHARED{myquote}->($_[0]);
at the expense of readability.)

For security reasons, PL/Perl executes functions called by any one SQL role in a separate Perl interpreter
for that role. This prevents accidental or malicious interference by one user with the behavior of another
user's PL/Perl functions. Each such interpreter has its own value of the %_SHARED variable and other
global state. Thus, two PL/Perl functions will share the same value of %_SHARED if and only if they are
executed by the same SQL role. In an application wherein a single session executes code under multiple
SQL roles (via SECURITY DEFINER functions, use of SET ROLE, etc) you may need to take explicit
steps to ensure that PL/Perl functions can share data via %_SHARED. To do that, make sure that functions
that should communicate are owned by the same user, and mark them SECURITY DEFINER. You must
of course take care that such functions can't be used to do anything unintended.

45.5. Trusted and Untrusted PL/Perl
Normally, PL/Perl is installed as a “trusted” programming language named plperl. In this setup, certain
Perl operations are disabled to preserve security. In general, the operations that are restricted are those
that interact with the environment. This includes file handle operations, require, and use (for external
modules). There is no way to access internals of the database server process or to gain OS-level access
with the permissions of the server process, as a C function can do. Thus, any unprivileged database user
can be permitted to use this language.

Here is an example of a function that will not work because file system operations are not allowed for
security reasons:

CREATE FUNCTION badfunc() RETURNS integer AS $$
 my $tmpfile = "/tmp/badfile";
 open my $fh, '>', $tmpfile
 or elog(ERROR, qq{could not open the file "$tmpfile": $!});
 print $fh "Testing writing to a file\n";
 close $fh or elog(ERROR, qq{could not close the file "$tmpfile":
 $!});
 return 1;
$$ LANGUAGE plperl;

The creation of this function will fail as its use of a forbidden operation will be caught by the validator.

Sometimes it is desirable to write Perl functions that are not restricted. For example, one might want a Perl
function that sends mail. To handle these cases, PL/Perl can also be installed as an “untrusted” language
(usually called PL/PerlU). In this case the full Perl language is available. When installing the language,
the language name plperlu will select the untrusted PL/Perl variant.

1311

PL/Perl - Perl Procedural Language

The writer of a PL/PerlU function must take care that the function cannot be used to do anything unwanted,
since it will be able to do anything that could be done by a user logged in as the database administrator.
Note that the database system allows only database superusers to create functions in untrusted languages.

If the above function was created by a superuser using the language plperlu, execution would succeed.

In the same way, anonymous code blocks written in Perl can use restricted operations if the language is
specified as plperlu rather than plperl, but the caller must be a superuser.

Note

While PL/Perl functions run in a separate Perl interpreter for each SQL role, all PL/PerlU functions
executed in a given session run in a single Perl interpreter (which is not any of the ones used for
PL/Perl functions). This allows PL/PerlU functions to share data freely, but no communication can
occur between PL/Perl and PL/PerlU functions.

Note

Perl cannot support multiple interpreters within one process unless it was built with the appropriate
flags, namely either usemultiplicity or useithreads. (usemultiplicity is
preferred unless you actually need to use threads. For more details, see the perlembed man page.)
If PL/Perl is used with a copy of Perl that was not built this way, then it is only possible to have one
Perl interpreter per session, and so any one session can only execute either PL/PerlU functions, or
PL/Perl functions that are all called by the same SQL role.

45.6. PL/Perl Triggers
PL/Perl can be used to write trigger functions. In a trigger function, the hash reference $_TD contains
information about the current trigger event. $_TD is a global variable, which gets a separate local value
for each invocation of the trigger. The fields of the $_TD hash reference are:

$_TD->{new}{foo}

NEW value of column foo

$_TD->{old}{foo}

OLD value of column foo

$_TD->{name}

Name of the trigger being called

$_TD->{event}

Trigger event: INSERT, UPDATE, DELETE, TRUNCATE, or UNKNOWN

$_TD->{when}

When the trigger was called: BEFORE, AFTER, INSTEAD OF, or UNKNOWN

1312

PL/Perl - Perl Procedural Language

$_TD->{level}

The trigger level: ROW, STATEMENT, or UNKNOWN

$_TD->{relid}

OID of the table on which the trigger fired

$_TD->{table_name}

Name of the table on which the trigger fired

$_TD->{relname}

Name of the table on which the trigger fired. This has been deprecated, and could be removed in a
future release. Please use $_TD->{table_name} instead.

$_TD->{table_schema}

Name of the schema in which the table on which the trigger fired, is

$_TD->{argc}

Number of arguments of the trigger function

@{$_TD->{args}}

Arguments of the trigger function. Does not exist if $_TD->{argc} is 0.

Row-level triggers can return one of the following:

return;

Execute the operation

"SKIP"

Don't execute the operation

"MODIFY"

Indicates that the NEW row was modified by the trigger function

Here is an example of a trigger function, illustrating some of the above:

CREATE TABLE test (
 i int,
 v varchar
);

CREATE OR REPLACE FUNCTION valid_id() RETURNS trigger AS $$
 if (($_TD->{new}{i} >= 100) || ($_TD->{new}{i} <= 0)) {
 return "SKIP"; # skip INSERT/UPDATE command
 } elsif ($_TD->{new}{v} ne "immortal") {
 $_TD->{new}{v} .= "(modified by trigger)";
 return "MODIFY"; # modify row and execute INSERT/UPDATE
 command

1313

PL/Perl - Perl Procedural Language

 } else {
 return; # execute INSERT/UPDATE command
 }
$$ LANGUAGE plperl;

CREATE TRIGGER test_valid_id_trig
 BEFORE INSERT OR UPDATE ON test
 FOR EACH ROW EXECUTE FUNCTION valid_id();

45.7. PL/Perl Event Triggers
PL/Perl can be used to write event trigger functions. In an event trigger function, the hash reference $_TD
contains information about the current trigger event. $_TD is a global variable, which gets a separate local
value for each invocation of the trigger. The fields of the $_TD hash reference are:

$_TD->{event}

The name of the event the trigger is fired for.

$_TD->{tag}

The command tag for which the trigger is fired.

The return value of the trigger function is ignored.

Here is an example of an event trigger function, illustrating some of the above:

CREATE OR REPLACE FUNCTION perlsnitch() RETURNS event_trigger AS $$
 elog(NOTICE, "perlsnitch: " . $_TD->{event} . " " . $_TD->{tag} . "
 ");
$$ LANGUAGE plperl;

CREATE EVENT TRIGGER perl_a_snitch
 ON ddl_command_start
 EXECUTE FUNCTION perlsnitch();

45.8. PL/Perl Under the Hood

45.8.1. Configuration
This section lists configuration parameters that affect PL/Perl.

plperl.on_init (string)

Specifies Perl code to be executed when a Perl interpreter is first initialized, before it is specialized
for use by plperl or plperlu. The SPI functions are not available when this code is executed. If
the code fails with an error it will abort the initialization of the interpreter and propagate out to the
calling query, causing the current transaction or subtransaction to be aborted.

The Perl code is limited to a single string. Longer code can be placed into a module and loaded by
the on_init string. Examples:

1314

PL/Perl - Perl Procedural Language

plperl.on_init = 'require "plperlinit.pl"'
plperl.on_init = 'use lib "/my/app"; use MyApp::PgInit;'

Any modules loaded by plperl.on_init, either directly or indirectly, will be available for use
by plperl. This may create a security risk. To see what modules have been loaded you can use:

DO 'elog(WARNING, join ", ", sort keys %INC)' LANGUAGE plperl;

Initialization will happen in the postmaster if the plperl library is included in
shared_preload_libraries, in which case extra consideration should be given to the risk of destabilizing
the postmaster. The principal reason for making use of this feature is that Perl modules loaded by
plperl.on_init need be loaded only at postmaster start, and will be instantly available without
loading overhead in individual database sessions. However, keep in mind that the overhead is avoided
only for the first Perl interpreter used by a database session — either PL/PerlU, or PL/Perl for the
first SQL role that calls a PL/Perl function. Any additional Perl interpreters created in a database
session will have to execute plperl.on_init afresh. Also, on Windows there will be no savings
whatsoever from preloading, since the Perl interpreter created in the postmaster process does not
propagate to child processes.

This parameter can only be set in the postgresql.conf file or on the server command line.

plperl.on_plperl_init (string)
plperl.on_plperlu_init (string)

These parameters specify Perl code to be executed when a Perl interpreter is specialized for plperl
or plperlu respectively. This will happen when a PL/Perl or PL/PerlU function is first executed
in a database session, or when an additional interpreter has to be created because the other language
is called or a PL/Perl function is called by a new SQL role. This follows any initialization done by
plperl.on_init. The SPI functions are not available when this code is executed. The Perl code
in plperl.on_plperl_init is executed after “locking down” the interpreter, and thus it can
only perform trusted operations.

If the code fails with an error it will abort the initialization and propagate out to the calling query,
causing the current transaction or subtransaction to be aborted. Any actions already done within Perl
won't be undone; however, that interpreter won't be used again. If the language is used again the
initialization will be attempted again within a fresh Perl interpreter.

Only superusers can change these settings. Although these settings can be changed within a session,
such changes will not affect Perl interpreters that have already been used to execute functions.

plperl.use_strict (boolean)

When set true subsequent compilations of PL/Perl functions will have the strict pragma enabled.
This parameter does not affect functions already compiled in the current session.

45.8.2. Limitations and Missing Features
The following features are currently missing from PL/Perl, but they would make welcome contributions.

• PL/Perl functions cannot call each other directly.

• SPI is not yet fully implemented.

• If you are fetching very large data sets using spi_exec_query, you should be aware that these will
all go into memory. You can avoid this by using spi_query/spi_fetchrow as illustrated earlier.

1315

PL/Perl - Perl Procedural Language

A similar problem occurs if a set-returning function passes a large set of rows back to PostgreSQL via
return. You can avoid this problem too by instead using return_next for each row returned, as
shown previously.

• When a session ends normally, not due to a fatal error, any END blocks that have been defined are
executed. Currently no other actions are performed. Specifically, file handles are not automatically
flushed and objects are not automatically destroyed.

1316

Chapter 46. PL/Python - Python
Procedural Language

The PL/Python procedural language allows PostgreSQL functions to be written in the Python language1.

To install PL/Python in a particular database, use CREATE EXTENSION plpythonu (but see also
Section 46.1).

Tip

If a language is installed into template1, all subsequently created databases will have the
language installed automatically.

PL/Python is only available as an “untrusted” language, meaning it does not offer any way of restricting
what users can do in it and is therefore named plpythonu. A trusted variant plpython might become
available in the future if a secure execution mechanism is developed in Python. The writer of a function
in untrusted PL/Python must take care that the function cannot be used to do anything unwanted, since
it will be able to do anything that could be done by a user logged in as the database administrator. Only
superusers can create functions in untrusted languages such as plpythonu.

Note

Users of source packages must specially enable the build of PL/Python during the installation
process. (Refer to the installation instructions for more information.) Users of binary packages
might find PL/Python in a separate subpackage.

46.1. Python 2 vs. Python 3
PL/Python supports both the Python 2 and Python 3 language variants. (The PostgreSQL installation
instructions might contain more precise information about the exact supported minor versions of Python.)
Because the Python 2 and Python 3 language variants are incompatible in some important aspects, the
following naming and transitioning scheme is used by PL/Python to avoid mixing them:

• The PostgreSQL language named plpython2u implements PL/Python based on the Python 2
language variant.

• The PostgreSQL language named plpython3u implements PL/Python based on the Python 3
language variant.

• The language named plpythonu implements PL/Python based on the default Python language variant,
which is currently Python 2. (This default is independent of what any local Python installations might
consider to be their “default”, for example, what /usr/bin/python might be.) The default will
probably be changed to Python 3 in a distant future release of PostgreSQL, depending on the progress
of the migration to Python 3 in the Python community.

1 https://www.python.org

1317

https://www.python.org
https://www.python.org

PL/Python - Python
Procedural Language

This scheme is analogous to the recommendations in PEP 3942 regarding the naming and transitioning
of the python command.

It depends on the build configuration or the installed packages whether PL/Python for Python 2 or Python
3 or both are available.

Tip

The built variant depends on which Python version was found during the installation or which
version was explicitly set using the PYTHON environment variable; see Section 16.4. To make
both variants of PL/Python available in one installation, the source tree has to be configured and
built twice.

This results in the following usage and migration strategy:

• Existing users and users who are currently not interested in Python 3 use the language name
plpythonu and don't have to change anything for the foreseeable future. It is recommended to
gradually “future-proof” the code via migration to Python 2.6/2.7 to simplify the eventual migration
to Python 3.

In practice, many PL/Python functions will migrate to Python 3 with few or no changes.

• Users who know that they have heavily Python 2 dependent code and don't plan to ever change it can
make use of the plpython2u language name. This will continue to work into the very distant future,
until Python 2 support might be completely dropped by PostgreSQL.

• Users who want to dive into Python 3 can use the plpython3u language name, which will keep
working forever by today's standards. In the distant future, when Python 3 might become the default,
they might like to remove the “3” for aesthetic reasons.

• Daredevils, who want to build a Python-3-only operating system environment, can change the contents
of pg_pltemplate to make plpythonu be equivalent to plpython3u, keeping in mind that this
would make their installation incompatible with most of the rest of the world.

See also the document What's New In Python 3.03 for more information about porting to Python 3.

It is not allowed to use PL/Python based on Python 2 and PL/Python based on Python 3 in the same session,
because the symbols in the dynamic modules would clash, which could result in crashes of the PostgreSQL
server process. There is a check that prevents mixing Python major versions in a session, which will abort
the session if a mismatch is detected. It is possible, however, to use both PL/Python variants in the same
database, from separate sessions.

46.2. PL/Python Functions
Functions in PL/Python are declared via the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-list)
 RETURNS return-type
AS $$
 # PL/Python function body

2 https://www.python.org/dev/peps/pep-0394/
3 https://docs.python.org/3/whatsnew/3.0.html

1318

https://www.python.org/dev/peps/pep-0394/
https://docs.python.org/3/whatsnew/3.0.html
https://www.python.org/dev/peps/pep-0394/
https://docs.python.org/3/whatsnew/3.0.html

PL/Python - Python
Procedural Language

$$ LANGUAGE plpythonu;

The body of a function is simply a Python script. When the function is called, its arguments are passed as
elements of the list args; named arguments are also passed as ordinary variables to the Python script. Use
of named arguments is usually more readable. The result is returned from the Python code in the usual way,
with return or yield (in case of a result-set statement). If you do not provide a return value, Python
returns the default None. PL/Python translates Python's None into the SQL null value. In a procedure, the
result from the Python code must be None (typically achieved by ending the procedure without a return
statement or by using a return statement without argument); otherwise, an error will be raised.

For example, a function to return the greater of two integers can be defined as:

CREATE FUNCTION pymax (a integer, b integer)
 RETURNS integer
AS $$
 if a > b:
 return a
 return b
$$ LANGUAGE plpythonu;

The Python code that is given as the body of the function definition is transformed into a Python function.
For example, the above results in:

def __plpython_procedure_pymax_23456():
 if a > b:
 return a
 return b

assuming that 23456 is the OID assigned to the function by PostgreSQL.

The arguments are set as global variables. Because of the scoping rules of Python, this has the subtle
consequence that an argument variable cannot be reassigned inside the function to the value of an
expression that involves the variable name itself, unless the variable is redeclared as global in the block.
For example, the following won't work:

CREATE FUNCTION pystrip(x text)
 RETURNS text
AS $$
 x = x.strip() # error
 return x
$$ LANGUAGE plpythonu;

because assigning to x makes x a local variable for the entire block, and so the x on the right-hand side of
the assignment refers to a not-yet-assigned local variable x, not the PL/Python function parameter. Using
the global statement, this can be made to work:

CREATE FUNCTION pystrip(x text)
 RETURNS text
AS $$
 global x
 x = x.strip() # ok now
 return x

1319

PL/Python - Python
Procedural Language

$$ LANGUAGE plpythonu;

But it is advisable not to rely on this implementation detail of PL/Python. It is better to treat the function
parameters as read-only.

46.3. Data Values
Generally speaking, the aim of PL/Python is to provide a “natural” mapping between the PostgreSQL and
the Python worlds. This informs the data mapping rules described below.

46.3.1. Data Type Mapping
When a PL/Python function is called, its arguments are converted from their PostgreSQL data type to a
corresponding Python type:

• PostgreSQL boolean is converted to Python bool.

• PostgreSQL smallint and int are converted to Python int. PostgreSQL bigint and oid are
converted to long in Python 2 and to int in Python 3.

• PostgreSQL real and double are converted to Python float.

• PostgreSQL numeric is converted to Python Decimal. This type is imported from the cdecimal
package if that is available. Otherwise, decimal.Decimal from the standard library will be used.
cdecimal is significantly faster than decimal. In Python 3.3 and up, however, cdecimal has been
integrated into the standard library under the name decimal, so there is no longer any difference.

• PostgreSQL bytea is converted to Python str in Python 2 and to bytes in Python 3. In Python 2,
the string should be treated as a byte sequence without any character encoding.

• All other data types, including the PostgreSQL character string types, are converted to a Python str.
In Python 2, this string will be in the PostgreSQL server encoding; in Python 3, it will be a Unicode
string like all strings.

• For nonscalar data types, see below.

When a PL/Python function returns, its return value is converted to the function's declared PostgreSQL
return data type as follows:

• When the PostgreSQL return type is boolean, the return value will be evaluated for truth according
to the Python rules. That is, 0 and empty string are false, but notably 'f' is true.

• When the PostgreSQL return type is bytea, the return value will be converted to a string (Python 2)
or bytes (Python 3) using the respective Python built-ins, with the result being converted to bytea.

• For all other PostgreSQL return types, the return value is converted to a string using the Python built-
in str, and the result is passed to the input function of the PostgreSQL data type. (If the Python value
is a float, it is converted using the repr built-in instead of str, to avoid loss of precision.)

Strings in Python 2 are required to be in the PostgreSQL server encoding when they are passed to
PostgreSQL. Strings that are not valid in the current server encoding will raise an error, but not all
encoding mismatches can be detected, so garbage data can still result when this is not done correctly.
Unicode strings are converted to the correct encoding automatically, so it can be safer and more
convenient to use those. In Python 3, all strings are Unicode strings.

• For nonscalar data types, see below.

1320

PL/Python - Python
Procedural Language

Note that logical mismatches between the declared PostgreSQL return type and the Python data type of
the actual return object are not flagged; the value will be converted in any case.

46.3.2. Null, None
If an SQL null value is passed to a function, the argument value will appear as None in Python. For
example, the function definition of pymax shown in Section 46.2 will return the wrong answer for
null inputs. We could add STRICT to the function definition to make PostgreSQL do something more
reasonable: if a null value is passed, the function will not be called at all, but will just return a null result
automatically. Alternatively, we could check for null inputs in the function body:

CREATE FUNCTION pymax (a integer, b integer)
 RETURNS integer
AS $$
 if (a is None) or (b is None):
 return None
 if a > b:
 return a
 return b
$$ LANGUAGE plpythonu;

As shown above, to return an SQL null value from a PL/Python function, return the value None. This can
be done whether the function is strict or not.

46.3.3. Arrays, Lists
SQL array values are passed into PL/Python as a Python list. To return an SQL array value out of a PL/
Python function, return a Python list:

CREATE FUNCTION return_arr()
 RETURNS int[]
AS $$
return [1, 2, 3, 4, 5]
$$ LANGUAGE plpythonu;

SELECT return_arr();
 return_arr

 {1,2,3,4,5}
(1 row)

Multidimensional arrays are passed into PL/Python as nested Python lists. A 2-dimensional array is a list
of lists, for example. When returning a multi-dimensional SQL array out of a PL/Python function, the
inner lists at each level must all be of the same size. For example:

CREATE FUNCTION test_type_conversion_array_int4(x int4[]) RETURNS
 int4[] AS $$
plpy.info(x, type(x))
return x
$$ LANGUAGE plpythonu;

1321

PL/Python - Python
Procedural Language

SELECT * FROM test_type_conversion_array_int4(ARRAY[[1,2,3],[4,5,6]]);
INFO: ([[1, 2, 3], [4, 5, 6]], <type 'list'>)
 test_type_conversion_array_int4

 {{1,2,3},{4,5,6}}
(1 row)

Other Python sequences, like tuples, are also accepted for backwards-compatibility with PostgreSQL
versions 9.6 and below, when multi-dimensional arrays were not supported. However, they are always
treated as one-dimensional arrays, because they are ambiguous with composite types. For the same reason,
when a composite type is used in a multi-dimensional array, it must be represented by a tuple, rather than
a list.

Note that in Python, strings are sequences, which can have undesirable effects that might be familiar to
Python programmers:

CREATE FUNCTION return_str_arr()
 RETURNS varchar[]
AS $$
return "hello"
$$ LANGUAGE plpythonu;

SELECT return_str_arr();
 return_str_arr

 {h,e,l,l,o}
(1 row)

46.3.4. Composite Types
Composite-type arguments are passed to the function as Python mappings. The element names of the
mapping are the attribute names of the composite type. If an attribute in the passed row has the null value,
it has the value None in the mapping. Here is an example:

CREATE TABLE employee (
 name text,
 salary integer,
 age integer
);

CREATE FUNCTION overpaid (e employee)
 RETURNS boolean
AS $$
 if e["salary"] > 200000:
 return True
 if (e["age"] < 30) and (e["salary"] > 100000):
 return True
 return False
$$ LANGUAGE plpythonu;

There are multiple ways to return row or composite types from a Python function. The following examples
assume we have:

1322

PL/Python - Python
Procedural Language

CREATE TYPE named_value AS (
 name text,
 value integer
);

A composite result can be returned as a:

Sequence type (a tuple or list, but not a set because it is not indexable)

Returned sequence objects must have the same number of items as the composite result type has fields.
The item with index 0 is assigned to the first field of the composite type, 1 to the second and so on.
For example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 return (name, value)
 # or alternatively, as tuple: return [name, value]
$$ LANGUAGE plpythonu;

To return a SQL null for any column, insert None at the corresponding position.

When an array of composite types is returned, it cannot be returned as a list, because it is ambiguous
whether the Python list represents a composite type, or another array dimension.

Mapping (dictionary)

The value for each result type column is retrieved from the mapping with the column name as key.
Example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 return { "name": name, "value": value }
$$ LANGUAGE plpythonu;

Any extra dictionary key/value pairs are ignored. Missing keys are treated as errors. To return a SQL
null value for any column, insert None with the corresponding column name as the key.

Object (any object providing method __getattr__)

This works the same as a mapping. Example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 class named_value:
 def __init__ (self, n, v):
 self.name = n
 self.value = v
 return named_value(name, value)

1323

PL/Python - Python
Procedural Language

 # or simply
 class nv: pass
 nv.name = name
 nv.value = value
 return nv
$$ LANGUAGE plpythonu;

Functions with OUT parameters are also supported. For example:

CREATE FUNCTION multiout_simple(OUT i integer, OUT j integer) AS $$
return (1, 2)
$$ LANGUAGE plpythonu;

SELECT * FROM multiout_simple();

Output parameters of procedures are passed back the same way. For example:

CREATE PROCEDURE python_triple(INOUT a integer, INOUT b integer) AS $$
return (a * 3, b * 3)
$$ LANGUAGE plpythonu;

CALL python_triple(5, 10);

46.3.5. Set-returning Functions
A PL/Python function can also return sets of scalar or composite types. There are several ways to achieve
this because the returned object is internally turned into an iterator. The following examples assume we
have composite type:

CREATE TYPE greeting AS (
 how text,
 who text
);

A set result can be returned from a:

Sequence type (tuple, list, set)

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 # return tuple containing lists as composite types
 # all other combinations work also
 return ([how, "World"], [how, "PostgreSQL"], [how, "PL/
Python"])
$$ LANGUAGE plpythonu;

Iterator (any object providing __iter__ and next methods)

CREATE FUNCTION greet (how text)

1324

PL/Python - Python
Procedural Language

 RETURNS SETOF greeting
AS $$
 class producer:
 def __init__ (self, how, who):
 self.how = how
 self.who = who
 self.ndx = -1

 def __iter__ (self):
 return self

 def next (self):
 self.ndx += 1
 if self.ndx == len(self.who):
 raise StopIteration
 return (self.how, self.who[self.ndx])

 return producer(how, ["World", "PostgreSQL", "PL/Python"])
$$ LANGUAGE plpythonu;

Generator (yield)

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 for who in ["World", "PostgreSQL", "PL/Python"]:
 yield (how, who)
$$ LANGUAGE plpythonu;

Set-returning functions with OUT parameters (using RETURNS SETOF record) are also supported.
For example:

CREATE FUNCTION multiout_simple_setof(n integer, OUT integer, OUT
 integer) RETURNS SETOF record AS $$
return [(1, 2)] * n
$$ LANGUAGE plpythonu;

SELECT * FROM multiout_simple_setof(3);

46.4. Sharing Data
The global dictionary SD is available to store private data between repeated calls to the same function. The
global dictionary GD is public data, that is available to all Python functions within a session; use with care.

Each function gets its own execution environment in the Python interpreter, so that global data and function
arguments from myfunc are not available to myfunc2. The exception is the data in the GD dictionary,
as mentioned above.

46.5. Anonymous Code Blocks
PL/Python also supports anonymous code blocks called with the DO statement:

1325

PL/Python - Python
Procedural Language

DO $$
 # PL/Python code
$$ LANGUAGE plpythonu;

An anonymous code block receives no arguments, and whatever value it might return is discarded.
Otherwise it behaves just like a function.

46.6. Trigger Functions
When a function is used as a trigger, the dictionary TD contains trigger-related values:

TD["event"]

contains the event as a string: INSERT, UPDATE, DELETE, or TRUNCATE.

TD["when"]

contains one of BEFORE, AFTER, or INSTEAD OF.

TD["level"]

contains ROW or STATEMENT.

TD["new"]
TD["old"]

For a row-level trigger, one or both of these fields contain the respective trigger rows, depending on
the trigger event.

TD["name"]

contains the trigger name.

TD["table_name"]

contains the name of the table on which the trigger occurred.

TD["table_schema"]

contains the schema of the table on which the trigger occurred.

TD["relid"]

contains the OID of the table on which the trigger occurred.

TD["args"]

If the CREATE TRIGGER command included arguments, they are available in TD["args"][0]
to TD["args"][n-1].

If TD["when"] is BEFORE or INSTEAD OF and TD["level"] is ROW, you can return None or
"OK" from the Python function to indicate the row is unmodified, "SKIP" to abort the event, or if
TD["event"] is INSERT or UPDATE you can return "MODIFY" to indicate you've modified the new
row. Otherwise the return value is ignored.

1326

PL/Python - Python
Procedural Language

46.7. Database Access
The PL/Python language module automatically imports a Python module called plpy. The functions and
constants in this module are available to you in the Python code as plpy.foo.

46.7.1. Database Access Functions
The plpy module provides several functions to execute database commands:

plpy.execute(query [, max-rows])

Calling plpy.execute with a query string and an optional row limit argument causes that query
to be run and the result to be returned in a result object.

The result object emulates a list or dictionary object. The result object can be accessed by row number
and column name. For example:

rv = plpy.execute("SELECT * FROM my_table", 5)

returns up to 5 rows from my_table. If my_table has a column my_column, it would be accessed
as:

foo = rv[i]["my_column"]

The number of rows returned can be obtained using the built-in len function.

The result object has these additional methods:

nrows()

Returns the number of rows processed by the command. Note that this is not necessarily the same
as the number of rows returned. For example, an UPDATE command will set this value but won't
return any rows (unless RETURNING is used).

status()

The SPI_execute() return value.

colnames()
coltypes()
coltypmods()

Return a list of column names, list of column type OIDs, and list of type-specific type modifiers
for the columns, respectively.

These methods raise an exception when called on a result object from a command that did not
produce a result set, e.g., UPDATE without RETURNING, or DROP TABLE. But it is OK to use
these methods on a result set containing zero rows.

__str__()

The standard __str__ method is defined so that it is possible for example to debug query
execution results using plpy.debug(rv).

The result object can be modified.

1327

PL/Python - Python
Procedural Language

Note that calling plpy.execute will cause the entire result set to be read into memory. Only
use that function when you are sure that the result set will be relatively small. If you don't
want to risk excessive memory usage when fetching large results, use plpy.cursor rather than
plpy.execute.

plpy.prepare(query [, argtypes])
plpy.execute(plan [, arguments [, max-rows]])

 plpy.prepare prepares the execution plan for a query. It is called with a query string and a list
of parameter types, if you have parameter references in the query. For example:

plan = plpy.prepare("SELECT last_name FROM my_users WHERE
 first_name = $1", ["text"])

text is the type of the variable you will be passing for $1. The second argument is optional if you
don't want to pass any parameters to the query.

After preparing a statement, you use a variant of the function plpy.execute to run it:

rv = plpy.execute(plan, ["name"], 5)

Pass the plan as the first argument (instead of the query string), and a list of values to substitute into
the query as the second argument. The second argument is optional if the query does not expect any
parameters. The third argument is the optional row limit as before.

Alternatively, you can call the execute method on the plan object:

rv = plan.execute(["name"], 5)

Query parameters and result row fields are converted between PostgreSQL and Python data types as
described in Section 46.3.

When you prepare a plan using the PL/Python module it is automatically saved. Read the SPI
documentation (Chapter 47) for a description of what this means. In order to make effective use of
this across function calls one needs to use one of the persistent storage dictionaries SD or GD (see
Section 46.4). For example:

CREATE FUNCTION usesavedplan() RETURNS trigger AS $$
 if "plan" in SD:
 plan = SD["plan"]
 else:
 plan = plpy.prepare("SELECT 1")
 SD["plan"] = plan
 # rest of function
$$ LANGUAGE plpythonu;

plpy.cursor(query)
plpy.cursor(plan [, arguments])

The plpy.cursor function accepts the same arguments as plpy.execute (except for the row
limit) and returns a cursor object, which allows you to process large result sets in smaller chunks. As
with plpy.execute, either a query string or a plan object along with a list of arguments can be
used, or the cursor function can be called as a method of the plan object.

1328

PL/Python - Python
Procedural Language

The cursor object provides a fetch method that accepts an integer parameter and returns a result
object. Each time you call fetch, the returned object will contain the next batch of rows, never
larger than the parameter value. Once all rows are exhausted, fetch starts returning an empty result
object. Cursor objects also provide an iterator interface4, yielding one row at a time until all rows
are exhausted. Data fetched that way is not returned as result objects, but rather as dictionaries, each
dictionary corresponding to a single result row.

An example of two ways of processing data from a large table is:

CREATE FUNCTION count_odd_iterator() RETURNS integer AS $$
odd = 0
for row in plpy.cursor("select num from largetable"):
 if row['num'] % 2:
 odd += 1
return odd
$$ LANGUAGE plpythonu;

CREATE FUNCTION count_odd_fetch(batch_size integer) RETURNS integer
 AS $$
odd = 0
cursor = plpy.cursor("select num from largetable")
while True:
 rows = cursor.fetch(batch_size)
 if not rows:
 break
 for row in rows:
 if row['num'] % 2:
 odd += 1
return odd
$$ LANGUAGE plpythonu;

CREATE FUNCTION count_odd_prepared() RETURNS integer AS $$
odd = 0
plan = plpy.prepare("select num from largetable where num % $1 <>
 0", ["integer"])
rows = list(plpy.cursor(plan, [2])) # or: = list(plan.cursor([2]))

return len(rows)
$$ LANGUAGE plpythonu;

Cursors are automatically disposed of. But if you want to explicitly release all resources held by a
cursor, use the close method. Once closed, a cursor cannot be fetched from anymore.

Tip

Do not confuse objects created by plpy.cursor with DB-API cursors as defined by the
Python Database API specification5. They don't have anything in common except for the
name.

4 https://docs.python.org/library/stdtypes.html#iterator-types
5 https://www.python.org/dev/peps/pep-0249/

1329

https://docs.python.org/library/stdtypes.html#iterator-types
https://www.python.org/dev/peps/pep-0249/
https://docs.python.org/library/stdtypes.html#iterator-types
https://www.python.org/dev/peps/pep-0249/

PL/Python - Python
Procedural Language

46.7.2. Trapping Errors
Functions accessing the database might encounter errors, which will cause them to abort and raise
an exception. Both plpy.execute and plpy.prepare can raise an instance of a subclass of
plpy.SPIError, which by default will terminate the function. This error can be handled just like any
other Python exception, by using the try/except construct. For example:

CREATE FUNCTION try_adding_joe() RETURNS text AS $$
 try:
 plpy.execute("INSERT INTO users(username) VALUES ('joe')")
 except plpy.SPIError:
 return "something went wrong"
 else:
 return "Joe added"
$$ LANGUAGE plpythonu;

The actual class of the exception being raised corresponds to the specific condition that caused the
error. Refer to Table A.1 for a list of possible conditions. The module plpy.spiexceptions defines
an exception class for each PostgreSQL condition, deriving their names from the condition name.
For instance, division_by_zero becomes DivisionByZero, unique_violation becomes
UniqueViolation, fdw_error becomes FdwError, and so on. Each of these exception classes
inherits from SPIError. This separation makes it easier to handle specific errors, for instance:

CREATE FUNCTION insert_fraction(numerator int, denominator int)
 RETURNS text AS $$
from plpy import spiexceptions
try:
 plan = plpy.prepare("INSERT INTO fractions (frac) VALUES ($1 /
 $2)", ["int", "int"])
 plpy.execute(plan, [numerator, denominator])
except spiexceptions.DivisionByZero:
 return "denominator cannot equal zero"
except spiexceptions.UniqueViolation:
 return "already have that fraction"
except plpy.SPIError, e:
 return "other error, SQLSTATE %s" % e.sqlstate
else:
 return "fraction inserted"
$$ LANGUAGE plpythonu;

Note that because all exceptions from the plpy.spiexceptions module inherit from SPIError, an
except clause handling it will catch any database access error.

As an alternative way of handling different error conditions, you can catch the SPIError exception and
determine the specific error condition inside the except block by looking at the sqlstate attribute of
the exception object. This attribute is a string value containing the “SQLSTATE” error code. This approach
provides approximately the same functionality

46.8. Explicit Subtransactions
Recovering from errors caused by database access as described in Section 46.7.2 can lead to an undesirable
situation where some operations succeed before one of them fails, and after recovering from that error

1330

PL/Python - Python
Procedural Language

the data is left in an inconsistent state. PL/Python offers a solution to this problem in the form of explicit
subtransactions.

46.8.1. Subtransaction Context Managers
Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
try:
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE
 account_name = 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE
 account_name = 'mary'")
except plpy.SPIError, e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)",
 ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

If the second UPDATE statement results in an exception being raised, this function will report the error, but
the result of the first UPDATE will nevertheless be committed. In other words, the funds will be withdrawn
from Joe's account, but will not be transferred to Mary's account.

To avoid such issues, you can wrap your plpy.execute calls in an explicit subtransaction. The
plpy module provides a helper object to manage explicit subtransactions that gets created with the
plpy.subtransaction() function. Objects created by this function implement the context manager
interface6. Using explicit subtransactions we can rewrite our function as:

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
try:
 with plpy.subtransaction():
 plpy.execute("UPDATE accounts SET balance = balance - 100
 WHERE account_name = 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100
 WHERE account_name = 'mary'")
except plpy.SPIError, e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)",
 ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

Note that the use of try/catch is still required. Otherwise the exception would propagate to the top
of the Python stack and would cause the whole function to abort with a PostgreSQL error, so that the
operations table would not have any row inserted into it. The subtransaction context manager does
not trap errors, it only assures that all database operations executed inside its scope will be atomically

6 https://docs.python.org/library/stdtypes.html#context-manager-types

1331

https://docs.python.org/library/stdtypes.html#context-manager-types
https://docs.python.org/library/stdtypes.html#context-manager-types
https://docs.python.org/library/stdtypes.html#context-manager-types

PL/Python - Python
Procedural Language

committed or rolled back. A rollback of the subtransaction block occurs on any kind of exception exit, not
only ones caused by errors originating from database access. A regular Python exception raised inside an
explicit subtransaction block would also cause the subtransaction to be rolled back.

46.8.2. Older Python Versions
Context managers syntax using the with keyword is available by default in Python 2.6. If using PL/
Python with an older Python version, it is still possible to use explicit subtransactions, although not as
transparently. You can call the subtransaction manager's __enter__ and __exit__ functions using
the enter and exit convenience aliases. The example function that transfers funds could be written as:

CREATE FUNCTION transfer_funds_old() RETURNS void AS $$
try:
 subxact = plpy.subtransaction()
 subxact.enter()
 try:
 plpy.execute("UPDATE accounts SET balance = balance - 100
 WHERE account_name = 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100
 WHERE account_name = 'mary'")
 except:
 import sys
 subxact.exit(*sys.exc_info())
 raise
 else:
 subxact.exit(None, None, None)
except plpy.SPIError, e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"

plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)",
 ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

Note

Although context managers were implemented in Python 2.5, to use the with syntax in that version
you need to use a future statement7. Because of implementation details, however, you cannot use
future statements in PL/Python functions.

46.9. Transaction Management
In a procedure called from the top level or an anonymous code block (DO command) called from the top
level it is possible to control transactions. To commit the current transaction, call plpy.commit().
To roll back the current transaction, call plpy.rollback(). (Note that it is not possible to run the
SQL commands COMMIT or ROLLBACK via plpy.execute or similar. It has to be done using these

7 https://docs.python.org/release/2.5/ref/future.html

1332

https://docs.python.org/release/2.5/ref/future.html
https://docs.python.org/release/2.5/ref/future.html

PL/Python - Python
Procedural Language

functions.) After a transaction is ended, a new transaction is automatically started, so there is no separate
function for that.

Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plpythonu
AS $$
for i in range(0, 10):
 plpy.execute("INSERT INTO test1 (a) VALUES (%d)" % i)
 if i % 2 == 0:
 plpy.commit()
 else:
 plpy.rollback()
$$;

CALL transaction_test1();

Transactions cannot be ended when an explicit subtransaction is active.

46.10. Utility Functions
The plpy module also provides the functions

plpy.debug(msg, **kwargs)
plpy.log(msg, **kwargs)
plpy.info(msg, **kwargs)
plpy.notice(msg, **kwargs)
plpy.warning(msg, **kwargs)
plpy.error(msg, **kwargs)
plpy.fatal(msg, **kwargs)

 plpy.error and plpy.fatal actually raise a Python exception which, if uncaught, propagates
out to the calling query, causing the current transaction or subtransaction to be aborted. raise
plpy.Error(msg) and raise plpy.Fatal(msg) are equivalent to calling plpy.error(msg)
and plpy.fatal(msg), respectively but the raise form does not allow passing keyword arguments.
The other functions only generate messages of different priority levels. Whether messages of a particular
priority are reported to the client, written to the server log, or both is controlled by the log_min_messages
and client_min_messages configuration variables. See Chapter 19 for more information.

The msg argument is given as a positional argument. For backward compatibility, more than one positional
argument can be given. In that case, the string representation of the tuple of positional arguments becomes
the message reported to the client.

The following keyword-only arguments are accepted:

detail
hint
sqlstate
schema_name
table_name
column_name
datatype_name
constraint_name

1333

PL/Python - Python
Procedural Language

The string representation of the objects passed as keyword-only arguments is used to enrich the messages
reported to the client. For example:

CREATE FUNCTION raise_custom_exception() RETURNS void AS $$
plpy.error("custom exception message",
 detail="some info about exception",
 hint="hint for users")
$$ LANGUAGE plpythonu;

=# SELECT raise_custom_exception();
ERROR: plpy.Error: custom exception message
DETAIL: some info about exception
HINT: hint for users
CONTEXT: Traceback (most recent call last):
 PL/Python function "raise_custom_exception", line 4, in <module>
 hint="hint for users")
PL/Python function "raise_custom_exception"

Another set of utility functions are plpy.quote_literal(string),
plpy.quote_nullable(string), and plpy.quote_ident(string). They are equivalent to
the built-in quoting functions described in Section 9.4. They are useful when constructing ad-hoc queries.
A PL/Python equivalent of dynamic SQL from Example 43.1 would be:

plpy.execute("UPDATE tbl SET %s = %s WHERE key = %s" % (
 plpy.quote_ident(colname),
 plpy.quote_nullable(newvalue),
 plpy.quote_literal(keyvalue)))

46.11. Environment Variables
Some of the environment variables that are accepted by the Python interpreter can also be used to affect
PL/Python behavior. They would need to be set in the environment of the main PostgreSQL server process,
for example in a start script. The available environment variables depend on the version of Python; see the
Python documentation for details. At the time of this writing, the following environment variables have
an affect on PL/Python, assuming an adequate Python version:

• PYTHONHOME

• PYTHONPATH

• PYTHONY2K

• PYTHONOPTIMIZE

• PYTHONDEBUG

• PYTHONVERBOSE

• PYTHONCASEOK

• PYTHONDONTWRITEBYTECODE

• PYTHONIOENCODING

1334

PL/Python - Python
Procedural Language

• PYTHONUSERBASE

• PYTHONHASHSEED

(It appears to be a Python implementation detail beyond the control of PL/Python that some of the
environment variables listed on the python man page are only effective in a command-line interpreter
and not an embedded Python interpreter.)

1335

Chapter 47. Server Programming
Interface

The Server Programming Interface (SPI) gives writers of user-defined C functions the ability to run SQL
commands inside their functions. SPI is a set of interface functions to simplify access to the parser, planner,
and executor. SPI also does some memory management.

Note

The available procedural languages provide various means to execute SQL commands from
functions. Most of these facilities are based on SPI, so this documentation might be of use for users
of those languages as well.

Note that if a command invoked via SPI fails, then control will not be returned to your C function. Rather,
the transaction or subtransaction in which your C function executes will be rolled back. (This might
seem surprising given that the SPI functions mostly have documented error-return conventions. Those
conventions only apply for errors detected within the SPI functions themselves, however.) It is possible to
recover control after an error by establishing your own subtransaction surrounding SPI calls that might fail.

SPI functions return a nonnegative result on success (either via a returned integer value or in the global
variable SPI_result, as described below). On error, a negative result or NULL will be returned.

Source code files that use SPI must include the header file executor/spi.h.

47.1. Interface Functions

1336

Server Programming Interface

SPI_connect
SPI_connect, SPI_connect_ext — connect a C function to the SPI manager

Synopsis

int SPI_connect(void)

int SPI_connect_ext(int options)

Description

SPI_connect opens a connection from a C function invocation to the SPI manager. You must call this
function if you want to execute commands through SPI. Some utility SPI functions can be called from
unconnected C functions.

SPI_connect_ext does the same but has an argument that allows passing option flags. Currently, the
following option values are available:

SPI_OPT_NONATOMIC

Sets the SPI connection to be nonatomic, which means that transaction control calls SPI_commit,
SPI_rollback, and SPI_start_transaction are allowed. Otherwise, calling these
functions will result in an immediate error.

SPI_connect() is equivalent to SPI_connect_ext(0).

Return Value

SPI_OK_CONNECT

on success

SPI_ERROR_CONNECT

on error

1337

Server Programming Interface

SPI_finish
SPI_finish — disconnect a C function from the SPI manager

Synopsis

int SPI_finish(void)

Description

SPI_finish closes an existing connection to the SPI manager. You must call this function after
completing the SPI operations needed during your C function's current invocation. You do not need to
worry about making this happen, however, if you abort the transaction via elog(ERROR). In that case
SPI will clean itself up automatically.

Return Value

SPI_OK_FINISH

if properly disconnected

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

1338

Server Programming Interface

SPI_execute
SPI_execute — execute a command

Synopsis

int SPI_execute(const char * command, bool read_only, long count)

Description

SPI_execute executes the specified SQL command for count rows. If read_only is true, the
command must be read-only, and execution overhead is somewhat reduced.

This function can only be called from a connected C function.

If count is zero then the command is executed for all rows that it applies to. If count is greater than
zero, then no more than count rows will be retrieved; execution stops when the count is reached, much
like adding a LIMIT clause to the query. For example,

SPI_execute("SELECT * FROM foo", true, 5);

will retrieve at most 5 rows from the table. Note that such a limit is only effective when the command
actually returns rows. For example,

SPI_execute("INSERT INTO foo SELECT * FROM bar", false, 5);

inserts all rows from bar, ignoring the count parameter. However, with

SPI_execute("INSERT INTO foo SELECT * FROM bar RETURNING *", false,
 5);

at most 5 rows would be inserted, since execution would stop after the fifth RETURNING result row is
retrieved.

You can pass multiple commands in one string; SPI_execute returns the result for the command
executed last. The count limit applies to each command separately (even though only the last result will
actually be returned). The limit is not applied to any hidden commands generated by rules.

When read_only is false, SPI_execute increments the command counter and computes a new
snapshot before executing each command in the string. The snapshot does not actually change if the current
transaction isolation level is SERIALIZABLE or REPEATABLE READ, but in READ COMMITTED mode
the snapshot update allows each command to see the results of newly committed transactions from other
sessions. This is essential for consistent behavior when the commands are modifying the database.

When read_only is true, SPI_execute does not update either the snapshot or the command
counter, and it allows only plain SELECT commands to appear in the command string. The commands
are executed using the snapshot previously established for the surrounding query. This execution mode
is somewhat faster than the read/write mode due to eliminating per-command overhead. It also allows

1339

Server Programming Interface

genuinely stable functions to be built: since successive executions will all use the same snapshot, there
will be no change in the results.

It is generally unwise to mix read-only and read-write commands within a single function using SPI;
that could result in very confusing behavior, since the read-only queries would not see the results of any
database updates done by the read-write queries.

The actual number of rows for which the (last) command was executed is
returned in the global variable SPI_processed. If the return value of the function
is SPI_OK_SELECT, SPI_OK_INSERT_RETURNING, SPI_OK_DELETE_RETURNING, or
SPI_OK_UPDATE_RETURNING, then you can use the global pointer SPITupleTable
*SPI_tuptable to access the result rows. Some utility commands (such as EXPLAIN) also return
row sets, and SPI_tuptable will contain the result in these cases too. Some utility commands (COPY,
CREATE TABLE AS) don't return a row set, so SPI_tuptable is NULL, but they still return the
number of rows processed in SPI_processed.

The structure SPITupleTable is defined thus:

typedef struct
{
 MemoryContext tuptabcxt; /* memory context of result table */
 uint64 alloced; /* number of alloced vals */
 uint64 free; /* number of free vals */
 TupleDesc tupdesc; /* row descriptor */
 HeapTuple *vals; /* rows */
} SPITupleTable;

vals is an array of pointers to rows. (The number of valid entries is given by SPI_processed.)
tupdesc is a row descriptor which you can pass to SPI functions dealing with rows. tuptabcxt,
alloced, and free are internal fields not intended for use by SPI callers.

SPI_finish frees all SPITupleTables allocated during the current C function. You can free a
particular result table earlier, if you are done with it, by calling SPI_freetuptable.

Arguments

const char * command

string containing command to execute

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value

If the execution of the command was successful then one of the following (nonnegative) values will be
returned:

SPI_OK_SELECT

if a SELECT (but not SELECT INTO) was executed

1340

Server Programming Interface

SPI_OK_SELINTO

if a SELECT INTO was executed

SPI_OK_INSERT

if an INSERT was executed

SPI_OK_DELETE

if a DELETE was executed

SPI_OK_UPDATE

if an UPDATE was executed

SPI_OK_INSERT_RETURNING

if an INSERT RETURNING was executed

SPI_OK_DELETE_RETURNING

if a DELETE RETURNING was executed

SPI_OK_UPDATE_RETURNING

if an UPDATE RETURNING was executed

SPI_OK_UTILITY

if a utility command (e.g., CREATE TABLE) was executed

SPI_OK_REWRITTEN

if the command was rewritten into another kind of command (e.g., UPDATE became an INSERT)
by a rule.

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if command is NULL or count is less than 0

SPI_ERROR_COPY

if COPY TO stdout or COPY FROM stdin was attempted

SPI_ERROR_TRANSACTION

if a transaction manipulation command was attempted (BEGIN, COMMIT, ROLLBACK, SAVEPOINT,
PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED, or any variant thereof)

SPI_ERROR_OPUNKNOWN

if the command type is unknown (shouldn't happen)

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

1341

Server Programming Interface

Notes

All SPI query-execution functions set both SPI_processed and SPI_tuptable (just the pointer, not
the contents of the structure). Save these two global variables into local C function variables if you need
to access the result table of SPI_execute or another query-execution function across later calls.

1342

Server Programming Interface

SPI_exec
SPI_exec — execute a read/write command

Synopsis

int SPI_exec(const char * command, long count)

Description

SPI_exec is the same as SPI_execute, with the latter's read_only parameter always taken as
false.

Arguments

const char * command

string containing command to execute

long count

maximum number of rows to return, or 0 for no limit

Return Value

See SPI_execute.

1343

Server Programming Interface

SPI_execute_with_args
SPI_execute_with_args — execute a command with out-of-line parameters

Synopsis

int SPI_execute_with_args(const char *command,
 int nargs, Oid *argtypes,
 Datum *values, const char *nulls,
 bool read_only, long count)

Description

SPI_execute_with_args executes a command that might include references to externally supplied
parameters. The command text refers to a parameter as $n, and the call specifies data types and values for
each such symbol. read_only and count have the same interpretation as in SPI_execute.

The main advantage of this routine compared to SPI_execute is that data values can be inserted into
the command without tedious quoting/escaping, and thus with much less risk of SQL-injection attacks.

Similar results can be achieved with SPI_prepare followed by SPI_execute_plan; however, when
using this function the query plan is always customized to the specific parameter values provided. For
one-time query execution, this function should be preferred. If the same command is to be executed with
many different parameters, either method might be faster, depending on the cost of re-planning versus the
benefit of custom plans.

Arguments

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

an array of length nargs, containing the OIDs of the data types of the parameters

Datum * values

an array of length nargs, containing the actual parameter values

const char * nulls

an array of length nargs, describing which parameters are null

If nulls is NULL then SPI_execute_with_args assumes that no parameters are null.
Otherwise, each entry of the nulls array should be ' ' if the corresponding parameter value is
non-null, or 'n' if the corresponding parameter value is null. (In the latter case, the actual value in
the corresponding values entry doesn't matter.) Note that nulls is not a text string, just an array:
it does not need a '\0' terminator.

1344

Server Programming Interface

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value

The return value is the same as for SPI_execute.

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1345

Server Programming Interface

SPI_prepare
SPI_prepare — prepare a statement, without executing it yet

Synopsis

SPIPlanPtr SPI_prepare(const char * command, int nargs, Oid
 * argtypes)

Description

SPI_prepare creates and returns a prepared statement for the specified command, but doesn't execute
the command. The prepared statement can later be executed repeatedly using SPI_execute_plan.

When the same or a similar command is to be executed repeatedly, it is generally advantageous to perform
parse analysis only once, and might furthermore be advantageous to re-use an execution plan for the
command. SPI_prepare converts a command string into a prepared statement that encapsulates the
results of parse analysis. The prepared statement also provides a place for caching an execution plan if it
is found that generating a custom plan for each execution is not helpful.

A prepared command can be generalized by writing parameters ($1, $2, etc.) in place of what would
be constants in a normal command. The actual values of the parameters are then specified when
SPI_execute_plan is called. This allows the prepared command to be used over a wider range of
situations than would be possible without parameters.

The statement returned by SPI_prepare can be used only in the current invocation of the C function,
since SPI_finish frees memory allocated for such a statement. But the statement can be saved for
longer using the functions SPI_keepplan or SPI_saveplan.

Arguments

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

Return Value

SPI_prepare returns a non-null pointer to an SPIPlan, which is an opaque struct representing a
prepared statement. On error, NULL will be returned, and SPI_result will be set to one of the same
error codes used by SPI_execute, except that it is set to SPI_ERROR_ARGUMENT if command is
NULL, or if nargs is less than 0, or if nargs is greater than 0 and argtypes is NULL.

Notes

If no parameters are defined, a generic plan will be created at the first use of SPI_execute_plan,
and used for all subsequent executions as well. If there are parameters, the first few uses of

1346

Server Programming Interface

SPI_execute_plan will generate custom plans that are specific to the supplied parameter values.
After enough uses of the same prepared statement, SPI_execute_plan will build a generic
plan, and if that is not too much more expensive than the custom plans, it will start using
the generic plan instead of re-planning each time. If this default behavior is unsuitable, you can
alter it by passing the CURSOR_OPT_GENERIC_PLAN or CURSOR_OPT_CUSTOM_PLAN flag to
SPI_prepare_cursor, to force use of generic or custom plans respectively.

Although the main point of a prepared statement is to avoid repeated parse analysis and planning of the
statement, PostgreSQL will force re-analysis and re-planning of the statement before using it whenever
database objects used in the statement have undergone definitional (DDL) changes since the previous use
of the prepared statement. Also, if the value of search_path changes from one use to the next, the statement
will be re-parsed using the new search_path. (This latter behavior is new as of PostgreSQL 9.3.) See
PREPARE for more information about the behavior of prepared statements.

This function should only be called from a connected C function.

SPIPlanPtr is declared as a pointer to an opaque struct type in spi.h. It is unwise to try to access its
contents directly, as that makes your code much more likely to break in future revisions of PostgreSQL.

The name SPIPlanPtr is somewhat historical, since the data structure no longer necessarily contains
an execution plan.

1347

Server Programming Interface

SPI_prepare_cursor
SPI_prepare_cursor — prepare a statement, without executing it yet

Synopsis

SPIPlanPtr SPI_prepare_cursor(const char * command, int nargs,
 Oid * argtypes, int cursorOptions)

Description

SPI_prepare_cursor is identical to SPI_prepare, except that it also allows specification of
the planner's “cursor options” parameter. This is a bit mask having the values shown in nodes/
parsenodes.h for the options field of DeclareCursorStmt. SPI_prepare always takes the
cursor options as zero.

Arguments

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value

SPI_prepare_cursor has the same return conventions as SPI_prepare.

Notes

Useful bits to set in cursorOptions include CURSOR_OPT_SCROLL, CURSOR_OPT_NO_SCROLL,
CURSOR_OPT_FAST_PLAN, CURSOR_OPT_GENERIC_PLAN, and CURSOR_OPT_CUSTOM_PLAN.
Note in particular that CURSOR_OPT_HOLD is ignored.

1348

Server Programming Interface

SPI_prepare_params
SPI_prepare_params — prepare a statement, without executing it yet

Synopsis

SPIPlanPtr SPI_prepare_params(const char * command,
 ParserSetupHook parserSetup,
 void * parserSetupArg,
 int cursorOptions)

Description

SPI_prepare_params creates and returns a prepared statement for the specified command, but doesn't
execute the command. This function is equivalent to SPI_prepare_cursor, with the addition that the
caller can specify parser hook functions to control the parsing of external parameter references.

Arguments

const char * command

command string

ParserSetupHook parserSetup

Parser hook setup function

void * parserSetupArg

pass-through argument for parserSetup

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value

SPI_prepare_params has the same return conventions as SPI_prepare.

1349

Server Programming Interface

SPI_getargcount
SPI_getargcount — return the number of arguments needed by a statement prepared by SPI_prepare

Synopsis

int SPI_getargcount(SPIPlanPtr plan)

Description

SPI_getargcount returns the number of arguments needed to execute a statement prepared by
SPI_prepare.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Return Value

The count of expected arguments for the plan. If the plan is NULL or invalid, SPI_result is set to
SPI_ERROR_ARGUMENT and -1 is returned.

1350

Server Programming Interface

SPI_getargtypeid
SPI_getargtypeid — return the data type OID for an argument of a statement prepared by SPI_prepare

Synopsis

Oid SPI_getargtypeid(SPIPlanPtr plan, int argIndex)

Description

SPI_getargtypeid returns the OID representing the type for the argIndex'th argument of a
statement prepared by SPI_prepare. First argument is at index zero.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

int argIndex

zero based index of the argument

Return Value

The type OID of the argument at the given index. If the plan is NULL or invalid, or argIndex is
less than 0 or not less than the number of arguments declared for the plan, SPI_result is set to
SPI_ERROR_ARGUMENT and InvalidOid is returned.

1351

Server Programming Interface

SPI_is_cursor_plan
SPI_is_cursor_plan — return true if a statement prepared by SPI_prepare can be used with
SPI_cursor_open

Synopsis

bool SPI_is_cursor_plan(SPIPlanPtr plan)

Description

SPI_is_cursor_plan returns true if a statement prepared by SPI_prepare can be passed as
an argument to SPI_cursor_open, or false if that is not the case. The criteria are that the plan
represents one single command and that this command returns tuples to the caller; for example, SELECT
is allowed unless it contains an INTO clause, and UPDATE is allowed only if it contains a RETURNING
clause.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Return Value

true or false to indicate if the plan can produce a cursor or not, with SPI_result set to zero. If
it is not possible to determine the answer (for example, if the plan is NULL or invalid, or if called when
not connected to SPI), then SPI_result is set to a suitable error code and false is returned.

1352

Server Programming Interface

SPI_execute_plan
SPI_execute_plan — execute a statement prepared by SPI_prepare

Synopsis

int SPI_execute_plan(SPIPlanPtr plan, Datum * values, const char
 * nulls,
 bool read_only, long count)

Description

SPI_execute_plan executes a statement prepared by SPI_prepare or one of its siblings.
read_only and count have the same interpretation as in SPI_execute.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number of
arguments.

If nulls is NULL then SPI_execute_plan assumes that no parameters are null. Otherwise, each
entry of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n'
if the corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need
a '\0' terminator.

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value

The return value is the same as for SPI_execute, with the following additional possible error (negative)
results:

SPI_ERROR_ARGUMENT

if plan is NULL or invalid, or count is less than 0

1353

Server Programming Interface

SPI_ERROR_PARAM

if values is NULL and plan was prepared with some parameters

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1354

Server Programming Interface

SPI_execute_plan_with_paramlist
SPI_execute_plan_with_paramlist — execute a statement prepared by SPI_prepare

Synopsis

int SPI_execute_plan_with_paramlist(SPIPlanPtr plan,
 ParamListInfo params,
 bool read_only,
 long count)

Description

SPI_execute_plan_with_paramlist executes a statement prepared by SPI_prepare. This
function is equivalent to SPI_execute_plan except that information about the parameter values to be
passed to the query is presented differently. The ParamListInfo representation can be convenient for
passing down values that are already available in that format. It also supports use of dynamic parameter
sets via hook functions specified in ParamListInfo.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

ParamListInfo params

data structure containing parameter types and values; NULL if none

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value

The return value is the same as for SPI_execute_plan.

SPI_processed and SPI_tuptable are set as in SPI_execute_plan if successful.

1355

Server Programming Interface

SPI_execp
SPI_execp — execute a statement in read/write mode

Synopsis

int SPI_execp(SPIPlanPtr plan, Datum * values, const char * nulls,
 long count)

Description

SPI_execp is the same as SPI_execute_plan, with the latter's read_only parameter always taken
as false.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number of
arguments.

If nulls is NULL then SPI_execp assumes that no parameters are null. Otherwise, each entry
of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if
the corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need
a '\0' terminator.

long count

maximum number of rows to return, or 0 for no limit

Return Value

See SPI_execute_plan.

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1356

Server Programming Interface

SPI_cursor_open
SPI_cursor_open — set up a cursor using a statement created with SPI_prepare

Synopsis

Portal SPI_cursor_open(const char * name, SPIPlanPtr plan,
 Datum * values, const char * nulls,
 bool read_only)

Description

SPI_cursor_open sets up a cursor (internally, a portal) that will execute a statement prepared
by SPI_prepare. The parameters have the same meanings as the corresponding parameters to
SPI_execute_plan.

Using a cursor instead of executing the statement directly has two benefits. First, the result rows can be
retrieved a few at a time, avoiding memory overrun for queries that return many rows. Second, a portal
can outlive the current C function (it can, in fact, live to the end of the current transaction). Returning the
portal name to the C function's caller provides a way of returning a row set as result.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments

const char * name

name for portal, or NULL to let the system select a name

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number of
arguments.

If nulls is NULL then SPI_cursor_open assumes that no parameters are null. Otherwise, each
entry of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n'
if the corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need
a '\0' terminator.

bool read_only

true for read-only execution

1357

Server Programming Interface

Return Value

Pointer to portal containing the cursor. Note there is no error return convention; any error will be reported
via elog.

1358

Server Programming Interface

SPI_cursor_open_with_args
SPI_cursor_open_with_args — set up a cursor using a query and parameters

Synopsis

Portal SPI_cursor_open_with_args(const char *name,
 const char *command,
 int nargs, Oid *argtypes,
 Datum *values, const char *nulls,
 bool read_only, int cursorOptions)

Description

SPI_cursor_open_with_args sets up a cursor (internally, a portal) that will execute the
specified query. Most of the parameters have the same meanings as the corresponding parameters to
SPI_prepare_cursor and SPI_cursor_open.

For one-time query execution, this function should be preferred over SPI_prepare_cursor followed
by SPI_cursor_open. If the same command is to be executed with many different parameters, either
method might be faster, depending on the cost of re-planning versus the benefit of custom plans.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments

const char * name

name for portal, or NULL to let the system select a name

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

an array of length nargs, containing the OIDs of the data types of the parameters

Datum * values

an array of length nargs, containing the actual parameter values

const char * nulls

an array of length nargs, describing which parameters are null

If nulls is NULL then SPI_cursor_open_with_args assumes that no parameters are null.
Otherwise, each entry of the nulls array should be ' ' if the corresponding parameter value is

1359

Server Programming Interface

non-null, or 'n' if the corresponding parameter value is null. (In the latter case, the actual value in
the corresponding values entry doesn't matter.) Note that nulls is not a text string, just an array:
it does not need a '\0' terminator.

bool read_only

true for read-only execution

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value

Pointer to portal containing the cursor. Note there is no error return convention; any error will be reported
via elog.

1360

Server Programming Interface

SPI_cursor_open_with_paramlist
SPI_cursor_open_with_paramlist — set up a cursor using parameters

Synopsis

Portal SPI_cursor_open_with_paramlist(const char *name,
 SPIPlanPtr plan,
 ParamListInfo params,
 bool read_only)

Description

SPI_cursor_open_with_paramlist sets up a cursor (internally, a portal) that will execute a
statement prepared by SPI_prepare. This function is equivalent to SPI_cursor_open except
that information about the parameter values to be passed to the query is presented differently. The
ParamListInfo representation can be convenient for passing down values that are already available
in that format. It also supports use of dynamic parameter sets via hook functions specified in
ParamListInfo.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments

const char * name

name for portal, or NULL to let the system select a name

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

ParamListInfo params

data structure containing parameter types and values; NULL if none

bool read_only

true for read-only execution

Return Value

Pointer to portal containing the cursor. Note there is no error return convention; any error will be reported
via elog.

1361

Server Programming Interface

SPI_cursor_find
SPI_cursor_find — find an existing cursor by name

Synopsis

Portal SPI_cursor_find(const char * name)

Description

SPI_cursor_find finds an existing portal by name. This is primarily useful to resolve a cursor name
returned as text by some other function.

Arguments

const char * name

name of the portal

Return Value

pointer to the portal with the specified name, or NULL if none was found

1362

Server Programming Interface

SPI_cursor_fetch
SPI_cursor_fetch — fetch some rows from a cursor

Synopsis

void SPI_cursor_fetch(Portal portal, bool forward, long count)

Description

SPI_cursor_fetch fetches some rows from a cursor. This is equivalent to a subset of the SQL
command FETCH (see SPI_scroll_cursor_fetch for more functionality).

Arguments

Portal portal

portal containing the cursor

bool forward

true for fetch forward, false for fetch backward

long count

maximum number of rows to fetch

Return Value

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

Notes

Fetching backward may fail if the cursor's plan was not created with the CURSOR_OPT_SCROLL option.

1363

Server Programming Interface

SPI_cursor_move
SPI_cursor_move — move a cursor

Synopsis

void SPI_cursor_move(Portal portal, bool forward, long count)

Description

SPI_cursor_move skips over some number of rows in a cursor. This is equivalent to a subset of the
SQL command MOVE (see SPI_scroll_cursor_move for more functionality).

Arguments

Portal portal

portal containing the cursor

bool forward

true for move forward, false for move backward

long count

maximum number of rows to move

Notes

Moving backward may fail if the cursor's plan was not created with the CURSOR_OPT_SCROLL option.

1364

Server Programming Interface

SPI_scroll_cursor_fetch
SPI_scroll_cursor_fetch — fetch some rows from a cursor

Synopsis

void SPI_scroll_cursor_fetch(Portal portal, FetchDirection direction,
 long count)

Description

SPI_scroll_cursor_fetch fetches some rows from a cursor. This is equivalent to the SQL
command FETCH.

Arguments

Portal portal

portal containing the cursor

FetchDirection direction

one of FETCH_FORWARD, FETCH_BACKWARD, FETCH_ABSOLUTE or FETCH_RELATIVE

long count

number of rows to fetch for FETCH_FORWARD or FETCH_BACKWARD; absolute row number to fetch
for FETCH_ABSOLUTE; or relative row number to fetch for FETCH_RELATIVE

Return Value

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

Notes

See the SQL FETCH command for details of the interpretation of the direction and count parameters.

Direction values other than FETCH_FORWARD may fail if the cursor's plan was not created with the
CURSOR_OPT_SCROLL option.

1365

Server Programming Interface

SPI_scroll_cursor_move
SPI_scroll_cursor_move — move a cursor

Synopsis

void SPI_scroll_cursor_move(Portal portal, FetchDirection direction,
 long count)

Description

SPI_scroll_cursor_move skips over some number of rows in a cursor. This is equivalent to the
SQL command MOVE.

Arguments

Portal portal

portal containing the cursor

FetchDirection direction

one of FETCH_FORWARD, FETCH_BACKWARD, FETCH_ABSOLUTE or FETCH_RELATIVE

long count

number of rows to move for FETCH_FORWARD or FETCH_BACKWARD; absolute row number to
move to for FETCH_ABSOLUTE; or relative row number to move to for FETCH_RELATIVE

Return Value

SPI_processed is set as in SPI_execute if successful. SPI_tuptable is set to NULL, since no
rows are returned by this function.

Notes

See the SQL FETCH command for details of the interpretation of the direction and count parameters.

Direction values other than FETCH_FORWARD may fail if the cursor's plan was not created with the
CURSOR_OPT_SCROLL option.

1366

Server Programming Interface

SPI_cursor_close
SPI_cursor_close — close a cursor

Synopsis

void SPI_cursor_close(Portal portal)

Description

SPI_cursor_close closes a previously created cursor and releases its portal storage.

All open cursors are closed automatically at the end of a transaction. SPI_cursor_close need only
be invoked if it is desirable to release resources sooner.

Arguments

Portal portal

portal containing the cursor

1367

Server Programming Interface

SPI_keepplan
SPI_keepplan — save a prepared statement

Synopsis

int SPI_keepplan(SPIPlanPtr plan)

Description

SPI_keepplan saves a passed statement (prepared by SPI_prepare) so that it will not be freed by
SPI_finish nor by the transaction manager. This gives you the ability to reuse prepared statements in
the subsequent invocations of your C function in the current session.

Arguments

SPIPlanPtr plan

the prepared statement to be saved

Return Value

0 on success; SPI_ERROR_ARGUMENT if plan is NULL or invalid

Notes

The passed-in statement is relocated to permanent storage by means of pointer adjustment (no data copying
is required). If you later wish to delete it, use SPI_freeplan on it.

1368

Server Programming Interface

SPI_saveplan
SPI_saveplan — save a prepared statement

Synopsis

SPIPlanPtr SPI_saveplan(SPIPlanPtr plan)

Description

SPI_saveplan copies a passed statement (prepared by SPI_prepare) into memory that will not be
freed by SPI_finish nor by the transaction manager, and returns a pointer to the copied statement.
This gives you the ability to reuse prepared statements in the subsequent invocations of your C function
in the current session.

Arguments

SPIPlanPtr plan

the prepared statement to be saved

Return Value

Pointer to the copied statement; or NULL if unsuccessful. On error, SPI_result is set thus:

SPI_ERROR_ARGUMENT

if plan is NULL or invalid

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

Notes

The originally passed-in statement is not freed, so you might wish to do SPI_freeplan on it to avoid
leaking memory until SPI_finish.

In most cases, SPI_keepplan is preferred to this function, since it accomplishes largely the same result
without needing to physically copy the prepared statement's data structures.

1369

Server Programming Interface

SPI_register_relation
SPI_register_relation — make an ephemeral named relation available by name in SPI queries

Synopsis

int SPI_register_relation(EphemeralNamedRelation enr)

Description

SPI_register_relation makes an ephemeral named relation, with associated information,
available to queries planned and executed through the current SPI connection.

Arguments

EphemeralNamedRelation enr

the ephemeral named relation registry entry

Return Value

If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_REL_REGISTER

if the relation has been successfully registered by name

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if enr is NULL or its name field is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_DUPLICATE

if the name specified in the name field of enr is already registered for this connection

1370

Server Programming Interface

SPI_unregister_relation
SPI_unregister_relation — remove an ephemeral named relation from the registry

Synopsis

int SPI_unregister_relation(const char * name)

Description

SPI_unregister_relation removes an ephemeral named relation from the registry for the current
connection.

Arguments

const char * name

the relation registry entry name

Return Value

If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_REL_UNREGISTER

if the tuplestore has been successfully removed from the registry

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if name is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_NOT_FOUND

if name is not found in the registry for the current connection

1371

Server Programming Interface

SPI_register_trigger_data
SPI_register_trigger_data — make ephemeral trigger data available in SPI queries

Synopsis

int SPI_register_trigger_data(TriggerData *tdata)

Description

SPI_register_trigger_data makes any ephemeral relations captured by a trigger available to
queries planned and executed through the current SPI connection. Currently, this means the transition
tables captured by an AFTER trigger defined with a REFERENCING OLD/NEW TABLE AS ... clause.
This function should be called by a PL trigger handler function after connecting.

Arguments

TriggerData *tdata

the TriggerData object passed to a trigger handler function as fcinfo->context

Return Value

If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_TD_REGISTER

if the captured trigger data (if any) has been successfully registered

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if tdata is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_DUPLICATE

if the name of any trigger data transient relation is already registered for this connection

47.2. Interface Support Functions
The functions described here provide an interface for extracting information from result sets returned by
SPI_execute and other SPI functions.

All functions described in this section can be used by both connected and unconnected C functions.

1372

Server Programming Interface

SPI_fname
SPI_fname — determine the column name for the specified column number

Synopsis

char * SPI_fname(TupleDesc rowdesc, int colnumber)

Description

SPI_fname returns a copy of the column name of the specified column. (You can use pfree to release
the copy of the name when you don't need it anymore.)

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value

The column name; NULL if colnumber is out of range. SPI_result set to
SPI_ERROR_NOATTRIBUTE on error.

1373

Server Programming Interface

SPI_fnumber
SPI_fnumber — determine the column number for the specified column name

Synopsis

int SPI_fnumber(TupleDesc rowdesc, const char * colname)

Description

SPI_fnumber returns the column number for the column with the specified name.

If colname refers to a system column (e.g., oid) then the appropriate negative column number
will be returned. The caller should be careful to test the return value for exact equality to
SPI_ERROR_NOATTRIBUTE to detect an error; testing the result for less than or equal to 0 is not correct
unless system columns should be rejected.

Arguments

TupleDesc rowdesc

input row description

const char * colname

column name

Return Value

Column number (count starts at 1 for user-defined columns), or SPI_ERROR_NOATTRIBUTE if the
named column was not found.

1374

Server Programming Interface

SPI_getvalue
SPI_getvalue — return the string value of the specified column

Synopsis

char * SPI_getvalue(HeapTuple row, TupleDesc rowdesc, int colnumber)

Description

SPI_getvalue returns the string representation of the value of the specified column.

The result is returned in memory allocated using palloc. (You can use pfree to release the memory
when you don't need it anymore.)

Arguments

HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value

Column value, or NULL if the column is null, colnumber is out of range (SPI_result is
set to SPI_ERROR_NOATTRIBUTE), or no output function is available (SPI_result is set to
SPI_ERROR_NOOUTFUNC).

1375

Server Programming Interface

SPI_getbinval
SPI_getbinval — return the binary value of the specified column

Synopsis

Datum SPI_getbinval(HeapTuple row, TupleDesc rowdesc, int colnumber,
 bool * isnull)

Description

SPI_getbinval returns the value of the specified column in the internal form (as type Datum).

This function does not allocate new space for the datum. In the case of a pass-by-reference data type, the
return value will be a pointer into the passed row.

Arguments

HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

bool * isnull

flag for a null value in the column

Return Value

The binary value of the column is returned. The variable pointed to by isnull is set to true if the column
is null, else to false.

SPI_result is set to SPI_ERROR_NOATTRIBUTE on error.

1376

Server Programming Interface

SPI_gettype
SPI_gettype — return the data type name of the specified column

Synopsis

char * SPI_gettype(TupleDesc rowdesc, int colnumber)

Description

SPI_gettype returns a copy of the data type name of the specified column. (You can use pfree to
release the copy of the name when you don't need it anymore.)

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value

The data type name of the specified column, or NULL on error. SPI_result is set to
SPI_ERROR_NOATTRIBUTE on error.

1377

Server Programming Interface

SPI_gettypeid
SPI_gettypeid — return the data type OID of the specified column

Synopsis

Oid SPI_gettypeid(TupleDesc rowdesc, int colnumber)

Description

SPI_gettypeid returns the OID of the data type of the specified column.

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value

The OID of the data type of the specified column or InvalidOid on error. On error, SPI_result is
set to SPI_ERROR_NOATTRIBUTE.

1378

Server Programming Interface

SPI_getrelname
SPI_getrelname — return the name of the specified relation

Synopsis

char * SPI_getrelname(Relation rel)

Description

SPI_getrelname returns a copy of the name of the specified relation. (You can use pfree to release
the copy of the name when you don't need it anymore.)

Arguments

Relation rel

input relation

Return Value

The name of the specified relation.

1379

Server Programming Interface

SPI_getnspname
SPI_getnspname — return the namespace of the specified relation

Synopsis

char * SPI_getnspname(Relation rel)

Description

SPI_getnspname returns a copy of the name of the namespace that the specified Relation belongs
to. This is equivalent to the relation's schema. You should pfree the return value of this function when
you are finished with it.

Arguments

Relation rel

input relation

Return Value

The name of the specified relation's namespace.

1380

Server Programming Interface

SPI_result_code_string
SPI_result_code_string — return error code as string

Synopsis

const char * SPI_result_code_string(int code);

Description

SPI_result_code_string returns a string representation of the result code returned by various SPI
functions or stored in SPI_result.

Arguments

int code

result code

Return Value

A string representation of the result code.

47.3. Memory Management
 PostgreSQL allocates memory within memory contexts, which provide a convenient method of managing
allocations made in many different places that need to live for differing amounts of time. Destroying a
context releases all the memory that was allocated in it. Thus, it is not necessary to keep track of individual
objects to avoid memory leaks; instead only a relatively small number of contexts have to be managed.
palloc and related functions allocate memory from the “current” context.

SPI_connect creates a new memory context and makes it current. SPI_finish restores the previous
current memory context and destroys the context created by SPI_connect. These actions ensure that
transient memory allocations made inside your C function are reclaimed at C function exit, avoiding
memory leakage.

However, if your C function needs to return an object in allocated memory (such as a value of a pass-
by-reference data type), you cannot allocate that memory using palloc, at least not while you are
connected to SPI. If you try, the object will be deallocated by SPI_finish, and your C function will
not work reliably. To solve this problem, use SPI_palloc to allocate memory for your return object.
SPI_palloc allocates memory in the “upper executor context”, that is, the memory context that was
current when SPI_connect was called, which is precisely the right context for a value returned from
your C function. Several of the other utility functions described in this section also return objects created
in the upper executor context.

When SPI_connect is called, the private context of the C function, which is created by SPI_connect,
is made the current context. All allocations made by palloc, repalloc, or SPI utility functions (except
as described in this section) are made in this context. When a C function disconnects from the SPI manager
(via SPI_finish) the current context is restored to the upper executor context, and all allocations made
in the C function memory context are freed and cannot be used any more.

1381

Server Programming Interface

SPI_palloc
SPI_palloc — allocate memory in the upper executor context

Synopsis

void * SPI_palloc(Size size)

Description

SPI_palloc allocates memory in the upper executor context.

This function can only be used while connected to SPI. Otherwise, it throws an error.

Arguments

Size size

size in bytes of storage to allocate

Return Value

pointer to new storage space of the specified size

1382

Server Programming Interface

SPI_repalloc
SPI_repalloc — reallocate memory in the upper executor context

Synopsis

void * SPI_repalloc(void * pointer, Size size)

Description

SPI_repalloc changes the size of a memory segment previously allocated using SPI_palloc.

This function is no longer different from plain repalloc. It's kept just for backward compatibility of
existing code.

Arguments

void * pointer

pointer to existing storage to change

Size size

size in bytes of storage to allocate

Return Value

pointer to new storage space of specified size with the contents copied from the existing area

1383

Server Programming Interface

SPI_pfree
SPI_pfree — free memory in the upper executor context

Synopsis

void SPI_pfree(void * pointer)

Description

SPI_pfree frees memory previously allocated using SPI_palloc or SPI_repalloc.

This function is no longer different from plain pfree. It's kept just for backward compatibility of existing
code.

Arguments

void * pointer

pointer to existing storage to free

1384

Server Programming Interface

SPI_copytuple
SPI_copytuple — make a copy of a row in the upper executor context

Synopsis

HeapTuple SPI_copytuple(HeapTuple row)

Description

SPI_copytuple makes a copy of a row in the upper executor context. This is normally used to return a
modified row from a trigger. In a function declared to return a composite type, use SPI_returntuple
instead.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Arguments

HeapTuple row

row to be copied

Return Value

the copied row, or NULL on error (see SPI_result for an error indication)

1385

Server Programming Interface

SPI_returntuple
SPI_returntuple — prepare to return a tuple as a Datum

Synopsis

HeapTupleHeader SPI_returntuple(HeapTuple row, TupleDesc rowdesc)

Description

SPI_returntuple makes a copy of a row in the upper executor context, returning it in the form of
a row type Datum. The returned pointer need only be converted to Datum via PointerGetDatum
before returning.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Note that this should be used for functions that are declared to return composite types. It is not used for
triggers; use SPI_copytuple for returning a modified row in a trigger.

Arguments

HeapTuple row

row to be copied

TupleDesc rowdesc

descriptor for row (pass the same descriptor each time for most effective caching)

Return Value

HeapTupleHeader pointing to copied row, or NULL on error (see SPI_result for an error
indication)

1386

Server Programming Interface

SPI_modifytuple
SPI_modifytuple — create a row by replacing selected fields of a given row

Synopsis

HeapTuple SPI_modifytuple(Relation rel, HeapTuple row, int ncols,
 int * colnum, Datum * values, const char
 * nulls)

Description

SPI_modifytuple creates a new row by substituting new values for selected columns, copying the
original row's columns at other positions. The input row is not modified. The new row is returned in the
upper executor context.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Arguments

Relation rel

Used only as the source of the row descriptor for the row. (Passing a relation rather than a row
descriptor is a misfeature.)

HeapTuple row

row to be modified

int ncols

number of columns to be changed

int * colnum

an array of length ncols, containing the numbers of the columns that are to be changed (column
numbers start at 1)

Datum * values

an array of length ncols, containing the new values for the specified columns

const char * nulls

an array of length ncols, describing which new values are null

If nulls is NULL then SPI_modifytuple assumes that no new values are null. Otherwise, each
entry of the nulls array should be ' ' if the corresponding new value is non-null, or 'n' if the
corresponding new value is null. (In the latter case, the actual value in the corresponding values
entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need a '\0'
terminator.

1387

Server Programming Interface

Return Value

new row with modifications, allocated in the upper executor context, or NULL on error (see SPI_result
for an error indication)

On error, SPI_result is set as follows:

SPI_ERROR_ARGUMENT

if rel is NULL, or if row is NULL, or if ncols is less than or equal to 0, or if colnum is NULL,
or if values is NULL.

SPI_ERROR_NOATTRIBUTE

if colnum contains an invalid column number (less than or equal to 0 or greater than the number
of columns in row)

SPI_ERROR_UNCONNECTED

if SPI is not active

1388

Server Programming Interface

SPI_freetuple
SPI_freetuple — free a row allocated in the upper executor context

Synopsis

void SPI_freetuple(HeapTuple row)

Description

SPI_freetuple frees a row previously allocated in the upper executor context.

This function is no longer different from plain heap_freetuple. It's kept just for backward
compatibility of existing code.

Arguments

HeapTuple row

row to free

1389

Server Programming Interface

SPI_freetuptable
SPI_freetuptable — free a row set created by SPI_execute or a similar function

Synopsis

void SPI_freetuptable(SPITupleTable * tuptable)

Description

SPI_freetuptable frees a row set created by a prior SPI command execution function, such as
SPI_execute. Therefore, this function is often called with the global variable SPI_tuptable as
argument.

This function is useful if an SPI-using C function needs to execute multiple commands and does not want
to keep the results of earlier commands around until it ends. Note that any unfreed row sets will be freed
anyway at SPI_finish. Also, if a subtransaction is started and then aborted within execution of an SPI-
using C function, SPI automatically frees any row sets created while the subtransaction was running.

Beginning in PostgreSQL 9.3, SPI_freetuptable contains guard logic to protect against duplicate
deletion requests for the same row set. In previous releases, duplicate deletions would lead to crashes.

Arguments

SPITupleTable * tuptable

pointer to row set to free, or NULL to do nothing

1390

Server Programming Interface

SPI_freeplan
SPI_freeplan — free a previously saved prepared statement

Synopsis

int SPI_freeplan(SPIPlanPtr plan)

Description

SPI_freeplan releases a prepared statement previously returned by SPI_prepare or saved by
SPI_keepplan or SPI_saveplan.

Arguments

SPIPlanPtr plan

pointer to statement to free

Return Value

0 on success; SPI_ERROR_ARGUMENT if plan is NULL or invalid

47.4. Transaction Management
It is not possible to run transaction control commands such as COMMIT and ROLLBACK through SPI
functions such as SPI_execute. There are, however, separate interface functions that allow transaction
control through SPI.

It is not generally safe and sensible to start and end transactions in arbitrary user-defined SQL-callable
functions without taking into account the context in which they are called. For example, a transaction
boundary in the middle of a function that is part of a complex SQL expression that is part of some SQL
command will probably result in obscure internal errors or crashes. The interface functions presented
here are primarily intended to be used by procedural language implementations to support transaction
management in SQL-level procedures that are invoked by the CALL command, taking the context of the
CALL invocation into account. SPI-using procedures implemented in C can implement the same logic, but
the details of that are beyond the scope of this documentation.

1391

Server Programming Interface

SPI_commit
SPI_commit — commit the current transaction

Synopsis

void SPI_commit(void)

Description

SPI_commit commits the current transaction. It is approximately equivalent to running the SQL
command COMMIT. After a transaction is committed, a new transaction has to be started using
SPI_start_transaction before further database actions can be executed.

This function can only be executed if the SPI connection has been set as nonatomic in the call to
SPI_connect_ext.

1392

Server Programming Interface

SPI_rollback
SPI_rollback — abort the current transaction

Synopsis

void SPI_rollback(void)

Description

SPI_rollback rolls back the current transaction. It is approximately equivalent to running the SQL
command ROLLBACK. After a transaction is rolled back, a new transaction has to be started using
SPI_start_transaction before further database actions can be executed.

This function can only be executed if the SPI connection has been set as nonatomic in the call to
SPI_connect_ext.

1393

Server Programming Interface

SPI_start_transaction
SPI_start_transaction — start a new transaction

Synopsis

void SPI_start_transaction(void)

Description

SPI_start_transaction starts a new transaction. It can only be called after SPI_commit or
SPI_rollback, as there is no transaction active at that point. Normally, when an SPI-using procedure
is called, there is already a transaction active, so attempting to start another one before closing out the
current one will result in an error.

This function can only be executed if the SPI connection has been set as nonatomic in the call to
SPI_connect_ext.

47.5. Visibility of Data Changes
The following rules govern the visibility of data changes in functions that use SPI (or any other C function):

• During the execution of an SQL command, any data changes made by the command are invisible to the
command itself. For example, in:

INSERT INTO a SELECT * FROM a;

the inserted rows are invisible to the SELECT part.

• Changes made by a command C are visible to all commands that are started after C, no matter whether
they are started inside C (during the execution of C) or after C is done.

• Commands executed via SPI inside a function called by an SQL command (either an ordinary function
or a trigger) follow one or the other of the above rules depending on the read/write flag passed to SPI.
Commands executed in read-only mode follow the first rule: they cannot see changes of the calling
command. Commands executed in read-write mode follow the second rule: they can see all changes
made so far.

• All standard procedural languages set the SPI read-write mode depending on the volatility attribute of
the function. Commands of STABLE and IMMUTABLE functions are done in read-only mode, while
commands of VOLATILE functions are done in read-write mode. While authors of C functions are able
to violate this convention, it's unlikely to be a good idea to do so.

The next section contains an example that illustrates the application of these rules.

47.6. Examples
This section contains a very simple example of SPI usage. The C function execq takes an SQL command
as its first argument and a row count as its second, executes the command using SPI_exec and returns
the number of rows that were processed by the command. You can find more complex examples for SPI
in the source tree in src/test/regress/regress.c and in the spi module.

1394

Server Programming Interface

#include "postgres.h"

#include "executor/spi.h"
#include "utils/builtins.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(execq);

Datum
execq(PG_FUNCTION_ARGS)
{
 char *command;
 int cnt;
 int ret;
 uint64 proc;

 /* Convert given text object to a C string */
 command = text_to_cstring(PG_GETARG_TEXT_PP(0));
 cnt = PG_GETARG_INT32(1);

 SPI_connect();

 ret = SPI_exec(command, cnt);

 proc = SPI_processed;

 /*
 * If some rows were fetched, print them via elog(INFO).
 */
 if (ret > 0 && SPI_tuptable != NULL)
 {
 TupleDesc tupdesc = SPI_tuptable->tupdesc;
 SPITupleTable *tuptable = SPI_tuptable;
 char buf[8192];
 uint64 j;

 for (j = 0; j < proc; j++)
 {
 HeapTuple tuple = tuptable->vals[j];
 int i;

 for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
 " %s%s",
 SPI_getvalue(tuple, tupdesc, i),
 (i == tupdesc->natts) ? " " : " |");
 elog(INFO, "EXECQ: %s", buf);
 }
 }

 SPI_finish();
 pfree(command);

1395

Server Programming Interface

 PG_RETURN_INT64(proc);
}

This is how you declare the function after having compiled it into a shared library (details are in
Section 38.10.5.):

CREATE FUNCTION execq(text, integer) RETURNS int8
 AS 'filename'
 LANGUAGE C STRICT;

Here is a sample session:

=> SELECT execq('CREATE TABLE a (x integer)', 0);
 execq

 0
(1 row)

=> INSERT INTO a VALUES (execq('INSERT INTO a VALUES (0)', 0));
INSERT 0 1
=> SELECT execq('SELECT * FROM a', 0);
INFO: EXECQ: 0 -- inserted by execq
INFO: EXECQ: 1 -- returned by execq and inserted by upper INSERT

 execq

 2
(1 row)

=> SELECT execq('INSERT INTO a SELECT x + 2 FROM a', 1);
 execq

 1
(1 row)

=> SELECT execq('SELECT * FROM a', 10);
INFO: EXECQ: 0
INFO: EXECQ: 1
INFO: EXECQ: 2 -- 0 + 2, only one row inserted - as specified

 execq

 3 -- 10 is the max value only, 3 is the real number
 of rows
(1 row)

=> DELETE FROM a;
DELETE 3
=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INSERT 0 1
=> SELECT * FROM a;
 x

1396

Server Programming Interface

 1 -- no rows in a (0) + 1
(1 row)

=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INFO: EXECQ: 1
INSERT 0 1
=> SELECT * FROM a;
 x

 1
 2 -- there was one row in a + 1
(2 rows)

-- This demonstrates the data changes visibility rule:

=> INSERT INTO a SELECT execq('SELECT * FROM a', 0) * x FROM a;
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 2
INSERT 0 2
=> SELECT * FROM a;
 x

 1
 2
 2 -- 2 rows * 1 (x in first row)
 6 -- 3 rows (2 + 1 just inserted) * 2 (x in second
 row)
(4 rows) ^^^^^^
 rows visible to execq() in different
 invocations

1397

Chapter 48. Background Worker
Processes

PostgreSQL can be extended to run user-supplied code in separate processes. Such processes are started,
stopped and monitored by postgres, which permits them to have a lifetime closely linked to the server's
status. These processes have the option to attach to PostgreSQL's shared memory area and to connect to
databases internally; they can also run multiple transactions serially, just like a regular client-connected
server process. Also, by linking to libpq they can connect to the server and behave like a regular client
application.

Warning

There are considerable robustness and security risks in using background worker processes
because, being written in the C language, they have unrestricted access to data. Administrators
wishing to enable modules that include background worker process should exercise extreme
caution. Only carefully audited modules should be permitted to run background worker processes.

Background workers can be initialized at the time that PostgreSQL is started by including the module
name in shared_preload_libraries. A module wishing to run a background worker can
register it by calling RegisterBackgroundWorker(BackgroundWorker *worker) from
its _PG_init(). Background workers can also be started after the system is up and running by
calling the function RegisterDynamicBackgroundWorker(BackgroundWorker *worker,
BackgroundWorkerHandle **handle). Unlike RegisterBackgroundWorker, which can
only be called from within the postmaster, RegisterDynamicBackgroundWorker must be called
from a regular backend or another background worker.

The structure BackgroundWorker is defined thus:

typedef void (*bgworker_main_type)(Datum main_arg);
typedef struct BackgroundWorker
{
 char bgw_name[BGW_MAXLEN];
 char bgw_type[BGW_MAXLEN];
 int bgw_flags;
 BgWorkerStartTime bgw_start_time;
 int bgw_restart_time; /* in seconds, or
 BGW_NEVER_RESTART */
 char bgw_library_name[BGW_MAXLEN];
 char bgw_function_name[BGW_MAXLEN];
 Datum bgw_main_arg;
 char bgw_extra[BGW_EXTRALEN];
 int bgw_notify_pid;
} BackgroundWorker;

bgw_name and bgw_type are strings to be used in log messages, process listings and similar contexts.
bgw_type should be the same for all background workers of the same type, so that it is possible
to group such workers in a process listing, for example. bgw_name on the other hand can contain
additional information about the specific process. (Typically, the string for bgw_name will contain the
type somehow, but that is not strictly required.)

1398

Background Worker Processes

bgw_flags is a bitwise-or'd bit mask indicating the capabilities that the module wants. Possible values
are:

BGWORKER_SHMEM_ACCESS

 Requests shared memory access. Workers without shared memory access cannot access any of
PostgreSQL's shared data structures, such as heavyweight or lightweight locks, shared buffers, or any
custom data structures which the worker itself may wish to create and use.

BGWORKER_BACKEND_DATABASE_CONNECTION

 Requests the ability to establish a database connection through which it can later run transactions
and queries. A background worker using BGWORKER_BACKEND_DATABASE_CONNECTION to
connect to a database must also attach shared memory using BGWORKER_SHMEM_ACCESS, or
worker start-up will fail.

bgw_start_time is the server state during which postgres should start the process; it
can be one of BgWorkerStart_PostmasterStart (start as soon as postgres itself has
finished its own initialization; processes requesting this are not eligible for database connections),
BgWorkerStart_ConsistentState (start as soon as a consistent state has been reached
in a hot standby, allowing processes to connect to databases and run read-only queries), and
BgWorkerStart_RecoveryFinished (start as soon as the system has entered normal read-write
state). Note the last two values are equivalent in a server that's not a hot standby. Note that this setting
only indicates when the processes are to be started; they do not stop when a different state is reached.

bgw_restart_time is the interval, in seconds, that postgres should wait before restarting the
process, in case it crashes. It can be any positive value, or BGW_NEVER_RESTART, indicating not to
restart the process in case of a crash.

bgw_library_name is the name of a library in which the initial entry point for the background
worker should be sought. The named library will be dynamically loaded by the worker process and
bgw_function_name will be used to identify the function to be called. If loading a function from the
core code, this must be set to "postgres".

bgw_function_name is the name of a function in a dynamically loaded library which should be used
as the initial entry point for a new background worker.

bgw_main_arg is the Datum argument to the background worker main function. This main function
should take a single argument of type Datum and return void. bgw_main_arg will be passed
as the argument. In addition, the global variable MyBgworkerEntry points to a copy of the
BackgroundWorker structure passed at registration time; the worker may find it helpful to examine
this structure.

On Windows (and anywhere else where EXEC_BACKEND is defined) or in dynamic background workers
it is not safe to pass a Datum by reference, only by value. If an argument is required, it is safest to pass an
int32 or other small value and use that as an index into an array allocated in shared memory. If a value like
a cstring or text is passed then the pointer won't be valid from the new background worker process.

bgw_extra can contain extra data to be passed to the background worker. Unlike bgw_main_arg,
this data is not passed as an argument to the worker's main function, but it can be accessed via
MyBgworkerEntry, as discussed above.

bgw_notify_pid is the PID of a PostgreSQL backend process to which the postmaster should send
SIGUSR1 when the process is started or exits. It should be 0 for workers registered at postmaster startup
time, or when the backend registering the worker does not wish to wait for the worker to start up. Otherwise,
it should be initialized to MyProcPid.

1399

Background Worker Processes

Once running, the process can connect to a database by calling
BackgroundWorkerInitializeConnection(char *dbname, char *username,
uint32 flags) or BackgroundWorkerInitializeConnectionByOid(Oid dboid, Oid
useroid, uint32 flags). This allows the process to run transactions and queries using the SPI
interface. If dbname is NULL or dboid is InvalidOid, the session is not connected to any particular
database, but shared catalogs can be accessed. If username is NULL or useroid is InvalidOid,
the process will run as the superuser created during initdb. If BGWORKER_BYPASS_ALLOWCONN
is specified as flags it is possible to bypass the restriction to connect to databases not allowing user
connections. A background worker can only call one of these two functions, and only once. It is not possible
to switch databases.

Signals are initially blocked when control reaches the background worker's main function, and must be
unblocked by it; this is to allow the process to customize its signal handlers, if necessary. Signals can
be unblocked in the new process by calling BackgroundWorkerUnblockSignals and blocked by
calling BackgroundWorkerBlockSignals.

If bgw_restart_time for a background worker is configured as BGW_NEVER_RESTART, or if it exits
with an exit code of 0 or is terminated by TerminateBackgroundWorker, it will be automatically
unregistered by the postmaster on exit. Otherwise, it will be restarted after the time period configured via
bgw_restart_time, or immediately if the postmaster reinitializes the cluster due to a backend failure.
Backends which need to suspend execution only temporarily should use an interruptible sleep rather than
exiting; this can be achieved by calling WaitLatch(). Make sure the WL_POSTMASTER_DEATH flag
is set when calling that function, and verify the return code for a prompt exit in the emergency case that
postgres itself has terminated.

When a background worker is registered using the RegisterDynamicBackgroundWorker
function, it is possible for the backend performing the registration to obtain information regarding the status
of the worker. Backends wishing to do this should pass the address of a BackgroundWorkerHandle
* as the second argument to RegisterDynamicBackgroundWorker. If the worker is
successfully registered, this pointer will be initialized with an opaque handle that can
subsequently be passed to GetBackgroundWorkerPid(BackgroundWorkerHandle *,
pid_t *) or TerminateBackgroundWorker(BackgroundWorkerHandle *).
GetBackgroundWorkerPid can be used to poll the status of the worker: a return value of
BGWH_NOT_YET_STARTED indicates that the worker has not yet been started by the postmaster;
BGWH_STOPPED indicates that it has been started but is no longer running; and BGWH_STARTED
indicates that it is currently running. In this last case, the PID will also be returned via the second
argument. TerminateBackgroundWorker causes the postmaster to send SIGTERM to the worker if
it is running, and to unregister it as soon as it is not.

In some cases, a process which registers a background worker may wish to wait for the
worker to start up. This can be accomplished by initializing bgw_notify_pid to MyProcPid
and then passing the BackgroundWorkerHandle * obtained at registration time to
WaitForBackgroundWorkerStartup(BackgroundWorkerHandle *handle, pid_t *)
function. This function will block until the postmaster has attempted to start the background worker, or
until the postmaster dies. If the background worker is running, the return value will be BGWH_STARTED,
and the PID will be written to the provided address. Otherwise, the return value will be BGWH_STOPPED
or BGWH_POSTMASTER_DIED.

A process can also wait for a background worker to shut down, by using the
WaitForBackgroundWorkerShutdown(BackgroundWorkerHandle *handle) function
and passing the BackgroundWorkerHandle * obtained at registration. This function will block until
the background worker exits, or postmaster dies. When the background worker exits, the return value is
BGWH_STOPPED, if postmaster dies it will return BGWH_POSTMASTER_DIED.

If a background worker sends asynchronous notifications with the NOTIFY command via the
Server Programming Interface (SPI), it should call ProcessCompletedNotifies explicitly after

1400

Background Worker Processes

committing the enclosing transaction so that any notifications can be delivered. If a background worker
registers to receive asynchronous notifications with the LISTEN through SPI, the worker will log
those notifications, but there is no programmatic way for the worker to intercept and respond to those
notifications.

The src/test/modules/worker_spi module contains a working example, which demonstrates
some useful techniques.

The maximum number of registered background workers is limited by max_worker_processes.

1401

Chapter 49. Logical Decoding
PostgreSQL provides infrastructure to stream the modifications performed via SQL to external consumers.
This functionality can be used for a variety of purposes, including replication solutions and auditing.

Changes are sent out in streams identified by logical replication slots.

The format in which those changes are streamed is determined by the output plugin used. An example
plugin is provided in the PostgreSQL distribution. Additional plugins can be written to extend the choice of
available formats without modifying any core code. Every output plugin has access to each individual new
row produced by INSERT and the new row version created by UPDATE. Availability of old row versions
for UPDATE and DELETE depends on the configured replica identity (see REPLICA IDENTITY).

Changes can be consumed either using the streaming replication protocol (see Section 53.4 and
Section 49.3), or by calling functions via SQL (see Section 49.4). It is also possible to write additional
methods of consuming the output of a replication slot without modifying core code (see Section 49.7).

49.1. Logical Decoding Examples
The following example demonstrates controlling logical decoding using the SQL interface.

Before you can use logical decoding, you must set wal_level to logical and max_replication_slots to at
least 1. Then, you should connect to the target database (in the example below, postgres) as a superuser.

postgres=# -- Create a slot named 'regression_slot' using the output
 plugin 'test_decoding'
postgres=# SELECT * FROM
 pg_create_logical_replication_slot('regression_slot',
 'test_decoding');
 slot_name | lsn
-----------------+-----------
 regression_slot | 0/16B1970
(1 row)

postgres=# SELECT slot_name, plugin, slot_type, database, active,
 restart_lsn, confirmed_flush_lsn FROM pg_replication_slots;
 slot_name | plugin | slot_type | database | active |
 restart_lsn | confirmed_flush_lsn
-----------------+---------------+-----------+----------+--------
+-------------+-----------------
 regression_slot | test_decoding | logical | postgres | f |
 0/16A4408 | 0/16A4440
(1 row)

postgres=# -- There are no changes to see yet
postgres=# SELECT * FROM
 pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# CREATE TABLE data(id serial primary key, data text);

1402

Logical Decoding

CREATE TABLE

postgres=# -- DDL isn't replicated, so all you'll see is the
 transaction
postgres=# SELECT * FROM
 pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+--------------
 0/BA2DA58 | 10297 | BEGIN 10297
 0/BA5A5A0 | 10297 | COMMIT 10297
(2 rows)

postgres=# -- Once changes are read, they're consumed and not emitted
postgres=# -- in a subsequent call:
postgres=# SELECT * FROM
 pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# BEGIN;
postgres=# INSERT INTO data(data) VALUES('1');
postgres=# INSERT INTO data(data) VALUES('2');
postgres=# COMMIT;

postgres=# SELECT * FROM
 pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data

-----------+-------
+---
 0/BA5A688 | 10298 | BEGIN 10298
 0/BA5A6F0 | 10298 | table public.data: INSERT: id[integer]:1
 data[text]:'1'
 0/BA5A7F8 | 10298 | table public.data: INSERT: id[integer]:2
 data[text]:'2'
 0/BA5A8A8 | 10298 | COMMIT 10298
(4 rows)

postgres=# INSERT INTO data(data) VALUES('3');

postgres=# -- You can also peek ahead in the change stream without
 consuming changes
postgres=# SELECT * FROM
 pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
 lsn | xid | data

-----------+-------
+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3
 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

1403

Logical Decoding

postgres=# -- The next call to pg_logical_slot_peek_changes() returns
 the same changes again
postgres=# SELECT * FROM
 pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
 lsn | xid | data

-----------+-------
+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3
 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- options can be passed to output plugin, to influence the
 formatting
postgres=# SELECT * FROM
 pg_logical_slot_peek_changes('regression_slot', NULL, NULL, 'include-
timestamp', 'on');
 lsn | xid | data

-----------+-------
+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3
 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299 (at 2017-05-10 12:07:21.272494-04)
(3 rows)

postgres=# -- Remember to destroy a slot you no longer need to stop it
 consuming
postgres=# -- server resources:
postgres=# SELECT pg_drop_replication_slot('regression_slot');
 pg_drop_replication_slot

(1 row)

The following example shows how logical decoding is controlled over the streaming replication
protocol, using the program pg_recvlogical included in the PostgreSQL distribution. This requires
that client authentication is set up to allow replication connections (see Section 26.2.5.1) and that
max_wal_senders is set sufficiently high to allow an additional connection.

$ pg_recvlogical -d postgres --slot=test --create-slot
$ pg_recvlogical -d postgres --slot=test --start -f -
Control+Z
$ psql -d postgres -c "INSERT INTO data(data) VALUES('4');"
$ fg
BEGIN 693
table public.data: INSERT: id[integer]:4 data[text]:'4'
COMMIT 693
Control+C

1404

Logical Decoding

$ pg_recvlogical -d postgres --slot=test --drop-slot

49.2. Logical Decoding Concepts

49.2.1. Logical Decoding
Logical decoding is the process of extracting all persistent changes to a database's tables into a coherent,
easy to understand format which can be interpreted without detailed knowledge of the database's internal
state.

In PostgreSQL, logical decoding is implemented by decoding the contents of the write-ahead log, which
describe changes on a storage level, into an application-specific form such as a stream of tuples or SQL
statements.

49.2.2. Replication Slots
In the context of logical replication, a slot represents a stream of changes that can be replayed to a client
in the order they were made on the origin server. Each slot streams a sequence of changes from a single
database.

Note

PostgreSQL also has streaming replication slots (see Section 26.2.5), but they are used somewhat
differently there.

A replication slot has an identifier that is unique across all databases in a PostgreSQL cluster. Slots persist
independently of the connection using them and are crash-safe.

A logical slot will emit each change just once in normal operation. The current position of each slot is
persisted only at checkpoint, so in the case of a crash the slot may return to an earlier LSN, which will
then cause recent changes to be resent when the server restarts. Logical decoding clients are responsible
for avoiding ill effects from handling the same message more than once. Clients may wish to record the
last LSN they saw when decoding and skip over any repeated data or (when using the replication protocol)
request that decoding start from that LSN rather than letting the server determine the start point. The
Replication Progress Tracking feature is designed for this purpose, refer to replication origins.

Multiple independent slots may exist for a single database. Each slot has its own state, allowing different
consumers to receive changes from different points in the database change stream. For most applications,
a separate slot will be required for each consumer.

A logical replication slot knows nothing about the state of the receiver(s). It's even possible to have multiple
different receivers using the same slot at different times; they'll just get the changes following on from
when the last receiver stopped consuming them. Only one receiver may consume changes from a slot at
any given time.

Caution

Replication slots persist across crashes and know nothing about the state of their consumer(s).
They will prevent removal of required resources even when there is no connection using them.
This consumes storage because neither required WAL nor required rows from the system catalogs
can be removed by VACUUM as long as they are required by a replication slot. In extreme cases this

1405

Logical Decoding

could cause the database to shut down to prevent transaction ID wraparound (see Section 24.1.5).
So if a slot is no longer required it should be dropped.

49.2.3. Output Plugins
Output plugins transform the data from the write-ahead log's internal representation into the format the
consumer of a replication slot desires.

49.2.4. Exported Snapshots
When a new replication slot is created using the streaming replication interface (see
CREATE_REPLICATION_SLOT), a snapshot is exported (see Section 9.26.5), which will show exactly
the state of the database after which all changes will be included in the change stream. This can be used to
create a new replica by using SET TRANSACTION SNAPSHOT to read the state of the database at the
moment the slot was created. This transaction can then be used to dump the database's state at that point
in time, which afterwards can be updated using the slot's contents without losing any changes.

Creation of a snapshot is not always possible. In particular, it will fail when connected to a hot standby.
Applications that do not require snapshot export may suppress it with the NOEXPORT_SNAPSHOT option.

49.3. Streaming Replication Protocol Interface
The commands

• CREATE_REPLICATION_SLOT slot_name LOGICAL output_plugin

• DROP_REPLICATION_SLOT slot_name [WAIT]

• START_REPLICATION SLOT slot_name LOGICAL ...

are used to create, drop, and stream changes from a replication slot, respectively. These commands are
only available over a replication connection; they cannot be used via SQL. See Section 53.4 for details
on these commands.

The command pg_recvlogical can be used to control logical decoding over a streaming replication
connection. (It uses these commands internally.)

49.4. Logical Decoding SQL Interface
See Section 9.26.6 for detailed documentation on the SQL-level API for interacting with logical decoding.

Synchronous replication (see Section 26.2.8) is only supported on replication slots used over the streaming
replication interface. The function interface and additional, non-core interfaces do not support synchronous
replication.

49.5. System Catalogs Related to Logical
Decoding

The pg_replication_slots view and the pg_stat_replication view provide information
about the current state of replication slots and streaming replication connections respectively. These views
apply to both physical and logical replication.

1406

Logical Decoding

49.6. Logical Decoding Output Plugins
An example output plugin can be found in the contrib/test_decoding subdirectory of the
PostgreSQL source tree.

49.6.1. Initialization Function
An output plugin is loaded by dynamically loading a shared library with the output plugin's name as the
library base name. The normal library search path is used to locate the library. To provide the required
output plugin callbacks and to indicate that the library is actually an output plugin it needs to provide a
function named _PG_output_plugin_init. This function is passed a struct that needs to be filled
with the callback function pointers for individual actions.

typedef struct OutputPluginCallbacks
{
 LogicalDecodeStartupCB startup_cb;
 LogicalDecodeBeginCB begin_cb;
 LogicalDecodeChangeCB change_cb;
 LogicalDecodeTruncateCB truncate_cb;
 LogicalDecodeCommitCB commit_cb;
 LogicalDecodeMessageCB message_cb;
 LogicalDecodeFilterByOriginCB filter_by_origin_cb;
 LogicalDecodeShutdownCB shutdown_cb;
} OutputPluginCallbacks;

typedef void (*LogicalOutputPluginInit) (struct OutputPluginCallbacks
 *cb);

The begin_cb, change_cb and commit_cb callbacks are required, while startup_cb,
filter_by_origin_cb, truncate_cb, and shutdown_cb are optional. If truncate_cb is
not set but a TRUNCATE is to be decoded, the action will be ignored.

49.6.2. Capabilities
To decode, format and output changes, output plugins can use most of the backend's normal infrastructure,
including calling output functions. Read only access to relations is permitted as long as only relations are
accessed that either have been created by initdb in the pg_catalog schema, or have been marked
as user provided catalog tables using

ALTER TABLE user_catalog_table SET (user_catalog_table = true);
CREATE TABLE another_catalog_table(data text) WITH (user_catalog_table
 = true);

Any actions leading to transaction ID assignment are prohibited. That, among others, includes writing to
tables, performing DDL changes, and calling txid_current().

49.6.3. Output Modes
Output plugin callbacks can pass data to the consumer in nearly arbitrary formats. For some use cases, like
viewing the changes via SQL, returning data in a data type that can contain arbitrary data (e.g., bytea)
is cumbersome. If the output plugin only outputs textual data in the server's encoding, it can declare that

1407

Logical Decoding

by setting OutputPluginOptions.output_type to OUTPUT_PLUGIN_TEXTUAL_OUTPUT
instead of OUTPUT_PLUGIN_BINARY_OUTPUT in the startup callback. In that case, all the data has to
be in the server's encoding so that a text datum can contain it. This is checked in assertion-enabled builds.

49.6.4. Output Plugin Callbacks
An output plugin gets notified about changes that are happening via various callbacks it needs to provide.

Concurrent transactions are decoded in commit order, and only changes belonging to a specific transaction
are decoded between the begin and commit callbacks. Transactions that were rolled back explicitly or
implicitly never get decoded. Successful savepoints are folded into the transaction containing them in the
order they were executed within that transaction.

Note

Only transactions that have already safely been flushed to disk will be decoded.
That can lead to a COMMIT not immediately being decoded in a directly following
pg_logical_slot_get_changes() when synchronous_commit is set to off.

49.6.4.1. Startup Callback

The optional startup_cb callback is called whenever a replication slot is created or asked to stream
changes, independent of the number of changes that are ready to be put out.

typedef void (*LogicalDecodeStartupCB) (struct LogicalDecodingContext
 *ctx,
 OutputPluginOptions *options,
 bool is_init);

The is_init parameter will be true when the replication slot is being created and false otherwise.
options points to a struct of options that output plugins can set:

typedef struct OutputPluginOptions
{
 OutputPluginOutputType output_type;
 bool receive_rewrites;
} OutputPluginOptions;

output_type has to either be set to OUTPUT_PLUGIN_TEXTUAL_OUTPUT or
OUTPUT_PLUGIN_BINARY_OUTPUT. See also Section 49.6.3. If receive_rewrites is true, the
output plugin will also be called for changes made by heap rewrites during certain DDL operations. These
are of interest to plugins that handle DDL replication, but they require special handling.

The startup callback should validate the options present in ctx->output_plugin_options. If the
output plugin needs to have a state, it can use ctx->output_plugin_private to store it.

49.6.4.2. Shutdown Callback

The optional shutdown_cb callback is called whenever a formerly active replication slot is not used
anymore and can be used to deallocate resources private to the output plugin. The slot isn't necessarily
being dropped, streaming is just being stopped.

1408

Logical Decoding

typedef void (*LogicalDecodeShutdownCB) (struct LogicalDecodingContext
 *ctx);

49.6.4.3. Transaction Begin Callback

The required begin_cb callback is called whenever a start of a committed transaction has been decoded.
Aborted transactions and their contents never get decoded.

typedef void (*LogicalDecodeBeginCB) (struct LogicalDecodingContext
 *ctx,
 ReorderBufferTXN *txn);

The txn parameter contains meta information about the transaction, like the time stamp at which it has
been committed and its XID.

49.6.4.4. Transaction End Callback

The required commit_cb callback is called whenever a transaction commit has been decoded. The
change_cb callbacks for all modified rows will have been called before this, if there have been any
modified rows.

typedef void (*LogicalDecodeCommitCB) (struct LogicalDecodingContext
 *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn);

49.6.4.5. Change Callback

The required change_cb callback is called for every individual row modification inside a transaction,
may it be an INSERT, UPDATE, or DELETE. Even if the original command modified several rows at once
the callback will be called individually for each row.

typedef void (*LogicalDecodeChangeCB) (struct LogicalDecodingContext
 *ctx,
 ReorderBufferTXN *txn,
 Relation relation,
 ReorderBufferChange *change);

The ctx and txn parameters have the same contents as for the begin_cb and commit_cb callbacks,
but additionally the relation descriptor relation points to the relation the row belongs to and a struct
change describing the row modification are passed in.

Note

Only changes in user defined tables that are not unlogged (see UNLOGGED) and not temporary (see
TEMPORARY or TEMP) can be extracted using logical decoding.

49.6.4.6. Truncate Callback

The truncate_cb callback is called for a TRUNCATE command.

1409

Logical Decoding

typedef void (*LogicalDecodeTruncateCB) (struct LogicalDecodingContext
 *ctx,
 ReorderBufferTXN *txn,
 int nrelations,
 Relation relations[],
 ReorderBufferChange *change);

The parameters are analogous to the change_cb callback. However, because TRUNCATE actions on
tables connected by foreign keys need to be executed together, this callback receives an array of relations
instead of just a single one. See the description of the TRUNCATE statement for details.

49.6.4.7. Origin Filter Callback

The optional filter_by_origin_cb callback is called to determine whether data that has been
replayed from origin_id is of interest to the output plugin.

typedef bool (*LogicalDecodeFilterByOriginCB) (struct
 LogicalDecodingContext *ctx,
 RepOriginId origin_id);

The ctx parameter has the same contents as for the other callbacks. No information but the origin is
available. To signal that changes originating on the passed in node are irrelevant, return true, causing them
to be filtered away; false otherwise. The other callbacks will not be called for transactions and changes
that have been filtered away.

This is useful when implementing cascading or multidirectional replication solutions. Filtering by the
origin allows to prevent replicating the same changes back and forth in such setups. While transactions
and changes also carry information about the origin, filtering via this callback is noticeably more efficient.

49.6.4.8. Generic Message Callback

The optional message_cb callback is called whenever a logical decoding message has been decoded.

typedef void (*LogicalDecodeMessageCB) (struct LogicalDecodingContext
 *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr message_lsn,
 bool transactional,
 const char *prefix,
 Size message_size,
 const char *message);

The txn parameter contains meta information about the transaction, like the time stamp at which it has
been committed and its XID. Note however that it can be NULL when the message is non-transactional
and the XID was not assigned yet in the transaction which logged the message. The lsn has WAL location
of the message. The transactional says if the message was sent as transactional or not. The prefix
is arbitrary null-terminated prefix which can be used for identifying interesting messages for the current
plugin. And finally the message parameter holds the actual message of message_size size.

Extra care should be taken to ensure that the prefix the output plugin considers interesting is unique. Using
name of the extension or the output plugin itself is often a good choice.

1410

Logical Decoding

49.6.5. Functions for Producing Output
To actually produce output, output plugins can write data to the StringInfo output buffer in ctx-
>out when inside the begin_cb, commit_cb, or change_cb callbacks. Before writing to the output
buffer, OutputPluginPrepareWrite(ctx, last_write) has to be called, and after finishing
writing to the buffer, OutputPluginWrite(ctx, last_write) has to be called to perform the
write. The last_write indicates whether a particular write was the callback's last write.

The following example shows how to output data to the consumer of an output plugin:

OutputPluginPrepareWrite(ctx, true);
appendStringInfo(ctx->out, "BEGIN %u", txn->xid);
OutputPluginWrite(ctx, true);

49.7. Logical Decoding Output Writers
It is possible to add more output methods for logical decoding. For details, see src/backend/
replication/logical/logicalfuncs.c. Essentially, three functions need to be provided: one
to read WAL, one to prepare writing output, and one to write the output (see Section 49.6.5).

49.8. Synchronous Replication Support for
Logical Decoding

Logical decoding can be used to build synchronous replication solutions with the same user interface
as synchronous replication for streaming replication. To do this, the streaming replication interface (see
Section 49.3) must be used to stream out data. Clients have to send Standby status update (F)
(see Section 53.4) messages, just like streaming replication clients do.

Note

A synchronous replica receiving changes via logical decoding will work in the scope of a single
database. Since, in contrast to that, synchronous_standby_names currently is server wide,
this means this technique will not work properly if more than one database is actively used.

1411

Chapter 50. Replication Progress
Tracking

Replication origins are intended to make it easier to implement logical replication solutions on top of
logical decoding. They provide a solution to two common problems:

• How to safely keep track of replication progress

• How to change replication behavior based on the origin of a row; for example, to prevent loops in bi-
directional replication setups

Replication origins have just two properties, a name and an OID. The name, which is what should be
used to refer to the origin across systems, is free-form text. It should be used in a way that makes
conflicts between replication origins created by different replication solutions unlikely; e.g. by prefixing
the replication solution's name to it. The OID is used only to avoid having to store the long version in
situations where space efficiency is important. It should never be shared across systems.

Replication origins can be created using the function pg_replication_origin_create();
dropped using pg_replication_origin_drop(); and seen in the pg_replication_origin
system catalog.

One nontrivial part of building a replication solution is to keep track of replay progress in a safe manner.
When the applying process, or the whole cluster, dies, it needs to be possible to find out up to where
data has successfully been replicated. Naive solutions to this, such as updating a row in a table for every
replayed transaction, have problems like run-time overhead and database bloat.

Using the replication origin infrastructure a session can be marked as replaying from a remote
node (using the pg_replication_origin_session_setup() function). Additionally the
LSN and commit time stamp of every source transaction can be configured on a per transaction
basis using pg_replication_origin_xact_setup(). If that's done replication progress will
persist in a crash safe manner. Replay progress for all replication origins can be seen in the
pg_replication_origin_status view. An individual origin's progress, e.g. when resuming
replication, can be acquired using pg_replication_origin_progress() for any origin or
pg_replication_origin_session_progress() for the origin configured in the current
session.

In replication topologies more complex than replication from exactly one system to one other system,
another problem can be that it is hard to avoid replicating replayed rows again. That can lead both to cycles
in the replication and inefficiencies. Replication origins provide an optional mechanism to recognize and
prevent that. When configured using the functions referenced in the previous paragraph, every change and
transaction passed to output plugin callbacks (see Section 49.6) generated by the session is tagged with
the replication origin of the generating session. This allows treating them differently in the output plugin,
e.g. ignoring all but locally-originating rows. Additionally the filter_by_origin_cb callback can
be used to filter the logical decoding change stream based on the source. While less flexible, filtering via
that callback is considerably more efficient than doing it in the output plugin.

1412

Part VI. Reference
The entries in this Reference are meant to provide in reasonable length an authoritative, complete, and formal summary
about their respective subjects. More information about the use of PostgreSQL, in narrative, tutorial, or example form,
can be found in other parts of this book. See the cross-references listed on each reference page.

The reference entries are also available as traditional “man” pages.

Table of Contents
I. SQL Commands ... 1419

ABORT .. 1423
ALTER AGGREGATE ... 1424
ALTER COLLATION .. 1426
ALTER CONVERSION ... 1428
ALTER DATABASE ... 1430
ALTER DEFAULT PRIVILEGES .. 1433
ALTER DOMAIN ... 1436
ALTER EVENT TRIGGER .. 1440
ALTER EXTENSION .. 1441
ALTER FOREIGN DATA WRAPPER ... 1445
ALTER FOREIGN TABLE ... 1447
ALTER FUNCTION .. 1452
ALTER GROUP .. 1456
ALTER INDEX ... 1458
ALTER LANGUAGE .. 1461
ALTER LARGE OBJECT ... 1462
ALTER MATERIALIZED VIEW .. 1463
ALTER OPERATOR ... 1465
ALTER OPERATOR CLASS .. 1467
ALTER OPERATOR FAMILY .. 1469
ALTER POLICY ... 1473
ALTER PROCEDURE ... 1475
ALTER PUBLICATION ... 1478
ALTER ROLE .. 1480
ALTER ROUTINE .. 1484
ALTER RULE .. 1486
ALTER SCHEMA ... 1487
ALTER SEQUENCE .. 1488
ALTER SERVER .. 1491
ALTER STATISTICS .. 1493
ALTER SUBSCRIPTION ... 1494
ALTER SYSTEM .. 1496
ALTER TABLE .. 1498
ALTER TABLESPACE .. 1515
ALTER TEXT SEARCH CONFIGURATION .. 1517
ALTER TEXT SEARCH DICTIONARY ... 1519
ALTER TEXT SEARCH PARSER ... 1521
ALTER TEXT SEARCH TEMPLATE .. 1522
ALTER TRIGGER .. 1523
ALTER TYPE ... 1525
ALTER USER .. 1529
ALTER USER MAPPING .. 1530
ALTER VIEW .. 1532
ANALYZE ... 1534
BEGIN ... 1537
CALL .. 1539
CHECKPOINT .. 1540
CLOSE .. 1541
CLUSTER .. 1543
COMMENT .. 1546

1414

Reference

COMMIT ... 1551
COMMIT PREPARED ... 1552
COPY .. 1553
CREATE ACCESS METHOD ... 1564
CREATE AGGREGATE .. 1565
CREATE CAST .. 1573
CREATE COLLATION .. 1578
CREATE CONVERSION ... 1581
CREATE DATABASE ... 1583
CREATE DOMAIN ... 1587
CREATE EVENT TRIGGER .. 1590
CREATE EXTENSION .. 1592
CREATE FOREIGN DATA WRAPPER ... 1595
CREATE FOREIGN TABLE .. 1597
CREATE FUNCTION .. 1601
CREATE GROUP ... 1609
CREATE INDEX .. 1610
CREATE LANGUAGE .. 1618
CREATE MATERIALIZED VIEW .. 1621
CREATE OPERATOR ... 1623
CREATE OPERATOR CLASS .. 1626
CREATE OPERATOR FAMILY ... 1629
CREATE POLICY ... 1630
CREATE PROCEDURE ... 1636
CREATE PUBLICATION ... 1640
CREATE ROLE .. 1642
CREATE RULE .. 1647
CREATE SCHEMA ... 1650
CREATE SEQUENCE ... 1653
CREATE SERVER .. 1657
CREATE STATISTICS .. 1659
CREATE SUBSCRIPTION ... 1661
CREATE TABLE .. 1664
CREATE TABLE AS ... 1686
CREATE TABLESPACE .. 1689
CREATE TEXT SEARCH CONFIGURATION .. 1691
CREATE TEXT SEARCH DICTIONARY .. 1693
CREATE TEXT SEARCH PARSER .. 1695
CREATE TEXT SEARCH TEMPLATE .. 1697
CREATE TRANSFORM .. 1699
CREATE TRIGGER .. 1702
CREATE TYPE .. 1709
CREATE USER .. 1718
CREATE USER MAPPING .. 1719
CREATE VIEW .. 1721
DEALLOCATE ... 1726
DECLARE ... 1727
DELETE .. 1731
DISCARD .. 1734
DO .. 1736
DROP ACCESS METHOD ... 1738
DROP AGGREGATE .. 1739
DROP CAST .. 1741
DROP COLLATION .. 1742

1415

Reference

DROP CONVERSION ... 1743
DROP DATABASE ... 1744
DROP DOMAIN ... 1745
DROP EVENT TRIGGER .. 1746
DROP EXTENSION .. 1747
DROP FOREIGN DATA WRAPPER ... 1749
DROP FOREIGN TABLE ... 1750
DROP FUNCTION .. 1751
DROP GROUP ... 1753
DROP INDEX .. 1754
DROP LANGUAGE .. 1756
DROP MATERIALIZED VIEW .. 1758
DROP OPERATOR ... 1759
DROP OPERATOR CLASS .. 1761
DROP OPERATOR FAMILY ... 1763
DROP OWNED .. 1765
DROP POLICY ... 1767
DROP PROCEDURE ... 1768
DROP PUBLICATION ... 1770
DROP ROLE .. 1771
DROP ROUTINE .. 1773
DROP RULE .. 1774
DROP SCHEMA ... 1775
DROP SEQUENCE ... 1777
DROP SERVER .. 1778
DROP STATISTICS .. 1779
DROP SUBSCRIPTION ... 1780
DROP TABLE .. 1782
DROP TABLESPACE .. 1783
DROP TEXT SEARCH CONFIGURATION .. 1784
DROP TEXT SEARCH DICTIONARY .. 1785
DROP TEXT SEARCH PARSER .. 1786
DROP TEXT SEARCH TEMPLATE .. 1787
DROP TRANSFORM .. 1788
DROP TRIGGER .. 1790
DROP TYPE .. 1791
DROP USER .. 1792
DROP USER MAPPING .. 1793
DROP VIEW .. 1794
END .. 1795
EXECUTE .. 1796
EXPLAIN ... 1797
FETCH .. 1802
GRANT ... 1806
IMPORT FOREIGN SCHEMA .. 1814
INSERT ... 1816
LISTEN ... 1824
LOAD .. 1826
LOCK .. 1827
MOVE ... 1830
NOTIFY ... 1832
PREPARE .. 1835
PREPARE TRANSACTION .. 1838
REASSIGN OWNED ... 1840

1416

Reference

REFRESH MATERIALIZED VIEW ... 1841
REINDEX .. 1843
RELEASE SAVEPOINT ... 1846
RESET ... 1848
REVOKE ... 1849
ROLLBACK ... 1853
ROLLBACK PREPARED ... 1854
ROLLBACK TO SAVEPOINT .. 1855
SAVEPOINT .. 1857
SECURITY LABEL ... 1859
SELECT ... 1862
SELECT INTO ... 1884
SET ... 1886
SET CONSTRAINTS ... 1889
SET ROLE ... 1891
SET SESSION AUTHORIZATION .. 1893
SET TRANSACTION .. 1895
SHOW ... 1898
START TRANSACTION .. 1900
TRUNCATE ... 1901
UNLISTEN ... 1904
UPDATE .. 1906
VACUUM .. 1911
VALUES .. 1914

II. PostgreSQL Client Applications ... 1917
clusterdb ... 1918
createdb .. 1921
createuser ... 1924
dropdb ... 1928
dropuser ... 1931
ecpg ... 1934
pg_basebackup .. 1936
pgbench .. 1944
pg_config ... 1961
pg_dump .. 1964
pg_dumpall ... 1977
pg_isready .. 1984
pg_receivewal ... 1986
pg_recvlogical ... 1990
pg_restore ... 1994
psql ... 2003
reindexdb .. 2045
vacuumdb ... 2048

III. PostgreSQL Server Applications ... 2052
initdb ... 2053
pg_archivecleanup .. 2058
pg_controldata ... 2060
pg_ctl ... 2061
pg_resetwal ... 2067
pg_rewind ... 2071
pg_test_fsync .. 2074
pg_test_timing ... 2075
pg_upgrade ... 2079
pg_verify_checksums .. 2087

1417

Reference

pg_waldump ... 2088
postgres .. 2090
postmaster .. 2098

1418

SQL Commands
This part contains reference information for the SQL commands supported by PostgreSQL. By “SQL”
the language in general is meant; information about the standards conformance and compatibility of each
command can be found on the respective reference page.

Table of Contents
ABORT .. 1423
ALTER AGGREGATE ... 1424
ALTER COLLATION .. 1426
ALTER CONVERSION ... 1428
ALTER DATABASE ... 1430
ALTER DEFAULT PRIVILEGES .. 1433
ALTER DOMAIN ... 1436
ALTER EVENT TRIGGER .. 1440
ALTER EXTENSION .. 1441
ALTER FOREIGN DATA WRAPPER ... 1445
ALTER FOREIGN TABLE ... 1447
ALTER FUNCTION .. 1452
ALTER GROUP .. 1456
ALTER INDEX ... 1458
ALTER LANGUAGE .. 1461
ALTER LARGE OBJECT .. 1462
ALTER MATERIALIZED VIEW .. 1463
ALTER OPERATOR ... 1465
ALTER OPERATOR CLASS .. 1467
ALTER OPERATOR FAMILY ... 1469
ALTER POLICY ... 1473
ALTER PROCEDURE ... 1475
ALTER PUBLICATION ... 1478
ALTER ROLE .. 1480
ALTER ROUTINE .. 1484
ALTER RULE .. 1486
ALTER SCHEMA ... 1487
ALTER SEQUENCE .. 1488
ALTER SERVER .. 1491
ALTER STATISTICS .. 1493
ALTER SUBSCRIPTION ... 1494
ALTER SYSTEM .. 1496
ALTER TABLE .. 1498
ALTER TABLESPACE .. 1515
ALTER TEXT SEARCH CONFIGURATION .. 1517
ALTER TEXT SEARCH DICTIONARY .. 1519
ALTER TEXT SEARCH PARSER ... 1521
ALTER TEXT SEARCH TEMPLATE .. 1522
ALTER TRIGGER .. 1523
ALTER TYPE ... 1525
ALTER USER .. 1529
ALTER USER MAPPING .. 1530
ALTER VIEW .. 1532

1419

SQL Commands

ANALYZE ... 1534
BEGIN ... 1537
CALL .. 1539
CHECKPOINT .. 1540
CLOSE .. 1541
CLUSTER .. 1543
COMMENT .. 1546
COMMIT ... 1551
COMMIT PREPARED ... 1552
COPY .. 1553
CREATE ACCESS METHOD ... 1564
CREATE AGGREGATE .. 1565
CREATE CAST .. 1573
CREATE COLLATION .. 1578
CREATE CONVERSION ... 1581
CREATE DATABASE ... 1583
CREATE DOMAIN ... 1587
CREATE EVENT TRIGGER .. 1590
CREATE EXTENSION .. 1592
CREATE FOREIGN DATA WRAPPER ... 1595
CREATE FOREIGN TABLE .. 1597
CREATE FUNCTION .. 1601
CREATE GROUP ... 1609
CREATE INDEX .. 1610
CREATE LANGUAGE .. 1618
CREATE MATERIALIZED VIEW .. 1621
CREATE OPERATOR ... 1623
CREATE OPERATOR CLASS .. 1626
CREATE OPERATOR FAMILY ... 1629
CREATE POLICY ... 1630
CREATE PROCEDURE ... 1636
CREATE PUBLICATION ... 1640
CREATE ROLE .. 1642
CREATE RULE .. 1647
CREATE SCHEMA ... 1650
CREATE SEQUENCE ... 1653
CREATE SERVER .. 1657
CREATE STATISTICS .. 1659
CREATE SUBSCRIPTION ... 1661
CREATE TABLE .. 1664
CREATE TABLE AS ... 1686
CREATE TABLESPACE .. 1689
CREATE TEXT SEARCH CONFIGURATION .. 1691
CREATE TEXT SEARCH DICTIONARY .. 1693
CREATE TEXT SEARCH PARSER .. 1695
CREATE TEXT SEARCH TEMPLATE .. 1697
CREATE TRANSFORM .. 1699
CREATE TRIGGER .. 1702
CREATE TYPE .. 1709
CREATE USER .. 1718
CREATE USER MAPPING .. 1719
CREATE VIEW .. 1721
DEALLOCATE ... 1726
DECLARE ... 1727

1420

SQL Commands

DELETE .. 1731
DISCARD .. 1734
DO .. 1736
DROP ACCESS METHOD ... 1738
DROP AGGREGATE .. 1739
DROP CAST .. 1741
DROP COLLATION .. 1742
DROP CONVERSION ... 1743
DROP DATABASE ... 1744
DROP DOMAIN ... 1745
DROP EVENT TRIGGER .. 1746
DROP EXTENSION .. 1747
DROP FOREIGN DATA WRAPPER ... 1749
DROP FOREIGN TABLE .. 1750
DROP FUNCTION .. 1751
DROP GROUP ... 1753
DROP INDEX .. 1754
DROP LANGUAGE .. 1756
DROP MATERIALIZED VIEW .. 1758
DROP OPERATOR ... 1759
DROP OPERATOR CLASS .. 1761
DROP OPERATOR FAMILY ... 1763
DROP OWNED .. 1765
DROP POLICY ... 1767
DROP PROCEDURE ... 1768
DROP PUBLICATION ... 1770
DROP ROLE .. 1771
DROP ROUTINE .. 1773
DROP RULE .. 1774
DROP SCHEMA ... 1775
DROP SEQUENCE ... 1777
DROP SERVER .. 1778
DROP STATISTICS .. 1779
DROP SUBSCRIPTION ... 1780
DROP TABLE .. 1782
DROP TABLESPACE .. 1783
DROP TEXT SEARCH CONFIGURATION .. 1784
DROP TEXT SEARCH DICTIONARY .. 1785
DROP TEXT SEARCH PARSER .. 1786
DROP TEXT SEARCH TEMPLATE .. 1787
DROP TRANSFORM .. 1788
DROP TRIGGER .. 1790
DROP TYPE .. 1791
DROP USER .. 1792
DROP USER MAPPING .. 1793
DROP VIEW .. 1794
END .. 1795
EXECUTE .. 1796
EXPLAIN ... 1797
FETCH .. 1802
GRANT ... 1806
IMPORT FOREIGN SCHEMA .. 1814
INSERT ... 1816
LISTEN ... 1824

1421

SQL Commands

LOAD .. 1826
LOCK .. 1827
MOVE ... 1830
NOTIFY ... 1832
PREPARE .. 1835
PREPARE TRANSACTION .. 1838
REASSIGN OWNED ... 1840
REFRESH MATERIALIZED VIEW ... 1841
REINDEX .. 1843
RELEASE SAVEPOINT ... 1846
RESET ... 1848
REVOKE ... 1849
ROLLBACK ... 1853
ROLLBACK PREPARED ... 1854
ROLLBACK TO SAVEPOINT .. 1855
SAVEPOINT .. 1857
SECURITY LABEL ... 1859
SELECT ... 1862
SELECT INTO ... 1884
SET ... 1886
SET CONSTRAINTS ... 1889
SET ROLE ... 1891
SET SESSION AUTHORIZATION .. 1893
SET TRANSACTION .. 1895
SHOW ... 1898
START TRANSACTION .. 1900
TRUNCATE ... 1901
UNLISTEN ... 1904
UPDATE .. 1906
VACUUM .. 1911
VALUES .. 1914

1422

ABORT
ABORT — abort the current transaction

Synopsis

ABORT [WORK | TRANSACTION]

Description
ABORT rolls back the current transaction and causes all the updates made by the transaction to be discarded.
This command is identical in behavior to the standard SQL command ROLLBACK, and is present only
for historical reasons.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ABORT outside of a transaction block emits a warning and otherwise has no effect.

Examples
To abort all changes:

ABORT;

Compatibility
This command is a PostgreSQL extension present for historical reasons. ROLLBACK is the equivalent
standard SQL command.

See Also
BEGIN, COMMIT, ROLLBACK

1423

ALTER AGGREGATE
ALTER AGGREGATE — change the definition of an aggregate function

Synopsis

ALTER AGGREGATE name (aggregate_signature) RENAME TO new_name
ALTER AGGREGATE name (aggregate_signature)
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER AGGREGATE name (aggregate_signature) SET SCHEMA new_schema

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode]
 [argname] argtype [, ...]

Description
ALTER AGGREGATE changes the definition of an aggregate function.

You must own the aggregate function to use ALTER AGGREGATE. To change the schema of an aggregate
function, you must also have CREATE privilege on the new schema. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE privilege on the
aggregate function's schema. (These restrictions enforce that altering the owner doesn't do anything you
couldn't do by dropping and recreating the aggregate function. However, a superuser can alter ownership
of any aggregate function anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing aggregate function.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that ALTER AGGREGATE does not actually pay any attention to
argument names, since only the argument data types are needed to determine the aggregate function's
identity.

argtype

An input data type on which the aggregate function operates. To reference a zero-argument aggregate
function, write * in place of the list of argument specifications. To reference an ordered-set aggregate
function, write ORDER BY between the direct and aggregated argument specifications.

1424

ALTER AGGREGATE

new_name

The new name of the aggregate function.

new_owner

The new owner of the aggregate function.

new_schema

The new schema for the aggregate function.

Notes
The recommended syntax for referencing an ordered-set aggregate is to write ORDER BY between the
direct and aggregated argument specifications, in the same style as in CREATE AGGREGATE. However,
it will also work to omit ORDER BY and just run the direct and aggregated argument specifications into
a single list. In this abbreviated form, if VARIADIC "any" was used in both the direct and aggregated
argument lists, write VARIADIC "any" only once.

Examples
To rename the aggregate function myavg for type integer to my_average:

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

To change the owner of the aggregate function myavg for type integer to joe:

ALTER AGGREGATE myavg(integer) OWNER TO joe;

To move the ordered-set aggregate mypercentile with direct argument of type float8 and
aggregated argument of type integer into schema myschema:

ALTER AGGREGATE mypercentile(float8 ORDER BY integer) SET SCHEMA
 myschema;

This will work too:

ALTER AGGREGATE mypercentile(float8, integer) SET SCHEMA myschema;

Compatibility
There is no ALTER AGGREGATE statement in the SQL standard.

See Also
CREATE AGGREGATE, DROP AGGREGATE

1425

ALTER COLLATION
ALTER COLLATION — change the definition of a collation

Synopsis

ALTER COLLATION name REFRESH VERSION

ALTER COLLATION name RENAME TO new_name
ALTER COLLATION name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER COLLATION name SET SCHEMA new_schema

Description
ALTER COLLATION changes the definition of a collation.

You must own the collation to use ALTER COLLATION. To alter the owner, you must also be a direct
or indirect member of the new owning role, and that role must have CREATE privilege on the collation's
schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping
and recreating the collation. However, a superuser can alter ownership of any collation anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing collation.

new_name

The new name of the collation.

new_owner

The new owner of the collation.

new_schema

The new schema for the collation.

REFRESH VERSION

Update the collation's version. See Notes below.

Notes
When using collations provided by the ICU library, the ICU-specific version of the collator is recorded in
the system catalog when the collation object is created. When the collation is used, the current version is
checked against the recorded version, and a warning is issued when there is a mismatch, for example:

1426

ALTER COLLATION

WARNING: collation "xx-x-icu" has version mismatch
DETAIL: The collation in the database was created using version
 1.2.3.4, but the operating system provides version 2.3.4.5.
HINT: Rebuild all objects affected by this collation and run ALTER
 COLLATION pg_catalog."xx-x-icu" REFRESH VERSION, or build PostgreSQL
 with the right library version.

A change in collation definitions can lead to corrupt indexes and other problems because the database
system relies on stored objects having a certain sort order. Generally, this should be avoided, but it can
happen in legitimate circumstances, such as when using pg_upgrade to upgrade to server binaries linked
with a newer version of ICU. When this happens, all objects depending on the collation should be rebuilt,
for example, using REINDEX. When that is done, the collation version can be refreshed using the command
ALTER COLLATION ... REFRESH VERSION. This will update the system catalog to record the
current collator version and will make the warning go away. Note that this does not actually check whether
all affected objects have been rebuilt correctly.

The following query can be used to identify all collations in the current database that need to be refreshed
and the objects that depend on them:

SELECT pg_describe_object(refclassid, refobjid, refobjsubid) AS
 "Collation",
 pg_describe_object(classid, objid, objsubid) AS "Object"
 FROM pg_depend d JOIN pg_collation c
 ON refclassid = 'pg_collation'::regclass AND refobjid = c.oid
 WHERE c.collversion <> pg_collation_actual_version(c.oid)
 ORDER BY 1, 2;

Examples
To rename the collation de_DE to german:

ALTER COLLATION "de_DE" RENAME TO german;

To change the owner of the collation en_US to joe:

ALTER COLLATION "en_US" OWNER TO joe;

Compatibility
There is no ALTER COLLATION statement in the SQL standard.

See Also
CREATE COLLATION, DROP COLLATION

1427

ALTER CONVERSION
ALTER CONVERSION — change the definition of a conversion

Synopsis

ALTER CONVERSION name RENAME TO new_name
ALTER CONVERSION name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER CONVERSION name SET SCHEMA new_schema

Description
ALTER CONVERSION changes the definition of a conversion.

You must own the conversion to use ALTER CONVERSION. To alter the owner, you must also be a direct
or indirect member of the new owning role, and that role must have CREATE privilege on the conversion's
schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping
and recreating the conversion. However, a superuser can alter ownership of any conversion anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing conversion.

new_name

The new name of the conversion.

new_owner

The new owner of the conversion.

new_schema

The new schema for the conversion.

Examples
To rename the conversion iso_8859_1_to_utf8 to latin1_to_unicode:

ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO latin1_to_unicode;

To change the owner of the conversion iso_8859_1_to_utf8 to joe:

ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;

1428

ALTER CONVERSION

Compatibility
There is no ALTER CONVERSION statement in the SQL standard.

See Also
CREATE CONVERSION, DROP CONVERSION

1429

ALTER DATABASE
ALTER DATABASE — change a database

Synopsis

ALTER DATABASE name [[WITH] option [...]]

where option can be:

 ALLOW_CONNECTIONS allowconn
 CONNECTION LIMIT connlimit
 IS_TEMPLATE istemplate

ALTER DATABASE name RENAME TO new_name

ALTER DATABASE name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }

ALTER DATABASE name SET TABLESPACE new_tablespace

ALTER DATABASE name SET configuration_parameter { TO | = } { value |
 DEFAULT }
ALTER DATABASE name SET configuration_parameter FROM CURRENT
ALTER DATABASE name RESET configuration_parameter
ALTER DATABASE name RESET ALL

Description
ALTER DATABASE changes the attributes of a database.

The first form changes certain per-database settings. (See below for details.) Only the database owner or
a superuser can change these settings.

The second form changes the name of the database. Only the database owner or a superuser can rename
a database; non-superuser owners must also have the CREATEDB privilege. The current database cannot
be renamed. (Connect to a different database if you need to do that.)

The third form changes the owner of the database. To alter the owner, you must own the database and also
be a direct or indirect member of the new owning role, and you must have the CREATEDB privilege. (Note
that superusers have all these privileges automatically.)

The fourth form changes the default tablespace of the database. Only the database owner or a superuser can
do this; you must also have create privilege for the new tablespace. This command physically moves any
tables or indexes in the database's old default tablespace to the new tablespace. The new default tablespace
must be empty for this database, and no one can be connected to the database. Tables and indexes in non-
default tablespaces are unaffected.

The remaining forms change the session default for a run-time configuration variable for a PostgreSQL
database. Whenever a new session is subsequently started in that database, the specified value
becomes the session default value. The database-specific default overrides whatever setting is present in

1430

ALTER DATABASE

postgresql.conf or has been received from the postgres command line. Only the database owner
or a superuser can change the session defaults for a database. Certain variables cannot be set this way, or
can only be set by a superuser.

Parameters
name

The name of the database whose attributes are to be altered.

allowconn

If false then no one can connect to this database.

connlimit

How many concurrent connections can be made to this database. -1 means no limit.

istemplate

If true, then this database can be cloned by any user with CREATEDB privileges; if false, then only
superusers or the owner of the database can clone it.

new_name

The new name of the database.

new_owner

The new owner of the database.

new_tablespace

The new default tablespace of the database.

This form of the command cannot be executed inside a transaction block.

configuration_parameter
value

Set this database's session default for the specified configuration parameter to the given value. If
value is DEFAULT or, equivalently, RESET is used, the database-specific setting is removed, so the
system-wide default setting will be inherited in new sessions. Use RESET ALL to clear all database-
specific settings. SET FROM CURRENT saves the session's current value of the parameter as the
database-specific value.

See SET and Chapter 19 for more information about allowed parameter names and values.

Notes
It is also possible to tie a session default to a specific role rather than to a database; see ALTER ROLE.
Role-specific settings override database-specific ones if there is a conflict.

Examples
To disable index scans by default in the database test:

1431

ALTER DATABASE

ALTER DATABASE test SET enable_indexscan TO off;

Compatibility
The ALTER DATABASE statement is a PostgreSQL extension.

See Also
CREATE DATABASE, DROP DATABASE, SET, CREATE TABLESPACE

1432

ALTER DEFAULT PRIVILEGES
ALTER DEFAULT PRIVILEGES — define default access privileges

Synopsis

ALTER DEFAULT PRIVILEGES
 [FOR { ROLE | USER } target_role [, ...]]
 [IN SCHEMA schema_name [, ...]]
 abbreviated_grant_or_revoke

where abbreviated_grant_or_revoke is one of:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTIONS | ROUTINES }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | CREATE | ALL [PRIVILEGES] }
 ON SCHEMAS
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

1433

ALTER DEFAULT PRIVILEGES

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTIONS | ROUTINES }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | CREATE | ALL [PRIVILEGES] }
 ON SCHEMAS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

Description

ALTER DEFAULT PRIVILEGES allows you to set the privileges that will be applied to objects
created in the future. (It does not affect privileges assigned to already-existing objects.) Currently, only
the privileges for schemas, tables (including views and foreign tables), sequences, functions, and types
(including domains) can be altered. For this command, functions include aggregates and procedures. The
words FUNCTIONS and ROUTINES are equivalent in this command. (ROUTINES is preferred going
forward as the standard term for functions and procedures taken together. In earlier PostgreSQL releases,
only the word FUNCTIONS was allowed. It is not possible to set default privileges for functions and
procedures separately.)

You can change default privileges only for objects that will be created by yourself or by roles that you are
a member of. The privileges can be set globally (i.e., for all objects created in the current database), or
just for objects created in specified schemas. Default privileges that are specified per-schema are added to
whatever the global default privileges are for the particular object type.

As explained under GRANT, the default privileges for any object type normally grant all grantable
permissions to the object owner, and may grant some privileges to PUBLIC as well. However, this behavior
can be changed by altering the global default privileges with ALTER DEFAULT PRIVILEGES.

Parameters

target_role

The name of an existing role of which the current role is a member. If FOR ROLE is omitted, the
current role is assumed.

schema_name

The name of an existing schema. If specified, the default privileges are altered for objects later created
in that schema. If IN SCHEMA is omitted, the global default privileges are altered. IN SCHEMA is
not allowed when using ON SCHEMAS as schemas can't be nested.

1434

ALTER DEFAULT PRIVILEGES

role_name

The name of an existing role to grant or revoke privileges for. This parameter, and all the other
parameters in abbreviated_grant_or_revoke, act as described under GRANT or REVOKE,
except that one is setting permissions for a whole class of objects rather than specific named objects.

Notes
Use psql's \ddp command to obtain information about existing assignments of default privileges. The
meaning of the privilege values is the same as explained for \dp under GRANT.

If you wish to drop a role for which the default privileges have been altered, it is necessary to reverse
the changes in its default privileges or use DROP OWNED BY to get rid of the default privileges entry
for the role.

Examples
Grant SELECT privilege to everyone for all tables (and views) you subsequently create in schema
myschema, and allow role webuser to INSERT into them too:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT ON TABLES TO
 PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT INSERT ON TABLES TO
 webuser;

Undo the above, so that subsequently-created tables won't have any more permissions than normal:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE SELECT ON TABLES
 FROM PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE INSERT ON TABLES
 FROM webuser;

Remove the public EXECUTE permission that is normally granted on functions, for all functions
subsequently created by role admin:

ALTER DEFAULT PRIVILEGES FOR ROLE admin REVOKE EXECUTE ON FUNCTIONS
 FROM PUBLIC;

Compatibility
There is no ALTER DEFAULT PRIVILEGES statement in the SQL standard.

See Also
GRANT, REVOKE

1435

ALTER DOMAIN
ALTER DOMAIN — change the definition of a domain

Synopsis

ALTER DOMAIN name
 { SET DEFAULT expression | DROP DEFAULT }
ALTER DOMAIN name
 { SET | DROP } NOT NULL
ALTER DOMAIN name
 ADD domain_constraint [NOT VALID]
ALTER DOMAIN name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT |
 CASCADE]
ALTER DOMAIN name
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER DOMAIN name
 VALIDATE CONSTRAINT constraint_name
ALTER DOMAIN name
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER DOMAIN name
 RENAME TO new_name
ALTER DOMAIN name
 SET SCHEMA new_schema

Description
ALTER DOMAIN changes the definition of an existing domain. There are several sub-forms:

SET/DROP DEFAULT

These forms set or remove the default value for a domain. Note that defaults only apply to subsequent
INSERT commands; they do not affect rows already in a table using the domain.

SET/DROP NOT NULL

These forms change whether a domain is marked to allow NULL values or to reject NULL values.
You can only SET NOT NULL when the columns using the domain contain no null values.

ADD domain_constraint [NOT VALID]

This form adds a new constraint to a domain using the same syntax as CREATE DOMAIN. When
a new constraint is added to a domain, all columns using that domain will be checked against the
newly added constraint. These checks can be suppressed by adding the new constraint using the NOT
VALID option; the constraint can later be made valid using ALTER DOMAIN ... VALIDATE
CONSTRAINT. Newly inserted or updated rows are always checked against all constraints, even those
marked NOT VALID. NOT VALID is only accepted for CHECK constraints.

DROP CONSTRAINT [IF EXISTS]

This form drops constraints on a domain. If IF EXISTS is specified and the constraint does not exist,
no error is thrown. In this case a notice is issued instead.

1436

ALTER DOMAIN

RENAME CONSTRAINT

This form changes the name of a constraint on a domain.

VALIDATE CONSTRAINT

This form validates a constraint previously added as NOT VALID, that is, verify that all data in
columns using the domain satisfy the specified constraint.

OWNER

This form changes the owner of the domain to the specified user.

RENAME

This form changes the name of the domain.

SET SCHEMA

This form changes the schema of the domain. Any constraints associated with the domain are moved
into the new schema as well.

You must own the domain to use ALTER DOMAIN. To change the schema of a domain, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the domain's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the domain. However, a superuser can alter ownership of any domain anyway.)

Parameters
name

The name (possibly schema-qualified) of an existing domain to alter.

domain_constraint

New domain constraint for the domain.

constraint_name

Name of an existing constraint to drop or rename.

NOT VALID

Do not verify existing column data for constraint validity.

CASCADE

Automatically drop objects that depend on the constraint, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the constraint if there are any dependent objects. This is the default behavior.

new_name

The new name for the domain.

1437

ALTER DOMAIN

new_constraint_name

The new name for the constraint.

new_owner

The user name of the new owner of the domain.

new_schema

The new schema for the domain.

Notes
Currently, ALTER DOMAIN ADD CONSTRAINT, ALTER DOMAIN VALIDATE CONSTRAINT, and
ALTER DOMAIN SET NOT NULL will fail if the named domain or any derived domain is used within
a container-type column (a composite, array, or range column) in any table in the database. They should
eventually be improved to be able to verify the new constraint for such nested values.

Examples
To add a NOT NULL constraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

To remove a NOT NULL constraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK (char_length(VALUE) =
 5);

To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

To rename a check constraint on a domain:

ALTER DOMAIN zipcode RENAME CONSTRAINT zipchk TO zip_check;

To move the domain into a different schema:

ALTER DOMAIN zipcode SET SCHEMA customers;

Compatibility
ALTER DOMAIN conforms to the SQL standard, except for the OWNER, RENAME, SET SCHEMA, and
VALIDATE CONSTRAINT variants, which are PostgreSQL extensions. The NOT VALID clause of the
ADD CONSTRAINT variant is also a PostgreSQL extension.

1438

ALTER DOMAIN

See Also
CREATE DOMAIN, DROP DOMAIN

1439

ALTER EVENT TRIGGER
ALTER EVENT TRIGGER — change the definition of an event trigger

Synopsis

ALTER EVENT TRIGGER name DISABLE
ALTER EVENT TRIGGER name ENABLE [REPLICA | ALWAYS]
ALTER EVENT TRIGGER name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER EVENT TRIGGER name RENAME TO new_name

Description
ALTER EVENT TRIGGER changes properties of an existing event trigger.

You must be superuser to alter an event trigger.

Parameters
name

The name of an existing trigger to alter.

new_owner

The user name of the new owner of the event trigger.

new_name

The new name of the event trigger.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of event triggers. A disabled trigger is still known to the system, but
is not executed when its triggering event occurs. See also session_replication_role.

Compatibility
There is no ALTER EVENT TRIGGER statement in the SQL standard.

See Also
CREATE EVENT TRIGGER, DROP EVENT TRIGGER

1440

ALTER EXTENSION
ALTER EXTENSION — change the definition of an extension

Synopsis

ALTER EXTENSION name UPDATE [TO new_version]
ALTER EXTENSION name SET SCHEMA new_schema
ALTER EXTENSION name ADD member_object
ALTER EXTENSION name DROP member_object

where member_object is:

 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 CONVERSION object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype
 [, ...]])] |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype
 [, ...]])] |
 ROUTINE routine_name [([[argmode] [argname] argtype
 [, ...]])] |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 TABLE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TYPE object_name |
 VIEW object_name

and aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |

1441

ALTER EXTENSION

[[argmode] [argname] argtype [, ...]] ORDER BY [argmode]
 [argname] argtype [, ...]

Description
ALTER EXTENSION changes the definition of an installed extension. There are several subforms:

UPDATE

This form updates the extension to a newer version. The extension must supply a suitable update script
(or series of scripts) that can modify the currently-installed version into the requested version.

SET SCHEMA

This form moves the extension's objects into another schema. The extension has to be relocatable for
this command to succeed.

ADD member_object

This form adds an existing object to the extension. This is mainly useful in extension update scripts.
The object will subsequently be treated as a member of the extension; notably, it can only be dropped
by dropping the extension.

DROP member_object

This form removes a member object from the extension. This is mainly useful in extension update
scripts. The object is not dropped, only disassociated from the extension.

See Section 38.16 for more information about these operations.

You must own the extension to use ALTER EXTENSION. The ADD/DROP forms require ownership of
the added/dropped object as well.

Parameters
name

The name of an installed extension.

new_version

The desired new version of the extension. This can be written as either an identifier or a string literal.
If not specified, ALTER EXTENSION UPDATE attempts to update to whatever is shown as the
default version in the extension's control file.

new_schema

The new schema for the extension.

object_name
aggregate_name
function_name
operator_name
procedure_name
routine_name

The name of an object to be added to or removed from the extension. Names of tables, aggregates,
domains, foreign tables, functions, operators, operator classes, operator families, procedures, routines,
sequences, text search objects, types, and views can be schema-qualified.

1442

ALTER EXTENSION

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If
omitted, the default is IN. Note that ALTER EXTENSION does not actually pay any attention to OUT
arguments, since only the input arguments are needed to determine the function's identity. So it is
sufficient to list the IN, INOUT, and VARIADIC arguments.

argname

The name of a function, procedure, or aggregate argument. Note that ALTER EXTENSION does
not actually pay any attention to argument names, since only the argument data types are needed to
determine the function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

left_type
right_type

The data type(s) of the operator's arguments (optionally schema-qualified). Write NONE for the
missing argument of a prefix or postfix operator.

PROCEDURAL

This is a noise word.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

Examples
To update the hstore extension to version 2.0:

ALTER EXTENSION hstore UPDATE TO '2.0';

To change the schema of the hstore extension to utils:

ALTER EXTENSION hstore SET SCHEMA utils;

To add an existing function to the hstore extension:

1443

ALTER EXTENSION

ALTER EXTENSION hstore ADD FUNCTION populate_record(anyelement,
 hstore);

Compatibility
ALTER EXTENSION is a PostgreSQL extension.

See Also
CREATE EXTENSION, DROP EXTENSION

1444

ALTER FOREIGN DATA WRAPPER
ALTER FOREIGN DATA WRAPPER — change the definition of a foreign-data wrapper

Synopsis

ALTER FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]
ALTER FOREIGN DATA WRAPPER name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER FOREIGN DATA WRAPPER name RENAME TO new_name

Description
ALTER FOREIGN DATA WRAPPER changes the definition of a foreign-data wrapper. The first form
of the command changes the support functions or the generic options of the foreign-data wrapper (at least
one clause is required). The second form changes the owner of the foreign-data wrapper.

Only superusers can alter foreign-data wrappers. Additionally, only superusers can own foreign-data
wrappers.

Parameters
name

The name of an existing foreign-data wrapper.

HANDLER handler_function

Specifies a new handler function for the foreign-data wrapper.

NO HANDLER

This is used to specify that the foreign-data wrapper should no longer have a handler function.

Note that foreign tables that use a foreign-data wrapper with no handler cannot be accessed.

VALIDATOR validator_function

Specifies a new validator function for the foreign-data wrapper.

Note that it is possible that pre-existing options of the foreign-data wrapper, or of dependent servers,
user mappings, or foreign tables, are invalid according to the new validator. PostgreSQL does not
check for this. It is up to the user to make sure that these options are correct before using the modified
foreign-data wrapper. However, any options specified in this ALTER FOREIGN DATA WRAPPER
command will be checked using the new validator.

NO VALIDATOR

This is used to specify that the foreign-data wrapper should no longer have a validator function.

1445

ALTER FOREIGN
DATA WRAPPER

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the foreign-data wrapper. ADD, SET, and DROP specify the action to be performed.
ADD is assumed if no operation is explicitly specified. Option names must be unique; names and
values are also validated using the foreign data wrapper's validator function, if any.

new_owner

The user name of the new owner of the foreign-data wrapper.

new_name

The new name for the foreign-data wrapper.

Examples
Change a foreign-data wrapper dbi, add option foo, drop bar:

ALTER FOREIGN DATA WRAPPER dbi OPTIONS (ADD foo '1', DROP 'bar');

Change the foreign-data wrapper dbi validator to bob.myvalidator:

ALTER FOREIGN DATA WRAPPER dbi VALIDATOR bob.myvalidator;

Compatibility
ALTER FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), except that the
HANDLER, VALIDATOR, OWNER TO, and RENAME clauses are extensions.

See Also
CREATE FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER

1446

ALTER FOREIGN TABLE
ALTER FOREIGN TABLE — change the definition of a foreign table

Synopsis

ALTER FOREIGN TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER FOREIGN TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER FOREIGN TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER FOREIGN TABLE [IF EXISTS] name
 SET SCHEMA new_schema

where action is one of:

 ADD [COLUMN] column_name data_type [COLLATE collation]
 [column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type
 [COLLATE collation]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value
 [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL |
 EXTENDED | MAIN }
 ALTER [COLUMN] column_name OPTIONS ([ADD | SET | DROP] option
 ['value'] [, ...])
 ADD table_constraint [NOT VALID]
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT |
 CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 SET WITH OIDS
 SET WITHOUT OIDS
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

1447

ALTER FOREIGN TABLE

Description
ALTER FOREIGN TABLE changes the definition of an existing foreign table. There are several subforms:

ADD COLUMN

This form adds a new column to the foreign table, using the same syntax as CREATE FOREIGN
TABLE. Unlike the case when adding a column to a regular table, nothing happens to the underlying
storage: this action simply declares that some new column is now accessible through the foreign table.

DROP COLUMN [IF EXISTS]

This form drops a column from a foreign table. You will need to say CASCADE if anything outside
the table depends on the column; for example, views. If IF EXISTS is specified and the column
does not exist, no error is thrown. In this case a notice is issued instead.

SET DATA TYPE

This form changes the type of a column of a foreign table. Again, this has no effect on any underlying
storage: this action simply changes the type that PostgreSQL believes the column to have.

SET/DROP DEFAULT

These forms set or remove the default value for a column. Default values only apply in subsequent
INSERT or UPDATE commands; they do not cause rows already in the table to change.

SET/DROP NOT NULL

Mark a column as allowing, or not allowing, null values.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations. See
the similar form of ALTER TABLE for more details.

SET (attribute_option = value [, ...])
RESET (attribute_option [, ...])

This form sets or resets per-attribute options. See the similar form of ALTER TABLE for more details.

SET STORAGE

This form sets the storage mode for a column. See the similar form of ALTER TABLE for more
details. Note that the storage mode has no effect unless the table's foreign-data wrapper chooses to
pay attention to it.

ADD table_constraint [NOT VALID]

This form adds a new constraint to a foreign table, using the same syntax as CREATE FOREIGN
TABLE. Currently only CHECK constraints are supported.

Unlike the case when adding a constraint to a regular table, nothing is done to verify the constraint
is correct; rather, this action simply declares that some new condition should be assumed to hold for
all rows in the foreign table. (See the discussion in CREATE FOREIGN TABLE.) If the constraint is
marked NOT VALID, then it isn't assumed to hold, but is only recorded for possible future use.

1448

ALTER FOREIGN TABLE

VALIDATE CONSTRAINT

This form marks as valid a constraint that was previously marked as NOT VALID. No action is taken
to verify the constraint, but future queries will assume that it holds.

DROP CONSTRAINT [IF EXISTS]

This form drops the specified constraint on a foreign table. If IF EXISTS is specified and the
constraint does not exist, no error is thrown. In this case a notice is issued instead.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of trigger(s) belonging to the foreign table. See the similar form of
ALTER TABLE for more details.

SET WITH OIDS

This form adds an oid system column to the table (see Section 5.4). It does nothing if the table
already has OIDs. Unless the table's foreign-data wrapper supports OIDs, this column will simply
read as zeroes.

Note that this is not equivalent to ADD COLUMN oid oid; that would add a normal column that
happened to be named oid, not a system column.

SET WITHOUT OIDS

This form removes the oid system column from the table. This is exactly equivalent to DROP
COLUMN oid RESTRICT, except that it will not complain if there is already no oid column.

INHERIT parent_table

This form adds the target foreign table as a new child of the specified parent table. See the similar
form of ALTER TABLE for more details.

NO INHERIT parent_table

This form removes the target foreign table from the list of children of the specified parent table.

OWNER

This form changes the owner of the foreign table to the specified user.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the foreign table or one of its columns. ADD, SET, and DROP specify the action
to be performed. ADD is assumed if no operation is explicitly specified. Duplicate option names are
not allowed (although it's OK for a table option and a column option to have the same name). Option
names and values are also validated using the foreign data wrapper library.

RENAME

The RENAME forms change the name of a foreign table or the name of an individual column in a
foreign table.

SET SCHEMA

This form moves the foreign table into another schema.

1449

ALTER FOREIGN TABLE

All the actions except RENAME and SET SCHEMA can be combined into a list of multiple alterations
to apply in parallel. For example, it is possible to add several columns and/or alter the type of several
columns in a single command.

If the command is written as ALTER FOREIGN TABLE IF EXISTS ... and the foreign table does
not exist, no error is thrown. A notice is issued in this case.

You must own the table to use ALTER FOREIGN TABLE. To change the schema of a foreign table, you
must also have CREATE privilege on the new schema. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the table's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the table. However, a superuser can alter ownership of any table anyway.) To add a column or
alter a column type, you must also have USAGE privilege on the data type.

Parameters
name

The name (possibly schema-qualified) of an existing foreign table to alter. If ONLY is specified before
the table name, only that table is altered. If ONLY is not specified, the table and all its descendant
tables (if any) are altered. Optionally, * can be specified after the table name to explicitly indicate
that descendant tables are included.

column_name

Name of a new or existing column.

new_column_name

New name for an existing column.

new_name

New name for the table.

data_type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the foreign table.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column), and in turn all objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default behavior.

trigger_name

Name of a single trigger to disable or enable.

1450

ALTER FOREIGN TABLE

ALL

Disable or enable all triggers belonging to the foreign table. (This requires superuser privilege if any
of the triggers are internally generated triggers. The core system does not add such triggers to foreign
tables, but add-on code could do so.)

USER

Disable or enable all triggers belonging to the foreign table except for internally generated triggers.

parent_table

A parent table to associate or de-associate with this foreign table.

new_owner

The user name of the new owner of the table.

new_schema

The name of the schema to which the table will be moved.

Notes
The key word COLUMN is noise and can be omitted.

Consistency with the foreign server is not checked when a column is added or removed with ADD COLUMN
or DROP COLUMN, a NOT NULL or CHECK constraint is added, or a column type is changed with SET
DATA TYPE. It is the user's responsibility to ensure that the table definition matches the remote side.

Refer to CREATE FOREIGN TABLE for a further description of valid parameters.

Examples
To mark a column as not-null:

ALTER FOREIGN TABLE distributors ALTER COLUMN street SET NOT NULL;

To change options of a foreign table:

ALTER FOREIGN TABLE myschema.distributors OPTIONS (ADD opt1 'value',
 SET opt2 'value2', DROP opt3 'value3');

Compatibility
The forms ADD, DROP, and SET DATA TYPE conform with the SQL standard. The other forms are
PostgreSQL extensions of the SQL standard. Also, the ability to specify more than one manipulation in a
single ALTER FOREIGN TABLE command is an extension.

ALTER FOREIGN TABLE DROP COLUMN can be used to drop the only column of a foreign table,
leaving a zero-column table. This is an extension of SQL, which disallows zero-column foreign tables.

See Also
CREATE FOREIGN TABLE, DROP FOREIGN TABLE

1451

ALTER FUNCTION
ALTER FUNCTION — change the definition of a function

Synopsis

ALTER FUNCTION name [([[argmode] [argname] argtype
 [, ...]])]
 action [...] [RESTRICT]
ALTER FUNCTION name [([[argmode] [argname] argtype
 [, ...]])]
 RENAME TO new_name
ALTER FUNCTION name [([[argmode] [argname] argtype
 [, ...]])]
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER FUNCTION name [([[argmode] [argname] argtype
 [, ...]])]
 SET SCHEMA new_schema
ALTER FUNCTION name [([[argmode] [argname] argtype
 [, ...]])]
 DEPENDS ON EXTENSION extension_name

where action is one of:

 CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 PARALLEL { UNSAFE | RESTRICTED | SAFE }
 COST execution_cost
 ROWS result_rows
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER FUNCTION changes the definition of a function.

You must own the function to use ALTER FUNCTION. To change a function's schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the function's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the function. However, a superuser can alter ownership of any function anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing function. If no argument list is specified, the
name must be unique in its schema.

1452

ALTER FUNCTION

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note that
ALTER FUNCTION does not actually pay any attention to OUT arguments, since only the input
arguments are needed to determine the function's identity. So it is sufficient to list the IN, INOUT,
and VARIADIC arguments.

argname

The name of an argument. Note that ALTER FUNCTION does not actually pay any attention to
argument names, since only the argument data types are needed to determine the function's identity.

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.

new_name

The new name of the function.

new_owner

The new owner of the function. Note that if the function is marked SECURITY DEFINER, it will
subsequently execute as the new owner.

new_schema

The new schema for the function.

extension_name

The name of the extension that the function is to depend on.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT changes the function so that it will be invoked when some or all of its
arguments are null. RETURNS NULL ON NULL INPUT or STRICT changes the function so that
it is not invoked if any of its arguments are null; instead, a null result is assumed automatically. See
CREATE FUNCTION for more information.

IMMUTABLE
STABLE
VOLATILE

Change the volatility of the function to the specified setting. See CREATE FUNCTION for details.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the function is a security definer or not. The key word EXTERNAL is ignored for
SQL conformance. See CREATE FUNCTION for more information about this capability.

PARALLEL

Change whether the function is deemed safe for parallelism. See CREATE FUNCTION for details.

1453

ALTER FUNCTION

LEAKPROOF

Change whether the function is considered leakproof or not. See CREATE FUNCTION for more
information about this capability.

COST execution_cost

Change the estimated execution cost of the function. See CREATE FUNCTION for more information.

ROWS result_rows

Change the estimated number of rows returned by a set-returning function. See CREATE FUNCTION
for more information.

configuration_parameter
value

Add or change the assignment to be made to a configuration parameter when the function is called. If
value is DEFAULT or, equivalently, RESET is used, the function-local setting is removed, so that
the function executes with the value present in its environment. Use RESET ALL to clear all function-
local settings. SET FROM CURRENT saves the value of the parameter that is current when ALTER
FUNCTION is executed as the value to be applied when the function is entered.

See SET and Chapter 19 for more information about allowed parameter names and values.

RESTRICT

Ignored for conformance with the SQL standard.

Examples
To rename the function sqrt for type integer to square_root:

ALTER FUNCTION sqrt(integer) RENAME TO square_root;

To change the owner of the function sqrt for type integer to joe:

ALTER FUNCTION sqrt(integer) OWNER TO joe;

To change the schema of the function sqrt for type integer to maths:

ALTER FUNCTION sqrt(integer) SET SCHEMA maths;

To mark the function sqrt for type integer as being dependent on the extension mathlib:

ALTER FUNCTION sqrt(integer) DEPENDS ON EXTENSION mathlib;

To adjust the search path that is automatically set for a function:

ALTER FUNCTION check_password(text) SET search_path = admin, pg_temp;

To disable automatic setting of search_path for a function:

1454

ALTER FUNCTION

ALTER FUNCTION check_password(text) RESET search_path;

The function will now execute with whatever search path is used by its caller.

Compatibility
This statement is partially compatible with the ALTER FUNCTION statement in the SQL standard. The
standard allows more properties of a function to be modified, but does not provide the ability to rename a
function, make a function a security definer, attach configuration parameter values to a function, or change
the owner, schema, or volatility of a function. The standard also requires the RESTRICT key word, which
is optional in PostgreSQL.

See Also
CREATE FUNCTION, DROP FUNCTION, ALTER PROCEDURE, ALTER ROUTINE

1455

ALTER GROUP
ALTER GROUP — change role name or membership

Synopsis

ALTER GROUP role_specification ADD USER user_name [, ...]
ALTER GROUP role_specification DROP USER user_name [, ...]

where role_specification can be:

 role_name
 | CURRENT_USER
 | SESSION_USER

ALTER GROUP group_name RENAME TO new_name

Description
ALTER GROUP changes the attributes of a user group. This is an obsolete command, though still accepted
for backwards compatibility, because groups (and users too) have been superseded by the more general
concept of roles.

The first two variants add users to a group or remove them from a group. (Any role can play the part
of either a “user” or a “group” for this purpose.) These variants are effectively equivalent to granting or
revoking membership in the role named as the “group”; so the preferred way to do this is to use GRANT
or REVOKE.

The third variant changes the name of the group. This is exactly equivalent to renaming the role with
ALTER ROLE.

Parameters
group_name

The name of the group (role) to modify.

user_name

Users (roles) that are to be added to or removed from the group. The users must already exist; ALTER
GROUP does not create or drop users.

new_name

The new name of the group.

Examples
Add users to a group:

1456

ALTER GROUP

ALTER GROUP staff ADD USER karl, john;

Remove a user from a group:

ALTER GROUP workers DROP USER beth;

Compatibility
There is no ALTER GROUP statement in the SQL standard.

See Also
GRANT, REVOKE, ALTER ROLE

1457

ALTER INDEX
ALTER INDEX — change the definition of an index

Synopsis

ALTER INDEX [IF EXISTS] name RENAME TO new_name
ALTER INDEX [IF EXISTS] name SET TABLESPACE tablespace_name
ALTER INDEX name ATTACH PARTITION index_name
ALTER INDEX name DEPENDS ON EXTENSION extension_name
ALTER INDEX [IF EXISTS] name SET (storage_parameter = value
 [, ...])
ALTER INDEX [IF EXISTS] name RESET (storage_parameter [, ...])
ALTER INDEX [IF EXISTS] name ALTER [COLUMN] column_number
 SET STATISTICS integer
ALTER INDEX ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

Description
ALTER INDEX changes the definition of an existing index. There are several subforms:

RENAME

The RENAME form changes the name of the index. If the index is associated with a table constraint
(either UNIQUE, PRIMARY KEY, or EXCLUDE), the constraint is renamed as well. There is no effect
on the stored data.

SET TABLESPACE

This form changes the index's tablespace to the specified tablespace and moves the data file(s)
associated with the index to the new tablespace. To change the tablespace of an index, you must own
the index and have CREATE privilege on the new tablespace. All indexes in the current database in
a tablespace can be moved by using the ALL IN TABLESPACE form, which will lock all indexes
to be moved and then move each one. This form also supports OWNED BY, which will only move
indexes owned by the roles specified. If the NOWAIT option is specified then the command will fail
if it is unable to acquire all of the locks required immediately. Note that system catalogs will not be
moved by this command, use ALTER DATABASE or explicit ALTER INDEX invocations instead
if desired. See also CREATE TABLESPACE.

ATTACH PARTITION

Causes the named index to become attached to the altered index. The named index must be on a
partition of the table containing the index being altered, and have an equivalent definition. An attached
index cannot be dropped by itself, and will automatically be dropped if its parent index is dropped.

DEPENDS ON EXTENSION

This form marks the index as dependent on the extension, such that if the extension is dropped, the
index will automatically be dropped as well.

1458

ALTER INDEX

SET (storage_parameter = value [, ...])

This form changes one or more index-method-specific storage parameters for the index. See CREATE
INDEX for details on the available parameters. Note that the index contents will not be modified
immediately by this command; depending on the parameter you might need to rebuild the index with
REINDEX to get the desired effects.

RESET (storage_parameter [, ...])

This form resets one or more index-method-specific storage parameters to their defaults. As with SET,
a REINDEX might be needed to update the index entirely.

ALTER [COLUMN] column_number SET STATISTICS integer

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations,
though can be used only on index columns that are defined as an expression. Since expressions lack
a unique name, we refer to them using the ordinal number of the index column. The target can be set
in the range 0 to 10000; alternatively, set it to -1 to revert to using the system default statistics target
(default_statistics_target). For more information on the use of statistics by the PostgreSQL query
planner, refer to Section 14.2.

Parameters
IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

column_number

The ordinal number refers to the ordinal (left-to-right) position of the index column.

name

The name (possibly schema-qualified) of an existing index to alter.

new_name

The new name for the index.

tablespace_name

The tablespace to which the index will be moved.

extension_name

The name of the extension that the index is to depend on.

storage_parameter

The name of an index-method-specific storage parameter.

value

The new value for an index-method-specific storage parameter. This might be a number or a word
depending on the parameter.

1459

ALTER INDEX

Notes
These operations are also possible using ALTER TABLE. ALTER INDEX is in fact just an alias for the
forms of ALTER TABLE that apply to indexes.

There was formerly an ALTER INDEX OWNER variant, but this is now ignored (with a warning). An
index cannot have an owner different from its table's owner. Changing the table's owner automatically
changes the index as well.

Changing any part of a system catalog index is not permitted.

Examples
To rename an existing index:

ALTER INDEX distributors RENAME TO suppliers;

To move an index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

To change an index's fill factor (assuming that the index method supports it):

ALTER INDEX distributors SET (fillfactor = 75);
REINDEX INDEX distributors;

Set the statistics-gathering target for an expression index:

CREATE INDEX coord_idx ON measured (x, y, (z + t));
ALTER INDEX coord_idx ALTER COLUMN 3 SET STATISTICS 1000;

Compatibility
ALTER INDEX is a PostgreSQL extension.

See Also
CREATE INDEX, REINDEX

1460

ALTER LANGUAGE
ALTER LANGUAGE — change the definition of a procedural language

Synopsis

ALTER [PROCEDURAL] LANGUAGE name RENAME TO new_name
ALTER [PROCEDURAL] LANGUAGE name OWNER TO { new_owner | CURRENT_USER
 | SESSION_USER }

Description
ALTER LANGUAGE changes the definition of a procedural language. The only functionality is to rename
the language or assign a new owner. You must be superuser or owner of the language to use ALTER
LANGUAGE.

Parameters
name

Name of a language

new_name

The new name of the language

new_owner

The new owner of the language

Compatibility
There is no ALTER LANGUAGE statement in the SQL standard.

See Also
CREATE LANGUAGE, DROP LANGUAGE

1461

ALTER LARGE OBJECT
ALTER LARGE OBJECT — change the definition of a large object

Synopsis

ALTER LARGE OBJECT large_object_oid OWNER TO { new_owner |
 CURRENT_USER | SESSION_USER }

Description
ALTER LARGE OBJECT changes the definition of a large object.

You must own the large object to use ALTER LARGE OBJECT. To alter the owner, you must also be
a direct or indirect member of the new owning role. (However, a superuser can alter any large object
anyway.) Currently, the only functionality is to assign a new owner, so both restrictions always apply.

Parameters
large_object_oid

OID of the large object to be altered

new_owner

The new owner of the large object

Compatibility
There is no ALTER LARGE OBJECT statement in the SQL standard.

See Also
Chapter 35

1462

ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW — change the definition of a materialized view

Synopsis

ALTER MATERIALIZED VIEW [IF EXISTS] name
 action [, ...]
ALTER MATERIALIZED VIEW name
 DEPENDS ON EXTENSION extension_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME [COLUMN] column_name TO new_column_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME TO new_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 SET SCHEMA new_schema
ALTER MATERIALIZED VIEW ALL IN TABLESPACE name [OWNED BY role_name
 [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

where action is one of:

 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value
 [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL |
 EXTENDED | MAIN }
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET (storage_parameter = value [, ...])
 RESET (storage_parameter [, ...])
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

Description
ALTER MATERIALIZED VIEW changes various auxiliary properties of an existing materialized view.

You must own the materialized view to use ALTER MATERIALIZED VIEW. To change a materialized
view's schema, you must also have CREATE privilege on the new schema. To alter the owner, you must
also be a direct or indirect member of the new owning role, and that role must have CREATE privilege on
the materialized view's schema. (These restrictions enforce that altering the owner doesn't do anything you
couldn't do by dropping and recreating the materialized view. However, a superuser can alter ownership
of any view anyway.)

The DEPENDS ON EXTENSION form marks the materialized view as dependent on an extension, such
that the materialized view will automatically be dropped if the extension is dropped.

The statement subforms and actions available for ALTER MATERIALIZED VIEW are a subset of those
available for ALTER TABLE, and have the same meaning when used for materialized views. See the
descriptions for ALTER TABLE for details.

1463

ALTER MATERIALIZED VIEW

Parameters
name

The name (optionally schema-qualified) of an existing materialized view.

column_name

Name of a new or existing column.

extension_name

The name of the extension that the materialized view is to depend on.

new_column_name

New name for an existing column.

new_owner

The user name of the new owner of the materialized view.

new_name

The new name for the materialized view.

new_schema

The new schema for the materialized view.

Examples
To rename the materialized view foo to bar:

ALTER MATERIALIZED VIEW foo RENAME TO bar;

Compatibility
ALTER MATERIALIZED VIEW is a PostgreSQL extension.

See Also
CREATE MATERIALIZED VIEW, DROP MATERIALIZED VIEW, REFRESH MATERIALIZED
VIEW

1464

ALTER OPERATOR
ALTER OPERATOR — change the definition of an operator

Synopsis

ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE })
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE })
 SET SCHEMA new_schema

ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE })
 SET ({ RESTRICT = { res_proc | NONE }
 | JOIN = { join_proc | NONE }
 } [, ...])

Description
ALTER OPERATOR changes the definition of an operator.

You must own the operator to use ALTER OPERATOR. To alter the owner, you must also be a direct
or indirect member of the new owning role, and that role must have CREATE privilege on the operator's
schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping
and recreating the operator. However, a superuser can alter ownership of any operator anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator's left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator's right operand; write NONE if the operator has no right operand.

new_owner

The new owner of the operator.

new_schema

The new schema for the operator.

res_proc

The restriction selectivity estimator function for this operator; write NONE to remove existing
selectivity estimator.

1465

ALTER OPERATOR

join_proc

The join selectivity estimator function for this operator; write NONE to remove existing selectivity
estimator.

Examples
Change the owner of a custom operator a @@ b for type text:

ALTER OPERATOR @@ (text, text) OWNER TO joe;

Change the restriction and join selectivity estimator functions of a custom operator a && b for type
int[]:

ALTER OPERATOR && (_int4, _int4) SET (RESTRICT = _int_contsel, JOIN =
 _int_contjoinsel);

Compatibility
There is no ALTER OPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR, DROP OPERATOR

1466

ALTER OPERATOR CLASS
ALTER OPERATOR CLASS — change the definition of an operator class

Synopsis

ALTER OPERATOR CLASS name USING index_method
 RENAME TO new_name

ALTER OPERATOR CLASS name USING index_method
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER OPERATOR CLASS name USING index_method
 SET SCHEMA new_schema

Description
ALTER OPERATOR CLASS changes the definition of an operator class.

You must own the operator class to use ALTER OPERATOR CLASS. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE privilege on
the operator class's schema. (These restrictions enforce that altering the owner doesn't do anything you
couldn't do by dropping and recreating the operator class. However, a superuser can alter ownership of
any operator class anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index method this operator class is for.

new_name

The new name of the operator class.

new_owner

The new owner of the operator class.

new_schema

The new schema for the operator class.

Compatibility
There is no ALTER OPERATOR CLASS statement in the SQL standard.

1467

ALTER OPERATOR CLASS

See Also
CREATE OPERATOR CLASS, DROP OPERATOR CLASS, ALTER OPERATOR FAMILY

1468

ALTER OPERATOR FAMILY
ALTER OPERATOR FAMILY — change the definition of an operator family

Synopsis

ALTER OPERATOR FAMILY name USING index_method ADD
 { OPERATOR strategy_number operator_name (op_type, op_type)
 [FOR SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])]
 function_name [(argument_type [, ...])]
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method DROP
 { OPERATOR strategy_number (op_type [, op_type])
 | FUNCTION support_number (op_type [, op_type])
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method
 RENAME TO new_name

ALTER OPERATOR FAMILY name USING index_method
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER OPERATOR FAMILY name USING index_method
 SET SCHEMA new_schema

Description
ALTER OPERATOR FAMILY changes the definition of an operator family. You can add operators and
support functions to the family, remove them from the family, or change the family's name or owner.

When operators and support functions are added to a family with ALTER OPERATOR FAMILY, they
are not part of any specific operator class within the family, but are just “loose” within the family. This
indicates that these operators and functions are compatible with the family's semantics, but are not required
for correct functioning of any specific index. (Operators and functions that are so required should be
declared as part of an operator class, instead; see CREATE OPERATOR CLASS.) PostgreSQL will allow
loose members of a family to be dropped from the family at any time, but members of an operator class
cannot be dropped without dropping the whole class and any indexes that depend on it. Typically, single-
data-type operators and functions are part of operator classes because they are needed to support an index
on that specific data type, while cross-data-type operators and functions are made loose members of the
family.

You must be a superuser to use ALTER OPERATOR FAMILY. (This restriction is made because an
erroneous operator family definition could confuse or even crash the server.)

ALTER OPERATOR FAMILY does not presently check whether the operator family definition includes
all the operators and functions required by the index method, nor whether the operators and functions form
a self-consistent set. It is the user's responsibility to define a valid operator family.

Refer to Section 38.15 for further information.

1469

ALTER OPERATOR FAMILY

Parameters
name

The name (optionally schema-qualified) of an existing operator family.

index_method

The name of the index method this operator family is for.

strategy_number

The index method's strategy number for an operator associated with the operator family.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator family.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a left-unary or
right-unary operator. Unlike the comparable syntax in CREATE OPERATOR CLASS, the operand
data types must always be specified.

In an ADD FUNCTION clause, the operand data type(s) the function is intended to support, if different
from the input data type(s) of the function. For B-tree comparison functions and hash functions it is
not necessary to specify op_type since the function's input data type(s) are always the correct ones
to use. For B-tree sort support functions and all functions in GiST, SP-GiST and GIN operator classes,
it is necessary to specify the operand data type(s) the function is to be used with.

In a DROP FUNCTION clause, the operand data type(s) the function is intended to support must be
specified.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that describes the sort
ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method's support function number for a function associated with the operator family.

function_name

The name (optionally schema-qualified) of a function that is an index method support function for the
operator family. If no argument list is specified, the name must be unique in its schema.

argument_type

The parameter data type(s) of the function.

new_name

The new name of the operator family.

1470

ALTER OPERATOR FAMILY

new_owner

The new owner of the operator family.

new_schema

The new schema for the operator family.

The OPERATOR and FUNCTION clauses can appear in any order.

Notes
Notice that the DROP syntax only specifies the “slot” in the operator family, by strategy or support number
and input data type(s). The name of the operator or function occupying the slot is not mentioned. Also,
for DROP FUNCTION the type(s) to specify are the input data type(s) the function is intended to support;
for GiST, SP-GiST and GIN indexes this might have nothing to do with the actual input argument types
of the function.

Because the index machinery does not check access permissions on functions before using them, including
a function or operator in an operator family is tantamount to granting public execute permission on it. This
is usually not an issue for the sorts of functions that are useful in an operator family.

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

Before PostgreSQL 8.4, the OPERATOR clause could include a RECHECK option. This is no longer
supported because whether an index operator is “lossy” is now determined on-the-fly at run time. This
allows efficient handling of cases where an operator might or might not be lossy.

Examples
The following example command adds cross-data-type operators and support functions to an operator
family that already contains B-tree operator classes for data types int4 and int2.

ALTER OPERATOR FAMILY integer_ops USING btree ADD

 -- int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ;

To remove these entries again:

1471

ALTER OPERATOR FAMILY

ALTER OPERATOR FAMILY integer_ops USING btree DROP

 -- int4 vs int2
 OPERATOR 1 (int4, int2) ,
 OPERATOR 2 (int4, int2) ,
 OPERATOR 3 (int4, int2) ,
 OPERATOR 4 (int4, int2) ,
 OPERATOR 5 (int4, int2) ,
 FUNCTION 1 (int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 (int2, int4) ,
 OPERATOR 2 (int2, int4) ,
 OPERATOR 3 (int2, int4) ,
 OPERATOR 4 (int2, int4) ,
 OPERATOR 5 (int2, int4) ,
 FUNCTION 1 (int2, int4) ;

Compatibility
There is no ALTER OPERATOR FAMILY statement in the SQL standard.

See Also
CREATE OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE OPERATOR CLASS,
ALTER OPERATOR CLASS, DROP OPERATOR CLASS

1472

ALTER POLICY
ALTER POLICY — change the definition of a row level security policy

Synopsis

ALTER POLICY name ON table_name RENAME TO new_name

ALTER POLICY name ON table_name
 [TO { role_name | PUBLIC | CURRENT_USER | SESSION_USER }
 [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Description
ALTER POLICY changes the definition of an existing row-level security policy. Note that ALTER
POLICY only allows the set of roles to which the policy applies and the USING and WITH CHECK
expressions to be modified. To change other properties of a policy, such as the command to which it applies
or whether it is permissive or restrictive, the policy must be dropped and recreated.

To use ALTER POLICY, you must own the table that the policy applies to.

In the second form of ALTER POLICY, the role list, using_expression, and check_expression
are replaced independently if specified. When one of those clauses is omitted, the corresponding part of
the policy is unchanged.

Parameters
name

The name of an existing policy to alter.

table_name

The name (optionally schema-qualified) of the table that the policy is on.

new_name

The new name for the policy.

role_name

The role(s) to which the policy applies. Multiple roles can be specified at one time. To apply the policy
to all roles, use PUBLIC.

using_expression

The USING expression for the policy. See CREATE POLICY for details.

check_expression

The WITH CHECK expression for the policy. See CREATE POLICY for details.

1473

ALTER POLICY

Compatibility
ALTER POLICY is a PostgreSQL extension.

See Also
CREATE POLICY, DROP POLICY

1474

ALTER PROCEDURE
ALTER PROCEDURE — change the definition of a procedure

Synopsis

ALTER PROCEDURE name [([[argmode] [argname] argtype
 [, ...]])]
 action [...] [RESTRICT]
ALTER PROCEDURE name [([[argmode] [argname] argtype
 [, ...]])]
 RENAME TO new_name
ALTER PROCEDURE name [([[argmode] [argname] argtype
 [, ...]])]
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER PROCEDURE name [([[argmode] [argname] argtype
 [, ...]])]
 SET SCHEMA new_schema
ALTER PROCEDURE name [([[argmode] [argname] argtype
 [, ...]])]
 DEPENDS ON EXTENSION extension_name

where action is one of:

 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER PROCEDURE changes the definition of a procedure.

You must own the procedure to use ALTER PROCEDURE. To change a procedure's schema, you must
also have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the procedure's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the procedure. However, a superuser can alter ownership of any procedure anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing procedure. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

1475

ALTER PROCEDURE

argname

The name of an argument. Note that ALTER PROCEDURE does not actually pay any attention to
argument names, since only the argument data types are needed to determine the procedure's identity.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any.

new_name

The new name of the procedure.

new_owner

The new owner of the procedure. Note that if the procedure is marked SECURITY DEFINER, it will
subsequently execute as the new owner.

new_schema

The new schema for the procedure.

extension_name

The name of the extension that the procedure is to depend on.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the procedure is a security definer or not. The key word EXTERNAL is ignored for
SQL conformance. See CREATE PROCEDURE for more information about this capability.

configuration_parameter
value

Add or change the assignment to be made to a configuration parameter when the procedure is called.
If value is DEFAULT or, equivalently, RESET is used, the procedure-local setting is removed, so
that the procedure executes with the value present in its environment. Use RESET ALL to clear all
procedure-local settings. SET FROM CURRENT saves the value of the parameter that is current when
ALTER PROCEDURE is executed as the value to be applied when the procedure is entered.

See SET and Chapter 19 for more information about allowed parameter names and values.

RESTRICT

Ignored for conformance with the SQL standard.

Examples
To rename the procedure insert_data with two arguments of type integer to insert_record:

ALTER PROCEDURE insert_data(integer, integer) RENAME TO insert_record;

To change the owner of the procedure insert_data with two arguments of type integer to joe:

1476

ALTER PROCEDURE

ALTER PROCEDURE insert_data(integer, integer) OWNER TO joe;

To change the schema of the procedure insert_data with two arguments of type integer to
accounting:

ALTER PROCEDURE insert_data(integer, integer) SET SCHEMA accounting;

To mark the procedure insert_data(integer, integer) as being dependent on the extension
myext:

ALTER PROCEDURE insert_data(integer, integer) DEPENDS ON EXTENSION
 myext;

To adjust the search path that is automatically set for a procedure:

ALTER PROCEDURE check_password(text) SET search_path = admin, pg_temp;

To disable automatic setting of search_path for a procedure:

ALTER PROCEDURE check_password(text) RESET search_path;

The procedure will now execute with whatever search path is used by its caller.

Compatibility
This statement is partially compatible with the ALTER PROCEDURE statement in the SQL standard. The
standard allows more properties of a procedure to be modified, but does not provide the ability to rename
a procedure, make a procedure a security definer, attach configuration parameter values to a procedure,
or change the owner, schema, or volatility of a procedure. The standard also requires the RESTRICT key
word, which is optional in PostgreSQL.

See Also
CREATE PROCEDURE, DROP PROCEDURE, ALTER FUNCTION, ALTER ROUTINE

1477

ALTER PUBLICATION
ALTER PUBLICATION — change the definition of a publication

Synopsis

ALTER PUBLICATION name ADD TABLE [ONLY] table_name [*] [, ...]
ALTER PUBLICATION name SET TABLE [ONLY] table_name [*] [, ...]
ALTER PUBLICATION name DROP TABLE [ONLY] table_name [*] [, ...]
ALTER PUBLICATION name SET (publication_parameter [= value]
 [, ...])
ALTER PUBLICATION name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER PUBLICATION name RENAME TO new_name

Description
The command ALTER PUBLICATION can change the attributes of a publication.

The first three variants change which tables are part of the publication. The SET TABLE clause will replace
the list of tables in the publication with the specified one. The ADD TABLE and DROP TABLE clauses
will add and remove one or more tables from the publication. Note that adding tables to a publication
that is already subscribed to will require a ALTER SUBSCRIPTION ... REFRESH PUBLICATION
action on the subscribing side in order to become effective.

The fourth variant of this command listed in the synopsis can change all of the publication properties
specified in CREATE PUBLICATION. Properties not mentioned in the command retain their previous
settings.

The remaining variants change the owner and the name of the publication.

You must own the publication to use ALTER PUBLICATION. To alter the owner, you must also be a
direct or indirect member of the new owning role. The new owner must have CREATE privilege on the
database. Also, the new owner of a FOR ALL TABLES publication must be a superuser. However, a
superuser can change the ownership of a publication while circumventing these restrictions.

Parameters
name

The name of an existing publication whose definition is to be altered.

table_name

Name of an existing table. If ONLY is specified before the table name, only that table is affected. If
ONLY is not specified, the table and all its descendant tables (if any) are affected. Optionally, * can
be specified after the table name to explicitly indicate that descendant tables are included.

SET (publication_parameter [= value] [, ...])

This clause alters publication parameters originally set by CREATE PUBLICATION. See there for
more information.

1478

ALTER PUBLICATION

new_owner

The user name of the new owner of the publication.

new_name

The new name for the publication.

Examples
Change the publication to publish only deletes and updates:

ALTER PUBLICATION noinsert SET (publish = 'update, delete');

Add some tables to the publication:

ALTER PUBLICATION mypublication ADD TABLE users, departments;

Compatibility
ALTER PUBLICATION is a PostgreSQL extension.

See Also
CREATE PUBLICATION, DROP PUBLICATION, CREATE SUBSCRIPTION, ALTER
SUBSCRIPTION

1479

ALTER ROLE
ALTER ROLE — change a database role

Synopsis

ALTER ROLE role_specification [WITH] option [...]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'

ALTER ROLE name RENAME TO new_name

ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 RESET configuration_parameter
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 RESET ALL

where role_specification can be:

 role_name
 | CURRENT_USER
 | SESSION_USER

Description
ALTER ROLE changes the attributes of a PostgreSQL role.

The first variant of this command listed in the synopsis can change many of the role attributes that can be
specified in CREATE ROLE. (All the possible attributes are covered, except that there are no options for
adding or removing memberships; use GRANT and REVOKE for that.) Attributes not mentioned in the
command retain their previous settings. Database superusers can change any of these settings for any role.
Roles having CREATEROLE privilege can change any of these settings, but only for non-superuser and
non-replication roles. Ordinary roles can only change their own password.

The second variant changes the name of the role. Database superusers can rename any role. Roles having
CREATEROLE privilege can rename non-superuser roles. The current session user cannot be renamed.

1480

ALTER ROLE

(Connect as a different user if you need to do that.) Because MD5-encrypted passwords use the role name
as cryptographic salt, renaming a role clears its password if the password is MD5-encrypted.

The remaining variants change a role's session default for a configuration variable, either for all databases
or, when the IN DATABASE clause is specified, only for sessions in the named database. If ALL is
specified instead of a role name, this changes the setting for all roles. Using ALL with IN DATABASE is
effectively the same as using the command ALTER DATABASE ... SET

Whenever the role subsequently starts a new session, the specified value becomes the session
default, overriding whatever setting is present in postgresql.conf or has been received from the
postgres command line. This only happens at login time; executing SET ROLE or SET SESSION
AUTHORIZATION does not cause new configuration values to be set. Settings set for all databases are
overridden by database-specific settings attached to a role. Settings for specific databases or specific roles
override settings for all roles.

Superusers can change anyone's session defaults. Roles having CREATEROLE privilege can change
defaults for non-superuser roles. Ordinary roles can only set defaults for themselves. Certain configuration
variables cannot be set this way, or can only be set if a superuser issues the command. Only superusers
can change a setting for all roles in all databases.

Parameters
name

The name of the role whose attributes are to be altered.

CURRENT_USER

Alter the current user instead of an explicitly identified role.

SESSION_USER

Alter the current session user instead of an explicitly identified role.

SUPERUSER
NOSUPERUSER
CREATEDB
NOCREATEDB
CREATEROLE
NOCREATEROLE
INHERIT
NOINHERIT
LOGIN
NOLOGIN
REPLICATION
NOREPLICATION
BYPASSRLS
NOBYPASSRLS
CONNECTION LIMIT connlimit
[ENCRYPTED] PASSWORD 'password'
PASSWORD NULL
VALID UNTIL 'timestamp'

These clauses alter attributes originally set by CREATE ROLE. For more information, see the
CREATE ROLE reference page.

1481

ALTER ROLE

new_name

The new name of the role.

database_name

The name of the database the configuration variable should be set in.

configuration_parameter
value

Set this role's session default for the specified configuration parameter to the given value. If value
is DEFAULT or, equivalently, RESET is used, the role-specific variable setting is removed, so the
role will inherit the system-wide default setting in new sessions. Use RESET ALL to clear all role-
specific settings. SET FROM CURRENT saves the session's current value of the parameter as the
role-specific value. If IN DATABASE is specified, the configuration parameter is set or removed for
the given role and database only.

Role-specific variable settings take effect only at login; SET ROLE and SET SESSION
AUTHORIZATION do not process role-specific variable settings.

See SET and Chapter 19 for more information about allowed parameter names and values.

Notes
Use CREATE ROLE to add new roles, and DROP ROLE to remove a role.

ALTER ROLE cannot change a role's memberships. Use GRANT and REVOKE to do that.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in cleartext, and it might also be logged in the client's command history
or the server log. psql contains a command \password that can be used to change a role's password
without exposing the cleartext password.

It is also possible to tie a session default to a specific database rather than to a role; see ALTER
DATABASE. If there is a conflict, database-role-specific settings override role-specific ones, which in
turn override database-specific ones.

Examples
Change a role's password:

ALTER ROLE davide WITH PASSWORD 'hu8jmn3';

Remove a role's password:

ALTER ROLE davide WITH PASSWORD NULL;

Change a password expiration date, specifying that the password should expire at midday on 4th May 2015
using the time zone which is one hour ahead of UTC:

ALTER ROLE chris VALID UNTIL 'May 4 12:00:00 2015 +1';

1482

ALTER ROLE

Make a password valid forever:

ALTER ROLE fred VALID UNTIL 'infinity';

Give a role the ability to create other roles and new databases:

ALTER ROLE miriam CREATEROLE CREATEDB;

Give a role a non-default setting of the maintenance_work_mem parameter:

ALTER ROLE worker_bee SET maintenance_work_mem = 100000;

Give a role a non-default, database-specific setting of the client_min_messages parameter:

ALTER ROLE fred IN DATABASE devel SET client_min_messages = DEBUG;

Compatibility
The ALTER ROLE statement is a PostgreSQL extension.

See Also
CREATE ROLE, DROP ROLE, ALTER DATABASE, SET

1483

ALTER ROUTINE
ALTER ROUTINE — change the definition of a routine

Synopsis

ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 DEPENDS ON EXTENSION extension_name

where action is one of:

 IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 PARALLEL { UNSAFE | RESTRICTED | SAFE }
 COST execution_cost
 ROWS result_rows
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER ROUTINE changes the definition of a routine, which can be an aggregate function, a
normal function, or a procedure. See under ALTER AGGREGATE, ALTER FUNCTION, and ALTER
PROCEDURE for the description of the parameters, more examples, and further details.

Examples
To rename the routine foo for type integer to foobar:

ALTER ROUTINE foo(integer) RENAME TO foobar;

This command will work independent of whether foo is an aggregate, function, or procedure.

Compatibility
This statement is partially compatible with the ALTER ROUTINE statement in the SQL standard. See
under ALTER FUNCTION and ALTER PROCEDURE for more details. Allowing routine names to refer
to aggregate functions is a PostgreSQL extension.

1484

ALTER ROUTINE

See Also
ALTER AGGREGATE, ALTER FUNCTION, ALTER PROCEDURE, DROP ROUTINE

Note that there is no CREATE ROUTINE command.

1485

ALTER RULE
ALTER RULE — change the definition of a rule

Synopsis

ALTER RULE name ON table_name RENAME TO new_name

Description
ALTER RULE changes properties of an existing rule. Currently, the only available action is to change
the rule's name.

To use ALTER RULE, you must own the table or view that the rule applies to.

Parameters
name

The name of an existing rule to alter.

table_name

The name (optionally schema-qualified) of the table or view that the rule applies to.

new_name

The new name for the rule.

Examples
To rename an existing rule:

ALTER RULE notify_all ON emp RENAME TO notify_me;

Compatibility
ALTER RULE is a PostgreSQL language extension, as is the entire query rewrite system.

See Also
CREATE RULE, DROP RULE

1486

ALTER SCHEMA
ALTER SCHEMA — change the definition of a schema

Synopsis

ALTER SCHEMA name RENAME TO new_name
ALTER SCHEMA name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

Description
ALTER SCHEMA changes the definition of a schema.

You must own the schema to use ALTER SCHEMA. To rename a schema you must also have the CREATE
privilege for the database. To alter the owner, you must also be a direct or indirect member of the new
owning role, and you must have the CREATE privilege for the database. (Note that superusers have all
these privileges automatically.)

Parameters
name

The name of an existing schema.

new_name

The new name of the schema. The new name cannot begin with pg_, as such names are reserved
for system schemas.

new_owner

The new owner of the schema.

Compatibility
There is no ALTER SCHEMA statement in the SQL standard.

See Also
CREATE SCHEMA, DROP SCHEMA

1487

ALTER SEQUENCE
ALTER SEQUENCE — change the definition of a sequence generator

Synopsis

ALTER SEQUENCE [IF EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO
 MAXVALUE]
 [START [WITH] start]
 [RESTART [[WITH] restart]]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]
ALTER SEQUENCE [IF EXISTS] name OWNER TO { new_owner | CURRENT_USER
 | SESSION_USER }
ALTER SEQUENCE [IF EXISTS] name RENAME TO new_name
ALTER SEQUENCE [IF EXISTS] name SET SCHEMA new_schema

Description
ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameters not
specifically set in the ALTER SEQUENCE command retain their prior settings.

You must own the sequence to use ALTER SEQUENCE. To change a sequence's schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the sequence's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the sequence. However, a superuser can alter ownership of any sequence anyway.)

Parameters
name

The name (optionally schema-qualified) of a sequence to be altered.

IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

data_type

The optional clause AS data_type changes the data type of the sequence. Valid types are
smallint, integer, and bigint.

Changing the data type automatically changes the minimum and maximum values of the sequence
if and only if the previous minimum and maximum values were the minimum or maximum value
of the old data type (in other words, if the sequence had been created using NO MINVALUE or NO
MAXVALUE, implicitly or explicitly). Otherwise, the minimum and maximum values are preserved,
unless new values are given as part of the same command. If the minimum and maximum values do
not fit into the new data type, an error will be generated.

1488

ALTER SEQUENCE

increment

The clause INCREMENT BY increment is optional. A positive value will make an ascending
sequence, a negative one a descending sequence. If unspecified, the old increment value will be
maintained.

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate.
If NO MINVALUE is specified, the defaults of 1 and the minimum value of the data type for
ascending and descending sequences, respectively, will be used. If neither option is specified, the
current minimum value will be maintained.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If NO
MAXVALUE is specified, the defaults of the maximum value of the data type and -1 for ascending and
descending sequences, respectively, will be used. If neither option is specified, the current maximum
value will be maintained.

start

The optional clause START WITH start changes the recorded start value of the sequence. This
has no effect on the current sequence value; it simply sets the value that future ALTER SEQUENCE
RESTART commands will use.

restart

The optional clause RESTART [WITH restart] changes the current value of the sequence.
This is similar to calling the setval function with is_called = false: the specified value will
be returned by the next call of nextval. Writing RESTART with no restart value is equivalent to
supplying the start value that was recorded by CREATE SEQUENCE or last set by ALTER SEQUENCE
START WITH.

In contrast to a setval call, a RESTART operation on a sequence is transactional and blocks
concurrent transactions from obtaining numbers from the same sequence. If that's not the desired mode
of operation, setval should be used.

cache

The clause CACHE cache enables sequence numbers to be preallocated and stored in memory for
faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache). If
unspecified, the old cache value will be maintained.

CYCLE

The optional CYCLE key word can be used to enable the sequence to wrap around when the
maxvalue or minvalue has been reached by an ascending or descending sequence respectively. If
the limit is reached, the next number generated will be the minvalue or maxvalue, respectively.

NO CYCLE

If the optional NO CYCLE key word is specified, any calls to nextval after the sequence has reached
its maximum value will return an error. If neither CYCLE or NO CYCLE are specified, the old cycle
behavior will be maintained.

1489

ALTER SEQUENCE

OWNED BY table_name.column_name
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column, such
that if that column (or its whole table) is dropped, the sequence will be automatically dropped as
well. If specified, this association replaces any previously specified association for the sequence. The
specified table must have the same owner and be in the same schema as the sequence. Specifying
OWNED BY NONE removes any existing association, making the sequence “free-standing”.

new_owner

The user name of the new owner of the sequence.

new_name

The new name for the sequence.

new_schema

The new schema for the sequence.

Notes
ALTER SEQUENCE will not immediately affect nextval results in backends, other than the current
one, that have preallocated (cached) sequence values. They will use up all cached values prior to noticing
the changed sequence generation parameters. The current backend will be affected immediately.

ALTER SEQUENCE does not affect the currval status for the sequence. (Before PostgreSQL 8.3, it
sometimes did.)

ALTER SEQUENCE blocks concurrent nextval, currval, lastval, and setval calls.

For historical reasons, ALTER TABLE can be used with sequences too; but the only variants of ALTER
TABLE that are allowed with sequences are equivalent to the forms shown above.

Examples
Restart a sequence called serial, at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Compatibility
ALTER SEQUENCE conforms to the SQL standard, except for the AS, START WITH, OWNED BY,
OWNER TO, RENAME TO, and SET SCHEMA clauses, which are PostgreSQL extensions.

See Also
CREATE SEQUENCE, DROP SEQUENCE

1490

ALTER SERVER
ALTER SERVER — change the definition of a foreign server

Synopsis

ALTER SERVER name [VERSION 'new_version']
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]
ALTER SERVER name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER SERVER name RENAME TO new_name

Description
ALTER SERVER changes the definition of a foreign server. The first form changes the server version
string or the generic options of the server (at least one clause is required). The second form changes the
owner of the server.

To alter the server you must be the owner of the server. Additionally to alter the owner, you must own the
server and also be a direct or indirect member of the new owning role, and you must have USAGE privilege
on the server's foreign-data wrapper. (Note that superusers satisfy all these criteria automatically.)

Parameters
name

The name of an existing server.

new_version

New server version.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the server. ADD, SET, and DROP specify the action to be performed. ADD is
assumed if no operation is explicitly specified. Option names must be unique; names and values are
also validated using the server's foreign-data wrapper library.

new_owner

The user name of the new owner of the foreign server.

new_name

The new name for the foreign server.

Examples
Alter server foo, add connection options:

ALTER SERVER foo OPTIONS (host 'foo', dbname 'foodb');

1491

ALTER SERVER

Alter server foo, change version, change host option:

ALTER SERVER foo VERSION '8.4' OPTIONS (SET host 'baz');

Compatibility
ALTER SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The OWNER TO and RENAME forms are
PostgreSQL extensions.

See Also
CREATE SERVER, DROP SERVER

1492

ALTER STATISTICS
ALTER STATISTICS — change the definition of an extended statistics object

Synopsis

ALTER STATISTICS name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER STATISTICS name RENAME TO new_name
ALTER STATISTICS name SET SCHEMA new_schema

Description
ALTER STATISTICS changes the parameters of an existing extended statistics object. Any parameters
not specifically set in the ALTER STATISTICS command retain their prior settings.

You must own the statistics object to use ALTER STATISTICS. To change a statistics object's schema,
you must also have CREATE privilege on the new schema. To alter the owner, you must also be a direct
or indirect member of the new owning role, and that role must have CREATE privilege on the statistics
object's schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do
by dropping and recreating the statistics object. However, a superuser can alter ownership of any statistics
object anyway.)

Parameters
name

The name (optionally schema-qualified) of the statistics object to be altered.

new_owner

The user name of the new owner of the statistics object.

new_name

The new name for the statistics object.

new_schema

The new schema for the statistics object.

Compatibility
There is no ALTER STATISTICS command in the SQL standard.

See Also
CREATE STATISTICS, DROP STATISTICS

1493

ALTER SUBSCRIPTION
ALTER SUBSCRIPTION — change the definition of a subscription

Synopsis

ALTER SUBSCRIPTION name CONNECTION 'conninfo'
ALTER SUBSCRIPTION name SET PUBLICATION publication_name [, ...]
 [WITH (set_publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name REFRESH PUBLICATION [WITH (refresh_option
 [= value] [, ...])]
ALTER SUBSCRIPTION name ENABLE
ALTER SUBSCRIPTION name DISABLE
ALTER SUBSCRIPTION name SET (subscription_parameter [= value]
 [, ...])
ALTER SUBSCRIPTION name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER SUBSCRIPTION name RENAME TO new_name

Description
ALTER SUBSCRIPTION can change most of the subscription properties that can be specified in CREATE
SUBSCRIPTION.

You must own the subscription to use ALTER SUBSCRIPTION. To alter the owner, you must also be
a direct or indirect member of the new owning role. The new owner has to be a superuser. (Currently, all
subscription owners must be superusers, so the owner checks will be bypassed in practice. But this might
change in the future.)

Parameters
name

The name of a subscription whose properties are to be altered.

CONNECTION 'conninfo'

This clause alters the connection property originally set by CREATE SUBSCRIPTION. See there for
more information.

SET PUBLICATION publication_name

Changes list of subscribed publications. See CREATE SUBSCRIPTION for more information. By
default this command will also act like REFRESH PUBLICATION.

set_publication_option specifies additional options for this operation. The supported
options are:

refresh (boolean)

When false, the command will not try to refresh table information. REFRESH PUBLICATION
should then be executed separately. The default is true.

1494

ALTER SUBSCRIPTION

Additionally, refresh options as described under REFRESH PUBLICATION may be specified.

REFRESH PUBLICATION

Fetch missing table information from publisher. This will start replication of tables that were added
to the subscribed-to publications since the last invocation of REFRESH PUBLICATION or since
CREATE SUBSCRIPTION.

refresh_option specifies additional options for the refresh operation. The supported options are:

copy_data (boolean)

Specifies whether the existing data in the publications that are being subscribed to should be
copied once the replication starts. The default is true.

ENABLE

Enables the previously disabled subscription, starting the logical replication worker at the end of
transaction.

DISABLE

Disables the running subscription, stopping the logical replication worker at the end of transaction.

SET (subscription_parameter [= value] [, ...])

This clause alters parameters originally set by CREATE SUBSCRIPTION. See there for more
information. The allowed options are slot_name and synchronous_commit

new_owner

The user name of the new owner of the subscription.

new_name

The new name for the subscription.

Examples
Change the publication subscribed by a subscription to insert_only:

ALTER SUBSCRIPTION mysub SET PUBLICATION insert_only;

Disable (stop) the subscription:

ALTER SUBSCRIPTION mysub DISABLE;

Compatibility
ALTER SUBSCRIPTION is a PostgreSQL extension.

See Also
CREATE SUBSCRIPTION, DROP SUBSCRIPTION, CREATE PUBLICATION, ALTER
PUBLICATION

1495

ALTER SYSTEM
ALTER SYSTEM — change a server configuration parameter

Synopsis

ALTER SYSTEM SET configuration_parameter { TO | = } { value | 'value'
 | DEFAULT }

ALTER SYSTEM RESET configuration_parameter
ALTER SYSTEM RESET ALL

Description
ALTER SYSTEM is used for changing server configuration parameters across the entire database cluster.
It can be more convenient than the traditional method of manually editing the postgresql.conf file.
ALTER SYSTEM writes the given parameter setting to the postgresql.auto.conf file, which is
read in addition to postgresql.conf. Setting a parameter to DEFAULT, or using the RESET variant,
removes that configuration entry from the postgresql.auto.conf file. Use RESET ALL to remove
all such configuration entries.

Values set with ALTER SYSTEM will be effective after the next server configuration reload, or after
the next server restart in the case of parameters that can only be changed at server start. A server
configuration reload can be commanded by calling the SQL function pg_reload_conf(), running
pg_ctl reload, or sending a SIGHUP signal to the main server process.

Only superusers can use ALTER SYSTEM. Also, since this command acts directly on the file system and
cannot be rolled back, it is not allowed inside a transaction block or function.

Parameters
configuration_parameter

Name of a settable configuration parameter. Available parameters are documented in Chapter 19.

value

New value of the parameter. Values can be specified as string constants, identifiers, numbers, or
comma-separated lists of these, as appropriate for the particular parameter. DEFAULT can be written
to specify removing the parameter and its value from postgresql.auto.conf.

Notes
This command can't be used to set data_directory, nor parameters that are not allowed in
postgresql.conf (e.g., preset options).

See Section 19.1 for other ways to set the parameters.

Examples
Set the wal_level:

1496

ALTER SYSTEM

ALTER SYSTEM SET wal_level = replica;

Undo that, restoring whatever setting was effective in postgresql.conf:

ALTER SYSTEM RESET wal_level;

Compatibility
The ALTER SYSTEM statement is a PostgreSQL extension.

See Also
SET, SHOW

1497

ALTER TABLE
ALTER TABLE — change the definition of a table

Synopsis

ALTER TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema
ALTER TABLE ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]
ALTER TABLE [IF EXISTS] name
 ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec
 | DEFAULT }
ALTER TABLE [IF EXISTS] name
 DETACH PARTITION partition_name

where action is one of:

 ADD [COLUMN] [IF NOT EXISTS] column_name data_type
 [COLLATE collation] [column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type
 [COLLATE collation] [USING expression]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name ADD GENERATED { ALWAYS | BY DEFAULT }
 AS IDENTITY [(sequence_options)]
 ALTER [COLUMN] column_name { SET GENERATED { ALWAYS | BY
 DEFAULT } | SET sequence_option | RESTART [[WITH] restart] }
 [...]
 ALTER [COLUMN] column_name DROP IDENTITY [IF EXISTS]
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value
 [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL |
 EXTENDED | MAIN }
 ADD table_constraint [NOT VALID]
 ADD table_constraint_using_index
 ALTER CONSTRAINT constraint_name [DEFERRABLE | NOT DEFERRABLE]
 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

1498

ALTER TABLE

 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT |
 CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 DISABLE RULE rewrite_rule_name
 ENABLE RULE rewrite_rule_name
 ENABLE REPLICA RULE rewrite_rule_name
 ENABLE ALWAYS RULE rewrite_rule_name
 DISABLE ROW LEVEL SECURITY
 ENABLE ROW LEVEL SECURITY
 FORCE ROW LEVEL SECURITY
 NO FORCE ROW LEVEL SECURITY
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITH OIDS
 SET WITHOUT OIDS
 SET TABLESPACE new_tablespace
 SET { LOGGED | UNLOGGED }
 SET (storage_parameter = value [, ...])
 RESET (storage_parameter [, ...])
 INHERIT parent_table
 NO INHERIT parent_table
 OF type_name
 NOT OF
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
 REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL |
 NOTHING }

and partition_bound_spec is:

IN ({ numeric_literal | string_literal | TRUE | FALSE | NULL }
 [, ...]) |
FROM ({ numeric_literal | string_literal | TRUE | FALSE | MINVALUE |
 MAXVALUE } [, ...])
 TO ({ numeric_literal | string_literal | TRUE | FALSE | MINVALUE |
 MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

and column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options
)] |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL |
 MATCH SIMPLE]

1499

ALTER TABLE

 [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY
 IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator
 [, ...]) index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable
 [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action]
 [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY
 IMMEDIATE]

and table_constraint_using_index is:

 [CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY
 IMMEDIATE]

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [opclass] [ASC | DESC] [NULLS
 { FIRST | LAST }]

Description
ALTER TABLE changes the definition of an existing table. There are several subforms described below.
Note that the lock level required may differ for each subform. An ACCESS EXCLUSIVE lock is held
unless explicitly noted. When multiple subcommands are listed, the lock held will be the strictest one
required from any subcommand.

ADD COLUMN [IF NOT EXISTS]

This form adds a new column to the table, using the same syntax as CREATE TABLE. If IF NOT
EXISTS is specified and a column already exists with this name, no error is thrown.

DROP COLUMN [IF EXISTS]

This form drops a column from a table. Indexes and table constraints involving the column will be
automatically dropped as well. Multivariate statistics referencing the dropped column will also be
removed if the removal of the column would cause the statistics to contain data for only a single
column. You will need to say CASCADE if anything outside the table depends on the column, for

1500

ALTER TABLE

example, foreign key references or views. If IF EXISTS is specified and the column does not exist,
no error is thrown. In this case a notice is issued instead.

SET DATA TYPE

This form changes the type of a column of a table. Indexes and simple table constraints involving
the column will be automatically converted to use the new column type by reparsing the originally
supplied expression. The optional COLLATE clause specifies a collation for the new column; if
omitted, the collation is the default for the new column type. The optional USING clause specifies
how to compute the new column value from the old; if omitted, the default conversion is the same
as an assignment cast from old data type to new. A USING clause must be provided if there is no
implicit or assignment cast from old to new type.

SET/DROP DEFAULT

These forms set or remove the default value for a column. Default values only apply in subsequent
INSERT or UPDATE commands; they do not cause rows already in the table to change.

SET/DROP NOT NULL

These forms change whether a column is marked to allow null values or to reject null values. You can
only use SET NOT NULL when the column contains no null values.

If this table is a partition, one cannot perform DROP NOT NULL on a column if it is marked NOT
NULL in the parent table. To drop the NOT NULL constraint from all the partitions, perform DROP
NOT NULL on the parent table. Even if there is no NOT NULL constraint on the parent, such a
constraint can still be added to individual partitions, if desired; that is, the children can disallow nulls
even if the parent allows them, but not the other way around.

ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
SET GENERATED { ALWAYS | BY DEFAULT }
DROP IDENTITY [IF EXISTS]

These forms change whether a column is an identity column or change the generation attribute of an
existing identity column. See CREATE TABLE for details.

If DROP IDENTITY IF EXISTS is specified and the column is not an identity column, no error
is thrown. In this case a notice is issued instead.

SET sequence_option
RESTART

These forms alter the sequence that underlies an existing identity column. sequence_option is
an option supported by ALTER SEQUENCE such as INCREMENT BY.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations. The
target can be set in the range 0 to 10000; alternatively, set it to -1 to revert to using the system
default statistics target (default_statistics_target). For more information on the use of statistics by the
PostgreSQL query planner, refer to Section 14.2.

SET STATISTICS acquires a SHARE UPDATE EXCLUSIVE lock.

SET (attribute_option = value [, ...])
RESET (attribute_option [, ...])

This form sets or resets per-attribute options. Currently, the only defined per-attribute options
are n_distinct and n_distinct_inherited, which override the number-of-distinct-values

1501

ALTER TABLE

estimates made by subsequent ANALYZE operations. n_distinct affects the statistics for the
table itself, while n_distinct_inherited affects the statistics gathered for the table plus its
inheritance children. When set to a positive value, ANALYZE will assume that the column contains
exactly the specified number of distinct nonnull values. When set to a negative value, which must
be greater than or equal to -1, ANALYZE will assume that the number of distinct nonnull values in
the column is linear in the size of the table; the exact count is to be computed by multiplying the
estimated table size by the absolute value of the given number. For example, a value of -1 implies that
all values in the column are distinct, while a value of -0.5 implies that each value appears twice on
the average. This can be useful when the size of the table changes over time, since the multiplication
by the number of rows in the table is not performed until query planning time. Specify a value of 0
to revert to estimating the number of distinct values normally. For more information on the use of
statistics by the PostgreSQL query planner, refer to Section 14.2.

Changing per-attribute options acquires a SHARE UPDATE EXCLUSIVE lock.

SET STORAGE

This form sets the storage mode for a column. This controls whether this column is held inline or in a
secondary TOAST table, and whether the data should be compressed or not. PLAIN must be used for
fixed-length values such as integer and is inline, uncompressed. MAIN is for inline, compressible
data. EXTERNAL is for external, uncompressed data, and EXTENDED is for external, compressed data.
EXTENDED is the default for most data types that support non-PLAIN storage. Use of EXTERNAL
will make substring operations on very large text and bytea values run faster, at the penalty of
increased storage space. Note that SET STORAGE doesn't itself change anything in the table, it just
sets the strategy to be pursued during future table updates. See Section 68.2 for more information.

ADD table_constraint [NOT VALID]

This form adds a new constraint to a table using the same syntax as CREATE TABLE, plus the
option NOT VALID, which is currently only allowed for foreign key and CHECK constraints. If the
constraint is marked NOT VALID, the potentially-lengthy initial check to verify that all rows in the
table satisfy the constraint is skipped. The constraint will still be enforced against subsequent inserts
or updates (that is, they'll fail unless there is a matching row in the referenced table, in the case of
foreign keys; and they'll fail unless the new row matches the specified check constraints). But the
database will not assume that the constraint holds for all rows in the table, until it is validated by
using the VALIDATE CONSTRAINT option. Foreign key constraints on partitioned tables may not
be declared NOT VALID at present.

The addition of a foreign key constraint requires a SHARE ROW EXCLUSIVE lock on the referenced
table.

Additional restrictions apply when unique or primary key constraints are added to partitioned tables;
see CREATE TABLE.

ADD table_constraint_using_index

This form adds a new PRIMARY KEY or UNIQUE constraint to a table based on an existing unique
index. All the columns of the index will be included in the constraint.

The index cannot have expression columns nor be a partial index. Also, it must be a b-tree index with
default sort ordering. These restrictions ensure that the index is equivalent to one that would be built
by a regular ADD PRIMARY KEY or ADD UNIQUE command.

If PRIMARY KEY is specified, and the index's columns are not already marked NOT NULL, then
this command will attempt to do ALTER COLUMN SET NOT NULL against each such column.
That requires a full table scan to verify the column(s) contain no nulls. In all other cases, this is a
fast operation.

1502

ALTER TABLE

If a constraint name is provided then the index will be renamed to match the constraint name.
Otherwise the constraint will be named the same as the index.

After this command is executed, the index is “owned” by the constraint, in the same way as if the
index had been built by a regular ADD PRIMARY KEY or ADD UNIQUE command. In particular,
dropping the constraint will make the index disappear too.

This form is not currently supported on partitioned tables.

Note

Adding a constraint using an existing index can be helpful in situations where a new constraint
needs to be added without blocking table updates for a long time. To do that, create the index
using CREATE INDEX CONCURRENTLY, and then install it as an official constraint using
this syntax. See the example below.

ALTER CONSTRAINT

This form alters the attributes of a constraint that was previously created. Currently only foreign key
constraints may be altered.

VALIDATE CONSTRAINT

This form validates a foreign key or check constraint that was previously created as NOT VALID,
by scanning the table to ensure there are no rows for which the constraint is not satisfied. Nothing
happens if the constraint is already marked valid.

Validation can be a long process on larger tables. The value of separating validation from initial
creation is that you can defer validation to less busy times, or can be used to give additional time to
correct pre-existing errors while preventing new errors. Note also that validation on its own does not
prevent normal write commands against the table while it runs.

Validation acquires only a SHARE UPDATE EXCLUSIVE lock on the table being altered. If the
constraint is a foreign key then a ROW SHARE lock is also required on the table referenced by the
constraint.

DROP CONSTRAINT [IF EXISTS]

This form drops the specified constraint on a table, along with any index underlying the constraint. If
IF EXISTS is specified and the constraint does not exist, no error is thrown. In this case a notice
is issued instead.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of trigger(s) belonging to the table. A disabled trigger is still known
to the system, but is not executed when its triggering event occurs. For a deferred trigger, the enable
status is checked when the event occurs, not when the trigger function is actually executed. One can
disable or enable a single trigger specified by name, or all triggers on the table, or only user triggers
(this option excludes internally generated constraint triggers such as those that are used to implement
foreign key constraints or deferrable uniqueness and exclusion constraints). Disabling or enabling
internally generated constraint triggers requires superuser privileges; it should be done with caution
since of course the integrity of the constraint cannot be guaranteed if the triggers are not executed.

The trigger firing mechanism is also affected by the configuration variable session_replication_role.
Simply enabled triggers (the default) will fire when the replication role is “origin” (the default) or

1503

ALTER TABLE

“local”. Triggers configured as ENABLE REPLICA will only fire if the session is in “replica” mode,
and triggers configured as ENABLE ALWAYS will fire regardless of the current replication role.

The effect of this mechanism is that in the default configuration, triggers do not fire on replicas. This
is useful because if a trigger is used on the origin to propagate data between tables, then the replication
system will also replicate the propagated data, and the trigger should not fire a second time on the
replica, because that would lead to duplication. However, if a trigger is used for another purpose such
as creating external alerts, then it might be appropriate to set it to ENABLE ALWAYS so that it is
also fired on replicas.

This command acquires a SHARE ROW EXCLUSIVE lock.

DISABLE/ENABLE [REPLICA | ALWAYS] RULE

These forms configure the firing of rewrite rules belonging to the table. A disabled rule is still known
to the system, but is not applied during query rewriting. The semantics are as for disabled/enabled
triggers. This configuration is ignored for ON SELECT rules, which are always applied in order to
keep views working even if the current session is in a non-default replication role.

The rule firing mechanism is also affected by the configuration variable session_replication_role,
analogous to triggers as described above.

DISABLE/ENABLE ROW LEVEL SECURITY

These forms control the application of row security policies belonging to the table. If enabled and no
policies exist for the table, then a default-deny policy is applied. Note that policies can exist for a table
even if row level security is disabled - in this case, the policies will NOT be applied and the policies
will be ignored. See also CREATE POLICY.

NO FORCE/FORCE ROW LEVEL SECURITY

These forms control the application of row security policies belonging to the table when the user is the
table owner. If enabled, row level security policies will be applied when the user is the table owner.
If disabled (the default) then row level security will not be applied when the user is the table owner.
See also CREATE POLICY.

CLUSTER ON

This form selects the default index for future CLUSTER operations. It does not actually re-cluster
the table.

Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

SET WITHOUT CLUSTER

This form removes the most recently used CLUSTER index specification from the table. This affects
future cluster operations that don't specify an index.

Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

SET WITH OIDS

This form adds an oid system column to the table (see Section 5.4). It does nothing if the table
already has OIDs.

Note that this is not equivalent to ADD COLUMN oid oid; that would add a normal column that
happened to be named oid, not a system column.

1504

ALTER TABLE

SET WITHOUT OIDS

This form removes the oid system column from the table. This is exactly equivalent to DROP
COLUMN oid RESTRICT, except that it will not complain if there is already no oid column.

SET TABLESPACE

This form changes the table's tablespace to the specified tablespace and moves the data file(s)
associated with the table to the new tablespace. Indexes on the table, if any, are not moved; but they
can be moved separately with additional SET TABLESPACE commands. All tables in the current
database in a tablespace can be moved by using the ALL IN TABLESPACE form, which will lock all
tables to be moved first and then move each one. This form also supports OWNED BY, which will only
move tables owned by the roles specified. If the NOWAIT option is specified then the command will
fail if it is unable to acquire all of the locks required immediately. Note that system catalogs are not
moved by this command, use ALTER DATABASE or explicit ALTER TABLE invocations instead if
desired. The information_schema relations are not considered part of the system catalogs and
will be moved. See also CREATE TABLESPACE.

SET { LOGGED | UNLOGGED }

This form changes the table from unlogged to logged or vice-versa (see UNLOGGED). It cannot be
applied to a temporary table.

SET (storage_parameter = value [, ...])

This form changes one or more storage parameters for the table. See Storage Parameters for details
on the available parameters. Note that the table contents will not be modified immediately by this
command; depending on the parameter you might need to rewrite the table to get the desired effects.
That can be done with VACUUM FULL, CLUSTER or one of the forms of ALTER TABLE that
forces a table rewrite. For planner related parameters, changes will take effect from the next time the
table is locked so currently executing queries will not be affected.

SHARE UPDATE EXCLUSIVE lock will be taken for fillfactor, toast and autovacuum storage
parameters, as well as the following planner related parameters: effective_io_concurrency,
parallel_workers, seq_page_cost, random_page_cost, n_distinct and
n_distinct_inherited.

Note

While CREATE TABLE allows OIDS to be specified in the WITH
(storage_parameter) syntax, ALTER TABLE does not treat OIDS as a storage
parameter. Instead use the SET WITH OIDS and SET WITHOUT OIDS forms to change
OID status.

RESET (storage_parameter [, ...])

This form resets one or more storage parameters to their defaults. As with SET, a table rewrite might
be needed to update the table entirely.

INHERIT parent_table

This form adds the target table as a new child of the specified parent table. Subsequently, queries
against the parent will include records of the target table. To be added as a child, the target table
must already contain all the same columns as the parent (it could have additional columns, too). The
columns must have matching data types, and if they have NOT NULL constraints in the parent then
they must also have NOT NULL constraints in the child.

1505

ALTER TABLE

There must also be matching child-table constraints for all CHECK constraints of the parent, except
those marked non-inheritable (that is, created with ALTER TABLE ... ADD CONSTRAINT ...
NO INHERIT) in the parent, which are ignored; all child-table constraints matched must not be
marked non-inheritable. Currently UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints are
not considered, but this might change in the future.

NO INHERIT parent_table

This form removes the target table from the list of children of the specified parent table. Queries
against the parent table will no longer include records drawn from the target table.

OF type_name

This form links the table to a composite type as though CREATE TABLE OF had formed it. The
table's list of column names and types must precisely match that of the composite type; the presence
of an oid system column is permitted to differ. The table must not inherit from any other table. These
restrictions ensure that CREATE TABLE OF would permit an equivalent table definition.

NOT OF

This form dissociates a typed table from its type.

OWNER TO

This form changes the owner of the table, sequence, view, materialized view, or foreign table to the
specified user.

REPLICA IDENTITY

This form changes the information which is written to the write-ahead log to identify rows which are
updated or deleted. This option has no effect except when logical replication is in use. DEFAULT (the
default for non-system tables) records the old values of the columns of the primary key, if any. USING
INDEX records the old values of the columns covered by the named index, which must be unique, not
partial, not deferrable, and include only columns marked NOT NULL. FULL records the old values
of all columns in the row. NOTHING records no information about the old row. (This is the default
for system tables.) In all cases, no old values are logged unless at least one of the columns that would
be logged differs between the old and new versions of the row.

RENAME

The RENAME forms change the name of a table (or an index, sequence, view, materialized view, or
foreign table), the name of an individual column in a table, or the name of a constraint of the table.
When renaming a constraint that has an underlying index, the index is renamed as well. There is no
effect on the stored data.

SET SCHEMA

This form moves the table into another schema. Associated indexes, constraints, and sequences owned
by table columns are moved as well.

ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec |
DEFAULT }

This form attaches an existing table (which might itself be partitioned) as a partition of the target
table. The table can be attached as a partition for specific values using FOR VALUES or as a default
partition by using DEFAULT. For each index in the target table, a corresponding one will be created in
the attached table; or, if an equivalent index already exists, will be attached to the target table's index,
as if ALTER INDEX ATTACH PARTITION had been executed.

1506

ALTER TABLE

A partition using FOR VALUES uses same syntax for partition_bound_spec as CREATE
TABLE. The partition bound specification must correspond to the partitioning strategy and partition
key of the target table. The table to be attached must have all the same columns as the target table
and no more; moreover, the column types must also match. Also, it must have all the NOT NULL
and CHECK constraints of the target table. Currently FOREIGN KEY constraints are not considered.
UNIQUE and PRIMARY KEY constraints from the parent table will be created in the partition, if
they don't already exist. If any of the CHECK constraints of the table being attached is marked NO
INHERIT, the command will fail; such a constraint must be recreated without the NO INHERIT
clause.

If the new partition is a regular table, a full table scan is performed to check that no existing row in
the table violates the partition constraint. It is possible to avoid this scan by adding a valid CHECK
constraint to the table that would allow only the rows satisfying the desired partition constraint before
running this command. It will be determined using such a constraint that the table need not be scanned
to validate the partition constraint. This does not work, however, if any of the partition keys is an
expression and the partition does not accept NULL values. If attaching a list partition that will not
accept NULL values, also add NOT NULL constraint to the partition key column, unless it's an
expression.

If the new partition is a foreign table, nothing is done to verify that all the rows in the foreign table
obey the partition constraint. (See the discussion in CREATE FOREIGN TABLE about constraints
on the foreign table.)

When a table has a default partition, defining a new partition changes the partition constraint for the
default partition. The default partition can't contain any rows that would need to be moved to the
new partition, and will be scanned to verify that none are present. This scan, like the scan of the new
partition, can be avoided if an appropriate CHECK constraint is present. Also like the scan of the new
partition, it is always skipped when the default partition is a foreign table.

DETACH PARTITION partition_name

This form detaches specified partition of the target table. The detached partition continues to exist as
a standalone table, but no longer has any ties to the table from which it was detached. Any indexes
that were attached to the target table's indexes are detached.

All the forms of ALTER TABLE that act on a single table, except RENAME, SET SCHEMA, ATTACH
PARTITION, and DETACH PARTITION can be combined into a list of multiple alterations to be applied
together. For example, it is possible to add several columns and/or alter the type of several columns in
a single command. This is particularly useful with large tables, since only one pass over the table need
be made.

You must own the table to use ALTER TABLE. To change the schema or tablespace of a table, you must
also have CREATE privilege on the new schema or tablespace. To add the table as a new child of a parent
table, you must own the parent table as well. Also, to attach a table as a new partition of the table, you
must own the table being attached. To alter the owner, you must also be a direct or indirect member of
the new owning role, and that role must have CREATE privilege on the table's schema. (These restrictions
enforce that altering the owner doesn't do anything you couldn't do by dropping and recreating the table.
However, a superuser can alter ownership of any table anyway.) To add a column or alter a column type
or use the OF clause, you must also have USAGE privilege on the data type.

Parameters
IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

1507

ALTER TABLE

name

The name (optionally schema-qualified) of an existing table to alter. If ONLY is specified before the
table name, only that table is altered. If ONLY is not specified, the table and all its descendant tables
(if any) are altered. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

column_name

Name of a new or existing column.

new_column_name

New name for an existing column.

new_name

New name for the table.

data_type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the table.

constraint_name

Name of a new or existing constraint.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column), and in turn all objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default behavior.

trigger_name

Name of a single trigger to disable or enable.

ALL

Disable or enable all triggers belonging to the table. (This requires superuser privilege if any of the
triggers are internally generated constraint triggers such as those that are used to implement foreign
key constraints or deferrable uniqueness and exclusion constraints.)

USER

Disable or enable all triggers belonging to the table except for internally generated constraint triggers
such as those that are used to implement foreign key constraints or deferrable uniqueness and exclusion
constraints.

index_name

The name of an existing index.

1508

ALTER TABLE

storage_parameter

The name of a table storage parameter.

value

The new value for a table storage parameter. This might be a number or a word depending on the
parameter.

parent_table

A parent table to associate or de-associate with this table.

new_owner

The user name of the new owner of the table.

new_tablespace

The name of the tablespace to which the table will be moved.

new_schema

The name of the schema to which the table will be moved.

partition_name

The name of the table to attach as a new partition or to detach from this table.

partition_bound_spec

The partition bound specification for a new partition. Refer to CREATE TABLE for more details on
the syntax of the same.

Notes
The key word COLUMN is noise and can be omitted.

When a column is added with ADD COLUMN and a non-volatile DEFAULT is specified, the default is
evaluated at the time of the statement and the result stored in the table's metadata. That value will be used
for the column for all existing rows. If no DEFAULT is specified, NULL is used. In neither case is a rewrite
of the table required.

Adding a column with a volatile DEFAULT or changing the type of an existing column will require the
entire table and its indexes to be rewritten. As an exception, when changing the type of an existing column,
if the USING clause does not change the column contents and the old type is either binary coercible to the
new type or an unconstrained domain over the new type, a table rewrite is not needed; but any indexes
on the affected columns must still be rebuilt. Adding or removing a system oid column also requires
rewriting the entire table. Table and/or index rebuilds may take a significant amount of time for a large
table; and will temporarily require as much as double the disk space.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that existing rows meet
the constraint, but does not require a table rewrite.

Similarly, when attaching a new partition it may be scanned to verify that existing rows meet the partition
constraint.

1509

ALTER TABLE

The main reason for providing the option to specify multiple changes in a single ALTER TABLE is that
multiple table scans or rewrites can thereby be combined into a single pass over the table.

The DROP COLUMN form does not physically remove the column, but simply makes it invisible to SQL
operations. Subsequent insert and update operations in the table will store a null value for the column.
Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your table, as the
space occupied by the dropped column is not reclaimed. The space will be reclaimed over time as existing
rows are updated. (These statements do not apply when dropping the system oid column; that is done
with an immediate rewrite.)

To force immediate reclamation of space occupied by a dropped column, you can execute one of the forms
of ALTER TABLE that performs a rewrite of the whole table. This results in reconstructing each row with
the dropped column replaced by a null value.

The rewriting forms of ALTER TABLE are not MVCC-safe. After a table rewrite, the table will appear
empty to concurrent transactions, if they are using a snapshot taken before the rewrite occurred. See
Section 13.5 for more details.

The USING option of SET DATA TYPE can actually specify any expression involving the old values
of the row; that is, it can refer to other columns as well as the one being converted. This allows very
general conversions to be done with the SET DATA TYPE syntax. Because of this flexibility, the USING
expression is not applied to the column's default value (if any); the result might not be a constant expression
as required for a default. This means that when there is no implicit or assignment cast from old to new
type, SET DATA TYPE might fail to convert the default even though a USING clause is supplied. In such
cases, drop the default with DROP DEFAULT, perform the ALTER TYPE, and then use SET DEFAULT to
add a suitable new default. Similar considerations apply to indexes and constraints involving the column.

If a table has any descendant tables, it is not permitted to add, rename, or change the type of a column
in the parent table without doing the same to the descendants. This ensures that the descendants always
have columns matching the parent. Similarly, a CHECK constraint cannot be renamed in the parent without
also renaming it in all descendants, so that CHECK constraints also match between the parent and its
descendants. (That restriction does not apply to index-based constraints, however.) Also, because selecting
from the parent also selects from its descendants, a constraint on the parent cannot be marked valid unless
it is also marked valid for those descendants. In all of these cases, ALTER TABLE ONLY will be rejected.

A recursive DROP COLUMN operation will remove a descendant table's column only if the descendant
does not inherit that column from any other parents and never had an independent definition of the
column. A nonrecursive DROP COLUMN (i.e., ALTER TABLE ONLY ... DROP COLUMN) never
removes any descendant columns, but instead marks them as independently defined rather than inherited.
A nonrecursive DROP COLUMN command will fail for a partitioned table, because all partitions of a table
must have the same columns as the partitioning root.

The actions for identity columns (ADD GENERATED, SET etc., DROP IDENTITY), as well as the actions
TRIGGER, CLUSTER, OWNER, and TABLESPACE never recurse to descendant tables; that is, they always
act as though ONLY were specified. Adding a constraint recurses only for CHECK constraints that are not
marked NO INHERIT.

Changing any part of a system catalog table is not permitted.

Refer to CREATE TABLE for a further description of valid parameters. Chapter 5 has further information
on inheritance.

Examples
To add a column of type varchar to a table:

1510

ALTER TABLE

ALTER TABLE distributors ADD COLUMN address varchar(30);

To drop a column from a table:

ALTER TABLE distributors DROP COLUMN address RESTRICT;

To change the types of two existing columns in one operation:

ALTER TABLE distributors
 ALTER COLUMN address TYPE varchar(80),
 ALTER COLUMN name TYPE varchar(100);

To change an integer column containing Unix timestamps to timestamp with time zone via a
USING clause:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp SET DATA TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1
 second';

The same, when the column has a default expression that won't automatically cast to the new data type:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp DROP DEFAULT,
 ALTER COLUMN foo_timestamp TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1
 second',
 ALTER COLUMN foo_timestamp SET DEFAULT now();

To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

To rename an existing constraint:

ALTER TABLE distributors RENAME CONSTRAINT zipchk TO zip_check;

To add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

To remove a not-null constraint from a column:

1511

ALTER TABLE

ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;

To add a check constraint to a table and all its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK
 (char_length(zipcode) = 5);

To add a check constraint only to a table and not to its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK
 (char_length(zipcode) = 5) NO INHERIT;

(The check constraint will not be inherited by future children, either.)

To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

To remove a check constraint from one table only:

ALTER TABLE ONLY distributors DROP CONSTRAINT zipchk;

(The check constraint remains in place for any child tables.)

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address)
 REFERENCES addresses (address);

To add a foreign key constraint to a table with the least impact on other work:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address)
 REFERENCES addresses (address) NOT VALID;
ALTER TABLE distributors VALIDATE CONSTRAINT distfk;

To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE
 (dist_id, zipcode);

To add an automatically named primary key constraint to a table, noting that a table can only ever have
one primary key:

ALTER TABLE distributors ADD PRIMARY KEY (dist_id);

To move a table to a different tablespace:

1512

ALTER TABLE

ALTER TABLE distributors SET TABLESPACE fasttablespace;

To move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

To recreate a primary key constraint, without blocking updates while the index is rebuilt:

CREATE UNIQUE INDEX CONCURRENTLY dist_id_temp_idx ON distributors
 (dist_id);
ALTER TABLE distributors DROP CONSTRAINT distributors_pkey,
 ADD CONSTRAINT distributors_pkey PRIMARY KEY USING INDEX
 dist_id_temp_idx;

To attach a partition to a range-partitioned table:

ALTER TABLE measurement
 ATTACH PARTITION measurement_y2016m07 FOR VALUES FROM
 ('2016-07-01') TO ('2016-08-01');

To attach a partition to a list-partitioned table:

ALTER TABLE cities
 ATTACH PARTITION cities_ab FOR VALUES IN ('a', 'b');

To attach a partition to a hash-partitioned table:

ALTER TABLE orders
 ATTACH PARTITION orders_p4 FOR VALUES WITH (MODULUS 4, REMAINDER
 3);

To attach a default partition to a partitioned table:

ALTER TABLE cities
 ATTACH PARTITION cities_partdef DEFAULT;

To detach a partition from a partitioned table:

ALTER TABLE measurement
 DETACH PARTITION measurement_y2015m12;

Compatibility
The forms ADD (without USING INDEX), DROP [COLUMN], DROP IDENTITY, RESTART, SET
DEFAULT, SET DATA TYPE (without USING), SET GENERATED, and SET sequence_option
conform with the SQL standard. The other forms are PostgreSQL extensions of the SQL standard. Also,
the ability to specify more than one manipulation in a single ALTER TABLE command is an extension.

ALTER TABLE DROP COLUMN can be used to drop the only column of a table, leaving a zero-column
table. This is an extension of SQL, which disallows zero-column tables.

1513

ALTER TABLE

See Also
CREATE TABLE

1514

ALTER TABLESPACE
ALTER TABLESPACE — change the definition of a tablespace

Synopsis

ALTER TABLESPACE name RENAME TO new_name
ALTER TABLESPACE name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER TABLESPACE name SET (tablespace_option = value [, ...])
ALTER TABLESPACE name RESET (tablespace_option [, ...])

Description
ALTER TABLESPACE can be used to change the definition of a tablespace.

You must own the tablespace to change the definition of a tablespace. To alter the owner, you must
also be a direct or indirect member of the new owning role. (Note that superusers have these privileges
automatically.)

Parameters
name

The name of an existing tablespace.

new_name

The new name of the tablespace. The new name cannot begin with pg_, as such names are reserved
for system tablespaces.

new_owner

The new owner of the tablespace.

tablespace_option

A tablespace parameter to be set or reset. Currently, the only available parameters are
seq_page_cost, random_page_cost and effective_io_concurrency. Setting either
value for a particular tablespace will override the planner's usual estimate of the cost of reading pages
from tables in that tablespace, as established by the configuration parameters of the same name (see
seq_page_cost, random_page_cost, effective_io_concurrency). This may be useful if one tablespace
is located on a disk which is faster or slower than the remainder of the I/O subsystem.

Examples
Rename tablespace index_space to fast_raid:

ALTER TABLESPACE index_space RENAME TO fast_raid;

1515

ALTER TABLESPACE

Change the owner of tablespace index_space:

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility
There is no ALTER TABLESPACE statement in the SQL standard.

See Also
CREATE TABLESPACE, DROP TABLESPACE

1516

ALTER TEXT SEARCH CONFIGURATION
ALTER TEXT SEARCH CONFIGURATION — change the definition of a text search configuration

Synopsis

ALTER TEXT SEARCH CONFIGURATION name
 ADD MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] WITH dictionary_name
 [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] REPLACE old_dictionary
 WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 DROP MAPPING [IF EXISTS] FOR token_type [, ...]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name
ALTER TEXT SEARCH CONFIGURATION name OWNER TO { new_owner |
 CURRENT_USER | SESSION_USER }
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH CONFIGURATION changes the definition of a text search configuration. You
can modify its mappings from token types to dictionaries, or change the configuration's name or owner.

You must be the owner of the configuration to use ALTER TEXT SEARCH CONFIGURATION.

Parameters
name

The name (optionally schema-qualified) of an existing text search configuration.

token_type

The name of a token type that is emitted by the configuration's parser.

dictionary_name

The name of a text search dictionary to be consulted for the specified token type(s). If multiple
dictionaries are listed, they are consulted in the specified order.

old_dictionary

The name of a text search dictionary to be replaced in the mapping.

new_dictionary

The name of a text search dictionary to be substituted for old_dictionary.

1517

ALTER TEXT SEARCH
CONFIGURATION

new_name

The new name of the text search configuration.

new_owner

The new owner of the text search configuration.

new_schema

The new schema for the text search configuration.

The ADD MAPPING FOR form installs a list of dictionaries to be consulted for the specified token
type(s); it is an error if there is already a mapping for any of the token types. The ALTER MAPPING
FOR form does the same, but first removing any existing mapping for those token types. The ALTER
MAPPING REPLACE forms substitute new_dictionary for old_dictionary anywhere the latter
appears. This is done for only the specified token types when FOR appears, or for all mappings of the
configuration when it doesn't. The DROP MAPPING form removes all dictionaries for the specified token
type(s), causing tokens of those types to be ignored by the text search configuration. It is an error if there
is no mapping for the token types, unless IF EXISTS appears.

Examples
The following example replaces the english dictionary with the swedish dictionary anywhere that
english is used within my_config.

ALTER TEXT SEARCH CONFIGURATION my_config
 ALTER MAPPING REPLACE english WITH swedish;

Compatibility
There is no ALTER TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
CREATE TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

1518

ALTER TEXT SEARCH DICTIONARY
ALTER TEXT SEARCH DICTIONARY — change the definition of a text search dictionary

Synopsis

ALTER TEXT SEARCH DICTIONARY name (
 option [= value] [, ...]
)
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name
ALTER TEXT SEARCH DICTIONARY name OWNER TO { new_owner | CURRENT_USER
 | SESSION_USER }
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH DICTIONARY changes the definition of a text search dictionary. You can
change the dictionary's template-specific options, or change the dictionary's name or owner.

You must be the owner of the dictionary to use ALTER TEXT SEARCH DICTIONARY.

Parameters
name

The name (optionally schema-qualified) of an existing text search dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The new value to use for a template-specific option. If the equal sign and value are omitted, then any
previous setting for the option is removed from the dictionary, allowing the default to be used.

new_name

The new name of the text search dictionary.

new_owner

The new owner of the text search dictionary.

new_schema

The new schema for the text search dictionary.

Template-specific options can appear in any order.

Examples
The following example command changes the stopword list for a Snowball-based dictionary. Other
parameters remain unchanged.

1519

ALTER TEXT SEARCH
DICTIONARY

ALTER TEXT SEARCH DICTIONARY my_dict (StopWords = newrussian);

The following example command changes the language option to dutch, and removes the stopword
option entirely.

ALTER TEXT SEARCH DICTIONARY my_dict (language = dutch, StopWords);

The following example command “updates” the dictionary's definition without actually changing anything.

ALTER TEXT SEARCH DICTIONARY my_dict (dummy);

(The reason this works is that the option removal code doesn't complain if there is no such option.) This
trick is useful when changing configuration files for the dictionary: the ALTER will force existing database
sessions to re-read the configuration files, which otherwise they would never do if they had read them
earlier.

Compatibility
There is no ALTER TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
CREATE TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

1520

ALTER TEXT SEARCH PARSER
ALTER TEXT SEARCH PARSER — change the definition of a text search parser

Synopsis

ALTER TEXT SEARCH PARSER name RENAME TO new_name
ALTER TEXT SEARCH PARSER name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH PARSER changes the definition of a text search parser. Currently, the only
supported functionality is to change the parser's name.

You must be a superuser to use ALTER TEXT SEARCH PARSER.

Parameters
name

The name (optionally schema-qualified) of an existing text search parser.

new_name

The new name of the text search parser.

new_schema

The new schema for the text search parser.

Compatibility
There is no ALTER TEXT SEARCH PARSER statement in the SQL standard.

See Also
CREATE TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

1521

ALTER TEXT SEARCH TEMPLATE
ALTER TEXT SEARCH TEMPLATE — change the definition of a text search template

Synopsis

ALTER TEXT SEARCH TEMPLATE name RENAME TO new_name
ALTER TEXT SEARCH TEMPLATE name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH TEMPLATE changes the definition of a text search template. Currently, the only
supported functionality is to change the template's name.

You must be a superuser to use ALTER TEXT SEARCH TEMPLATE.

Parameters
name

The name (optionally schema-qualified) of an existing text search template.

new_name

The new name of the text search template.

new_schema

The new schema for the text search template.

Compatibility
There is no ALTER TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
CREATE TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

1522

ALTER TRIGGER
ALTER TRIGGER — change the definition of a trigger

Synopsis

ALTER TRIGGER name ON table_name RENAME TO new_name
ALTER TRIGGER name ON table_name DEPENDS ON EXTENSION extension_name

Description
ALTER TRIGGER changes properties of an existing trigger. The RENAME clause changes the name of
the given trigger without otherwise changing the trigger definition. The DEPENDS ON EXTENSION
clause marks the trigger as dependent on an extension, such that if the extension is dropped, the trigger
will automatically be dropped as well.

You must own the table on which the trigger acts to be allowed to change its properties.

Parameters
name

The name of an existing trigger to alter.

table_name

The name of the table on which this trigger acts.

new_name

The new name for the trigger.

extension_name

The name of the extension that the trigger is to depend on.

Notes
The ability to temporarily enable or disable a trigger is provided by ALTER TABLE, not by ALTER
TRIGGER, because ALTER TRIGGER has no convenient way to express the option of enabling or
disabling all of a table's triggers at once.

Examples
To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

To mark a trigger as being dependent on an extension:

1523

ALTER TRIGGER

ALTER TRIGGER emp_stamp ON emp DEPENDS ON EXTENSION emplib;

Compatibility
ALTER TRIGGER is a PostgreSQL extension of the SQL standard.

See Also
ALTER TABLE

1524

ALTER TYPE
ALTER TYPE — change the definition of a type

Synopsis

ALTER TYPE name action [, ...]
ALTER TYPE name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name
 [CASCADE | RESTRICT]
ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name ADD VALUE [IF NOT EXISTS] new_enum_value [{ BEFORE
 | AFTER } neighbor_enum_value]
ALTER TYPE name RENAME VALUE existing_enum_value TO new_enum_value

where action is one of:

 ADD ATTRIBUTE attribute_name data_type [COLLATE collation]
 [CASCADE | RESTRICT]
 DROP ATTRIBUTE [IF EXISTS] attribute_name [CASCADE | RESTRICT]
 ALTER ATTRIBUTE attribute_name [SET DATA] TYPE data_type
 [COLLATE collation] [CASCADE | RESTRICT]

Description
ALTER TYPE changes the definition of an existing type. There are several subforms:

ADD ATTRIBUTE

This form adds a new attribute to a composite type, using the same syntax as CREATE TYPE.

DROP ATTRIBUTE [IF EXISTS]

This form drops an attribute from a composite type. If IF EXISTS is specified and the attribute does
not exist, no error is thrown. In this case a notice is issued instead.

SET DATA TYPE

This form changes the type of an attribute of a composite type.

OWNER

This form changes the owner of the type.

RENAME

This form changes the name of the type or the name of an individual attribute of a composite type.

SET SCHEMA

This form moves the type into another schema.

1525

ALTER TYPE

ADD VALUE [IF NOT EXISTS] [BEFORE | AFTER]

This form adds a new value to an enum type. The new value's place in the enum's ordering can be
specified as being BEFORE or AFTER one of the existing values. Otherwise, the new item is added
at the end of the list of values.

If IF NOT EXISTS is specified, it is not an error if the type already contains the new value: a notice
is issued but no other action is taken. Otherwise, an error will occur if the new value is already present.

RENAME VALUE

This form renames a value of an enum type. The value's place in the enum's ordering is not affected.
An error will occur if the specified value is not present or the new name is already present.

The ADD ATTRIBUTE, DROP ATTRIBUTE, and ALTER ATTRIBUTE actions can be combined into
a list of multiple alterations to apply in parallel. For example, it is possible to add several attributes and/
or alter the type of several attributes in a single command.

You must own the type to use ALTER TYPE. To change the schema of a type, you must also have CREATE
privilege on the new schema. To alter the owner, you must also be a direct or indirect member of the new
owning role, and that role must have CREATE privilege on the type's schema. (These restrictions enforce
that altering the owner doesn't do anything you couldn't do by dropping and recreating the type. However,
a superuser can alter ownership of any type anyway.) To add an attribute or alter an attribute type, you
must also have USAGE privilege on the data type.

Parameters
name

The name (possibly schema-qualified) of an existing type to alter.

new_name

The new name for the type.

new_owner

The user name of the new owner of the type.

new_schema

The new schema for the type.

attribute_name

The name of the attribute to add, alter, or drop.

new_attribute_name

The new name of the attribute to be renamed.

data_type

The data type of the attribute to add, or the new type of the attribute to alter.

new_enum_value

The new value to be added to an enum type's list of values, or the new name to be given to an existing
value. Like all enum literals, it needs to be quoted.

1526

ALTER TYPE

neighbor_enum_value

The existing enum value that the new value should be added immediately before or after in the enum
type's sort ordering. Like all enum literals, it needs to be quoted.

existing_enum_value

The existing enum value that should be renamed. Like all enum literals, it needs to be quoted.

CASCADE

Automatically propagate the operation to typed tables of the type being altered, and their descendants.

RESTRICT

Refuse the operation if the type being altered is the type of a typed table. This is the default.

Notes
ALTER TYPE ... ADD VALUE (the form that adds a new value to an enum type) cannot be executed
inside a transaction block.

Comparisons involving an added enum value will sometimes be slower than comparisons involving only
original members of the enum type. This will usually only occur if BEFORE or AFTER is used to set the
new value's sort position somewhere other than at the end of the list. However, sometimes it will happen
even though the new value is added at the end (this occurs if the OID counter “wrapped around” since
the original creation of the enum type). The slowdown is usually insignificant; but if it matters, optimal
performance can be regained by dropping and recreating the enum type, or by dumping and reloading the
database.

Examples
To rename a data type:

ALTER TYPE electronic_mail RENAME TO email;

To change the owner of the type email to joe:

ALTER TYPE email OWNER TO joe;

To change the schema of the type email to customers:

ALTER TYPE email SET SCHEMA customers;

To add a new attribute to a type:

ALTER TYPE compfoo ADD ATTRIBUTE f3 int;

To add a new value to an enum type in a particular sort position:

ALTER TYPE colors ADD VALUE 'orange' AFTER 'red';

1527

ALTER TYPE

To rename an enum value:

ALTER TYPE colors RENAME VALUE 'purple' TO 'mauve';

Compatibility
The variants to add and drop attributes are part of the SQL standard; the other variants are PostgreSQL
extensions.

See Also
CREATE TYPE, DROP TYPE

1528

ALTER USER
ALTER USER — change a database role

Synopsis

ALTER USER role_specification [WITH] option [...]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'

ALTER USER name RENAME TO new_name

ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 RESET configuration_parameter
ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 RESET ALL

where role_specification can be:

 role_name
 | CURRENT_USER
 | SESSION_USER

Description
ALTER USER is now an alias for ALTER ROLE.

Compatibility
The ALTER USER statement is a PostgreSQL extension. The SQL standard leaves the definition of users
to the implementation.

See Also
ALTER ROLE

1529

ALTER USER MAPPING
ALTER USER MAPPING — change the definition of a user mapping

Synopsis

ALTER USER MAPPING FOR { user_name | USER | CURRENT_USER |
 SESSION_USER | PUBLIC }
 SERVER server_name
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description
ALTER USER MAPPING changes the definition of a user mapping.

The owner of a foreign server can alter user mappings for that server for any user. Also, a user can alter a
user mapping for their own user name if USAGE privilege on the server has been granted to the user.

Parameters
user_name

User name of the mapping. CURRENT_USER and USER match the name of the current user. PUBLIC
is used to match all present and future user names in the system.

server_name

Server name of the user mapping.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the user mapping. The new options override any previously specified options.
ADD, SET, and DROP specify the action to be performed. ADD is assumed if no operation is explicitly
specified. Option names must be unique; options are also validated by the server's foreign-data
wrapper.

Examples
Change the password for user mapping bob, server foo:

ALTER USER MAPPING FOR bob SERVER foo OPTIONS (SET password 'public');

Compatibility
ALTER USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). There is a subtle syntax issue: The
standard omits the FOR key word. Since both CREATE USER MAPPING and DROP USER MAPPING
use FOR in analogous positions, and IBM DB2 (being the other major SQL/MED implementation) also
requires it for ALTER USER MAPPING, PostgreSQL diverges from the standard here in the interest of
consistency and interoperability.

1530

ALTER USER MAPPING

See Also
CREATE USER MAPPING, DROP USER MAPPING

1531

ALTER VIEW
ALTER VIEW — change the definition of a view

Synopsis

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name SET
 DEFAULT expression
ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name DROP
 DEFAULT
ALTER VIEW [IF EXISTS] name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER VIEW [IF EXISTS] name RENAME TO new_name
ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema
ALTER VIEW [IF EXISTS] name SET (view_option_name
 [= view_option_value] [, ...])
ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

Description
ALTER VIEW changes various auxiliary properties of a view. (If you want to modify the view's defining
query, use CREATE OR REPLACE VIEW.)

You must own the view to use ALTER VIEW. To change a view's schema, you must also have CREATE
privilege on the new schema. To alter the owner, you must also be a direct or indirect member of the new
owning role, and that role must have CREATE privilege on the view's schema. (These restrictions enforce
that altering the owner doesn't do anything you couldn't do by dropping and recreating the view. However,
a superuser can alter ownership of any view anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing view.

IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

SET/DROP DEFAULT

These forms set or remove the default value for a column. A view column's default value is substituted
into any INSERT or UPDATE command whose target is the view, before applying any rules or triggers
for the view. The view's default will therefore take precedence over any default values from underlying
relations.

new_owner

The user name of the new owner of the view.

new_name

The new name for the view.

1532

ALTER VIEW

new_schema

The new schema for the view.

SET (view_option_name [= view_option_value] [, ...])
RESET (view_option_name [, ...])

Sets or resets a view option. Currently supported options are:

check_option (string)

Changes the check option of the view. The value must be local or cascaded.

security_barrier (boolean)

Changes the security-barrier property of the view. The value must be Boolean value, such as
true or false.

Notes
For historical reasons, ALTER TABLE can be used with views too; but the only variants of ALTER TABLE
that are allowed with views are equivalent to the ones shown above.

Examples
To rename the view foo to bar:

ALTER VIEW foo RENAME TO bar;

To attach a default column value to an updatable view:

CREATE TABLE base_table (id int, ts timestamptz);
CREATE VIEW a_view AS SELECT * FROM base_table;
ALTER VIEW a_view ALTER COLUMN ts SET DEFAULT now();
INSERT INTO base_table(id) VALUES(1); -- ts will receive a NULL
INSERT INTO a_view(id) VALUES(2); -- ts will receive the current time

Compatibility
ALTER VIEW is a PostgreSQL extension of the SQL standard.

See Also
CREATE VIEW, DROP VIEW

1533

ANALYZE
ANALYZE — collect statistics about a database

Synopsis

ANALYZE [(option [, ...])] [table_and_columns [, ...]]
ANALYZE [VERBOSE] [table_and_columns [, ...]]

where option can be one of:

 VERBOSE

and table_and_columns is:

 table_name [(column_name [, ...])]

Description
ANALYZE collects statistics about the contents of tables in the database, and stores the results in the
pg_statistic system catalog. Subsequently, the query planner uses these statistics to help determine
the most efficient execution plans for queries.

Without a table_and_columns list, ANALYZE processes every table and materialized view in the
current database that the current user has permission to analyze. With a list, ANALYZE processes only
those table(s). It is further possible to give a list of column names for a table, in which case only the
statistics for those columns are collected.

When the option list is surrounded by parentheses, the options can be written in any order. The
parenthesized syntax was added in PostgreSQL 11; the unparenthesized syntax is deprecated.

Parameters
VERBOSE

Enables display of progress messages.

table_name

The name (possibly schema-qualified) of a specific table to analyze. If omitted, all regular tables,
partitioned tables, and materialized views in the current database are analyzed (but not foreign tables).
If the specified table is a partitioned table, both the inheritance statistics of the partitioned table as a
whole and statistics of the individual partitions are updated.

column_name

The name of a specific column to analyze. Defaults to all columns.

Outputs
When VERBOSE is specified, ANALYZE emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

1534

ANALYZE

Notes
Foreign tables are analyzed only when explicitly selected. Not all foreign data wrappers support ANALYZE.
If the table's wrapper does not support ANALYZE, the command prints a warning and does nothing.

In the default PostgreSQL configuration, the autovacuum daemon (see Section 24.1.6) takes care of
automatic analyzing of tables when they are first loaded with data, and as they change throughout regular
operation. When autovacuum is disabled, it is a good idea to run ANALYZE periodically, or just after
making major changes in the contents of a table. Accurate statistics will help the planner to choose the
most appropriate query plan, and thereby improve the speed of query processing. A common strategy for
read-mostly databases is to run VACUUM and ANALYZE once a day during a low-usage time of day.
(This will not be sufficient if there is heavy update activity.)

ANALYZE requires only a read lock on the target table, so it can run in parallel with other activity on
the table.

The statistics collected by ANALYZE usually include a list of some of the most common values in each
column and a histogram showing the approximate data distribution in each column. One or both of these
can be omitted if ANALYZE deems them uninteresting (for example, in a unique-key column, there are
no common values) or if the column data type does not support the appropriate operators. There is more
information about the statistics in Chapter 24.

For large tables, ANALYZE takes a random sample of the table contents, rather than examining every
row. This allows even very large tables to be analyzed in a small amount of time. Note, however, that
the statistics are only approximate, and will change slightly each time ANALYZE is run, even if the actual
table contents did not change. This might result in small changes in the planner's estimated costs shown
by EXPLAIN. In rare situations, this non-determinism will cause the planner's choices of query plans to
change after ANALYZE is run. To avoid this, raise the amount of statistics collected by ANALYZE, as
described below.

The extent of analysis can be controlled by adjusting the default_statistics_target configuration variable,
or on a column-by-column basis by setting the per-column statistics target with ALTER TABLE ...
ALTER COLUMN ... SET STATISTICS (see ALTER TABLE). The target value sets the maximum
number of entries in the most-common-value list and the maximum number of bins in the histogram. The
default target value is 100, but this can be adjusted up or down to trade off accuracy of planner estimates
against the time taken for ANALYZE and the amount of space occupied in pg_statistic. In particular,
setting the statistics target to zero disables collection of statistics for that column. It might be useful to do
that for columns that are never used as part of the WHERE, GROUP BY, or ORDER BY clauses of queries,
since the planner will have no use for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number of table rows
sampled to prepare the statistics. Increasing the target causes a proportional increase in the time and space
needed to do ANALYZE.

One of the values estimated by ANALYZE is the number of distinct values that appear in each column.
Because only a subset of the rows are examined, this estimate can sometimes be quite inaccurate, even
with the largest possible statistics target. If this inaccuracy leads to bad query plans, a more accurate value
can be determined manually and then installed with ALTER TABLE ... ALTER COLUMN ... SET
(n_distinct = ...) (see ALTER TABLE).

If the table being analyzed has one or more children, ANALYZE will gather statistics twice: once on the
rows of the parent table only, and a second time on the rows of the parent table with all of its children.
This second set of statistics is needed when planning queries that traverse the entire inheritance tree. The
autovacuum daemon, however, will only consider inserts or updates on the parent table itself when deciding

1535

ANALYZE

whether to trigger an automatic analyze for that table. If that table is rarely inserted into or updated, the
inheritance statistics will not be up to date unless you run ANALYZE manually.

If any of the child tables are foreign tables whose foreign data wrappers do not support ANALYZE, those
child tables are ignored while gathering inheritance statistics.

If the table being analyzed is completely empty, ANALYZE will not record new statistics for that table.
Any existing statistics will be retained.

Compatibility
There is no ANALYZE statement in the SQL standard.

See Also
VACUUM, vacuumdb, Section 19.4.4, Section 24.1.6

1536

BEGIN
BEGIN — start a transaction block

Synopsis

BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
 | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
BEGIN initiates a transaction block, that is, all statements after a BEGIN command will be executed in
a single transaction until an explicit COMMIT or ROLLBACK is given. By default (without BEGIN),
PostgreSQL executes transactions in “autocommit” mode, that is, each statement is executed in its own
transaction and a commit is implicitly performed at the end of the statement (if execution was successful,
otherwise a rollback is done).

Statements are executed more quickly in a transaction block, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also useful
to ensure consistency when making several related changes: other sessions will be unable to see the
intermediate states wherein not all the related updates have been done.

If the isolation level, read/write mode, or deferrable mode is specified, the new transaction has those
characteristics, as if SET TRANSACTION was executed.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Refer to SET TRANSACTION for information on the meaning of the other parameters to this statement.

Notes
START TRANSACTION has the same functionality as BEGIN.

Use COMMIT or ROLLBACK to terminate a transaction block.

Issuing BEGIN when already inside a transaction block will provoke a warning message. The state
of the transaction is not affected. To nest transactions within a transaction block, use savepoints (see
SAVEPOINT).

1537

BEGIN

For reasons of backwards compatibility, the commas between successive transaction_modes can
be omitted.

Examples
To begin a transaction block:

BEGIN;

Compatibility
BEGIN is a PostgreSQL language extension. It is equivalent to the SQL-standard command START
TRANSACTION, whose reference page contains additional compatibility information.

The DEFERRABLE transaction_mode is a PostgreSQL language extension.

Incidentally, the BEGIN key word is used for a different purpose in embedded SQL. You are advised to
be careful about the transaction semantics when porting database applications.

See Also
COMMIT, ROLLBACK, START TRANSACTION, SAVEPOINT

1538

CALL
CALL — invoke a procedure

Synopsis

CALL name ([argument] [, ...])

Description
CALL executes a procedure.

If the procedure has any output parameters, then a result row will be returned, containing the values of
those parameters.

Parameters
name

The name (optionally schema-qualified) of the procedure.

argument

An input argument for the procedure call. See Section 4.3 for the full details on function and procedure
call syntax, including use of named parameters.

Notes
The user must have EXECUTE privilege on the procedure in order to be allowed to invoke it.

To call a function (not a procedure), use SELECT instead.

If CALL is executed in a transaction block, then the called procedure cannot execute transaction control
statements. Transaction control statements are only allowed if CALL is executed in its own transaction.

PL/pgSQL handles output parameters in CALL commands differently; see Section 43.6.3.

Examples

CALL do_db_maintenance();

Compatibility
CALL conforms to the SQL standard.

See Also
CREATE PROCEDURE

1539

CHECKPOINT
CHECKPOINT — force a write-ahead log checkpoint

Synopsis

CHECKPOINT

Description
A checkpoint is a point in the write-ahead log sequence at which all data files have been updated to reflect
the information in the log. All data files will be flushed to disk. Refer to Section 30.4 for more details
about what happens during a checkpoint.

The CHECKPOINT command forces an immediate checkpoint when the command is issued, without
waiting for a regular checkpoint scheduled by the system (controlled by the settings in Section 19.5.2).
CHECKPOINT is not intended for use during normal operation.

If executed during recovery, the CHECKPOINT command will force a restartpoint (see Section 30.4) rather
than writing a new checkpoint.

Only superusers can call CHECKPOINT.

Compatibility
The CHECKPOINT command is a PostgreSQL language extension.

1540

CLOSE
CLOSE — close a cursor

Synopsis

CLOSE { name | ALL }

Description
CLOSE frees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

Every non-holdable open cursor is implicitly closed when a transaction is terminated by COMMIT or
ROLLBACK. A holdable cursor is implicitly closed if the transaction that created it aborts via ROLLBACK.
If the creating transaction successfully commits, the holdable cursor remains open until an explicit CLOSE
is executed, or the client disconnects.

Parameters
name

The name of an open cursor to close.

ALL

Close all open cursors.

Notes
PostgreSQL does not have an explicit OPEN cursor statement; a cursor is considered open when it is
declared. Use the DECLARE statement to declare a cursor.

You can see all available cursors by querying the pg_cursors system view.

If a cursor is closed after a savepoint which is later rolled back, the CLOSE is not rolled back; that is, the
cursor remains closed.

Examples
Close the cursor liahona:

CLOSE liahona;

Compatibility
CLOSE is fully conforming with the SQL standard. CLOSE ALL is a PostgreSQL extension.

1541

CLOSE

See Also
DECLARE, FETCH, MOVE

1542

CLUSTER
CLUSTER — cluster a table according to an index

Synopsis

CLUSTER [VERBOSE] table_name [USING index_name]
CLUSTER [VERBOSE]

Description
CLUSTER instructs PostgreSQL to cluster the table specified by table_name based on the index
specified by index_name. The index must already have been defined on table_name.

When a table is clustered, it is physically reordered based on the index information. Clustering is a one-
time operation: when the table is subsequently updated, the changes are not clustered. That is, no attempt
is made to store new or updated rows according to their index order. (If one wishes, one can periodically
recluster by issuing the command again. Also, setting the table's fillfactor storage parameter to less
than 100% can aid in preserving cluster ordering during updates, since updated rows are kept on the same
page if enough space is available there.)

When a table is clustered, PostgreSQL remembers which index it was clustered by. The form CLUSTER
table_name reclusters the table using the same index as before. You can also use the CLUSTER or SET
WITHOUT CLUSTER forms of ALTER TABLE to set the index to be used for future cluster operations,
or to clear any previous setting.

CLUSTER without any parameter reclusters all the previously-clustered tables in the current database that
the calling user owns, or all such tables if called by a superuser. This form of CLUSTER cannot be executed
inside a transaction block.

When a table is being clustered, an ACCESS EXCLUSIVE lock is acquired on it. This prevents any other
database operations (both reads and writes) from operating on the table until the CLUSTER is finished.

Parameters
table_name

The name (possibly schema-qualified) of a table.

index_name

The name of an index.

VERBOSE

Prints a progress report as each table is clustered.

Notes
In cases where you are accessing single rows randomly within a table, the actual order of the data in the
table is unimportant. However, if you tend to access some data more than others, and there is an index

1543

CLUSTER

that groups them together, you will benefit from using CLUSTER. If you are requesting a range of indexed
values from a table, or a single indexed value that has multiple rows that match, CLUSTER will help
because once the index identifies the table page for the first row that matches, all other rows that match
are probably already on the same table page, and so you save disk accesses and speed up the query.

CLUSTER can re-sort the table using either an index scan on the specified index, or (if the index is a b-
tree) a sequential scan followed by sorting. It will attempt to choose the method that will be faster, based
on planner cost parameters and available statistical information.

When an index scan is used, a temporary copy of the table is created that contains the table data in the
index order. Temporary copies of each index on the table are created as well. Therefore, you need free
space on disk at least equal to the sum of the table size and the index sizes.

When a sequential scan and sort is used, a temporary sort file is also created, so that the peak temporary
space requirement is as much as double the table size, plus the index sizes. This method is often faster
than the index scan method, but if the disk space requirement is intolerable, you can disable this choice
by temporarily setting enable_sort to off.

It is advisable to set maintenance_work_mem to a reasonably large value (but not more than the amount
of RAM you can dedicate to the CLUSTER operation) before clustering.

Because the planner records statistics about the ordering of tables, it is advisable to run ANALYZE on the
newly clustered table. Otherwise, the planner might make poor choices of query plans.

Because CLUSTER remembers which indexes are clustered, one can cluster the tables one wants clustered
manually the first time, then set up a periodic maintenance script that executes CLUSTER without any
parameters, so that the desired tables are periodically reclustered.

Examples
Cluster the table employees on the basis of its index employees_ind:

CLUSTER employees USING employees_ind;

Cluster the employees table using the same index that was used before:

CLUSTER employees;

Cluster all tables in the database that have previously been clustered:

CLUSTER;

Compatibility
There is no CLUSTER statement in the SQL standard.

The syntax

CLUSTER index_name ON table_name

is also supported for compatibility with pre-8.3 PostgreSQL versions.

1544

CLUSTER

See Also
clusterdb

1545

COMMENT
COMMENT — define or change the comment of an object

Synopsis

COMMENT ON
{
 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 COLUMN relation_name.column_name |
 CONSTRAINT constraint_name ON table_name |
 CONSTRAINT constraint_name ON DOMAIN domain_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 EXTENSION object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype
 [, ...]])] |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 POLICY policy_name ON table_name |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype
 [, ...]])] |
 PUBLICATION object_name |
 ROLE object_name |
 ROUTINE routine_name [([[argmode] [argname] argtype
 [, ...]])] |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 STATISTICS object_name |
 SUBSCRIPTION object_name |
 TABLE object_name |
 TABLESPACE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |

1546

COMMENT

 TRANSFORM FOR type_name LANGUAGE lang_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name
} IS 'text'

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode]
 [argname] argtype [, ...]

Description

COMMENT stores a comment about a database object.

Only one comment string is stored for each object, so to modify a comment, issue a new COMMENT
command for the same object. To remove a comment, write NULL in place of the text string. Comments
are automatically dropped when their object is dropped.

For most kinds of object, only the object's owner can set the comment. Roles don't have owners, so the
rule for COMMENT ON ROLE is that you must be superuser to comment on a superuser role, or have the
CREATEROLE privilege to comment on non-superuser roles. Likewise, access methods don't have owners
either; you must be superuser to comment on an access method. Of course, a superuser can comment on
anything.

Comments can be viewed using psql's \d family of commands. Other user interfaces to retrieve
comments can be built atop the same built-in functions that psql uses, namely obj_description,
col_description, and shobj_description (see Table 9.68).

Parameters

object_name
relation_name.column_name
aggregate_name
constraint_name
function_name
operator_name
policy_name
procedure_name
routine_name
rule_name
trigger_name

The name of the object to be commented. Names of tables, aggregates, collations, conversions,
domains, foreign tables, functions, indexes, operators, operator classes, operator families, procedures,
routines, sequences, statistics, text search objects, types, and views can be schema-qualified. When
commenting on a column, relation_name must refer to a table, view, composite type, or foreign
table.

1547

COMMENT

table_name
domain_name

When creating a comment on a constraint, a trigger, a rule or a policy these parameters specify the
name of the table or domain on which that object is defined.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If
omitted, the default is IN. Note that COMMENT does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function's identity. So it is sufficient to
list the IN, INOUT, and VARIADIC arguments.

argname

The name of a function, procedure, or aggregate argument. Note that COMMENT does not actually
pay any attention to argument names, since only the argument data types are needed to determine the
function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

large_object_oid

The OID of the large object.

left_type
right_type

The data type(s) of the operator's arguments (optionally schema-qualified). Write NONE for the
missing argument of a prefix or postfix operator.

PROCEDURAL

This is a noise word.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

text

The new comment, written as a string literal; or NULL to drop the comment.

1548

COMMENT

Notes
There is presently no security mechanism for viewing comments: any user connected to a database can see
all the comments for objects in that database. For shared objects such as databases, roles, and tablespaces,
comments are stored globally so any user connected to any database in the cluster can see all the comments
for shared objects. Therefore, don't put security-critical information in comments.

Examples
Attach a comment to the table mytable:

COMMENT ON TABLE mytable IS 'This is my table.';

Remove it again:

COMMENT ON TABLE mytable IS NULL;

Some more examples:

COMMENT ON ACCESS METHOD rtree IS 'R-Tree access method';
COMMENT ON AGGREGATE my_aggregate (double precision) IS 'Computes
 sample variance';
COMMENT ON CAST (text AS int4) IS 'Allow casts from text to int4';
COMMENT ON COLLATION "fr_CA" IS 'Canadian French';
COMMENT ON COLUMN my_table.my_column IS 'Employee ID number';
COMMENT ON CONVERSION my_conv IS 'Conversion to UTF8';
COMMENT ON CONSTRAINT bar_col_cons ON bar IS 'Constrains column col';
COMMENT ON CONSTRAINT dom_col_constr ON DOMAIN dom IS 'Constrains col
 of domain';
COMMENT ON DATABASE my_database IS 'Development Database';
COMMENT ON DOMAIN my_domain IS 'Email Address Domain';
COMMENT ON EXTENSION hstore IS 'implements the hstore data type';
COMMENT ON FOREIGN DATA WRAPPER mywrapper IS 'my foreign data
 wrapper';
COMMENT ON FOREIGN TABLE my_foreign_table IS 'Employee Information in
 other database';
COMMENT ON FUNCTION my_function (timestamp) IS 'Returns Roman
 Numeral';
COMMENT ON INDEX my_index IS 'Enforces uniqueness on employee ID';
COMMENT ON LANGUAGE plpython IS 'Python support for stored
 procedures';
COMMENT ON LARGE OBJECT 346344 IS 'Planning document';
COMMENT ON MATERIALIZED VIEW my_matview IS 'Summary of order history';
COMMENT ON OPERATOR ^ (text, text) IS 'Performs intersection of two
 texts';
COMMENT ON OPERATOR - (NONE, integer) IS 'Unary minus';
COMMENT ON OPERATOR CLASS int4ops USING btree IS '4 byte integer
 operators for btrees';
COMMENT ON OPERATOR FAMILY integer_ops USING btree IS 'all integer
 operators for btrees';
COMMENT ON POLICY my_policy ON mytable IS 'Filter rows by users';

1549

COMMENT

COMMENT ON PROCEDURE my_proc (integer, integer) IS 'Runs a report';
COMMENT ON ROLE my_role IS 'Administration group for finance tables';
COMMENT ON RULE my_rule ON my_table IS 'Logs updates of employee
 records';
COMMENT ON SCHEMA my_schema IS 'Departmental data';
COMMENT ON SEQUENCE my_sequence IS 'Used to generate primary keys';
COMMENT ON SERVER myserver IS 'my foreign server';
COMMENT ON STATISTICS my_statistics IS 'Improves planner row
 estimations';
COMMENT ON TABLE my_schema.my_table IS 'Employee Information';
COMMENT ON TABLESPACE my_tablespace IS 'Tablespace for indexes';
COMMENT ON TEXT SEARCH CONFIGURATION my_config IS 'Special word
 filtering';
COMMENT ON TEXT SEARCH DICTIONARY swedish IS 'Snowball stemmer for
 Swedish language';
COMMENT ON TEXT SEARCH PARSER my_parser IS 'Splits text into words';
COMMENT ON TEXT SEARCH TEMPLATE snowball IS 'Snowball stemmer';
COMMENT ON TRANSFORM FOR hstore LANGUAGE plpythonu IS 'Transform
 between hstore and Python dict';
COMMENT ON TRIGGER my_trigger ON my_table IS 'Used for RI';
COMMENT ON TYPE complex IS 'Complex number data type';
COMMENT ON VIEW my_view IS 'View of departmental costs';

Compatibility
There is no COMMENT command in the SQL standard.

1550

COMMIT
COMMIT — commit the current transaction

Synopsis

COMMIT [WORK | TRANSACTION]

Description
COMMIT commits the current transaction. All changes made by the transaction become visible to others
and are guaranteed to be durable if a crash occurs.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Notes
Use ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility
The SQL standard only specifies the two forms COMMIT and COMMIT WORK. Otherwise, this command
is fully conforming.

See Also
BEGIN, ROLLBACK

1551

COMMIT PREPARED
COMMIT PREPARED — commit a transaction that was earlier prepared for two-phase commit

Synopsis

COMMIT PREPARED transaction_id

Description
COMMIT PREPARED commits a transaction that is in prepared state.

Parameters
transaction_id

The transaction identifier of the transaction that is to be committed.

Notes
To commit a prepared transaction, you must be either the same user that executed the transaction originally,
or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is committed
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Commit the transaction identified by the transaction identifier foobar:

COMMIT PREPARED 'foobar';

Compatibility
COMMIT PREPARED is a PostgreSQL extension. It is intended for use by external transaction management
systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those systems
is not standardized.

See Also
PREPARE TRANSACTION, ROLLBACK PREPARED

1552

COPY
COPY — copy data between a file and a table

Synopsis

COPY table_name [(column_name [, ...])]
 FROM { 'filename' | PROGRAM 'command' | STDIN }
 [[WITH] (option [, ...])]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | PROGRAM 'command' | STDOUT }
 [[WITH] (option [, ...])]

where option can be one of:

 FORMAT format_name
 OIDS [boolean]
 FREEZE [boolean]
 DELIMITER 'delimiter_character'
 NULL 'null_string'
 HEADER [boolean]
 QUOTE 'quote_character'
 ESCAPE 'escape_character'
 FORCE_QUOTE { (column_name [, ...]) | * }
 FORCE_NOT_NULL (column_name [, ...])
 FORCE_NULL (column_name [, ...])
 ENCODING 'encoding_name'

Description
COPY moves data between PostgreSQL tables and standard file-system files. COPY TO copies the contents
of a table to a file, while COPY FROM copies data from a file to a table (appending the data to whatever
is in the table already). COPY TO can also copy the results of a SELECT query.

If a list of columns is specified, COPY will only copy the data in the specified columns to or from the file.
If there are any columns in the table that are not in the column list, COPY FROM will insert the default
values for those columns.

COPY with a file name instructs the PostgreSQL server to directly read from or write to a file. The file must
be accessible by the PostgreSQL user (the user ID the server runs as) and the name must be specified from
the viewpoint of the server. When PROGRAM is specified, the server executes the given command and reads
from the standard output of the program, or writes to the standard input of the program. The command
must be specified from the viewpoint of the server, and be executable by the PostgreSQL user. When
STDIN or STDOUT is specified, data is transmitted via the connection between the client and the server.

Parameters
table_name

The name (optionally schema-qualified) of an existing table.

1553

COPY

column_name

An optional list of columns to be copied. If no column list is specified, all columns of the table will
be copied.

query

A SELECT, VALUES, INSERT, UPDATE or DELETE command whose results are to be copied.
Note that parentheses are required around the query.

For INSERT, UPDATE and DELETE queries a RETURNING clause must be provided, and the target
relation must not have a conditional rule, nor an ALSO rule, nor an INSTEAD rule that expands to
multiple statements.

filename

The path name of the input or output file. An input file name can be an absolute or relative path, but
an output file name must be an absolute path. Windows users might need to use an E'' string and
double any backslashes used in the path name.

PROGRAM

A command to execute. In COPY FROM, the input is read from standard output of the command, and
in COPY TO, the output is written to the standard input of the command.

Note that the command is invoked by the shell, so if you need to pass any arguments to shell command
that come from an untrusted source, you must be careful to strip or escape any special characters that
might have a special meaning for the shell. For security reasons, it is best to use a fixed command
string, or at least avoid passing any user input in it.

STDIN

Specifies that input comes from the client application.

STDOUT

Specifies that output goes to the client application.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in
which case TRUE is assumed.

FORMAT

Selects the data format to be read or written: text, csv (Comma Separated Values), or binary.
The default is text.

OIDS

Specifies copying the OID for each row. (An error is raised if OIDS is specified for a table that does
not have OIDs, or in the case of copying a query.)

FREEZE

Requests copying the data with rows already frozen, just as they would be after running the VACUUM
FREEZE command. This is intended as a performance option for initial data loading. Rows will be

1554

COPY

frozen only if the table being loaded has been created or truncated in the current subtransaction, there
are no cursors open and there are no older snapshots held by this transaction. It is currently not possible
to perform a COPY FREEZE on a partitioned table.

Note that all other sessions will immediately be able to see the data once it has been successfully
loaded. This violates the normal rules of MVCC visibility and users specifying should be aware of
the potential problems this might cause.

DELIMITER

Specifies the character that separates columns within each row (line) of the file. The default is a tab
character in text format, a comma in CSV format. This must be a single one-byte character. This option
is not allowed when using binary format.

NULL

Specifies the string that represents a null value. The default is \N (backslash-N) in text format, and
an unquoted empty string in CSV format. You might prefer an empty string even in text format for
cases where you don't want to distinguish nulls from empty strings. This option is not allowed when
using binary format.

Note

When using COPY FROM, any data item that matches this string will be stored as a null value,
so you should make sure that you use the same string as you used with COPY TO.

HEADER

Specifies that the file contains a header line with the names of each column in the file. On output, the
first line contains the column names from the table, and on input, the first line is ignored. This option
is allowed only when using CSV format.

QUOTE

Specifies the quoting character to be used when a data value is quoted. The default is double-quote.
This must be a single one-byte character. This option is allowed only when using CSV format.

ESCAPE

Specifies the character that should appear before a data character that matches the QUOTE value. The
default is the same as the QUOTE value (so that the quoting character is doubled if it appears in the
data). This must be a single one-byte character. This option is allowed only when using CSV format.

FORCE_QUOTE

Forces quoting to be used for all non-NULL values in each specified column. NULL output is never
quoted. If * is specified, non-NULL values will be quoted in all columns. This option is allowed only
in COPY TO, and only when using CSV format.

FORCE_NOT_NULL

Do not match the specified columns' values against the null string. In the default case where the null
string is empty, this means that empty values will be read as zero-length strings rather than nulls,
even when they are not quoted. This option is allowed only in COPY FROM, and only when using
CSV format.

1555

COPY

FORCE_NULL

Match the specified columns' values against the null string, even if it has been quoted, and if a match
is found set the value to NULL. In the default case where the null string is empty, this converts a
quoted empty string into NULL. This option is allowed only in COPY FROM, and only when using
CSV format.

ENCODING

Specifies that the file is encoded in the encoding_name. If this option is omitted, the current client
encoding is used. See the Notes below for more details.

Outputs
On successful completion, a COPY command returns a command tag of the form

COPY count

The count is the number of rows copied.

Note

psql will print this command tag only if the command was not COPY ... TO STDOUT, or
the equivalent psql meta-command \copy ... to stdout. This is to prevent confusing the
command tag with the data that was just printed.

Notes
COPY TO can only be used with plain tables, not with views. However, you can write COPY (SELECT
* FROM viewname) TO ... to copy the current contents of a view.

COPY FROM can be used with plain, foreign, or partitioned tables or with views that have INSTEAD OF
INSERT triggers.

COPY only deals with the specific table named; it does not copy data to or from child tables. Thus for
example COPY table TO shows the same data as SELECT * FROM ONLY table. But COPY
(SELECT * FROM table) TO ... can be used to dump all of the data in an inheritance hierarchy.

You must have select privilege on the table whose values are read by COPY TO, and insert privilege on
the table into which values are inserted by COPY FROM. It is sufficient to have column privileges on the
column(s) listed in the command.

If row-level security is enabled for the table, the relevant SELECT policies will apply to COPY table
TO statements. Currently, COPY FROM is not supported for tables with row-level security. Use equivalent
INSERT statements instead.

Files named in a COPY command are read or written directly by the server, not by the client application.
Therefore, they must reside on or be accessible to the database server machine, not the client. They
must be accessible to and readable or writable by the PostgreSQL user (the user ID the server runs
as), not the client. Similarly, the command specified with PROGRAM is executed directly by the server,
not by the client application, must be executable by the PostgreSQL user. COPY naming a file or

1556

COPY

command is only allowed to database superusers or users who are granted one of the default roles
pg_read_server_files, pg_write_server_files, or pg_execute_server_program,
since it allows reading or writing any file or running a program that the server has privileges to access.

Do not confuse COPY with the psql instruction \copy. \copy invokes COPY FROM STDIN or COPY
TO STDOUT, and then fetches/stores the data in a file accessible to the psql client. Thus, file accessibility
and access rights depend on the client rather than the server when \copy is used.

It is recommended that the file name used in COPY always be specified as an absolute path. This is enforced
by the server in the case of COPY TO, but for COPY FROM you do have the option of reading from a
file specified by a relative path. The path will be interpreted relative to the working directory of the server
process (normally the cluster's data directory), not the client's working directory.

Executing a command with PROGRAM might be restricted by the operating system's access control
mechanisms, such as SELinux.

COPY FROM will invoke any triggers and check constraints on the destination table. However, it will
not invoke rules.

For identity columns, the COPY FROM command will always write the column values provided in the
input data, like the INSERT option OVERRIDING SYSTEM VALUE.

COPY input and output is affected by DateStyle. To ensure portability to other PostgreSQL installations
that might use non-default DateStyle settings, DateStyle should be set to ISO before using COPY
TO. It is also a good idea to avoid dumping data with IntervalStyle set to sql_standard,
because negative interval values might be misinterpreted by a server that has a different setting for
IntervalStyle.

Input data is interpreted according to ENCODING option or the current client encoding, and output data
is encoded in ENCODING or the current client encoding, even if the data does not pass through the client
but is read from or written to a file directly by the server.

COPY stops operation at the first error. This should not lead to problems in the event of a COPY TO, but
the target table will already have received earlier rows in a COPY FROM. These rows will not be visible
or accessible, but they still occupy disk space. This might amount to a considerable amount of wasted
disk space if the failure happened well into a large copy operation. You might wish to invoke VACUUM
to recover the wasted space.

FORCE_NULL and FORCE_NOT_NULL can be used simultaneously on the same column. This results in
converting quoted null strings to null values and unquoted null strings to empty strings.

File Formats

Text Format

When the text format is used, the data read or written is a text file with one line per table row. Columns
in a row are separated by the delimiter character. The column values themselves are strings generated by
the output function, or acceptable to the input function, of each attribute's data type. The specified null
string is used in place of columns that are null. COPY FROM will raise an error if any line of the input
file contains more or fewer columns than are expected. If OIDS is specified, the OID is read or written
as the first column, preceding the user data columns.

End of data can be represented by a single line containing just backslash-period (\.). An end-of-data
marker is not necessary when reading from a file, since the end of file serves perfectly well; it is needed
only when copying data to or from client applications using pre-3.0 client protocol.

1557

COPY

Backslash characters (\) can be used in the COPY data to quote data characters that might otherwise be
taken as row or column delimiters. In particular, the following characters must be preceded by a backslash
if they appear as part of a column value: backslash itself, newline, carriage return, and the current delimiter
character.

The specified null string is sent by COPY TO without adding any backslashes; conversely, COPY FROM
matches the input against the null string before removing backslashes. Therefore, a null string such as \N
cannot be confused with the actual data value \N (which would be represented as \\N).

The following special backslash sequences are recognized by COPY FROM:

Sequence Represents

\b Backspace (ASCII 8)

\f Form feed (ASCII 12)

\n Newline (ASCII 10)

\r Carriage return (ASCII 13)

\t Tab (ASCII 9)

\v Vertical tab (ASCII 11)

\digits Backslash followed by one to three octal digits
specifies the character with that numeric code

\xdigits Backslash x followed by one or two hex digits
specifies the character with that numeric code

Presently, COPY TO will never emit an octal or hex-digits backslash sequence, but it does use the other
sequences listed above for those control characters.

Any other backslashed character that is not mentioned in the above table will be taken to represent itself.
However, beware of adding backslashes unnecessarily, since that might accidentally produce a string
matching the end-of-data marker (\.) or the null string (\N by default). These strings will be recognized
before any other backslash processing is done.

It is strongly recommended that applications generating COPY data convert data newlines and carriage
returns to the \n and \r sequences respectively. At present it is possible to represent a data carriage
return by a backslash and carriage return, and to represent a data newline by a backslash and newline.
However, these representations might not be accepted in future releases. They are also highly vulnerable to
corruption if the COPY file is transferred across different machines (for example, from Unix to Windows
or vice versa).

COPY TO will terminate each row with a Unix-style newline (“\n”). Servers running on Microsoft
Windows instead output carriage return/newline (“\r\n”), but only for COPY to a server file; for
consistency across platforms, COPY TO STDOUT always sends “\n” regardless of server platform. COPY
FROM can handle lines ending with newlines, carriage returns, or carriage return/newlines. To reduce the
risk of error due to un-backslashed newlines or carriage returns that were meant as data, COPY FROM will
complain if the line endings in the input are not all alike.

CSV Format

This format option is used for importing and exporting the Comma Separated Value (CSV) file format
used by many other programs, such as spreadsheets. Instead of the escaping rules used by PostgreSQL's
standard text format, it produces and recognizes the common CSV escaping mechanism.

The values in each record are separated by the DELIMITER character. If the value contains the delimiter
character, the QUOTE character, the NULL string, a carriage return, or line feed character, then the whole

1558

COPY

value is prefixed and suffixed by the QUOTE character, and any occurrence within the value of a QUOTE
character or the ESCAPE character is preceded by the escape character. You can also use FORCE_QUOTE
to force quotes when outputting non-NULL values in specific columns.

The CSV format has no standard way to distinguish a NULL value from an empty string. PostgreSQL's
COPY handles this by quoting. A NULL is output as the NULL parameter string and is not quoted, while
a non-NULL value matching the NULL parameter string is quoted. For example, with the default settings,
a NULL is written as an unquoted empty string, while an empty string data value is written with double
quotes (""). Reading values follows similar rules. You can use FORCE_NOT_NULL to prevent NULL
input comparisons for specific columns. You can also use FORCE_NULL to convert quoted null string
data values to NULL.

Because backslash is not a special character in the CSV format, \., the end-of-data marker, could also
appear as a data value. To avoid any misinterpretation, a \. data value appearing as a lone entry on a line
is automatically quoted on output, and on input, if quoted, is not interpreted as the end-of-data marker. If
you are loading a file created by another application that has a single unquoted column and might have a
value of \., you might need to quote that value in the input file.

Note

In CSV format, all characters are significant. A quoted value surrounded by white space, or any
characters other than DELIMITER, will include those characters. This can cause errors if you
import data from a system that pads CSV lines with white space out to some fixed width. If such
a situation arises you might need to preprocess the CSV file to remove the trailing white space,
before importing the data into PostgreSQL.

Note

CSV format will both recognize and produce CSV files with quoted values containing embedded
carriage returns and line feeds. Thus the files are not strictly one line per table row like text-format
files.

Note

Many programs produce strange and occasionally perverse CSV files, so the file format is more
a convention than a standard. Thus you might encounter some files that cannot be imported using
this mechanism, and COPY might produce files that other programs cannot process.

Binary Format

The binary format option causes all data to be stored/read as binary format rather than as text. It is
somewhat faster than the text and CSV formats, but a binary-format file is less portable across machine
architectures and PostgreSQL versions. Also, the binary format is very data type specific; for example it
will not work to output binary data from a smallint column and read it into an integer column, even
though that would work fine in text format.

The binary file format consists of a file header, zero or more tuples containing the row data, and a file
trailer. Headers and data are in network byte order.

1559

COPY

Note

PostgreSQL releases before 7.4 used a different binary file format.

File Header

The file header consists of 15 bytes of fixed fields, followed by a variable-length header extension area.
The fixed fields are:

Signature

11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero byte is a required part of the
signature. (The signature is designed to allow easy identification of files that have been munged by
a non-8-bit-clean transfer. This signature will be changed by end-of-line-translation filters, dropped
zero bytes, dropped high bits, or parity changes.)

Flags field

32-bit integer bit mask to denote important aspects of the file format. Bits are numbered from 0 (LSB)
to 31 (MSB). Note that this field is stored in network byte order (most significant byte first), as are all
the integer fields used in the file format. Bits 16-31 are reserved to denote critical file format issues;
a reader should abort if it finds an unexpected bit set in this range. Bits 0-15 are reserved to signal
backwards-compatible format issues; a reader should simply ignore any unexpected bits set in this
range. Currently only one flag bit is defined, and the rest must be zero:

Bit 16

if 1, OIDs are included in the data; if 0, not

Header extension area length

32-bit integer, length in bytes of remainder of header, not including self. Currently, this is zero, and
the first tuple follows immediately. Future changes to the format might allow additional data to be
present in the header. A reader should silently skip over any header extension data it does not know
what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags field
is not intended to tell readers what is in the extension area. Specific design of header extension contents
is left for a later release.

This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with a 16-bit integer count of the number of fields in the tuple. (Presently, all tuples
in a table will have the same count, but that might not always be true.) Then, repeated for each field in
the tuple, there is a 32-bit length word followed by that many bytes of field data. (The length word does
not include itself, and can be zero.) As a special case, -1 indicates a NULL field value. No value bytes
follow in the NULL case.

There is no alignment padding or any other extra data between fields.

1560

COPY

Presently, all data values in a binary-format file are assumed to be in binary format (format code one).
It is anticipated that a future extension might add a header field that allows per-column format codes to
be specified.

To determine the appropriate binary format for the actual tuple data you should consult the PostgreSQL
source, in particular the *send and *recv functions for each column's data type (typically these functions
are found in the src/backend/utils/adt/ directory of the source distribution).

If OIDs are included in the file, the OID field immediately follows the field-count word. It is a normal
field except that it's not included in the field-count. In particular it has a length word — this will allow
handling of 4-byte vs. 8-byte OIDs without too much pain, and will allow OIDs to be shown as null if
that ever proves desirable.

File Trailer

The file trailer consists of a 16-bit integer word containing -1. This is easily distinguished from a tuple's
field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Examples
The following example copies a table to the client using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT (DELIMITER '|');

To copy data from a file into the country table:

COPY country FROM '/usr1/proj/bray/sql/country_data';

To copy into a file just the countries whose names start with 'A':

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO '/usr1/
proj/bray/sql/a_list_countries.copy';

To copy into a compressed file, you can pipe the output through an external compression program:

COPY country TO PROGRAM 'gzip > /usr1/proj/bray/sql/country_data.gz';

Here is a sample of data suitable for copying into a table from STDIN:

AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA
ZM ZAMBIA
ZW ZIMBABWE

Note that the white space on each line is actually a tab character.

The following is the same data, output in binary format. The data is shown after filtering through the Unix
utility od -c. The table has three columns; the first has type char(2), the second has type text, and
the third has type integer. All the rows have a null value in the third column.

1561

COPY

0000000 P G C O P Y \n 377 \r \n \0 \0 \0 \0 \0
 \0
0000020 \0 \0 \0 \0 003 \0 \0 \0 002 A F \0 \0 \0 013
 A
0000040 F G H A N I S T A N 377 377 377 377 \0
 003
0000060 \0 \0 \0 002 A L \0 \0 \0 007 A L B A N
 I
0000100 A 377 377 377 377 \0 003 \0 \0 \0 002 D Z \0 \0
 \0
0000120 007 A L G E R I A 377 377 377 377 \0 003 \0
 \0
0000140 \0 002 Z M \0 \0 \0 006 Z A M B I A 377
 377
0000160 377 377 \0 003 \0 \0 \0 002 Z W \0 \0 \0 \b Z
 I
0000200 M B A B W E 377 377 377 377 377 377

Compatibility
There is no COPY statement in the SQL standard.

The following syntax was used before PostgreSQL version 9.0 and is still supported:

COPY table_name [(column_name [, ...])]
 FROM { 'filename' | STDIN }
 [[WITH]
 [BINARY]
 [OIDS]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote']
 [ESCAPE [AS] 'escape']
 [FORCE NOT NULL column_name [, ...]]]]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | STDOUT }
 [[WITH]
 [BINARY]
 [OIDS]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote']
 [ESCAPE [AS] 'escape']
 [FORCE QUOTE { column_name [, ...] | * }]]]

Note that in this syntax, BINARY and CSV are treated as independent keywords, not as arguments of a
FORMAT option.

The following syntax was used before PostgreSQL version 7.3 and is still supported:

1562

COPY

COPY [BINARY] table_name [WITH OIDS]
 FROM { 'filename' | STDIN }
 [[USING] DELIMITERS 'delimiter']
 [WITH NULL AS 'null string']

COPY [BINARY] table_name [WITH OIDS]
 TO { 'filename' | STDOUT }
 [[USING] DELIMITERS 'delimiter']
 [WITH NULL AS 'null string']

1563

CREATE ACCESS METHOD
CREATE ACCESS METHOD — define a new access method

Synopsis

CREATE ACCESS METHOD name
 TYPE access_method_type
 HANDLER handler_function

Description
CREATE ACCESS METHOD creates a new access method.

The access method name must be unique within the database.

Only superusers can define new access methods.

Parameters
name

The name of the access method to be created.

access_method_type

This clause specifies the type of access method to define. Only INDEX is supported at present.

handler_function

handler_function is the name (possibly schema-qualified) of a previously registered function
that represents the access method. The handler function must be declared to take a single argument of
type internal, and its return type depends on the type of access method; for INDEX access methods,
it must be index_am_handler. The C-level API that the handler function must implement varies
depending on the type of access method. The index access method API is described in Chapter 61.

Examples
Create an index access method heptree with handler function heptree_handler:

CREATE ACCESS METHOD heptree TYPE INDEX HANDLER heptree_handler;

Compatibility
CREATE ACCESS METHOD is a PostgreSQL extension.

See Also
DROP ACCESS METHOD, CREATE OPERATOR CLASS, CREATE OPERATOR FAMILY

1564

CREATE AGGREGATE
CREATE AGGREGATE — define a new aggregate function

Synopsis

CREATE AGGREGATE name ([argmode] [argname] arg_data_type
 [, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
)

CREATE AGGREGATE name ([[argmode] [argname] arg_data_type
 [, ...]]
 ORDER BY [argmode] [argname] arg_data_type
 [, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, INITCOND = initial_condition]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
 [, HYPOTHETICAL]
)

or the old syntax

CREATE AGGREGATE name (
 BASETYPE = base_type,
 SFUNC = sfunc,

1565

CREATE AGGREGATE

 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
)

Description
CREATE AGGREGATE defines a new aggregate function. Some basic and commonly-used aggregate
functions are included with the distribution; they are documented in Section 9.20. If one defines new types
or needs an aggregate function not already provided, then CREATE AGGREGATE can be used to provide
the desired features.

If a schema name is given (for example, CREATE AGGREGATE myschema.myagg ...) then the
aggregate function is created in the specified schema. Otherwise it is created in the current schema.

An aggregate function is identified by its name and input data type(s). Two aggregates in the same schema
can have the same name if they operate on different input types. The name and input data type(s) of an
aggregate must also be distinct from the name and input data type(s) of every ordinary function in the same
schema. This behavior is identical to overloading of ordinary function names (see CREATE FUNCTION).

A simple aggregate function is made from one or two ordinary functions: a state transition function sfunc,
and an optional final calculation function ffunc. These are used as follows:

sfunc(internal-state, next-data-values) ---> next-internal-state
ffunc(internal-state) ---> aggregate-value

PostgreSQL creates a temporary variable of data type stype to hold the current internal state of the
aggregate. At each input row, the aggregate argument value(s) are calculated and the state transition
function is invoked with the current state value and the new argument value(s) to calculate a new internal
state value. After all the rows have been processed, the final function is invoked once to calculate the
aggregate's return value. If there is no final function then the ending state value is returned as-is.

An aggregate function can provide an initial condition, that is, an initial value for the internal state value.
This is specified and stored in the database as a value of type text, but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts
out null.

If the state transition function is declared “strict”, then it cannot be called with null inputs. With such a
transition function, aggregate execution behaves as follows. Rows with any null input values are ignored

1566

CREATE AGGREGATE

(the function is not called and the previous state value is retained). If the initial state value is null, then at the
first row with all-nonnull input values, the first argument value replaces the state value, and the transition
function is invoked at each subsequent row with all-nonnull input values. This is handy for implementing
aggregates like max. Note that this behavior is only available when state_data_type is the same as
the first arg_data_type. When these types are different, you must supply a nonnull initial condition
or use a nonstrict transition function.

If the state transition function is not strict, then it will be called unconditionally at each input row, and
must deal with null inputs and null state values for itself. This allows the aggregate author to have full
control over the aggregate's handling of null values.

If the final function is declared “strict”, then it will not be called when the ending state value is null; instead
a null result will be returned automatically. (Of course this is just the normal behavior of strict functions.)
In any case the final function has the option of returning a null value. For example, the final function for
avg returns null when it sees there were zero input rows.

Sometimes it is useful to declare the final function as taking not just the state value, but extra parameters
corresponding to the aggregate's input values. The main reason for doing this is if the final function
is polymorphic and the state value's data type would be inadequate to pin down the result type. These
extra parameters are always passed as NULL (and so the final function must not be strict when the
FINALFUNC_EXTRA option is used), but nonetheless they are valid parameters. The final function could
for example make use of get_fn_expr_argtype to identify the actual argument type in the current
call.

An aggregate can optionally support moving-aggregate mode, as described in Section 38.11.1. This
requires specifying the MSFUNC, MINVFUNC, and MSTYPE parameters, and optionally the MSPACE,
MFINALFUNC, MFINALFUNC_EXTRA, MFINALFUNC_MODIFY, and MINITCOND parameters. Except
for MINVFUNC, these parameters work like the corresponding simple-aggregate parameters without M;
they define a separate implementation of the aggregate that includes an inverse transition function.

The syntax with ORDER BY in the parameter list creates a special type of aggregate called an ordered-
set aggregate; or if HYPOTHETICAL is specified, then a hypothetical-set aggregate is created. These
aggregates operate over groups of sorted values in order-dependent ways, so that specification of an input
sort order is an essential part of a call. Also, they can have direct arguments, which are arguments that
are evaluated only once per aggregation rather than once per input row. Hypothetical-set aggregates are a
subclass of ordered-set aggregates in which some of the direct arguments are required to match, in number
and data types, the aggregated argument columns. This allows the values of those direct arguments to be
added to the collection of aggregate-input rows as an additional “hypothetical” row.

An aggregate can optionally support partial aggregation, as described in Section 38.11.4. This requires
specifying the COMBINEFUNC parameter. If the state_data_type is internal, it's usually also
appropriate to provide the SERIALFUNC and DESERIALFUNC parameters so that parallel aggregation is
possible. Note that the aggregate must also be marked PARALLEL SAFE to enable parallel aggregation.

Aggregates that behave like MIN or MAX can sometimes be optimized by looking into an index instead of
scanning every input row. If this aggregate can be so optimized, indicate it by specifying a sort operator.
The basic requirement is that the aggregate must yield the first element in the sort ordering induced by
the operator; in other words:

SELECT agg(col) FROM tab;

must be equivalent to:

SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;

1567

CREATE AGGREGATE

Further assumptions are that the aggregate ignores null inputs, and that it delivers a null result if and only
if there were no non-null inputs. Ordinarily, a data type's < operator is the proper sort operator for MIN,
and > is the proper sort operator for MAX. Note that the optimization will never actually take effect unless
the specified operator is the “less than” or “greater than” strategy member of a B-tree index operator class.

To be able to create an aggregate function, you must have USAGE privilege on the argument types, the
state type(s), and the return type, as well as EXECUTE privilege on the supporting functions.

Parameters
name

The name (optionally schema-qualified) of the aggregate function to create.

argmode

The mode of an argument: IN or VARIADIC. (Aggregate functions do not support OUT arguments.)
If omitted, the default is IN. Only the last argument can be marked VARIADIC.

argname

The name of an argument. This is currently only useful for documentation purposes. If omitted, the
argument has no name.

arg_data_type

An input data type on which this aggregate function operates. To create a zero-argument aggregate
function, write * in place of the list of argument specifications. (An example of such an aggregate
is count(*).)

base_type

In the old syntax for CREATE AGGREGATE, the input data type is specified by a basetype
parameter rather than being written next to the aggregate name. Note that this syntax allows only
one input parameter. To define a zero-argument aggregate function with this syntax, specify the
basetype as "ANY" (not *). Ordered-set aggregates cannot be defined with the old syntax.

sfunc

The name of the state transition function to be called for each input row. For a normal N-argument
aggregate function, the sfunc must take N+1 arguments, the first being of type state_data_type
and the rest matching the declared input data type(s) of the aggregate. The function must return a
value of type state_data_type. This function takes the current state value and the current input
data value(s), and returns the next state value.

For ordered-set (including hypothetical-set) aggregates, the state transition function receives only the
current state value and the aggregated arguments, not the direct arguments. Otherwise it is the same.

state_data_type

The data type for the aggregate's state value.

state_data_size

The approximate average size (in bytes) of the aggregate's state value. If this parameter is omitted or
is zero, a default estimate is used based on the state_data_type. The planner uses this value to
estimate the memory required for a grouped aggregate query. The planner will consider using hash

1568

CREATE AGGREGATE

aggregation for such a query only if the hash table is estimated to fit in work_mem; therefore, large
values of this parameter discourage use of hash aggregation.

ffunc

The name of the final function called to compute the aggregate's result after all input rows
have been traversed. For a normal aggregate, this function must take a single argument of type
state_data_type. The return data type of the aggregate is defined as the return type of this
function. If ffunc is not specified, then the ending state value is used as the aggregate's result, and
the return type is state_data_type.

For ordered-set (including hypothetical-set) aggregates, the final function receives not only the final
state value, but also the values of all the direct arguments.

If FINALFUNC_EXTRA is specified, then in addition to the final state value and any direct arguments,
the final function receives extra NULL values corresponding to the aggregate's regular (aggregated)
arguments. This is mainly useful to allow correct resolution of the aggregate result type when a
polymorphic aggregate is being defined.

FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }

This option specifies whether the final function is a pure function that does not modify its arguments.
READ_ONLY indicates it does not; the other two values indicate that it may change the transition state
value. See Notes below for more detail. The default is READ_ONLY, except for ordered-set aggregates,
for which the default is READ_WRITE.

combinefunc

The combinefunc function may optionally be specified to allow the aggregate function to support
partial aggregation. If provided, the combinefunc must combine two state_data_type values,
each containing the result of aggregation over some subset of the input values, to produce a new
state_data_type that represents the result of aggregating over both sets of inputs. This function
can be thought of as an sfunc, where instead of acting upon an individual input row and adding it
to the running aggregate state, it adds another aggregate state to the running state.

The combinefunc must be declared as taking two arguments of the state_data_type and
returning a value of the state_data_type. Optionally this function may be “strict”. In this case
the function will not be called when either of the input states are null; the other state will be taken
as the correct result.

For aggregate functions whose state_data_type is internal, the combinefunc must not
be strict. In this case the combinefunc must ensure that null states are handled correctly and that
the state being returned is properly stored in the aggregate memory context.

serialfunc

An aggregate function whose state_data_type is internal can participate in parallel
aggregation only if it has a serialfunc function, which must serialize the aggregate state into a
bytea value for transmission to another process. This function must take a single argument of type
internal and return type bytea. A corresponding deserialfunc is also required.

deserialfunc

Deserialize a previously serialized aggregate state back into state_data_type. This function
must take two arguments of types bytea and internal, and produce a result of type internal.
(Note: the second, internal argument is unused, but is required for type safety reasons.)

1569

CREATE AGGREGATE

initial_condition

The initial setting for the state value. This must be a string constant in the form accepted for the data
type state_data_type. If not specified, the state value starts out null.

msfunc

The name of the forward state transition function to be called for each input row in moving-aggregate
mode. This is exactly like the regular transition function, except that its first argument and result are
of type mstate_data_type, which might be different from state_data_type.

minvfunc

The name of the inverse state transition function to be used in moving-aggregate mode. This function
has the same argument and result types as msfunc, but it is used to remove a value from the current
aggregate state, rather than add a value to it. The inverse transition function must have the same
strictness attribute as the forward state transition function.

mstate_data_type

The data type for the aggregate's state value, when using moving-aggregate mode.

mstate_data_size

The approximate average size (in bytes) of the aggregate's state value, when using moving-aggregate
mode. This works the same as state_data_size.

mffunc

The name of the final function called to compute the aggregate's result after all input rows
have been traversed, when using moving-aggregate mode. This works the same as ffunc,
except that its first argument's type is mstate_data_type and extra dummy arguments are
specified by writing MFINALFUNC_EXTRA. The aggregate result type determined by mffunc or
mstate_data_type must match that determined by the aggregate's regular implementation.

MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }

This option is like FINALFUNC_MODIFY, but it describes the behavior of the moving-aggregate
final function.

minitial_condition

The initial setting for the state value, when using moving-aggregate mode. This works the same as
initial_condition.

sort_operator

The associated sort operator for a MIN- or MAX-like aggregate. This is just an operator name (possibly
schema-qualified). The operator is assumed to have the same input data types as the aggregate (which
must be a single-argument normal aggregate).

PARALLEL = { SAFE | RESTRICTED | UNSAFE }

The meanings of PARALLEL SAFE, PARALLEL RESTRICTED, and PARALLEL UNSAFE are
the same as in CREATE FUNCTION. An aggregate will not be considered for parallelization if it is
marked PARALLEL UNSAFE (which is the default!) or PARALLEL RESTRICTED. Note that the
parallel-safety markings of the aggregate's support functions are not consulted by the planner, only
the marking of the aggregate itself.

1570

CREATE AGGREGATE

HYPOTHETICAL

For ordered-set aggregates only, this flag specifies that the aggregate arguments are to be processed
according to the requirements for hypothetical-set aggregates: that is, the last few direct arguments
must match the data types of the aggregated (WITHIN GROUP) arguments. The HYPOTHETICAL
flag has no effect on run-time behavior, only on parse-time resolution of the data types and collations
of the aggregate's arguments.

The parameters of CREATE AGGREGATE can be written in any order, not just the order illustrated above.

Notes
In parameters that specify support function names, you can write a schema name if needed, for example
SFUNC = public.sum. Do not write argument types there, however — the argument types of the
support functions are determined from other parameters.

Ordinarily, PostgreSQL functions are expected to be true functions that do not modify their input values.
However, an aggregate transition function, when used in the context of an aggregate, is allowed to
cheat and modify its transition-state argument in place. This can provide substantial performance benefits
compared to making a fresh copy of the transition state each time.

Likewise, while an aggregate final function is normally expected not to modify its input values, sometimes
it is impractical to avoid modifying the transition-state argument. Such behavior must be declared using
the FINALFUNC_MODIFY parameter. The READ_WRITE value indicates that the final function modifies
the transition state in unspecified ways. This value prevents use of the aggregate as a window function,
and it also prevents merging of transition states for aggregate calls that share the same input values and
transition functions. The SHAREABLE value indicates that the transition function cannot be applied after
the final function, but multiple final-function calls can be performed on the ending transition state value.
This value prevents use of the aggregate as a window function, but it allows merging of transition states.
(That is, the optimization of interest here is not applying the same final function repeatedly, but applying
different final functions to the same ending transition state value. This is allowed as long as none of the
final functions are marked READ_WRITE.)

If an aggregate supports moving-aggregate mode, it will improve calculation efficiency when the aggregate
is used as a window function for a window with moving frame start (that is, a frame start mode other
than UNBOUNDED PRECEDING). Conceptually, the forward transition function adds input values to the
aggregate's state when they enter the window frame from the bottom, and the inverse transition function
removes them again when they leave the frame at the top. So, when values are removed, they are always
removed in the same order they were added. Whenever the inverse transition function is invoked, it will
thus receive the earliest added but not yet removed argument value(s). The inverse transition function can
assume that at least one row will remain in the current state after it removes the oldest row. (When this
would not be the case, the window function mechanism simply starts a fresh aggregation, rather than using
the inverse transition function.)

The forward transition function for moving-aggregate mode is not allowed to return NULL as the new
state value. If the inverse transition function returns NULL, this is taken as an indication that the inverse
function cannot reverse the state calculation for this particular input, and so the aggregate calculation will
be redone from scratch for the current frame starting position. This convention allows moving-aggregate
mode to be used in situations where there are some infrequent cases that are impractical to reverse out
of the running state value.

If no moving-aggregate implementation is supplied, the aggregate can still be used with moving frames,
but PostgreSQL will recompute the whole aggregation whenever the start of the frame moves. Note that
whether or not the aggregate supports moving-aggregate mode, PostgreSQL can handle a moving frame
end without recalculation; this is done by continuing to add new values to the aggregate's state. This is

1571

CREATE AGGREGATE

why use of an aggregate as a window function requires that the final function be read-only: it must not
damage the aggregate's state value, so that the aggregation can be continued even after an aggregate result
value has been obtained for one set of frame boundaries.

The syntax for ordered-set aggregates allows VARIADIC to be specified for both the last direct parameter
and the last aggregated (WITHIN GROUP) parameter. However, the current implementation restricts use
of VARIADIC in two ways. First, ordered-set aggregates can only use VARIADIC "any", not other
variadic array types. Second, if the last direct parameter is VARIADIC "any", then there can be only
one aggregated parameter and it must also be VARIADIC "any". (In the representation used in the
system catalogs, these two parameters are merged into a single VARIADIC "any" item, since pg_proc
cannot represent functions with more than one VARIADIC parameter.) If the aggregate is a hypothetical-
set aggregate, the direct arguments that match the VARIADIC "any" parameter are the hypothetical
ones; any preceding parameters represent additional direct arguments that are not constrained to match
the aggregated arguments.

Currently, ordered-set aggregates do not need to support moving-aggregate mode, since they cannot be
used as window functions.

Partial (including parallel) aggregation is currently not supported for ordered-set aggregates. Also, it will
never be used for aggregate calls that include DISTINCT or ORDER BY clauses, since those semantics
cannot be supported during partial aggregation.

Examples
See Section 38.11.

Compatibility
CREATE AGGREGATE is a PostgreSQL language extension. The SQL standard does not provide for user-
defined aggregate functions.

See Also
ALTER AGGREGATE, DROP AGGREGATE

1572

CREATE CAST
CREATE CAST — define a new cast

Synopsis

CREATE CAST (source_type AS target_type)
 WITH FUNCTION function_name [(argument_type [, ...])]
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITH INOUT
 [AS ASSIGNMENT | AS IMPLICIT]

Description
CREATE CAST defines a new cast. A cast specifies how to perform a conversion between two data types.
For example,

SELECT CAST(42 AS float8);

converts the integer constant 42 to type float8 by invoking a previously specified function, in this case
float8(int4). (If no suitable cast has been defined, the conversion fails.)

Two types can be binary coercible, which means that the conversion can be performed “for free” without
invoking any function. This requires that corresponding values use the same internal representation.
For instance, the types text and varchar are binary coercible both ways. Binary coercibility is not
necessarily a symmetric relationship. For example, the cast from xml to text can be performed for free
in the present implementation, but the reverse direction requires a function that performs at least a syntax
check. (Two types that are binary coercible both ways are also referred to as binary compatible.)

You can define a cast as an I/O conversion cast by using the WITH INOUT syntax. An I/O conversion
cast is performed by invoking the output function of the source data type, and passing the resulting string
to the input function of the target data type. In many common cases, this feature avoids the need to write
a separate cast function for conversion. An I/O conversion cast acts the same as a regular function-based
cast; only the implementation is different.

By default, a cast can be invoked only by an explicit cast request, that is an explicit CAST(x AS
typename) or x::typename construct.

If the cast is marked AS ASSIGNMENT then it can be invoked implicitly when assigning a value to a
column of the target data type. For example, supposing that foo.f1 is a column of type text, then:

INSERT INTO foo (f1) VALUES (42);

1573

CREATE CAST

will be allowed if the cast from type integer to type text is marked AS ASSIGNMENT, otherwise
not. (We generally use the term assignment cast to describe this kind of cast.)

If the cast is marked AS IMPLICIT then it can be invoked implicitly in any context, whether assignment
or internally in an expression. (We generally use the term implicit cast to describe this kind of cast.) For
example, consider this query:

SELECT 2 + 4.0;

The parser initially marks the constants as being of type integer and numeric respectively. There is
no integer + numeric operator in the system catalogs, but there is a numeric + numeric operator.
The query will therefore succeed if a cast from integer to numeric is available and is marked AS
IMPLICIT — which in fact it is. The parser will apply the implicit cast and resolve the query as if it
had been written

SELECT CAST (2 AS numeric) + 4.0;

Now, the catalogs also provide a cast from numeric to integer. If that cast were marked AS
IMPLICIT — which it is not — then the parser would be faced with choosing between the above
interpretation and the alternative of casting the numeric constant to integer and applying the
integer + integer operator. Lacking any knowledge of which choice to prefer, it would give up and
declare the query ambiguous. The fact that only one of the two casts is implicit is the way in which we
teach the parser to prefer resolution of a mixed numeric-and-integer expression as numeric; there
is no built-in knowledge about that.

It is wise to be conservative about marking casts as implicit. An overabundance of implicit casting paths
can cause PostgreSQL to choose surprising interpretations of commands, or to be unable to resolve
commands at all because there are multiple possible interpretations. A good rule of thumb is to make a cast
implicitly invokable only for information-preserving transformations between types in the same general
type category. For example, the cast from int2 to int4 can reasonably be implicit, but the cast from
float8 to int4 should probably be assignment-only. Cross-type-category casts, such as text to int4,
are best made explicit-only.

Note

Sometimes it is necessary for usability or standards-compliance reasons to provide multiple
implicit casts among a set of types, resulting in ambiguity that cannot be avoided as above. The
parser has a fallback heuristic based on type categories and preferred types that can help to provide
desired behavior in such cases. See CREATE TYPE for more information.

To be able to create a cast, you must own the source or the target data type and have USAGE privilege on
the other type. To create a binary-coercible cast, you must be superuser. (This restriction is made because
an erroneous binary-coercible cast conversion can easily crash the server.)

Parameters
source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

1574

CREATE CAST

function_name[(argument_type [, ...])]

The function used to perform the cast. The function name can be schema-qualified. If it is not, the
function will be looked up in the schema search path. The function's result data type must match the
target type of the cast. Its arguments are discussed below. If no argument list is specified, the function
name must be unique in its schema.

WITHOUT FUNCTION

Indicates that the source type is binary-coercible to the target type, so no function is required to perform
the cast.

WITH INOUT

Indicates that the cast is an I/O conversion cast, performed by invoking the output function of the
source data type, and passing the resulting string to the input function of the target data type.

AS ASSIGNMENT

Indicates that the cast can be invoked implicitly in assignment contexts.

AS IMPLICIT

Indicates that the cast can be invoked implicitly in any context.

Cast implementation functions can have one to three arguments. The first argument type must be identical
to or binary-coercible from the cast's source type. The second argument, if present, must be type integer;
it receives the type modifier associated with the destination type, or -1 if there is none. The third argument,
if present, must be type boolean; it receives true if the cast is an explicit cast, false otherwise.
(Bizarrely, the SQL standard demands different behaviors for explicit and implicit casts in some cases.
This argument is supplied for functions that must implement such casts. It is not recommended that you
design your own data types so that this matters.)

The return type of a cast function must be identical to or binary-coercible to the cast's target type.

Ordinarily a cast must have different source and target data types. However, it is allowed to declare a cast
with identical source and target types if it has a cast implementation function with more than one argument.
This is used to represent type-specific length coercion functions in the system catalogs. The named function
is used to coerce a value of the type to the type modifier value given by its second argument.

When a cast has different source and target types and a function that takes more than one argument, it
supports converting from one type to another and applying a length coercion in a single step. When no
such entry is available, coercion to a type that uses a type modifier involves two cast steps, one to convert
between data types and a second to apply the modifier.

A cast to or from a domain type currently has no effect. Casting to or from a domain uses the casts
associated with its underlying type.

Notes
Use DROP CAST to remove user-defined casts.

Remember that if you want to be able to convert types both ways you need to declare casts both ways
explicitly.

It is normally not necessary to create casts between user-defined types and the standard string types (text,
varchar, and char(n), as well as user-defined types that are defined to be in the string category).

1575

CREATE CAST

PostgreSQL provides automatic I/O conversion casts for that. The automatic casts to string types are treated
as assignment casts, while the automatic casts from string types are explicit-only. You can override this
behavior by declaring your own cast to replace an automatic cast, but usually the only reason to do so is
if you want the conversion to be more easily invokable than the standard assignment-only or explicit-only
setting. Another possible reason is that you want the conversion to behave differently from the type's I/
O function; but that is sufficiently surprising that you should think twice about whether it's a good idea.
(A small number of the built-in types do indeed have different behaviors for conversions, mostly because
of requirements of the SQL standard.)

While not required, it is recommended that you continue to follow this old convention of naming cast
implementation functions after the target data type. Many users are used to being able to cast data types
using a function-style notation, that is typename(x). This notation is in fact nothing more nor less than
a call of the cast implementation function; it is not specially treated as a cast. If your conversion functions
are not named to support this convention then you will have surprised users. Since PostgreSQL allows
overloading of the same function name with different argument types, there is no difficulty in having
multiple conversion functions from different types that all use the target type's name.

Note

Actually the preceding paragraph is an oversimplification: there are two cases in which a function-
call construct will be treated as a cast request without having matched it to an actual function. If a
function call name(x) does not exactly match any existing function, but name is the name of a data
type and pg_cast provides a binary-coercible cast to this type from the type of x, then the call
will be construed as a binary-coercible cast. This exception is made so that binary-coercible casts
can be invoked using functional syntax, even though they lack any function. Likewise, if there is no
pg_cast entry but the cast would be to or from a string type, the call will be construed as an I/O
conversion cast. This exception allows I/O conversion casts to be invoked using functional syntax.

Note

There is also an exception to the exception: I/O conversion casts from composite types to string
types cannot be invoked using functional syntax, but must be written in explicit cast syntax (either
CAST or :: notation). This exception was added because after the introduction of automatically-
provided I/O conversion casts, it was found too easy to accidentally invoke such a cast when a
function or column reference was intended.

Examples
To create an assignment cast from type bigint to type int4 using the function int4(bigint):

CREATE CAST (bigint AS int4) WITH FUNCTION int4(bigint) AS ASSIGNMENT;

(This cast is already predefined in the system.)

Compatibility
The CREATE CAST command conforms to the SQL standard, except that SQL does not make
provisions for binary-coercible types or extra arguments to implementation functions. AS IMPLICIT is
a PostgreSQL extension, too.

1576

CREATE CAST

See Also
CREATE FUNCTION, CREATE TYPE, DROP CAST

1577

CREATE COLLATION
CREATE COLLATION — define a new collation

Synopsis

CREATE COLLATION [IF NOT EXISTS] name (
 [LOCALE = locale,]
 [LC_COLLATE = lc_collate,]
 [LC_CTYPE = lc_ctype,]
 [PROVIDER = provider,]
 [VERSION = version]
)
CREATE COLLATION [IF NOT EXISTS] name FROM existing_collation

Description

CREATE COLLATION defines a new collation using the specified operating system locale settings, or
by copying an existing collation.

To be able to create a collation, you must have CREATE privilege on the destination schema.

Parameters

IF NOT EXISTS

Do not throw an error if a collation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing collation is anything like the one that would have
been created.

name

The name of the collation. The collation name can be schema-qualified. If it is not, the collation is
defined in the current schema. The collation name must be unique within that schema. (The system
catalogs can contain collations with the same name for other encodings, but these are ignored if the
database encoding does not match.)

locale

This is a shortcut for setting LC_COLLATE and LC_CTYPE at once. If you specify this, you cannot
specify either of those parameters.

lc_collate

Use the specified operating system locale for the LC_COLLATE locale category.

lc_ctype

Use the specified operating system locale for the LC_CTYPE locale category.

1578

CREATE COLLATION

provider

Specifies the provider to use for locale services associated with this collation. Possible values are:
icu, libc. libc is the default. The available choices depend on the operating system and build
options.

version

Specifies the version string to store with the collation. Normally, this should be omitted, which will
cause the version to be computed from the actual version of the collation as provided by the operating
system. This option is intended to be used by pg_upgrade for copying the version from an existing
installation.

See also ALTER COLLATION for how to handle collation version mismatches.

existing_collation

The name of an existing collation to copy. The new collation will have the same properties as the
existing one, but it will be an independent object.

Notes
Use DROP COLLATION to remove user-defined collations.

See Section 23.2.2.3 for more information on how to create collations.

When using the libc collation provider, the locale must be applicable to the current database encoding.
See CREATE DATABASE for the precise rules.

Examples
To create a collation from the operating system locale fr_FR.utf8 (assuming the current database
encoding is UTF8):

CREATE COLLATION french (locale = 'fr_FR.utf8');

To create a collation using the ICU provider using German phone book sort order:

CREATE COLLATION german_phonebook (provider = icu, locale = 'de-u-co-
phonebk');

To create a collation from an existing collation:

CREATE COLLATION german FROM "de_DE";

This can be convenient to be able to use operating-system-independent collation names in applications.

Compatibility
There is a CREATE COLLATION statement in the SQL standard, but it is limited to copying an existing
collation. The syntax to create a new collation is a PostgreSQL extension.

1579

CREATE COLLATION

See Also
ALTER COLLATION, DROP COLLATION

1580

CREATE CONVERSION
CREATE CONVERSION — define a new encoding conversion

Synopsis

CREATE [DEFAULT] CONVERSION name
 FOR source_encoding TO dest_encoding FROM function_name

Description
CREATE CONVERSION defines a new conversion between character set encodings. Also, conversions
that are marked DEFAULT can be used for automatic encoding conversion between client and server. For
this purpose, two conversions, from encoding A to B and from encoding B to A, must be defined.

To be able to create a conversion, you must have EXECUTE privilege on the function and CREATE
privilege on the destination schema.

Parameters
DEFAULT

The DEFAULT clause indicates that this conversion is the default for this particular source to
destination encoding. There should be only one default encoding in a schema for the encoding pair.

name

The name of the conversion. The conversion name can be schema-qualified. If it is not, the conversion
is defined in the current schema. The conversion name must be unique within a schema.

source_encoding

The source encoding name.

dest_encoding

The destination encoding name.

function_name

The function used to perform the conversion. The function name can be schema-qualified. If it is not,
the function will be looked up in the path.

The function must have the following signature:

conv_proc(
 integer, -- source encoding ID
 integer, -- destination encoding ID
 cstring, -- source string (null terminated C string)
 internal, -- destination (fill with a null terminated C string)

1581

CREATE CONVERSION

 integer -- source string length
) RETURNS void;

Notes
Use DROP CONVERSION to remove user-defined conversions.

The privileges required to create a conversion might be changed in a future release.

Examples
To create a conversion from encoding UTF8 to LATIN1 using myfunc:

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc;

Compatibility
CREATE CONVERSION is a PostgreSQL extension. There is no CREATE CONVERSION statement in
the SQL standard, but a CREATE TRANSLATION statement that is very similar in purpose and syntax.

See Also
ALTER CONVERSION, CREATE FUNCTION, DROP CONVERSION

1582

CREATE DATABASE
CREATE DATABASE — create a new database

Synopsis

CREATE DATABASE name
 [[WITH] [OWNER [=] user_name]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [LC_COLLATE [=] lc_collate]
 [LC_CTYPE [=] lc_ctype]
 [TABLESPACE [=] tablespace_name]
 [ALLOW_CONNECTIONS [=] allowconn]
 [CONNECTION LIMIT [=] connlimit]
 [IS_TEMPLATE [=] istemplate]]

Description
CREATE DATABASE creates a new PostgreSQL database.

To create a database, you must be a superuser or have the special CREATEDB privilege. See CREATE
ROLE.

By default, the new database will be created by cloning the standard system database template1. A
different template can be specified by writing TEMPLATE name. In particular, by writing TEMPLATE
template0, you can create a virgin database containing only the standard objects predefined by your
version of PostgreSQL. This is useful if you wish to avoid copying any installation-local objects that might
have been added to template1.

Parameters
name

The name of a database to create.

user_name

The role name of the user who will own the new database, or DEFAULT to use the default (namely,
the user executing the command). To create a database owned by another role, you must be a direct
or indirect member of that role, or be a superuser.

template

The name of the template from which to create the new database, or DEFAULT to use the default
template (template1).

encoding

Character set encoding to use in the new database. Specify a string constant (e.g., 'SQL_ASCII'),
or an integer encoding number, or DEFAULT to use the default encoding (namely, the encoding

1583

CREATE DATABASE

of the template database). The character sets supported by the PostgreSQL server are described in
Section 23.3.1. See below for additional restrictions.

lc_collate

Collation order (LC_COLLATE) to use in the new database. This affects the sort order applied to
strings, e.g. in queries with ORDER BY, as well as the order used in indexes on text columns. The
default is to use the collation order of the template database. See below for additional restrictions.

lc_ctype

Character classification (LC_CTYPE) to use in the new database. This affects the categorization of
characters, e.g. lower, upper and digit. The default is to use the character classification of the template
database. See below for additional restrictions.

tablespace_name

The name of the tablespace that will be associated with the new database, or DEFAULT to use the
template database's tablespace. This tablespace will be the default tablespace used for objects created
in this database. See CREATE TABLESPACE for more information.

allowconn

If false then no one can connect to this database. The default is true, allowing connections (except as
restricted by other mechanisms, such as GRANT/REVOKE CONNECT).

connlimit

How many concurrent connections can be made to this database. -1 (the default) means no limit.

istemplate

If true, then this database can be cloned by any user with CREATEDB privileges; if false (the default),
then only superusers or the owner of the database can clone it.

Optional parameters can be written in any order, not only the order illustrated above.

Notes
CREATE DATABASE cannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to insufficient
permissions on the data directory, a full disk, or other file system problems.

Use DROP DATABASE to remove a database.

The program createdb is a wrapper program around this command, provided for convenience.

Database-level configuration parameters (set via ALTER DATABASE) are not copied from the template
database.

Although it is possible to copy a database other than template1 by specifying its name as the template,
this is not (yet) intended as a general-purpose “COPY DATABASE” facility. The principal limitation is that
no other sessions can be connected to the template database while it is being copied. CREATE DATABASE
will fail if any other connection exists when it starts; otherwise, new connections to the template database
are locked out until CREATE DATABASE completes. See Section 22.3 for more information.

The character set encoding specified for the new database must be compatible with the chosen locale
settings (LC_COLLATE and LC_CTYPE). If the locale is C (or equivalently POSIX), then all encodings

1584

CREATE DATABASE

are allowed, but for other locale settings there is only one encoding that will work properly. (On Windows,
however, UTF-8 encoding can be used with any locale.) CREATE DATABASE will allow superusers to
specify SQL_ASCII encoding regardless of the locale settings, but this choice is deprecated and may
result in misbehavior of character-string functions if data that is not encoding-compatible with the locale
is stored in the database.

The encoding and locale settings must match those of the template database, except when template0
is used as template. This is because other databases might contain data that does not match the specified
encoding, or might contain indexes whose sort ordering is affected by LC_COLLATE and LC_CTYPE.
Copying such data would result in a database that is corrupt according to the new settings. template0,
however, is known to not contain any data or indexes that would be affected.

The CONNECTION LIMIT option is only enforced approximately; if two new sessions start at about the
same time when just one connection “slot” remains for the database, it is possible that both will fail. Also,
the limit is not enforced against superusers or background worker processes.

Examples
To create a new database:

CREATE DATABASE lusiadas;

To create a database sales owned by user salesapp with a default tablespace of salesspace:

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

To create a database music with a different locale:

CREATE DATABASE music
 LC_COLLATE 'sv_SE.utf8' LC_CTYPE 'sv_SE.utf8'
 TEMPLATE template0;

In this example, the TEMPLATE template0 clause is required if the specified locale is different from
the one in template1. (If it is not, then specifying the locale explicitly is redundant.)

To create a database music2 with a different locale and a different character set encoding:

CREATE DATABASE music2
 LC_COLLATE 'sv_SE.iso885915' LC_CTYPE 'sv_SE.iso885915'
 ENCODING LATIN9
 TEMPLATE template0;

The specified locale and encoding settings must match, or an error will be reported.

Note that locale names are specific to the operating system, so that the above commands might not work
in the same way everywhere.

Compatibility
There is no CREATE DATABASE statement in the SQL standard. Databases are equivalent to catalogs,
whose creation is implementation-defined.

1585

CREATE DATABASE

See Also
ALTER DATABASE, DROP DATABASE

1586

CREATE DOMAIN
CREATE DOMAIN — define a new domain

Synopsis

CREATE DOMAIN name [AS] data_type
 [COLLATE collation]
 [DEFAULT expression]
 [constraint [...]]

where constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

Description
CREATE DOMAIN creates a new domain. A domain is essentially a data type with optional constraints
(restrictions on the allowed set of values). The user who defines a domain becomes its owner.

If a schema name is given (for example, CREATE DOMAIN myschema.mydomain ...) then the
domain is created in the specified schema. Otherwise it is created in the current schema. The domain name
must be unique among the types and domains existing in its schema.

Domains are useful for abstracting common constraints on fields into a single location for maintenance. For
example, several tables might contain email address columns, all requiring the same CHECK constraint
to verify the address syntax. Define a domain rather than setting up each table's constraint individually.

To be able to create a domain, you must have USAGE privilege on the underlying type.

Parameters
name

The name (optionally schema-qualified) of a domain to be created.

data_type

The underlying data type of the domain. This can include array specifiers.

collation

An optional collation for the domain. If no collation is specified, the underlying data type's default
collation is used. The underlying type must be collatable if COLLATE is specified.

DEFAULT expression

The DEFAULT clause specifies a default value for columns of the domain data type. The value is
any variable-free expression (but subqueries are not allowed). The data type of the default expression
must match the data type of the domain. If no default value is specified, then the default value is the
null value.

1587

CREATE DOMAIN

The default expression will be used in any insert operation that does not specify a value for the column.
If a default value is defined for a particular column, it overrides any default associated with the domain.
In turn, the domain default overrides any default value associated with the underlying data type.

CONSTRAINT constraint_name

An optional name for a constraint. If not specified, the system generates a name.

NOT NULL

Values of this domain are prevented from being null (but see notes below).

NULL

Values of this domain are allowed to be null. This is the default.

This clause is only intended for compatibility with nonstandard SQL databases. Its use is discouraged
in new applications.

CHECK (expression)

CHECK clauses specify integrity constraints or tests which values of the domain must satisfy. Each
constraint must be an expression producing a Boolean result. It should use the key word VALUE
to refer to the value being tested. Expressions evaluating to TRUE or UNKNOWN succeed. If the
expression produces a FALSE result, an error is reported and the value is not allowed to be converted
to the domain type.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than VALUE.

When a domain has multiple CHECK constraints, they will be tested in alphabetical order by name.
(PostgreSQL versions before 9.5 did not honor any particular firing order for CHECK constraints.)

Notes
Domain constraints, particularly NOT NULL, are checked when converting a value to the domain type.
It is possible for a column that is nominally of the domain type to read as null despite there being such a
constraint. For example, this can happen in an outer-join query, if the domain column is on the nullable
side of the outer join. A more subtle example is

INSERT INTO tab (domcol) VALUES ((SELECT domcol FROM tab WHERE
 false));

The empty scalar sub-SELECT will produce a null value that is considered to be of the domain type, so
no further constraint checking is applied to it, and the insertion will succeed.

It is very difficult to avoid such problems, because of SQL's general assumption that a null value is a valid
value of every data type. Best practice therefore is to design a domain's constraints so that a null value
is allowed, and then to apply column NOT NULL constraints to columns of the domain type as needed,
rather than directly to the domain type.

Examples
This example creates the us_postal_code data type and then uses the type in a table definition. A
regular expression test is used to verify that the value looks like a valid US postal code:

1588

CREATE DOMAIN

CREATE DOMAIN us_postal_code AS TEXT
CHECK(
 VALUE ~ '^\d{5}$'
OR VALUE ~ '^\d{5}-\d{4}$'
);

CREATE TABLE us_snail_addy (
 address_id SERIAL PRIMARY KEY,
 street1 TEXT NOT NULL,
 street2 TEXT,
 street3 TEXT,
 city TEXT NOT NULL,
 postal us_postal_code NOT NULL
);

Compatibility
The command CREATE DOMAIN conforms to the SQL standard.

See Also
ALTER DOMAIN, DROP DOMAIN

1589

CREATE EVENT TRIGGER
CREATE EVENT TRIGGER — define a new event trigger

Synopsis

CREATE EVENT TRIGGER name
 ON event
 [WHEN filter_variable IN (filter_value [, ...]) [AND ...]]
 EXECUTE { FUNCTION | PROCEDURE } function_name()

Description
CREATE EVENT TRIGGER creates a new event trigger. Whenever the designated event occurs and the
WHEN condition associated with the trigger, if any, is satisfied, the trigger function will be executed. For
a general introduction to event triggers, see Chapter 40. The user who creates an event trigger becomes
its owner.

Parameters
name

The name to give the new trigger. This name must be unique within the database.

event

The name of the event that triggers a call to the given function. See Section 40.1 for more information
on event names.

filter_variable

The name of a variable used to filter events. This makes it possible to restrict the firing of the trigger
to a subset of the cases in which it is supported. Currently the only supported filter_variable
is TAG.

filter_value

A list of values for the associated filter_variable for which the trigger should fire. For TAG,
this means a list of command tags (e.g. 'DROP FUNCTION').

function_name

A user-supplied function that is declared as taking no argument and returning type event_trigger.

In the syntax of CREATE EVENT TRIGGER, the keywords FUNCTION and PROCEDURE are
equivalent, but the referenced function must in any case be a function, not a procedure. The use of the
keyword PROCEDURE here is historical and deprecated.

Notes
Only superusers can create event triggers.

1590

CREATE EVENT TRIGGER

Event triggers are disabled in single-user mode (see postgres). If an erroneous event trigger disables the
database so much that you can't even drop the trigger, restart in single-user mode and you'll be able to
do that.

Examples
Forbid the execution of any DDL command:

CREATE OR REPLACE FUNCTION abort_any_command()
 RETURNS event_trigger
 LANGUAGE plpgsql
 AS $$
BEGIN
 RAISE EXCEPTION 'command % is disabled', tg_tag;
END;
$$;

CREATE EVENT TRIGGER abort_ddl ON ddl_command_start
 EXECUTE FUNCTION abort_any_command();

Compatibility
There is no CREATE EVENT TRIGGER statement in the SQL standard.

See Also
ALTER EVENT TRIGGER, DROP EVENT TRIGGER, CREATE FUNCTION

1591

CREATE EXTENSION
CREATE EXTENSION — install an extension

Synopsis

CREATE EXTENSION [IF NOT EXISTS] extension_name
 [WITH] [SCHEMA schema_name]
 [VERSION version]
 [FROM old_version]
 [CASCADE]

Description
CREATE EXTENSION loads a new extension into the current database. There must not be an extension
of the same name already loaded.

Loading an extension essentially amounts to running the extension's script file. The script will typically
create new SQL objects such as functions, data types, operators and index support methods. CREATE
EXTENSION additionally records the identities of all the created objects, so that they can be dropped again
if DROP EXTENSION is issued.

Loading an extension requires the same privileges that would be required to create its component objects.
For most extensions this means superuser or database owner privileges are needed. The user who runs
CREATE EXTENSION becomes the owner of the extension for purposes of later privilege checks, as well
as the owner of any objects created by the extension's script.

Parameters
IF NOT EXISTS

Do not throw an error if an extension with the same name already exists. A notice is issued in this
case. Note that there is no guarantee that the existing extension is anything like the one that would
have been created from the currently-available script file.

extension_name

The name of the extension to be installed. PostgreSQL will create the extension using details from the
file SHAREDIR/extension/extension_name.control.

schema_name

The name of the schema in which to install the extension's objects, given that the extension allows its
contents to be relocated. The named schema must already exist. If not specified, and the extension's
control file does not specify a schema either, the current default object creation schema is used.

If the extension specifies a schema parameter in its control file, then that schema cannot be
overridden with a SCHEMA clause. Normally, an error will be raised if a SCHEMA clause is given
and it conflicts with the extension's schema parameter. However, if the CASCADE clause is also
given, then schema_name is ignored when it conflicts. The given schema_name will be used for
installation of any needed extensions that do not specify schema in their control files.

1592

CREATE EXTENSION

Remember that the extension itself is not considered to be within any schema: extensions have
unqualified names that must be unique database-wide. But objects belonging to the extension can be
within schemas.

version

The version of the extension to install. This can be written as either an identifier or a string literal.
The default version is whatever is specified in the extension's control file.

old_version

FROM old_version must be specified when, and only when, you are attempting to install an
extension that replaces an “old style” module that is just a collection of objects not packaged into
an extension. This option causes CREATE EXTENSION to run an alternative installation script
that absorbs the existing objects into the extension, instead of creating new objects. Be careful that
SCHEMA specifies the schema containing these pre-existing objects.

The value to use for old_version is determined by the extension's author, and might vary if there is
more than one version of the old-style module that can be upgraded into an extension. For the standard
additional modules supplied with pre-9.1 PostgreSQL, use unpackaged for old_version when
updating a module to extension style.

CASCADE

Automatically install any extensions that this extension depends on that are not already installed.
Their dependencies are likewise automatically installed, recursively. The SCHEMA clause, if given,
applies to all extensions that get installed this way. Other options of the statement are not applied to
automatically-installed extensions; in particular, their default versions are always selected.

Notes
Before you can use CREATE EXTENSION to load an extension into a database, the extension's supporting
files must be installed. Information about installing the extensions supplied with PostgreSQL can be found
in Additional Supplied Modules.

The extensions currently available for loading can be identified from the
pg_available_extensions or pg_available_extension_versions system views.

For information about writing new extensions, see Section 38.16.

Examples
Install the hstore extension into the current database:

CREATE EXTENSION hstore;

Update a pre-9.1 installation of hstore into extension style:

CREATE EXTENSION hstore SCHEMA public FROM unpackaged;

Be careful to specify the schema in which you installed the existing hstore objects.

Compatibility
CREATE EXTENSION is a PostgreSQL extension.

1593

CREATE EXTENSION

See Also
ALTER EXTENSION, DROP EXTENSION

1594

CREATE FOREIGN DATA WRAPPER
CREATE FOREIGN DATA WRAPPER — define a new foreign-data wrapper

Synopsis

CREATE FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS (option 'value' [, ...])]

Description
CREATE FOREIGN DATA WRAPPER creates a new foreign-data wrapper. The user who defines a
foreign-data wrapper becomes its owner.

The foreign-data wrapper name must be unique within the database.

Only superusers can create foreign-data wrappers.

Parameters
name

The name of the foreign-data wrapper to be created.

HANDLER handler_function

handler_function is the name of a previously registered function that will be called to retrieve
the execution functions for foreign tables. The handler function must take no arguments, and its return
type must be fdw_handler.

It is possible to create a foreign-data wrapper with no handler function, but foreign tables using such
a wrapper can only be declared, not accessed.

VALIDATOR validator_function

validator_function is the name of a previously registered function that will be called
to check the generic options given to the foreign-data wrapper, as well as options for foreign
servers, user mappings and foreign tables using the foreign-data wrapper. If no validator function
or NO VALIDATOR is specified, then options will not be checked at creation time. (Foreign-data
wrappers will possibly ignore or reject invalid option specifications at run time, depending on the
implementation.) The validator function must take two arguments: one of type text[], which will
contain the array of options as stored in the system catalogs, and one of type oid, which will be
the OID of the system catalog containing the options. The return type is ignored; the function should
report invalid options using the ereport(ERROR) function.

OPTIONS (option 'value' [, ...])

This clause specifies options for the new foreign-data wrapper. The allowed option names and values
are specific to each foreign data wrapper and are validated using the foreign-data wrapper's validator
function. Option names must be unique.

1595

CREATE FOREIGN
DATA WRAPPER

Notes
PostgreSQL's foreign-data functionality is still under active development. Optimization of queries is
primitive (and mostly left to the wrapper, too). Thus, there is considerable room for future performance
improvements.

Examples
Create a useless foreign-data wrapper dummy:

CREATE FOREIGN DATA WRAPPER dummy;

Create a foreign-data wrapper file with handler function file_fdw_handler:

CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;

Create a foreign-data wrapper mywrapper with some options:

CREATE FOREIGN DATA WRAPPER mywrapper
 OPTIONS (debug 'true');

Compatibility
CREATE FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), with the exception
that the HANDLER and VALIDATOR clauses are extensions and the standard clauses LIBRARY and
LANGUAGE are not implemented in PostgreSQL.

Note, however, that the SQL/MED functionality as a whole is not yet conforming.

See Also
ALTER FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER, CREATE SERVER,
CREATE USER MAPPING, CREATE FOREIGN TABLE

1596

CREATE FOREIGN TABLE
CREATE FOREIGN TABLE — define a new foreign table

Synopsis

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name ([
 { column_name data_type [OPTIONS (option 'value' [, ...])]
 [COLLATE collation] [column_constraint [...]]
 | table_constraint }
 [, ...]
])
[INHERITS (parent_table [, ...])]
 SERVER server_name
[OPTIONS (option 'value' [, ...])]

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name
 PARTITION OF parent_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)] partition_bound_spec
 SERVER server_name
[OPTIONS (option 'value' [, ...])]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr }

and table_constraint is:

[CONSTRAINT constraint_name]
CHECK (expression) [NO INHERIT]

Description
CREATE FOREIGN TABLE creates a new foreign table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE FOREIGN TABLE myschema.mytable ...)
then the table is created in the specified schema. Otherwise it is created in the current schema. The name
of the foreign table must be distinct from the name of any other foreign table, table, sequence, index, view,
or materialized view in the same schema.

CREATE FOREIGN TABLE also automatically creates a data type that represents the composite type
corresponding to one row of the foreign table. Therefore, foreign tables cannot have the same name as any
existing data type in the same schema.

1597

CREATE FOREIGN TABLE

If PARTITION OF clause is specified then the table is created as a partition of parent_table with
specified bounds.

To be able to create a foreign table, you must have USAGE privilege on the foreign server, as well as
USAGE privilege on all column types used in the table.

Parameters
IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the one that would have been
created.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data types
supported by PostgreSQL, refer to Chapter 8.

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data type). If
not specified, the column data type's default collation is used.

INHERITS (parent_table [, ...])

The optional INHERITS clause specifies a list of tables from which the new foreign table
automatically inherits all columns. Parent tables can be plain tables or foreign tables. See the similar
form of CREATE TABLE for more details.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the constraint name
is present in error messages, so constraint names like col must be positive can be used
to communicate helpful constraint information to client applications. (Double-quotes are needed
to specify constraint names that contain spaces.) If a constraint name is not specified, the system
generates a name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is discouraged
in new applications.

1598

CREATE FOREIGN TABLE

CHECK (expression) [NO INHERIT]

The CHECK clause specifies an expression producing a Boolean result which each row in the foreign
table is expected to satisfy; that is, the expression should produce TRUE or UNKNOWN, never
FALSE, for all rows in the foreign table. A check constraint specified as a column constraint should
reference that column's value only, while an expression appearing in a table constraint can reference
multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than columns of
the current row. The system column tableoid may be referenced, but not any other system column.

A constraint marked with NO INHERIT will not propagate to child tables.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (subqueries and cross-references to other columns
in the current table are not allowed). The data type of the default expression must match the data type
of the column.

The default expression will be used in any insert operation that does not specify a value for the column.
If there is no default for a column, then the default is null.

server_name

The name of an existing foreign server to use for the foreign table. For details on defining a server,
see CREATE SERVER.

OPTIONS (option 'value' [, ...])

Options to be associated with the new foreign table or one of its columns. The allowed option names
and values are specific to each foreign data wrapper and are validated using the foreign-data wrapper's
validator function. Duplicate option names are not allowed (although it's OK for a table option and
a column option to have the same name).

Notes
Constraints on foreign tables (such as CHECK or NOT NULL clauses) are not enforced by the core
PostgreSQL system, and most foreign data wrappers do not attempt to enforce them either; that is, the
constraint is simply assumed to hold true. There would be little point in such enforcement since it would
only apply to rows inserted or updated via the foreign table, and not to rows modified by other means,
such as directly on the remote server. Instead, a constraint attached to a foreign table should represent a
constraint that is being enforced by the remote server.

Some special-purpose foreign data wrappers might be the only access mechanism for the data they
access, and in that case it might be appropriate for the foreign data wrapper itself to perform constraint
enforcement. But you should not assume that a wrapper does that unless its documentation says so.

Although PostgreSQL does not attempt to enforce constraints on foreign tables, it does assume that they are
correct for purposes of query optimization. If there are rows visible in the foreign table that do not satisfy
a declared constraint, queries on the table might produce incorrect answers. It is the user's responsibility
to ensure that the constraint definition matches reality.

Examples
Create foreign table films, which will be accessed through the server film_server:

1599

CREATE FOREIGN TABLE

CREATE FOREIGN TABLE films (
 code char(5) NOT NULL,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
)
SERVER film_server;

Create foreign table measurement_y2016m07, which will be accessed through the server
server_07, as a partition of the range partitioned table measurement:

CREATE FOREIGN TABLE measurement_y2016m07
 PARTITION OF measurement FOR VALUES FROM ('2016-07-01') TO
 ('2016-08-01')
 SERVER server_07;

Compatibility
The CREATE FOREIGN TABLE command largely conforms to the SQL standard; however, much as
with CREATE TABLE, NULL constraints and zero-column foreign tables are permitted. The ability to
specify column default values is also a PostgreSQL extension. Table inheritance, in the form defined by
PostgreSQL, is nonstandard.

See Also
ALTER FOREIGN TABLE, DROP FOREIGN TABLE, CREATE TABLE, CREATE SERVER,
IMPORT FOREIGN SCHEMA

1600

CREATE FUNCTION
CREATE FUNCTION — define a new function

Synopsis

CREATE [OR REPLACE] FUNCTION
 name ([[argmode] [argname] argtype [{ DEFAULT |
 = } default_expr] [, ...]])
 [RETURNS rettype
 | RETURNS TABLE (column_name column_type [, ...])]
 { LANGUAGE lang_name
 | TRANSFORM { FOR TYPE type_name } [, ...]
 | WINDOW
 | IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter { TO value | = value | FROM
 CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 } ...

Description
CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will either create
a new function, or replace an existing definition. To be able to define a function, the user must have the
USAGE privilege on the language.

If a schema name is included, then the function is created in the specified schema. Otherwise it is created
in the current schema. The name of the new function must not match any existing function or procedure
with the same input argument types in the same schema. However, functions and procedures of different
argument types can share a name (this is called overloading).

To replace the current definition of an existing function, use CREATE OR REPLACE FUNCTION. It is
not possible to change the name or argument types of a function this way (if you tried, you would actually
be creating a new, distinct function). Also, CREATE OR REPLACE FUNCTION will not let you change
the return type of an existing function. To do that, you must drop and recreate the function. (When using
OUT parameters, that means you cannot change the types of any OUT parameters except by dropping the
function.)

When CREATE OR REPLACE FUNCTION is used to replace an existing function, the ownership and
permissions of the function do not change. All other function properties are assigned the values specified
or implied in the command. You must own the function to replace it (this includes being a member of
the owning role).

If you drop and then recreate a function, the new function is not the same entity as the old; you will have
to drop existing rules, views, triggers, etc. that refer to the old function. Use CREATE OR REPLACE

1601

CREATE FUNCTION

FUNCTION to change a function definition without breaking objects that refer to the function. Also,
ALTER FUNCTION can be used to change most of the auxiliary properties of an existing function.

The user that creates the function becomes the owner of the function.

To be able to create a function, you must have USAGE privilege on the argument types and the return type.

Parameters
name

The name (optionally schema-qualified) of the function to create.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Only OUT
arguments can follow a VARIADIC one. Also, OUT and INOUT arguments cannot be used together
with the RETURNS TABLE notation.

argname

The name of an argument. Some languages (including SQL and PL/pgSQL) let you use the name in
the function body. For other languages the name of an input argument is just extra documentation,
so far as the function itself is concerned; but you can use input argument names when calling a
function to improve readability (see Section 4.3). In any case, the name of an output argument is
significant, because it defines the column name in the result row type. (If you omit the name for an
output argument, the system will choose a default column name.)

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any. The argument types
can be base, composite, or domain types, or can reference the type of a table column.

Depending on the implementation language it might also be allowed to specify “pseudo-types” such
as cstring. Pseudo-types indicate that the actual argument type is either incompletely specified, or
outside the set of ordinary SQL data types.

The type of a column is referenced by writing table_name.column_name%TYPE. Using this
feature can sometimes help make a function independent of changes to the definition of a table.

default_expr

An expression to be used as default value if the parameter is not specified. The expression has to be
coercible to the argument type of the parameter. Only input (including INOUT) parameters can have
a default value. All input parameters following a parameter with a default value must have default
values as well.

rettype

The return data type (optionally schema-qualified). The return type can be a base, composite, or
domain type, or can reference the type of a table column. Depending on the implementation language
it might also be allowed to specify “pseudo-types” such as cstring. If the function is not supposed
to return a value, specify void as the return type.

When there are OUT or INOUT parameters, the RETURNS clause can be omitted. If present, it must
agree with the result type implied by the output parameters: RECORD if there are multiple output
parameters, or the same type as the single output parameter.

1602

CREATE FUNCTION

The SETOF modifier indicates that the function will return a set of items, rather than a single item.

The type of a column is referenced by writing table_name.column_name%TYPE.

column_name

The name of an output column in the RETURNS TABLE syntax. This is effectively another way of
declaring a named OUT parameter, except that RETURNS TABLE also implies RETURNS SETOF.

column_type

The data type of an output column in the RETURNS TABLE syntax.

lang_name

The name of the language that the function is implemented in. It can be sql, c, internal, or the
name of a user-defined procedural language, e.g. plpgsql. Enclosing the name in single quotes is
deprecated and requires matching case.

TRANSFORM { FOR TYPE type_name } [, ...] }

Lists which transforms a call to the function should apply. Transforms convert between SQL types
and language-specific data types; see CREATE TRANSFORM. Procedural language implementations
usually have hardcoded knowledge of the built-in types, so those don't need to be listed here. If a
procedural language implementation does not know how to handle a type and no transform is supplied,
it will fall back to a default behavior for converting data types, but this depends on the implementation.

WINDOW

WINDOW indicates that the function is a window function rather than a plain function. This is currently
only useful for functions written in C. The WINDOW attribute cannot be changed when replacing an
existing function definition.

IMMUTABLE
STABLE
VOLATILE

These attributes inform the query optimizer about the behavior of the function. At most one choice
can be specified. If none of these appear, VOLATILE is the default assumption.

IMMUTABLE indicates that the function cannot modify the database and always returns the same
result when given the same argument values; that is, it does not do database lookups or otherwise use
information not directly present in its argument list. If this option is given, any call of the function
with all-constant arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a single table scan
it will consistently return the same result for the same argument values, but that its result could
change across SQL statements. This is the appropriate selection for functions whose results depend
on database lookups, parameter variables (such as the current time zone), etc. (It is inappropriate
for AFTER triggers that wish to query rows modified by the current command.) Also note that the
current_timestamp family of functions qualify as stable, since their values do not change within
a transaction.

VOLATILE indicates that the function value can change even within a single table scan, so no
optimizations can be made. Relatively few database functions are volatile in this sense; some examples
are random(), currval(), timeofday(). But note that any function that has side-effects must
be classified volatile, even if its result is quite predictable, to prevent calls from being optimized away;
an example is setval().

1603

CREATE FUNCTION

For additional details see Section 38.7.

LEAKPROOF

LEAKPROOF indicates that the function has no side effects. It reveals no information about its
arguments other than by its return value. For example, a function which throws an error message
for some argument values but not others, or which includes the argument values in any error
message, is not leakproof. This affects how the system executes queries against views created with
the security_barrier option or tables with row level security enabled. The system will enforce
conditions from security policies and security barrier views before any user-supplied conditions from
the query itself that contain non-leakproof functions, in order to prevent the inadvertent exposure of
data. Functions and operators marked as leakproof are assumed to be trustworthy, and may be executed
before conditions from security policies and security barrier views. In addition, functions which do
not take arguments or which are not passed any arguments from the security barrier view or table do
not have to be marked as leakproof to be executed before security conditions. See CREATE VIEW
and Section 41.5. This option can only be set by the superuser.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT (the default) indicates that the function will be called normally when
some of its arguments are null. It is then the function author's responsibility to check for null values
if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the function always returns null
whenever any of its arguments are null. If this parameter is specified, the function is not executed
when there are null arguments; instead a null result is assumed automatically.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER indicates that the function is to be executed with the privileges of the user
that calls it. That is the default. SECURITY DEFINER specifies that the function is to be executed
with the privileges of the user that owns it.

The key word EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL,
this feature applies to all functions not only external ones.

PARALLEL

PARALLEL UNSAFE indicates that the function can't be executed in parallel mode and the presence
of such a function in an SQL statement forces a serial execution plan. This is the default. PARALLEL
RESTRICTED indicates that the function can be executed in parallel mode, but the execution is
restricted to parallel group leader. PARALLEL SAFE indicates that the function is safe to run in
parallel mode without restriction.

Functions should be labeled parallel unsafe if they modify any database state, or if they make
changes to the transaction such as using sub-transactions, or if they access sequences or attempt to
make persistent changes to settings (e.g. setval). They should be labeled as parallel restricted if
they access temporary tables, client connection state, cursors, prepared statements, or miscellaneous
backend-local state which the system cannot synchronize in parallel mode (e.g. setseed cannot be
executed other than by the group leader because a change made by another process would not be
reflected in the leader). In general, if a function is labeled as being safe when it is restricted or unsafe,
or if it is labeled as being restricted when it is in fact unsafe, it may throw errors or produce wrong
answers when used in a parallel query. C-language functions could in theory exhibit totally undefined

1604

CREATE FUNCTION

behavior if mislabeled, since there is no way for the system to protect itself against arbitrary C code,
but in most likely cases the result will be no worse than for any other function. If in doubt, functions
should be labeled as UNSAFE, which is the default.

COST execution_cost

A positive number giving the estimated execution cost for the function, in units of cpu_operator_cost.
If the function returns a set, this is the cost per returned row. If the cost is not specified, 1 unit is
assumed for C-language and internal functions, and 100 units for functions in all other languages.
Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows

A positive number giving the estimated number of rows that the planner should expect the function
to return. This is only allowed when the function is declared to return a set. The default assumption
is 1000 rows.

configuration_parameter
value

The SET clause causes the specified configuration parameter to be set to the specified value when the
function is entered, and then restored to its prior value when the function exits. SET FROM CURRENT
saves the value of the parameter that is current when CREATE FUNCTION is executed as the value
to be applied when the function is entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside
the function for the same variable are restricted to the function: the configuration parameter's prior
value is still restored at function exit. However, an ordinary SET command (without LOCAL) overrides
the SET clause, much as it would do for a previous SET LOCAL command: the effects of such a
command will persist after function exit, unless the current transaction is rolled back.

See SET and Chapter 19 for more information about allowed parameter names and values.

definition

A string constant defining the function; the meaning depends on the language. It can be an internal
function name, the path to an object file, an SQL command, or text in a procedural language.

It is often helpful to use dollar quoting (see Section 4.1.2.4) to write the function definition string,
rather than the normal single quote syntax. Without dollar quoting, any single quotes or backslashes
in the function definition must be escaped by doubling them.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language functions when the function
name in the C language source code is not the same as the name of the SQL function. The string
obj_file is the name of the shared library file containing the compiled C function, and is interpreted
as for the LOAD command. The string link_symbol is the function's link symbol, that is, the name
of the function in the C language source code. If the link symbol is omitted, it is assumed to be the
same as the name of the SQL function being defined. The C names of all functions must be different,
so you must give overloaded C functions different C names (for example, use the argument types as
part of the C names).

When repeated CREATE FUNCTION calls refer to the same object file, the file is only loaded once
per session. To unload and reload the file (perhaps during development), start a new session.

Refer to Section 38.3 for further information on writing functions.

1605

CREATE FUNCTION

Overloading
PostgreSQL allows function overloading; that is, the same name can be used for several different functions
so long as they have distinct input argument types. Whether or not you use it, this capability entails security
precautions when calling functions in databases where some users mistrust other users; see Section 10.3.

Two functions are considered the same if they have the same names and input argument types, ignoring
any OUT parameters. Thus for example these declarations conflict:

CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, out text) ...

Functions that have different argument type lists will not be considered to conflict at creation time, but if
defaults are provided they might conflict in use. For example, consider

CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, int default 42) ...

A call foo(10) will fail due to the ambiguity about which function should be called.

Notes
The full SQL type syntax is allowed for declaring a function's arguments and return value. However,
parenthesized type modifiers (e.g., the precision field for type numeric) are discarded by CREATE
FUNCTION. Thus for example CREATE FUNCTION foo (varchar(10)) ... is exactly the same
as CREATE FUNCTION foo (varchar)

When replacing an existing function with CREATE OR REPLACE FUNCTION, there are restrictions on
changing parameter names. You cannot change the name already assigned to any input parameter (although
you can add names to parameters that had none before). If there is more than one output parameter, you
cannot change the names of the output parameters, because that would change the column names of the
anonymous composite type that describes the function's result. These restrictions are made to ensure that
existing calls of the function do not stop working when it is replaced.

If a function is declared STRICT with a VARIADIC argument, the strictness check tests that the variadic
array as a whole is non-null. The function will still be called if the array has null elements.

Examples
Here are some trivial examples to help you get started. For more information and examples, see
Section 38.3.

CREATE FUNCTION add(integer, integer) RETURNS integer
 AS 'select $1 + $2;'
 LANGUAGE SQL
 IMMUTABLE
 RETURNS NULL ON NULL INPUT;

Increment an integer, making use of an argument name, in PL/pgSQL:

1606

CREATE FUNCTION

CREATE OR REPLACE FUNCTION increment(i integer) RETURNS integer AS $$
 BEGIN
 RETURN i + 1;
 END;
$$ LANGUAGE plpgsql;

Return a record containing multiple output parameters:

CREATE FUNCTION dup(in int, out f1 int, out f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

You can do the same thing more verbosely with an explicitly named composite type:

CREATE TYPE dup_result AS (f1 int, f2 text);

CREATE FUNCTION dup(int) RETURNS dup_result
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

Another way to return multiple columns is to use a TABLE function:

CREATE FUNCTION dup(int) RETURNS TABLE(f1 int, f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

However, a TABLE function is different from the preceding examples, because it actually returns a set of
records, not just one record.

Writing SECURITY DEFINER Functions Safely
Because a SECURITY DEFINER function is executed with the privileges of the user that owns it, care is
needed to ensure that the function cannot be misused. For security, search_path should be set to exclude
any schemas writable by untrusted users. This prevents malicious users from creating objects (e.g., tables,
functions, and operators) that mask objects intended to be used by the function. Particularly important in
this regard is the temporary-table schema, which is searched first by default, and is normally writable by
anyone. A secure arrangement can be obtained by forcing the temporary schema to be searched last. To
do this, write pg_temp as the last entry in search_path. This function illustrates safe usage:

CREATE FUNCTION check_password(uname TEXT, pass TEXT)
RETURNS BOOLEAN AS $$
DECLARE passed BOOLEAN;
BEGIN
 SELECT (pwd = $2) INTO passed
 FROM pwds

1607

CREATE FUNCTION

 WHERE username = $1;

 RETURN passed;
END;
$$ LANGUAGE plpgsql
 SECURITY DEFINER
 -- Set a secure search_path: trusted schema(s), then 'pg_temp'.
 SET search_path = admin, pg_temp;

This function's intention is to access a table admin.pwds. But without the SET clause, or with a SET
clause mentioning only admin, the function could be subverted by creating a temporary table named
pwds.

Before PostgreSQL version 8.3, the SET clause was not available, and so older functions may contain
rather complicated logic to save, set, and restore search_path. The SET clause is far easier to use for
this purpose.

Another point to keep in mind is that by default, execute privilege is granted to PUBLIC for newly created
functions (see GRANT for more information). Frequently you will wish to restrict use of a security definer
function to only some users. To do that, you must revoke the default PUBLIC privileges and then grant
execute privilege selectively. To avoid having a window where the new function is accessible to all, create
it and set the privileges within a single transaction. For example:

BEGIN;
CREATE FUNCTION check_password(uname TEXT, pass TEXT) ... SECURITY
 DEFINER;
REVOKE ALL ON FUNCTION check_password(uname TEXT, pass TEXT) FROM
 PUBLIC;
GRANT EXECUTE ON FUNCTION check_password(uname TEXT, pass TEXT) TO
 admins;
COMMIT;

Compatibility
A CREATE FUNCTION command is defined in the SQL standard. The PostgreSQL version is similar but
not fully compatible. The attributes are not portable, neither are the different available languages.

For compatibility with some other database systems, argmode can be written either before or after
argname. But only the first way is standard-compliant.

For parameter defaults, the SQL standard specifies only the syntax with the DEFAULT key word. The
syntax with = is used in T-SQL and Firebird.

See Also
ALTER FUNCTION, DROP FUNCTION, GRANT, LOAD, REVOKE

1608

CREATE GROUP
CREATE GROUP — define a new database role

Synopsis

CREATE GROUP name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description
CREATE GROUP is now an alias for CREATE ROLE.

Compatibility
There is no CREATE GROUP statement in the SQL standard.

See Also
CREATE ROLE

1609

CREATE INDEX
CREATE INDEX — define a new index

Synopsis

CREATE [UNIQUE] INDEX [CONCURRENTLY] [[IF NOT EXISTS] name] ON
 [ONLY] table_name [USING method]
 ({ column_name | (expression) } [COLLATE collation] [opclass
] [ASC | DESC] [NULLS { FIRST | LAST }] [, ...])
 [INCLUDE (column_name [, ...])]
 [WITH (storage_parameter = value [, ...])]
 [TABLESPACE tablespace_name]
 [WHERE predicate]

Description

CREATE INDEX constructs an index on the specified column(s) of the specified relation, which can
be a table or a materialized view. Indexes are primarily used to enhance database performance (though
inappropriate use can result in slower performance).

The key field(s) for the index are specified as column names, or alternatively as expressions written in
parentheses. Multiple fields can be specified if the index method supports multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table row.
This feature can be used to obtain fast access to data based on some transformation of the basic data.
For example, an index computed on upper(col) would allow the clause WHERE upper(col) =
'JIM' to use an index.

PostgreSQL provides the index methods B-tree, hash, GiST, SP-GiST, GIN, and BRIN. Users can also
define their own index methods, but that is fairly complicated.

When the WHERE clause is present, a partial index is created. A partial index is an index that contains
entries for only a portion of a table, usually a portion that is more useful for indexing than the rest of the
table. For example, if you have a table that contains both billed and unbilled orders where the unbilled
orders take up a small fraction of the total table and yet that is an often used section, you can improve
performance by creating an index on just that portion. Another possible application is to use WHERE with
UNIQUE to enforce uniqueness over a subset of a table. See Section 11.8 for more discussion.

The expression used in the WHERE clause can refer only to columns of the underlying table, but it can
use all columns, not just the ones being indexed. Presently, subqueries and aggregate expressions are also
forbidden in WHERE. The same restrictions apply to index fields that are expressions.

All functions and operators used in an index definition must be “immutable”, that is, their results must
depend only on their arguments and never on any outside influence (such as the contents of another table
or the current time). This restriction ensures that the behavior of the index is well-defined. To use a user-
defined function in an index expression or WHERE clause, remember to mark the function immutable when
you create it.

1610

CREATE INDEX

Parameters
UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data already
exist) and each time data is added. Attempts to insert or update data which would result in duplicate
entries will generate an error.

Additional restrictions apply when unique indexes are applied to partitioned tables; see CREATE
TABLE.

CONCURRENTLY

When this option is used, PostgreSQL will build the index without taking any locks that prevent
concurrent inserts, updates, or deletes on the table; whereas a standard index build locks out writes
(but not reads) on the table until it's done. There are several caveats to be aware of when using this
option — see Building Indexes Concurrently.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing index is anything like the one that would have been
created. Index name is required when IF NOT EXISTS is specified.

INCLUDE

The optional INCLUDE clause specifies a list of columns which will be included in the index as
non-key columns. A non-key column cannot be used in an index scan search qualification, and it is
disregarded for purposes of any uniqueness or exclusion constraint enforced by the index. However,
an index-only scan can return the contents of non-key columns without having to visit the index's
table, since they are available directly from the index entry. Thus, addition of non-key columns allows
index-only scans to be used for queries that otherwise could not use them.

It's wise to be conservative about adding non-key columns to an index, especially wide columns. If an
index tuple exceeds the maximum size allowed for the index type, data insertion will fail. In any case,
non-key columns duplicate data from the index's table and bloat the size of the index, thus potentially
slowing searches.

Columns listed in the INCLUDE clause don't need appropriate operator classes; the clause can include
columns whose data types don't have operator classes defined for a given access method.

Expressions are not supported as included columns since they cannot be used in index-only scans.

Currently, only the B-tree index access method supports this feature. In B-tree indexes, the values of
columns listed in the INCLUDE clause are included in leaf tuples which correspond to heap tuples,
but are not included in upper-level index entries used for tree navigation.

name

The name of the index to be created. No schema name can be included here; the index is always
created in the same schema as its parent table. If the name is omitted, PostgreSQL chooses a suitable
name based on the parent table's name and the indexed column name(s).

ONLY

Indicates not to recurse creating indexes on partitions, if the table is partitioned. The default is to
recurse.

1611

CREATE INDEX

table_name

The name (possibly schema-qualified) of the table to be indexed.

method

The name of the index method to be used. Choices are btree, hash, gist, spgist, gin, and
brin. The default method is btree.

column_name

The name of a column of the table.

expression

An expression based on one or more columns of the table. The expression usually must be written
with surrounding parentheses, as shown in the syntax. However, the parentheses can be omitted if the
expression has the form of a function call.

collation

The name of the collation to use for the index. By default, the index uses the collation declared for the
column to be indexed or the result collation of the expression to be indexed. Indexes with non-default
collations can be useful for queries that involve expressions using non-default collations.

opclass

The name of an operator class. See below for details.

ASC

Specifies ascending sort order (which is the default).

DESC

Specifies descending sort order.

NULLS FIRST

Specifies that nulls sort before non-nulls. This is the default when DESC is specified.

NULLS LAST

Specifies that nulls sort after non-nulls. This is the default when DESC is not specified.

storage_parameter

The name of an index-method-specific storage parameter. See Index Storage Parameters for details.

tablespace_name

The tablespace in which to create the index. If not specified, default_tablespace is consulted, or
temp_tablespaces for indexes on temporary tables.

predicate

The constraint expression for a partial index.

Index Storage Parameters

The optional WITH clause specifies storage parameters for the index. Each index method has its own set of
allowed storage parameters. The B-tree, hash, GiST and SP-GiST index methods all accept this parameter:

1612

CREATE INDEX

fillfactor

The fillfactor for an index is a percentage that determines how full the index method will try to pack
index pages. For B-trees, leaf pages are filled to this percentage during initial index build, and also
when extending the index at the right (adding new largest key values). If pages subsequently become
completely full, they will be split, leading to gradual degradation in the index's efficiency. B-trees
use a default fillfactor of 90, but any integer value from 10 to 100 can be selected. If the table is
static then fillfactor 100 is best to minimize the index's physical size, but for heavily updated tables a
smaller fillfactor is better to minimize the need for page splits. The other index methods use fillfactor
in different but roughly analogous ways; the default fillfactor varies between methods.

B-tree indexes additionally accept this parameter:

vacuum_cleanup_index_scale_factor

Per-index value for vacuum_cleanup_index_scale_factor.

GiST indexes additionally accept this parameter:

buffering

Determines whether the buffering build technique described in Section 64.4.1 is used to build the
index. With OFF it is disabled, with ON it is enabled, and with AUTO it is initially disabled, but turned
on on-the-fly once the index size reaches effective_cache_size. The default is AUTO.

GIN indexes accept different parameters:

fastupdate

This setting controls usage of the fast update technique described in Section 66.4.1. It is a Boolean
parameter: ON enables fast update, OFF disables it. (Alternative spellings of ON and OFF are allowed
as described in Section 19.1.) The default is ON.

Note

Turning fastupdate off via ALTER INDEX prevents future insertions from going into the
list of pending index entries, but does not in itself flush previous entries. You might want to
VACUUM the table or call gin_clean_pending_list function afterward to ensure the
pending list is emptied.

gin_pending_list_limit

Custom gin_pending_list_limit parameter. This value is specified in kilobytes.

BRIN indexes accept different parameters:

pages_per_range

Defines the number of table blocks that make up one block range for each entry of a BRIN index (see
Section 67.1 for more details). The default is 128.

autosummarize

Defines whether a summarization run is invoked for the previous page range whenever an insertion
is detected on the next one.

1613

CREATE INDEX

Building Indexes Concurrently

Creating an index can interfere with regular operation of a database. Normally PostgreSQL locks the table
to be indexed against writes and performs the entire index build with a single scan of the table. Other
transactions can still read the table, but if they try to insert, update, or delete rows in the table they will
block until the index build is finished. This could have a severe effect if the system is a live production
database. Very large tables can take many hours to be indexed, and even for smaller tables, an index build
can lock out writers for periods that are unacceptably long for a production system.

PostgreSQL supports building indexes without locking out writes. This method is invoked by specifying
the CONCURRENTLY option of CREATE INDEX. When this option is used, PostgreSQL must perform
two scans of the table, and in addition it must wait for all existing transactions that could potentially modify
or use the index to terminate. Thus this method requires more total work than a standard index build and
takes significantly longer to complete. However, since it allows normal operations to continue while the
index is built, this method is useful for adding new indexes in a production environment. Of course, the
extra CPU and I/O load imposed by the index creation might slow other operations.

In a concurrent index build, the index is actually entered into the system catalogs in one transaction, then
two table scans occur in two more transactions. Before each table scan, the index build must wait for
existing transactions that have modified the table to terminate. After the second scan, the index build must
wait for any transactions that have a snapshot (see Chapter 13) predating the second scan to terminate.
Then finally the index can be marked ready for use, and the CREATE INDEX command terminates. Even
then, however, the index may not be immediately usable for queries: in the worst case, it cannot be used
as long as transactions exist that predate the start of the index build.

If a problem arises while scanning the table, such as a deadlock or a uniqueness violation in a unique index,
the CREATE INDEX command will fail but leave behind an “invalid” index. This index will be ignored
for querying purposes because it might be incomplete; however it will still consume update overhead. The
psql \d command will report such an index as INVALID:

postgres=# \d tab
 Table "public.tab"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 col | integer | | |
Indexes:
 "idx" btree (col) INVALID

The recommended recovery method in such cases is to drop the index and try again to perform CREATE
INDEX CONCURRENTLY. (Another possibility is to rebuild the index with REINDEX. However, since
REINDEX does not support concurrent builds, this option is unlikely to seem attractive.)

Another caveat when building a unique index concurrently is that the uniqueness constraint is already
being enforced against other transactions when the second table scan begins. This means that constraint
violations could be reported in other queries prior to the index becoming available for use, or even in cases
where the index build eventually fails. Also, if a failure does occur in the second scan, the “invalid” index
continues to enforce its uniqueness constraint afterwards.

Concurrent builds of expression indexes and partial indexes are supported. Errors occurring in the
evaluation of these expressions could cause behavior similar to that described above for unique constraint
violations.

Regular index builds permit other regular index builds on the same table to occur simultaneously, but only
one concurrent index build can occur on a table at a time. In either case, schema modification of the table is

1614

CREATE INDEX

not allowed while the index is being built. Another difference is that a regular CREATE INDEX command
can be performed within a transaction block, but CREATE INDEX CONCURRENTLY cannot.

Notes
See Chapter 11 for information about when indexes can be used, when they are not used, and in which
particular situations they can be useful.

Currently, only the B-tree, GiST, GIN, and BRIN index methods support multicolumn indexes. Up to
32 fields can be specified by default. (This limit can be altered when building PostgreSQL.) Only B-tree
currently supports unique indexes.

An operator class can be specified for each column of an index. The operator class identifies the operators
to be used by the index for that column. For example, a B-tree index on four-byte integers would use the
int4_ops class; this operator class includes comparison functions for four-byte integers. In practice the
default operator class for the column's data type is usually sufficient. The main point of having operator
classes is that for some data types, there could be more than one meaningful ordering. For example, we
might want to sort a complex-number data type either by absolute value or by real part. We could do this
by defining two operator classes for the data type and then selecting the proper class when creating an
index. More information about operator classes is in Section 11.10 and in Section 38.15.

When CREATE INDEX is invoked on a partitioned table, the default behavior is to recurse to all partitions
to ensure they all have matching indexes. Each partition is first checked to determine whether an equivalent
index already exists, and if so, that index will become attached as a partition index to the index being
created, which will become its parent index. If no matching index exists, a new index will be created and
automatically attached; the name of the new index in each partition will be determined as if no index name
had been specified in the command. If the ONLY option is specified, no recursion is done, and the index is
marked invalid. (ALTER INDEX ... ATTACH PARTITION marks the index valid, once all partitions
acquire matching indexes.) Note, however, that any partition that is created in the future using CREATE
TABLE ... PARTITION OF will automatically have a matching index, regardless of whether ONLY
is specified.

For index methods that support ordered scans (currently, only B-tree), the optional clauses ASC, DESC,
NULLS FIRST, and/or NULLS LAST can be specified to modify the sort ordering of the index. Since
an ordered index can be scanned either forward or backward, it is not normally useful to create a single-
column DESC index — that sort ordering is already available with a regular index. The value of these
options is that multicolumn indexes can be created that match the sort ordering requested by a mixed-
ordering query, such as SELECT ... ORDER BY x ASC, y DESC. The NULLS options are useful
if you need to support “nulls sort low” behavior, rather than the default “nulls sort high”, in queries that
depend on indexes to avoid sorting steps.

For most index methods, the speed of creating an index is dependent on the setting of
maintenance_work_mem. Larger values will reduce the time needed for index creation, so long as you don't
make it larger than the amount of memory really available, which would drive the machine into swapping.

PostgreSQL can build indexes while leveraging multiple CPUs in order to process the table rows faster.
This feature is known as parallel index build. For index methods that support building indexes in parallel
(currently, only B-tree), maintenance_work_mem specifies the maximum amount of memory that can
be used by each index build operation as a whole, regardless of how many worker processes were started.
Generally, a cost model automatically determines how many worker processes should be requested, if any.

Parallel index builds may benefit from increasing maintenance_work_mem where an equivalent
serial index build will see little or no benefit. Note that maintenance_work_mem may influence the
number of worker processes requested, since parallel workers must have at least a 32MB share of the total
maintenance_work_mem budget. There must also be a remaining 32MB share for the leader process.

1615

CREATE INDEX

Increasing max_parallel_maintenance_workers may allow more workers to be used, which will reduce the
time needed for index creation, so long as the index build is not already I/O bound. Of course, there should
also be sufficient CPU capacity that would otherwise lie idle.

Setting a value for parallel_workers via ALTER TABLE directly controls how many parallel
worker processes will be requested by a CREATE INDEX against the table. This bypasses the cost model
completely, and prevents maintenance_work_mem from affecting how many parallel workers are
requested. Setting parallel_workers to 0 via ALTER TABLE will disable parallel index builds on
the table in all cases.

Tip

You might want to reset parallel_workers after setting it as part of tuning an index build.
This avoids inadvertent changes to query plans, since parallel_workers affects all parallel
table scans.

While CREATE INDEX with the CONCURRENTLY option supports parallel builds without special
restrictions, only the first table scan is actually performed in parallel.

Use DROP INDEX to remove an index.

Prior releases of PostgreSQL also had an R-tree index method. This method has been removed because it
had no significant advantages over the GiST method. If USING rtree is specified, CREATE INDEX
will interpret it as USING gist, to simplify conversion of old databases to GiST.

Examples
To create a unique B-tree index on the column title in the table films:

CREATE UNIQUE INDEX title_idx ON films (title);

To create a unique B-tree index on the column title with included columns director and rating
in the table films:

CREATE UNIQUE INDEX title_idx ON films (title) INCLUDE (director,
 rating);

To create an index on the expression lower(title), allowing efficient case-insensitive searches:

CREATE INDEX ON films ((lower(title)));

(In this example we have chosen to omit the index name, so the system will choose a name, typically
films_lower_idx.)

To create an index with non-default collation:

CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");

To create an index with non-default sort ordering of nulls:

1616

CREATE INDEX

CREATE INDEX title_idx_nulls_low ON films (title NULLS FIRST);

To create an index with non-default fill factor:

CREATE UNIQUE INDEX title_idx ON films (title) WITH (fillfactor = 70);

To create a GIN index with fast updates disabled:

CREATE INDEX gin_idx ON documents_table USING GIN (locations) WITH
 (fastupdate = off);

To create an index on the column code in the table films and have the index reside in the tablespace
indexspace:

CREATE INDEX code_idx ON films (code) TABLESPACE indexspace;

To create a GiST index on a point attribute so that we can efficiently use box operators on the result of
the conversion function:

CREATE INDEX pointloc
 ON points USING gist (box(location,location));
SELECT * FROM points
 WHERE box(location,location) && '(0,0),(1,1)'::box;

To create an index without locking out writes to the table:

CREATE INDEX CONCURRENTLY sales_quantity_index ON sales_table
 (quantity);

Compatibility
CREATE INDEX is a PostgreSQL language extension. There are no provisions for indexes in the SQL
standard.

See Also
ALTER INDEX, DROP INDEX

1617

CREATE LANGUAGE
CREATE LANGUAGE — define a new procedural language

Synopsis

CREATE [OR REPLACE] [PROCEDURAL] LANGUAGE name
CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [INLINE inline_handler]
 [VALIDATOR valfunction]

Description
CREATE LANGUAGE registers a new procedural language with a PostgreSQL database. Subsequently,
functions and procedures can be defined in this new language.

Note

As of PostgreSQL 9.1, most procedural languages have been made into “extensions”, and should
therefore be installed with CREATE EXTENSION not CREATE LANGUAGE. Direct use of
CREATE LANGUAGE should now be confined to extension installation scripts. If you have a “bare”
language in your database, perhaps as a result of an upgrade, you can convert it to an extension
using CREATE EXTENSION langname FROM unpackaged.

CREATE LANGUAGE effectively associates the language name with handler function(s) that are
responsible for executing functions written in the language. Refer to Chapter 56 for more information
about language handlers.

There are two forms of the CREATE LANGUAGE command. In the first form, the user supplies just
the name of the desired language, and the PostgreSQL server consults the pg_pltemplate system
catalog to determine the correct parameters. In the second form, the user supplies the language parameters
along with the language name. The second form can be used to create a language that is not defined in
pg_pltemplate, but this approach is considered obsolescent.

When the server finds an entry in the pg_pltemplate catalog for the given language name, it will use
the catalog data even if the command includes language parameters. This behavior simplifies loading of
old dump files, which are likely to contain out-of-date information about language support functions.

Ordinarily, the user must have the PostgreSQL superuser privilege to register a new language.
However, the owner of a database can register a new language within that database if the language is
listed in the pg_pltemplate catalog and is marked as allowed to be created by database owners
(tmpldbacreate is true). The default is that trusted languages can be created by database owners,
but this can be adjusted by superusers by modifying the contents of pg_pltemplate. The creator of a
language becomes its owner and can later drop it, rename it, or assign it to a new owner.

CREATE OR REPLACE LANGUAGE will either create a new language, or replace an existing definition.
If the language already exists, its parameters are updated according to the values specified or taken
from pg_pltemplate, but the language's ownership and permissions settings do not change, and any

1618

CREATE LANGUAGE

existing functions written in the language are assumed to still be valid. In addition to the normal privilege
requirements for creating a language, the user must be superuser or owner of the existing language. The
REPLACE case is mainly meant to be used to ensure that the language exists. If the language has a
pg_pltemplate entry then REPLACE will not actually change anything about an existing definition,
except in the unusual case where the pg_pltemplate entry has been modified since the language was
created.

Parameters
TRUSTED

TRUSTED specifies that the language does not grant access to data that the user would not otherwise
have. If this key word is omitted when registering the language, only users with the PostgreSQL
superuser privilege can use this language to create new functions.

PROCEDURAL

This is a noise word.

name

The name of the new procedural language. The name must be unique among the languages in the
database.

For backward compatibility, the name can be enclosed by single quotes.

HANDLER call_handler

call_handler is the name of a previously registered function that will be called to execute the
procedural language's functions. The call handler for a procedural language must be written in a
compiled language such as C with version 1 call convention and registered with PostgreSQL as a
function taking no arguments and returning the language_handler type, a placeholder type that
is simply used to identify the function as a call handler.

INLINE inline_handler

inline_handler is the name of a previously registered function that will be called to execute
an anonymous code block (DO command) in this language. If no inline_handler function is
specified, the language does not support anonymous code blocks. The handler function must take one
argument of type internal, which will be the DO command's internal representation, and it will
typically return void. The return value of the handler is ignored.

VALIDATOR valfunction

valfunction is the name of a previously registered function that will be called when a new function
in the language is created, to validate the new function. If no validator function is specified, then a
new function will not be checked when it is created. The validator function must take one argument
of type oid, which will be the OID of the to-be-created function, and will typically return void.

A validator function would typically inspect the function body for syntactical correctness, but it
can also look at other properties of the function, for example if the language cannot handle certain
argument types. To signal an error, the validator function should use the ereport() function. The
return value of the function is ignored.

The TRUSTED option and the support function name(s) are ignored if the server has an entry for the
specified language name in pg_pltemplate.

1619

CREATE LANGUAGE

Notes
Use DROP LANGUAGE to drop procedural languages.

The system catalog pg_language (see Section 52.29) records information about the currently installed
languages. Also, the psql command \dL lists the installed languages.

To create functions in a procedural language, a user must have the USAGE privilege for the language. By
default, USAGE is granted to PUBLIC (i.e., everyone) for trusted languages. This can be revoked if desired.

Procedural languages are local to individual databases. However, a language can be installed into the
template1 database, which will cause it to be available automatically in all subsequently-created
databases.

The call handler function, the inline handler function (if any), and the validator function (if any) must
already exist if the server does not have an entry for the language in pg_pltemplate. But when there
is an entry, the functions need not already exist; they will be automatically defined if not present in the
database. (This might result in CREATE LANGUAGE failing, if the shared library that implements the
language is not available in the installation.)

In PostgreSQL versions before 7.3, it was necessary to declare handler functions as returning the
placeholder type opaque, rather than language_handler. To support loading of old dump files,
CREATE LANGUAGE will accept a function declared as returning opaque, but it will issue a notice and
change the function's declared return type to language_handler.

Examples
The preferred way of creating any of the standard procedural languages is just:

CREATE LANGUAGE plperl;

For a language not known in the pg_pltemplate catalog, a sequence such as this is needed:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
 AS '$libdir/plsample'
 LANGUAGE C;
CREATE LANGUAGE plsample
 HANDLER plsample_call_handler;

Compatibility
CREATE LANGUAGE is a PostgreSQL extension.

See Also
ALTER LANGUAGE, CREATE FUNCTION, DROP LANGUAGE, GRANT, REVOKE

1620

CREATE MATERIALIZED VIEW
CREATE MATERIALIZED VIEW — define a new materialized view

Synopsis

CREATE MATERIALIZED VIEW [IF NOT EXISTS] table_name
 [(column_name [, ...])]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

Description
CREATE MATERIALIZED VIEW defines a materialized view of a query. The query is executed and
used to populate the view at the time the command is issued (unless WITH NO DATA is used) and may
be refreshed later using REFRESH MATERIALIZED VIEW.

CREATE MATERIALIZED VIEW is similar to CREATE TABLE AS, except that it also remembers
the query used to initialize the view, so that it can be refreshed later upon demand. A materialized view
has many of the same properties as a table, but there is no support for temporary materialized views or
automatic generation of OIDs.

Parameters
IF NOT EXISTS

Do not throw an error if a materialized view with the same name already exists. A notice is issued
in this case. Note that there is no guarantee that the existing materialized view is anything like the
one that would have been created.

table_name

The name (optionally schema-qualified) of the materialized view to be created.

column_name

The name of a column in the new materialized view. If column names are not provided, they are taken
from the output column names of the query.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for the new materialized view; see Storage
Parameters for more information. All parameters supported for CREATE TABLE are also supported
for CREATE MATERIALIZED VIEW with the exception of OIDS. See CREATE TABLE for more
information.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new materialized view is to be
created. If not specified, default_tablespace is consulted.

1621

CREATE MATERIALIZED VIEW

query

A SELECT, TABLE, or VALUES command. This query will run within a security-restricted
operation; in particular, calls to functions that themselves create temporary tables will fail.

WITH [NO] DATA

This clause specifies whether or not the materialized view should be populated at creation time. If
not, the materialized view will be flagged as unscannable and cannot be queried until REFRESH
MATERIALIZED VIEW is used.

Compatibility
CREATE MATERIALIZED VIEW is a PostgreSQL extension.

See Also
ALTER MATERIALIZED VIEW, CREATE TABLE AS, CREATE VIEW, DROP MATERIALIZED
VIEW, REFRESH MATERIALIZED VIEW

1622

CREATE OPERATOR
CREATE OPERATOR — define a new operator

Synopsis

CREATE OPERATOR name (
 {FUNCTION|PROCEDURE} = function_name
 [, LEFTARG = left_type] [, RIGHTARG = right_type]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
)

Description
CREATE OPERATOR defines a new operator, name. The user who defines an operator becomes its owner.
If a schema name is given then the operator is created in the specified schema. Otherwise it is created in
the current schema.

The operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+ - * / < > = ~ ! @ # % ^ & | ` ?

There are a few restrictions on your choice of name:

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multicharacter operator name cannot end in + or -, unless the name also contains at least one of
these characters:

~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows PostgreSQL to parse
SQL-compliant commands without requiring spaces between tokens.

• The use of => as an operator name is deprecated. It may be disallowed altogether in a future release.

The operator != is mapped to <> on input, so these two names are always equivalent.

At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both must be defined. For
right unary operators, only LEFTARG should be defined, while for left unary operators only RIGHTARG
should be defined.

The function_name function must have been previously defined using CREATE FUNCTION and
must be defined to accept the correct number of arguments (either one or two) of the indicated types.

1623

CREATE OPERATOR

In the syntax of CREATE OPERATOR, the keywords FUNCTION and PROCEDURE are equivalent, but the
referenced function must in any case be a function, not a procedure. The use of the keyword PROCEDURE
here is historical and deprecated.

The other clauses specify optional operator optimization clauses. Their meaning is detailed in
Section 38.14.

To be able to create an operator, you must have USAGE privilege on the argument types and the return
type, as well as EXECUTE privilege on the underlying function. If a commutator or negator operator is
specified, you must own these operators.

Parameters
name

The name of the operator to be defined. See above for allowable characters. The name can be schema-
qualified, for example CREATE OPERATOR myschema.+ (...). If not, then the operator is
created in the current schema. Two operators in the same schema can have the same name if they
operate on different data types. This is called overloading.

function_name

The function used to implement this operator.

left_type

The data type of the operator's left operand, if any. This option would be omitted for a left-unary
operator.

right_type

The data type of the operator's right operand, if any. This option would be omitted for a right-unary
operator.

com_op

The commutator of this operator.

neg_op

The negator of this operator.

res_proc

The restriction selectivity estimator function for this operator.

join_proc

The join selectivity estimator function for this operator.

HASHES

Indicates this operator can support a hash join.

MERGES

Indicates this operator can support a merge join.

1624

CREATE OPERATOR

To give a schema-qualified operator name in com_op or the other optional arguments, use the
OPERATOR() syntax, for example:

COMMUTATOR = OPERATOR(myschema.===) ,

Notes
Refer to Section 38.13 for further information.

It is not possible to specify an operator's lexical precedence in CREATE OPERATOR, because the parser's
precedence behavior is hard-wired. See Section 4.1.6 for precedence details.

The obsolete options SORT1, SORT2, LTCMP, and GTCMP were formerly used to specify the names of
sort operators associated with a merge-joinable operator. This is no longer necessary, since information
about associated operators is found by looking at B-tree operator families instead. If one of these options
is given, it is ignored except for implicitly setting MERGES true.

Use DROP OPERATOR to delete user-defined operators from a database. Use ALTER OPERATOR to
modify operators in a database.

Examples
The following command defines a new operator, area-equality, for the data type box:

CREATE OPERATOR === (
 LEFTARG = box,
 RIGHTARG = box,
 FUNCTION = area_equal_function,
 COMMUTATOR = ===,
 NEGATOR = !==,
 RESTRICT = area_restriction_function,
 JOIN = area_join_function,
 HASHES, MERGES
);

Compatibility
CREATE OPERATOR is a PostgreSQL extension. There are no provisions for user-defined operators in
the SQL standard.

See Also
ALTER OPERATOR, CREATE OPERATOR CLASS, DROP OPERATOR

1625

CREATE OPERATOR CLASS
CREATE OPERATOR CLASS — define a new operator class

Synopsis

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method [FAMILY family_name] AS
 { OPERATOR strategy_number operator_name [(op_type, op_type)]
 [FOR SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type
])] function_name (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

Description
CREATE OPERATOR CLASS creates a new operator class. An operator class defines how a particular
data type can be used with an index. The operator class specifies that certain operators will fill particular
roles or “strategies” for this data type and this index method. The operator class also specifies the support
functions to be used by the index method when the operator class is selected for an index column. All the
operators and functions used by an operator class must be defined before the operator class can be created.

If a schema name is given then the operator class is created in the specified schema. Otherwise it is created
in the current schema. Two operator classes in the same schema can have the same name only if they are
for different index methods.

The user who defines an operator class becomes its owner. Presently, the creating user must be a superuser.
(This restriction is made because an erroneous operator class definition could confuse or even crash the
server.)

CREATE OPERATOR CLASS does not presently check whether the operator class definition includes all
the operators and functions required by the index method, nor whether the operators and functions form a
self-consistent set. It is the user's responsibility to define a valid operator class.

Related operator classes can be grouped into operator families. To add a new operator class to an existing
family, specify the FAMILY option in CREATE OPERATOR CLASS. Without this option, the new class
is placed into a family named the same as the new class (creating that family if it doesn't already exist).

Refer to Section 38.15 for further information.

Parameters
name

The name of the operator class to be created. The name can be schema-qualified.

DEFAULT

If present, the operator class will become the default operator class for its data type. At most one
operator class can be the default for a specific data type and index method.

1626

CREATE OPERATOR CLASS

data_type

The column data type that this operator class is for.

index_method

The name of the index method this operator class is for.

family_name

The name of the existing operator family to add this operator class to. If not specified, a family named
the same as the operator class is used (creating it, if it doesn't already exist).

strategy_number

The index method's strategy number for an operator associated with the operator class.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator class.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a left-unary or
right-unary operator. The operand data types can be omitted in the normal case where they are the
same as the operator class's data type.

In a FUNCTION clause, the operand data type(s) the function is intended to support, if different from
the input data type(s) of the function (for B-tree comparison functions and hash functions) or the
class's data type (for B-tree sort support functions and all functions in GiST, SP-GiST, GIN and BRIN
operator classes). These defaults are correct, and so op_type need not be specified in FUNCTION
clauses, except for the case of a B-tree sort support function that is meant to support cross-data-type
comparisons.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that describes the sort
ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method's support function number for a function associated with the operator class.

function_name

The name (optionally schema-qualified) of a function that is an index method support function for
the operator class.

argument_type

The parameter data type(s) of the function.

storage_type

The data type actually stored in the index. Normally this is the same as the column data type, but some
index methods (currently GiST, GIN and BRIN) allow it to be different. The STORAGE clause must

1627

CREATE OPERATOR CLASS

be omitted unless the index method allows a different type to be used. If the column data_type is
specified as anyarray, the storage_type can be declared as anyelement to indicate that the
index entries are members of the element type belonging to the actual array type that each particular
index is created for.

The OPERATOR, FUNCTION, and STORAGE clauses can appear in any order.

Notes
Because the index machinery does not check access permissions on functions before using them, including
a function or operator in an operator class is tantamount to granting public execute permission on it. This
is usually not an issue for the sorts of functions that are useful in an operator class.

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

Before PostgreSQL 8.4, the OPERATOR clause could include a RECHECK option. This is no longer
supported because whether an index operator is “lossy” is now determined on-the-fly at run time. This
allows efficient handling of cases where an operator might or might not be lossy.

Examples
The following example command defines a GiST index operator class for the data type _int4 (array of
int4). See the intarray module for the complete example.

CREATE OPERATOR CLASS gist__int_ops
 DEFAULT FOR TYPE _int4 USING gist AS
 OPERATOR 3 &&,
 OPERATOR 6 = (anyarray, anyarray),
 OPERATOR 7 @>,
 OPERATOR 8 <@,
 OPERATOR 20 @@ (_int4, query_int),
 FUNCTION 1 g_int_consistent (internal, _int4,
 smallint, oid, internal),
 FUNCTION 2 g_int_union (internal, internal),
 FUNCTION 3 g_int_compress (internal),
 FUNCTION 4 g_int_decompress (internal),
 FUNCTION 5 g_int_penalty (internal, internal,
 internal),
 FUNCTION 6 g_int_picksplit (internal, internal),
 FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility
CREATE OPERATOR CLASS is a PostgreSQL extension. There is no CREATE OPERATOR CLASS
statement in the SQL standard.

See Also
ALTER OPERATOR CLASS, DROP OPERATOR CLASS, CREATE OPERATOR FAMILY, ALTER
OPERATOR FAMILY

1628

CREATE OPERATOR FAMILY
CREATE OPERATOR FAMILY — define a new operator family

Synopsis

CREATE OPERATOR FAMILY name USING index_method

Description
CREATE OPERATOR FAMILY creates a new operator family. An operator family defines a collection of
related operator classes, and perhaps some additional operators and support functions that are compatible
with these operator classes but not essential for the functioning of any individual index. (Operators and
functions that are essential to indexes should be grouped within the relevant operator class, rather than
being “loose” in the operator family. Typically, single-data-type operators are bound to operator classes,
while cross-data-type operators can be loose in an operator family containing operator classes for both
data types.)

The new operator family is initially empty. It should be populated by issuing subsequent CREATE
OPERATOR CLASS commands to add contained operator classes, and optionally ALTER OPERATOR
FAMILY commands to add “loose” operators and their corresponding support functions.

If a schema name is given then the operator family is created in the specified schema. Otherwise it is
created in the current schema. Two operator families in the same schema can have the same name only
if they are for different index methods.

The user who defines an operator family becomes its owner. Presently, the creating user must be a
superuser. (This restriction is made because an erroneous operator family definition could confuse or even
crash the server.)

Refer to Section 38.15 for further information.

Parameters
name

The name of the operator family to be created. The name can be schema-qualified.

index_method

The name of the index method this operator family is for.

Compatibility
CREATE OPERATOR FAMILY is a PostgreSQL extension. There is no CREATE OPERATOR FAMILY
statement in the SQL standard.

See Also
ALTER OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE OPERATOR CLASS, ALTER
OPERATOR CLASS, DROP OPERATOR CLASS

1629

CREATE POLICY
CREATE POLICY — define a new row level security policy for a table

Synopsis

CREATE POLICY name ON table_name
 [AS { PERMISSIVE | RESTRICTIVE }]
 [FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]
 [TO { role_name | PUBLIC | CURRENT_USER | SESSION_USER }
 [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Description
The CREATE POLICY command defines a new row-level security policy for a table. Note that row-level
security must be enabled on the table (using ALTER TABLE ... ENABLE ROW LEVEL SECURITY)
in order for created policies to be applied.

A policy grants the permission to select, insert, update, or delete rows that match the relevant policy
expression. Existing table rows are checked against the expression specified in USING, while new rows
that would be created via INSERT or UPDATE are checked against the expression specified in WITH
CHECK. When a USING expression returns true for a given row then that row is visible to the user, while
if false or null is returned then the row is not visible. When a WITH CHECK expression returns true for a
row then that row is inserted or updated, while if false or null is returned then an error occurs.

For INSERT and UPDATE statements, WITH CHECK expressions are enforced after BEFORE triggers
are fired, and before any actual data modifications are made. Thus a BEFORE ROW trigger may modify
the data to be inserted, affecting the result of the security policy check. WITH CHECK expressions are
enforced before any other constraints.

Policy names are per-table. Therefore, one policy name can be used for many different tables and have a
definition for each table which is appropriate to that table.

Policies can be applied for specific commands or for specific roles. The default for newly created policies
is that they apply for all commands and roles, unless otherwise specified. Multiple policies may apply to
a single command; see below for more details. Table 240 summarizes how the different types of policy
apply to specific commands.

For policies that can have both USING and WITH CHECK expressions (ALL and UPDATE), if no WITH
CHECK expression is defined, then the USING expression will be used both to determine which rows are
visible (normal USING case) and which new rows will be allowed to be added (WITH CHECK case).

If row-level security is enabled for a table, but no applicable policies exist, a “default deny” policy is
assumed, so that no rows will be visible or updatable.

Parameters
name

The name of the policy to be created. This must be distinct from the name of any other policy for
the table.

1630

CREATE POLICY

table_name

The name (optionally schema-qualified) of the table the policy applies to.

PERMISSIVE

Specify that the policy is to be created as a permissive policy. All permissive policies which are
applicable to a given query will be combined together using the Boolean “OR” operator. By creating
permissive policies, administrators can add to the set of records which can be accessed. Policies are
permissive by default.

RESTRICTIVE

Specify that the policy is to be created as a restrictive policy. All restrictive policies which are
applicable to a given query will be combined together using the Boolean “AND” operator. By creating
restrictive policies, administrators can reduce the set of records which can be accessed as all restrictive
policies must be passed for each record.

Note that there needs to be at least one permissive policy to grant access to records before restrictive
policies can be usefully used to reduce that access. If only restrictive policies exist, then no records
will be accessible. When a mix of permissive and restrictive policies are present, a record is only
accessible if at least one of the permissive policies passes, in addition to all the restrictive policies.

command

The command to which the policy applies. Valid options are ALL, SELECT, INSERT, UPDATE, and
DELETE. ALL is the default. See below for specifics regarding how these are applied.

role_name

The role(s) to which the policy is to be applied. The default is PUBLIC, which will apply the policy
to all roles.

using_expression

Any SQL conditional expression (returning boolean). The conditional expression cannot contain
any aggregate or window functions. This expression will be added to queries that refer to the table if
row level security is enabled. Rows for which the expression returns true will be visible. Any rows
for which the expression returns false or null will not be visible to the user (in a SELECT), and will
not be available for modification (in an UPDATE or DELETE). Such rows are silently suppressed; no
error is reported.

check_expression

Any SQL conditional expression (returning boolean). The conditional expression cannot contain
any aggregate or window functions. This expression will be used in INSERT and UPDATE queries
against the table if row level security is enabled. Only rows for which the expression evaluates to true
will be allowed. An error will be thrown if the expression evaluates to false or null for any of the
records inserted or any of the records that result from the update. Note that the check_expression
is evaluated against the proposed new contents of the row, not the original contents.

Per-Command Policies

ALL

Using ALL for a policy means that it will apply to all commands, regardless of the type of command. If
an ALL policy exists and more specific policies exist, then both the ALL policy and the more specific

1631

CREATE POLICY

policy (or policies) will be applied. Additionally, ALL policies will be applied to both the selection
side of a query and the modification side, using the USING expression for both cases if only a USING
expression has been defined.

As an example, if an UPDATE is issued, then the ALL policy will be applicable both to what the
UPDATE will be able to select as rows to be updated (applying the USING expression), and to the
resulting updated rows, to check if they are permitted to be added to the table (applying the WITH
CHECK expression, if defined, and the USING expression otherwise). If an INSERT or UPDATE
command attempts to add rows to the table that do not pass the ALL policy's WITH CHECK expression,
the entire command will be aborted.

SELECT

Using SELECT for a policy means that it will apply to SELECT queries and whenever SELECT
permissions are required on the relation the policy is defined for. The result is that only those records
from the relation that pass the SELECT policy will be returned during a SELECT query, and that
queries that require SELECT permissions, such as UPDATE, will also only see those records that are
allowed by the SELECT policy. A SELECT policy cannot have a WITH CHECK expression, as it only
applies in cases where records are being retrieved from the relation.

INSERT

Using INSERT for a policy means that it will apply to INSERT commands. Rows being inserted that
do not pass this policy will result in a policy violation error, and the entire INSERT command will
be aborted. An INSERT policy cannot have a USING expression, as it only applies in cases where
records are being added to the relation.

Note that INSERT with ON CONFLICT DO UPDATE checks INSERT policies' WITH CHECK
expressions only for rows appended to the relation by the INSERT path.

UPDATE

Using UPDATE for a policy means that it will apply to UPDATE, SELECT FOR UPDATE and
SELECT FOR SHARE commands, as well as auxiliary ON CONFLICT DO UPDATE clauses of
INSERT commands. Since UPDATE involves pulling an existing record and replacing it with a new
modified record, UPDATE policies accept both a USING expression and a WITH CHECK expression.
The USING expression determines which records the UPDATE command will see to operate against,
while the WITH CHECK expression defines which modified rows are allowed to be stored back into
the relation.

Any rows whose updated values do not pass the WITH CHECK expression will cause an error, and
the entire command will be aborted. If only a USING clause is specified, then that clause will be used
for both USING and WITH CHECK cases.

Typically an UPDATE command also needs to read data from columns in the relation being updated
(e.g., in a WHERE clause or a RETURNING clause, or in an expression on the right hand side of the
SET clause). In this case, SELECT rights are also required on the relation being updated, and the
appropriate SELECT or ALL policies will be applied in addition to the UPDATE policies. Thus the
user must have access to the row(s) being updated through a SELECT or ALL policy in addition to
being granted permission to update the row(s) via an UPDATE or ALL policy.

When an INSERT command has an auxiliary ON CONFLICT DO UPDATE clause, if the UPDATE
path is taken, the row to be updated is first checked against the USING expressions of any UPDATE
policies, and then the new updated row is checked against the WITH CHECK expressions. Note,

1632

CREATE POLICY

however, that unlike a standalone UPDATE command, if the existing row does not pass the USING
expressions, an error will be thrown (the UPDATE path will never be silently avoided).

DELETE

Using DELETE for a policy means that it will apply to DELETE commands. Only rows that pass this
policy will be seen by a DELETE command. There can be rows that are visible through a SELECT
that are not available for deletion, if they do not pass the USING expression for the DELETE policy.

In most cases a DELETE command also needs to read data from columns in the relation that it is
deleting from (e.g., in a WHERE clause or a RETURNING clause). In this case, SELECT rights are also
required on the relation, and the appropriate SELECT or ALL policies will be applied in addition to the
DELETE policies. Thus the user must have access to the row(s) being deleted through a SELECT or
ALL policy in addition to being granted permission to delete the row(s) via a DELETE or ALL policy.

A DELETE policy cannot have a WITH CHECK expression, as it only applies in cases where records
are being deleted from the relation, so that there is no new row to check.

Table 240. Policies Applied by Command Type

SELECT/ALL
policy

INSERT/ALL
policy

UPDATE/ALL policy DELETE/ALL
policy

Command

USING
expression

WITH CHECK
expression

USING
expression

WITH CHECK
expression

USING
expression

SELECT Existing row — — — —

SELECT FOR
UPDATE/
SHARE

Existing row — Existing row — —

INSERT — New row — — —

INSERT ...
RETURNING

New row a New row — — —

UPDATE Existing & new
rows a

— Existing row New row —

DELETE Existing row a — — — Existing row

ON CONFLICT
DO UPDATE

Existing & new
rows

— Existing row New row —

a If read access is required to the existing or new row (for example, a WHERE or RETURNING clause that refers to columns from
the relation).

Application of Multiple Policies

When multiple policies of different command types apply to the same command (for example, SELECT
and UPDATE policies applied to an UPDATE command), then the user must have both types of permissions
(for example, permission to select rows from the relation as well as permission to update them). Thus the
expressions for one type of policy are combined with the expressions for the other type of policy using
the AND operator.

When multiple policies of the same command type apply to the same command, then there must be at
least one PERMISSIVE policy granting access to the relation, and all of the RESTRICTIVE policies
must pass. Thus all the PERMISSIVE policy expressions are combined using OR, all the RESTRICTIVE
policy expressions are combined using AND, and the results are combined using AND. If there are no
PERMISSIVE policies, then access is denied.

1633

CREATE POLICY

Note that, for the purposes of combining multiple policies, ALL policies are treated as having the same
type as whichever other type of policy is being applied.

For example, in an UPDATE command requiring both SELECT and UPDATE permissions, if there are
multiple applicable policies of each type, they will be combined as follows:

expression from RESTRICTIVE SELECT/ALL policy 1
AND
expression from RESTRICTIVE SELECT/ALL policy 2
AND
...
AND
(
 expression from PERMISSIVE SELECT/ALL policy 1
 OR
 expression from PERMISSIVE SELECT/ALL policy 2
 OR
 ...
)
AND
expression from RESTRICTIVE UPDATE/ALL policy 1
AND
expression from RESTRICTIVE UPDATE/ALL policy 2
AND
...
AND
(
 expression from PERMISSIVE UPDATE/ALL policy 1
 OR
 expression from PERMISSIVE UPDATE/ALL policy 2
 OR
 ...
)

Notes
You must be the owner of a table to create or change policies for it.

While policies will be applied for explicit queries against tables in the database, they are not applied when
the system is performing internal referential integrity checks or validating constraints. This means there are
indirect ways to determine that a given value exists. An example of this is attempting to insert a duplicate
value into a column that is a primary key or has a unique constraint. If the insert fails then the user can infer
that the value already exists. (This example assumes that the user is permitted by policy to insert records
which they are not allowed to see.) Another example is where a user is allowed to insert into a table which
references another, otherwise hidden table. Existence can be determined by the user inserting values into
the referencing table, where success would indicate that the value exists in the referenced table. These
issues can be addressed by carefully crafting policies to prevent users from being able to insert, delete, or
update records at all which might possibly indicate a value they are not otherwise able to see, or by using
generated values (e.g., surrogate keys) instead of keys with external meanings.

Generally, the system will enforce filter conditions imposed using security policies prior to qualifications
that appear in user queries, in order to prevent inadvertent exposure of the protected data to user-defined
functions which might not be trustworthy. However, functions and operators marked by the system (or the

1634

CREATE POLICY

system administrator) as LEAKPROOF may be evaluated before policy expressions, as they are assumed
to be trustworthy.

Since policy expressions are added to the user's query directly, they will be run with the rights of the
user running the overall query. Therefore, users who are using a given policy must be able to access any
tables or functions referenced in the expression or they will simply receive a permission denied error
when attempting to query the table that has row-level security enabled. This does not change how views
work, however. As with normal queries and views, permission checks and policies for the tables which
are referenced by a view will use the view owner's rights and any policies which apply to the view owner.

Additional discussion and practical examples can be found in Section 5.7.

Compatibility
CREATE POLICY is a PostgreSQL extension.

See Also
ALTER POLICY, DROP POLICY, ALTER TABLE

1635

CREATE PROCEDURE
CREATE PROCEDURE — define a new procedure

Synopsis

CREATE [OR REPLACE] PROCEDURE
 name ([[argmode] [argname] argtype [{ DEFAULT |
 = } default_expr] [, ...]])
 { LANGUAGE lang_name
 | TRANSFORM { FOR TYPE type_name } [, ...]
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | SET configuration_parameter { TO value | = value | FROM
 CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 } ...

Description
CREATE PROCEDURE defines a new procedure. CREATE OR REPLACE PROCEDURE will either
create a new procedure, or replace an existing definition. To be able to define a procedure, the user must
have the USAGE privilege on the language.

If a schema name is included, then the procedure is created in the specified schema. Otherwise it is created
in the current schema. The name of the new procedure must not match any existing procedure or function
with the same input argument types in the same schema. However, procedures and functions of different
argument types can share a name (this is called overloading).

To replace the current definition of an existing procedure, use CREATE OR REPLACE PROCEDURE.
It is not possible to change the name or argument types of a procedure this way (if you tried, you would
actually be creating a new, distinct procedure).

When CREATE OR REPLACE PROCEDURE is used to replace an existing procedure, the ownership
and permissions of the procedure do not change. All other procedure properties are assigned the values
specified or implied in the command. You must own the procedure to replace it (this includes being a
member of the owning role).

The user that creates the procedure becomes the owner of the procedure.

To be able to create a procedure, you must have USAGE privilege on the argument types.

Parameters
name

The name (optionally schema-qualified) of the procedure to create.

argmode

The mode of an argument: IN, INOUT, or VARIADIC. If omitted, the default is IN. (OUT arguments
are currently not supported for procedures. Use INOUT instead.)

1636

CREATE PROCEDURE

argname

The name of an argument.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any. The argument
types can be base, composite, or domain types, or can reference the type of a table column.

Depending on the implementation language it might also be allowed to specify “pseudo-types” such
as cstring. Pseudo-types indicate that the actual argument type is either incompletely specified, or
outside the set of ordinary SQL data types.

The type of a column is referenced by writing table_name.column_name%TYPE. Using this
feature can sometimes help make a procedure independent of changes to the definition of a table.

default_expr

An expression to be used as default value if the parameter is not specified. The expression has to be
coercible to the argument type of the parameter. All input parameters following a parameter with a
default value must have default values as well.

lang_name

The name of the language that the procedure is implemented in. It can be sql, c, internal, or the
name of a user-defined procedural language, e.g. plpgsql. Enclosing the name in single quotes is
deprecated and requires matching case.

TRANSFORM { FOR TYPE type_name } [, ...] }

Lists which transforms a call to the procedure should apply. Transforms convert between SQL types
and language-specific data types; see CREATE TRANSFORM. Procedural language implementations
usually have hardcoded knowledge of the built-in types, so those don't need to be listed here. If a
procedural language implementation does not know how to handle a type and no transform is supplied,
it will fall back to a default behavior for converting data types, but this depends on the implementation.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER indicates that the procedure is to be executed with the privileges of the user
that calls it. That is the default. SECURITY DEFINER specifies that the procedure is to be executed
with the privileges of the user that owns it.

The key word EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL,
this feature applies to all procedures not only external ones.

A SECURITY DEFINER procedure cannot execute transaction control statements (for example,
COMMIT and ROLLBACK, depending on the language).

configuration_parameter
value

The SET clause causes the specified configuration parameter to be set to the specified value when
the procedure is entered, and then restored to its prior value when the procedure exits. SET FROM
CURRENT saves the value of the parameter that is current when CREATE PROCEDURE is executed
as the value to be applied when the procedure is entered.

1637

CREATE PROCEDURE

If a SET clause is attached to a procedure, then the effects of a SET LOCAL command executed
inside the procedure for the same variable are restricted to the procedure: the configuration parameter's
prior value is still restored at procedure exit. However, an ordinary SET command (without LOCAL)
overrides the SET clause, much as it would do for a previous SET LOCAL command: the effects of
such a command will persist after procedure exit, unless the current transaction is rolled back.

If a SET clause is attached to a procedure, then that procedure cannot execute transaction control
statements (for example, COMMIT and ROLLBACK, depending on the language).

See SET and Chapter 19 for more information about allowed parameter names and values.

definition

A string constant defining the procedure; the meaning depends on the language. It can be an internal
procedure name, the path to an object file, an SQL command, or text in a procedural language.

It is often helpful to use dollar quoting (see Section 4.1.2.4) to write the procedure definition string,
rather than the normal single quote syntax. Without dollar quoting, any single quotes or backslashes
in the procedure definition must be escaped by doubling them.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language procedures when the procedure
name in the C language source code is not the same as the name of the SQL procedure. The string
obj_file is the name of the shared library file containing the compiled C procedure, and is
interpreted as for the LOAD command. The string link_symbol is the procedure's link symbol,
that is, the name of the procedure in the C language source code. If the link symbol is omitted, it is
assumed to be the same as the name of the SQL procedure being defined.

When repeated CREATE PROCEDURE calls refer to the same object file, the file is only loaded once
per session. To unload and reload the file (perhaps during development), start a new session.

Notes
See CREATE FUNCTION for more details on function creation that also apply to procedures.

Use CALL to execute a procedure.

Examples

CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
AS $$
INSERT INTO tbl VALUES (a);
INSERT INTO tbl VALUES (b);
$$;

CALL insert_data(1, 2);

Compatibility
A CREATE PROCEDURE command is defined in the SQL standard. The PostgreSQL version is similar
but not fully compatible. For details see also CREATE FUNCTION.

1638

CREATE PROCEDURE

See Also
ALTER PROCEDURE, DROP PROCEDURE, CALL, CREATE FUNCTION

1639

CREATE PUBLICATION
CREATE PUBLICATION — define a new publication

Synopsis

CREATE PUBLICATION name
 [FOR TABLE [ONLY] table_name [*] [, ...]
 | FOR ALL TABLES]
 [WITH (publication_parameter [= value] [, ...])]

Description
CREATE PUBLICATION adds a new publication into the current database. The publication name must
be distinct from the name of any existing publication in the current database.

A publication is essentially a group of tables whose data changes are intended to be replicated through
logical replication. See Section 31.1 for details about how publications fit into the logical replication setup.

Parameters
name

The name of the new publication.

FOR TABLE

Specifies a list of tables to add to the publication. If ONLY is specified before the table name, only that
table is added to the publication. If ONLY is not specified, the table and all its descendant tables (if any)
are added. Optionally, * can be specified after the table name to explicitly indicate that descendant
tables are included.

Only persistent base tables can be part of a publication. Temporary tables, unlogged tables, foreign
tables, materialized views, regular views, and partitioned tables cannot be part of a publication. To
replicate a partitioned table, add the individual partitions to the publication.

FOR ALL TABLES

Marks the publication as one that replicates changes for all tables in the database, including tables
created in the future.

WITH (publication_parameter [= value] [, ...])

This clause specifies optional parameters for a publication. The following parameters are supported:

publish (string)

This parameter determines which DML operations will be published by the new publication to
the subscribers. The value is comma-separated list of operations. The allowed operations are
insert, update, delete, and truncate. The default is to publish all actions, and so the
default value for this option is 'insert, update, delete, truncate'.

1640

CREATE PUBLICATION

Notes
If neither FOR TABLE nor FOR ALL TABLES is specified, then the publication starts out with an empty
set of tables. That is useful if tables are to be added later.

The creation of a publication does not start replication. It only defines a grouping and filtering logic for
future subscribers.

To create a publication, the invoking user must have the CREATE privilege for the current database. (Of
course, superusers bypass this check.)

To add a table to a publication, the invoking user must have ownership rights on the table. The FOR ALL
TABLES clause requires the invoking user to be a superuser.

The tables added to a publication that publishes UPDATE and/or DELETE operations must have REPLICA
IDENTITY defined. Otherwise those operations will be disallowed on those tables.

For an INSERT ... ON CONFLICT command, the publication will publish the operation that actually
results from the command. So depending of the outcome, it may be published as either INSERT or
UPDATE, or it may not be published at all.

COPY ... FROM commands are published as INSERT operations.

DDL operations are not published.

Examples
Create a publication that publishes all changes in two tables:

CREATE PUBLICATION mypublication FOR TABLE users, departments;

Create a publication that publishes all changes in all tables:

CREATE PUBLICATION alltables FOR ALL TABLES;

Create a publication that only publishes INSERT operations in one table:

CREATE PUBLICATION insert_only FOR TABLE mydata
 WITH (publish = 'insert');

Compatibility
CREATE PUBLICATION is a PostgreSQL extension.

See Also
ALTER PUBLICATION, DROP PUBLICATION

1641

CREATE ROLE
CREATE ROLE — define a new database role

Synopsis

CREATE ROLE name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description

CREATE ROLE adds a new role to a PostgreSQL database cluster. A role is an entity that can own
database objects and have database privileges; a role can be considered a “user”, a “group”, or both
depending on how it is used. Refer to Chapter 21 and Chapter 20 for information about managing users and
authentication. You must have CREATEROLE privilege or be a database superuser to use this command.

Note that roles are defined at the database cluster level, and so are valid in all databases in the cluster.

Parameters

name

The name of the new role.

SUPERUSER
NOSUPERUSER

These clauses determine whether the new role is a “superuser”, who can override all access restrictions
within the database. Superuser status is dangerous and should be used only when really needed. You
must yourself be a superuser to create a new superuser. If not specified, NOSUPERUSER is the default.

1642

CREATE ROLE

CREATEDB
NOCREATEDB

These clauses define a role's ability to create databases. If CREATEDB is specified, the role being
defined will be allowed to create new databases. Specifying NOCREATEDB will deny a role the ability
to create databases. If not specified, NOCREATEDB is the default.

CREATEROLE
NOCREATEROLE

These clauses determine whether a role will be permitted to create new roles (that is, execute CREATE
ROLE). A role with CREATEROLE privilege can also alter and drop other roles. If not specified,
NOCREATEROLE is the default.

INHERIT
NOINHERIT

These clauses determine whether a role “inherits” the privileges of roles it is a member of. A role with
the INHERIT attribute can automatically use whatever database privileges have been granted to all
roles it is directly or indirectly a member of. Without INHERIT, membership in another role only
grants the ability to SET ROLE to that other role; the privileges of the other role are only available
after having done so. If not specified, INHERIT is the default.

LOGIN
NOLOGIN

These clauses determine whether a role is allowed to log in; that is, whether the role can be given as
the initial session authorization name during client connection. A role having the LOGIN attribute can
be thought of as a user. Roles without this attribute are useful for managing database privileges, but
are not users in the usual sense of the word. If not specified, NOLOGIN is the default, except when
CREATE ROLE is invoked through its alternative spelling CREATE USER.

REPLICATION
NOREPLICATION

These clauses determine whether a role is a replication role. A role must have this attribute (or be
a superuser) in order to be able to connect to the server in replication mode (physical or logical
replication) and in order to be able to create or drop replication slots. A role having the REPLICATION
attribute is a very highly privileged role, and should only be used on roles actually used for replication.
If not specified, NOREPLICATION is the default.

BYPASSRLS
NOBYPASSRLS

These clauses determine whether a role bypasses every row-level security (RLS) policy.
NOBYPASSRLS is the default. Note that pg_dump will set row_security to OFF by default, to
ensure all contents of a table are dumped out. If the user running pg_dump does not have appropriate
permissions, an error will be returned. The superuser and owner of the table being dumped always
bypass RLS.

CONNECTION LIMIT connlimit

If role can log in, this specifies how many concurrent connections the role can make. -1 (the default)
means no limit. Note that only normal connections are counted towards this limit. Neither prepared
transactions nor background worker connections are counted towards this limit.

1643

CREATE ROLE

[ENCRYPTED] PASSWORD 'password'
PASSWORD NULL

Sets the role's password. (A password is only of use for roles having the LOGIN attribute, but you
can nonetheless define one for roles without it.) If you do not plan to use password authentication
you can omit this option. If no password is specified, the password will be set to null and password
authentication will always fail for that user. A null password can optionally be written explicitly as
PASSWORD NULL.

Note

Specifying an empty string will also set the password to null, but that was not the case before
PostgreSQL version 10. In earlier versions, an empty string could be used, or not, depending
on the authentication method and the exact version, and libpq would refuse to use it in any
case. To avoid the ambiguity, specifying an empty string should be avoided.

The password is always stored encrypted in the system catalogs. The ENCRYPTED keyword
has no effect, but is accepted for backwards compatibility. The method of encryption is
determined by the configuration parameter password_encryption. If the presented password string
is already in MD5-encrypted or SCRAM-encrypted format, then it is stored as-is regardless of
password_encryption (since the system cannot decrypt the specified encrypted password string,
to encrypt it in a different format). This allows reloading of encrypted passwords during dump/restore.

VALID UNTIL 'timestamp'

The VALID UNTIL clause sets a date and time after which the role's password is no longer valid. If
this clause is omitted the password will be valid for all time.

IN ROLE role_name

The IN ROLE clause lists one or more existing roles to which the new role will be immediately added
as a new member. (Note that there is no option to add the new role as an administrator; use a separate
GRANT command to do that.)

IN GROUP role_name

IN GROUP is an obsolete spelling of IN ROLE.

ROLE role_name

The ROLE clause lists one or more existing roles which are automatically added as members of the
new role. (This in effect makes the new role a “group”.)

ADMIN role_name

The ADMIN clause is like ROLE, but the named roles are added to the new role WITH ADMIN
OPTION, giving them the right to grant membership in this role to others.

USER role_name

The USER clause is an obsolete spelling of the ROLE clause.

SYSID uid

The SYSID clause is ignored, but is accepted for backwards compatibility.

1644

CREATE ROLE

Notes
Use ALTER ROLE to change the attributes of a role, and DROP ROLE to remove a role. All the attributes
specified by CREATE ROLE can be modified by later ALTER ROLE commands.

The preferred way to add and remove members of roles that are being used as groups is to use GRANT
and REVOKE.

The VALID UNTIL clause defines an expiration time for a password only, not for the role per se. In
particular, the expiration time is not enforced when logging in using a non-password-based authentication
method.

The INHERIT attribute governs inheritance of grantable privileges (that is, access privileges for database
objects and role memberships). It does not apply to the special role attributes set by CREATE ROLE and
ALTER ROLE. For example, being a member of a role with CREATEDB privilege does not immediately
grant the ability to create databases, even if INHERIT is set; it would be necessary to become that role
via SET ROLE before creating a database.

The INHERIT attribute is the default for reasons of backwards compatibility: in prior releases of
PostgreSQL, users always had access to all privileges of groups they were members of. However,
NOINHERIT provides a closer match to the semantics specified in the SQL standard.

Be careful with the CREATEROLE privilege. There is no concept of inheritance for the privileges of a
CREATEROLE-role. That means that even if a role does not have a certain privilege but is allowed to
create other roles, it can easily create another role with different privileges than its own (except for creating
roles with superuser privileges). For example, if the role “user” has the CREATEROLE privilege but not
the CREATEDB privilege, nonetheless it can create a new role with the CREATEDB privilege. Therefore,
regard roles that have the CREATEROLE privilege as almost-superuser-roles.

PostgreSQL includes a program createuser that has the same functionality as CREATE ROLE (in fact, it
calls this command) but can be run from the command shell.

The CONNECTION LIMIT option is only enforced approximately; if two new sessions start at about the
same time when just one connection “slot” remains for the role, it is possible that both will fail. Also, the
limit is never enforced for superusers.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in cleartext, and it might also be logged in the client's command history or
the server log. The command createuser, however, transmits the password encrypted. Also, psql contains
a command \password that can be used to safely change the password later.

Examples
Create a role that can log in, but don't give it a password:

CREATE ROLE jonathan LOGIN;

Create a role with a password:

CREATE USER davide WITH PASSWORD 'jw8s0F4';

(CREATE USER is the same as CREATE ROLE except that it implies LOGIN.)

1645

CREATE ROLE

Create a role with a password that is valid until the end of 2004. After one second has ticked in 2005, the
password is no longer valid.

CREATE ROLE miriam WITH LOGIN PASSWORD 'jw8s0F4' VALID UNTIL
 '2005-01-01';

Create a role that can create databases and manage roles:

CREATE ROLE admin WITH CREATEDB CREATEROLE;

Compatibility
The CREATE ROLE statement is in the SQL standard, but the standard only requires the syntax

CREATE ROLE name [WITH ADMIN role_name]

Multiple initial administrators, and all the other options of CREATE ROLE, are PostgreSQL extensions.

The SQL standard defines the concepts of users and roles, but it regards them as distinct concepts and
leaves all commands defining users to be specified by each database implementation. In PostgreSQL we
have chosen to unify users and roles into a single kind of entity. Roles therefore have many more optional
attributes than they do in the standard.

The behavior specified by the SQL standard is most closely approximated by giving users the NOINHERIT
attribute, while roles are given the INHERIT attribute.

See Also
SET ROLE, ALTER ROLE, DROP ROLE, GRANT, REVOKE, createuser

1646

CREATE RULE
CREATE RULE — define a new rewrite rule

Synopsis

CREATE [OR REPLACE] RULE name AS ON event
 TO table_name [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command
 ...) }

where event can be one of:

 SELECT | INSERT | UPDATE | DELETE

Description

CREATE RULE defines a new rule applying to a specified table or view. CREATE OR REPLACE RULE
will either create a new rule, or replace an existing rule of the same name for the same table.

The PostgreSQL rule system allows one to define an alternative action to be performed on insertions,
updates, or deletions in database tables. Roughly speaking, a rule causes additional commands to be
executed when a given command on a given table is executed. Alternatively, an INSTEAD rule can replace
a given command by another, or cause a command not to be executed at all. Rules are used to implement
SQL views as well. It is important to realize that a rule is really a command transformation mechanism, or
command macro. The transformation happens before the execution of the command starts. If you actually
want an operation that fires independently for each physical row, you probably want to use a trigger, not
a rule. More information about the rules system is in Chapter 41.

Presently, ON SELECT rules must be unconditional INSTEAD rules and must have actions that consist
of a single SELECT command. Thus, an ON SELECT rule effectively turns the table into a view, whose
visible contents are the rows returned by the rule's SELECT command rather than whatever had been stored
in the table (if anything). It is considered better style to write a CREATE VIEW command than to create
a real table and define an ON SELECT rule for it.

You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE, and ON DELETE
rules (or any subset of those that's sufficient for your purposes) to replace update actions on the view with
appropriate updates on other tables. If you want to support INSERT RETURNING and so on, then be sure
to put a suitable RETURNING clause into each of these rules.

There is a catch if you try to use conditional rules for complex view updates: there must be an unconditional
INSTEAD rule for each action you wish to allow on the view. If the rule is conditional, or is not INSTEAD,
then the system will still reject attempts to perform the update action, because it thinks it might end up
trying to perform the action on the dummy table of the view in some cases. If you want to handle all the
useful cases in conditional rules, add an unconditional DO INSTEAD NOTHING rule to ensure that the
system understands it will never be called on to update the dummy table. Then make the conditional rules
non-INSTEAD; in the cases where they are applied, they add to the default INSTEAD NOTHING action.
(This method does not currently work to support RETURNING queries, however.)

1647

CREATE RULE

Note

A view that is simple enough to be automatically updatable (see CREATE VIEW) does not require
a user-created rule in order to be updatable. While you can create an explicit rule anyway, the
automatic update transformation will generally outperform an explicit rule.

Another alternative worth considering is to use INSTEAD OF triggers (see CREATE TRIGGER)
in place of rules.

Parameters
name

The name of a rule to create. This must be distinct from the name of any other rule for the same table.
Multiple rules on the same table and same event type are applied in alphabetical name order.

event

The event is one of SELECT, INSERT, UPDATE, or DELETE. Note that an INSERT containing an
ON CONFLICT clause cannot be used on tables that have either INSERT or UPDATE rules. Consider
using an updatable view instead.

table_name

The name (optionally schema-qualified) of the table or view the rule applies to.

condition

Any SQL conditional expression (returning boolean). The condition expression cannot refer to any
tables except NEW and OLD, and cannot contain aggregate functions.

INSTEAD

INSTEAD indicates that the commands should be executed instead of the original command.

ALSO

ALSO indicates that the commands should be executed in addition to the original command.

If neither ALSO nor INSTEAD is specified, ALSO is the default.

command

The command or commands that make up the rule action. Valid commands are SELECT, INSERT,
UPDATE, DELETE, or NOTIFY.

Within condition and command, the special table names NEW and OLD can be used to refer to values
in the referenced table. NEW is valid in ON INSERT and ON UPDATE rules to refer to the new row being
inserted or updated. OLD is valid in ON UPDATE and ON DELETE rules to refer to the existing row
being updated or deleted.

Notes
You must be the owner of a table to create or change rules for it.

1648

CREATE RULE

In a rule for INSERT, UPDATE, or DELETE on a view, you can add a RETURNING clause that emits the
view's columns. This clause will be used to compute the outputs if the rule is triggered by an INSERT
RETURNING, UPDATE RETURNING, or DELETE RETURNING command respectively. When the rule
is triggered by a command without RETURNING, the rule's RETURNING clause will be ignored. The
current implementation allows only unconditional INSTEAD rules to contain RETURNING; furthermore
there can be at most one RETURNING clause among all the rules for the same event. (This ensures that
there is only one candidate RETURNING clause to be used to compute the results.) RETURNING queries
on the view will be rejected if there is no RETURNING clause in any available rule.

It is very important to take care to avoid circular rules. For example, though each of the following two
rule definitions are accepted by PostgreSQL, the SELECT command would cause PostgreSQL to report
an error because of recursive expansion of a rule:

CREATE RULE "_RETURN" AS
 ON SELECT TO t1
 DO INSTEAD
 SELECT * FROM t2;

CREATE RULE "_RETURN" AS
 ON SELECT TO t2
 DO INSTEAD
 SELECT * FROM t1;

SELECT * FROM t1;

Presently, if a rule action contains a NOTIFY command, the NOTIFY command will be executed
unconditionally, that is, the NOTIFY will be issued even if there are not any rows that the rule should
apply to. For example, in:

CREATE RULE notify_me AS ON UPDATE TO mytable DO ALSO NOTIFY mytable;

UPDATE mytable SET name = 'foo' WHERE id = 42;

one NOTIFY event will be sent during the UPDATE, whether or not there are any rows that match the
condition id = 42. This is an implementation restriction that might be fixed in future releases.

Compatibility
CREATE RULE is a PostgreSQL language extension, as is the entire query rewrite system.

See Also
ALTER RULE, DROP RULE

1649

CREATE SCHEMA
CREATE SCHEMA — define a new schema

Synopsis

CREATE SCHEMA schema_name [AUTHORIZATION role_specification]
 [schema_element [...]]
CREATE SCHEMA AUTHORIZATION role_specification [schema_element
 [...]]
CREATE SCHEMA IF NOT EXISTS schema_name
 [AUTHORIZATION role_specification]
CREATE SCHEMA IF NOT EXISTS AUTHORIZATION role_specification

where role_specification can be:

 user_name
 | CURRENT_USER
 | SESSION_USER

Description
CREATE SCHEMA enters a new schema into the current database. The schema name must be distinct from
the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types, functions, and
operators) whose names can duplicate those of other objects existing in other schemas. Named objects are
accessed either by “qualifying” their names with the schema name as a prefix, or by setting a search path
that includes the desired schema(s). A CREATE command specifying an unqualified object name creates
the object in the current schema (the one at the front of the search path, which can be determined with
the function current_schema).

Optionally, CREATE SCHEMA can include subcommands to create objects within the new schema. The
subcommands are treated essentially the same as separate commands issued after creating the schema,
except that if the AUTHORIZATION clause is used, all the created objects will be owned by that user.

Parameters
schema_name

The name of a schema to be created. If this is omitted, the user_name is used as the schema name.
The name cannot begin with pg_, as such names are reserved for system schemas.

user_name

The role name of the user who will own the new schema. If omitted, defaults to the user executing
the command. To create a schema owned by another role, you must be a direct or indirect member
of that role, or be a superuser.

schema_element

An SQL statement defining an object to be created within the schema. Currently, only CREATE
TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, CREATE TRIGGER and GRANT

1650

CREATE SCHEMA

are accepted as clauses within CREATE SCHEMA. Other kinds of objects may be created in separate
commands after the schema is created.

IF NOT EXISTS

Do nothing (except issuing a notice) if a schema with the same name already exists.
schema_element subcommands cannot be included when this option is used.

Notes
To create a schema, the invoking user must have the CREATE privilege for the current database. (Of course,
superusers bypass this check.)

Examples
Create a schema:

CREATE SCHEMA myschema;

Create a schema for user joe; the schema will also be named joe:

CREATE SCHEMA AUTHORIZATION joe;

Create a schema named test that will be owned by user joe, unless there already is a schema named
test. (It does not matter whether joe owns the pre-existing schema.)

CREATE SCHEMA IF NOT EXISTS test AUTHORIZATION joe;

Create a schema and create a table and view within it:

CREATE SCHEMA hollywood
 CREATE TABLE films (title text, release date, awards text[])
 CREATE VIEW winners AS
 SELECT title, release FROM films WHERE awards IS NOT NULL;

Notice that the individual subcommands do not end with semicolons.

The following is an equivalent way of accomplishing the same result:

CREATE SCHEMA hollywood;
CREATE TABLE hollywood.films (title text, release date, awards
 text[]);
CREATE VIEW hollywood.winners AS
 SELECT title, release FROM hollywood.films WHERE awards IS NOT
 NULL;

Compatibility
The SQL standard allows a DEFAULT CHARACTER SET clause in CREATE SCHEMA, as well as more
subcommand types than are presently accepted by PostgreSQL.

1651

CREATE SCHEMA

The SQL standard specifies that the subcommands in CREATE SCHEMA can appear in any order. The
present PostgreSQL implementation does not handle all cases of forward references in subcommands; it
might sometimes be necessary to reorder the subcommands in order to avoid forward references.

According to the SQL standard, the owner of a schema always owns all objects within it. PostgreSQL
allows schemas to contain objects owned by users other than the schema owner. This can happen only if
the schema owner grants the CREATE privilege on their schema to someone else, or a superuser chooses
to create objects in it.

The IF NOT EXISTS option is a PostgreSQL extension.

See Also
ALTER SCHEMA, DROP SCHEMA

1652

CREATE SEQUENCE
CREATE SEQUENCE — define a new sequence generator

Synopsis

CREATE [TEMPORARY | TEMP] SEQUENCE [IF NOT EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO
 MAXVALUE]
 [START [WITH] start] [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]

Description
CREATE SEQUENCE creates a new sequence number generator. This involves creating and initializing
a new special single-row table with the name name. The generator will be owned by the user issuing the
command.

If a schema name is given then the sequence is created in the specified schema. Otherwise it is created in
the current schema. Temporary sequences exist in a special schema, so a schema name cannot be given
when creating a temporary sequence. The sequence name must be distinct from the name of any other
sequence, table, index, view, or foreign table in the same schema.

After a sequence is created, you use the functions nextval, currval, and setval to operate on the
sequence. These functions are documented in Section 9.16.

Although you cannot update a sequence directly, you can use a query like:

SELECT * FROM name;

to examine the parameters and current state of a sequence. In particular, the last_value field of the
sequence shows the last value allocated by any session. (Of course, this value might be obsolete by the
time it's printed, if other sessions are actively doing nextval calls.)

Parameters
TEMPORARY or TEMP

If specified, the sequence object is created only for this session, and is automatically dropped on
session exit. Existing permanent sequences with the same name are not visible (in this session) while
the temporary sequence exists, unless they are referenced with schema-qualified names.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the sequence that would have
been created - it might not even be a sequence.

1653

CREATE SEQUENCE

name

The name (optionally schema-qualified) of the sequence to be created.

data_type

The optional clause AS data_type specifies the data type of the sequence. Valid types are
smallint, integer, and bigint. bigint is the default. The data type determines the default
minimum and maximum values of the sequence.

increment

The optional clause INCREMENT BY increment specifies which value is added to the current
sequence value to create a new value. A positive value will make an ascending sequence, a negative
one a descending sequence. The default value is 1.

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate.
If this clause is not supplied or NO MINVALUE is specified, then defaults will be used. The default
for an ascending sequence is 1. The default for a descending sequence is the minimum value of the
data type.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If this
clause is not supplied or NO MAXVALUE is specified, then default values will be used. The default for
an ascending sequence is the maximum value of the data type. The default for a descending sequence
is -1.

start

The optional clause START WITH start allows the sequence to begin anywhere. The default
starting value is minvalue for ascending sequences and maxvalue for descending ones.

cache

The optional clause CACHE cache specifies how many sequence numbers are to be preallocated
and stored in memory for faster access. The minimum value is 1 (only one value can be generated at
a time, i.e., no cache), and this is also the default.

CYCLE
NO CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue has been
reached by an ascending or descending sequence respectively. If the limit is reached, the next number
generated will be the minvalue or maxvalue, respectively.

If NO CYCLE is specified, any calls to nextval after the sequence has reached its maximum value
will return an error. If neither CYCLE or NO CYCLE are specified, NO CYCLE is the default.

OWNED BY table_name.column_name
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column, such that if
that column (or its whole table) is dropped, the sequence will be automatically dropped as well. The

1654

CREATE SEQUENCE

specified table must have the same owner and be in the same schema as the sequence. OWNED BY
NONE, the default, specifies that there is no such association.

Notes
Use DROP SEQUENCE to remove a sequence.

Sequences are based on bigint arithmetic, so the range cannot exceed the range of an eight-byte integer
(-9223372036854775808 to 9223372036854775807).

Because nextval and setval calls are never rolled back, sequence objects cannot be used if “gapless”
assignment of sequence numbers is needed. It is possible to build gapless assignment by using exclusive
locking of a table containing a counter; but this solution is much more expensive than sequence objects,
especially if many transactions need sequence numbers concurrently.

Unexpected results might be obtained if a cache setting greater than one is used for a sequence object
that will be used concurrently by multiple sessions. Each session will allocate and cache successive
sequence values during one access to the sequence object and increase the sequence object's last_value
accordingly. Then, the next cache-1 uses of nextval within that session simply return the preallocated
values without touching the sequence object. So, any numbers allocated but not used within a session will
be lost when that session ends, resulting in “holes” in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence values, the values
might be generated out of sequence when all the sessions are considered. For example, with a cache
setting of 10, session A might reserve values 1..10 and return nextval=1, then session B might reserve
values 11..20 and return nextval=11 before session A has generated nextval=2. Thus, with a cache
setting of one it is safe to assume that nextval values are generated sequentially; with a cache setting
greater than one you should only assume that the nextval values are all distinct, not that they are
generated purely sequentially. Also, last_value will reflect the latest value reserved by any session,
whether or not it has yet been returned by nextval.

Another consideration is that a setval executed on such a sequence will not be noticed by other sessions
until they have used up any preallocated values they have cached.

Examples
Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START 101;

Select the next number from this sequence:

SELECT nextval('serial');

 nextval

 101

Select the next number from this sequence:

SELECT nextval('serial');

1655

CREATE SEQUENCE

 nextval

 102

Use this sequence in an INSERT command:

INSERT INTO distributors VALUES (nextval('serial'), 'nothing');

Update the sequence value after a COPY FROM:

BEGIN;
COPY distributors FROM 'input_file';
SELECT setval('serial', max(id)) FROM distributors;
END;

Compatibility
CREATE SEQUENCE conforms to the SQL standard, with the following exceptions:

• Obtaining the next value is done using the nextval() function instead of the standard's NEXT VALUE
FOR expression.

• The OWNED BY clause is a PostgreSQL extension.

See Also
ALTER SEQUENCE, DROP SEQUENCE

1656

CREATE SERVER
CREATE SERVER — define a new foreign server

Synopsis

CREATE SERVER [IF NOT EXISTS] server_name [TYPE 'server_type']
 [VERSION 'server_version']
 FOREIGN DATA WRAPPER fdw_name
 [OPTIONS (option 'value' [, ...])]

Description
CREATE SERVER defines a new foreign server. The user who defines the server becomes its owner.

A foreign server typically encapsulates connection information that a foreign-data wrapper uses to access
an external data resource. Additional user-specific connection information may be specified by means of
user mappings.

The server name must be unique within the database.

Creating a server requires USAGE privilege on the foreign-data wrapper being used.

Parameters
IF NOT EXISTS

Do not throw an error if a server with the same name already exists. A notice is issued in this case. Note
that there is no guarantee that the existing server is anything like the one that would have been created.

server_name

The name of the foreign server to be created.

server_type

Optional server type, potentially useful to foreign-data wrappers.

server_version

Optional server version, potentially useful to foreign-data wrappers.

fdw_name

The name of the foreign-data wrapper that manages the server.

OPTIONS (option 'value' [, ...])

This clause specifies the options for the server. The options typically define the connection details of
the server, but the actual names and values are dependent on the server's foreign-data wrapper.

1657

CREATE SERVER

Notes
When using the dblink module, a foreign server's name can be used as an argument of the dblink_connect
function to indicate the connection parameters. It is necessary to have the USAGE privilege on the foreign
server to be able to use it in this way.

Examples
Create a server myserver that uses the foreign-data wrapper postgres_fdw:

CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host
 'foo', dbname 'foodb', port '5432');

See postgres_fdw for more details.

Compatibility
CREATE SERVER conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER SERVER, DROP SERVER, CREATE FOREIGN DATA WRAPPER, CREATE FOREIGN
TABLE, CREATE USER MAPPING

1658

CREATE STATISTICS
CREATE STATISTICS — define extended statistics

Synopsis

CREATE STATISTICS [IF NOT EXISTS] statistics_name
 [(statistics_kind [, ...])]
 ON column_name, column_name [, ...]
 FROM table_name

Description
CREATE STATISTICS will create a new extended statistics object tracking data about the specified
table, foreign table or materialized view. The statistics object will be created in the current database and
will be owned by the user issuing the command.

If a schema name is given (for example, CREATE STATISTICS myschema.mystat ...) then the
statistics object is created in the specified schema. Otherwise it is created in the current schema. The name
of the statistics object must be distinct from the name of any other statistics object in the same schema.

Parameters
IF NOT EXISTS

Do not throw an error if a statistics object with the same name already exists. A notice is issued in this
case. Note that only the name of the statistics object is considered here, not the details of its definition.

statistics_name

The name (optionally schema-qualified) of the statistics object to be created.

statistics_kind

A statistics kind to be computed in this statistics object. Currently supported kinds are ndistinct,
which enables n-distinct statistics, and dependencies, which enables functional dependency
statistics. If this clause is omitted, all supported statistics kinds are included in the statistics object.
For more information, see Section 14.2.2 and Section 70.2.

column_name

The name of a table column to be covered by the computed statistics. At least two column names
must be given.

table_name

The name (optionally schema-qualified) of the table containing the column(s) the statistics are
computed on.

Notes
You must be the owner of a table to create a statistics object reading it. Once created, however, the
ownership of the statistics object is independent of the underlying table(s).

1659

CREATE STATISTICS

Examples
Create table t1 with two functionally dependent columns, i.e. knowledge of a value in the first column
is sufficient for determining the value in the other column. Then functional dependency statistics are built
on those columns:

CREATE TABLE t1 (
 a int,
 b int
);

INSERT INTO t1 SELECT i/100, i/500
 FROM generate_series(1,1000000) s(i);

ANALYZE t1;

-- the number of matching rows will be drastically underestimated:
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

CREATE STATISTICS s1 (dependencies) ON a, b FROM t1;

ANALYZE t1;

-- now the row count estimate is more accurate:
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

Without functional-dependency statistics, the planner would assume that the two WHERE conditions are
independent, and would multiply their selectivities together to arrive at a much-too-small row count
estimate. With such statistics, the planner recognizes that the WHERE conditions are redundant and does
not underestimate the row count.

Compatibility
There is no CREATE STATISTICS command in the SQL standard.

See Also
ALTER STATISTICS, DROP STATISTICS

1660

CREATE SUBSCRIPTION
CREATE SUBSCRIPTION — define a new subscription

Synopsis

CREATE SUBSCRIPTION subscription_name
 CONNECTION 'conninfo'
 PUBLICATION publication_name [, ...]
 [WITH (subscription_parameter [= value] [, ...])]

Description
CREATE SUBSCRIPTION adds a new subscription for the current database. The subscription name must
be distinct from the name of any existing subscription in the database.

The subscription represents a replication connection to the publisher. As such this command does not only
add definitions in the local catalogs but also creates a replication slot on the publisher.

A logical replication worker will be started to replicate data for the new subscription at the commit of the
transaction where this command is run.

Additional information about subscriptions and logical replication as a whole is available at Section 31.2
and Chapter 31.

Parameters
subscription_name

The name of the new subscription.

CONNECTION 'conninfo'

The connection string to the publisher. For details see Section 34.1.1.

PUBLICATION publication_name

Names of the publications on the publisher to subscribe to.

WITH (subscription_parameter [= value] [, ...])

This clause specifies optional parameters for a subscription. The following parameters are supported:

copy_data (boolean)

Specifies whether the existing data in the publications that are being subscribed to should be
copied once the replication starts. The default is true.

create_slot (boolean)

Specifies whether the command should create the replication slot on the publisher. The default
is true.

1661

CREATE SUBSCRIPTION

enabled (boolean)

Specifies whether the subscription should be actively replicating, or whether it should be just
setup but not started yet. The default is true.

slot_name (string)

Name of the replication slot to use. The default behavior is to use the name of the subscription
for the slot name.

When slot_name is set to NONE, there will be no replication slot associated with the
subscription. This can be used if the replication slot will be created later manually. Such
subscriptions must also have both enabled and create_slot set to false.

synchronous_commit (enum)

The value of this parameter overrides the synchronous_commit setting. The default value is off.

It is safe to use off for logical replication: If the subscriber loses transactions because of missing
synchronization, the data will be resent from the publisher.

A different setting might be appropriate when doing synchronous logical replication. The
logical replication workers report the positions of writes and flushes to the publisher, and when
using synchronous replication, the publisher will wait for the actual flush. This means that
setting synchronous_commit for the subscriber to off when the subscription is used for
synchronous replication might increase the latency for COMMIT on the publisher. In this scenario,
it can be advantageous to set synchronous_commit to local or higher.

connect (boolean)

Specifies whether the CREATE SUBSCRIPTION should connect to the publisher at all. Setting
this to false will change default values of enabled, create_slot and copy_data to
false.

It is not allowed to combine connect set to false and enabled, create_slot, or
copy_data set to true.

Since no connection is made when this option is set to false, the tables are not subscribed,
and so after you enable the subscription nothing will be replicated. It is required to run ALTER
SUBSCRIPTION ... REFRESH PUBLICATION in order for tables to be subscribed.

Notes
See Section 31.7 for details on how to configure access control between the subscription and the publication
instance.

When creating a replication slot (the default behavior), CREATE SUBSCRIPTION cannot be executed
inside a transaction block.

Creating a subscription that connects to the same database cluster (for example, to replicate between
databases in the same cluster or to replicate within the same database) will only succeed if the
replication slot is not created as part of the same command. Otherwise, the CREATE SUBSCRIPTION
call will hang. To make this work, create the replication slot separately (using the function
pg_create_logical_replication_slot with the plugin name pgoutput) and create the
subscription using the parameter create_slot = false. This is an implementation restriction that
might be lifted in a future release.

1662

CREATE SUBSCRIPTION

Examples
Create a subscription to a remote server that replicates tables in the publications mypublication and
insert_only and starts replicating immediately on commit:

CREATE SUBSCRIPTION mysub
 CONNECTION 'host=192.168.1.50 port=5432 user=foo
 dbname=foodb'
 PUBLICATION mypublication, insert_only;

Create a subscription to a remote server that replicates tables in the insert_only publication and does
not start replicating until enabled at a later time.

CREATE SUBSCRIPTION mysub
 CONNECTION 'host=192.168.1.50 port=5432 user=foo
 dbname=foodb'
 PUBLICATION insert_only
 WITH (enabled = false);

Compatibility
CREATE SUBSCRIPTION is a PostgreSQL extension.

See Also
ALTER SUBSCRIPTION, DROP SUBSCRIPTION, CREATE PUBLICATION, ALTER
PUBLICATION

1663

CREATE TABLE
CREATE TABLE — define a new table

Synopsis

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE
 [IF NOT EXISTS] table_name ([
 { column_name data_type [COLLATE collation] [column_constraint
 [...]]
 | table_constraint
 | LIKE source_table [like_option ...] }
 [, ...]
])
[INHERITS (parent_table [, ...])]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression
) } [COLLATE collation] [opclass] [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT
 OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE
 [IF NOT EXISTS] table_name
 OF type_name [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression
) } [COLLATE collation] [opclass] [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT
 OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE
 [IF NOT EXISTS] table_name
 PARTITION OF parent_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)] { FOR VALUES partition_bound_spec | DEFAULT }
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression
) } [COLLATE collation] [opclass] [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT
 OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

1664

CREATE TABLE

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options
)] |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL |
 MATCH SIMPLE]
 [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY
 IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator
 [, ...]) index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable
 [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action]
 [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY
 IMMEDIATE]

and like_option is:

{ INCLUDING | EXCLUDING } { COMMENTS | CONSTRAINTS | DEFAULTS |
 IDENTITY | INDEXES | STATISTICS | STORAGE | ALL }

and partition_bound_spec is:

IN ({ numeric_literal | string_literal | TRUE | FALSE | NULL }
 [, ...]) |
FROM ({ numeric_literal | string_literal | TRUE | FALSE | MINVALUE |
 MAXVALUE } [, ...])
 TO ({ numeric_literal | string_literal | TRUE | FALSE | MINVALUE |
 MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

1665

CREATE TABLE

{ column_name | (expression) } [opclass] [ASC | DESC] [NULLS
 { FIRST | LAST }]

Description
CREATE TABLE will create a new, initially empty table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then the table
is created in the specified schema. Otherwise it is created in the current schema. Temporary tables exist
in a special schema, so a schema name cannot be given when creating a temporary table. The name of
the table must be distinct from the name of any other table, sequence, index, view, or foreign table in the
same schema.

CREATE TABLE also automatically creates a data type that represents the composite type corresponding
to one row of the table. Therefore, tables cannot have the same name as any existing data type in the same
schema.

The optional constraint clauses specify constraints (tests) that new or updated rows must satisfy for an
insert or update operation to succeed. A constraint is an SQL object that helps define the set of valid values
in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A column constraint is
defined as part of a column definition. A table constraint definition is not tied to a particular column, and
it can encompass more than one column. Every column constraint can also be written as a table constraint;
a column constraint is only a notational convenience for use when the constraint only affects one column.

To be able to create a table, you must have USAGE privilege on all column types or the type in the OF
clause, respectively.

Parameters
TEMPORARY or TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped at the
end of a session, or optionally at the end of the current transaction (see ON COMMIT below). Existing
permanent tables with the same name are not visible to the current session while the temporary table
exists, unless they are referenced with schema-qualified names. Any indexes created on a temporary
table are automatically temporary as well.

The autovacuum daemon cannot access and therefore cannot vacuum or analyze temporary tables.
For this reason, appropriate vacuum and analyze operations should be performed via session SQL
commands. For example, if a temporary table is going to be used in complex queries, it is wise to run
ANALYZE on the temporary table after it is populated.

Optionally, GLOBAL or LOCAL can be written before TEMPORARY or TEMP. This presently makes
no difference in PostgreSQL and is deprecated; see Compatibility.

UNLOGGED

If specified, the table is created as an unlogged table. Data written to unlogged tables is not written
to the write-ahead log (see Chapter 30), which makes them considerably faster than ordinary tables.
However, they are not crash-safe: an unlogged table is automatically truncated after a crash or unclean

1666

CREATE TABLE

shutdown. The contents of an unlogged table are also not replicated to standby servers. Any indexes
created on an unlogged table are automatically unlogged as well.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the one that would have been
created.

table_name

The name (optionally schema-qualified) of the table to be created.

OF type_name

Creates a typed table, which takes its structure from the specified composite type (name optionally
schema-qualified). A typed table is tied to its type; for example the table will be dropped if the type
is dropped (with DROP TYPE ... CASCADE).

When a typed table is created, then the data types of the columns are determined by the underlying
composite type and are not specified by the CREATE TABLE command. But the CREATE TABLE
command can add defaults and constraints to the table and can specify storage parameters.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data types
supported by PostgreSQL, refer to Chapter 8.

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data type). If
not specified, the column data type's default collation is used.

INHERITS (parent_table [, ...])

The optional INHERITS clause specifies a list of tables from which the new table automatically
inherits all columns. Parent tables can be plain tables or foreign tables.

Use of INHERITS creates a persistent relationship between the new child table and its parent table(s).
Schema modifications to the parent(s) normally propagate to children as well, and by default the data
of the child table is included in scans of the parent(s).

If the same column name exists in more than one parent table, an error is reported unless the data types
of the columns match in each of the parent tables. If there is no conflict, then the duplicate columns
are merged to form a single column in the new table. If the column name list of the new table contains
a column name that is also inherited, the data type must likewise match the inherited column(s), and
the column definitions are merged into one. If the new table explicitly specifies a default value for
the column, this default overrides any defaults from inherited declarations of the column. Otherwise,
any parents that specify default values for the column must all specify the same default, or an error
will be reported.

CHECK constraints are merged in essentially the same way as columns: if multiple parent tables and/
or the new table definition contain identically-named CHECK constraints, these constraints must all
have the same check expression, or an error will be reported. Constraints having the same name and

1667

CREATE TABLE

expression will be merged into one copy. A constraint marked NO INHERIT in a parent will not be
considered. Notice that an unnamed CHECK constraint in the new table will never be merged, since
a unique name will always be chosen for it.

Column STORAGE settings are also copied from parent tables.

If a column in the parent table is an identity column, that property is not inherited. A column in the
child table can be declared identity column if desired.

PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression
) } [opclass] [, ...])

The optional PARTITION BY clause specifies a strategy of partitioning the table. The table thus
created is called a partitioned table. The parenthesized list of columns or expressions forms the
partition key for the table. When using range or hash partitioning, the partition key can include multiple
columns or expressions (up to 32, but this limit can be altered when building PostgreSQL), but for list
partitioning, the partition key must consist of a single column or expression.

Range and list partitioning require a btree operator class, while hash partitioning requires a hash
operator class. If no operator class is specified explicitly, the default operator class of the appropriate
type will be used; if no default operator class exists, an error will be raised. When hash partitioning
is used, the operator class used must implement support function 2 (see Section 38.15.3 for details).

A partitioned table is divided into sub-tables (called partitions), which are created using separate
CREATE TABLE commands. The partitioned table is itself empty. A data row inserted into the table
is routed to a partition based on the value of columns or expressions in the partition key. If no existing
partition matches the values in the new row, an error will be reported.

Partitioned tables do not support EXCLUDE constraints; however, you can define these constraints
on individual partitions. Also, while it's possible to define PRIMARY KEY constraints on partitioned
tables, creating foreign keys that reference a partitioned table is not yet supported.

See Section 5.10 for more discussion on table partitioning.

PARTITION OF parent_table { FOR VALUES partition_bound_spec | DEFAULT }

Creates the table as a partition of the specified parent table. The table can be created either as a partition
for specific values using FOR VALUES or as a default partition using DEFAULT. This option is not
available for hash-partitioned tables.

The partition_bound_spec must correspond to the partitioning method and partition key of
the parent table, and must not overlap with any existing partition of that parent. The form with IN
is used for list partitioning, the form with FROM and TO is used for range partitioning, and the form
with WITH is used for hash partitioning.

Each of the values specified in the partition_bound_spec is a literal, NULL, MINVALUE, or
MAXVALUE. Each literal value must be either a numeric constant that is coercible to the corresponding
partition key column's type, or a string literal that is valid input for that type.

When creating a list partition, NULL can be specified to signify that the partition allows the partition
key column to be null. However, there cannot be more than one such list partition for a given parent
table. NULL cannot be specified for range partitions.

When creating a range partition, the lower bound specified with FROM is an inclusive bound, whereas
the upper bound specified with TO is an exclusive bound. That is, the values specified in the FROM list
are valid values of the corresponding partition key columns for this partition, whereas those in the TO
list are not. Note that this statement must be understood according to the rules of row-wise comparison

1668

CREATE TABLE

(Section 9.23.5). For example, given PARTITION BY RANGE (x,y), a partition bound FROM
(1, 2) TO (3, 4) allows x=1 with any y>=2, x=2 with any non-null y, and x=3 with any y<4.

The special values MINVALUE and MAXVALUE may be used when creating a range partition to
indicate that there is no lower or upper bound on the column's value. For example, a partition defined
using FROM (MINVALUE) TO (10) allows any values less than 10, and a partition defined using
FROM (10) TO (MAXVALUE) allows any values greater than or equal to 10.

When creating a range partition involving more than one column, it can also make sense to use
MAXVALUE as part of the lower bound, and MINVALUE as part of the upper bound. For example,
a partition defined using FROM (0, MAXVALUE) TO (10, MAXVALUE) allows any rows
where the first partition key column is greater than 0 and less than or equal to 10. Similarly, a partition
defined using FROM ('a', MINVALUE) TO ('b', MINVALUE) allows any rows where the
first partition key column starts with "a".

Note that if MINVALUE or MAXVALUE is used for one column of a partitioning bound, the same value
must be used for all subsequent columns. For example, (10, MINVALUE, 0) is not a valid bound;
you should write (10, MINVALUE, MINVALUE).

Also note that some element types, such as timestamp, have a notion of "infinity", which is just
another value that can be stored. This is different from MINVALUE and MAXVALUE, which are not real
values that can be stored, but rather they are ways of saying that the value is unbounded. MAXVALUE
can be thought of as being greater than any other value, including "infinity" and MINVALUE as being
less than any other value, including "minus infinity". Thus the range FROM ('infinity') TO
(MAXVALUE) is not an empty range; it allows precisely one value to be stored — "infinity".

If DEFAULT is specified, the table will be created as a default partition of the parent table. The parent
can either be a list or range partitioned table. A partition key value not fitting into any other partition
of the given parent will be routed to the default partition. There can be only one default partition for
a given parent table.

When a table has an existing DEFAULT partition and a new partition is added to it, the existing default
partition must be scanned to verify that it does not contain any rows which properly belong in the new
partition. If the default partition contains a large number of rows, this may be slow. The scan will be
skipped if the default partition is a foreign table or if it has a constraint which proves that it cannot
contain rows which should be placed in the new partition.

When creating a hash partition, a modulus and remainder must be specified. The modulus must be a
positive integer, and the remainder must be a non-negative integer less than the modulus. Typically,
when initially setting up a hash-partitioned table, you should choose a modulus equal to the number of
partitions and assign every table the same modulus and a different remainder (see examples, below).
However, it is not required that every partition have the same modulus, only that every modulus which
occurs among the partitions of a hash-partitioned table is a factor of the next larger modulus. This
allows the number of partitions to be increased incrementally without needing to move all the data
at once. For example, suppose you have a hash-partitioned table with 8 partitions, each of which has
modulus 8, but find it necessary to increase the number of partitions to 16. You can detach one of
the modulus-8 partitions, create two new modulus-16 partitions covering the same portion of the key
space (one with a remainder equal to the remainder of the detached partition, and the other with a
remainder equal to that value plus 8), and repopulate them with data. You can then repeat this --
perhaps at a later time -- for each modulus-8 partition until none remain. While this may still involve
a large amount of data movement at each step, it is still better than having to create a whole new table
and move all the data at once.

A partition must have the same column names and types as the partitioned table to which it belongs.
If the parent is specified WITH OIDS then all partitions must have OIDs; the parent's OID column
will be inherited by all partitions just like any other column. Modifications to the column names

1669

CREATE TABLE

or types of a partitioned table, or the addition or removal of an OID column, will automatically
propagate to all partitions. CHECK constraints will be inherited automatically by every partition, but
an individual partition may specify additional CHECK constraints; additional constraints with the
same name and condition as in the parent will be merged with the parent constraint. Defaults may be
specified separately for each partition.

Rows inserted into a partitioned table will be automatically routed to the correct partition. If no suitable
partition exists, an error will occur.

Operations such as TRUNCATE which normally affect a table and all of its inheritance children will
cascade to all partitions, but may also be performed on an individual partition. Note that dropping a
partition with DROP TABLE requires taking an ACCESS EXCLUSIVE lock on the parent table.

LIKE source_table [like_option ...]

The LIKE clause specifies a table from which the new table automatically copies all column names,
their data types, and their not-null constraints.

Unlike INHERITS, the new table and original table are completely decoupled after creation is
complete. Changes to the original table will not be applied to the new table, and it is not possible to
include data of the new table in scans of the original table.

Default expressions for the copied column definitions will be copied only if INCLUDING DEFAULTS
is specified. The default behavior is to exclude default expressions, resulting in the copied columns
in the new table having null defaults. Note that copying defaults that call database-modification
functions, such as nextval, may create a functional linkage between the original and new tables.

Any identity specifications of copied column definitions will only be copied if INCLUDING
IDENTITY is specified. A new sequence is created for each identity column of the new table, separate
from the sequences associated with the old table.

Not-null constraints are always copied to the new table. CHECK constraints will be copied only if
INCLUDING CONSTRAINTS is specified. No distinction is made between column constraints and
table constraints.

Extended statistics are copied to the new table if INCLUDING STATISTICS is specified.

Indexes, PRIMARY KEY, UNIQUE, and EXCLUDE constraints on the original table will be created on
the new table only if INCLUDING INDEXES is specified. Names for the new indexes and constraints
are chosen according to the default rules, regardless of how the originals were named. (This behavior
avoids possible duplicate-name failures for the new indexes.)

STORAGE settings for the copied column definitions will be copied only if INCLUDING STORAGE
is specified. The default behavior is to exclude STORAGE settings, resulting in the copied columns in
the new table having type-specific default settings. For more on STORAGE settings, see Section 68.2.

Comments for the copied columns, constraints, and indexes will be copied only if INCLUDING
COMMENTS is specified. The default behavior is to exclude comments, resulting in the copied columns
and constraints in the new table having no comments.

INCLUDING ALL is an abbreviated form of INCLUDING COMMENTS INCLUDING
CONSTRAINTS INCLUDING DEFAULTS INCLUDING IDENTITY INCLUDING INDEXES
INCLUDING STATISTICS INCLUDING STORAGE.

Note that unlike INHERITS, columns and constraints copied by LIKE are not merged with similarly
named columns and constraints. If the same name is specified explicitly or in another LIKE clause,
an error is signaled.

1670

CREATE TABLE

The LIKE clause can also be used to copy column definitions from views, foreign tables, or composite
types. Inapplicable options (e.g., INCLUDING INDEXES from a view) are ignored.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the constraint name
is present in error messages, so constraint names like col must be positive can be used
to communicate helpful constraint information to client applications. (Double-quotes are needed
to specify constraint names that contain spaces.) If a constraint name is not specified, the system
generates a name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is discouraged
in new applications.

CHECK (expression) [NO INHERIT]

The CHECK clause specifies an expression producing a Boolean result which new or updated rows
must satisfy for an insert or update operation to succeed. Expressions evaluating to TRUE or
UNKNOWN succeed. Should any row of an insert or update operation produce a FALSE result,
an error exception is raised and the insert or update does not alter the database. A check constraint
specified as a column constraint should reference that column's value only, while an expression
appearing in a table constraint can reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than columns of
the current row. The system column tableoid may be referenced, but not any other system column.

A constraint marked with NO INHERIT will not propagate to child tables.

When a table has multiple CHECK constraints, they will be tested for each row in alphabetical order
by name, after checking NOT NULL constraints. (PostgreSQL versions before 9.5 did not honor any
particular firing order for CHECK constraints.)

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (subqueries and cross-references to other columns
in the current table are not allowed). The data type of the default expression must match the data type
of the column.

The default expression will be used in any insert operation that does not specify a value for the column.
If there is no default for a column, then the default is null.

GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)]

This clause creates the column as an identity column. It will have an implicit sequence attached to it
and the column in new rows will automatically have values from the sequence assigned to it.

The clauses ALWAYS and BY DEFAULT determine how the sequence value is given precedence over
a user-specified value in an INSERT statement. If ALWAYS is specified, a user-specified value is only

1671

CREATE TABLE

accepted if the INSERT statement specifies OVERRIDING SYSTEM VALUE. If BY DEFAULT
is specified, then the user-specified value takes precedence. See INSERT for details. (In the COPY
command, user-specified values are always used regardless of this setting.)

The optional sequence_options clause can be used to override the options of the sequence. See
CREATE SEQUENCE for details.

UNIQUE (column constraint)
UNIQUE (column_name [, ...]) [INCLUDE (column_name [, ...])] (table constraint)

The UNIQUE constraint specifies that a group of one or more columns of a table can contain only
unique values. The behavior of the unique table constraint is the same as that for column constraints,
with the additional capability to span multiple columns.

For the purpose of a unique constraint, null values are not considered equal.

Each unique table constraint must name a set of columns that is different from the set of columns
named by any other unique or primary key constraint defined for the table. (Otherwise it would just
be the same constraint listed twice.)

When establishing a unique constraint for a multi-level partition hierarchy, all the columns in the
partition key of the target partitioned table, as well as those of all its descendant partitioned tables,
must be included in the constraint definition.

Adding a unique constraint will automatically create a unique btree index on the column or group of
columns used in the constraint. The optional clause INCLUDE adds to that index one or more columns
on which the uniqueness is not enforced. Note that although the constraint is not enforced on the
included columns, it still depends on them. Consequently, some operations on these columns (e.g.
DROP COLUMN) can cause cascaded constraint and index deletion.

PRIMARY KEY (column constraint)
PRIMARY KEY (column_name [, ...]) [INCLUDE (column_name [, ...])] (table
constraint)

The PRIMARY KEY constraint specifies that a column or columns of a table can contain only unique
(non-duplicate), nonnull values. Only one primary key can be specified for a table, whether as a
column constraint or a table constraint.

The primary key constraint should name a set of columns that is different from the set of columns
named by any unique constraint defined for the same table. (Otherwise, the unique constraint is
redundant and will be discarded.)

PRIMARY KEY enforces the same data constraints as a combination of UNIQUE and NOT NULL,
but identifying a set of columns as the primary key also provides metadata about the design of the
schema, since a primary key implies that other tables can rely on this set of columns as a unique
identifier for rows.

PRIMARY KEY constraints share the restrictions that UNIQUE constraints have when placed on
partitioned tables.

Adding a PRIMARY KEY constraint will automatically create a unique btree index on the column or
group of columns used in the constraint. The optional INCLUDE clause allows a list of columns to
be specified which will be included in the non-key portion of the index. Although uniqueness is not
enforced on the included columns, the constraint still depends on them. Consequently, some operations
on the included columns (e.g. DROP COLUMN) can cause cascaded constraint and index deletion.

1672

CREATE TABLE

EXCLUDE [USING index_method] (exclude_element WITH operator [, ...])
index_parameters [WHERE (predicate)]

The EXCLUDE clause defines an exclusion constraint, which guarantees that if any two rows are
compared on the specified column(s) or expression(s) using the specified operator(s), not all of these
comparisons will return TRUE. If all of the specified operators test for equality, this is equivalent
to a UNIQUE constraint, although an ordinary unique constraint will be faster. However, exclusion
constraints can specify constraints that are more general than simple equality. For example, you can
specify a constraint that no two rows in the table contain overlapping circles (see Section 8.8) by
using the && operator.

Exclusion constraints are implemented using an index, so each specified operator must be associated
with an appropriate operator class (see Section 11.10) for the index access method index_method.
The operators are required to be commutative. Each exclude_element can optionally specify an
operator class and/or ordering options; these are described fully under CREATE INDEX.

The access method must support amgettuple (see Chapter 61); at present this means GIN cannot
be used. Although it's allowed, there is little point in using B-tree or hash indexes with an exclusion
constraint, because this does nothing that an ordinary unique constraint doesn't do better. So in practice
the access method will always be GiST or SP-GiST.

The predicate allows you to specify an exclusion constraint on a subset of the table; internally
this creates a partial index. Note that parentheses are required around the predicate.

REFERENCES reftable [(refcolumn)] [MATCH matchtype] [ON DELETE
action] [ON UPDATE action] (column constraint)
FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn
[, ...])] [MATCH matchtype] [ON DELETE action] [ON UPDATE
action] (table constraint)

These clauses specify a foreign key constraint, which requires that a group of one or more columns
of the new table must only contain values that match values in the referenced column(s) of some row
of the referenced table. If the refcolumn list is omitted, the primary key of the reftable is used.
The referenced columns must be the columns of a non-deferrable unique or primary key constraint in
the referenced table. The user must have REFERENCES permission on the referenced table (either the
whole table, or the specific referenced columns). The addition of a foreign key constraint requires a
SHARE ROW EXCLUSIVE lock on the referenced table. Note that foreign key constraints cannot be
defined between temporary tables and permanent tables. Also note that while it is possible to define a
foreign key on a partitioned table, it is not possible to declare a foreign key that references a partitioned
table.

A value inserted into the referencing column(s) is matched against the values of the referenced table
and referenced columns using the given match type. There are three match types: MATCH FULL,
MATCH PARTIAL, and MATCH SIMPLE (which is the default). MATCH FULL will not allow one
column of a multicolumn foreign key to be null unless all foreign key columns are null; if they are all
null, the row is not required to have a match in the referenced table. MATCH SIMPLE allows any of
the foreign key columns to be null; if any of them are null, the row is not required to have a match in
the referenced table. MATCH PARTIAL is not yet implemented. (Of course, NOT NULL constraints
can be applied to the referencing column(s) to prevent these cases from arising.)

In addition, when the data in the referenced columns is changed, certain actions are performed on the
data in this table's columns. The ON DELETE clause specifies the action to perform when a referenced
row in the referenced table is being deleted. Likewise, the ON UPDATE clause specifies the action to
perform when a referenced column in the referenced table is being updated to a new value. If the row
is updated, but the referenced column is not actually changed, no action is done. Referential actions

1673

CREATE TABLE

other than the NO ACTION check cannot be deferred, even if the constraint is declared deferrable.
There are the following possible actions for each clause:

NO ACTION

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. If the constraint is deferred, this error will be produced at constraint check time if there
still exist any referencing rows. This is the default action.

RESTRICT

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. This is the same as NO ACTION except that the check is not deferrable.

CASCADE

Delete any rows referencing the deleted row, or update the values of the referencing column(s)
to the new values of the referenced columns, respectively.

SET NULL

Set the referencing column(s) to null.

SET DEFAULT

Set the referencing column(s) to their default values. (There must be a row in the referenced table
matching the default values, if they are not null, or the operation will fail.)

If the referenced column(s) are changed frequently, it might be wise to add an index to the referencing
column(s) so that referential actions associated with the foreign key constraint can be performed more
efficiently.

DEFERRABLE
NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will be checked
immediately after every command. Checking of constraints that are deferrable can be postponed
until the end of the transaction (using the SET CONSTRAINTS command). NOT DEFERRABLE
is the default. Currently, only UNIQUE, PRIMARY KEY, EXCLUDE, and REFERENCES (foreign
key) constraints accept this clause. NOT NULL and CHECK constraints are not deferrable. Note that
deferrable constraints cannot be used as conflict arbitrators in an INSERT statement that includes an
ON CONFLICT DO UPDATE clause.

INITIALLY IMMEDIATE
INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint is INITIALLY IMMEDIATE, it is checked after each statement. This is the default. If the
constraint is INITIALLY DEFERRED, it is checked only at the end of the transaction. The constraint
check time can be altered with the SET CONSTRAINTS command.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for a table or index; see Storage Parameters for more
information. The WITH clause for a table can also include OIDS=TRUE (or just OIDS) to specify
that rows of the new table should have OIDs (object identifiers) assigned to them, or OIDS=FALSE
to specify that the rows should not have OIDs. If OIDS is not specified, the default setting depends

1674

CREATE TABLE

upon the default_with_oids configuration parameter. (If the new table inherits from any tables that
have OIDs, then OIDS=TRUE is forced even if the command says OIDS=FALSE.)

If OIDS=FALSE is specified or implied, the new table does not store OIDs and no OID will be
assigned for a row inserted into it. This is generally considered worthwhile, since it will reduce OID
consumption and thereby postpone the wraparound of the 32-bit OID counter. Once the counter wraps
around, OIDs can no longer be assumed to be unique, which makes them considerably less useful. In
addition, excluding OIDs from a table reduces the space required to store the table on disk by 4 bytes
per row (on most machines), slightly improving performance.

To remove OIDs from a table after it has been created, use ALTER TABLE.

WITH OIDS
WITHOUT OIDS

These are obsolescent syntaxes equivalent to WITH (OIDS) and WITH (OIDS=FALSE),
respectively. If you wish to give both an OIDS setting and storage parameters, you must use the WITH
(...) syntax; see above.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON
COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially,
an automatic TRUNCATE is done at each commit. When used on a partitioned table, this is not
cascaded to its partitions.

DROP

The temporary table will be dropped at the end of the current transaction block. When used on a
partitioned table, this action drops its partitions and when used on tables with inheritance children,
it drops the dependent children.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new table is to be created. If
not specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary.

USING INDEX TABLESPACE tablespace_name

This clause allows selection of the tablespace in which the index associated with a UNIQUE,
PRIMARY KEY, or EXCLUDE constraint will be created. If not specified, default_tablespace is
consulted, or temp_tablespaces if the table is temporary.

Storage Parameters

The WITH clause can specify storage parameters for tables, and for indexes associated with a UNIQUE,
PRIMARY KEY, or EXCLUDE constraint. Storage parameters for indexes are documented in CREATE
INDEX. The storage parameters currently available for tables are listed below. For many of these
parameters, as shown, there is an additional parameter with the same name prefixed with toast.,
which controls the behavior of the table's secondary TOAST table, if any (see Section 68.2 for more

1675

CREATE TABLE

information about TOAST). If a table parameter value is set and the equivalent toast. parameter is not,
the TOAST table will use the table's parameter value. Specifying these parameters for partitioned tables
is not supported, but you may specify them for individual leaf partitions.

fillfactor (integer)

The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.
When a smaller fillfactor is specified, INSERT operations pack table pages only to the indicated
percentage; the remaining space on each page is reserved for updating rows on that page. This gives
UPDATE a chance to place the updated copy of a row on the same page as the original, which is more
efficient than placing it on a different page. For a table whose entries are never updated, complete
packing is the best choice, but in heavily updated tables smaller fillfactors are appropriate. This
parameter cannot be set for TOAST tables.

toast_tuple_target (integer)

The toast_tuple_target specifies the minimum tuple length required before we try to move long column
values into TOAST tables, and is also the target length we try to reduce the length below once toasting
begins. This only affects columns marked as either External or Extended and applies only to new
tuples - there is no effect on existing rows. By default this parameter is set to allow at least 4 tuples per
block, which with the default blocksize will be 2040 bytes. Valid values are between 128 bytes and
the (blocksize - header), by default 8160 bytes. Changing this value may not be useful for very short or
very long rows. Note that the default setting is often close to optimal, and it is possible that setting this
parameter could have negative effects in some cases. This parameter cannot be set for TOAST tables.

parallel_workers (integer)

This sets the number of workers that should be used to assist a parallel scan of this table. If not set,
the system will determine a value based on the relation size. The actual number of workers chosen by
the planner or by utility statements that use parallel scans may be less, for example due to the setting
of max_worker_processes.

autovacuum_enabled, toast.autovacuum_enabled (boolean)

Enables or disables the autovacuum daemon for a particular table. If true, the autovacuum daemon will
perform automatic VACUUM and/or ANALYZE operations on this table following the rules discussed
in Section 24.1.6. If false, this table will not be autovacuumed, except to prevent transaction ID
wraparound. See Section 24.1.5 for more about wraparound prevention. Note that the autovacuum
daemon does not run at all (except to prevent transaction ID wraparound) if the autovacuum parameter
is false; setting individual tables' storage parameters does not override that. Therefore there is seldom
much point in explicitly setting this storage parameter to true, only to false.

autovacuum_vacuum_threshold, toast.autovacuum_vacuum_threshold (integer)

Per-table value for autovacuum_vacuum_threshold parameter.

autovacuum_vacuum_scale_factor, toast.autovacuum_vacuum_scale_factor
(float4)

Per-table value for autovacuum_vacuum_scale_factor parameter.

autovacuum_analyze_threshold (integer)

Per-table value for autovacuum_analyze_threshold parameter.

autovacuum_analyze_scale_factor (float4)

Per-table value for autovacuum_analyze_scale_factor parameter.

1676

CREATE TABLE

autovacuum_vacuum_cost_delay, toast.autovacuum_vacuum_cost_delay
(integer)

Per-table value for autovacuum_vacuum_cost_delay parameter.

autovacuum_vacuum_cost_limit, toast.autovacuum_vacuum_cost_limit
(integer)

Per-table value for autovacuum_vacuum_cost_limit parameter.

autovacuum_freeze_min_age, toast.autovacuum_freeze_min_age (integer)

Per-table value for vacuum_freeze_min_age parameter. Note that autovacuum will ignore per-
table autovacuum_freeze_min_age parameters that are larger than half the system-wide
autovacuum_freeze_max_age setting.

autovacuum_freeze_max_age, toast.autovacuum_freeze_max_age (integer)

Per-table value for autovacuum_freeze_max_age parameter. Note that autovacuum will ignore per-
table autovacuum_freeze_max_age parameters that are larger than the system-wide setting (it
can only be set smaller).

autovacuum_freeze_table_age, toast.autovacuum_freeze_table_age (integer)

Per-table value for vacuum_freeze_table_age parameter.

autovacuum_multixact_freeze_min_age,
toast.autovacuum_multixact_freeze_min_age (integer)

Per-table value for vacuum_multixact_freeze_min_age parameter. Note that autovacuum will ignore
per-table autovacuum_multixact_freeze_min_age parameters that are larger than half the
system-wide autovacuum_multixact_freeze_max_age setting.

autovacuum_multixact_freeze_max_age,
toast.autovacuum_multixact_freeze_max_age (integer)

Per-table value for autovacuum_multixact_freeze_max_age parameter. Note that autovacuum will
ignore per-table autovacuum_multixact_freeze_max_age parameters that are larger than
the system-wide setting (it can only be set smaller).

autovacuum_multixact_freeze_table_age,
toast.autovacuum_multixact_freeze_table_age (integer)

Per-table value for vacuum_multixact_freeze_table_age parameter.

log_autovacuum_min_duration, toast.log_autovacuum_min_duration (integer)

Per-table value for log_autovacuum_min_duration parameter.

user_catalog_table (boolean)

Declare the table as an additional catalog table for purposes of logical replication. See Section 49.6.2
for details. This parameter cannot be set for TOAST tables.

Notes
Using OIDs in new applications is not recommended: where possible, using an identity column or other
sequence generator as the table's primary key is preferred. However, if your application does make use

1677

CREATE TABLE

of OIDs to identify specific rows of a table, it is recommended to create a unique constraint on the oid
column of that table, to ensure that OIDs in the table will indeed uniquely identify rows even after counter
wraparound. Avoid assuming that OIDs are unique across tables; if you need a database-wide unique
identifier, use the combination of tableoid and row OID for the purpose.

Tip

The use of OIDS=FALSE is not recommended for tables with no primary key, since without either
an OID or a unique data key, it is difficult to identify specific rows.

PostgreSQL automatically creates an index for each unique constraint and primary key constraint to
enforce uniqueness. Thus, it is not necessary to create an index explicitly for primary key columns. (See
CREATE INDEX for more information.)

Unique constraints and primary keys are not inherited in the current implementation. This makes the
combination of inheritance and unique constraints rather dysfunctional.

A table cannot have more than 1600 columns. (In practice, the effective limit is usually lower because of
tuple-length constraints.)

Examples
Create table films and table distributors:

CREATE TABLE films (
 code char(5) CONSTRAINT firstkey PRIMARY KEY,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
);

CREATE TABLE distributors (
 did integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
 name varchar(40) NOT NULL CHECK (name <> '')
);

Create a table with a 2-dimensional array:

CREATE TABLE array_int (
 vector int[][]
);

Define a unique table constraint for the table films. Unique table constraints can be defined on one or
more columns of the table:

CREATE TABLE films (
 code char(5),
 title varchar(40),

1678

CREATE TABLE

 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT production UNIQUE(date_prod)
);

Define a check column constraint:

CREATE TABLE distributors (
 did integer CHECK (did > 100),
 name varchar(40)
);

Define a check table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 CONSTRAINT con1 CHECK (did > 100 AND name <> '')
);

Define a primary key table constraint for the table films:

CREATE TABLE films (
 code char(5),
 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT code_title PRIMARY KEY(code,title)
);

Define a primary key constraint for table distributors. The following two examples are equivalent,
the first using the table constraint syntax, the second the column constraint syntax:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 PRIMARY KEY(did)
);

CREATE TABLE distributors (
 did integer PRIMARY KEY,
 name varchar(40)
);

Assign a literal constant default value for the column name, arrange for the default value of column did
to be generated by selecting the next value of a sequence object, and make the default value of modtime
be the time at which the row is inserted:

1679

CREATE TABLE

CREATE TABLE distributors (
 name varchar(40) DEFAULT 'Luso Films',
 did integer DEFAULT nextval('distributors_serial'),
 modtime timestamp DEFAULT current_timestamp
);

Define two NOT NULL column constraints on the table distributors, one of which is explicitly given
a name:

CREATE TABLE distributors (
 did integer CONSTRAINT no_null NOT NULL,
 name varchar(40) NOT NULL
);

Define a unique constraint for the name column:

CREATE TABLE distributors (
 did integer,
 name varchar(40) UNIQUE
);

The same, specified as a table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name)
);

Create the same table, specifying 70% fill factor for both the table and its unique index:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name) WITH (fillfactor=70)
)
WITH (fillfactor=70);

Create table circles with an exclusion constraint that prevents any two circles from overlapping:

CREATE TABLE circles (
 c circle,
 EXCLUDE USING gist (c WITH &&)
);

Create table cinemas in tablespace diskvol1:

CREATE TABLE cinemas (
 id serial,
 name text,

1680

CREATE TABLE

 location text
) TABLESPACE diskvol1;

Create a composite type and a typed table:

CREATE TYPE employee_type AS (name text, salary numeric);

CREATE TABLE employees OF employee_type (
 PRIMARY KEY (name),
 salary WITH OPTIONS DEFAULT 1000
);

Create a range partitioned table:

CREATE TABLE measurement (
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

Create a range partitioned table with multiple columns in the partition key:

CREATE TABLE measurement_year_month (
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (EXTRACT(YEAR FROM logdate), EXTRACT(MONTH FROM
 logdate));

Create a list partitioned table:

CREATE TABLE cities (
 city_id bigserial not null,
 name text not null,
 population bigint
) PARTITION BY LIST (left(lower(name), 1));

Create a hash partitioned table:

CREATE TABLE orders (
 order_id bigint not null,
 cust_id bigint not null,
 status text
) PARTITION BY HASH (order_id);

Create partition of a range partitioned table:

CREATE TABLE measurement_y2016m07
 PARTITION OF measurement (
 unitsales DEFAULT 0
) FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');

1681

CREATE TABLE

Create a few partitions of a range partitioned table with multiple columns in the partition key:

CREATE TABLE measurement_ym_older
 PARTITION OF measurement_year_month
 FOR VALUES FROM (MINVALUE, MINVALUE) TO (2016, 11);

CREATE TABLE measurement_ym_y2016m11
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2016, 11) TO (2016, 12);

CREATE TABLE measurement_ym_y2016m12
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2016, 12) TO (2017, 01);

CREATE TABLE measurement_ym_y2017m01
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2017, 01) TO (2017, 02);

Create partition of a list partitioned table:

CREATE TABLE cities_ab
 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b');

Create partition of a list partitioned table that is itself further partitioned and then add a partition to it:

CREATE TABLE cities_ab
 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b') PARTITION BY RANGE (population);

CREATE TABLE cities_ab_10000_to_100000
 PARTITION OF cities_ab FOR VALUES FROM (10000) TO (100000);

Create partitions of a hash partitioned table:

CREATE TABLE orders_p1 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE orders_p2 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 1);
CREATE TABLE orders_p3 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 2);
CREATE TABLE orders_p4 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 3);

Create a default partition:

CREATE TABLE cities_partdef
 PARTITION OF cities DEFAULT;

1682

CREATE TABLE

Compatibility
The CREATE TABLE command conforms to the SQL standard, with exceptions listed below.

Temporary Tables

Although the syntax of CREATE TEMPORARY TABLE resembles that of the SQL standard, the effect is
not the same. In the standard, temporary tables are defined just once and automatically exist (starting with
empty contents) in every session that needs them. PostgreSQL instead requires each session to issue its
own CREATE TEMPORARY TABLE command for each temporary table to be used. This allows different
sessions to use the same temporary table name for different purposes, whereas the standard's approach
constrains all instances of a given temporary table name to have the same table structure.

The standard's definition of the behavior of temporary tables is widely ignored. PostgreSQL's behavior on
this point is similar to that of several other SQL databases.

The SQL standard also distinguishes between global and local temporary tables, where a local temporary
table has a separate set of contents for each SQL module within each session, though its definition is still
shared across sessions. Since PostgreSQL does not support SQL modules, this distinction is not relevant
in PostgreSQL.

For compatibility's sake, PostgreSQL will accept the GLOBAL and LOCAL keywords in a temporary table
declaration, but they currently have no effect. Use of these keywords is discouraged, since future versions
of PostgreSQL might adopt a more standard-compliant interpretation of their meaning.

The ON COMMIT clause for temporary tables also resembles the SQL standard, but has some differences.
If the ON COMMIT clause is omitted, SQL specifies that the default behavior is ON COMMIT DELETE
ROWS. However, the default behavior in PostgreSQL is ON COMMIT PRESERVE ROWS. The ON
COMMIT DROP option does not exist in SQL.

Non-deferred Uniqueness Constraints

When a UNIQUE or PRIMARY KEY constraint is not deferrable, PostgreSQL checks for uniqueness
immediately whenever a row is inserted or modified. The SQL standard says that uniqueness should
be enforced only at the end of the statement; this makes a difference when, for example, a single
command updates multiple key values. To obtain standard-compliant behavior, declare the constraint as
DEFERRABLE but not deferred (i.e., INITIALLY IMMEDIATE). Be aware that this can be significantly
slower than immediate uniqueness checking.

Column Check Constraints

The SQL standard says that CHECK column constraints can only refer to the column they apply to; only
CHECK table constraints can refer to multiple columns. PostgreSQL does not enforce this restriction; it
treats column and table check constraints alike.

EXCLUDE Constraint

The EXCLUDE constraint type is a PostgreSQL extension.

NULL “Constraint”

The NULL “constraint” (actually a non-constraint) is a PostgreSQL extension to the SQL standard that
is included for compatibility with some other database systems (and for symmetry with the NOT NULL
constraint). Since it is the default for any column, its presence is simply noise.

1683

CREATE TABLE

Constraint Naming

The SQL standard says that table and domain constraints must have names that are unique across the
schema containing the table or domain. PostgreSQL is laxer: it only requires constraint names to be unique
across the constraints attached to a particular table or domain. However, this extra freedom does not exist
for index-based constraints (UNIQUE, PRIMARY KEY, and EXCLUDE constraints), because the associated
index is named the same as the constraint, and index names must be unique across all relations within
the same schema.

Currently, PostgreSQL does not record names for NOT NULL constraints at all, so they are not subject to
the uniqueness restriction. This might change in a future release.

Inheritance

Multiple inheritance via the INHERITS clause is a PostgreSQL language extension. SQL:1999 and later
define single inheritance using a different syntax and different semantics. SQL:1999-style inheritance is
not yet supported by PostgreSQL.

Zero-column Tables

PostgreSQL allows a table of no columns to be created (for example, CREATE TABLE foo();). This
is an extension from the SQL standard, which does not allow zero-column tables. Zero-column tables are
not in themselves very useful, but disallowing them creates odd special cases for ALTER TABLE DROP
COLUMN, so it seems cleaner to ignore this spec restriction.

Multiple Identity Columns

PostgreSQL allows a table to have more than one identity column. The standard specifies that a table can
have at most one identity column. This is relaxed mainly to give more flexibility for doing schema changes
or migrations. Note that the INSERT command supports only one override clause that applies to the entire
statement, so having multiple identity columns with different behaviors is not well supported.

LIKE Clause

While a LIKE clause exists in the SQL standard, many of the options that PostgreSQL accepts for it are
not in the standard, and some of the standard's options are not implemented by PostgreSQL.

WITH Clause

The WITH clause is a PostgreSQL extension; neither storage parameters nor OIDs are in the standard.

Tablespaces

The PostgreSQL concept of tablespaces is not part of the standard. Hence, the clauses TABLESPACE and
USING INDEX TABLESPACE are extensions.

Typed Tables

Typed tables implement a subset of the SQL standard. According to the standard, a typed table has columns
corresponding to the underlying composite type as well as one other column that is the “self-referencing
column”. PostgreSQL does not support these self-referencing columns explicitly, but the same effect can
be had using the OID feature.

1684

CREATE TABLE

PARTITION BY Clause

The PARTITION BY clause is a PostgreSQL extension.

PARTITION OF Clause

The PARTITION OF clause is a PostgreSQL extension.

See Also
ALTER TABLE, DROP TABLE, CREATE TABLE AS, CREATE TABLESPACE, CREATE TYPE

1685

CREATE TABLE AS
CREATE TABLE AS — define a new table from the results of a query

Synopsis

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE
 [IF NOT EXISTS] table_name
 [(column_name [, ...])]
 [WITH (storage_parameter [= value] [, ...]) | WITH OIDS |
 WITHOUT OIDS]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

Description

CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The table
columns have the names and data types associated with the output columns of the SELECT (except that
you can override the column names by giving an explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it creates
a new table and evaluates the query just once to fill the new table initially. The new table will not track
subsequent changes to the source tables of the query. In contrast, a view re-evaluates its defining SELECT
statement whenever it is queried.

Parameters

GLOBAL or LOCAL

Ignored for compatibility. Use of these keywords is deprecated; refer to CREATE TABLE for details.

TEMPORARY or TEMP

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

UNLOGGED

If specified, the table is created as an unlogged table. Refer to CREATE TABLE for details.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Refer to CREATE TABLE for details.

table_name

The name (optionally schema-qualified) of the table to be created.

1686

CREATE TABLE AS

column_name

The name of a column in the new table. If column names are not provided, they are taken from the
output column names of the query.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for the new table; see Storage Parameters for more
information. The WITH clause can also include OIDS=TRUE (or just OIDS) to specify that rows of
the new table should have OIDs (object identifiers) assigned to them, or OIDS=FALSE to specify
that the rows should not have OIDs. See CREATE TABLE for more information.

WITH OIDS
WITHOUT OIDS

These are obsolescent syntaxes equivalent to WITH (OIDS) and WITH (OIDS=FALSE),
respectively. If you wish to give both an OIDS setting and storage parameters, you must use the WITH
(...) syntax; see above.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON
COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially,
an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new table is to be created. If
not specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary.

query

A SELECT, TABLE, or VALUES command, or an EXECUTE command that runs a prepared
SELECT, TABLE, or VALUES query.

WITH [NO] DATA

This clause specifies whether or not the data produced by the query should be copied into the new
table. If not, only the table structure is copied. The default is to copy the data.

Notes
This command is functionally similar to SELECT INTO, but it is preferred since it is less likely to be
confused with other uses of the SELECT INTO syntax. Furthermore, CREATE TABLE AS offers a
superset of the functionality offered by SELECT INTO.

1687

CREATE TABLE AS

The CREATE TABLE AS command allows the user to explicitly specify whether OIDs should be included.
If the presence of OIDs is not explicitly specified, the default_with_oids configuration variable is used.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

CREATE TABLE films_recent AS
 SELECT * FROM films WHERE date_prod >= '2002-01-01';

To copy a table completely, the short form using the TABLE command can also be used:

CREATE TABLE films2 AS
 TABLE films;

Create a new temporary table films_recent, consisting of only recent entries from the table films,
using a prepared statement. The new table has OIDs and will be dropped at commit:

PREPARE recentfilms(date) AS
 SELECT * FROM films WHERE date_prod > $1;
CREATE TEMP TABLE films_recent WITH (OIDS) ON COMMIT DROP AS
 EXECUTE recentfilms('2002-01-01');

Compatibility
CREATE TABLE AS conforms to the SQL standard. The following are nonstandard extensions:

• The standard requires parentheses around the subquery clause; in PostgreSQL, these parentheses are
optional.

• In the standard, the WITH [NO] DATA clause is required; in PostgreSQL it is optional.
• PostgreSQL handles temporary tables in a way rather different from the standard; see CREATE TABLE

for details.
• The WITH clause is a PostgreSQL extension; neither storage parameters nor OIDs are in the standard.
• The PostgreSQL concept of tablespaces is not part of the standard. Hence, the clause TABLESPACE

is an extension.

See Also
CREATE MATERIALIZED VIEW, CREATE TABLE, EXECUTE, SELECT, SELECT INTO,
VALUES

1688

CREATE TABLESPACE
CREATE TABLESPACE — define a new tablespace

Synopsis

CREATE TABLESPACE tablespace_name
 [OWNER { new_owner | CURRENT_USER | SESSION_USER }]
 LOCATION 'directory'
 [WITH (tablespace_option = value [, ...])]

Description
CREATE TABLESPACE registers a new cluster-wide tablespace. The tablespace name must be distinct
from the name of any existing tablespace in the database cluster.

A tablespace allows superusers to define an alternative location on the file system where the data files
containing database objects (such as tables and indexes) can reside.

A user with appropriate privileges can pass tablespace_name to CREATE DATABASE, CREATE
TABLE, CREATE INDEX or ADD CONSTRAINT to have the data files for these objects stored within
the specified tablespace.

Warning

A tablespace cannot be used independently of the cluster in which it is defined; see Section 22.6.

Parameters
tablespace_name

The name of a tablespace to be created. The name cannot begin with pg_, as such names are reserved
for system tablespaces.

user_name

The name of the user who will own the tablespace. If omitted, defaults to the user executing the
command. Only superusers can create tablespaces, but they can assign ownership of tablespaces to
non-superusers.

directory

The directory that will be used for the tablespace. The directory should be empty and must be owned
by the PostgreSQL system user. The directory must be specified by an absolute path name.

tablespace_option

A tablespace parameter to be set or reset. Currently, the only available parameters are
seq_page_cost, random_page_cost and effective_io_concurrency. Setting either

1689

CREATE TABLESPACE

value for a particular tablespace will override the planner's usual estimate of the cost of reading pages
from tables in that tablespace, as established by the configuration parameters of the same name (see
seq_page_cost, random_page_cost, effective_io_concurrency). This may be useful if one tablespace
is located on a disk which is faster or slower than the remainder of the I/O subsystem.

Notes
Tablespaces are only supported on systems that support symbolic links.

CREATE TABLESPACE cannot be executed inside a transaction block.

Examples
Create a tablespace dbspace at /data/dbs:

CREATE TABLESPACE dbspace LOCATION '/data/dbs';

Create a tablespace indexspace at /data/indexes owned by user genevieve:

CREATE TABLESPACE indexspace OWNER genevieve LOCATION '/data/indexes';

Compatibility
CREATE TABLESPACE is a PostgreSQL extension.

See Also
CREATE DATABASE, CREATE TABLE, CREATE INDEX, DROP TABLESPACE, ALTER
TABLESPACE

1690

CREATE TEXT SEARCH CONFIGURATION
CREATE TEXT SEARCH CONFIGURATION — define a new text search configuration

Synopsis

CREATE TEXT SEARCH CONFIGURATION name (
 PARSER = parser_name |
 COPY = source_config
)

Description
CREATE TEXT SEARCH CONFIGURATION creates a new text search configuration. A text search
configuration specifies a text search parser that can divide a string into tokens, plus dictionaries that can
be used to determine which tokens are of interest for searching.

If only the parser is specified, then the new text search configuration initially has no mappings from
token types to dictionaries, and therefore will ignore all words. Subsequent ALTER TEXT SEARCH
CONFIGURATION commands must be used to create mappings to make the configuration useful.
Alternatively, an existing text search configuration can be copied.

If a schema name is given then the text search configuration is created in the specified schema. Otherwise
it is created in the current schema.

The user who defines a text search configuration becomes its owner.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search configuration to be created. The name can be schema-qualified.

parser_name

The name of the text search parser to use for this configuration.

source_config

The name of an existing text search configuration to copy.

Notes
The PARSER and COPY options are mutually exclusive, because when an existing configuration is copied,
its parser selection is copied too.

Compatibility
There is no CREATE TEXT SEARCH CONFIGURATION statement in the SQL standard.

1691

CREATE TEXT SEARCH
CONFIGURATION

See Also
ALTER TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

1692

CREATE TEXT SEARCH DICTIONARY
CREATE TEXT SEARCH DICTIONARY — define a new text search dictionary

Synopsis

CREATE TEXT SEARCH DICTIONARY name (
 TEMPLATE = template
 [, option = value [, ...]]
)

Description
CREATE TEXT SEARCH DICTIONARY creates a new text search dictionary. A text search dictionary
specifies a way of recognizing interesting or uninteresting words for searching. A dictionary depends on a
text search template, which specifies the functions that actually perform the work. Typically the dictionary
provides some options that control the detailed behavior of the template's functions.

If a schema name is given then the text search dictionary is created in the specified schema. Otherwise
it is created in the current schema.

The user who defines a text search dictionary becomes its owner.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search dictionary to be created. The name can be schema-qualified.

template

The name of the text search template that will define the basic behavior of this dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The value to use for a template-specific option. If the value is not a simple identifier or number, it
must be quoted (but you can always quote it, if you wish).

The options can appear in any order.

Examples
The following example command creates a Snowball-based dictionary with a nonstandard list of stop
words.

1693

CREATE TEXT
SEARCH DICTIONARY

CREATE TEXT SEARCH DICTIONARY my_russian (
 template = snowball,
 language = russian,
 stopwords = myrussian
);

Compatibility
There is no CREATE TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

1694

CREATE TEXT SEARCH PARSER
CREATE TEXT SEARCH PARSER — define a new text search parser

Synopsis

CREATE TEXT SEARCH PARSER name (
 START = start_function ,
 GETTOKEN = gettoken_function ,
 END = end_function ,
 LEXTYPES = lextypes_function
 [, HEADLINE = headline_function]
)

Description
CREATE TEXT SEARCH PARSER creates a new text search parser. A text search parser defines a
method for splitting a text string into tokens and assigning types (categories) to the tokens. A parser is
not particularly useful by itself, but must be bound into a text search configuration along with some text
search dictionaries to be used for searching.

If a schema name is given then the text search parser is created in the specified schema. Otherwise it is
created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH PARSER. (This restriction is made because
an erroneous text search parser definition could confuse or even crash the server.)

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search parser to be created. The name can be schema-qualified.

start_function

The name of the start function for the parser.

gettoken_function

The name of the get-next-token function for the parser.

end_function

The name of the end function for the parser.

lextypes_function

The name of the lextypes function for the parser (a function that returns information about the set of
token types it produces).

1695

CREATE TEXT SEARCH PARSER

headline_function

The name of the headline function for the parser (a function that summarizes a set of tokens).

The function names can be schema-qualified if necessary. Argument types are not given, since the
argument list for each type of function is predetermined. All except the headline function are required.

The arguments can appear in any order, not only the one shown above.

Compatibility
There is no CREATE TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

1696

CREATE TEXT SEARCH TEMPLATE
CREATE TEXT SEARCH TEMPLATE — define a new text search template

Synopsis

CREATE TEXT SEARCH TEMPLATE name (
 [INIT = init_function ,]
 LEXIZE = lexize_function
)

Description
CREATE TEXT SEARCH TEMPLATE creates a new text search template. Text search templates define
the functions that implement text search dictionaries. A template is not useful by itself, but must be
instantiated as a dictionary to be used. The dictionary typically specifies parameters to be given to the
template functions.

If a schema name is given then the text search template is created in the specified schema. Otherwise it
is created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH TEMPLATE. This restriction is made because an
erroneous text search template definition could confuse or even crash the server. The reason for separating
templates from dictionaries is that a template encapsulates the “unsafe” aspects of defining a dictionary.
The parameters that can be set when defining a dictionary are safe for unprivileged users to set, and so
creating a dictionary need not be a privileged operation.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search template to be created. The name can be schema-qualified.

init_function

The name of the init function for the template.

lexize_function

The name of the lexize function for the template.

The function names can be schema-qualified if necessary. Argument types are not given, since the
argument list for each type of function is predetermined. The lexize function is required, but the init
function is optional.

The arguments can appear in any order, not only the one shown above.

Compatibility
There is no CREATE TEXT SEARCH TEMPLATE statement in the SQL standard.

1697

CREATE TEXT
SEARCH TEMPLATE

See Also
ALTER TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

1698

CREATE TRANSFORM
CREATE TRANSFORM — define a new transform

Synopsis

CREATE [OR REPLACE] TRANSFORM FOR type_name LANGUAGE lang_name (
 FROM SQL WITH FUNCTION from_sql_function_name [(argument_type
 [, ...])],
 TO SQL WITH FUNCTION to_sql_function_name [(argument_type
 [, ...])]
);

Description
CREATE TRANSFORM defines a new transform. CREATE OR REPLACE TRANSFORM will either
create a new transform, or replace an existing definition.

A transform specifies how to adapt a data type to a procedural language. For example, when writing
a function in PL/Python using the hstore type, PL/Python has no prior knowledge how to present
hstore values in the Python environment. Language implementations usually default to using the text
representation, but that is inconvenient when, for example, an associative array or a list would be more
appropriate.

A transform specifies two functions:

• A “from SQL” function that converts the type from the SQL environment to the language. This function
will be invoked on the arguments of a function written in the language.

• A “to SQL” function that converts the type from the language to the SQL environment. This function
will be invoked on the return value of a function written in the language.

It is not necessary to provide both of these functions. If one is not specified, the language-specific default
behavior will be used if necessary. (To prevent a transformation in a certain direction from happening at
all, you could also write a transform function that always errors out.)

To be able to create a transform, you must own and have USAGE privilege on the type, have USAGE
privilege on the language, and own and have EXECUTE privilege on the from-SQL and to-SQL functions,
if specified.

Parameters
type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

from_sql_function_name[(argument_type [, ...])]

The name of the function for converting the type from the SQL environment to the language. It must
take one argument of type internal and return type internal. The actual argument will be of the

1699

CREATE TRANSFORM

type for the transform, and the function should be coded as if it were. (But it is not allowed to declare
an SQL-level function returning internal without at least one argument of type internal.) The
actual return value will be something specific to the language implementation. If no argument list is
specified, the function name must be unique in its schema.

to_sql_function_name[(argument_type [, ...])]

The name of the function for converting the type from the language to the SQL environment. It must
take one argument of type internal and return the type that is the type for the transform. The
actual argument value will be something specific to the language implementation. If no argument list
is specified, the function name must be unique in its schema.

Notes
Use DROP TRANSFORM to remove transforms.

Examples
To create a transform for type hstore and language plpythonu, first set up the type and the language:

CREATE TYPE hstore ...;

CREATE EXTENSION plpythonu;

Then create the necessary functions:

CREATE FUNCTION hstore_to_plpython(val internal) RETURNS internal
LANGUAGE C STRICT IMMUTABLE
AS ...;

CREATE FUNCTION plpython_to_hstore(val internal) RETURNS hstore
LANGUAGE C STRICT IMMUTABLE
AS ...;

And finally create the transform to connect them all together:

CREATE TRANSFORM FOR hstore LANGUAGE plpythonu (
 FROM SQL WITH FUNCTION hstore_to_plpython(internal),
 TO SQL WITH FUNCTION plpython_to_hstore(internal)
);

In practice, these commands would be wrapped up in an extension.

The contrib section contains a number of extensions that provide transforms, which can serve as real-
world examples.

Compatibility
This form of CREATE TRANSFORM is a PostgreSQL extension. There is a CREATE TRANSFORM
command in the SQL standard, but it is for adapting data types to client languages. That usage is not
supported by PostgreSQL.

1700

CREATE TRANSFORM

See Also
CREATE FUNCTION, CREATE LANGUAGE, CREATE TYPE, DROP TRANSFORM

1701

CREATE TRIGGER
CREATE TRIGGER — define a new trigger

Synopsis

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF }
 { event [OR ...] }
 ON table_name
 [FROM referenced_table_name]
 [NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE |
 INITIALLY DEFERRED]]
 [REFERENCING { { OLD | NEW } TABLE
 [AS] transition_relation_name } [...]]
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE { FUNCTION | PROCEDURE } function_name (arguments)

where event can be one of:

 INSERT
 UPDATE [OF column_name [, ...]]
 DELETE
 TRUNCATE

Description
CREATE TRIGGER creates a new trigger. The trigger will be associated with the specified table, view,
or foreign table and will execute the specified function function_name when certain operations are
performed on that table.

The trigger can be specified to fire before the operation is attempted on a row (before constraints are
checked and the INSERT, UPDATE, or DELETE is attempted); or after the operation has completed (after
constraints are checked and the INSERT, UPDATE, or DELETE has completed); or instead of the operation
(in the case of inserts, updates or deletes on a view). If the trigger fires before or instead of the event,
the trigger can skip the operation for the current row, or change the row being inserted (for INSERT and
UPDATE operations only). If the trigger fires after the event, all changes, including the effects of other
triggers, are “visible” to the trigger.

A trigger that is marked FOR EACH ROW is called once for every row that the operation modifies. For
example, a DELETE that affects 10 rows will cause any ON DELETE triggers on the target relation to
be called 10 separate times, once for each deleted row. In contrast, a trigger that is marked FOR EACH
STATEMENT only executes once for any given operation, regardless of how many rows it modifies (in
particular, an operation that modifies zero rows will still result in the execution of any applicable FOR
EACH STATEMENT triggers).

Triggers that are specified to fire INSTEAD OF the trigger event must be marked FOR EACH ROW, and
can only be defined on views. BEFORE and AFTER triggers on a view must be marked as FOR EACH
STATEMENT.

In addition, triggers may be defined to fire for TRUNCATE, though only FOR EACH STATEMENT.

1702

CREATE TRIGGER

The following table summarizes which types of triggers may be used on tables, views, and foreign tables:

When Event Row-level Statement-level

INSERT/
UPDATE/DELETE

Tables and
foreign tables

Tables, views,
and foreign tables

BEFORE

TRUNCATE — Tables

INSERT/
UPDATE/DELETE

Tables and
foreign tables

Tables, views,
and foreign tables

AFTER

TRUNCATE — Tables

INSERT/
UPDATE/DELETE

Views —INSTEAD OF

TRUNCATE — —

Also, a trigger definition can specify a Boolean WHEN condition, which will be tested to see whether the
trigger should be fired. In row-level triggers the WHEN condition can examine the old and/or new values
of columns of the row. Statement-level triggers can also have WHEN conditions, although the feature is not
so useful for them since the condition cannot refer to any values in the table.

If multiple triggers of the same kind are defined for the same event, they will be fired in alphabetical order
by name.

When the CONSTRAINT option is specified, this command creates a constraint trigger. This is the same
as a regular trigger except that the timing of the trigger firing can be adjusted using SET CONSTRAINTS.
Constraint triggers must be AFTER ROW triggers on plain tables (not foreign tables). They can be fired
either at the end of the statement causing the triggering event, or at the end of the containing transaction; in
the latter case they are said to be deferred. A pending deferred-trigger firing can also be forced to happen
immediately by using SET CONSTRAINTS. Constraint triggers are expected to raise an exception when
the constraints they implement are violated.

The REFERENCING option enables collection of transition relations, which are row sets that include all
of the rows inserted, deleted, or modified by the current SQL statement. This feature lets the trigger see
a global view of what the statement did, not just one row at a time. This option is only allowed for an
AFTER trigger that is not a constraint trigger; also, if the trigger is an UPDATE trigger, it must not specify
a column_name list. OLD TABLE may only be specified once, and only for a trigger that can fire on
UPDATE or DELETE; it creates a transition relation containing the before-images of all rows updated or
deleted by the statement. Similarly, NEW TABLE may only be specified once, and only for a trigger that
can fire on UPDATE or INSERT; it creates a transition relation containing the after-images of all rows
updated or inserted by the statement.

SELECT does not modify any rows so you cannot create SELECT triggers. Rules and views may provide
workable solutions to problems that seem to need SELECT triggers.

Refer to Chapter 39 for more information about triggers.

Parameters
name

The name to give the new trigger. This must be distinct from the name of any other trigger for the
same table. The name cannot be schema-qualified — the trigger inherits the schema of its table. For
a constraint trigger, this is also the name to use when modifying the trigger's behavior using SET
CONSTRAINTS.

1703

CREATE TRIGGER

BEFORE
AFTER
INSTEAD OF

Determines whether the function is called before, after, or instead of the event. A constraint trigger
can only be specified as AFTER.

event

One of INSERT, UPDATE, DELETE, or TRUNCATE; this specifies the event that will fire the trigger.
Multiple events can be specified using OR, except when transition relations are requested.

For UPDATE events, it is possible to specify a list of columns using this syntax:

UPDATE OF column_name1 [, column_name2 ...]

The trigger will only fire if at least one of the listed columns is mentioned as a target of the UPDATE
command.

INSTEAD OF UPDATE events do not allow a list of columns. A column list cannot be specified
when requesting transition relations, either.

table_name

The name (optionally schema-qualified) of the table, view, or foreign table the trigger is for.

referenced_table_name

The (possibly schema-qualified) name of another table referenced by the constraint. This option is
used for foreign-key constraints and is not recommended for general use. This can only be specified
for constraint triggers.

DEFERRABLE
NOT DEFERRABLE
INITIALLY IMMEDIATE
INITIALLY DEFERRED

The default timing of the trigger. See the CREATE TABLE documentation for details of these
constraint options. This can only be specified for constraint triggers.

REFERENCING

This keyword immediately precedes the declaration of one or two relation names that provide access
to the transition relations of the triggering statement.

OLD TABLE
NEW TABLE

This clause indicates whether the following relation name is for the before-image transition relation
or the after-image transition relation.

transition_relation_name

The (unqualified) name to be used within the trigger for this transition relation.

1704

CREATE TRIGGER

FOR EACH ROW
FOR EACH STATEMENT

This specifies whether the trigger function should be fired once for every row affected by the trigger
event, or just once per SQL statement. If neither is specified, FOR EACH STATEMENT is the default.
Constraint triggers can only be specified FOR EACH ROW.

condition

A Boolean expression that determines whether the trigger function will actually be executed. If WHEN
is specified, the function will only be called if the condition returns true. In FOR EACH ROW
triggers, the WHEN condition can refer to columns of the old and/or new row values by writing
OLD.column_name or NEW.column_name respectively. Of course, INSERT triggers cannot
refer to OLD and DELETE triggers cannot refer to NEW.

INSTEAD OF triggers do not support WHEN conditions.

Currently, WHEN expressions cannot contain subqueries.

Note that for constraint triggers, evaluation of the WHEN condition is not deferred, but occurs
immediately after the row update operation is performed. If the condition does not evaluate to true
then the trigger is not queued for deferred execution.

function_name

A user-supplied function that is declared as taking no arguments and returning type trigger, which
is executed when the trigger fires.

In the syntax of CREATE TRIGGER, the keywords FUNCTION and PROCEDURE are equivalent,
but the referenced function must in any case be a function, not a procedure. The use of the keyword
PROCEDURE here is historical and deprecated.

arguments

An optional comma-separated list of arguments to be provided to the function when the trigger
is executed. The arguments are literal string constants. Simple names and numeric constants can
be written here, too, but they will all be converted to strings. Please check the description of the
implementation language of the trigger function to find out how these arguments can be accessed
within the function; it might be different from normal function arguments.

Notes
To create a trigger on a table, the user must have the TRIGGER privilege on the table. The user must also
have EXECUTE privilege on the trigger function.

Use DROP TRIGGER to remove a trigger.

A column-specific trigger (one defined using the UPDATE OF column_name syntax) will fire when
any of its columns are listed as targets in the UPDATE command's SET list. It is possible for a column's
value to change even when the trigger is not fired, because changes made to the row's contents by BEFORE
UPDATE triggers are not considered. Conversely, a command such as UPDATE ... SET x = x ...
will fire a trigger on column x, even though the column's value did not change.

In a BEFORE trigger, the WHEN condition is evaluated just before the function is or would be executed,
so using WHEN is not materially different from testing the same condition at the beginning of the trigger
function. Note in particular that the NEW row seen by the condition is the current value, as possibly modified

1705

CREATE TRIGGER

by earlier triggers. Also, a BEFORE trigger's WHEN condition is not allowed to examine the system columns
of the NEW row (such as oid), because those won't have been set yet.

In an AFTER trigger, the WHEN condition is evaluated just after the row update occurs, and it determines
whether an event is queued to fire the trigger at the end of statement. So when an AFTER trigger's WHEN
condition does not return true, it is not necessary to queue an event nor to re-fetch the row at end of
statement. This can result in significant speedups in statements that modify many rows, if the trigger only
needs to be fired for a few of the rows.

In some cases it is possible for a single SQL command to fire more than one kind of trigger. For instance
an INSERT with an ON CONFLICT DO UPDATE clause may cause both insert and update operations,
so it will fire both kinds of triggers as needed. The transition relations supplied to triggers are specific to
their event type; thus an INSERT trigger will see only the inserted rows, while an UPDATE trigger will
see only the updated rows.

Row updates or deletions caused by foreign-key enforcement actions, such as ON UPDATE CASCADE
or ON DELETE SET NULL, are treated as part of the SQL command that caused them (note that such
actions are never deferred). Relevant triggers on the affected table will be fired, so that this provides
another way in which a SQL command might fire triggers not directly matching its type. In simple cases,
triggers that request transition relations will see all changes caused in their table by a single original SQL
command as a single transition relation. However, there are cases in which the presence of an AFTER
ROW trigger that requests transition relations will cause the foreign-key enforcement actions triggered by
a single SQL command to be split into multiple steps, each with its own transition relation(s). In such
cases, any statement-level triggers that are present will be fired once per creation of a transition relation
set, ensuring that the triggers see each affected row in a transition relation once and only once.

Statement-level triggers on a view are fired only if the action on the view is handled by a row-level
INSTEAD OF trigger. If the action is handled by an INSTEAD rule, then whatever statements are emitted
by the rule are executed in place of the original statement naming the view, so that the triggers that will
be fired are those on tables named in the replacement statements. Similarly, if the view is automatically
updatable, then the action is handled by automatically rewriting the statement into an action on the view's
base table, so that the base table's statement-level triggers are the ones that are fired.

Creating a row-level trigger on a partitioned table will cause identical triggers to be created in all its existing
partitions; and any partitions created or attached later will contain an identical trigger, too. Triggers on
partitioned tables may only be AFTER.

Modifying a partitioned table or a table with inheritance children fires statement-level triggers attached
to the explicitly named table, but not statement-level triggers for its partitions or child tables. In contrast,
row-level triggers are fired on the rows in affected partitions or child tables, even if they are not explicitly
named in the query. If a statement-level trigger has been defined with transition relations named by a
REFERENCING clause, then before and after images of rows are visible from all affected partitions or
child tables. In the case of inheritance children, the row images include only columns that are present in
the table that the trigger is attached to. Currently, row-level triggers with transition relations cannot be
defined on partitions or inheritance child tables.

In PostgreSQL versions before 7.3, it was necessary to declare trigger functions as returning the
placeholder type opaque, rather than trigger. To support loading of old dump files, CREATE
TRIGGER will accept a function declared as returning opaque, but it will issue a notice and change the
function's declared return type to trigger.

Examples
Execute the function check_account_update whenever a row of the table accounts is about to
be updated:

1706

CREATE TRIGGER

CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

The same, but only execute the function if column balance is specified as a target in the UPDATE
command:

CREATE TRIGGER check_update
 BEFORE UPDATE OF balance ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

This form only executes the function if column balance has in fact changed value:

CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 WHEN (OLD.balance IS DISTINCT FROM NEW.balance)
 EXECUTE FUNCTION check_account_update();

Call a function to log updates of accounts, but only if something changed:

CREATE TRIGGER log_update
 AFTER UPDATE ON accounts
 FOR EACH ROW
 WHEN (OLD.* IS DISTINCT FROM NEW.*)
 EXECUTE FUNCTION log_account_update();

Execute the function view_insert_row for each row to insert rows into the tables underlying a view:

CREATE TRIGGER view_insert
 INSTEAD OF INSERT ON my_view
 FOR EACH ROW
 EXECUTE FUNCTION view_insert_row();

Execute the function check_transfer_balances_to_zero for each statement to confirm that the
transfer rows offset to a net of zero:

CREATE TRIGGER transfer_insert
 AFTER INSERT ON transfer
 REFERENCING NEW TABLE AS inserted
 FOR EACH STATEMENT
 EXECUTE FUNCTION check_transfer_balances_to_zero();

Execute the function check_matching_pairs for each row to confirm that changes are made to
matching pairs at the same time (by the same statement):

CREATE TRIGGER paired_items_update

1707

CREATE TRIGGER

 AFTER UPDATE ON paired_items
 REFERENCING NEW TABLE AS newtab OLD TABLE AS oldtab
 FOR EACH ROW
 EXECUTE FUNCTION check_matching_pairs();

Section 39.4 contains a complete example of a trigger function written in C.

Compatibility
The CREATE TRIGGER statement in PostgreSQL implements a subset of the SQL standard. The
following functionalities are currently missing:

• While transition table names for AFTER triggers are specified using the REFERENCING clause in
the standard way, the row variables used in FOR EACH ROW triggers may not be specified in a
REFERENCING clause. They are available in a manner that is dependent on the language in which the
trigger function is written, but is fixed for any one language. Some languages effectively behave as
though there is a REFERENCING clause containing OLD ROW AS OLD NEW ROW AS NEW.

• The standard allows transition tables to be used with column-specific UPDATE triggers, but then the set
of rows that should be visible in the transition tables depends on the trigger's column list. This is not
currently implemented by PostgreSQL.

• PostgreSQL only allows the execution of a user-defined function for the triggered action. The standard
allows the execution of a number of other SQL commands, such as CREATE TABLE, as the triggered
action. This limitation is not hard to work around by creating a user-defined function that executes the
desired commands.

SQL specifies that multiple triggers should be fired in time-of-creation order. PostgreSQL uses name order,
which was judged to be more convenient.

SQL specifies that BEFORE DELETE triggers on cascaded deletes fire after the cascaded DELETE
completes. The PostgreSQL behavior is for BEFORE DELETE to always fire before the delete action,
even a cascading one. This is considered more consistent. There is also nonstandard behavior if BEFORE
triggers modify rows or prevent updates during an update that is caused by a referential action. This can
lead to constraint violations or stored data that does not honor the referential constraint.

The ability to specify multiple actions for a single trigger using OR is a PostgreSQL extension of the SQL
standard.

The ability to fire triggers for TRUNCATE is a PostgreSQL extension of the SQL standard, as is the ability
to define statement-level triggers on views.

CREATE CONSTRAINT TRIGGER is a PostgreSQL extension of the SQL standard.

See Also
ALTER TRIGGER, DROP TRIGGER, CREATE FUNCTION, SET CONSTRAINTS

1708

CREATE TYPE
CREATE TYPE — define a new data type

Synopsis

CREATE TYPE name AS
 ([attribute_name data_type [COLLATE collation] [, ...]])

CREATE TYPE name AS ENUM
 (['label' [, ...]])

CREATE TYPE name AS RANGE (
 SUBTYPE = subtype
 [, SUBTYPE_OPCLASS = subtype_operator_class]
 [, COLLATION = collation]
 [, CANONICAL = canonical_function]
 [, SUBTYPE_DIFF = subtype_diff_function]
)

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function]
 [, ANALYZE = analyze_function]
 [, INTERNALLENGTH = { internallength | VARIABLE }]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, LIKE = like_type]
 [, CATEGORY = category]
 [, PREFERRED = preferred]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COLLATABLE = collatable]
)

CREATE TYPE name

Description
CREATE TYPE registers a new data type for use in the current database. The user who defines a type
becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise it is created in the
current schema. The type name must be distinct from the name of any existing type or domain in the same

1709

CREATE TYPE

schema. (Because tables have associated data types, the type name must also be distinct from the name
of any existing table in the same schema.)

There are five forms of CREATE TYPE, as shown in the syntax synopsis above. They respectively create a
composite type, an enum type, a range type, a base type, or a shell type. The first four of these are discussed
in turn below. A shell type is simply a placeholder for a type to be defined later; it is created by issuing
CREATE TYPE with no parameters except for the type name. Shell types are needed as forward references
when creating range types and base types, as discussed in those sections.

Composite Types

The first form of CREATE TYPE creates a composite type. The composite type is specified by a list of
attribute names and data types. An attribute's collation can be specified too, if its data type is collatable.
A composite type is essentially the same as the row type of a table, but using CREATE TYPE avoids the
need to create an actual table when all that is wanted is to define a type. A stand-alone composite type is
useful, for example, as the argument or return type of a function.

To be able to create a composite type, you must have USAGE privilege on all attribute types.

Enumerated Types

The second form of CREATE TYPE creates an enumerated (enum) type, as described in Section 8.7. Enum
types take a list of quoted labels, each of which must be less than NAMEDATALEN bytes long (64 bytes
in a standard PostgreSQL build). (It is possible to create an enumerated type with zero labels, but such a
type cannot be used to hold values before at least one label is added using ALTER TYPE.)

Range Types

The third form of CREATE TYPE creates a new range type, as described in Section 8.17.

The range type's subtype can be any type with an associated b-tree operator class (to determine the
ordering of values for the range type). Normally the subtype's default b-tree operator class is used to
determine ordering; to use a non-default operator class, specify its name with subtype_opclass. If
the subtype is collatable, and you want to use a non-default collation in the range's ordering, specify the
desired collation with the collation option.

The optional canonical function must take one argument of the range type being defined, and return
a value of the same type. This is used to convert range values to a canonical form, when applicable. See
Section 8.17.8 for more information. Creating a canonical function is a bit tricky, since it must be
defined before the range type can be declared. To do this, you must first create a shell type, which is a
placeholder type that has no properties except a name and an owner. This is done by issuing the command
CREATE TYPE name, with no additional parameters. Then the function can be declared using the
shell type as argument and result, and finally the range type can be declared using the same name. This
automatically replaces the shell type entry with a valid range type.

The optional subtype_diff function must take two values of the subtype type as argument, and
return a double precision value representing the difference between the two given values. While
this is optional, providing it allows much greater efficiency of GiST indexes on columns of the range type.
See Section 8.17.8 for more information.

Base Types

The fourth form of CREATE TYPE creates a new base type (scalar type). To create a new base type, you
must be a superuser. (This restriction is made because an erroneous type definition could confuse or even
crash the server.)

1710

CREATE TYPE

The parameters can appear in any order, not only that illustrated above, and most are optional.
You must register two or more functions (using CREATE FUNCTION) before defining the
type. The support functions input_function and output_function are required, while
the functions receive_function, send_function, type_modifier_input_function,
type_modifier_output_function and analyze_function are optional. Generally these
functions have to be coded in C or another low-level language.

The input_function converts the type's external textual representation to the internal representation
used by the operators and functions defined for the type. output_function performs the reverse
transformation. The input function can be declared as taking one argument of type cstring, or as taking
three arguments of types cstring, oid, integer. The first argument is the input text as a C string,
the second argument is the type's own OID (except for array types, which instead receive their element
type's OID), and the third is the typmod of the destination column, if known (-1 will be passed if not).
The input function must return a value of the data type itself. Usually, an input function should be declared
STRICT; if it is not, it will be called with a NULL first parameter when reading a NULL input value.
The function must still return NULL in this case, unless it raises an error. (This case is mainly meant to
support domain input functions, which might need to reject NULL inputs.) The output function must be
declared as taking one argument of the new data type. The output function must return type cstring.
Output functions are not invoked for NULL values.

The optional receive_function converts the type's external binary representation to the internal
representation. If this function is not supplied, the type cannot participate in binary input. The binary
representation should be chosen to be cheap to convert to internal form, while being reasonably portable.
(For example, the standard integer data types use network byte order as the external binary representation,
while the internal representation is in the machine's native byte order.) The receive function should perform
adequate checking to ensure that the value is valid. The receive function can be declared as taking one
argument of type internal, or as taking three arguments of types internal, oid, integer. The first
argument is a pointer to a StringInfo buffer holding the received byte string; the optional arguments
are the same as for the text input function. The receive function must return a value of the data type itself.
Usually, a receive function should be declared STRICT; if it is not, it will be called with a NULL first
parameter when reading a NULL input value. The function must still return NULL in this case, unless it
raises an error. (This case is mainly meant to support domain receive functions, which might need to reject
NULL inputs.) Similarly, the optional send_function converts from the internal representation to the
external binary representation. If this function is not supplied, the type cannot participate in binary output.
The send function must be declared as taking one argument of the new data type. The send function must
return type bytea. Send functions are not invoked for NULL values.

You should at this point be wondering how the input and output functions can be declared to have results or
arguments of the new type, when they have to be created before the new type can be created. The answer is
that the type should first be defined as a shell type, which is a placeholder type that has no properties except
a name and an owner. This is done by issuing the command CREATE TYPE name, with no additional
parameters. Then the C I/O functions can be defined referencing the shell type. Finally, CREATE TYPE
with a full definition replaces the shell entry with a complete, valid type definition, after which the new
type can be used normally.

The optional type_modifier_input_function and type_modifier_output_function
are needed if the type supports modifiers, that is optional constraints attached to a type declaration,
such as char(5) or numeric(30,2). PostgreSQL allows user-defined types to take one or
more simple constants or identifiers as modifiers. However, this information must be capable of
being packed into a single non-negative integer value for storage in the system catalogs. The
type_modifier_input_function is passed the declared modifier(s) in the form of a cstring
array. It must check the values for validity (throwing an error if they are wrong), and if they are
correct, return a single non-negative integer value that will be stored as the column “typmod”.
Type modifiers will be rejected if the type does not have a type_modifier_input_function.
The type_modifier_output_function converts the internal integer typmod value back to the

1711

CREATE TYPE

correct form for user display. It must return a cstring value that is the exact string to append to
the type name; for example numeric's function might return (30,2). It is allowed to omit the
type_modifier_output_function, in which case the default display format is just the stored
typmod integer value enclosed in parentheses.

The optional analyze_function performs type-specific statistics collection for columns of the data
type. By default, ANALYZE will attempt to gather statistics using the type's “equals” and “less-than”
operators, if there is a default b-tree operator class for the type. For non-scalar types this behavior is likely
to be unsuitable, so it can be overridden by specifying a custom analysis function. The analysis function
must be declared to take a single argument of type internal, and return a boolean result. The detailed
API for analysis functions appears in src/include/commands/vacuum.h.

While the details of the new type's internal representation are only known to the I/O functions and other
functions you create to work with the type, there are several properties of the internal representation that
must be declared to PostgreSQL. Foremost of these is internallength. Base data types can be fixed-
length, in which case internallength is a positive integer, or variable-length, indicated by setting
internallength to VARIABLE. (Internally, this is represented by setting typlen to -1.) The internal
representation of all variable-length types must start with a 4-byte integer giving the total length of this
value of the type. (Note that the length field is often encoded, as described in Section 68.2; it's unwise
to access it directly.)

The optional flag PASSEDBYVALUE indicates that values of this data type are passed by value, rather
than by reference. Types passed by value must be fixed-length, and their internal representation cannot be
larger than the size of the Datum type (4 bytes on some machines, 8 bytes on others).

The alignment parameter specifies the storage alignment required for the data type. The allowed values
equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that variable-length types must have an alignment
of at least 4, since they necessarily contain an int4 as their first component.

The storage parameter allows selection of storage strategies for variable-length data types. (Only
plain is allowed for fixed-length types.) plain specifies that data of the type will always be stored in-
line and not compressed. extended specifies that the system will first try to compress a long data value,
and will move the value out of the main table row if it's still too long. external allows the value to be
moved out of the main table, but the system will not try to compress it. main allows compression, but
discourages moving the value out of the main table. (Data items with this storage strategy might still be
moved out of the main table if there is no other way to make a row fit, but they will be kept in the main
table preferentially over extended and external items.)

All storage values other than plain imply that the functions of the data type can handle values that
have been toasted, as described in Section 68.2 and Section 38.12.1. The specific other value given merely
determines the default TOAST storage strategy for columns of a toastable data type; users can pick other
strategies for individual columns using ALTER TABLE SET STORAGE.

The like_type parameter provides an alternative method for specifying the basic representation
properties of a data type: copy them from some existing type. The values of internallength,
passedbyvalue, alignment, and storage are copied from the named type. (It is possible, though
usually undesirable, to override some of these values by specifying them along with the LIKE clause.)
Specifying representation this way is especially useful when the low-level implementation of the new type
“piggybacks” on an existing type in some fashion.

The category and preferred parameters can be used to help control which implicit cast will be
applied in ambiguous situations. Each data type belongs to a category named by a single ASCII character,
and each type is either “preferred” or not within its category. The parser will prefer casting to preferred
types (but only from other types within the same category) when this rule is helpful in resolving overloaded
functions or operators. For more details see Chapter 10. For types that have no implicit casts to or from
any other types, it is sufficient to leave these settings at the defaults. However, for a group of related types

1712

CREATE TYPE

that have implicit casts, it is often helpful to mark them all as belonging to a category and select one
or two of the “most general” types as being preferred within the category. The category parameter is
especially useful when adding a user-defined type to an existing built-in category, such as the numeric or
string types. However, it is also possible to create new entirely-user-defined type categories. Select any
ASCII character other than an upper-case letter to name such a category.

A default value can be specified, in case a user wants columns of the data type to default to something other
than the null value. Specify the default with the DEFAULT key word. (Such a default can be overridden
by an explicit DEFAULT clause attached to a particular column.)

To indicate that a type is an array, specify the type of the array elements using the ELEMENT key word.
For example, to define an array of 4-byte integers (int4), specify ELEMENT = int4. More details
about array types appear below.

To indicate the delimiter to be used between values in the external representation of arrays of this type,
delimiter can be set to a specific character. The default delimiter is the comma (,). Note that the
delimiter is associated with the array element type, not the array type itself.

If the optional Boolean parameter collatable is true, column definitions and expressions of the type
may carry collation information through use of the COLLATE clause. It is up to the implementations of
the functions operating on the type to actually make use of the collation information; this does not happen
automatically merely by marking the type collatable.

Array Types

Whenever a user-defined type is created, PostgreSQL automatically creates an associated array type, whose
name consists of the element type's name prepended with an underscore, and truncated if necessary to keep
it less than NAMEDATALEN bytes long. (If the name so generated collides with an existing type name,
the process is repeated until a non-colliding name is found.) This implicitly-created array type is variable
length and uses the built-in input and output functions array_in and array_out. The array type tracks
any changes in its element type's owner or schema, and is dropped if the element type is.

You might reasonably ask why there is an ELEMENT option, if the system makes the correct array type
automatically. The only case where it's useful to use ELEMENT is when you are making a fixed-length
type that happens to be internally an array of a number of identical things, and you want to allow these
things to be accessed directly by subscripting, in addition to whatever operations you plan to provide for
the type as a whole. For example, type point is represented as just two floating-point numbers, which
can be accessed using point[0] and point[1]. Note that this facility only works for fixed-length
types whose internal form is exactly a sequence of identical fixed-length fields. A subscriptable variable-
length type must have the generalized internal representation used by array_in and array_out. For
historical reasons (i.e., this is clearly wrong but it's far too late to change it), subscripting of fixed-length
array types starts from zero, rather than from one as for variable-length arrays.

Parameters
name

The name (optionally schema-qualified) of a type to be created.

attribute_name

The name of an attribute (column) for the composite type.

data_type

The name of an existing data type to become a column of the composite type.

1713

CREATE TYPE

collation

The name of an existing collation to be associated with a column of a composite type, or with a range
type.

label

A string literal representing the textual label associated with one value of an enum type.

subtype

The name of the element type that the range type will represent ranges of.

subtype_operator_class

The name of a b-tree operator class for the subtype.

canonical_function

The name of the canonicalization function for the range type.

subtype_diff_function

The name of a difference function for the subtype.

input_function

The name of a function that converts data from the type's external textual form to its internal form.

output_function

The name of a function that converts data from the type's internal form to its external textual form.

receive_function

The name of a function that converts data from the type's external binary form to its internal form.

send_function

The name of a function that converts data from the type's internal form to its external binary form.

type_modifier_input_function

The name of a function that converts an array of modifier(s) for the type into internal form.

type_modifier_output_function

The name of a function that converts the internal form of the type's modifier(s) to external textual form.

analyze_function

The name of a function that performs statistical analysis for the data type.

internallength

A numeric constant that specifies the length in bytes of the new type's internal representation. The
default assumption is that it is variable-length.

1714

CREATE TYPE

alignment

The storage alignment requirement of the data type. If specified, it must be char, int2, int4, or
double; the default is int4.

storage

The storage strategy for the data type. If specified, must be plain, external, extended, or
main; the default is plain.

like_type

The name of an existing data type that the new type will have the same representation as. The values
of internallength, passedbyvalue, alignment, and storage are copied from that type,
unless overridden by explicit specification elsewhere in this CREATE TYPE command.

category

The category code (a single ASCII character) for this type. The default is 'U' for “user-defined
type”. Other standard category codes can be found in Table 52.63. You may also choose other ASCII
characters in order to create custom categories.

preferred

True if this type is a preferred type within its type category, else false. The default is false. Be very
careful about creating a new preferred type within an existing type category, as this could cause
surprising changes in behavior.

default

The default value for the data type. If this is omitted, the default is null.

element

The type being created is an array; this specifies the type of the array elements.

delimiter

The delimiter character to be used between values in arrays made of this type.

collatable

True if this type's operations can use collation information. The default is false.

Notes
Because there are no restrictions on use of a data type once it's been created, creating a base type or range
type is tantamount to granting public execute permission on the functions mentioned in the type definition.
This is usually not an issue for the sorts of functions that are useful in a type definition. But you might
want to think twice before designing a type in a way that would require “secret” information to be used
while converting it to or from external form.

Before PostgreSQL version 8.3, the name of a generated array type was always exactly the element type's
name with one underscore character (_) prepended. (Type names were therefore restricted in length to
one less character than other names.) While this is still usually the case, the array type name may vary
from this in case of maximum-length names or collisions with user type names that begin with underscore.

1715

CREATE TYPE

Writing code that depends on this convention is therefore deprecated. Instead, use pg_type.typarray
to locate the array type associated with a given type.

It may be advisable to avoid using type and table names that begin with underscore. While the server
will change generated array type names to avoid collisions with user-given names, there is still risk
of confusion, particularly with old client software that may assume that type names beginning with
underscores always represent arrays.

Before PostgreSQL version 8.2, the shell-type creation syntax CREATE TYPE name did not exist. The
way to create a new base type was to create its input function first. In this approach, PostgreSQL will first
see the name of the new data type as the return type of the input function. The shell type is implicitly
created in this situation, and then it can be referenced in the definitions of the remaining I/O functions.
This approach still works, but is deprecated and might be disallowed in some future release. Also, to avoid
accidentally cluttering the catalogs with shell types as a result of simple typos in function definitions, a
shell type will only be made this way when the input function is written in C.

In PostgreSQL versions before 7.3, it was customary to avoid creating a shell type at all, by replacing the
functions' forward references to the type name with the placeholder pseudo-type opaque. The cstring
arguments and results also had to be declared as opaque before 7.3. To support loading of old dump files,
CREATE TYPE will accept I/O functions declared using opaque, but it will issue a notice and change
the function declarations to use the correct types.

Examples
This example creates a composite type and uses it in a function definition:

CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$
 SELECT fooid, fooname FROM foo
$$ LANGUAGE SQL;

This example creates an enumerated type and uses it in a table definition:

CREATE TYPE bug_status AS ENUM ('new', 'open', 'closed');

CREATE TABLE bug (
 id serial,
 description text,
 status bug_status
);

This example creates a range type:

CREATE TYPE float8_range AS RANGE (subtype = float8, subtype_diff =
 float8mi);

This example creates the base data type box and then uses the type in a table definition:

CREATE TYPE box;

1716

CREATE TYPE

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS ... ;
CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS ... ;

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function
);

CREATE TABLE myboxes (
 id integer,
 description box
);

If the internal structure of box were an array of four float4 elements, we might instead use:

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function,
 ELEMENT = float4
);

which would allow a box value's component numbers to be accessed by subscripting. Otherwise the type
behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (
 INPUT = lo_filein, OUTPUT = lo_fileout,
 INTERNALLENGTH = VARIABLE
);
CREATE TABLE big_objs (
 id integer,
 obj bigobj
);

More examples, including suitable input and output functions, are in Section 38.12.

Compatibility
The first form of the CREATE TYPE command, which creates a composite type, conforms to the SQL
standard. The other forms are PostgreSQL extensions. The CREATE TYPE statement in the SQL standard
also defines other forms that are not implemented in PostgreSQL.

The ability to create a composite type with zero attributes is a PostgreSQL-specific deviation from the
standard (analogous to the same case in CREATE TABLE).

See Also
ALTER TYPE, CREATE DOMAIN, CREATE FUNCTION, DROP TYPE

1717

CREATE USER
CREATE USER — define a new database role

Synopsis

CREATE USER name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description
CREATE USER is now an alias for CREATE ROLE. The only difference is that when the command is
spelled CREATE USER, LOGIN is assumed by default, whereas NOLOGIN is assumed when the command
is spelled CREATE ROLE.

Compatibility
The CREATE USER statement is a PostgreSQL extension. The SQL standard leaves the definition of
users to the implementation.

See Also
CREATE ROLE

1718

CREATE USER MAPPING
CREATE USER MAPPING — define a new mapping of a user to a foreign server

Synopsis

CREATE USER MAPPING [IF NOT EXISTS] FOR { user_name | USER |
 CURRENT_USER | PUBLIC }
 SERVER server_name
 [OPTIONS (option 'value' [, ...])]

Description
CREATE USER MAPPING defines a mapping of a user to a foreign server. A user mapping typically
encapsulates connection information that a foreign-data wrapper uses together with the information
encapsulated by a foreign server to access an external data resource.

The owner of a foreign server can create user mappings for that server for any user. Also, a user can create
a user mapping for their own user name if USAGE privilege on the server has been granted to the user.

Parameters
IF NOT EXISTS

Do not throw an error if a mapping of the given user to the given foreign server already exists. A
notice is issued in this case. Note that there is no guarantee that the existing user mapping is anything
like the one that would have been created.

user_name

The name of an existing user that is mapped to foreign server. CURRENT_USER and USER match
the name of the current user. When PUBLIC is specified, a so-called public mapping is created that
is used when no user-specific mapping is applicable.

server_name

The name of an existing server for which the user mapping is to be created.

OPTIONS (option 'value' [, ...])

This clause specifies the options of the user mapping. The options typically define the actual user
name and password of the mapping. Option names must be unique. The allowed option names and
values are specific to the server's foreign-data wrapper.

Examples
Create a user mapping for user bob, server foo:

CREATE USER MAPPING FOR bob SERVER foo OPTIONS (user 'bob', password
 'secret');

1719

CREATE USER MAPPING

Compatibility
CREATE USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER USER MAPPING, DROP USER MAPPING, CREATE FOREIGN DATA WRAPPER,
CREATE SERVER

1720

CREATE VIEW
CREATE VIEW — define a new view

Synopsis

CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name
 [(column_name [, ...])]
 [WITH (view_option_name [= view_option_value] [, ...])]
 AS query
 [WITH [CASCADED | LOCAL] CHECK OPTION]

Description
CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the query is
run every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it is replaced.
The new query must generate the same columns that were generated by the existing view query (that is, the
same column names in the same order and with the same data types), but it may add additional columns
to the end of the list. The calculations giving rise to the output columns may be completely different.

If a schema name is given (for example, CREATE VIEW myschema.myview ...) then the view
is created in the specified schema. Otherwise it is created in the current schema. Temporary views exist
in a special schema, so a schema name cannot be given when creating a temporary view. The name of
the view must be distinct from the name of any other view, table, sequence, index or foreign table in the
same schema.

Parameters
TEMPORARY or TEMP

If specified, the view is created as a temporary view. Temporary views are automatically dropped
at the end of the current session. Existing permanent relations with the same name are not visible to
the current session while the temporary view exists, unless they are referenced with schema-qualified
names.

If any of the tables referenced by the view are temporary, the view is created as a temporary view
(whether TEMPORARY is specified or not).

RECURSIVE

Creates a recursive view. The syntax

CREATE RECURSIVE VIEW [schema .] view_name (column_names) AS
 SELECT ...;

is equivalent to

1721

CREATE VIEW

CREATE VIEW [schema .] view_name AS WITH RECURSIVE view_name
 (column_names) AS (SELECT ...) SELECT column_names FROM view_name;

A view column name list must be specified for a recursive view.

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the column names are
deduced from the query.

WITH (view_option_name [= view_option_value] [, ...])

This clause specifies optional parameters for a view; the following parameters are supported:

check_option (string)

This parameter may be either local or cascaded, and is equivalent to specifying WITH
[CASCADED | LOCAL] CHECK OPTION (see below). This option can be changed on
existing views using ALTER VIEW.

security_barrier (boolean)

This should be used if the view is intended to provide row-level security. See Section 41.5 for
full details.

query

A SELECT or VALUES command which will provide the columns and rows of the view.

WITH [CASCADED | LOCAL] CHECK OPTION

This option controls the behavior of automatically updatable views. When this option is specified,
INSERT and UPDATE commands on the view will be checked to ensure that new rows satisfy the
view-defining condition (that is, the new rows are checked to ensure that they are visible through the
view). If they are not, the update will be rejected. If the CHECK OPTION is not specified, INSERT
and UPDATE commands on the view are allowed to create rows that are not visible through the view.
The following check options are supported:

LOCAL

New rows are only checked against the conditions defined directly in the view itself. Any
conditions defined on underlying base views are not checked (unless they also specify the CHECK
OPTION).

CASCADED

New rows are checked against the conditions of the view and all underlying base views. If the
CHECK OPTION is specified, and neither LOCAL nor CASCADED is specified, then CASCADED
is assumed.

The CHECK OPTION may not be used with RECURSIVE views.

Note that the CHECK OPTION is only supported on views that are automatically updatable, and do
not have INSTEAD OF triggers or INSTEAD rules. If an automatically updatable view is defined
on top of a base view that has INSTEAD OF triggers, then the LOCAL CHECK OPTION may be

1722

CREATE VIEW

used to check the conditions on the automatically updatable view, but the conditions on the base view
with INSTEAD OF triggers will not be checked (a cascaded check option will not cascade down
to a trigger-updatable view, and any check options defined directly on a trigger-updatable view will
be ignored). If the view or any of its base relations has an INSTEAD rule that causes the INSERT
or UPDATE command to be rewritten, then all check options will be ignored in the rewritten query,
including any checks from automatically updatable views defined on top of the relation with the
INSTEAD rule.

Notes
Use the DROP VIEW statement to drop views.

Be careful that the names and types of the view's columns will be assigned the way you want. For example:

CREATE VIEW vista AS SELECT 'Hello World';

is bad form because the column name defaults to ?column?; also, the column data type defaults to text,
which might not be what you wanted. Better style for a string literal in a view's result is something like:

CREATE VIEW vista AS SELECT text 'Hello World' AS hello;

Access to tables referenced in the view is determined by permissions of the view owner. In some cases,
this can be used to provide secure but restricted access to the underlying tables. However, not all views are
secure against tampering; see Section 41.5 for details. Functions called in the view are treated the same
as if they had been called directly from the query using the view. Therefore the user of a view must have
permissions to call all functions used by the view.

When CREATE OR REPLACE VIEW is used on an existing view, only the view's defining SELECT
rule is changed. Other view properties, including ownership, permissions, and non-SELECT rules, remain
unchanged. You must own the view to replace it (this includes being a member of the owning role).

Updatable Views

Simple views are automatically updatable: the system will allow INSERT, UPDATE and DELETE
statements to be used on the view in the same way as on a regular table. A view is automatically updatable
if it satisfies all of the following conditions:

• The view must have exactly one entry in its FROM list, which must be a table or another updatable view.

• The view definition must not contain WITH, DISTINCT, GROUP BY, HAVING, LIMIT, or OFFSET
clauses at the top level.

• The view definition must not contain set operations (UNION, INTERSECT or EXCEPT) at the top level.

• The view's select list must not contain any aggregates, window functions or set-returning functions.

An automatically updatable view may contain a mix of updatable and non-updatable columns. A column
is updatable if it is a simple reference to an updatable column of the underlying base relation; otherwise
the column is read-only, and an error will be raised if an INSERT or UPDATE statement attempts to assign
a value to it.

If the view is automatically updatable the system will convert any INSERT, UPDATE or DELETE
statement on the view into the corresponding statement on the underlying base relation. INSERT
statements that have an ON CONFLICT UPDATE clause are fully supported.

1723

CREATE VIEW

If an automatically updatable view contains a WHERE condition, the condition restricts which rows of the
base relation are available to be modified by UPDATE and DELETE statements on the view. However, an
UPDATE is allowed to change a row so that it no longer satisfies the WHERE condition, and thus is no longer
visible through the view. Similarly, an INSERT command can potentially insert base-relation rows that
do not satisfy the WHERE condition and thus are not visible through the view (ON CONFLICT UPDATE
may similarly affect an existing row not visible through the view). The CHECK OPTION may be used to
prevent INSERT and UPDATE commands from creating such rows that are not visible through the view.

If an automatically updatable view is marked with the security_barrier property then all the view's
WHERE conditions (and any conditions using operators which are marked as LEAKPROOF) will always
be evaluated before any conditions that a user of the view has added. See Section 41.5 for full details.
Note that, due to this, rows which are not ultimately returned (because they do not pass the user's WHERE
conditions) may still end up being locked. EXPLAIN can be used to see which conditions are applied at
the relation level (and therefore do not lock rows) and which are not.

A more complex view that does not satisfy all these conditions is read-only by default: the system will
not allow an insert, update, or delete on the view. You can get the effect of an updatable view by creating
INSTEAD OF triggers on the view, which must convert attempted inserts, etc. on the view into appropriate
actions on other tables. For more information see CREATE TRIGGER. Another possibility is to create
rules (see CREATE RULE), but in practice triggers are easier to understand and use correctly.

Note that the user performing the insert, update or delete on the view must have the corresponding insert,
update or delete privilege on the view. In addition the view's owner must have the relevant privileges on
the underlying base relations, but the user performing the update does not need any permissions on the
underlying base relations (see Section 41.5).

Examples
Create a view consisting of all comedy films:

CREATE VIEW comedies AS
 SELECT *
 FROM films
 WHERE kind = 'Comedy';

This will create a view containing the columns that are in the film table at the time of view creation.
Though * was used to create the view, columns added later to the table will not be part of the view.

Create a view with LOCAL CHECK OPTION:

CREATE VIEW universal_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'U'
 WITH LOCAL CHECK OPTION;

This will create a view based on the comedies view, showing only films with kind = 'Comedy'
and classification = 'U'. Any attempt to INSERT or UPDATE a row in the view will be rejected
if the new row doesn't have classification = 'U', but the film kind will not be checked.

Create a view with CASCADED CHECK OPTION:

1724

CREATE VIEW

CREATE VIEW pg_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'PG'
 WITH CASCADED CHECK OPTION;

This will create a view that checks both the kind and classification of new rows.

Create a view with a mix of updatable and non-updatable columns:

CREATE VIEW comedies AS
 SELECT f.*,
 country_code_to_name(f.country_code) AS country,
 (SELECT avg(r.rating)
 FROM user_ratings r
 WHERE r.film_id = f.id) AS avg_rating
 FROM films f
 WHERE f.kind = 'Comedy';

This view will support INSERT, UPDATE and DELETE. All the columns from the films table will be
updatable, whereas the computed columns country and avg_rating will be read-only.

Create a recursive view consisting of the numbers from 1 to 100:

CREATE RECURSIVE VIEW public.nums_1_100 (n) AS
 VALUES (1)
UNION ALL
 SELECT n+1 FROM nums_1_100 WHERE n < 100;

Notice that although the recursive view's name is schema-qualified in this CREATE, its internal self-
reference is not schema-qualified. This is because the implicitly-created CTE's name cannot be schema-
qualified.

Compatibility
CREATE OR REPLACE VIEW is a PostgreSQL language extension. So is the concept of a temporary
view. The WITH (...) clause is an extension as well.

See Also
ALTER VIEW, DROP VIEW, CREATE MATERIALIZED VIEW

1725

DEALLOCATE
DEALLOCATE — deallocate a prepared statement

Synopsis

DEALLOCATE [PREPARE] { name | ALL }

Description
DEALLOCATE is used to deallocate a previously prepared SQL statement. If you do not explicitly
deallocate a prepared statement, it is deallocated when the session ends.

For more information on prepared statements, see PREPARE.

Parameters
PREPARE

This key word is ignored.

name

The name of the prepared statement to deallocate.

ALL

Deallocate all prepared statements.

Compatibility
The SQL standard includes a DEALLOCATE statement, but it is only for use in embedded SQL.

See Also
EXECUTE, PREPARE

1726

DECLARE
DECLARE — define a cursor

Synopsis

DECLARE name [BINARY] [INSENSITIVE] [[NO] SCROLL]
 CURSOR [{ WITH | WITHOUT } HOLD] FOR query

Description
DECLARE allows a user to create cursors, which can be used to retrieve a small number of rows at a time
out of a larger query. After the cursor is created, rows are fetched from it using FETCH.

Note

This page describes usage of cursors at the SQL command level. If you are trying to use cursors
inside a PL/pgSQL function, the rules are different — see Section 43.7.

Parameters
name

The name of the cursor to be created.

BINARY

Causes the cursor to return data in binary rather than in text format.

INSENSITIVE

Indicates that data retrieved from the cursor should be unaffected by updates to the table(s) underlying
the cursor that occur after the cursor is created. In PostgreSQL, this is the default behavior; so this
key word has no effect and is only accepted for compatibility with the SQL standard.

SCROLL
NO SCROLL

SCROLL specifies that the cursor can be used to retrieve rows in a nonsequential fashion (e.g.,
backward). Depending upon the complexity of the query's execution plan, specifying SCROLL might
impose a performance penalty on the query's execution time. NO SCROLL specifies that the cursor
cannot be used to retrieve rows in a nonsequential fashion. The default is to allow scrolling in some
cases; this is not the same as specifying SCROLL. See Notes for details.

WITH HOLD
WITHOUT HOLD

WITH HOLD specifies that the cursor can continue to be used after the transaction that created
it successfully commits. WITHOUT HOLD specifies that the cursor cannot be used outside of the

1727

DECLARE

transaction that created it. If neither WITHOUT HOLD nor WITH HOLD is specified, WITHOUT HOLD
is the default.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

The key words BINARY, INSENSITIVE, and SCROLL can appear in any order.

Notes
Normal cursors return data in text format, the same as a SELECT would produce. The BINARY option
specifies that the cursor should return data in binary format. This reduces conversion effort for both the
server and client, at the cost of more programmer effort to deal with platform-dependent binary data
formats. As an example, if a query returns a value of one from an integer column, you would get a string of
1 with a default cursor, whereas with a binary cursor you would get a 4-byte field containing the internal
representation of the value (in big-endian byte order).

Binary cursors should be used carefully. Many applications, including psql, are not prepared to handle
binary cursors and expect data to come back in the text format.

Note

When the client application uses the “extended query” protocol to issue a FETCH command, the
Bind protocol message specifies whether data is to be retrieved in text or binary format. This choice
overrides the way that the cursor is defined. The concept of a binary cursor as such is thus obsolete
when using extended query protocol — any cursor can be treated as either text or binary.

Unless WITH HOLD is specified, the cursor created by this command can only be used within the current
transaction. Thus, DECLARE without WITH HOLD is useless outside a transaction block: the cursor would
survive only to the completion of the statement. Therefore PostgreSQL reports an error if such a command
is used outside a transaction block. Use BEGIN and COMMIT (or ROLLBACK) to define a transaction
block.

If WITH HOLD is specified and the transaction that created the cursor successfully commits, the cursor
can continue to be accessed by subsequent transactions in the same session. (But if the creating transaction
is aborted, the cursor is removed.) A cursor created with WITH HOLD is closed when an explicit CLOSE
command is issued on it, or the session ends. In the current implementation, the rows represented by a
held cursor are copied into a temporary file or memory area so that they remain available for subsequent
transactions.

WITH HOLD may not be specified when the query includes FOR UPDATE or FOR SHARE.

The SCROLL option should be specified when defining a cursor that will be used to fetch backwards. This
is required by the SQL standard. However, for compatibility with earlier versions, PostgreSQL will allow
backward fetches without SCROLL, if the cursor's query plan is simple enough that no extra overhead is
needed to support it. However, application developers are advised not to rely on using backward fetches
from a cursor that has not been created with SCROLL. If NO SCROLL is specified, then backward fetches
are disallowed in any case.

Backward fetches are also disallowed when the query includes FOR UPDATE or FOR SHARE; therefore
SCROLL may not be specified in this case.

1728

DECLARE

Caution

Scrollable and WITH HOLD cursors may give unexpected results if they invoke any volatile
functions (see Section 38.7). When a previously fetched row is re-fetched, the functions might be
re-executed, perhaps leading to results different from the first time. One workaround for such cases
is to declare the cursor WITH HOLD and commit the transaction before reading any rows from
it. This will force the entire output of the cursor to be materialized in temporary storage, so that
volatile functions are executed exactly once for each row.

If the cursor's query includes FOR UPDATE or FOR SHARE, then returned rows are locked at the time they
are first fetched, in the same way as for a regular SELECT command with these options. In addition, the
returned rows will be the most up-to-date versions; therefore these options provide the equivalent of what
the SQL standard calls a “sensitive cursor”. (Specifying INSENSITIVE together with FOR UPDATE or
FOR SHARE is an error.)

Caution

It is generally recommended to use FOR UPDATE if the cursor is intended to be used with
UPDATE ... WHERE CURRENT OF or DELETE ... WHERE CURRENT OF. Using FOR
UPDATE prevents other sessions from changing the rows between the time they are fetched and
the time they are updated. Without FOR UPDATE, a subsequent WHERE CURRENT OF command
will have no effect if the row was changed since the cursor was created.

Another reason to use FOR UPDATE is that without it, a subsequent WHERE CURRENT OF might
fail if the cursor query does not meet the SQL standard's rules for being “simply updatable” (in
particular, the cursor must reference just one table and not use grouping or ORDER BY). Cursors
that are not simply updatable might work, or might not, depending on plan choice details; so in the
worst case, an application might work in testing and then fail in production. If FOR UPDATE is
specified, the cursor is guaranteed to be updatable.

The main reason not to use FOR UPDATE with WHERE CURRENT OF is if you need the cursor
to be scrollable, or to be insensitive to the subsequent updates (that is, continue to show the old
data). If this is a requirement, pay close heed to the caveats shown above.

The SQL standard only makes provisions for cursors in embedded SQL. The PostgreSQL server does not
implement an OPEN statement for cursors; a cursor is considered to be open when it is declared. However,
ECPG, the embedded SQL preprocessor for PostgreSQL, supports the standard SQL cursor conventions,
including those involving DECLARE and OPEN statements.

You can see all available cursors by querying the pg_cursors system view.

Examples
To declare a cursor:

DECLARE liahona CURSOR FOR SELECT * FROM films;

See FETCH for more examples of cursor usage.

1729

DECLARE

Compatibility
The SQL standard says that it is implementation-dependent whether cursors are sensitive to concurrent
updates of the underlying data by default. In PostgreSQL, cursors are insensitive by default, and can be
made sensitive by specifying FOR UPDATE. Other products may work differently.

The SQL standard allows cursors only in embedded SQL and in modules. PostgreSQL permits cursors
to be used interactively.

Binary cursors are a PostgreSQL extension.

See Also
CLOSE, FETCH, MOVE

1730

DELETE
DELETE — delete rows of a table

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table_name [*] [[AS] alias]
 [USING using_list]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Description

DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE clause is absent,
the effect is to delete all rows in the table. The result is a valid, but empty table.

Tip

TRUNCATE provides a faster mechanism to remove all rows from a table.

There are two ways to delete rows in a table using information contained in other tables in the
database: using sub-selects, or specifying additional tables in the USING clause. Which technique is more
appropriate depends on the specific circumstances.

The optional RETURNING clause causes DELETE to compute and return value(s) based on each row
actually deleted. Any expression using the table's columns, and/or columns of other tables mentioned in
USING, can be computed. The syntax of the RETURNING list is identical to that of the output list of
SELECT.

You must have the DELETE privilege on the table to delete from it, as well as the SELECT privilege for
any table in the USING clause or whose values are read in the condition.

Parameters

with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
DELETE query. See Section 7.8 and SELECT for details.

table_name

The name (optionally schema-qualified) of the table to delete rows from. If ONLY is specified before
the table name, matching rows are deleted from the named table only. If ONLY is not specified,
matching rows are also deleted from any tables inheriting from the named table. Optionally, * can be
specified after the table name to explicitly indicate that descendant tables are included.

1731

DELETE

alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given DELETE FROM foo AS f, the remainder of the DELETE statement
must refer to this table as f not foo.

using_list

A list of table expressions, allowing columns from other tables to appear in the WHERE condition.
This is similar to the list of tables that can be specified in the FROM Clause of a SELECT statement;
for example, an alias for the table name can be specified. Do not repeat the target table in the
using_list, unless you wish to set up a self-join.

condition

An expression that returns a value of type boolean. Only rows for which this expression returns
true will be deleted.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be deleted is the one
most recently fetched from this cursor. The cursor must be a non-grouping query on the DELETE's
target table. Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
See DECLARE for more information about using cursors with WHERE CURRENT OF.

output_expression

An expression to be computed and returned by the DELETE command after each row is deleted.
The expression can use any column names of the table named by table_name or table(s) listed in
USING. Write * to return all columns.

output_name

A name to use for a returned column.

Outputs
On successful completion, a DELETE command returns a command tag of the form

DELETE count

The count is the number of rows deleted. Note that the number may be less than the number of rows that
matched the condition when deletes were suppressed by a BEFORE DELETE trigger. If count is 0,
no rows were deleted by the query (this is not considered an error).

If the DELETE command contains a RETURNING clause, the result will be similar to that of a SELECT
statement containing the columns and values defined in the RETURNING list, computed over the row(s)
deleted by the command.

Notes
PostgreSQL lets you reference columns of other tables in the WHERE condition by specifying the other
tables in the USING clause. For example, to delete all films produced by a given producer, one can do:

1732

DELETE

DELETE FROM films USING producers
 WHERE producer_id = producers.id AND producers.name = 'foo';

What is essentially happening here is a join between films and producers, with all successfully joined
films rows being marked for deletion. This syntax is not standard. A more standard way to do it is:

DELETE FROM films
 WHERE producer_id IN (SELECT id FROM producers WHERE name = 'foo');

In some cases the join style is easier to write or faster to execute than the sub-select style.

Examples
Delete all films but musicals:

DELETE FROM films WHERE kind <> 'Musical';

Clear the table films:

DELETE FROM films;

Delete completed tasks, returning full details of the deleted rows:

DELETE FROM tasks WHERE status = 'DONE' RETURNING *;

Delete the row of tasks on which the cursor c_tasks is currently positioned:

DELETE FROM tasks WHERE CURRENT OF c_tasks;

Compatibility
This command conforms to the SQL standard, except that the USING and RETURNING clauses are
PostgreSQL extensions, as is the ability to use WITH with DELETE.

See Also
TRUNCATE

1733

DISCARD
DISCARD — discard session state

Synopsis

DISCARD { ALL | PLANS | SEQUENCES | TEMPORARY | TEMP }

Description
DISCARD releases internal resources associated with a database session. This command is useful for
partially or fully resetting the session's state. There are several subcommands to release different types of
resources; the DISCARD ALL variant subsumes all the others, and also resets additional state.

Parameters
PLANS

Releases all cached query plans, forcing re-planning to occur the next time the associated prepared
statement is used.

SEQUENCES

Discards all cached sequence-related state, including currval()/lastval() information and
any preallocated sequence values that have not yet been returned by nextval(). (See CREATE
SEQUENCE for a description of preallocated sequence values.)

TEMPORARY or TEMP

Drops all temporary tables created in the current session.

ALL

Releases all temporary resources associated with the current session and resets the session to its initial
state. Currently, this has the same effect as executing the following sequence of statements:

SET SESSION AUTHORIZATION DEFAULT;
RESET ALL;
DEALLOCATE ALL;
CLOSE ALL;
UNLISTEN *;
SELECT pg_advisory_unlock_all();
DISCARD PLANS;
DISCARD SEQUENCES;
DISCARD TEMP;

Notes
DISCARD ALL cannot be executed inside a transaction block.

1734

DISCARD

Compatibility
DISCARD is a PostgreSQL extension.

1735

DO
DO — execute an anonymous code block

Synopsis

DO [LANGUAGE lang_name] code

Description
DO executes an anonymous code block, or in other words a transient anonymous function in a procedural
language.

The code block is treated as though it were the body of a function with no parameters, returning void.
It is parsed and executed a single time.

The optional LANGUAGE clause can be written either before or after the code block.

Parameters
code

The procedural language code to be executed. This must be specified as a string literal, just as in
CREATE FUNCTION. Use of a dollar-quoted literal is recommended.

lang_name

The name of the procedural language the code is written in. If omitted, the default is plpgsql.

Notes
The procedural language to be used must already have been installed into the current database by means
of CREATE EXTENSION. plpgsql is installed by default, but other languages are not.

The user must have USAGE privilege for the procedural language, or must be a superuser if the language
is untrusted. This is the same privilege requirement as for creating a function in the language.

If DO is executed in a transaction block, then the procedure code cannot execute transaction control
statements. Transaction control statements are only allowed if DO is executed in its own transaction.

Examples
Grant all privileges on all views in schema public to role webuser:

DO $$DECLARE r record;
BEGIN
 FOR r IN SELECT table_schema, table_name FROM
 information_schema.tables
 WHERE table_type = 'VIEW' AND table_schema = 'public'

1736

DO

 LOOP
 EXECUTE 'GRANT ALL ON ' || quote_ident(r.table_schema) || '.'
 || quote_ident(r.table_name) || ' TO webuser';
 END LOOP;
END$$;

Compatibility
There is no DO statement in the SQL standard.

See Also
CREATE LANGUAGE

1737

DROP ACCESS METHOD
DROP ACCESS METHOD — remove an access method

Synopsis

DROP ACCESS METHOD [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP ACCESS METHOD removes an existing access method. Only superusers can drop access methods.

Parameters
IF EXISTS

Do not throw an error if the access method does not exist. A notice is issued in this case.

name

The name of an existing access method.

CASCADE

Automatically drop objects that depend on the access method (such as operator classes, operator
families, and indexes), and in turn all objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the access method if any objects depend on it. This is the default.

Examples
Drop the access method heptree:

DROP ACCESS METHOD heptree;

Compatibility
DROP ACCESS METHOD is a PostgreSQL extension.

See Also
CREATE ACCESS METHOD

1738

DROP AGGREGATE
DROP AGGREGATE — remove an aggregate function

Synopsis

DROP AGGREGATE [IF EXISTS] name (aggregate_signature) [, ...]
 [CASCADE | RESTRICT]

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode]
 [argname] argtype [, ...]

Description
DROP AGGREGATE removes an existing aggregate function. To execute this command the current user
must be the owner of the aggregate function.

Parameters
IF EXISTS

Do not throw an error if the aggregate does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing aggregate function.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that DROP AGGREGATE does not actually pay any attention to
argument names, since only the argument data types are needed to determine the aggregate function's
identity.

argtype

An input data type on which the aggregate function operates. To reference a zero-argument aggregate
function, write * in place of the list of argument specifications. To reference an ordered-set aggregate
function, write ORDER BY between the direct and aggregated argument specifications.

CASCADE

Automatically drop objects that depend on the aggregate function (such as views using it), and in turn
all objects that depend on those objects (see Section 5.13).

1739

DROP AGGREGATE

RESTRICT

Refuse to drop the aggregate function if any objects depend on it. This is the default.

Notes
Alternative syntaxes for referencing ordered-set aggregates are described under ALTER AGGREGATE.

Examples
To remove the aggregate function myavg for type integer:

DROP AGGREGATE myavg(integer);

To remove the hypothetical-set aggregate function myrank, which takes an arbitrary list of ordering
columns and a matching list of direct arguments:

DROP AGGREGATE myrank(VARIADIC "any" ORDER BY VARIADIC "any");

To remove multiple aggregate functions in one command:

DROP AGGREGATE myavg(integer), myavg(bigint);

Compatibility
There is no DROP AGGREGATE statement in the SQL standard.

See Also
ALTER AGGREGATE, CREATE AGGREGATE

1740

DROP CAST
DROP CAST — remove a cast

Synopsis

DROP CAST [IF EXISTS] (source_type AS target_type) [CASCADE |
 RESTRICT]

Description
DROP CAST removes a previously defined cast.

To be able to drop a cast, you must own the source or the target data type. These are the same privileges
that are required to create a cast.

Parameters
IF EXISTS

Do not throw an error if the cast does not exist. A notice is issued in this case.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on casts.

Examples
To drop the cast from type text to type int:

DROP CAST (text AS int);

Compatibility
The DROP CAST command conforms to the SQL standard.

See Also
CREATE CAST

1741

DROP COLLATION
DROP COLLATION — remove a collation

Synopsis

DROP COLLATION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP COLLATION removes a previously defined collation. To be able to drop a collation, you must
own the collation.

Parameters
IF EXISTS

Do not throw an error if the collation does not exist. A notice is issued in this case.

name

The name of the collation. The collation name can be schema-qualified.

CASCADE

Automatically drop objects that depend on the collation, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the collation if any objects depend on it. This is the default.

Examples
To drop the collation named german:

DROP COLLATION german;

Compatibility
The DROP COLLATION command conforms to the SQL standard, apart from the IF EXISTS option,
which is a PostgreSQL extension.

See Also
ALTER COLLATION, CREATE COLLATION

1742

DROP CONVERSION
DROP CONVERSION — remove a conversion

Synopsis

DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP CONVERSION removes a previously defined conversion. To be able to drop a conversion, you
must own the conversion.

Parameters
IF EXISTS

Do not throw an error if the conversion does not exist. A notice is issued in this case.

name

The name of the conversion. The conversion name can be schema-qualified.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on conversions.

Examples
To drop the conversion named myname:

DROP CONVERSION myname;

Compatibility
There is no DROP CONVERSION statement in the SQL standard, but a DROP TRANSLATION statement
that goes along with the CREATE TRANSLATION statement that is similar to the CREATE CONVERSION
statement in PostgreSQL.

See Also
ALTER CONVERSION, CREATE CONVERSION

1743

DROP DATABASE
DROP DATABASE — remove a database

Synopsis

DROP DATABASE [IF EXISTS] name

Description
DROP DATABASE drops a database. It removes the catalog entries for the database and deletes the
directory containing the data. It can only be executed by the database owner. Also, it cannot be executed
while you or anyone else are connected to the target database. (Connect to postgres or any other
database to issue this command.)

DROP DATABASE cannot be undone. Use it with care!

Parameters
IF EXISTS

Do not throw an error if the database does not exist. A notice is issued in this case.

name

The name of the database to remove.

Notes
DROP DATABASE cannot be executed inside a transaction block.

This command cannot be executed while connected to the target database. Thus, it might be more
convenient to use the program dropdb instead, which is a wrapper around this command.

Compatibility
There is no DROP DATABASE statement in the SQL standard.

See Also
CREATE DATABASE

1744

DROP DOMAIN
DROP DOMAIN — remove a domain

Synopsis

DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP DOMAIN removes a domain. Only the owner of a domain can remove it.

Parameters
IF EXISTS

Do not throw an error if the domain does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing domain.

CASCADE

Automatically drop objects that depend on the domain (such as table columns), and in turn all objects
that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the domain if any objects depend on it. This is the default.

Examples
To remove the domain box:

DROP DOMAIN box;

Compatibility
This command conforms to the SQL standard, except for the IF EXISTS option, which is a PostgreSQL
extension.

See Also
CREATE DOMAIN, ALTER DOMAIN

1745

DROP EVENT TRIGGER
DROP EVENT TRIGGER — remove an event trigger

Synopsis

DROP EVENT TRIGGER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP EVENT TRIGGER removes an existing event trigger. To execute this command, the current user
must be the owner of the event trigger.

Parameters
IF EXISTS

Do not throw an error if the event trigger does not exist. A notice is issued in this case.

name

The name of the event trigger to remove.

CASCADE

Automatically drop objects that depend on the trigger, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples
Destroy the trigger snitch:

DROP EVENT TRIGGER snitch;

Compatibility
There is no DROP EVENT TRIGGER statement in the SQL standard.

See Also
CREATE EVENT TRIGGER, ALTER EVENT TRIGGER

1746

DROP EXTENSION
DROP EXTENSION — remove an extension

Synopsis

DROP EXTENSION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP EXTENSION removes extensions from the database. Dropping an extension causes its component
objects to be dropped as well.

You must own the extension to use DROP EXTENSION.

Parameters
IF EXISTS

Do not throw an error if the extension does not exist. A notice is issued in this case.

name

The name of an installed extension.

CASCADE

Automatically drop objects that depend on the extension, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the extension if any objects depend on it (other than its own member objects and other
extensions listed in the same DROP command). This is the default.

Examples
To remove the extension hstore from the current database:

DROP EXTENSION hstore;

This command will fail if any of hstore's objects are in use in the database, for example if any tables
have columns of the hstore type. Add the CASCADE option to forcibly remove those dependent objects
as well.

Compatibility
DROP EXTENSION is a PostgreSQL extension.

1747

DROP EXTENSION

See Also
CREATE EXTENSION, ALTER EXTENSION

1748

DROP FOREIGN DATA WRAPPER
DROP FOREIGN DATA WRAPPER — remove a foreign-data wrapper

Synopsis

DROP FOREIGN DATA WRAPPER [IF EXISTS] name [, ...] [CASCADE |
 RESTRICT]

Description
DROP FOREIGN DATA WRAPPER removes an existing foreign-data wrapper. To execute this command,
the current user must be the owner of the foreign-data wrapper.

Parameters
IF EXISTS

Do not throw an error if the foreign-data wrapper does not exist. A notice is issued in this case.

name

The name of an existing foreign-data wrapper.

CASCADE

Automatically drop objects that depend on the foreign-data wrapper (such as foreign tables and
servers), and in turn all objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the foreign-data wrapper if any objects depend on it. This is the default.

Examples
Drop the foreign-data wrapper dbi:

DROP FOREIGN DATA WRAPPER dbi;

Compatibility
DROP FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause
is a PostgreSQL extension.

See Also
CREATE FOREIGN DATA WRAPPER, ALTER FOREIGN DATA WRAPPER

1749

DROP FOREIGN TABLE
DROP FOREIGN TABLE — remove a foreign table

Synopsis

DROP FOREIGN TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP FOREIGN TABLE removes a foreign table. Only the owner of a foreign table can remove it.

Parameters
IF EXISTS

Do not throw an error if the foreign table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the foreign table to drop.

CASCADE

Automatically drop objects that depend on the foreign table (such as views), and in turn all objects
that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the foreign table if any objects depend on it. This is the default.

Examples
To destroy two foreign tables, films and distributors:

DROP FOREIGN TABLE films, distributors;

Compatibility
This command conforms to the ISO/IEC 9075-9 (SQL/MED), except that the standard only allows one
foreign table to be dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL
extension.

See Also
ALTER FOREIGN TABLE, CREATE FOREIGN TABLE

1750

DROP FUNCTION
DROP FUNCTION — remove a function

Synopsis

DROP FUNCTION [IF EXISTS] name [([[argmode] [argname] argtype
 [, ...]])] [, ...]
 [CASCADE | RESTRICT]

Description
DROP FUNCTION removes the definition of an existing function. To execute this command the user must
be the owner of the function. The argument types to the function must be specified, since several different
functions can exist with the same name and different argument lists.

Parameters
IF EXISTS

Do not throw an error if the function does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing function. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note
that DROP FUNCTION does not actually pay any attention to OUT arguments, since only the input
arguments are needed to determine the function's identity. So it is sufficient to list the IN, INOUT,
and VARIADIC arguments.

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any attention to
argument names, since only the argument data types are needed to determine the function's identity.

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the function (such as operators or triggers), and in turn all
objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.

1751

DROP FUNCTION

Examples
This command removes the square root function:

DROP FUNCTION sqrt(integer);

Drop multiple functions in one command:

DROP FUNCTION sqrt(integer), sqrt(bigint);

If the function name is unique in its schema, it can be referred to without an argument list:

DROP FUNCTION update_employee_salaries;

Note that this is different from

DROP FUNCTION update_employee_salaries();

which refers to a function with zero arguments, whereas the first variant can refer to a function with any
number of arguments, including zero, as long as the name is unique.

Compatibility
This command conforms to the SQL standard, with these PostgreSQL extensions:

• The standard only allows one function to be dropped per command.

• The IF EXISTS option

• The ability to specify argument modes and names

See Also
CREATE FUNCTION, ALTER FUNCTION, DROP PROCEDURE, DROP ROUTINE

1752

DROP GROUP
DROP GROUP — remove a database role

Synopsis

DROP GROUP [IF EXISTS] name [, ...]

Description
DROP GROUP is now an alias for DROP ROLE.

Compatibility
There is no DROP GROUP statement in the SQL standard.

See Also
DROP ROLE

1753

DROP INDEX
DROP INDEX — remove an index

Synopsis

DROP INDEX [CONCURRENTLY] [IF EXISTS] name [, ...] [CASCADE |
 RESTRICT]

Description
DROP INDEX drops an existing index from the database system. To execute this command you must be
the owner of the index.

Parameters
CONCURRENTLY

Drop the index without locking out concurrent selects, inserts, updates, and deletes on the index's table.
A normal DROP INDEX acquires exclusive lock on the table, blocking other accesses until the index
drop can be completed. With this option, the command instead waits until conflicting transactions
have completed.

There are several caveats to be aware of when using this option. Only one index name can be specified,
and the CASCADE option is not supported. (Thus, an index that supports a UNIQUE or PRIMARY KEY
constraint cannot be dropped this way.) Also, regular DROP INDEX commands can be performed
within a transaction block, but DROP INDEX CONCURRENTLY cannot.

IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an index to remove.

CASCADE

Automatically drop objects that depend on the index, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the index if any objects depend on it. This is the default.

Examples
This command will remove the index title_idx:

DROP INDEX title_idx;

1754

DROP INDEX

Compatibility
DROP INDEX is a PostgreSQL language extension. There are no provisions for indexes in the SQL
standard.

See Also
CREATE INDEX

1755

DROP LANGUAGE
DROP LANGUAGE — remove a procedural language

Synopsis

DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP LANGUAGE removes the definition of a previously registered procedural language. You must be a
superuser or the owner of the language to use DROP LANGUAGE.

Note

As of PostgreSQL 9.1, most procedural languages have been made into “extensions”, and should
therefore be removed with DROP EXTENSION not DROP LANGUAGE.

Parameters
IF EXISTS

Do not throw an error if the language does not exist. A notice is issued in this case.

name

The name of an existing procedural language. For backward compatibility, the name can be enclosed
by single quotes.

CASCADE

Automatically drop objects that depend on the language (such as functions in the language), and in
turn all objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the language if any objects depend on it. This is the default.

Examples
This command removes the procedural language plsample:

DROP LANGUAGE plsample;

Compatibility
There is no DROP LANGUAGE statement in the SQL standard.

1756

DROP LANGUAGE

See Also
ALTER LANGUAGE, CREATE LANGUAGE

1757

DROP MATERIALIZED VIEW
DROP MATERIALIZED VIEW — remove a materialized view

Synopsis

DROP MATERIALIZED VIEW [IF EXISTS] name [, ...] [CASCADE |
 RESTRICT]

Description
DROP MATERIALIZED VIEW drops an existing materialized view. To execute this command you must
be the owner of the materialized view.

Parameters
IF EXISTS

Do not throw an error if the materialized view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the materialized view to remove.

CASCADE

Automatically drop objects that depend on the materialized view (such as other materialized views,
or regular views), and in turn all objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the materialized view if any objects depend on it. This is the default.

Examples
This command will remove the materialized view called order_summary:

DROP MATERIALIZED VIEW order_summary;

Compatibility
DROP MATERIALIZED VIEW is a PostgreSQL extension.

See Also
CREATE MATERIALIZED VIEW, ALTER MATERIALIZED VIEW, REFRESH MATERIALIZED
VIEW

1758

DROP OPERATOR
DROP OPERATOR — remove an operator

Synopsis

DROP OPERATOR [IF EXISTS] name ({ left_type | NONE } , { right_type
 | NONE }) [, ...] [CASCADE | RESTRICT]

Description
DROP OPERATOR drops an existing operator from the database system. To execute this command you
must be the owner of the operator.

Parameters
IF EXISTS

Do not throw an error if the operator does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator's left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator's right operand; write NONE if the operator has no right operand.

CASCADE

Automatically drop objects that depend on the operator (such as views using it), and in turn all objects
that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the operator if any objects depend on it. This is the default.

Examples
Remove the power operator a^b for type integer:

DROP OPERATOR ^ (integer, integer);

Remove the left unary bitwise complement operator ~b for type bit:

1759

DROP OPERATOR

DROP OPERATOR ~ (none, bit);

Remove the right unary factorial operator x! for type bigint:

DROP OPERATOR ! (bigint, none);

Remove multiple operators in one command:

DROP OPERATOR ~ (none, bit), ! (bigint, none);

Compatibility
There is no DROP OPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR, ALTER OPERATOR

1760

DROP OPERATOR CLASS
DROP OPERATOR CLASS — remove an operator class

Synopsis

DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE |
 RESTRICT]

Description
DROP OPERATOR CLASS drops an existing operator class. To execute this command you must be the
owner of the operator class.

DROP OPERATOR CLASS does not drop any of the operators or functions referenced by the class. If
there are any indexes depending on the operator class, you will need to specify CASCADE for the drop
to complete.

Parameters
IF EXISTS

Do not throw an error if the operator class does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index access method the operator class is for.

CASCADE

Automatically drop objects that depend on the operator class (such as indexes), and in turn all objects
that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the operator class if any objects depend on it. This is the default.

Notes
DROP OPERATOR CLASS will not drop the operator family containing the class, even if there is nothing
else left in the family (in particular, in the case where the family was implicitly created by CREATE
OPERATOR CLASS). An empty operator family is harmless, but for the sake of tidiness you might wish to
remove the family with DROP OPERATOR FAMILY; or perhaps better, use DROP OPERATOR FAMILY
in the first place.

Examples
Remove the B-tree operator class widget_ops:

1761

DROP OPERATOR CLASS

DROP OPERATOR CLASS widget_ops USING btree;

This command will not succeed if there are any existing indexes that use the operator class. Add CASCADE
to drop such indexes along with the operator class.

Compatibility
There is no DROP OPERATOR CLASS statement in the SQL standard.

See Also
ALTER OPERATOR CLASS, CREATE OPERATOR CLASS, DROP OPERATOR FAMILY

1762

DROP OPERATOR FAMILY
DROP OPERATOR FAMILY — remove an operator family

Synopsis

DROP OPERATOR FAMILY [IF EXISTS] name USING index_method [CASCADE |
 RESTRICT]

Description
DROP OPERATOR FAMILY drops an existing operator family. To execute this command you must be
the owner of the operator family.

DROP OPERATOR FAMILY includes dropping any operator classes contained in the family, but it does
not drop any of the operators or functions referenced by the family. If there are any indexes depending on
operator classes within the family, you will need to specify CASCADE for the drop to complete.

Parameters
IF EXISTS

Do not throw an error if the operator family does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator family.

index_method

The name of the index access method the operator family is for.

CASCADE

Automatically drop objects that depend on the operator family, and in turn all objects that depend on
those objects (see Section 5.13).

RESTRICT

Refuse to drop the operator family if any objects depend on it. This is the default.

Examples
Remove the B-tree operator family float_ops:

DROP OPERATOR FAMILY float_ops USING btree;

This command will not succeed if there are any existing indexes that use operator classes within the family.
Add CASCADE to drop such indexes along with the operator family.

1763

DROP OPERATOR FAMILY

Compatibility
There is no DROP OPERATOR FAMILY statement in the SQL standard.

See Also
ALTER OPERATOR FAMILY, CREATE OPERATOR FAMILY, ALTER OPERATOR CLASS,
CREATE OPERATOR CLASS, DROP OPERATOR CLASS

1764

DROP OWNED
DROP OWNED — remove database objects owned by a database role

Synopsis

DROP OWNED BY { name | CURRENT_USER | SESSION_USER } [, ...] [CASCADE
 | RESTRICT]

Description
DROP OWNED drops all the objects within the current database that are owned by one of the specified
roles. Any privileges granted to the given roles on objects in the current database and on shared objects
(databases, tablespaces) will also be revoked.

Parameters
name

The name of a role whose objects will be dropped, and whose privileges will be revoked.

CASCADE

Automatically drop objects that depend on the affected objects, and in turn all objects that depend on
those objects (see Section 5.13).

RESTRICT

Refuse to drop the objects owned by a role if any other database objects depend on one of the affected
objects. This is the default.

Notes
DROP OWNED is often used to prepare for the removal of one or more roles. Because DROP OWNED only
affects the objects in the current database, it is usually necessary to execute this command in each database
that contains objects owned by a role that is to be removed.

Using the CASCADE option might make the command recurse to objects owned by other users.

The REASSIGN OWNED command is an alternative that reassigns the ownership of all the database
objects owned by one or more roles. However, REASSIGN OWNED does not deal with privileges for
other objects.

Databases and tablespaces owned by the role(s) will not be removed.

See Section 21.4 for more discussion.

Compatibility
The DROP OWNED command is a PostgreSQL extension.

1765

DROP OWNED

See Also
REASSIGN OWNED, DROP ROLE

1766

DROP POLICY
DROP POLICY — remove a row level security policy from a table

Synopsis

DROP POLICY [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP POLICY removes the specified policy from the table. Note that if the last policy is removed for a
table and the table still has row level security enabled via ALTER TABLE, then the default-deny policy
will be used. ALTER TABLE ... DISABLE ROW LEVEL SECURITY can be used to disable row
level security for a table, whether policies for the table exist or not.

Parameters
IF EXISTS

Do not throw an error if the policy does not exist. A notice is issued in this case.

name

The name of the policy to drop.

table_name

The name (optionally schema-qualified) of the table that the policy is on.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on policies.

Examples
To drop the policy called p1 on the table named my_table:

DROP POLICY p1 ON my_table;

Compatibility
DROP POLICY is a PostgreSQL extension.

See Also
CREATE POLICY, ALTER POLICY

1767

DROP PROCEDURE
DROP PROCEDURE — remove a procedure

Synopsis

DROP PROCEDURE [IF EXISTS] name [([[argmode] [argname
] argtype [, ...]])] [, ...]
 [CASCADE | RESTRICT]

Description
DROP PROCEDURE removes the definition of an existing procedure. To execute this command the user
must be the owner of the procedure. The argument types to the procedure must be specified, since several
different procedures can exist with the same name and different argument lists.

Parameters
IF EXISTS

Do not throw an error if the procedure does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing procedure. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that DROP PROCEDURE does not actually pay any attention to
argument names, since only the argument data types are needed to determine the procedure's identity.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the procedure, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the procedure if any objects depend on it. This is the default.

Examples

1768

DROP PROCEDURE

DROP PROCEDURE do_db_maintenance();

Compatibility
This command conforms to the SQL standard, with these PostgreSQL extensions:

• The standard only allows one procedure to be dropped per command.

• The IF EXISTS option

• The ability to specify argument modes and names

See Also
CREATE PROCEDURE, ALTER PROCEDURE, DROP FUNCTION, DROP ROUTINE

1769

DROP PUBLICATION
DROP PUBLICATION — remove a publication

Synopsis

DROP PUBLICATION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP PUBLICATION removes an existing publication from the database.

A publication can only be dropped by its owner or a superuser.

Parameters
IF EXISTS

Do not throw an error if the publication does not exist. A notice is issued in this case.

name

The name of an existing publication.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on publications.

Examples
Drop a publication:

DROP PUBLICATION mypublication;

Compatibility
DROP PUBLICATION is a PostgreSQL extension.

See Also
CREATE PUBLICATION, ALTER PUBLICATION

1770

DROP ROLE
DROP ROLE — remove a database role

Synopsis

DROP ROLE [IF EXISTS] name [, ...]

Description
DROP ROLE removes the specified role(s). To drop a superuser role, you must be a superuser yourself;
to drop non-superuser roles, you must have CREATEROLE privilege.

A role cannot be removed if it is still referenced in any database of the cluster; an error will be raised if so.
Before dropping the role, you must drop all the objects it owns (or reassign their ownership) and revoke
any privileges the role has been granted on other objects. The REASSIGN OWNED and DROP OWNED
commands can be useful for this purpose; see Section 21.4 for more discussion.

However, it is not necessary to remove role memberships involving the role; DROP ROLE automatically
revokes any memberships of the target role in other roles, and of other roles in the target role. The other
roles are not dropped nor otherwise affected.

Parameters
IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name

The name of the role to remove.

Notes
PostgreSQL includes a program dropuser that has the same functionality as this command (in fact, it calls
this command) but can be run from the command shell.

Examples
To drop a role:

DROP ROLE jonathan;

Compatibility
The SQL standard defines DROP ROLE, but it allows only one role to be dropped at a time, and it specifies
different privilege requirements than PostgreSQL uses.

1771

DROP ROLE

See Also
CREATE ROLE, ALTER ROLE, SET ROLE

1772

DROP ROUTINE
DROP ROUTINE — remove a routine

Synopsis

DROP ROUTINE [IF EXISTS] name [([[argmode] [argname] argtype
 [, ...]])] [, ...]
 [CASCADE | RESTRICT]

Description
DROP ROUTINE removes the definition of an existing routine, which can be an aggregate function,
a normal function, or a procedure. See under DROP AGGREGATE, DROP FUNCTION, and DROP
PROCEDURE for the description of the parameters, more examples, and further details.

Examples
To drop the routine foo for type integer:

DROP ROUTINE foo(integer);

This command will work independent of whether foo is an aggregate, function, or procedure.

Compatibility
This command conforms to the SQL standard, with these PostgreSQL extensions:

• The standard only allows one routine to be dropped per command.

• The IF EXISTS option

• The ability to specify argument modes and names

• Aggregate functions are an extension.

See Also
DROP AGGREGATE, DROP FUNCTION, DROP PROCEDURE, ALTER ROUTINE

Note that there is no CREATE ROUTINE command.

1773

DROP RULE
DROP RULE — remove a rewrite rule

Synopsis

DROP RULE [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP RULE drops a rewrite rule.

Parameters
IF EXISTS

Do not throw an error if the rule does not exist. A notice is issued in this case.

name

The name of the rule to drop.

table_name

The name (optionally schema-qualified) of the table or view that the rule applies to.

CASCADE

Automatically drop objects that depend on the rule, and in turn all objects that depend on those objects
(see Section 5.13).

RESTRICT

Refuse to drop the rule if any objects depend on it. This is the default.

Examples
To drop the rewrite rule newrule:

DROP RULE newrule ON mytable;

Compatibility
DROP RULE is a PostgreSQL language extension, as is the entire query rewrite system.

See Also
CREATE RULE, ALTER RULE

1774

DROP SCHEMA
DROP SCHEMA — remove a schema

Synopsis

DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SCHEMA removes schemas from the database.

A schema can only be dropped by its owner or a superuser. Note that the owner can drop the schema (and
thereby all contained objects) even if they do not own some of the objects within the schema.

Parameters
IF EXISTS

Do not throw an error if the schema does not exist. A notice is issued in this case.

name

The name of a schema.

CASCADE

Automatically drop objects (tables, functions, etc.) that are contained in the schema, and in turn all
objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Notes
Using the CASCADE option might make the command remove objects in other schemas besides the one(s)
named.

Examples
To remove schema mystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility
DROP SCHEMA is fully conforming with the SQL standard, except that the standard only allows one
schema to be dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL
extension.

1775

DROP SCHEMA

See Also
ALTER SCHEMA, CREATE SCHEMA

1776

DROP SEQUENCE
DROP SEQUENCE — remove a sequence

Synopsis

DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SEQUENCE removes sequence number generators. A sequence can only be dropped by its owner
or a superuser.

Parameters
IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of a sequence.

CASCADE

Automatically drop objects that depend on the sequence, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the sequence if any objects depend on it. This is the default.

Examples
To remove the sequence serial:

DROP SEQUENCE serial;

Compatibility
DROP SEQUENCE conforms to the SQL standard, except that the standard only allows one sequence to
be dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

See Also
CREATE SEQUENCE, ALTER SEQUENCE

1777

DROP SERVER
DROP SERVER — remove a foreign server descriptor

Synopsis

DROP SERVER [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SERVER removes an existing foreign server descriptor. To execute this command, the current user
must be the owner of the server.

Parameters
IF EXISTS

Do not throw an error if the server does not exist. A notice is issued in this case.

name

The name of an existing server.

CASCADE

Automatically drop objects that depend on the server (such as user mappings), and in turn all objects
that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the server if any objects depend on it. This is the default.

Examples
Drop a server foo if it exists:

DROP SERVER IF EXISTS foo;

Compatibility
DROP SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a PostgreSQL
extension.

See Also
CREATE SERVER, ALTER SERVER

1778

DROP STATISTICS
DROP STATISTICS — remove extended statistics

Synopsis

DROP STATISTICS [IF EXISTS] name [, ...]

Description
DROP STATISTICS removes statistics object(s) from the database. Only the statistics object's owner,
the schema owner, or a superuser can drop a statistics object.

Parameters
IF EXISTS

Do not throw an error if the statistics object does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the statistics object to drop.

Examples
To destroy two statistics objects in different schemas, without failing if they don't exist:

DROP STATISTICS IF EXISTS
 accounting.users_uid_creation,
 public.grants_user_role;

Compatibility
There is no DROP STATISTICS command in the SQL standard.

See Also
ALTER STATISTICS, CREATE STATISTICS

1779

DROP SUBSCRIPTION
DROP SUBSCRIPTION — remove a subscription

Synopsis

DROP SUBSCRIPTION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP SUBSCRIPTION removes a subscription from the database cluster.

A subscription can only be dropped by a superuser.

DROP SUBSCRIPTION cannot be executed inside a transaction block if the subscription is associated
with a replication slot. (You can use ALTER SUBSCRIPTION to unset the slot.)

Parameters
name

The name of a subscription to be dropped.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on subscriptions.

Notes
When dropping a subscription that is associated with a replication slot on the remote host (the normal
state), DROP SUBSCRIPTION will connect to the remote host and try to drop the replication slot as part
of its operation. This is necessary so that the resources allocated for the subscription on the remote host
are released. If this fails, either because the remote host is not reachable or because the remote replication
slot cannot be dropped or does not exist or never existed, the DROP SUBSCRIPTION command will fail.
To proceed in this situation, disassociate the subscription from the replication slot by executing ALTER
SUBSCRIPTION ... SET (slot_name = NONE). After that, DROP SUBSCRIPTION will no
longer attempt any actions on a remote host. Note that if the remote replication slot still exists, it should
then be dropped manually; otherwise it will continue to reserve WAL and might eventually cause the disk
to fill up. See also Section 31.2.1.

If a subscription is associated with a replication slot, then DROP SUBSCRIPTION cannot be executed
inside a transaction block.

Examples
Drop a subscription:

DROP SUBSCRIPTION mysub;

1780

DROP SUBSCRIPTION

Compatibility
DROP SUBSCRIPTION is a PostgreSQL extension.

See Also
CREATE SUBSCRIPTION, ALTER SUBSCRIPTION

1781

DROP TABLE
DROP TABLE — remove a table

Synopsis

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TABLE removes tables from the database. Only the table owner, the schema owner, and superuser
can drop a table. To empty a table of rows without destroying the table, use DELETE or TRUNCATE.

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for the target table.
However, to drop a table that is referenced by a view or a foreign-key constraint of another table, CASCADE
must be specified. (CASCADE will remove a dependent view entirely, but in the foreign-key case it will
only remove the foreign-key constraint, not the other table entirely.)

Parameters
IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the table to drop.

CASCADE

Automatically drop objects that depend on the table (such as views), and in turn all objects that depend
on those objects (see Section 5.13).

RESTRICT

Refuse to drop the table if any objects depend on it. This is the default.

Examples
To destroy two tables, films and distributors:

DROP TABLE films, distributors;

Compatibility
This command conforms to the SQL standard, except that the standard only allows one table to be dropped
per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

See Also
ALTER TABLE, CREATE TABLE

1782

DROP TABLESPACE
DROP TABLESPACE — remove a tablespace

Synopsis

DROP TABLESPACE [IF EXISTS] name

Description
DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all database
objects before it can be dropped. It is possible that objects in other databases might still reside in the
tablespace even if no objects in the current database are using the tablespace. Also, if the tablespace is
listed in the temp_tablespaces setting of any active session, the DROP might fail due to temporary files
residing in the tablespace.

Parameters
IF EXISTS

Do not throw an error if the tablespace does not exist. A notice is issued in this case.

name

The name of a tablespace.

Notes
DROP TABLESPACE cannot be executed inside a transaction block.

Examples
To remove tablespace mystuff from the system:

DROP TABLESPACE mystuff;

Compatibility
DROP TABLESPACE is a PostgreSQL extension.

See Also
CREATE TABLESPACE, ALTER TABLESPACE

1783

DROP TEXT SEARCH CONFIGURATION
DROP TEXT SEARCH CONFIGURATION — remove a text search configuration

Synopsis

DROP TEXT SEARCH CONFIGURATION [IF EXISTS] name [CASCADE |
 RESTRICT]

Description
DROP TEXT SEARCH CONFIGURATION drops an existing text search configuration. To execute this
command you must be the owner of the configuration.

Parameters
IF EXISTS

Do not throw an error if the text search configuration does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search configuration.

CASCADE

Automatically drop objects that depend on the text search configuration, and in turn all objects that
depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the text search configuration if any objects depend on it. This is the default.

Examples
Remove the text search configuration my_english:

DROP TEXT SEARCH CONFIGURATION my_english;

This command will not succeed if there are any existing indexes that reference the configuration in
to_tsvector calls. Add CASCADE to drop such indexes along with the text search configuration.

Compatibility
There is no DROP TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION, CREATE TEXT SEARCH CONFIGURATION

1784

DROP TEXT SEARCH DICTIONARY
DROP TEXT SEARCH DICTIONARY — remove a text search dictionary

Synopsis

DROP TEXT SEARCH DICTIONARY [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH DICTIONARY drops an existing text search dictionary. To execute this command
you must be the owner of the dictionary.

Parameters
IF EXISTS

Do not throw an error if the text search dictionary does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search dictionary.

CASCADE

Automatically drop objects that depend on the text search dictionary, and in turn all objects that depend
on those objects (see Section 5.13).

RESTRICT

Refuse to drop the text search dictionary if any objects depend on it. This is the default.

Examples
Remove the text search dictionary english:

DROP TEXT SEARCH DICTIONARY english;

This command will not succeed if there are any existing text search configurations that use the dictionary.
Add CASCADE to drop such configurations along with the dictionary.

Compatibility
There is no DROP TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY, CREATE TEXT SEARCH DICTIONARY

1785

DROP TEXT SEARCH PARSER
DROP TEXT SEARCH PARSER — remove a text search parser

Synopsis

DROP TEXT SEARCH PARSER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH PARSER drops an existing text search parser. You must be a superuser to use
this command.

Parameters
IF EXISTS

Do not throw an error if the text search parser does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search parser.

CASCADE

Automatically drop objects that depend on the text search parser, and in turn all objects that depend
on those objects (see Section 5.13).

RESTRICT

Refuse to drop the text search parser if any objects depend on it. This is the default.

Examples
Remove the text search parser my_parser:

DROP TEXT SEARCH PARSER my_parser;

This command will not succeed if there are any existing text search configurations that use the parser. Add
CASCADE to drop such configurations along with the parser.

Compatibility
There is no DROP TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, CREATE TEXT SEARCH PARSER

1786

DROP TEXT SEARCH TEMPLATE
DROP TEXT SEARCH TEMPLATE — remove a text search template

Synopsis

DROP TEXT SEARCH TEMPLATE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH TEMPLATE drops an existing text search template. You must be a superuser
to use this command.

Parameters
IF EXISTS

Do not throw an error if the text search template does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search template.

CASCADE

Automatically drop objects that depend on the text search template, and in turn all objects that depend
on those objects (see Section 5.13).

RESTRICT

Refuse to drop the text search template if any objects depend on it. This is the default.

Examples
Remove the text search template thesaurus:

DROP TEXT SEARCH TEMPLATE thesaurus;

This command will not succeed if there are any existing text search dictionaries that use the template. Add
CASCADE to drop such dictionaries along with the template.

Compatibility
There is no DROP TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
ALTER TEXT SEARCH TEMPLATE, CREATE TEXT SEARCH TEMPLATE

1787

DROP TRANSFORM
DROP TRANSFORM — remove a transform

Synopsis

DROP TRANSFORM [IF EXISTS] FOR type_name LANGUAGE lang_name
 [CASCADE | RESTRICT]

Description
DROP TRANSFORM removes a previously defined transform.

To be able to drop a transform, you must own the type and the language. These are the same privileges
that are required to create a transform.

Parameters
IF EXISTS

Do not throw an error if the transform does not exist. A notice is issued in this case.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

CASCADE

Automatically drop objects that depend on the transform, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the transform if any objects depend on it. This is the default.

Examples
To drop the transform for type hstore and language plpythonu:

DROP TRANSFORM FOR hstore LANGUAGE plpythonu;

Compatibility
This form of DROP TRANSFORM is a PostgreSQL extension. See CREATE TRANSFORM for details.

1788

DROP TRANSFORM

See Also
CREATE TRANSFORM

1789

DROP TRIGGER
DROP TRIGGER — remove a trigger

Synopsis

DROP TRIGGER [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP TRIGGER removes an existing trigger definition. To execute this command, the current user must
be the owner of the table for which the trigger is defined.

Parameters
IF EXISTS

Do not throw an error if the trigger does not exist. A notice is issued in this case.

name

The name of the trigger to remove.

table_name

The name (optionally schema-qualified) of the table for which the trigger is defined.

CASCADE

Automatically drop objects that depend on the trigger, and in turn all objects that depend on those
objects (see Section 5.13).

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples
Destroy the trigger if_dist_exists on the table films:

DROP TRIGGER if_dist_exists ON films;

Compatibility
The DROP TRIGGER statement in PostgreSQL is incompatible with the SQL standard. In the SQL
standard, trigger names are not local to tables, so the command is simply DROP TRIGGER name.

See Also
CREATE TRIGGER

1790

DROP TYPE
DROP TYPE — remove a data type

Synopsis

DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TYPE removes a user-defined data type. Only the owner of a type can remove it.

Parameters
IF EXISTS

Do not throw an error if the type does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the data type to remove.

CASCADE

Automatically drop objects that depend on the type (such as table columns, functions, and operators),
and in turn all objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the type if any objects depend on it. This is the default.

Examples
To remove the data type box:

DROP TYPE box;

Compatibility
This command is similar to the corresponding command in the SQL standard, apart from the IF EXISTS
option, which is a PostgreSQL extension. But note that much of the CREATE TYPE command and the
data type extension mechanisms in PostgreSQL differ from the SQL standard.

See Also
ALTER TYPE, CREATE TYPE

1791

DROP USER
DROP USER — remove a database role

Synopsis

DROP USER [IF EXISTS] name [, ...]

Description
DROP USER is simply an alternate spelling of DROP ROLE.

Compatibility
The DROP USER statement is a PostgreSQL extension. The SQL standard leaves the definition of users
to the implementation.

See Also
DROP ROLE

1792

DROP USER MAPPING
DROP USER MAPPING — remove a user mapping for a foreign server

Synopsis

DROP USER MAPPING [IF EXISTS] FOR { user_name | USER | CURRENT_USER
 | PUBLIC } SERVER server_name

Description
DROP USER MAPPING removes an existing user mapping from foreign server.

The owner of a foreign server can drop user mappings for that server for any user. Also, a user can drop a
user mapping for their own user name if USAGE privilege on the server has been granted to the user.

Parameters
IF EXISTS

Do not throw an error if the user mapping does not exist. A notice is issued in this case.

user_name

User name of the mapping. CURRENT_USER and USER match the name of the current user. PUBLIC
is used to match all present and future user names in the system.

server_name

Server name of the user mapping.

Examples
Drop a user mapping bob, server foo if it exists:

DROP USER MAPPING IF EXISTS FOR bob SERVER foo;

Compatibility
DROP USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a
PostgreSQL extension.

See Also
CREATE USER MAPPING, ALTER USER MAPPING

1793

DROP VIEW
DROP VIEW — remove a view

Synopsis

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP VIEW drops an existing view. To execute this command you must be the owner of the view.

Parameters
IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the view to remove.

CASCADE

Automatically drop objects that depend on the view (such as other views), and in turn all objects that
depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the view if any objects depend on it. This is the default.

Examples
This command will remove the view called kinds:

DROP VIEW kinds;

Compatibility
This command conforms to the SQL standard, except that the standard only allows one view to be dropped
per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

See Also
ALTER VIEW, CREATE VIEW

1794

END
END — commit the current transaction

Synopsis

END [WORK | TRANSACTION]

Description
END commits the current transaction. All changes made by the transaction become visible to others and
are guaranteed to be durable if a crash occurs. This command is a PostgreSQL extension that is equivalent
to COMMIT.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Notes
Use ROLLBACK to abort a transaction.

Issuing END when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To commit the current transaction and make all changes permanent:

END;

Compatibility
END is a PostgreSQL extension that provides functionality equivalent to COMMIT, which is specified in
the SQL standard.

See Also
BEGIN, COMMIT, ROLLBACK

1795

EXECUTE
EXECUTE — execute a prepared statement

Synopsis

EXECUTE name [(parameter [, ...])]

Description
EXECUTE is used to execute a previously prepared statement. Since prepared statements only exist for the
duration of a session, the prepared statement must have been created by a PREPARE statement executed
earlier in the current session.

If the PREPARE statement that created the statement specified some parameters, a compatible set of
parameters must be passed to the EXECUTE statement, or else an error is raised. Note that (unlike functions)
prepared statements are not overloaded based on the type or number of their parameters; the name of a
prepared statement must be unique within a database session.

For more information on the creation and usage of prepared statements, see PREPARE.

Parameters
name

The name of the prepared statement to execute.

parameter

The actual value of a parameter to the prepared statement. This must be an expression yielding a
value that is compatible with the data type of this parameter, as was determined when the prepared
statement was created.

Outputs
The command tag returned by EXECUTE is that of the prepared statement, and not EXECUTE.

Examples
Examples are given in the Examples section of the PREPARE documentation.

Compatibility
The SQL standard includes an EXECUTE statement, but it is only for use in embedded SQL. This version
of the EXECUTE statement also uses a somewhat different syntax.

See Also
DEALLOCATE, PREPARE

1796

EXPLAIN
EXPLAIN — show the execution plan of a statement

Synopsis

EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:

 ANALYZE [boolean]
 VERBOSE [boolean]
 COSTS [boolean]
 BUFFERS [boolean]
 TIMING [boolean]
 SUMMARY [boolean]
 FORMAT { TEXT | XML | JSON | YAML }

Description
This command displays the execution plan that the PostgreSQL planner generates for the supplied
statement. The execution plan shows how the table(s) referenced by the statement will be scanned — by
plain sequential scan, index scan, etc. — and if multiple tables are referenced, what join algorithms will
be used to bring together the required rows from each input table.

The most critical part of the display is the estimated statement execution cost, which is the planner's guess
at how long it will take to run the statement (measured in cost units that are arbitrary, but conventionally
mean disk page fetches). Actually two numbers are shown: the start-up cost before the first row can be
returned, and the total cost to return all the rows. For most queries the total cost is what matters, but
in contexts such as a subquery in EXISTS, the planner will choose the smallest start-up cost instead of
the smallest total cost (since the executor will stop after getting one row, anyway). Also, if you limit the
number of rows to return with a LIMIT clause, the planner makes an appropriate interpolation between
the endpoint costs to estimate which plan is really the cheapest.

The ANALYZE option causes the statement to be actually executed, not only planned. Then actual run
time statistics are added to the display, including the total elapsed time expended within each plan node
(in milliseconds) and the total number of rows it actually returned. This is useful for seeing whether the
planner's estimates are close to reality.

Important

Keep in mind that the statement is actually executed when the ANALYZE option is used. Although
EXPLAIN will discard any output that a SELECT would return, other side effects of the statement
will happen as usual. If you wish to use EXPLAIN ANALYZE on an INSERT, UPDATE, DELETE,
CREATE TABLE AS, or EXECUTE statement without letting the command affect your data, use
this approach:

BEGIN;

1797

EXPLAIN

EXPLAIN ANALYZE ...;
ROLLBACK;

Only the ANALYZE and VERBOSE options can be specified, and only in that order, without surrounding the
option list in parentheses. Prior to PostgreSQL 9.0, the unparenthesized syntax was the only one supported.
It is expected that all new options will be supported only in the parenthesized syntax.

Parameters
ANALYZE

Carry out the command and show actual run times and other statistics. This parameter defaults to
FALSE.

VERBOSE

Display additional information regarding the plan. Specifically, include the output column list for each
node in the plan tree, schema-qualify table and function names, always label variables in expressions
with their range table alias, and always print the name of each trigger for which statistics are displayed.
This parameter defaults to FALSE.

COSTS

Include information on the estimated startup and total cost of each plan node, as well as the estimated
number of rows and the estimated width of each row. This parameter defaults to TRUE.

BUFFERS

Include information on buffer usage. Specifically, include the number of shared blocks hit, read,
dirtied, and written, the number of local blocks hit, read, dirtied, and written, and the number of temp
blocks read and written. A hit means that a read was avoided because the block was found already in
cache when needed. Shared blocks contain data from regular tables and indexes; local blocks contain
data from temporary tables and indexes; while temp blocks contain short-term working data used in
sorts, hashes, Materialize plan nodes, and similar cases. The number of blocks dirtied indicates the
number of previously unmodified blocks that were changed by this query; while the number of blocks
written indicates the number of previously-dirtied blocks evicted from cache by this backend during
query processing. The number of blocks shown for an upper-level node includes those used by all its
child nodes. In text format, only non-zero values are printed. This parameter may only be used when
ANALYZE is also enabled. It defaults to FALSE.

TIMING

Include actual startup time and time spent in each node in the output. The overhead of repeatedly
reading the system clock can slow down the query significantly on some systems, so it may be useful
to set this parameter to FALSE when only actual row counts, and not exact times, are needed. Run
time of the entire statement is always measured, even when node-level timing is turned off with this
option. This parameter may only be used when ANALYZE is also enabled. It defaults to TRUE.

SUMMARY

Include summary information (e.g., totaled timing information) after the query plan. Summary
information is included by default when ANALYZE is used but otherwise is not included by default, but
can be enabled using this option. Planning time in EXPLAIN EXECUTE includes the time required
to fetch the plan from the cache and the time required for re-planning, if necessary.

1798

EXPLAIN

FORMAT

Specify the output format, which can be TEXT, XML, JSON, or YAML. Non-text output contains
the same information as the text output format, but is easier for programs to parse. This parameter
defaults to TEXT.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in
which case TRUE is assumed.

statement

Any SELECT, INSERT, UPDATE, DELETE, VALUES, EXECUTE, DECLARE, CREATE TABLE AS,
or CREATE MATERIALIZED VIEW AS statement, whose execution plan you wish to see.

Outputs
The command's result is a textual description of the plan selected for the statement, optionally
annotated with execution statistics. Section 14.1 describes the information provided.

Notes
In order to allow the PostgreSQL query planner to make reasonably informed decisions when optimizing
queries, the pg_statistic data should be up-to-date for all tables used in the query. Normally the
autovacuum daemon will take care of that automatically. But if a table has recently had substantial changes
in its contents, you might need to do a manual ANALYZE rather than wait for autovacuum to catch up
with the changes.

In order to measure the run-time cost of each node in the execution plan, the current implementation
of EXPLAIN ANALYZE adds profiling overhead to query execution. As a result, running EXPLAIN
ANALYZE on a query can sometimes take significantly longer than executing the query normally. The
amount of overhead depends on the nature of the query, as well as the platform being used. The worst case
occurs for plan nodes that in themselves require very little time per execution, and on machines that have
relatively slow operating system calls for obtaining the time of day.

Examples
To show the plan for a simple query on a table with a single integer column and 10000 rows:

EXPLAIN SELECT * FROM foo;

 QUERY PLAN

 Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)
(1 row)

Here is the same query, with JSON output formatting:

EXPLAIN (FORMAT JSON) SELECT * FROM foo;
 QUERY PLAN

1799

EXPLAIN

 [+
 { +
 "Plan": { +
 "Node Type": "Seq Scan",+
 "Relation Name": "foo", +
 "Alias": "foo", +
 "Startup Cost": 0.00, +
 "Total Cost": 155.00, +
 "Plan Rows": 10000, +
 "Plan Width": 4 +
 } +
 } +
]
(1 row)

If there is an index and we use a query with an indexable WHERE condition, EXPLAIN might show a
different plan:

EXPLAIN SELECT * FROM foo WHERE i = 4;

 QUERY PLAN
--
 Index Scan using fi on foo (cost=0.00..5.98 rows=1 width=4)
 Index Cond: (i = 4)
(2 rows)

Here is the same query, but in YAML format:

EXPLAIN (FORMAT YAML) SELECT * FROM foo WHERE i='4';
 QUERY PLAN

 - Plan: +
 Node Type: "Index Scan" +
 Scan Direction: "Forward"+
 Index Name: "fi" +
 Relation Name: "foo" +
 Alias: "foo" +
 Startup Cost: 0.00 +
 Total Cost: 5.98 +
 Plan Rows: 1 +
 Plan Width: 4 +
 Index Cond: "(i = 4)"
(1 row)

XML format is left as an exercise for the reader.

Here is the same plan with cost estimates suppressed:

EXPLAIN (COSTS FALSE) SELECT * FROM foo WHERE i = 4;

 QUERY PLAN

1800

EXPLAIN

 Index Scan using fi on foo
 Index Cond: (i = 4)
(2 rows)

Here is an example of a query plan for a query using an aggregate function:

EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;

 QUERY PLAN

 Aggregate (cost=23.93..23.93 rows=1 width=4)
 -> Index Scan using fi on foo (cost=0.00..23.92 rows=6 width=4)
 Index Cond: (i < 10)
(3 rows)

Here is an example of using EXPLAIN EXECUTE to display the execution plan for a prepared query:

PREPARE query(int, int) AS SELECT sum(bar) FROM test
 WHERE id > $1 AND id < $2
 GROUP BY foo;

EXPLAIN ANALYZE EXECUTE query(100, 200);

 QUERY PLAN

--
 HashAggregate (cost=9.54..9.54 rows=1 width=8) (actual
 time=0.156..0.161 rows=11 loops=1)
 Group Key: foo
 -> Index Scan using test_pkey on test (cost=0.29..9.29 rows=50
 width=8) (actual time=0.039..0.091 rows=99 loops=1)
 Index Cond: ((id > $1) AND (id < $2))
 Planning time: 0.197 ms
 Execution time: 0.225 ms
(6 rows)

Of course, the specific numbers shown here depend on the actual contents of the tables involved. Also
note that the numbers, and even the selected query strategy, might vary between PostgreSQL releases due
to planner improvements. In addition, the ANALYZE command uses random sampling to estimate data
statistics; therefore, it is possible for cost estimates to change after a fresh run of ANALYZE, even if the
actual distribution of data in the table has not changed.

Compatibility
There is no EXPLAIN statement defined in the SQL standard.

See Also
ANALYZE

1801

FETCH
FETCH — retrieve rows from a query using a cursor

Synopsis

FETCH [direction [FROM | IN]] cursor_name

where direction can be empty or one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

Description

FETCH retrieves rows using a previously-created cursor.

A cursor has an associated position, which is used by FETCH. The cursor position can be before the first
row of the query result, on any particular row of the result, or after the last row of the result. When created,
a cursor is positioned before the first row. After fetching some rows, the cursor is positioned on the row
most recently retrieved. If FETCH runs off the end of the available rows then the cursor is left positioned
after the last row, or before the first row if fetching backward. FETCH ALL or FETCH BACKWARD ALL
will always leave the cursor positioned after the last row or before the first row.

The forms NEXT, PRIOR, FIRST, LAST, ABSOLUTE, RELATIVE fetch a single row after moving the
cursor appropriately. If there is no such row, an empty result is returned, and the cursor is left positioned
before the first row or after the last row as appropriate.

The forms using FORWARD and BACKWARD retrieve the indicated number of rows moving in the forward
or backward direction, leaving the cursor positioned on the last-returned row (or after/before all rows, if
the count exceeds the number of rows available).

RELATIVE 0, FORWARD 0, and BACKWARD 0 all request fetching the current row without moving the
cursor, that is, re-fetching the most recently fetched row. This will succeed unless the cursor is positioned
before the first row or after the last row; in which case, no row is returned.

1802

FETCH

Note

This page describes usage of cursors at the SQL command level. If you are trying to use cursors
inside a PL/pgSQL function, the rules are different — see Section 43.7.3.

Parameters
direction

direction defines the fetch direction and number of rows to fetch. It can be one of the following:

NEXT

Fetch the next row. This is the default if direction is omitted.

PRIOR

Fetch the prior row.

FIRST

Fetch the first row of the query (same as ABSOLUTE 1).

LAST

Fetch the last row of the query (same as ABSOLUTE -1).

ABSOLUTE count

Fetch the count'th row of the query, or the abs(count)'th row from the end if count is
negative. Position before first row or after last row if count is out of range; in particular,
ABSOLUTE 0 positions before the first row.

RELATIVE count

Fetch the count'th succeeding row, or the abs(count)'th prior row if count is negative.
RELATIVE 0 re-fetches the current row, if any.

count

Fetch the next count rows (same as FORWARD count).

ALL

Fetch all remaining rows (same as FORWARD ALL).

FORWARD

Fetch the next row (same as NEXT).

FORWARD count

Fetch the next count rows. FORWARD 0 re-fetches the current row.

FORWARD ALL

Fetch all remaining rows.

1803

FETCH

BACKWARD

Fetch the prior row (same as PRIOR).

BACKWARD count

Fetch the prior count rows (scanning backwards). BACKWARD 0 re-fetches the current row.

BACKWARD ALL

Fetch all prior rows (scanning backwards).

count

count is a possibly-signed integer constant, determining the location or number of rows to fetch. For
FORWARD and BACKWARD cases, specifying a negative count is equivalent to changing the sense
of FORWARD and BACKWARD.

cursor_name

An open cursor's name.

Outputs
On successful completion, a FETCH command returns a command tag of the form

FETCH count

The count is the number of rows fetched (possibly zero). Note that in psql, the command tag will not
actually be displayed, since psql displays the fetched rows instead.

Notes
The cursor should be declared with the SCROLL option if one intends to use any variants of FETCH other
than FETCH NEXT or FETCH FORWARD with a positive count. For simple queries PostgreSQL will
allow backwards fetch from cursors not declared with SCROLL, but this behavior is best not relied on. If
the cursor is declared with NO SCROLL, no backward fetches are allowed.

ABSOLUTE fetches are not any faster than navigating to the desired row with a relative move: the
underlying implementation must traverse all the intermediate rows anyway. Negative absolute fetches are
even worse: the query must be read to the end to find the last row, and then traversed backward from there.
However, rewinding to the start of the query (as with FETCH ABSOLUTE 0) is fast.

DECLARE is used to define a cursor. Use MOVE to change cursor position without retrieving data.

Examples
The following example traverses a table using a cursor:

BEGIN WORK;

-- Set up a cursor:
DECLARE liahona SCROLL CURSOR FOR SELECT * FROM films;

1804

FETCH

-- Fetch the first 5 rows in the cursor liahona:
FETCH FORWARD 5 FROM liahona;

 code | title | did | date_prod | kind | len
-------+-------------------------+-----+------------+----------
+-------
 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43
 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch the previous row:
FETCH PRIOR FROM liahona;

 code | title | did | date_prod | kind | len
-------+---------+-----+------------+--------+-------
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- Close the cursor and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility
The SQL standard defines FETCH for use in embedded SQL only. The variant of FETCH described here
returns the data as if it were a SELECT result rather than placing it in host variables. Other than this point,
FETCH is fully upward-compatible with the SQL standard.

The FETCH forms involving FORWARD and BACKWARD, as well as the forms FETCH count and FETCH
ALL, in which FORWARD is implicit, are PostgreSQL extensions.

The SQL standard allows only FROM preceding the cursor name; the option to use IN, or to leave them
out altogether, is an extension.

See Also
CLOSE, DECLARE, MOVE

1805

GRANT
GRANT — define access privileges

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name
 [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL
 [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { { FUNCTION | PROCEDURE | ROUTINE } routine_name
 [([[argmode] [arg_name] arg_type [, ...]])] [, ...]
 | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN
 SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }

1806

GRANT

 ON LANGUAGE lang_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

where role_specification can be:

 [GROUP] role_name
 | PUBLIC
 | CURRENT_USER
 | SESSION_USER

GRANT role_name [, ...] TO role_name [, ...] [WITH ADMIN OPTION]

Description

The GRANT command has two basic variants: one that grants privileges on a database object (table,
column, view, foreign table, sequence, database, foreign-data wrapper, foreign server, function, procedure,
procedural language, schema, or tablespace), and one that grants membership in a role. These variants are
similar in many ways, but they are different enough to be described separately.

GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to one or more roles.
These privileges are added to those already granted, if any.

There is also an option to grant privileges on all objects of the same type within one or more schemas. This
functionality is currently supported only for tables, sequences, functions, and procedures. ALL TABLES
also affects views and foreign tables, just like the specific-object GRANT command. ALL FUNCTIONS
also affects aggregate functions, but not procedures, again just like the specific-object GRANT command.

The key word PUBLIC indicates that the privileges are to be granted to all roles, including those that might
be created later. PUBLIC can be thought of as an implicitly defined group that always includes all roles.
Any particular role will have the sum of privileges granted directly to it, privileges granted to any role it
is presently a member of, and privileges granted to PUBLIC.

If WITH GRANT OPTION is specified, the recipient of the privilege can in turn grant it to others. Without
a grant option, the recipient cannot do that. Grant options cannot be granted to PUBLIC.

1807

GRANT

There is no need to grant privileges to the owner of an object (usually the user that created it), as the owner
has all privileges by default. (The owner could, however, choose to revoke some of their own privileges
for safety.)

The right to drop an object, or to alter its definition in any way, is not treated as a grantable privilege; it
is inherent in the owner, and cannot be granted or revoked. (However, a similar effect can be obtained by
granting or revoking membership in the role that owns the object; see below.) The owner implicitly has
all grant options for the object, too.

PostgreSQL grants default privileges on some types of objects to PUBLIC. No privileges are granted
to PUBLIC by default on tables, table columns, sequences, foreign data wrappers, foreign servers, large
objects, schemas, or tablespaces. For other types of objects, the default privileges granted to PUBLIC
are as follows: CONNECT and TEMPORARY (create temporary tables) privileges for databases; EXECUTE
privilege for functions and procedures; and USAGE privilege for languages and data types (including
domains). The object owner can, of course, REVOKE both default and expressly granted privileges. (For
maximum security, issue the REVOKE in the same transaction that creates the object; then there is no
window in which another user can use the object.) Also, these initial default privilege settings can be
changed using the ALTER DEFAULT PRIVILEGES command.

The possible privileges are:

SELECT

Allows SELECT from any column, or the specific columns listed, of the specified table, view, or
sequence. Also allows the use of COPY TO. This privilege is also needed to reference existing column
values in UPDATE or DELETE. For sequences, this privilege also allows the use of the currval
function. For large objects, this privilege allows the object to be read.

INSERT

Allows INSERT of a new row into the specified table. If specific columns are listed, only those
columns may be assigned to in the INSERT command (other columns will therefore receive default
values). Also allows COPY FROM.

UPDATE

Allows UPDATE of any column, or the specific columns listed, of the specified table. (In practice,
any nontrivial UPDATE command will require SELECT privilege as well, since it must reference
table columns to determine which rows to update, and/or to compute new values for columns.)
SELECT ... FOR UPDATE and SELECT ... FOR SHARE also require this privilege on at
least one column, in addition to the SELECT privilege. For sequences, this privilege allows the use
of the nextval and setval functions. For large objects, this privilege allows writing or truncating
the object.

DELETE

Allows DELETE of a row from the specified table. (In practice, any nontrivial DELETE command
will require SELECT privilege as well, since it must reference table columns to determine which rows
to delete.)

TRUNCATE

Allows TRUNCATE on the specified table.

REFERENCES

Allows creation of a foreign key constraint referencing the specified table, or specified column(s) of
the table. (See the CREATE TABLE statement.)

1808

GRANT

TRIGGER

Allows the creation of a trigger on the specified table. (See the CREATE TRIGGER statement.)

CREATE

For databases, allows new schemas and publications to be created within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace. (Note that revoking
this privilege will not alter the placement of existing objects.)

CONNECT

Allows the user to connect to the specified database. This privilege is checked at connection startup
(in addition to checking any restrictions imposed by pg_hba.conf).

TEMPORARY
TEMP

Allows temporary tables to be created while using the specified database.

EXECUTE

Allows the use of the specified function or procedure and the use of any operators that are implemented
on top of the function. This is the only type of privilege that is applicable to functions and procedures.
The FUNCTION syntax also works for aggregate functions. Alternatively, use ROUTINE to refer to
a function, aggregate function, or procedure regardless of what it is.

USAGE

For procedural languages, allows the use of the specified language for the creation of functions in that
language. This is the only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the specified schema (assuming that the objects'
own privilege requirements are also met). Essentially this allows the grantee to “look up” objects
within the schema. Without this permission, it is still possible to see the object names, e.g. by querying
the system tables. Also, after revoking this permission, existing backends might have statements that
have previously performed this lookup, so this is not a completely secure way to prevent object access.

For sequences, this privilege allows the use of the currval and nextval functions.

For types and domains, this privilege allows the use of the type or domain in the creation of tables,
functions, and other schema objects. (Note that it does not control general “usage” of the type, such
as values of the type appearing in queries. It only prevents objects from being created that depend on
the type. The main purpose of the privilege is controlling which users create dependencies on a type,
which could prevent the owner from changing the type later.)

For foreign-data wrappers, this privilege allows creation of new servers using the foreign-data
wrapper.

For servers, this privilege allows creation of foreign tables using the server. Grantees may also create,
alter, or drop their own user mappings associated with that server.

1809

GRANT

ALL PRIVILEGES

Grant all of the available privileges at once. The PRIVILEGES key word is optional in PostgreSQL,
though it is required by strict SQL.

The privileges required by other commands are listed on the reference page of the respective command.

GRANT on Roles

This variant of the GRANT command grants membership in a role to one or more other roles. Membership
in a role is significant because it conveys the privileges granted to a role to each of its members.

If WITH ADMIN OPTION is specified, the member can in turn grant membership in the role to others,
and revoke membership in the role as well. Without the admin option, ordinary users cannot do that. A
role is not considered to hold WITH ADMIN OPTION on itself, but it may grant or revoke membership
in itself from a database session where the session user matches the role. Database superusers can grant
or revoke membership in any role to anyone. Roles having CREATEROLE privilege can grant or revoke
membership in any role that is not a superuser.

Unlike the case with privileges, membership in a role cannot be granted to PUBLIC. Note also that this
form of the command does not allow the noise word GROUP.

Notes
The REVOKE command is used to revoke access privileges.

Since PostgreSQL 8.1, the concepts of users and groups have been unified into a single kind of entity
called a role. It is therefore no longer necessary to use the keyword GROUP to identify whether a grantee
is a user or a group. GROUP is still allowed in the command, but it is a noise word.

A user may perform SELECT, INSERT, etc. on a column if they hold that privilege for either the specific
column or its whole table. Granting the privilege at the table level and then revoking it for one column
will not do what one might wish: the table-level grant is unaffected by a column-level operation.

When a non-owner of an object attempts to GRANT privileges on the object, the command will fail outright
if the user has no privileges whatsoever on the object. As long as some privilege is available, the command
will proceed, but it will grant only those privileges for which the user has grant options. The GRANT ALL
PRIVILEGES forms will issue a warning message if no grant options are held, while the other forms will
issue a warning if grant options for any of the privileges specifically named in the command are not held.
(In principle these statements apply to the object owner as well, but since the owner is always treated as
holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object privilege settings.
This is comparable to the rights of root in a Unix system. As with root, it's unwise to operate as a
superuser except when absolutely necessary.

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. In particular, privileges granted via such a command will
appear to have been granted by the object owner. (For role membership, the membership appears to have
been granted by the containing role itself.)

GRANT and REVOKE can also be done by a role that is not the owner of the affected object, but is a member
of the role that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION
on the object. In this case the privileges will be recorded as having been granted by the role that actually
owns the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by

1810

GRANT

role g1, of which role u1 is a member, then u1 can grant privileges on t1 to u2, but those privileges will
appear to have been granted directly by g1. Any other member of role g1 could revoke them later.

If the role executing GRANT holds the required privileges indirectly via more than one role membership
path, it is unspecified which containing role will be recorded as having done the grant. In such cases it is
best practice to use SET ROLE to become the specific role you want to do the GRANT as.

Granting permission on a table does not automatically extend permissions to any sequences used by the
table, including sequences tied to SERIAL columns. Permissions on sequences must be set separately.

Use psql's \dp command to obtain information about existing privileges for tables and columns. For
example:

=> \dp mytable
 Access privileges
 Schema | Name | Type | Access privileges | Column access
 privileges
--------+---------+-------+-----------------------
+--------------------------
 public | mytable | table | miriam=arwdDxt/miriam | col1:
 : =r/miriam : miriam_rw=rw/
miriam
 : admin=arw/miriam
(1 row)

The entries shown by \dp are interpreted thus:

rolename=xxxx -- privileges granted to a role
 =xxxx -- privileges granted to PUBLIC

 r -- SELECT ("read")
 w -- UPDATE ("write")
 a -- INSERT ("append")
 d -- DELETE
 D -- TRUNCATE
 x -- REFERENCES
 t -- TRIGGER
 X -- EXECUTE
 U -- USAGE
 C -- CREATE
 c -- CONNECT
 T -- TEMPORARY
 arwdDxt -- ALL PRIVILEGES (for tables, varies for other objects)
 * -- grant option for preceding privilege

 /yyyy -- role that granted this privilege

The above example display would be seen by user miriam after creating table mytable and doing:

GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (col1), UPDATE (col1) ON mytable TO miriam_rw;

1811

GRANT

For non-table objects there are other \d commands that can display their privileges.

If the “Access privileges” column is empty for a given object, it means the object has default privileges
(that is, its privileges column is null). Default privileges always include all privileges for the owner,
and can include some privileges for PUBLIC depending on the object type, as explained above. The
first GRANT or REVOKE on an object will instantiate the default privileges (producing, for example,
{miriam=arwdDxt/miriam}) and then modify them per the specified request. Similarly, entries are
shown in “Column access privileges” only for columns with nondefault privileges. (Note: for this purpose,
“default privileges” always means the built-in default privileges for the object's type. An object whose
privileges have been affected by an ALTER DEFAULT PRIVILEGES command will always be shown
with an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

Examples
Grant insert privilege to all users on table films:

GRANT INSERT ON films TO PUBLIC;

Grant all available privileges to user manuel on view kinds:

GRANT ALL PRIVILEGES ON kinds TO manuel;

Note that while the above will indeed grant all privileges if executed by a superuser or the owner of kinds,
when executed by someone else it will only grant those permissions for which the someone else has grant
options.

Grant membership in role admins to user joe:

GRANT admins TO joe;

Compatibility
According to the SQL standard, the PRIVILEGES key word in ALL PRIVILEGES is required. The SQL
standard does not support setting the privileges on more than one object per command.

PostgreSQL allows an object owner to revoke their own ordinary privileges: for example, a table owner
can make the table read-only to themselves by revoking their own INSERT, UPDATE, DELETE, and
TRUNCATE privileges. This is not possible according to the SQL standard. The reason is that PostgreSQL
treats the owner's privileges as having been granted by the owner to themselves; therefore they can revoke
them too. In the SQL standard, the owner's privileges are granted by an assumed entity “_SYSTEM”. Not
being “_SYSTEM”, the owner cannot revoke these rights.

According to the SQL standard, grant options can be granted to PUBLIC; PostgreSQL only supports
granting grant options to roles.

The SQL standard provides for a USAGE privilege on other kinds of objects: character sets, collations,
translations.

In the SQL standard, sequences only have a USAGE privilege, which controls the use of the NEXT VALUE
FOR expression, which is equivalent to the function nextval in PostgreSQL. The sequence privileges

1812

GRANT

SELECT and UPDATE are PostgreSQL extensions. The application of the sequence USAGE privilege to
the currval function is also a PostgreSQL extension (as is the function itself).

Privileges on databases, tablespaces, schemas, and languages are PostgreSQL extensions.

See Also
REVOKE, ALTER DEFAULT PRIVILEGES

1813

IMPORT FOREIGN SCHEMA
IMPORT FOREIGN SCHEMA — import table definitions from a foreign server

Synopsis

IMPORT FOREIGN SCHEMA remote_schema
 [{ LIMIT TO | EXCEPT } (table_name [, ...])]
 FROM SERVER server_name
 INTO local_schema
 [OPTIONS (option 'value' [, ...])]

Description
IMPORT FOREIGN SCHEMA creates foreign tables that represent tables existing on a foreign server.
The new foreign tables will be owned by the user issuing the command and are created with the correct
column definitions and options to match the remote tables.

By default, all tables and views existing in a particular schema on the foreign server are imported.
Optionally, the list of tables can be limited to a specified subset, or specific tables can be excluded. The
new foreign tables are all created in the target schema, which must already exist.

To use IMPORT FOREIGN SCHEMA, the user must have USAGE privilege on the foreign server, as well
as CREATE privilege on the target schema.

Parameters
remote_schema

The remote schema to import from. The specific meaning of a remote schema depends on the foreign
data wrapper in use.

LIMIT TO (table_name [, ...])

Import only foreign tables matching one of the given table names. Other tables existing in the foreign
schema will be ignored.

EXCEPT (table_name [, ...])

Exclude specified foreign tables from the import. All tables existing in the foreign schema will be
imported except the ones listed here.

server_name

The foreign server to import from.

local_schema

The schema in which the imported foreign tables will be created.

OPTIONS (option 'value' [, ...])

Options to be used during the import. The allowed option names and values are specific to each foreign
data wrapper.

1814

IMPORT FOREIGN SCHEMA

Examples
Import table definitions from a remote schema foreign_films on server film_server, creating
the foreign tables in local schema films:

IMPORT FOREIGN SCHEMA foreign_films
 FROM SERVER film_server INTO films;

As above, but import only the two tables actors and directors (if they exist):

IMPORT FOREIGN SCHEMA foreign_films LIMIT TO (actors, directors)
 FROM SERVER film_server INTO films;

Compatibility
The IMPORT FOREIGN SCHEMA command conforms to the SQL standard, except that the OPTIONS
clause is a PostgreSQL extension.

See Also
CREATE FOREIGN TABLE, CREATE SERVER

1815

INSERT
INSERT — create new rows in a table

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
INSERT INTO table_name [AS alias] [(column_name [, ...])]
 [OVERRIDING { SYSTEM | USER} VALUE]
 { DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...])
 [, ...] | query }
 [ON CONFLICT [conflict_target] conflict_action]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

where conflict_target can be one of:

 ({ index_column_name | (index_expression) } [COLLATE collation
] [opclass] [, ...]) [WHERE index_predicate]
 ON CONSTRAINT constraint_name

and conflict_action is one of:

 DO NOTHING
 DO UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression |
 DEFAULT } [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [WHERE condition]

Description
INSERT inserts new rows into a table. One can insert one or more rows specified by value expressions,
or zero or more rows resulting from a query.

The target column names can be listed in any order. If no list of column names is given at all, the default is
all the columns of the table in their declared order; or the first N column names, if there are only N columns
supplied by the VALUES clause or query. The values supplied by the VALUES clause or query are
associated with the explicit or implicit column list left-to-right.

Each column not present in the explicit or implicit column list will be filled with a default value, either
its declared default value or null if there is none.

If the expression for any column is not of the correct data type, automatic type conversion will be attempted.

ON CONFLICT can be used to specify an alternative action to raising a unique constraint or exclusion
constraint violation error. (See ON CONFLICT Clause below.)

The optional RETURNING clause causes INSERT to compute and return value(s) based on each row
actually inserted (or updated, if an ON CONFLICT DO UPDATE clause was used). This is primarily
useful for obtaining values that were supplied by defaults, such as a serial sequence number. However,

1816

INSERT

any expression using the table's columns is allowed. The syntax of the RETURNING list is identical to that
of the output list of SELECT. Only rows that were successfully inserted or updated will be returned. For
example, if a row was locked but not updated because an ON CONFLICT DO UPDATE ... WHERE
clause condition was not satisfied, the row will not be returned.

You must have INSERT privilege on a table in order to insert into it. If ON CONFLICT DO UPDATE
is present, UPDATE privilege on the table is also required.

If a column list is specified, you only need INSERT privilege on the listed columns. Similarly, when ON
CONFLICT DO UPDATE is specified, you only need UPDATE privilege on the column(s) that are listed
to be updated. However, ON CONFLICT DO UPDATE also requires SELECT privilege on any column
whose values are read in the ON CONFLICT DO UPDATE expressions or condition.

Use of the RETURNING clause requires SELECT privilege on all columns mentioned in RETURNING. If
you use the query clause to insert rows from a query, you of course need to have SELECT privilege on
any table or column used in the query.

Parameters

Inserting

This section covers parameters that may be used when only inserting new rows. Parameters exclusively
used with the ON CONFLICT clause are described separately.

with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
INSERT query. See Section 7.8 and SELECT for details.

It is possible for the query (SELECT statement) to also contain a WITH clause. In such a case both
sets of with_query can be referenced within the query, but the second one takes precedence since
it is more closely nested.

table_name

The name (optionally schema-qualified) of an existing table.

alias

A substitute name for table_name. When an alias is provided, it completely hides the actual name
of the table. This is particularly useful when ON CONFLICT DO UPDATE targets a table named
excluded, since that will otherwise be taken as the name of the special table representing rows
proposed for insertion.

column_name

The name of a column in the table named by table_name. The column name can be qualified with
a subfield name or array subscript, if needed. (Inserting into only some fields of a composite column
leaves the other fields null.) When referencing a column with ON CONFLICT DO UPDATE, do
not include the table's name in the specification of a target column. For example, INSERT INTO
table_name ... ON CONFLICT DO UPDATE SET table_name.col = 1 is invalid
(this follows the general behavior for UPDATE).

OVERRIDING SYSTEM VALUE

Without this clause, it is an error to specify an explicit value (other than DEFAULT) for an identity
column defined as GENERATED ALWAYS. This clause overrides that restriction.

1817

INSERT

OVERRIDING USER VALUE

If this clause is specified, then any values supplied for identity columns defined as GENERATED BY
DEFAULT are ignored and the default sequence-generated values are applied.

This clause is useful for example when copying values between tables. Writing INSERT INTO tbl2
OVERRIDING USER VALUE SELECT * FROM tbl1 will copy from tbl1 all columns that
are not identity columns in tbl2 while values for the identity columns in tbl2 will be generated
by the sequences associated with tbl2.

DEFAULT VALUES

All columns will be filled with their default values. (An OVERRIDING clause is not permitted in
this form.)

expression

An expression or value to assign to the corresponding column.

DEFAULT

The corresponding column will be filled with its default value.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the SELECT statement
for a description of the syntax.

output_expression

An expression to be computed and returned by the INSERT command after each row is inserted or
updated. The expression can use any column names of the table named by table_name. Write *
to return all columns of the inserted or updated row(s).

output_name

A name to use for a returned column.

ON CONFLICT Clause

The optional ON CONFLICT clause specifies an alternative action to raising a unique violation or
exclusion constraint violation error. For each individual row proposed for insertion, either the insertion
proceeds, or, if an arbiter constraint or index specified by conflict_target is violated, the alternative
conflict_action is taken. ON CONFLICT DO NOTHING simply avoids inserting a row as its
alternative action. ON CONFLICT DO UPDATE updates the existing row that conflicts with the row
proposed for insertion as its alternative action.

conflict_target can perform unique index inference. When performing inference, it consists of one
or more index_column_name columns and/or index_expression expressions, and an optional
index_predicate. All table_name unique indexes that, without regard to order, contain exactly
the conflict_target-specified columns/expressions are inferred (chosen) as arbiter indexes. If an
index_predicate is specified, it must, as a further requirement for inference, satisfy arbiter indexes.
Note that this means a non-partial unique index (a unique index without a predicate) will be inferred (and
thus used by ON CONFLICT) if such an index satisfying every other criteria is available. If an attempt
at inference is unsuccessful, an error is raised.

1818

INSERT

ON CONFLICT DO UPDATE guarantees an atomic INSERT or UPDATE outcome; provided there is
no independent error, one of those two outcomes is guaranteed, even under high concurrency. This is also
known as UPSERT — “UPDATE or INSERT”.

conflict_target

Specifies which conflicts ON CONFLICT takes the alternative action on by choosing arbiter indexes.
Either performs unique index inference, or names a constraint explicitly. For ON CONFLICT
DO NOTHING, it is optional to specify a conflict_target; when omitted, conflicts with
all usable constraints (and unique indexes) are handled. For ON CONFLICT DO UPDATE, a
conflict_target must be provided.

conflict_action

conflict_action specifies an alternative ON CONFLICT action. It can be either DO NOTHING,
or a DO UPDATE clause specifying the exact details of the UPDATE action to be performed in
case of a conflict. The SET and WHERE clauses in ON CONFLICT DO UPDATE have access to
the existing row using the table's name (or an alias), and to rows proposed for insertion using the
special excluded table. SELECT privilege is required on any column in the target table where
corresponding excluded columns are read.

Note that the effects of all per-row BEFORE INSERT triggers are reflected in excluded values,
since those effects may have contributed to the row being excluded from insertion.

index_column_name

The name of a table_name column. Used to infer arbiter indexes. Follows CREATE INDEX format.
SELECT privilege on index_column_name is required.

index_expression

Similar to index_column_name, but used to infer expressions on table_name columns
appearing within index definitions (not simple columns). Follows CREATE INDEX format. SELECT
privilege on any column appearing within index_expression is required.

collation

When specified, mandates that corresponding index_column_name or index_expression
use a particular collation in order to be matched during inference. Typically this is omitted, as
collations usually do not affect whether or not a constraint violation occurs. Follows CREATE INDEX
format.

opclass

When specified, mandates that corresponding index_column_name or index_expression
use particular operator class in order to be matched during inference. Typically this is omitted, as
the equality semantics are often equivalent across a type's operator classes anyway, or because it's
sufficient to trust that the defined unique indexes have the pertinent definition of equality. Follows
CREATE INDEX format.

index_predicate

Used to allow inference of partial unique indexes. Any indexes that satisfy the predicate (which need
not actually be partial indexes) can be inferred. Follows CREATE INDEX format. SELECT privilege
on any column appearing within index_predicate is required.

1819

INSERT

constraint_name

Explicitly specifies an arbiter constraint by name, rather than inferring a constraint or index.

condition

An expression that returns a value of type boolean. Only rows for which this expression returns
true will be updated, although all rows will be locked when the ON CONFLICT DO UPDATE action
is taken. Note that condition is evaluated last, after a conflict has been identified as a candidate
to update.

Note that exclusion constraints are not supported as arbiters with ON CONFLICT DO UPDATE. In all
cases, only NOT DEFERRABLE constraints and unique indexes are supported as arbiters.

INSERT with an ON CONFLICT DO UPDATE clause is a “deterministic” statement. This means that
the command will not be allowed to affect any single existing row more than once; a cardinality violation
error will be raised when this situation arises. Rows proposed for insertion should not duplicate each other
in terms of attributes constrained by an arbiter index or constraint.

Note that it is currently not supported for the ON CONFLICT DO UPDATE clause of an INSERT applied
to a partitioned table to update the partition key of a conflicting row such that it requires the row be moved
to a new partition.

Tip

It is often preferable to use unique index inference rather than naming a constraint directly using
ON CONFLICT ON CONSTRAINT constraint_name. Inference will continue to work
correctly when the underlying index is replaced by another more or less equivalent index in an
overlapping way, for example when using CREATE UNIQUE INDEX ... CONCURRENTLY
before dropping the index being replaced.

Outputs
On successful completion, an INSERT command returns a command tag of the form

INSERT oid count

The count is the number of rows inserted or updated. If count is exactly one, and the target table has
OIDs, then oid is the OID assigned to the inserted row. The single row must have been inserted rather
than updated. Otherwise oid is zero.

If the INSERT command contains a RETURNING clause, the result will be similar to that of a SELECT
statement containing the columns and values defined in the RETURNING list, computed over the row(s)
inserted or updated by the command.

Notes
If the specified table is a partitioned table, each row is routed to the appropriate partition and inserted into
it. If the specified table is a partition, an error will occur if one of the input rows violates the partition
constraint.

1820

INSERT

Examples
Insert a single row into table films:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, '1971-07-13', 'Comedy', '82 minutes');

In this example, the len column is omitted and therefore it will have the default value:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

This example uses the DEFAULT clause for the date columns rather than specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes');
INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama');

To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

To insert multiple rows using the multirow VALUES syntax:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
 ('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),
 ('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy');

This example inserts some rows into table films from a table tmp_films with the same column layout
as films:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod <
 '2004-05-07';

This example inserts into array columns:

-- Create an empty 3x3 gameboard for noughts-and-crosses
INSERT INTO tictactoe (game, board[1:3][1:3])
 VALUES (1, '{{" "," "," "},{" "," "," "},{" "," "," "}}');
-- The subscripts in the above example aren't really needed
INSERT INTO tictactoe (game, board)
 VALUES (2, '{{X," "," "},{" ",O," "},{" ",X," "}}');

Insert a single row into table distributors, returning the sequence number generated by the DEFAULT
clause:

INSERT INTO distributors (did, dname) VALUES (DEFAULT, 'XYZ Widgets')

1821

INSERT

 RETURNING did;

Increment the sales count of the salesperson who manages the account for Acme Corporation, and record
the whole updated row along with current time in a log table:

WITH upd AS (
 UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT sales_person FROM accounts WHERE name = 'Acme
 Corporation')
 RETURNING *
)
INSERT INTO employees_log SELECT *, current_timestamp FROM upd;

Insert or update new distributors as appropriate. Assumes a unique index has been defined that constrains
values appearing in the did column. Note that the special excluded table is used to reference values
originally proposed for insertion:

INSERT INTO distributors (did, dname)
 VALUES (5, 'Gizmo Transglobal'), (6, 'Associated Computing, Inc')
 ON CONFLICT (did) DO UPDATE SET dname = EXCLUDED.dname;

Insert a distributor, or do nothing for rows proposed for insertion when an existing, excluded row (a row
with a matching constrained column or columns after before row insert triggers fire) exists. Example
assumes a unique index has been defined that constrains values appearing in the did column:

INSERT INTO distributors (did, dname) VALUES (7, 'Redline GmbH')
 ON CONFLICT (did) DO NOTHING;

Insert or update new distributors as appropriate. Example assumes a unique index has been defined that
constrains values appearing in the did column. WHERE clause is used to limit the rows actually updated
(any existing row not updated will still be locked, though):

-- Don't update existing distributors based in a certain ZIP code
INSERT INTO distributors AS d (did, dname) VALUES (8, 'Anvil
 Distribution')
 ON CONFLICT (did) DO UPDATE
 SET dname = EXCLUDED.dname || ' (formerly ' || d.dname || ')'
 WHERE d.zipcode <> '21201';

-- Name a constraint directly in the statement (uses associated
-- index to arbitrate taking the DO NOTHING action)
INSERT INTO distributors (did, dname) VALUES (9, 'Antwerp Design')
 ON CONFLICT ON CONSTRAINT distributors_pkey DO NOTHING;

Insert new distributor if possible; otherwise DO NOTHING. Example assumes a unique index has been
defined that constrains values appearing in the did column on a subset of rows where the is_active
Boolean column evaluates to true:

-- This statement could infer a partial unique index on "did"
-- with a predicate of "WHERE is_active", but it could also
-- just use a regular unique constraint on "did"

1822

INSERT

INSERT INTO distributors (did, dname) VALUES (10, 'Conrad
 International')
 ON CONFLICT (did) WHERE is_active DO NOTHING;

Compatibility
INSERT conforms to the SQL standard, except that the RETURNING clause is a PostgreSQL extension,
as is the ability to use WITH with INSERT, and the ability to specify an alternative action with ON
CONFLICT. Also, the case in which a column name list is omitted, but not all the columns are filled from
the VALUES clause or query, is disallowed by the standard.

The SQL standard specifies that OVERRIDING SYSTEM VALUE can only be specified if an identity
column that is generated always exists. PostgreSQL allows the clause in any case and ignores it if it is
not applicable.

Possible limitations of the query clause are documented under SELECT.

1823

LISTEN
LISTEN — listen for a notification

Synopsis

LISTEN channel

Description
LISTEN registers the current session as a listener on the notification channel named channel. If the
current session is already registered as a listener for this notification channel, nothing is done.

Whenever the command NOTIFY channel is invoked, either by this session or another one connected
to the same database, all the sessions currently listening on that notification channel are notified, and each
will in turn notify its connected client application.

A session can be unregistered for a given notification channel with the UNLISTEN command. A session's
listen registrations are automatically cleared when the session ends.

The method a client application must use to detect notification events depends on which PostgreSQL
application programming interface it uses. With the libpq library, the application issues LISTEN as
an ordinary SQL command, and then must periodically call the function PQnotifies to find out
whether any notification events have been received. Other interfaces such as libpgtcl provide higher-level
methods for handling notify events; indeed, with libpgtcl the application programmer should not even issue
LISTEN or UNLISTEN directly. See the documentation for the interface you are using for more details.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Parameters
channel

Name of a notification channel (any identifier).

Notes
LISTEN takes effect at transaction commit. If LISTEN or UNLISTEN is executed within a transaction
that later rolls back, the set of notification channels being listened to is unchanged.

A transaction that has executed LISTEN cannot be prepared for two-phase commit.

Examples
Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;

1824

LISTEN

Asynchronous notification "virtual" received from server process with
 PID 8448.

Compatibility
There is no LISTEN statement in the SQL standard.

See Also
NOTIFY, UNLISTEN

1825

LOAD
LOAD — load a shared library file

Synopsis

LOAD 'filename'

Description
This command loads a shared library file into the PostgreSQL server's address space. If the file has been
loaded already, the command does nothing. Shared library files that contain C functions are automatically
loaded whenever one of their functions is called. Therefore, an explicit LOAD is usually only needed to
load a library that modifies the server's behavior through “hooks” rather than providing a set of functions.

The library file name is typically given as just a bare file name, which is sought in the server's library
search path (set by dynamic_library_path). Alternatively it can be given as a full path name. In either case
the platform's standard shared library file name extension may be omitted. See Section 38.10.1 for more
information on this topic.

Non-superusers can only apply LOAD to library files located in $libdir/plugins/ — the specified
filename must begin with exactly that string. (It is the database administrator's responsibility to ensure
that only “safe” libraries are installed there.)

Compatibility
LOAD is a PostgreSQL extension.

See Also
CREATE FUNCTION

1826

LOCK
LOCK — lock a table

Synopsis

LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE]
 [NOWAIT]

where lockmode is one of:

 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Description
LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to be released. If
NOWAIT is specified, LOCK TABLE does not wait to acquire the desired lock: if it cannot be acquired
immediately, the command is aborted and an error is emitted. Once obtained, the lock is held for the
remainder of the current transaction. (There is no UNLOCK TABLE command; locks are always released
at transaction end.)

When a view is locked, all relations appearing in the view definition query are also locked recursively
with the same lock mode.

When acquiring locks automatically for commands that reference tables, PostgreSQL always uses the least
restrictive lock mode possible. LOCK TABLE provides for cases when you might need more restrictive
locking. For example, suppose an application runs a transaction at the READ COMMITTED isolation level
and needs to ensure that data in a table remains stable for the duration of the transaction. To achieve this
you could obtain SHARE lock mode over the table before querying. This will prevent concurrent data
changes and ensure subsequent reads of the table see a stable view of committed data, because SHARE lock
mode conflicts with the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN
SHARE MODE statement will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit
or roll back. Thus, once you obtain the lock, there are no uncommitted writes outstanding; furthermore
none can begin until you release the lock.

To achieve a similar effect when running a transaction at the REPEATABLE READ or SERIALIZABLE
isolation level, you have to execute the LOCK TABLE statement before executing any SELECT or data
modification statement. A REPEATABLE READ or SERIALIZABLE transaction's view of data will
be frozen when its first SELECT or data modification statement begins. A LOCK TABLE later in the
transaction will still prevent concurrent writes — but it won't ensure that what the transaction reads
corresponds to the latest committed values.

If a transaction of this sort is going to change the data in the table, then it should use SHARE ROW
EXCLUSIVE lock mode instead of SHARE mode. This ensures that only one transaction of this type runs
at a time. Without this, a deadlock is possible: two transactions might both acquire SHARE mode, and
then be unable to also acquire ROW EXCLUSIVE mode to actually perform their updates. (Note that
a transaction's own locks never conflict, so a transaction can acquire ROW EXCLUSIVE mode when it
holds SHARE mode — but not if anyone else holds SHARE mode.) To avoid deadlocks, make sure all
transactions acquire locks on the same objects in the same order, and if multiple lock modes are involved
for a single object, then transactions should always acquire the most restrictive mode first.

1827

LOCK

More information about the lock modes and locking strategies can be found in Section 13.3.

Parameters
name

The name (optionally schema-qualified) of an existing table to lock. If ONLY is specified before the
table name, only that table is locked. If ONLY is not specified, the table and all its descendant tables
(if any) are locked. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK TABLE b;. The
tables are locked one-by-one in the order specified in the LOCK TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with. Lock modes are described in
Section 13.3.

If no lock mode is specified, then ACCESS EXCLUSIVE, the most restrictive mode, is used.

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released: if the specified
lock(s) cannot be acquired immediately without waiting, the transaction is aborted.

Notes
LOCK TABLE ... IN ACCESS SHARE MODE requires SELECT privileges on the target table.
LOCK TABLE ... IN ROW EXCLUSIVE MODE requires INSERT, UPDATE, DELETE, or
TRUNCATE privileges on the target table. All other forms of LOCK require table-level UPDATE, DELETE,
or TRUNCATE privileges.

The user performing the lock on the view must have the corresponding privilege on the view. In addition
the view's owner must have the relevant privileges on the underlying base relations, but the user performing
the lock does not need any permissions on the underlying base relations.

LOCK TABLE is useless outside a transaction block: the lock would remain held only to the completion
of the statement. Therefore PostgreSQL reports an error if LOCK is used outside a transaction block. Use
BEGIN and COMMIT (or ROLLBACK) to define a transaction block.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are all misnomers.
These mode names should generally be read as indicating the intention of the user to acquire row-level
locks within the locked table. Also, ROW EXCLUSIVE mode is a shareable table lock. Keep in mind that
all the lock modes have identical semantics so far as LOCK TABLE is concerned, differing only in the
rules about which modes conflict with which. For information on how to acquire an actual row-level lock,
see Section 13.3.2 and the The Locking Clause in the SELECT reference documentation.

Examples
Obtain a SHARE lock on a primary key table when going to perform inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;

1828

LOCK

SELECT id FROM films
 WHERE name = 'Star Wars: Episode I - The Phantom Menace';
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES
 (_id_, 'GREAT! I was waiting for it for so long!');
COMMIT WORK;

Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a delete operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN
 (SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;

Compatibility
There is no LOCK TABLE in the SQL standard, which instead uses SET TRANSACTION to specify
concurrency levels on transactions. PostgreSQL supports that too; see SET TRANSACTION for details.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE lock modes,
the PostgreSQL lock modes and the LOCK TABLE syntax are compatible with those present in Oracle.

1829

MOVE
MOVE — position a cursor

Synopsis

MOVE [direction [FROM | IN]] cursor_name

where direction can be empty or one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

Description
MOVE repositions a cursor without retrieving any data. MOVE works exactly like the FETCH command,
except it only positions the cursor and does not return rows.

The parameters for the MOVE command are identical to those of the FETCH command; refer to FETCH
for details on syntax and usage.

Outputs
On successful completion, a MOVE command returns a command tag of the form

MOVE count

The count is the number of rows that a FETCH command with the same parameters would have returned
(possibly zero).

Examples

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Skip the first 5 rows:

1830

MOVE

MOVE FORWARD 5 IN liahona;
MOVE 5

-- Fetch the 6th row from the cursor liahona:
FETCH 1 FROM liahona;
 code | title | did | date_prod | kind | len
-------+--------+-----+------------+--------+-------
 P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37
(1 row)

-- Close the cursor liahona and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility
There is no MOVE statement in the SQL standard.

See Also
CLOSE, DECLARE, FETCH

1831

NOTIFY
NOTIFY — generate a notification

Synopsis

NOTIFY channel [, payload]

Description
The NOTIFY command sends a notification event together with an optional “payload” string to each client
application that has previously executed LISTEN channel for the specified channel name in the current
database. Notifications are visible to all users.

NOTIFY provides a simple interprocess communication mechanism for a collection of processes accessing
the same PostgreSQL database. A payload string can be sent along with the notification, and higher-level
mechanisms for passing structured data can be built by using tables in the database to pass additional data
from notifier to listener(s).

The information passed to the client for a notification event includes the notification channel name, the
notifying session's server process PID, and the payload string, which is an empty string if it has not been
specified.

It is up to the database designer to define the channel names that will be used in a given database and what
each one means. Commonly, the channel name is the same as the name of some table in the database, and
the notify event essentially means, “I changed this table, take a look at it to see what's new”. But no such
association is enforced by the NOTIFY and LISTEN commands. For example, a database designer could
use several different channel names to signal different sorts of changes to a single table. Alternatively, the
payload string could be used to differentiate various cases.

When NOTIFY is used to signal the occurrence of changes to a particular table, a useful programming
technique is to put the NOTIFY in a statement trigger that is triggered by table updates. In this way,
notification happens automatically when the table is changed, and the application programmer cannot
accidentally forget to do it.

NOTIFY interacts with SQL transactions in some important ways. Firstly, if a NOTIFY is executed inside
a transaction, the notify events are not delivered until and unless the transaction is committed. This is
appropriate, since if the transaction is aborted, all the commands within it have had no effect, including
NOTIFY. But it can be disconcerting if one is expecting the notification events to be delivered immediately.
Secondly, if a listening session receives a notification signal while it is within a transaction, the notification
event will not be delivered to its connected client until just after the transaction is completed (either
committed or aborted). Again, the reasoning is that if a notification were delivered within a transaction
that was later aborted, one would want the notification to be undone somehow — but the server cannot
“take back” a notification once it has sent it to the client. So notification events are only delivered between
transactions. The upshot of this is that applications using NOTIFY for real-time signaling should try to
keep their transactions short.

If the same channel name is signaled multiple times from the same transaction with identical payload
strings, the database server can decide to deliver a single notification only. On the other hand, notifications
with distinct payload strings will always be delivered as distinct notifications. Similarly, notifications from
different transactions will never get folded into one notification. Except for dropping later instances of

1832

NOTIFY

duplicate notifications, NOTIFY guarantees that notifications from the same transaction get delivered in
the order they were sent. It is also guaranteed that messages from different transactions are delivered in
the order in which the transactions committed.

It is common for a client that executes NOTIFY to be listening on the same notification channel itself.
In that case it will get back a notification event, just like all the other listening sessions. Depending on
the application logic, this could result in useless work, for example, reading a database table to find the
same updates that that session just wrote out. It is possible to avoid such extra work by noticing whether
the notifying session's server process PID (supplied in the notification event message) is the same as one's
own session's PID (available from libpq). When they are the same, the notification event is one's own work
bouncing back, and can be ignored.

Parameters
channel

Name of the notification channel to be signaled (any identifier).

payload

The “payload” string to be communicated along with the notification. This must be specified as a
simple string literal. In the default configuration it must be shorter than 8000 bytes. (If binary data
or large amounts of information need to be communicated, it's best to put it in a database table and
send the key of the record.)

Notes
There is a queue that holds notifications that have been sent but not yet processed by all listening sessions.
If this queue becomes full, transactions calling NOTIFY will fail at commit. The queue is quite large (8GB
in a standard installation) and should be sufficiently sized for almost every use case. However, no cleanup
can take place if a session executes LISTEN and then enters a transaction for a very long time. Once the
queue is half full you will see warnings in the log file pointing you to the session that is preventing cleanup.
In this case you should make sure that this session ends its current transaction so that cleanup can proceed.

The function pg_notification_queue_usage returns the fraction of the queue that is currently
occupied by pending notifications. See Section 9.25 for more information.

A transaction that has executed NOTIFY cannot be prepared for two-phase commit.

pg_notify

To send a notification you can also use the function pg_notify(text, text). The function takes
the channel name as the first argument and the payload as the second. The function is much easier to use
than the NOTIFY command if you need to work with non-constant channel names and payloads.

Examples
Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with
 PID 8448.

1833

NOTIFY

NOTIFY virtual, 'This is the payload';
Asynchronous notification "virtual" with payload "This is the payload"
 received from server process with PID 8448.

LISTEN foo;
SELECT pg_notify('fo' || 'o', 'pay' || 'load');
Asynchronous notification "foo" with payload "payload" received from
 server process with PID 14728.

Compatibility
There is no NOTIFY statement in the SQL standard.

See Also
LISTEN, UNLISTEN

1834

PREPARE
PREPARE — prepare a statement for execution

Synopsis

PREPARE name [(data_type [, ...])] AS statement

Description
PREPARE creates a prepared statement. A prepared statement is a server-side object that can be used
to optimize performance. When the PREPARE statement is executed, the specified statement is parsed,
analyzed, and rewritten. When an EXECUTE command is subsequently issued, the prepared statement is
planned and executed. This division of labor avoids repetitive parse analysis work, while allowing the
execution plan to depend on the specific parameter values supplied.

Prepared statements can take parameters: values that are substituted into the statement when it is executed.
When creating the prepared statement, refer to parameters by position, using $1, $2, etc. A corresponding
list of parameter data types can optionally be specified. When a parameter's data type is not specified or is
declared as unknown, the type is inferred from the context in which the parameter is first referenced (if
possible). When executing the statement, specify the actual values for these parameters in the EXECUTE
statement. Refer to EXECUTE for more information about that.

Prepared statements only last for the duration of the current database session. When the session ends, the
prepared statement is forgotten, so it must be recreated before being used again. This also means that a
single prepared statement cannot be used by multiple simultaneous database clients; however, each client
can create their own prepared statement to use. Prepared statements can be manually cleaned up using the
DEALLOCATE command.

Prepared statements potentially have the largest performance advantage when a single session is being
used to execute a large number of similar statements. The performance difference will be particularly
significant if the statements are complex to plan or rewrite, e.g. if the query involves a join of many tables
or requires the application of several rules. If the statement is relatively simple to plan and rewrite but
relatively expensive to execute, the performance advantage of prepared statements will be less noticeable.

Parameters
name

An arbitrary name given to this particular prepared statement. It must be unique within a single session
and is subsequently used to execute or deallocate a previously prepared statement.

data_type

The data type of a parameter to the prepared statement. If the data type of a particular parameter is
unspecified or is specified as unknown, it will be inferred from the context in which the parameter
is first referenced. To refer to the parameters in the prepared statement itself, use $1, $2, etc.

statement

Any SELECT, INSERT, UPDATE, DELETE, or VALUES statement.

1835

PREPARE

Notes
Prepared statements can use generic plans rather than re-planning with each set of supplied EXECUTE
values. This occurs immediately for prepared statements with no parameters; otherwise it occurs only
after five or more executions produce plans whose estimated cost average (including planning overhead)
is more expensive than the generic plan cost estimate. Once a generic plan is chosen, it is used for the
remaining lifetime of the prepared statement. Using EXECUTE values which are rare in columns with
many duplicates can generate custom plans that are so much cheaper than the generic plan, even after
adding planning overhead, that the generic plan might never be used.

A generic plan assumes that each value supplied to EXECUTE is one of the column's distinct values and
that column values are uniformly distributed. For example, if statistics record three distinct column values,
a generic plan assumes a column equality comparison will match 33% of processed rows. Column statistics
also allow generic plans to accurately compute the selectivity of unique columns. Comparisons on non-
uniformly-distributed columns and specification of non-existent values affects the average plan cost, and
hence if and when a generic plan is chosen.

To examine the query plan PostgreSQL is using for a prepared statement, use EXPLAIN, e.g. EXPLAIN
EXECUTE. If a generic plan is in use, it will contain parameter symbols $n, while a custom plan will
have the supplied parameter values substituted into it. The row estimates in the generic plan reflect the
selectivity computed for the parameters.

For more information on query planning and the statistics collected by PostgreSQL for that purpose, see
the ANALYZE documentation.

Although the main point of a prepared statement is to avoid repeated parse analysis and planning of the
statement, PostgreSQL will force re-analysis and re-planning of the statement before using it whenever
database objects used in the statement have undergone definitional (DDL) changes since the previous use
of the prepared statement. Also, if the value of search_path changes from one use to the next, the statement
will be re-parsed using the new search_path. (This latter behavior is new as of PostgreSQL 9.3.) These
rules make use of a prepared statement semantically almost equivalent to re-submitting the same query
text over and over, but with a performance benefit if no object definitions are changed, especially if the
best plan remains the same across uses. An example of a case where the semantic equivalence is not perfect
is that if the statement refers to a table by an unqualified name, and then a new table of the same name
is created in a schema appearing earlier in the search_path, no automatic re-parse will occur since no
object used in the statement changed. However, if some other change forces a re-parse, the new table will
be referenced in subsequent uses.

You can see all prepared statements available in the session by querying the
pg_prepared_statements system view.

Examples
Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS
 INSERT INTO foo VALUES($1, $2, $3, $4);
EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Create a prepared statement for a SELECT statement, and then execute it:

PREPARE usrrptplan (int) AS

1836

PREPARE

 SELECT * FROM users u, logs l WHERE u.usrid=$1 AND u.usrid=l.usrid
 AND l.date = $2;
EXECUTE usrrptplan(1, current_date);

Note that the data type of the second parameter is not specified, so it is inferred from the context in which
$2 is used.

Compatibility
The SQL standard includes a PREPARE statement, but it is only for use in embedded SQL. This version
of the PREPARE statement also uses a somewhat different syntax.

See Also
DEALLOCATE, EXECUTE

1837

PREPARE TRANSACTION
PREPARE TRANSACTION — prepare the current transaction for two-phase commit

Synopsis

PREPARE TRANSACTION transaction_id

Description
PREPARE TRANSACTION prepares the current transaction for two-phase commit. After this command,
the transaction is no longer associated with the current session; instead, its state is fully stored on disk,
and there is a very high probability that it can be committed successfully, even if a database crash occurs
before the commit is requested.

Once prepared, a transaction can later be committed or rolled back with COMMIT PREPARED or
ROLLBACK PREPARED, respectively. Those commands can be issued from any session, not only the
one that executed the original transaction.

From the point of view of the issuing session, PREPARE TRANSACTION is not unlike a ROLLBACK
command: after executing it, there is no active current transaction, and the effects of the prepared
transaction are no longer visible. (The effects will become visible again if the transaction is committed.)

If the PREPARE TRANSACTION command fails for any reason, it becomes a ROLLBACK: the current
transaction is canceled.

Parameters
transaction_id

An arbitrary identifier that later identifies this transaction for COMMIT PREPARED or ROLLBACK
PREPARED. The identifier must be written as a string literal, and must be less than 200 bytes long. It
must not be the same as the identifier used for any currently prepared transaction.

Notes
PREPARE TRANSACTION is not intended for use in applications or interactive sessions. Its purpose is
to allow an external transaction manager to perform atomic global transactions across multiple databases
or other transactional resources. Unless you're writing a transaction manager, you probably shouldn't be
using PREPARE TRANSACTION.

This command must be used inside a transaction block. Use BEGIN to start one.

It is not currently allowed to PREPARE a transaction that has executed any operations involving temporary
tables or the session's temporary namespace, created any cursors WITH HOLD, or executed LISTEN,
UNLISTEN, or NOTIFY. Those features are too tightly tied to the current session to be useful in a
transaction to be prepared.

If the transaction modified any run-time parameters with SET (without the LOCAL option), those effects
persist after PREPARE TRANSACTION, and will not be affected by any later COMMIT PREPARED or

1838

PREPARE TRANSACTION

ROLLBACK PREPARED. Thus, in this one respect PREPARE TRANSACTION acts more like COMMIT
than ROLLBACK.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Caution

It is unwise to leave transactions in the prepared state for a long time. This will interfere with the
ability of VACUUM to reclaim storage, and in extreme cases could cause the database to shut down
to prevent transaction ID wraparound (see Section 24.1.5). Keep in mind also that the transaction
continues to hold whatever locks it held. The intended usage of the feature is that a prepared
transaction will normally be committed or rolled back as soon as an external transaction manager
has verified that other databases are also prepared to commit.

If you have not set up an external transaction manager to track prepared transactions and ensure
they get closed out promptly, it is best to keep the prepared-transaction feature disabled by setting
max_prepared_transactions to zero. This will prevent accidental creation of prepared transactions
that might then be forgotten and eventually cause problems.

Examples
Prepare the current transaction for two-phase commit, using foobar as the transaction identifier:

PREPARE TRANSACTION 'foobar';

Compatibility
PREPARE TRANSACTION is a PostgreSQL extension. It is intended for use by external transaction
management systems, some of which are covered by standards (such as X/Open XA), but the SQL side
of those systems is not standardized.

See Also
COMMIT PREPARED, ROLLBACK PREPARED

1839

REASSIGN OWNED
REASSIGN OWNED — change the ownership of database objects owned by a database role

Synopsis

REASSIGN OWNED BY { old_role | CURRENT_USER | SESSION_USER } [, ...]
 TO { new_role | CURRENT_USER | SESSION_USER }

Description
REASSIGN OWNED instructs the system to change the ownership of database objects owned by any of
the old_roles to new_role.

Parameters
old_role

The name of a role. The ownership of all the objects within the current database, and of all shared
objects (databases, tablespaces), owned by this role will be reassigned to new_role.

new_role

The name of the role that will be made the new owner of the affected objects.

Notes
REASSIGN OWNED is often used to prepare for the removal of one or more roles. Because REASSIGN
OWNED does not affect objects within other databases, it is usually necessary to execute this command in
each database that contains objects owned by a role that is to be removed.

REASSIGN OWNED requires membership on both the source role(s) and the target role.

The DROP OWNED command is an alternative that simply drops all the database objects owned by one
or more roles.

The REASSIGN OWNED command does not affect any privileges granted to the old_roles for objects
that are not owned by them. Use DROP OWNED to revoke such privileges.

See Section 21.4 for more discussion.

Compatibility
The REASSIGN OWNED command is a PostgreSQL extension.

See Also
DROP OWNED, DROP ROLE, ALTER DATABASE

1840

REFRESH MATERIALIZED VIEW
REFRESH MATERIALIZED VIEW — replace the contents of a materialized view

Synopsis

REFRESH MATERIALIZED VIEW [CONCURRENTLY] name
 [WITH [NO] DATA]

Description
REFRESH MATERIALIZED VIEW completely replaces the contents of a materialized view. To execute
this command you must be the owner of the materialized view. The old contents are discarded. If WITH
DATA is specified (or defaults) the backing query is executed to provide the new data, and the materialized
view is left in a scannable state. If WITH NO DATA is specified no new data is generated and the
materialized view is left in an unscannable state.

CONCURRENTLY and WITH NO DATA may not be specified together.

Parameters
CONCURRENTLY

Refresh the materialized view without locking out concurrent selects on the materialized view.
Without this option a refresh which affects a lot of rows will tend to use fewer resources and complete
more quickly, but could block other connections which are trying to read from the materialized view.
This option may be faster in cases where a small number of rows are affected.

This option is only allowed if there is at least one UNIQUE index on the materialized view which uses
only column names and includes all rows; that is, it must not index on any expressions nor include
a WHERE clause.

This option may not be used when the materialized view is not already populated.

Even with this option only one REFRESH at a time may run against any one materialized view.

name

The name (optionally schema-qualified) of the materialized view to refresh.

Notes
While the default index for future CLUSTER operations is retained, REFRESH MATERIALIZED VIEW
does not order the generated rows based on this property. If you want the data to be ordered upon
generation, you must use an ORDER BY clause in the backing query.

Examples
This command will replace the contents of the materialized view called order_summary using the query
from the materialized view's definition, and leave it in a scannable state:

1841

REFRESH MATERIALIZED VIEW

REFRESH MATERIALIZED VIEW order_summary;

This command will free storage associated with the materialized view annual_statistics_basis
and leave it in an unscannable state:

REFRESH MATERIALIZED VIEW annual_statistics_basis WITH NO DATA;

Compatibility
REFRESH MATERIALIZED VIEW is a PostgreSQL extension.

See Also
CREATE MATERIALIZED VIEW, ALTER MATERIALIZED VIEW, DROP MATERIALIZED VIEW

1842

REINDEX
REINDEX — rebuild indexes

Synopsis

REINDEX [(VERBOSE)] { INDEX | TABLE | SCHEMA | DATABASE |
 SYSTEM } name

Description
REINDEX rebuilds an index using the data stored in the index's table, replacing the old copy of the index.
There are several scenarios in which to use REINDEX:

• An index has become corrupted, and no longer contains valid data. Although in theory this should never
happen, in practice indexes can become corrupted due to software bugs or hardware failures. REINDEX
provides a recovery method.

• An index has become “bloated”, that is it contains many empty or nearly-empty pages. This can occur
with B-tree indexes in PostgreSQL under certain uncommon access patterns. REINDEX provides a way
to reduce the space consumption of the index by writing a new version of the index without the dead
pages. See Section 24.2 for more information.

• You have altered a storage parameter (such as fillfactor) for an index, and wish to ensure that the change
has taken full effect.

• An index build with the CONCURRENTLY option failed, leaving an “invalid” index. Such indexes are
useless but it can be convenient to use REINDEX to rebuild them. Note that REINDEX will not perform
a concurrent build. To build the index without interfering with production you should drop the index
and reissue the CREATE INDEX CONCURRENTLY command.

Parameters
INDEX

Recreate the specified index.

TABLE

Recreate all indexes of the specified table. If the table has a secondary “TOAST” table, that is
reindexed as well.

SCHEMA

Recreate all indexes of the specified schema. If a table of this schema has a secondary “TOAST”
table, that is reindexed as well. Indexes on shared system catalogs are also processed. This form of
REINDEX cannot be executed inside a transaction block.

DATABASE

Recreate all indexes within the current database. Indexes on shared system catalogs are also processed.
This form of REINDEX cannot be executed inside a transaction block.

1843

REINDEX

SYSTEM

Recreate all indexes on system catalogs within the current database. Indexes on shared system catalogs
are included. Indexes on user tables are not processed. This form of REINDEX cannot be executed
inside a transaction block.

name

The name of the specific index, table, or database to be reindexed. Index and table names can be
schema-qualified. Presently, REINDEX DATABASE and REINDEX SYSTEM can only reindex the
current database, so their parameter must match the current database's name.

VERBOSE

Prints a progress report as each index is reindexed.

Notes
If you suspect corruption of an index on a user table, you can simply rebuild that index, or all indexes on
the table, using REINDEX INDEX or REINDEX TABLE.

Things are more difficult if you need to recover from corruption of an index on a system table. In this
case it's important for the system to not have used any of the suspect indexes itself. (Indeed, in this sort
of scenario you might find that server processes are crashing immediately at start-up, due to reliance on
the corrupted indexes.) To recover safely, the server must be started with the -P option, which prevents
it from using indexes for system catalog lookups.

One way to do this is to shut down the server and start a single-user PostgreSQL server with the -P option
included on its command line. Then, REINDEX DATABASE, REINDEX SYSTEM, REINDEX TABLE,
or REINDEX INDEX can be issued, depending on how much you want to reconstruct. If in doubt, use
REINDEX SYSTEM to select reconstruction of all system indexes in the database. Then quit the single-
user server session and restart the regular server. See the postgres reference page for more information
about how to interact with the single-user server interface.

Alternatively, a regular server session can be started with -P included in its command line options.
The method for doing this varies across clients, but in all libpq-based clients, it is possible to set the
PGOPTIONS environment variable to -P before starting the client. Note that while this method does
not require locking out other clients, it might still be wise to prevent other users from connecting to the
damaged database until repairs have been completed.

REINDEX is similar to a drop and recreate of the index in that the index contents are rebuilt from scratch.
However, the locking considerations are rather different. REINDEX locks out writes but not reads of the
index's parent table. It also takes an exclusive lock on the specific index being processed, which will block
reads that attempt to use that index. In contrast, DROP INDEX momentarily takes an exclusive lock on
the parent table, blocking both writes and reads. The subsequent CREATE INDEX locks out writes but
not reads; since the index is not there, no read will attempt to use it, meaning that there will be no blocking
but reads might be forced into expensive sequential scans.

Reindexing a single index or table requires being the owner of that index or table. Reindexing a schema or
database requires being the owner of that schema or database. Note that is therefore sometimes possible
for non-superusers to rebuild indexes of tables owned by other users. However, as a special exception,
when REINDEX DATABASE, REINDEX SCHEMA or REINDEX SYSTEM is issued by a non-superuser,
indexes on shared catalogs will be skipped unless the user owns the catalog (which typically won't be the
case). Of course, superusers can always reindex anything.

1844

REINDEX

Reindexing partitioned tables or partitioned indexes is not supported. Each individual partition can be
reindexed separately instead.

Examples
Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all the indexes on the table my_table:

REINDEX TABLE my_table;

Rebuild all indexes in a particular database, without trusting the system indexes to be valid already:

$ export PGOPTIONS="-P"
$ psql broken_db
...
broken_db=> REINDEX DATABASE broken_db;
broken_db=> \q

Compatibility
There is no REINDEX command in the SQL standard.

1845

RELEASE SAVEPOINT
RELEASE SAVEPOINT — destroy a previously defined savepoint

Synopsis

RELEASE [SAVEPOINT] savepoint_name

Description
RELEASE SAVEPOINT destroys a savepoint previously defined in the current transaction.

Destroying a savepoint makes it unavailable as a rollback point, but it has no other user visible behavior.
It does not undo the effects of commands executed after the savepoint was established. (To do that, see
ROLLBACK TO SAVEPOINT.) Destroying a savepoint when it is no longer needed allows the system
to reclaim some resources earlier than transaction end.

RELEASE SAVEPOINT also destroys all savepoints that were established after the named savepoint was
established.

Parameters
savepoint_name

The name of the savepoint to destroy.

Notes
Specifying a savepoint name that was not previously defined is an error.

It is not possible to release a savepoint when the transaction is in an aborted state.

If multiple savepoints have the same name, only the one that was most recently defined is released.

Examples
To establish and later destroy a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

Compatibility
This command conforms to the SQL standard. The standard specifies that the key word SAVEPOINT is
mandatory, but PostgreSQL allows it to be omitted.

1846

RELEASE SAVEPOINT

See Also
BEGIN, COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT, SAVEPOINT

1847

RESET
RESET — restore the value of a run-time parameter to the default value

Synopsis

RESET configuration_parameter
RESET ALL

Description
RESET restores run-time parameters to their default values. RESET is an alternative spelling for

SET configuration_parameter TO DEFAULT

Refer to SET for details.

The default value is defined as the value that the parameter would have had, if no SET had ever been issued
for it in the current session. The actual source of this value might be a compiled-in default, the configuration
file, command-line options, or per-database or per-user default settings. This is subtly different from
defining it as “the value that the parameter had at session start”, because if the value came from the
configuration file, it will be reset to whatever is specified by the configuration file now. See Chapter 19
for details.

The transactional behavior of RESET is the same as SET: its effects will be undone by transaction rollback.

Parameters
configuration_parameter

Name of a settable run-time parameter. Available parameters are documented in Chapter 19 and on
the SET reference page.

ALL

Resets all settable run-time parameters to default values.

Examples
Set the timezone configuration variable to its default value:

RESET timezone;

Compatibility
RESET is a PostgreSQL extension.

See Also
SET, SHOW

1848

REVOKE
REVOKE — remove access privileges

Synopsis

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | REFERENCES } (column_name
 [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL
 [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

1849

REVOKE

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON { { FUNCTION | PROCEDURE | ROUTINE } function_name
 [([[argmode] [arg_name] arg_type [, ...]])] [, ...]
 | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN
 SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR]
 role_name [, ...] FROM role_name [, ...]
 [CASCADE | RESTRICT]

Description

The REVOKE command revokes previously granted privileges from one or more roles. The key word
PUBLIC refers to the implicitly defined group of all roles.

1850

REVOKE

See the description of the GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it, privileges granted to any
role it is presently a member of, and privileges granted to PUBLIC. Thus, for example, revoking SELECT
privilege from PUBLIC does not necessarily mean that all roles have lost SELECT privilege on the object:
those who have it granted directly or via another role will still have it. Similarly, revoking SELECT from
a user might not prevent that user from using SELECT if PUBLIC or another membership role still has
SELECT rights.

If GRANT OPTION FOR is specified, only the grant option for the privilege is revoked, not the privilege
itself. Otherwise, both the privilege and the grant option are revoked.

If a user holds a privilege with grant option and has granted it to other users then the privileges held by
those other users are called dependent privileges. If the privilege or the grant option held by the first user is
being revoked and dependent privileges exist, those dependent privileges are also revoked if CASCADE is
specified; if it is not, the revoke action will fail. This recursive revocation only affects privileges that were
granted through a chain of users that is traceable to the user that is the subject of this REVOKE command.
Thus, the affected users might effectively keep the privilege if it was also granted through other users.

When revoking privileges on a table, the corresponding column privileges (if any) are automatically
revoked on each column of the table, as well. On the other hand, if a role has been granted privileges on
a table, then revoking the same privileges from individual columns will have no effect.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION, but the
behavior is similar. Note also that this form of the command does not allow the noise word GROUP.

Notes
Use psql's \dp command to display the privileges granted on existing tables and columns. See GRANT
for information about the format. For non-table objects there are other \d commands that can display their
privileges.

A user can only revoke privileges that were granted directly by that user. If, for example, user A has
granted a privilege with grant option to user B, and user B has in turn granted it to user C, then user A
cannot revoke the privilege directly from C. Instead, user A could revoke the grant option from user B
and use the CASCADE option so that the privilege is in turn revoked from user C. For another example,
if both A and B have granted the same privilege to C, A can revoke their own grant but not B's grant, so
C will still effectively have the privilege.

When a non-owner of an object attempts to REVOKE privileges on the object, the command will fail
outright if the user has no privileges whatsoever on the object. As long as some privilege is available, the
command will proceed, but it will revoke only those privileges for which the user has grant options. The
REVOKE ALL PRIVILEGES forms will issue a warning message if no grant options are held, while
the other forms will issue a warning if grant options for any of the privileges specifically named in the
command are not held. (In principle these statements apply to the object owner as well, but since the owner
is always treated as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. Since all privileges ultimately come from the object owner
(possibly indirectly via chains of grant options), it is possible for a superuser to revoke all privileges, but
this might require use of CASCADE as stated above.

REVOKE can also be done by a role that is not the owner of the affected object, but is a member of the role
that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on the object.
In this case the command is performed as though it were issued by the containing role that actually owns

1851

REVOKE

the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1,
of which role u1 is a member, then u1 can revoke privileges on t1 that are recorded as being granted by
g1. This would include grants made by u1 as well as by other members of role g1.

If the role executing REVOKE holds privileges indirectly via more than one role membership path, it is
unspecified which containing role will be used to perform the command. In such cases it is best practice
to use SET ROLE to become the specific role you want to do the REVOKE as. Failure to do so might lead
to revoking privileges other than the ones you intended, or not revoking anything at all.

Examples
Revoke insert privilege for the public on table films:

REVOKE INSERT ON films FROM PUBLIC;

Revoke all privileges from user manuel on view kinds:

REVOKE ALL PRIVILEGES ON kinds FROM manuel;

Note that this actually means “revoke all privileges that I granted”.

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Compatibility
The compatibility notes of the GRANT command apply analogously to REVOKE. The keyword
RESTRICT or CASCADE is required according to the standard, but PostgreSQL assumes RESTRICT by
default.

See Also
GRANT

1852

ROLLBACK
ROLLBACK — abort the current transaction

Synopsis

ROLLBACK [WORK | TRANSACTION]

Description
ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK outside of a transaction block emits a warning and otherwise has no effect.

Examples
To abort all changes:

ROLLBACK;

Compatibility
The SQL standard only specifies the two forms ROLLBACK and ROLLBACK WORK. Otherwise, this
command is fully conforming.

See Also
BEGIN, COMMIT, ROLLBACK TO SAVEPOINT

1853

ROLLBACK PREPARED
ROLLBACK PREPARED — cancel a transaction that was earlier prepared for two-phase commit

Synopsis

ROLLBACK PREPARED transaction_id

Description
ROLLBACK PREPARED rolls back a transaction that is in prepared state.

Parameters
transaction_id

The transaction identifier of the transaction that is to be rolled back.

Notes
To roll back a prepared transaction, you must be either the same user that executed the transaction
originally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is rolled back
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Roll back the transaction identified by the transaction identifier foobar:

ROLLBACK PREPARED 'foobar';

Compatibility
ROLLBACK PREPARED is a PostgreSQL extension. It is intended for use by external transaction
management systems, some of which are covered by standards (such as X/Open XA), but the SQL side
of those systems is not standardized.

See Also
PREPARE TRANSACTION, COMMIT PREPARED

1854

ROLLBACK TO SAVEPOINT
ROLLBACK TO SAVEPOINT — roll back to a savepoint

Synopsis

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

Description
Roll back all commands that were executed after the savepoint was established. The savepoint remains
valid and can be rolled back to again later, if needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after the named
savepoint.

Parameters
savepoint_name

The savepoint to roll back to.

Notes
Use RELEASE SAVEPOINT to destroy a savepoint without discarding the effects of commands executed
after it was established.

Specifying a savepoint name that has not been established is an error.

Cursors have somewhat non-transactional behavior with respect to savepoints. Any cursor that is opened
inside a savepoint will be closed when the savepoint is rolled back. If a previously opened cursor is affected
by a FETCH or MOVE command inside a savepoint that is later rolled back, the cursor remains at the
position that FETCH left it pointing to (that is, the cursor motion caused by FETCH is not rolled back).
Closing a cursor is not undone by rolling back, either. However, other side-effects caused by the cursor's
query (such as side-effects of volatile functions called by the query) are rolled back if they occur during
a savepoint that is later rolled back. A cursor whose execution causes a transaction to abort is put in a
cannot-execute state, so while the transaction can be restored using ROLLBACK TO SAVEPOINT, the
cursor can no longer be used.

Examples
To undo the effects of the commands executed after my_savepoint was established:

ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by savepoint rollback:

BEGIN;

1855

ROLLBACK TO SAVEPOINT

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;

SAVEPOINT foo;

FETCH 1 FROM foo;
 ?column?

 1

ROLLBACK TO SAVEPOINT foo;

FETCH 1 FROM foo;
 ?column?

 2

COMMIT;

Compatibility
The SQL standard specifies that the key word SAVEPOINT is mandatory, but PostgreSQL and Oracle
allow it to be omitted. SQL allows only WORK, not TRANSACTION, as a noise word after ROLLBACK.
Also, SQL has an optional clause AND [NO] CHAIN which is not currently supported by PostgreSQL.
Otherwise, this command conforms to the SQL standard.

See Also
BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, SAVEPOINT

1856

SAVEPOINT
SAVEPOINT — define a new savepoint within the current transaction

Synopsis

SAVEPOINT savepoint_name

Description
SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after it was
established to be rolled back, restoring the transaction state to what it was at the time of the savepoint.

Parameters
savepoint_name

The name to give to the new savepoint.

Notes
Use ROLLBACK TO SAVEPOINT to rollback to a savepoint. Use RELEASE SAVEPOINT to destroy
a savepoint, keeping the effects of commands executed after it was established.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints
defined within a transaction.

Examples
To establish a savepoint and later undo the effects of all commands executed after it was established:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 ROLLBACK TO SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);
COMMIT;

The above transaction will insert the values 1 and 3, but not 2.

To establish and later destroy a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;

1857

SAVEPOINT

 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

Compatibility
SQL requires a savepoint to be destroyed automatically when another savepoint with the same name is
established. In PostgreSQL, the old savepoint is kept, though only the more recent one will be used when
rolling back or releasing. (Releasing the newer savepoint with RELEASE SAVEPOINT will cause the
older one to again become accessible to ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT.)
Otherwise, SAVEPOINT is fully SQL conforming.

See Also
BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, ROLLBACK TO SAVEPOINT

1858

SECURITY LABEL
SECURITY LABEL — define or change a security label applied to an object

Synopsis

SECURITY LABEL [FOR provider] ON
{
 TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 DATABASE object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN TABLE object_name
 FUNCTION function_name [([[argmode] [argname] argtype
 [, ...]])] |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype
 [, ...]])] |
 PUBLICATION object_name |
 ROLE object_name |
 ROUTINE routine_name [([[argmode] [argname] argtype
 [, ...]])] |
 SCHEMA object_name |
 SEQUENCE object_name |
 SUBSCRIPTION object_name |
 TABLESPACE object_name |
 TYPE object_name |
 VIEW object_name
} IS 'label'

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode]
 [argname] argtype [, ...]

Description

SECURITY LABEL applies a security label to a database object. An arbitrary number of security labels,
one per label provider, can be associated with a given database object. Label providers are loadable
modules which register themselves by using the function register_label_provider.

1859

SECURITY LABEL

Note

register_label_provider is not an SQL function; it can only be called from C code loaded
into the backend.

The label provider determines whether a given label is valid and whether it is permissible to assign that
label to a given object. The meaning of a given label is likewise at the discretion of the label provider.
PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them. In practice, this facility is intended to allow integration
with label-based mandatory access control (MAC) systems such as SE-Linux. Such systems make all
access control decisions based on object labels, rather than traditional discretionary access control (DAC)
concepts such as users and groups.

Parameters
object_name
table_name.column_name
aggregate_name
function_name
procedure_name
routine_name

The name of the object to be labeled. Names of tables, aggregates, domains, foreign tables, functions,
procedures, routines, sequences, types, and views can be schema-qualified.

provider

The name of the provider with which this label is to be associated. The named provider must be loaded
and must consent to the proposed labeling operation. If exactly one provider is loaded, the provider
name may be omitted for brevity.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If
omitted, the default is IN. Note that SECURITY LABEL does not actually pay any attention to OUT
arguments, since only the input arguments are needed to determine the function's identity. So it is
sufficient to list the IN, INOUT, and VARIADIC arguments.

argname

The name of a function, procedure, or aggregate argument. Note that SECURITY LABEL does
not actually pay any attention to argument names, since only the argument data types are needed to
determine the function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

large_object_oid

The OID of the large object.

PROCEDURAL

This is a noise word.

1860

SECURITY LABEL

label

The new security label, written as a string literal; or NULL to drop the security label.

Examples
The following example shows how the security label of a table might be changed.

SECURITY LABEL FOR selinux ON TABLE mytable IS
 'system_u:object_r:sepgsql_table_t:s0';

Compatibility
There is no SECURITY LABEL command in the SQL standard.

See Also
sepgsql, src/test/modules/dummy_seclabel

1861

SELECT
SELECT, TABLE, WITH — retrieve rows from a table or view

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [* | expression [[AS] output_name] [, ...]]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS
 { FIRST | LAST }] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE }
 [OF table_name [, ...]] [NOWAIT | SKIP LOCKED] [...]]

where from_item can be one of:

 [ONLY] table_name [*] [[AS] alias [(column_alias
 [, ...])]]
 [TABLESAMPLE sampling_method (argument [, ...])
 [REPEATABLE (seed)]]
 [LATERAL] (select) [AS] alias [(column_alias [, ...])]
 with_query_name [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]])
 [WITH ORDINALITY] [[AS] alias [(column_alias
 [, ...])]]
 [LATERAL] function_name ([argument [, ...]]) [AS] alias
 (column_definition [, ...])
 [LATERAL] function_name ([argument [, ...]]) AS
 (column_definition [, ...])
 [LATERAL] ROWS FROM(function_name ([argument [, ...]]) [AS
 (column_definition [, ...])] [, ...])
 [WITH ORDINALITY] [[AS] alias [(column_alias
 [, ...])]]
 from_item [NATURAL] join_type from_item [ON join_condition |
 USING (join_column [, ...])]

and grouping_element can be one of:

 ()
 expression
 (expression [, ...])

1862

SELECT

 ROLLUP ({ expression | (expression [, ...]) } [, ...])
 CUBE ({ expression | (expression [, ...]) } [, ...])
 GROUPING SETS (grouping_element [, ...])

and with_query is:

 with_query_name [(column_name [, ...])] AS (select | values
 | insert | update | delete)

TABLE [ONLY] table_name [*]

Description
SELECT retrieves rows from zero or more tables. The general processing of SELECT is as follows:

1. All queries in the WITH list are computed. These effectively serve as temporary tables that can be
referenced in the FROM list. A WITH query that is referenced more than once in FROM is computed
only once. (See WITH Clause below.)

2. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual table.) If
more than one element is specified in the FROM list, they are cross-joined together. (See FROM Clause
below.)

3. If the WHERE clause is specified, all rows that do not satisfy the condition are eliminated from the
output. (See WHERE Clause below.)

4. If the GROUP BY clause is specified, or if there are aggregate function calls, the output is combined into
groups of rows that match on one or more values, and the results of aggregate functions are computed. If
the HAVING clause is present, it eliminates groups that do not satisfy the given condition. (See GROUP
BY Clause and HAVING Clause below.)

5. The actual output rows are computed using the SELECT output expressions for each selected row or
row group. (See SELECT List below.)

6. SELECT DISTINCT eliminates duplicate rows from the result. SELECT DISTINCT ON eliminates
rows that match on all the specified expressions. SELECT ALL (the default) will return all candidate
rows, including duplicates. (See DISTINCT Clause below.)

7. Using the operators UNION, INTERSECT, and EXCEPT, the output of more than one SELECT
statement can be combined to form a single result set. The UNION operator returns all rows that are in
one or both of the result sets. The INTERSECT operator returns all rows that are strictly in both result
sets. The EXCEPT operator returns the rows that are in the first result set but not in the second. In all
three cases, duplicate rows are eliminated unless ALL is specified. The noise word DISTINCT can be
added to explicitly specify eliminating duplicate rows. Notice that DISTINCT is the default behavior
here, even though ALL is the default for SELECT itself. (See UNION Clause, INTERSECT Clause,
and EXCEPT Clause below.)

8. If the ORDER BY clause is specified, the returned rows are sorted in the specified order. If ORDER BY
is not given, the rows are returned in whatever order the system finds fastest to produce. (See ORDER
BY Clause below.)

9. If the LIMIT (or FETCH FIRST) or OFFSET clause is specified, the SELECT statement only returns
a subset of the result rows. (See LIMIT Clause below.)

10.If FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE or FOR KEY SHARE is specified,
the SELECT statement locks the selected rows against concurrent updates. (See The Locking Clause
below.)

1863

SELECT

You must have SELECT privilege on each column used in a SELECT command. The use of FOR NO
KEY UPDATE, FOR UPDATE, FOR SHARE or FOR KEY SHARE requires UPDATE privilege as well
(for at least one column of each table so selected).

Parameters

WITH Clause

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
primary query. The subqueries effectively act as temporary tables or views for the duration of the primary
query. Each subquery can be a SELECT, TABLE, VALUES, INSERT, UPDATE or DELETE statement.
When writing a data-modifying statement (INSERT, UPDATE or DELETE) in WITH, it is usual to include a
RETURNING clause. It is the output of RETURNING, not the underlying table that the statement modifies,
that forms the temporary table that is read by the primary query. If RETURNING is omitted, the statement
is still executed, but it produces no output so it cannot be referenced as a table by the primary query.

A name (without schema qualification) must be specified for each WITH query. Optionally, a list of column
names can be specified; if this is omitted, the column names are inferred from the subquery.

If RECURSIVE is specified, it allows a SELECT subquery to reference itself by name. Such a subquery
must have the form

non_recursive_term UNION [ALL | DISTINCT] recursive_term

where the recursive self-reference must appear on the right-hand side of the UNION. Only one recursive
self-reference is permitted per query. Recursive data-modifying statements are not supported, but you can
use the results of a recursive SELECT query in a data-modifying statement. See Section 7.8 for an example.

Another effect of RECURSIVE is that WITH queries need not be ordered: a query can reference another one
that is later in the list. (However, circular references, or mutual recursion, are not implemented.) Without
RECURSIVE, WITH queries can only reference sibling WITH queries that are earlier in the WITH list.

A key property of WITH queries is that they are evaluated only once per execution of the primary query,
even if the primary query refers to them more than once. In particular, data-modifying statements are
guaranteed to be executed once and only once, regardless of whether the primary query reads all or any
of their output.

The primary query and the WITH queries are all (notionally) executed at the same time. This implies that
the effects of a data-modifying statement in WITH cannot be seen from other parts of the query, other than
by reading its RETURNING output. If two such data-modifying statements attempt to modify the same
row, the results are unspecified.

See Section 7.8 for additional information.

FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple sources are specified,
the result is the Cartesian product (cross join) of all the sources. But usually qualification conditions are
added (via WHERE) to restrict the returned rows to a small subset of the Cartesian product.

The FROM clause can contain the following elements:

table_name

The name (optionally schema-qualified) of an existing table or view. If ONLY is specified before the
table name, only that table is scanned. If ONLY is not specified, the table and all its descendant tables

1864

SELECT

(if any) are scanned. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity or to eliminate
ambiguity for self-joins (where the same table is scanned multiple times). When an alias is provided,
it completely hides the actual name of the table or function; for example given FROM foo AS f, the
remainder of the SELECT must refer to this FROM item as f not foo. If an alias is written, a column
alias list can also be written to provide substitute names for one or more columns of the table.

TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed)]

A TABLESAMPLE clause after a table_name indicates that the specified sampling_method
should be used to retrieve a subset of the rows in that table. This sampling precedes the application of
any other filters such as WHERE clauses. The standard PostgreSQL distribution includes two sampling
methods, BERNOULLI and SYSTEM, and other sampling methods can be installed in the database
via extensions.

The BERNOULLI and SYSTEM sampling methods each accept a single argument which is the
fraction of the table to sample, expressed as a percentage between 0 and 100. This argument can be any
real-valued expression. (Other sampling methods might accept more or different arguments.) These
two methods each return a randomly-chosen sample of the table that will contain approximately the
specified percentage of the table's rows. The BERNOULLI method scans the whole table and selects
or ignores individual rows independently with the specified probability. The SYSTEM method does
block-level sampling with each block having the specified chance of being selected; all rows in each
selected block are returned. The SYSTEM method is significantly faster than the BERNOULLI method
when small sampling percentages are specified, but it may return a less-random sample of the table
as a result of clustering effects.

The optional REPEATABLE clause specifies a seed number or expression to use for generating
random numbers within the sampling method. The seed value can be any non-null floating-point value.
Two queries that specify the same seed and argument values will select the same sample of the table,
if the table has not been changed meanwhile. But different seed values will usually produce different
samples. If REPEATABLE is not given then a new random sample is selected for each query, based
upon a system-generated seed. Note that some add-on sampling methods do not accept REPEATABLE,
and will always produce new samples on each use.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were created as a
temporary table for the duration of this single SELECT command. Note that the sub-SELECT must
be surrounded by parentheses, and an alias must be provided for it. A VALUES command can also
be used here.

with_query_name

A WITH query is referenced by writing its name, just as though the query's name were a table name.
(In fact, the WITH query hides any real table of the same name for the purposes of the primary query.
If necessary, you can refer to a real table of the same name by schema-qualifying the table's name.)
An alias can be provided in the same way as for a table.

function_name

Function calls can appear in the FROM clause. (This is especially useful for functions that return
result sets, but any function can be used.) This acts as though the function's output were created
as a temporary table for the duration of this single SELECT command. When the optional WITH

1865

SELECT

ORDINALITY clause is added to the function call, a new column is appended after all the function's
output columns with numbering for each row.

An alias can be provided in the same way as for a table. If an alias is written, a column alias list
can also be written to provide substitute names for one or more attributes of the function's composite
return type, including the column added by ORDINALITY if present.

Multiple function calls can be combined into a single FROM-clause item by surrounding them with
ROWS FROM(...). The output of such an item is the concatenation of the first row from each
function, then the second row from each function, etc. If some of the functions produce fewer rows
than others, null values are substituted for the missing data, so that the total number of rows returned
is always the same as for the function that produced the most rows.

If the function has been defined as returning the record data type, then an alias or the key word AS
must be present, followed by a column definition list in the form (column_name data_type
[, ...]). The column definition list must match the actual number and types of columns returned
by the function.

When using the ROWS FROM(...) syntax, if one of the functions requires a column definition
list, it's preferred to put the column definition list after the function call inside ROWS FROM(...).
A column definition list can be placed after the ROWS FROM(...) construct only if there's just
a single function and no WITH ORDINALITY clause.

To use ORDINALITY together with a column definition list, you must use the ROWS FROM(...)
syntax and put the column definition list inside ROWS FROM(...).

join_type

One of

• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

• CROSS JOIN
For the INNER and OUTER join types, a join condition must be specified, namely exactly one of
NATURAL, ON join_condition, or USING (join_column [, ...]). See below for the
meaning. For CROSS JOIN, none of these clauses can appear.

A JOIN clause combines two FROM items, which for convenience we will refer to as “tables”, though
in reality they can be any type of FROM item. Use parentheses if necessary to determine the order of
nesting. In the absence of parentheses, JOINs nest left-to-right. In any case JOIN binds more tightly
than the commas separating FROM-list items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result as you get from
listing the two tables at the top level of FROM, but restricted by the join condition (if any). CROSS
JOIN is equivalent to INNER JOIN ON (TRUE), that is, no rows are removed by qualification.
These join types are just a notational convenience, since they do nothing you couldn't do with plain
FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows
that pass its join condition), plus one copy of each row in the left-hand table for which there was no
right-hand row that passed the join condition. This left-hand row is extended to the full width of the

1866

SELECT

joined table by inserting null values for the right-hand columns. Note that only the JOIN clause's
own condition is considered while deciding which rows have matches. Outer conditions are applied
afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched
right-hand row (extended with nulls on the left). This is just a notational convenience, since you could
convert it to a LEFT OUTER JOIN by switching the left and right tables.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row
(extended with nulls on the right), plus one row for each unmatched right-hand row (extended with
nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of type boolean (similar to a WHERE
clause) that specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a =
right_table.a AND left_table.b = right_table.b Also, USING implies that
only one of each pair of equivalent columns will be included in the join output, not both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables that have matching
names. If there are no common column names, NATURAL is equivalent to ON TRUE.

LATERAL

The LATERAL key word can precede a sub-SELECT FROM item. This allows the sub-SELECT to
refer to columns of FROM items that appear before it in the FROM list. (Without LATERAL, each
sub-SELECT is evaluated independently and so cannot cross-reference any other FROM item.)

LATERAL can also precede a function-call FROM item, but in this case it is a noise word, because the
function expression can refer to earlier FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it
can also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each
row of the FROM item providing the cross-referenced column(s), or set of rows of multiple FROM
items providing the columns, the LATERAL item is evaluated using that row or row set's values of
the columns. The resulting row(s) are joined as usual with the rows they were computed from. This
is repeated for each row or set of rows from the column source table(s).

The column source table(s) must be INNER or LEFT joined to the LATERAL item, else there would
not be a well-defined set of rows from which to compute each set of rows for the LATERAL item.
Thus, although a construct such as X RIGHT JOIN LATERAL Y is syntactically valid, it is not
actually allowed for Y to reference X.

WHERE Clause

The optional WHERE clause has the general form

WHERE condition

1867

SELECT

where condition is any expression that evaluates to a result of type boolean. Any row that does not
satisfy this condition will be eliminated from the output. A row satisfies the condition if it returns true
when the actual row values are substituted for any variable references.

GROUP BY Clause

The optional GROUP BY clause has the general form

GROUP BY grouping_element [, ...]

GROUP BY will condense into a single row all selected rows that share the same values for the grouped
expressions. An expression used inside a grouping_element can be an input column name, or the
name or ordinal number of an output column (SELECT list item), or an arbitrary expression formed from
input-column values. In case of ambiguity, a GROUP BY name will be interpreted as an input-column
name rather than an output column name.

If any of GROUPING SETS, ROLLUP or CUBE are present as grouping elements, then the GROUP BY
clause as a whole defines some number of independent grouping sets. The effect of this is equivalent
to constructing a UNION ALL between subqueries with the individual grouping sets as their GROUP BY
clauses. For further details on the handling of grouping sets see Section 7.2.4.

Aggregate functions, if any are used, are computed across all rows making up each group, producing
a separate value for each group. (If there are aggregate functions but no GROUP BY clause, the query
is treated as having a single group comprising all the selected rows.) The set of rows fed to each
aggregate function can be further filtered by attaching a FILTER clause to the aggregate function call;
see Section 4.2.7 for more information. When a FILTER clause is present, only those rows matching it
are included in the input to that aggregate function.

When GROUP BY is present, or any aggregate functions are present, it is not valid for the SELECT
list expressions to refer to ungrouped columns except within aggregate functions or when the ungrouped
column is functionally dependent on the grouped columns, since there would otherwise be more than one
possible value to return for an ungrouped column. A functional dependency exists if the grouped columns
(or a subset thereof) are the primary key of the table containing the ungrouped column.

Keep in mind that all aggregate functions are evaluated before evaluating any “scalar” expressions in the
HAVING clause or SELECT list. This means that, for example, a CASE expression cannot be used to skip
evaluation of an aggregate function; see Section 4.2.14.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be
specified with GROUP BY.

HAVING Clause

The optional HAVING clause has the general form

HAVING condition

where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that do not satisfy the condition. HAVING is different from WHERE:
WHERE filters individual rows before the application of GROUP BY, while HAVING filters group rows
created by GROUP BY. Each column referenced in condition must unambiguously reference a
grouping column, unless the reference appears within an aggregate function or the ungrouped column is
functionally dependent on the grouping columns.

1868

SELECT

The presence of HAVING turns a query into a grouped query even if there is no GROUP BY clause. This
is the same as what happens when the query contains aggregate functions but no GROUP BY clause. All
the selected rows are considered to form a single group, and the SELECT list and HAVING clause can
only reference table columns from within aggregate functions. Such a query will emit a single row if the
HAVING condition is true, zero rows if it is not true.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be
specified with HAVING.

WINDOW Clause

The optional WINDOW clause has the general form

WINDOW window_name AS (window_definition) [, ...]

where window_name is a name that can be referenced from OVER clauses or subsequent window
definitions, and window_definition is

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST
 | LAST }] [, ...]]
[frame_clause]

If an existing_window_name is specified it must refer to an earlier entry in the WINDOW list; the
new window copies its partitioning clause from that entry, as well as its ordering clause if any. In this case
the new window cannot specify its own PARTITION BY clause, and it can specify ORDER BY only
if the copied window does not have one. The new window always uses its own frame clause; the copied
window must not specify a frame clause.

The elements of the PARTITION BY list are interpreted in much the same fashion as elements of a
GROUP BY Clause, except that they are always simple expressions and never the name or number of an
output column. Another difference is that these expressions can contain aggregate function calls, which
are not allowed in a regular GROUP BY clause. They are allowed here because windowing occurs after
grouping and aggregation.

Similarly, the elements of the ORDER BY list are interpreted in much the same fashion as elements of
an ORDER BY Clause, except that the expressions are always taken as simple expressions and never the
name or number of an output column.

The optional frame_clause defines the window frame for window functions that depend on the frame
(not all do). The window frame is a set of related rows for each row of the query (called the current row).
The frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end
 [frame_exclusion]

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING

1869

SELECT

offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

If frame_end is omitted it defaults to CURRENT ROW. Restrictions are that frame_start cannot be
UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED PRECEDING, and the frame_end
choice cannot appear earlier in the above list of frame_start and frame_end options than the
frame_start choice does — for example RANGE BETWEEN CURRENT ROW AND offset
PRECEDING is not allowed.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW; it sets the frame to be all rows from the
partition start up through the current row's last peer (a row that the window's ORDER BY clause considers
equivalent to the current row; all rows are peers if there is no ORDER BY). In general, UNBOUNDED
PRECEDING means that the frame starts with the first row of the partition, and similarly UNBOUNDED
FOLLOWING means that the frame ends with the last row of the partition, regardless of RANGE, ROWS
or GROUPS mode. In ROWS mode, CURRENT ROW means that the frame starts or ends with the current
row; but in RANGE or GROUPS mode it means that the frame starts or ends with the current row's first or
last peer in the ORDER BY ordering. The offset PRECEDING and offset FOLLOWING options vary
in meaning depending on the frame mode. In ROWS mode, the offset is an integer indicating that the
frame starts or ends that many rows before or after the current row. In GROUPS mode, the offset is an
integer indicating that the frame starts or ends that many peer groups before or after the current row's peer
group, where a peer group is a group of rows that are equivalent according to the window's ORDER BY
clause. In RANGE mode, use of an offset option requires that there be exactly one ORDER BY column in
the window definition. Then the frame contains those rows whose ordering column value is no more than
offset less than (for PRECEDING) or more than (for FOLLOWING) the current row's ordering column
value. In these cases the data type of the offset expression depends on the data type of the ordering
column. For numeric ordering columns it is typically of the same type as the ordering column, but for
datetime ordering columns it is an interval. In all these cases, the value of the offset must be non-
null and non-negative. Also, while the offset does not have to be a simple constant, it cannot contain
variables, aggregate functions, or window functions.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not
the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not
excluding the current row or its peers.

Beware that the ROWS mode can produce unpredictable results if the ORDER BY ordering does not order
the rows uniquely. The RANGE and GROUPS modes are designed to ensure that rows that are peers in the
ORDER BY ordering are treated alike: all rows of a given peer group will be in the frame or excluded
from it.

The purpose of a WINDOW clause is to specify the behavior of window functions appearing in the query's
SELECT List or ORDER BY Clause. These functions can reference the WINDOW clause entries by name

1870

SELECT

in their OVER clauses. A WINDOW clause entry does not have to be referenced anywhere, however; if it
is not used in the query it is simply ignored. It is possible to use window functions without any WINDOW
clause at all, since a window function call can specify its window definition directly in its OVER clause.
However, the WINDOW clause saves typing when the same window definition is needed for more than one
window function.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be
specified with WINDOW.

Window functions are described in detail in Section 3.5, Section 4.2.8, and Section 7.2.5.

SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that form the output
rows of the SELECT statement. The expressions can (and usually do) refer to columns computed in the
FROM clause.

Just as in a table, every output column of a SELECT has a name. In a simple SELECT this name is just
used to label the column for display, but when the SELECT is a sub-query of a larger query, the name is
seen by the larger query as the column name of the virtual table produced by the sub-query. To specify the
name to use for an output column, write AS output_name after the column's expression. (You can omit
AS, but only if the desired output name does not match any PostgreSQL keyword (see Appendix C). For
protection against possible future keyword additions, it is recommended that you always either write AS
or double-quote the output name.) If you do not specify a column name, a name is chosen automatically
by PostgreSQL. If the column's expression is a simple column reference then the chosen name is the same
as that column's name. In more complex cases a function or type name may be used, or the system may
fall back on a generated name such as ?column?.

An output column's name can be used to refer to the column's value in ORDER BY and GROUP BY clauses,
but not in the WHERE or HAVING clauses; there you must write out the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the columns of the selected
rows. Also, you can write table_name.* as a shorthand for the columns coming from just that table.
In these cases it is not possible to specify new names with AS; the output column names will be the same
as the table columns' names.

According to the SQL standard, the expressions in the output list should be computed before applying
DISTINCT, ORDER BY, or LIMIT. This is obviously necessary when using DISTINCT, since otherwise
it's not clear what values are being made distinct. However, in many cases it is convenient if output
expressions are computed after ORDER BY and LIMIT; particularly if the output list contains any volatile
or expensive functions. With that behavior, the order of function evaluations is more intuitive and there
will not be evaluations corresponding to rows that never appear in the output. PostgreSQL will effectively
evaluate output expressions after sorting and limiting, so long as those expressions are not referenced in
DISTINCT, ORDER BY or GROUP BY. (As a counterexample, SELECT f(x) FROM tab ORDER
BY 1 clearly must evaluate f(x) before sorting.) Output expressions that contain set-returning functions
are effectively evaluated after sorting and before limiting, so that LIMIT will act to cut off the output
from a set-returning function.

Note

PostgreSQL versions before 9.6 did not provide any guarantees about the timing of evaluation of
output expressions versus sorting and limiting; it depended on the form of the chosen query plan.

1871

SELECT

DISTINCT Clause

If SELECT DISTINCT is specified, all duplicate rows are removed from the result set (one row is kept
from each group of duplicates). SELECT ALL specifies the opposite: all rows are kept; that is the default.

SELECT DISTINCT ON (expression [, ...]) keeps only the first row of each set of rows
where the given expressions evaluate to equal. The DISTINCT ON expressions are interpreted using the
same rules as for ORDER BY (see above). Note that the “first row” of each set is unpredictable unless
ORDER BY is used to ensure that the desired row appears first. For example:

SELECT DISTINCT ON (location) location, time, report
 FROM weather_reports
 ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we'd have gotten a report from an unpredictable time
for each location.

The DISTINCT ON expression(s) must match the leftmost ORDER BY expression(s). The ORDER BY
clause will normally contain additional expression(s) that determine the desired precedence of rows within
each DISTINCT ON group.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be
specified with DISTINCT.

UNION Clause

The UNION clause has this general form:

select_statement UNION [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY
UPDATE, FOR UPDATE, FOR SHARE, or FOR KEY SHARE clause. (ORDER BY and LIMIT can
be attached to a subexpression if it is enclosed in parentheses. Without parentheses, these clauses will be
taken to apply to the result of the UNION, not to its right-hand input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT statements. A
row is in the set union of two result sets if it appears in at least one of the result sets. The two SELECT
statements that represent the direct operands of the UNION must produce the same number of columns,
and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL prevents
elimination of duplicates. (Therefore, UNION ALL is usually significantly quicker than UNION; use
ALL when you can.) DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be
specified either for a UNION result or for any input of a UNION.

INTERSECT Clause

The INTERSECT clause has this general form:

1872

SELECT

select_statement INTERSECT [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY
UPDATE, FOR UPDATE, FOR SHARE, or FOR KEY SHARE clause.

The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT
statements. A row is in the intersection of two result sets if it appears in both result sets.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in the left table and n duplicates in the right table will appear min(m,n)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. INTERSECT binds more tightly than UNION. That is, A UNION B
INTERSECT C will be read as A UNION (B INTERSECT C).

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be
specified either for an INTERSECT result or for any input of an INTERSECT.

EXCEPT Clause

The EXCEPT clause has this general form:

select_statement EXCEPT [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY
UPDATE, FOR UPDATE, FOR SHARE, or FOR KEY SHARE clause.

The EXCEPT operator computes the set of rows that are in the result of the left SELECT statement but
not in the result of the right one.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With ALL,
a row that has m duplicates in the left table and n duplicates in the right table will appear max(m-n,0)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless parentheses
dictate otherwise. EXCEPT binds at the same level as UNION.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be
specified either for an EXCEPT result or for any input of an EXCEPT.

ORDER BY Clause

The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST |
 LAST }] [, ...]

The ORDER BY clause causes the result rows to be sorted according to the specified expression(s). If two
rows are equal according to the leftmost expression, they are compared according to the next expression

1873

SELECT

and so on. If they are equal according to all specified expressions, they are returned in an implementation-
dependent order.

Each expression can be the name or ordinal number of an output column (SELECT list item), or it can
be an arbitrary expression formed from input-column values.

The ordinal number refers to the ordinal (left-to-right) position of the output column. This feature makes
it possible to define an ordering on the basis of a column that does not have a unique name. This is never
absolutely necessary because it is always possible to assign a name to an output column using the AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns that do not
appear in the SELECT output list. Thus the following statement is valid:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTERSECT,
or EXCEPT clause can only specify an output column name or number, not an expression.

If an ORDER BY expression is a simple name that matches both an output column name and an input
column name, ORDER BY will interpret it as the output column name. This is the opposite of the choice
that GROUP BY will make in the same situation. This inconsistency is made to be compatible with the
SQL standard.

Optionally one can add the key word ASC (ascending) or DESC (descending) after any expression in the
ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific ordering operator
name can be specified in the USING clause. An ordering operator must be a less-than or greater-than
member of some B-tree operator family. ASC is usually equivalent to USING < and DESC is usually
equivalent to USING >. (But the creator of a user-defined data type can define exactly what the default
sort ordering is, and it might correspond to operators with other names.)

If NULLS LAST is specified, null values sort after all non-null values; if NULLS FIRST is specified,
null values sort before all non-null values. If neither is specified, the default behavior is NULLS LAST
when ASC is specified or implied, and NULLS FIRST when DESC is specified (thus, the default is to act
as though nulls are larger than non-nulls). When USING is specified, the default nulls ordering depends
on whether the operator is a less-than or greater-than operator.

Note that ordering options apply only to the expression they follow; for example ORDER BY x, y DESC
does not mean the same thing as ORDER BY x DESC, y DESC.

Character-string data is sorted according to the collation that applies to the column being sorted. That can
be overridden at need by including a COLLATE clause in the expression, for example ORDER BY
mycolumn COLLATE "en_US". For more information see Section 4.2.10 and Section 23.2.

LIMIT Clause

The LIMIT clause consists of two independent sub-clauses:

LIMIT { count | ALL }
OFFSET start

count specifies the maximum number of rows to return, while start specifies the number of rows to
skip before starting to return rows. When both are specified, start rows are skipped before starting to
count the count rows to be returned.

1874

SELECT

If the count expression evaluates to NULL, it is treated as LIMIT ALL, i.e., no limit. If start evaluates
to NULL, it is treated the same as OFFSET 0.

SQL:2008 introduced a different syntax to achieve the same result, which PostgreSQL also supports. It is:

OFFSET start { ROW | ROWS }
FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY

In this syntax, the start or count value is required by the standard to be a literal constant, a parameter,
or a variable name; as a PostgreSQL extension, other expressions are allowed, but will generally need
to be enclosed in parentheses to avoid ambiguity. If count is omitted in a FETCH clause, it defaults to
1. ROW and ROWS as well as FIRST and NEXT are noise words that don't influence the effects of these
clauses. According to the standard, the OFFSET clause must come before the FETCH clause if both are
present; but PostgreSQL is laxer and allows either order.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows — you might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don't know what
ordering unless you specify ORDER BY.

The query planner takes LIMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you use for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

It is even possible for repeated executions of the same LIMIT query to return different subsets of the rows
of a table, if there is not an ORDER BY to enforce selection of a deterministic subset. Again, this is not a
bug; determinism of the results is simply not guaranteed in such a case.

The Locking Clause

FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE are locking clauses; they
affect how SELECT locks rows as they are obtained from the table.

The locking clause has the general form

FOR lock_strength [OF table_name [, ...]] [NOWAIT | SKIP LOCKED]

where lock_strength can be one of

UPDATE
NO KEY UPDATE
SHARE
KEY SHARE

For more information on each row-level lock mode, refer to Section 13.3.2.

To prevent the operation from waiting for other transactions to commit, use either the NOWAIT or SKIP
LOCKED option. With NOWAIT, the statement reports an error, rather than waiting, if a selected row cannot
be locked immediately. With SKIP LOCKED, any selected rows that cannot be immediately locked are
skipped. Skipping locked rows provides an inconsistent view of the data, so this is not suitable for general

1875

SELECT

purpose work, but can be used to avoid lock contention with multiple consumers accessing a queue-like
table. Note that NOWAIT and SKIP LOCKED apply only to the row-level lock(s) — the required ROW
SHARE table-level lock is still taken in the ordinary way (see Chapter 13). You can use LOCK with the
NOWAIT option first, if you need to acquire the table-level lock without waiting.

If specific tables are named in a locking clause, then only rows coming from those tables are locked; any
other tables used in the SELECT are simply read as usual. A locking clause without a table list affects
all tables used in the statement. If a locking clause is applied to a view or sub-query, it affects all tables
used in the view or sub-query. However, these clauses do not apply to WITH queries referenced by the
primary query. If you want row locking to occur within a WITH query, specify a locking clause within
the WITH query.

Multiple locking clauses can be written if it is necessary to specify different locking behavior for different
tables. If the same table is mentioned (or implicitly affected) by more than one locking clause, then it is
processed as if it was only specified by the strongest one. Similarly, a table is processed as NOWAIT if
that is specified in any of the clauses affecting it. Otherwise, it is processed as SKIP LOCKED if that is
specified in any of the clauses affecting it.

The locking clauses cannot be used in contexts where returned rows cannot be clearly identified with
individual table rows; for example they cannot be used with aggregation.

When a locking clause appears at the top level of a SELECT query, the rows that are locked are exactly
those that are returned by the query; in the case of a join query, the rows locked are those that contribute
to returned join rows. In addition, rows that satisfied the query conditions as of the query snapshot will be
locked, although they will not be returned if they were updated after the snapshot and no longer satisfy the
query conditions. If a LIMIT is used, locking stops once enough rows have been returned to satisfy the
limit (but note that rows skipped over by OFFSET will get locked). Similarly, if a locking clause is used
in a cursor's query, only rows actually fetched or stepped past by the cursor will be locked.

When a locking clause appears in a sub-SELECT, the rows locked are those returned to the outer query by
the sub-query. This might involve fewer rows than inspection of the sub-query alone would suggest, since
conditions from the outer query might be used to optimize execution of the sub-query. For example,

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss WHERE col1 = 5;

will lock only rows having col1 = 5, even though that condition is not textually within the sub-query.

Previous releases failed to preserve a lock which is upgraded by a later savepoint. For example, this code:

BEGIN;
SELECT * FROM mytable WHERE key = 1 FOR UPDATE;
SAVEPOINT s;
UPDATE mytable SET ... WHERE key = 1;
ROLLBACK TO s;

would fail to preserve the FOR UPDATE lock after the ROLLBACK TO. This has been fixed in release 9.3.

Caution

It is possible for a SELECT command running at the READ COMMITTED transaction isolation
level and using ORDER BY and a locking clause to return rows out of order. This is because ORDER
BY is applied first. The command sorts the result, but might then block trying to obtain a lock on
one or more of the rows. Once the SELECT unblocks, some of the ordering column values might

1876

SELECT

have been modified, leading to those rows appearing to be out of order (though they are in order
in terms of the original column values). This can be worked around at need by placing the FOR
UPDATE/SHARE clause in a sub-query, for example

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss ORDER BY
 column1;

Note that this will result in locking all rows of mytable, whereas FOR UPDATE at the top level
would lock only the actually returned rows. This can make for a significant performance difference,
particularly if the ORDER BY is combined with LIMIT or other restrictions. So this technique
is recommended only if concurrent updates of the ordering columns are expected and a strictly
sorted result is required.

At the REPEATABLE READ or SERIALIZABLE transaction isolation level this would cause a
serialization failure (with a SQLSTATE of '40001'), so there is no possibility of receiving rows
out of order under these isolation levels.

TABLE Command

The command

TABLE name

is equivalent to

SELECT * FROM name

It can be used as a top-level command or as a space-saving syntax variant in parts of complex queries. Only
the WITH, UNION, INTERSECT, EXCEPT, ORDER BY, LIMIT, OFFSET, FETCH and FOR locking
clauses can be used with TABLE; the WHERE clause and any form of aggregation cannot be used.

Examples
To join the table films with the table distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind
 FROM distributors d, films f
 WHERE f.did = d.did

 title | did | name | date_prod | kind
-------------------+-----+--------------+------------+----------
 The Third Man | 101 | British Lion | 1949-12-23 | Drama
 The African Queen | 101 | British Lion | 1951-08-11 | Romantic
 ...

To sum the column len of all films and group the results by kind:

SELECT kind, sum(len) AS total FROM films GROUP BY kind;

1877

SELECT

 kind | total
----------+-------
 Action | 07:34
 Comedy | 02:58
 Drama | 14:28
 Musical | 06:42
 Romantic | 04:38

To sum the column len of all films, group the results by kind and show those group totals that are less
than 5 hours:

SELECT kind, sum(len) AS total
 FROM films
 GROUP BY kind
 HAVING sum(len) < interval '5 hours';

 kind | total
----------+-------
 Comedy | 02:58
 Romantic | 04:38

The following two examples are identical ways of sorting the individual results according to the contents
of the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

 did | name
-----+------------------
 109 | 20th Century Fox
 110 | Bavaria Atelier
 101 | British Lion
 107 | Columbia
 102 | Jean Luc Godard
 113 | Luso films
 104 | Mosfilm
 103 | Paramount
 106 | Toho
 105 | United Artists
 111 | Walt Disney
 112 | Warner Bros.
 108 | Westward

The next example shows how to obtain the union of the tables distributors and actors, restricting
the results to those that begin with the letter W in each table. Only distinct rows are wanted, so the key
word ALL is omitted.

distributors: actors:
 did | name id | name
-----+-------------- ----+----------------
 108 | Westward 1 | Woody Allen

1878

SELECT

 111 | Walt Disney 2 | Warren Beatty
 112 | Warner Bros. 3 | Walter Matthau

SELECT distributors.name
 FROM distributors
 WHERE distributors.name LIKE 'W%'
UNION
SELECT actors.name
 FROM actors
 WHERE actors.name LIKE 'W%';

 name

 Walt Disney
 Walter Matthau
 Warner Bros.
 Warren Beatty
 Westward
 Woody Allen

This example shows how to use a function in the FROM clause, both with and without a column definition
list:

CREATE FUNCTION distributors(int) RETURNS SETOF distributors AS $$
 SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors(111);
 did | name
-----+-------------
 111 | Walt Disney

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS $$
 SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
 f1 | f2
-----+-------------
 111 | Walt Disney

Here is an example of a function with an ordinality column added:

SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
 unnest | ordinality
--------+----------
 a | 1
 b | 2
 c | 3
 d | 4
 e | 5
 f | 6

1879

SELECT

(6 rows)

This example shows how to use a simple WITH clause:

WITH t AS (
 SELECT random() as x FROM generate_series(1, 3)
)
SELECT * FROM t
UNION ALL
SELECT * FROM t

 x

 0.534150459803641
 0.520092216785997
 0.0735620250925422
 0.534150459803641
 0.520092216785997
 0.0735620250925422

Notice that the WITH query was evaluated only once, so that we got two sets of the same three random
values.

This example uses WITH RECURSIVE to find all subordinates (direct or indirect) of the employee Mary,
and their level of indirectness, from a table that shows only direct subordinates:

WITH RECURSIVE employee_recursive(distance, employee_name,
 manager_name) AS (
 SELECT 1, employee_name, manager_name
 FROM employee
 WHERE manager_name = 'Mary'
 UNION ALL
 SELECT er.distance + 1, e.employee_name, e.manager_name
 FROM employee_recursive er, employee e
 WHERE er.employee_name = e.manager_name
)
SELECT distance, employee_name FROM employee_recursive;

Notice the typical form of recursive queries: an initial condition, followed by UNION, followed by the
recursive part of the query. Be sure that the recursive part of the query will eventually return no tuples, or
else the query will loop indefinitely. (See Section 7.8 for more examples.)

This example uses LATERAL to apply a set-returning function get_product_names() for each row
of the manufacturers table:

SELECT m.name AS mname, pname
FROM manufacturers m, LATERAL get_product_names(m.id) pname;

Manufacturers not currently having any products would not appear in the result, since it is an inner join.
If we wished to include the names of such manufacturers in the result, we could do:

SELECT m.name AS mname, pname

1880

SELECT

FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname
 ON true;

Compatibility
Of course, the SELECT statement is compatible with the SQL standard. But there are some extensions
and some missing features.

Omitted FROM Clauses

PostgreSQL allows one to omit the FROM clause. It has a straightforward use to compute the results of
simple expressions:

SELECT 2+2;

 ?column?

 4

Some other SQL databases cannot do this except by introducing a dummy one-row table from which to
do the SELECT.

Note that if a FROM clause is not specified, the query cannot reference any database tables. For example,
the following query is invalid:

SELECT distributors.* WHERE distributors.name = 'Westward';

PostgreSQL releases prior to 8.1 would accept queries of this form, and add an implicit entry to the query's
FROM clause for each table referenced by the query. This is no longer allowed.

Empty SELECT Lists

The list of output expressions after SELECT can be empty, producing a zero-column result table. This is
not valid syntax according to the SQL standard. PostgreSQL allows it to be consistent with allowing zero-
column tables. However, an empty list is not allowed when DISTINCT is used.

Omitting the AS Key Word

In the SQL standard, the optional key word AS can be omitted before an output column name whenever
the new column name is a valid column name (that is, not the same as any reserved keyword). PostgreSQL
is slightly more restrictive: AS is required if the new column name matches any keyword at all, reserved
or not. Recommended practice is to use AS or double-quote output column names, to prevent any possible
conflict against future keyword additions.

In FROM items, both the standard and PostgreSQL allow AS to be omitted before an alias that is an
unreserved keyword. But this is impractical for output column names, because of syntactic ambiguities.

ONLY and Inheritance

The SQL standard requires parentheses around the table name when writing ONLY, for example SELECT
* FROM ONLY (tab1), ONLY (tab2) WHERE PostgreSQL considers these parentheses
to be optional.

1881

SELECT

PostgreSQL allows a trailing * to be written to explicitly specify the non-ONLY behavior of including
child tables. The standard does not allow this.

(These points apply equally to all SQL commands supporting the ONLY option.)

TABLESAMPLE Clause Restrictions

The TABLESAMPLE clause is currently accepted only on regular tables and materialized views. According
to the SQL standard it should be possible to apply it to any FROM item.

Function Calls in FROM

PostgreSQL allows a function call to be written directly as a member of the FROM list. In the SQL standard
it would be necessary to wrap such a function call in a sub-SELECT; that is, the syntax FROM func(...)
alias is approximately equivalent to FROM LATERAL (SELECT func(...)) alias. Note that
LATERAL is considered to be implicit; this is because the standard requires LATERAL semantics for an
UNNEST() item in FROM. PostgreSQL treats UNNEST() the same as other set-returning functions.

Namespace Available to GROUP BY and ORDER BY

In the SQL-92 standard, an ORDER BY clause can only use output column names or numbers, while a
GROUP BY clause can only use expressions based on input column names. PostgreSQL extends each of
these clauses to allow the other choice as well (but it uses the standard's interpretation if there is ambiguity).
PostgreSQL also allows both clauses to specify arbitrary expressions. Note that names appearing in an
expression will always be taken as input-column names, not as output-column names.

SQL:1999 and later use a slightly different definition which is not entirely upward compatible with
SQL-92. In most cases, however, PostgreSQL will interpret an ORDER BY or GROUP BY expression
the same way SQL:1999 does.

Functional Dependencies

PostgreSQL recognizes functional dependency (allowing columns to be omitted from GROUP BY) only
when a table's primary key is included in the GROUP BY list. The SQL standard specifies additional
conditions that should be recognized.

LIMIT and OFFSET

The clauses LIMIT and OFFSET are PostgreSQL-specific syntax, also used by MySQL. The SQL:2008
standard has introduced the clauses OFFSET ... FETCH {FIRST|NEXT} ... for the same
functionality, as shown above in LIMIT Clause. This syntax is also used by IBM DB2. (Applications
written for Oracle frequently use a workaround involving the automatically generated rownum column,
which is not available in PostgreSQL, to implement the effects of these clauses.)

FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, FOR KEY SHARE

Although FOR UPDATE appears in the SQL standard, the standard allows it only as an option of DECLARE
CURSOR. PostgreSQL allows it in any SELECT query as well as in sub-SELECTs, but this is an extension.
The FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE variants, as well as the NOWAIT and
SKIP LOCKED options, do not appear in the standard.

Data-Modifying Statements in WITH

PostgreSQL allows INSERT, UPDATE, and DELETE to be used as WITH queries. This is not found in
the SQL standard.

1882

SELECT

Nonstandard Clauses

DISTINCT ON (...) is an extension of the SQL standard.

ROWS FROM(...) is an extension of the SQL standard.

1883

SELECT INTO
SELECT INTO — define a new table from the results of a query

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 INTO [TEMPORARY | TEMP | UNLOGGED] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS
 { FIRST | LAST }] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT]
 [...]]

Description
SELECT INTO creates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normal SELECT. The new table's columns have the names and data types
associated with the output columns of the SELECT.

Parameters
TEMPORARY or TEMP

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

UNLOGGED

If specified, the table is created as an unlogged table. Refer to CREATE TABLE for details.

new_table

The name (optionally schema-qualified) of the table to be created.

All other parameters are described in detail under SELECT.

Notes
CREATE TABLE AS is functionally similar to SELECT INTO. CREATE TABLE AS is the
recommended syntax, since this form of SELECT INTO is not available in ECPG or PL/pgSQL, because

1884

SELECT INTO

they interpret the INTO clause differently. Furthermore, CREATE TABLE AS offers a superset of the
functionality provided by SELECT INTO.

To add OIDs to the table created by SELECT INTO, enable the default_with_oids configuration variable.
Alternatively, CREATE TABLE AS can be used with the WITH OIDS clause.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

SELECT * INTO films_recent FROM films WHERE date_prod >= '2002-01-01';

Compatibility
The SQL standard uses SELECT INTO to represent selecting values into scalar variables of a host
program, rather than creating a new table. This indeed is the usage found in ECPG (see Chapter 36) and
PL/pgSQL (see Chapter 43). The PostgreSQL usage of SELECT INTO to represent table creation is
historical. It is best to use CREATE TABLE AS for this purpose in new code.

See Also
CREATE TABLE AS

1885

SET
SET — change a run-time parameter

Synopsis

SET [SESSION | LOCAL] configuration_parameter { TO | = } { value |
 'value' | DEFAULT }
SET [SESSION | LOCAL] TIME ZONE { timezone | LOCAL | DEFAULT }

Description
The SET command changes run-time configuration parameters. Many of the run-time parameters listed
in Chapter 19 can be changed on-the-fly with SET. (But some require superuser privileges to change, and
others cannot be changed after server or session start.) SET only affects the value used by the current
session.

If SET (or equivalently SET SESSION) is issued within a transaction that is later aborted, the effects
of the SET command disappear when the transaction is rolled back. Once the surrounding transaction is
committed, the effects will persist until the end of the session, unless overridden by another SET.

The effects of SET LOCAL last only till the end of the current transaction, whether committed or not. A
special case is SET followed by SET LOCAL within a single transaction: the SET LOCAL value will
be seen until the end of the transaction, but afterwards (if the transaction is committed) the SET value
will take effect.

The effects of SET or SET LOCAL are also canceled by rolling back to a savepoint that is earlier than
the command.

If SET LOCAL is used within a function that has a SET option for the same variable (see CREATE
FUNCTION), the effects of the SET LOCAL command disappear at function exit; that is, the value in
effect when the function was called is restored anyway. This allows SET LOCAL to be used for dynamic
or repeated changes of a parameter within a function, while still having the convenience of using the SET
option to save and restore the caller's value. However, a regular SET command overrides any surrounding
function's SET option; its effects will persist unless rolled back.

Note

In PostgreSQL versions 8.0 through 8.2, the effects of a SET LOCAL would be canceled by
releasing an earlier savepoint, or by successful exit from a PL/pgSQL exception block. This
behavior has been changed because it was deemed unintuitive.

Parameters
SESSION

Specifies that the command takes effect for the current session. (This is the default if neither SESSION
nor LOCAL appears.)

1886

SET

LOCAL

Specifies that the command takes effect for only the current transaction. After COMMIT or
ROLLBACK, the session-level setting takes effect again. Issuing this outside of a transaction block
emits a warning and otherwise has no effect.

configuration_parameter

Name of a settable run-time parameter. Available parameters are documented in Chapter 19 and
below.

value

New value of parameter. Values can be specified as string constants, identifiers, numbers, or comma-
separated lists of these, as appropriate for the particular parameter. DEFAULT can be written to specify
resetting the parameter to its default value (that is, whatever value it would have had if no SET had
been executed in the current session).

Besides the configuration parameters documented in Chapter 19, there are a few that can only be adjusted
using the SET command or that have a special syntax:

SCHEMA

SET SCHEMA 'value' is an alias for SET search_path TO value. Only one schema can
be specified using this syntax.

NAMES

SET NAMES value is an alias for SET client_encoding TO value.

SEED

Sets the internal seed for the random number generator (the function random). Allowed values are
floating-point numbers between -1 and 1, which are then multiplied by 231-1.

The seed can also be set by invoking the function setseed:

SELECT setseed(value);

TIME ZONE

SET TIME ZONE value is an alias for SET timezone TO value. The syntax SET TIME
ZONE allows special syntax for the time zone specification. Here are examples of valid values:

'PST8PDT'

The time zone for Berkeley, California.

'Europe/Rome'

The time zone for Italy.

-7

The time zone 7 hours west from UTC (equivalent to PDT). Positive values are east from UTC.

1887

SET

INTERVAL '-08:00' HOUR TO MINUTE

The time zone 8 hours west from UTC (equivalent to PST).

LOCAL
DEFAULT

Set the time zone to your local time zone (that is, the server's default value of timezone).

Timezone settings given as numbers or intervals are internally translated to POSIX timezone syntax.
For example, after SET TIME ZONE -7, SHOW TIME ZONE would report <-07>+07.

See Section 8.5.3 for more information about time zones.

Notes
The function set_config provides equivalent functionality; see Section 9.26. Also, it is possible to
UPDATE the pg_settings system view to perform the equivalent of SET.

Examples
Set the schema search path:

SET search_path TO my_schema, public;

Set the style of date to traditional POSTGRES with “day before month” input convention:

SET datestyle TO postgres, dmy;

Set the time zone for Berkeley, California:

SET TIME ZONE 'PST8PDT';

Set the time zone for Italy:

SET TIME ZONE 'Europe/Rome';

Compatibility
SET TIME ZONE extends syntax defined in the SQL standard. The standard allows only numeric time
zone offsets while PostgreSQL allows more flexible time-zone specifications. All other SET features are
PostgreSQL extensions.

See Also
RESET, SHOW

1888

SET CONSTRAINTS
SET CONSTRAINTS — set constraint check timing for the current transaction

Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description
SET CONSTRAINTS sets the behavior of constraint checking within the current transaction. IMMEDIATE
constraints are checked at the end of each statement. DEFERRED constraints are not checked until
transaction commit. Each constraint has its own IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE INITIALLY
DEFERRED, DEFERRABLE INITIALLY IMMEDIATE, or NOT DEFERRABLE. The third class is
always IMMEDIATE and is not affected by the SET CONSTRAINTS command. The first two classes
start every transaction in the indicated mode, but their behavior can be changed within a transaction by
SET CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints (which
must all be deferrable). Each constraint name can be schema-qualified. The current schema search path is
used to find the first matching name if no schema name is specified. SET CONSTRAINTS ALL changes
the mode of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE, the new
mode takes effect retroactively: any outstanding data modifications that would have been checked at the
end of the transaction are instead checked during the execution of the SET CONSTRAINTS command. If
any such constraint is violated, the SET CONSTRAINTS fails (and does not change the constraint mode).
Thus, SET CONSTRAINTS can be used to force checking of constraints to occur at a specific point in
a transaction.

Currently, only UNIQUE, PRIMARY KEY, REFERENCES (foreign key), and EXCLUDE constraints are
affected by this setting. NOT NULL and CHECK constraints are always checked immediately when a row
is inserted or modified (not at the end of the statement). Uniqueness and exclusion constraints that have
not been declared DEFERRABLE are also checked immediately.

The firing of triggers that are declared as “constraint triggers” is also controlled by this setting — they fire
at the same time that the associated constraint should be checked.

Notes
Because PostgreSQL does not require constraint names to be unique within a schema (but only per-
table), it is possible that there is more than one match for a specified constraint name. In this case SET
CONSTRAINTS will act on all matches. For a non-schema-qualified name, once a match or matches have
been found in some schema in the search path, schemas appearing later in the path are not searched.

This command only alters the behavior of constraints within the current transaction. Issuing this outside
of a transaction block emits a warning and otherwise has no effect.

1889

SET CONSTRAINTS

Compatibility
This command complies with the behavior defined in the SQL standard, except for the limitation that,
in PostgreSQL, it does not apply to NOT NULL and CHECK constraints. Also, PostgreSQL checks non-
deferrable uniqueness constraints immediately, not at end of statement as the standard would suggest.

1890

SET ROLE
SET ROLE — set the current user identifier of the current session

Synopsis

SET [SESSION | LOCAL] ROLE role_name
SET [SESSION | LOCAL] ROLE NONE
RESET ROLE

Description
This command sets the current user identifier of the current SQL session to be role_name. The role
name can be written as either an identifier or a string literal. After SET ROLE, permissions checking for
SQL commands is carried out as though the named role were the one that had logged in originally.

The specified role_name must be a role that the current session user is a member of. (If the session user
is a superuser, any role can be selected.)

The SESSION and LOCAL modifiers act the same as for the regular SET command.

The NONE and RESET forms reset the current user identifier to be the current session user identifier. These
forms can be executed by any user.

Notes
Using this command, it is possible to either add privileges or restrict one's privileges. If the session user
role has the INHERITS attribute, then it automatically has all the privileges of every role that it could
SET ROLE to; in this case SET ROLE effectively drops all the privileges assigned directly to the session
user and to the other roles it is a member of, leaving only the privileges available to the named role. On
the other hand, if the session user role has the NOINHERITS attribute, SET ROLE drops the privileges
assigned directly to the session user and instead acquires the privileges available to the named role.

In particular, when a superuser chooses to SET ROLE to a non-superuser role, they lose their superuser
privileges.

SET ROLE has effects comparable to SET SESSION AUTHORIZATION, but the privilege checks
involved are quite different. Also, SET SESSION AUTHORIZATION determines which roles are
allowable for later SET ROLE commands, whereas changing roles with SET ROLE does not change the
set of roles allowed to a later SET ROLE.

SET ROLE does not process session variables as specified by the role's ALTER ROLE settings; this only
happens during login.

SET ROLE cannot be used within a SECURITY DEFINER function.

Examples

SELECT SESSION_USER, CURRENT_USER;

1891

SET ROLE

 session_user | current_user
--------------+--------------
 peter | peter

SET ROLE 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | paul

Compatibility
PostgreSQL allows identifier syntax ("rolename"), while the SQL standard requires the role name to
be written as a string literal. SQL does not allow this command during a transaction; PostgreSQL does not
make this restriction because there is no reason to. The SESSION and LOCAL modifiers are a PostgreSQL
extension, as is the RESET syntax.

See Also
SET SESSION AUTHORIZATION

1892

SET SESSION AUTHORIZATION
SET SESSION AUTHORIZATION — set the session user identifier and the current user identifier of the
current session

Synopsis

SET [SESSION | LOCAL] SESSION AUTHORIZATION user_name
SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

Description
This command sets the session user identifier and the current user identifier of the current SQL session
to be user_name. The user name can be written as either an identifier or a string literal. Using this
command, it is possible, for example, to temporarily become an unprivileged user and later switch back
to being a superuser.

The session user identifier is initially set to be the (possibly authenticated) user name provided by the client.
The current user identifier is normally equal to the session user identifier, but might change temporarily in
the context of SECURITY DEFINER functions and similar mechanisms; it can also be changed by SET
ROLE. The current user identifier is relevant for permission checking.

The session user identifier can be changed only if the initial session user (the authenticated user) had the
superuser privilege. Otherwise, the command is accepted only if it specifies the authenticated user name.

The SESSION and LOCAL modifiers act the same as for the regular SET command.

The DEFAULT and RESET forms reset the session and current user identifiers to be the originally
authenticated user name. These forms can be executed by any user.

Notes
SET SESSION AUTHORIZATION cannot be used within a SECURITY DEFINER function.

Examples

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | peter

SET SESSION AUTHORIZATION 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------

1893

SET SESSION AUTHORIZATION

 paul | paul

Compatibility
The SQL standard allows some other expressions to appear in place of the literal user_name, but
these options are not important in practice. PostgreSQL allows identifier syntax ("username"), which
SQL does not. SQL does not allow this command during a transaction; PostgreSQL does not make this
restriction because there is no reason to. The SESSION and LOCAL modifiers are a PostgreSQL extension,
as is the RESET syntax.

The privileges necessary to execute this command are left implementation-defined by the standard.

See Also
SET ROLE

1894

SET TRANSACTION
SET TRANSACTION — set the characteristics of the current transaction

Synopsis

SET TRANSACTION transaction_mode [, ...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
 | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect
on any subsequent transactions. SET SESSION CHARACTERISTICS sets the default transaction
characteristics for subsequent transactions of a session. These defaults can be overridden by SET
TRANSACTION for an individual transaction.

The available transaction characteristics are the transaction isolation level, the transaction access mode
(read/write or read-only), and the deferrable mode. In addition, a snapshot can be selected, though only
for the current transaction, not as a session default.

The isolation level of a transaction determines what data the transaction can see when other transactions
are running concurrently:

READ COMMITTED

A statement can only see rows committed before it began. This is the default.

REPEATABLE READ

All statements of the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction. If a pattern of reads and writes among
concurrent serializable transactions would create a situation which could not have occurred for
any serial (one-at-a-time) execution of those transactions, one of them will be rolled back with a
serialization_failure error.

The SQL standard defines one additional level, READ UNCOMMITTED. In PostgreSQL READ
UNCOMMITTED is treated as READ COMMITTED.

1895

SET TRANSACTION

The transaction isolation level cannot be changed after the first query or data-modification statement
(SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of a transaction has been executed. See
Chapter 13 for more information about transaction isolation and concurrency control.

The transaction access mode determines whether the transaction is read/write or read-only. Read/write
is the default. When a transaction is read-only, the following SQL commands are disallowed: INSERT,
UPDATE, DELETE, and COPY FROM if the table they would write to is not a temporary table; all CREATE,
ALTER, and DROP commands; COMMENT, GRANT, REVOKE, TRUNCATE; and EXPLAIN ANALYZE
and EXECUTE if the command they would execute is among those listed. This is a high-level notion of
read-only that does not prevent all writes to disk.

The DEFERRABLE transaction property has no effect unless the transaction is also SERIALIZABLE
and READ ONLY. When all three of these properties are selected for a transaction, the transaction may
block when first acquiring its snapshot, after which it is able to run without the normal overhead of a
SERIALIZABLE transaction and without any risk of contributing to or being canceled by a serialization
failure. This mode is well suited for long-running reports or backups.

The SET TRANSACTION SNAPSHOT command allows a new transaction to run with the same
snapshot as an existing transaction. The pre-existing transaction must have exported its snapshot with
the pg_export_snapshot function (see Section 9.26.5). That function returns a snapshot identifier,
which must be given to SET TRANSACTION SNAPSHOT to specify which snapshot is to be imported.
The identifier must be written as a string literal in this command, for example '000003A1-1'.
SET TRANSACTION SNAPSHOT can only be executed at the start of a transaction, before the first
query or data-modification statement (SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of the
transaction. Furthermore, the transaction must already be set to SERIALIZABLE or REPEATABLE READ
isolation level (otherwise, the snapshot would be discarded immediately, since READ COMMITTED mode
takes a new snapshot for each command). If the importing transaction uses SERIALIZABLE isolation
level, then the transaction that exported the snapshot must also use that isolation level. Also, a non-read-
only serializable transaction cannot import a snapshot from a read-only transaction.

Notes
If SET TRANSACTION is executed without a prior START TRANSACTION or BEGIN, it emits a warning
and otherwise has no effect.

It is possible to dispense with SET TRANSACTION by instead specifying the desired
transaction_modes in BEGIN or START TRANSACTION. But that option is not available for SET
TRANSACTION SNAPSHOT.

The session default transaction modes can also be set by setting the configuration parameters
default_transaction_isolation, default_transaction_read_only, and default_transaction_deferrable. (In fact
SET SESSION CHARACTERISTICS is just a verbose equivalent for setting these variables with
SET.) This means the defaults can be set in the configuration file, via ALTER DATABASE, etc. Consult
Chapter 19 for more information.

Examples
To begin a new transaction with the same snapshot as an already existing transaction, first export the
snapshot from the existing transaction. That will return the snapshot identifier, for example:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT pg_export_snapshot();
 pg_export_snapshot

1896

SET TRANSACTION

 00000003-0000001B-1
(1 row)

Then give the snapshot identifier in a SET TRANSACTION SNAPSHOT command at the beginning of
the newly opened transaction:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION SNAPSHOT '00000003-0000001B-1';

Compatibility
These commands are defined in the SQL standard, except for the DEFERRABLE transaction mode and the
SET TRANSACTION SNAPSHOT form, which are PostgreSQL extensions.

SERIALIZABLE is the default transaction isolation level in the standard. In PostgreSQL the default is
ordinarily READ COMMITTED, but you can change it as mentioned above.

In the SQL standard, there is one other transaction characteristic that can be set with these commands: the
size of the diagnostics area. This concept is specific to embedded SQL, and therefore is not implemented
in the PostgreSQL server.

The SQL standard requires commas between successive transaction_modes, but for historical
reasons PostgreSQL allows the commas to be omitted.

1897

SHOW
SHOW — show the value of a run-time parameter

Synopsis

SHOW name
SHOW ALL

Description
SHOW will display the current setting of run-time parameters. These variables can be set using the
SET statement, by editing the postgresql.conf configuration file, through the PGOPTIONS
environmental variable (when using libpq or a libpq-based application), or through command-line flags
when starting the postgres server. See Chapter 19 for details.

Parameters
name

The name of a run-time parameter. Available parameters are documented in Chapter 19 and on the
SET reference page. In addition, there are a few parameters that can be shown but not set:

SERVER_VERSION

Shows the server's version number.

SERVER_ENCODING

Shows the server-side character set encoding. At present, this parameter can be shown but not
set, because the encoding is determined at database creation time.

LC_COLLATE

Shows the database's locale setting for collation (text ordering). At present, this parameter can be
shown but not set, because the setting is determined at database creation time.

LC_CTYPE

Shows the database's locale setting for character classification. At present, this parameter can be
shown but not set, because the setting is determined at database creation time.

IS_SUPERUSER

True if the current role has superuser privileges.

ALL

Show the values of all configuration parameters, with descriptions.

Notes
The function current_setting produces equivalent output; see Section 9.26. Also, the
pg_settings system view produces the same information.

1898

SHOW

Examples
Show the current setting of the parameter DateStyle:

SHOW DateStyle;
 DateStyle

 ISO, MDY
(1 row)

Show the current setting of the parameter geqo:

SHOW geqo;
 geqo

 on
(1 row)

Show all settings:

SHOW ALL;
 name | setting | description

-------------------------+---------
+---
 allow_system_table_mods | off | Allows modifications of the
 structure of ...
 .
 .
 .
 xmloption | content | Sets whether XML data in implicit
 parsing ...
 zero_damaged_pages | off | Continues processing past damaged
 page headers.
(196 rows)

Compatibility
The SHOW command is a PostgreSQL extension.

See Also
SET, RESET

1899

START TRANSACTION
START TRANSACTION — start a transaction block

Synopsis

START TRANSACTION [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
 | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
This command begins a new transaction block. If the isolation level, read/write mode, or deferrable mode
is specified, the new transaction has those characteristics, as if SET TRANSACTION was executed. This
is the same as the BEGIN command.

Parameters
Refer to SET TRANSACTION for information on the meaning of the parameters to this statement.

Compatibility
In the standard, it is not necessary to issue START TRANSACTION to start a transaction block: any
SQL command implicitly begins a block. PostgreSQL's behavior can be seen as implicitly issuing a
COMMIT after each command that does not follow START TRANSACTION (or BEGIN), and it is therefore
often called “autocommit”. Other relational database systems might offer an autocommit feature as a
convenience.

The DEFERRABLE transaction_mode is a PostgreSQL language extension.

The SQL standard requires commas between successive transaction_modes, but for historical
reasons PostgreSQL allows the commas to be omitted.

See also the compatibility section of SET TRANSACTION.

See Also
BEGIN, COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION

1900

TRUNCATE
TRUNCATE — empty a table or set of tables

Synopsis

TRUNCATE [TABLE] [ONLY] name [*] [, ...]
 [RESTART IDENTITY | CONTINUE IDENTITY] [CASCADE | RESTRICT]

Description
TRUNCATE quickly removes all rows from a set of tables. It has the same effect as an unqualified DELETE
on each table, but since it does not actually scan the tables it is faster. Furthermore, it reclaims disk space
immediately, rather than requiring a subsequent VACUUM operation. This is most useful on large tables.

Parameters
name

The name (optionally schema-qualified) of a table to truncate. If ONLY is specified before the table
name, only that table is truncated. If ONLY is not specified, the table and all its descendant tables
(if any) are truncated. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

RESTART IDENTITY

Automatically restart sequences owned by columns of the truncated table(s).

CONTINUE IDENTITY

Do not change the values of sequences. This is the default.

CASCADE

Automatically truncate all tables that have foreign-key references to any of the named tables, or to
any tables added to the group due to CASCADE.

RESTRICT

Refuse to truncate if any of the tables have foreign-key references from tables that are not listed in
the command. This is the default.

Notes
You must have the TRUNCATE privilege on a table to truncate it.

TRUNCATE acquires an ACCESS EXCLUSIVE lock on each table it operates on, which blocks all other
concurrent operations on the table. When RESTART IDENTITY is specified, any sequences that are to
be restarted are likewise locked exclusively. If concurrent access to a table is required, then the DELETE
command should be used instead.

1901

TRUNCATE

TRUNCATE cannot be used on a table that has foreign-key references from other tables, unless all such
tables are also truncated in the same command. Checking validity in such cases would require table scans,
and the whole point is not to do one. The CASCADE option can be used to automatically include all
dependent tables — but be very careful when using this option, or else you might lose data you did not
intend to!

TRUNCATE will not fire any ON DELETE triggers that might exist for the tables. But it will fire ON
TRUNCATE triggers. If ON TRUNCATE triggers are defined for any of the tables, then all BEFORE
TRUNCATE triggers are fired before any truncation happens, and all AFTER TRUNCATE triggers are
fired after the last truncation is performed and any sequences are reset. The triggers will fire in the order
that the tables are to be processed (first those listed in the command, and then any that were added due
to cascading).

TRUNCATE is not MVCC-safe. After truncation, the table will appear empty to concurrent transactions,
if they are using a snapshot taken before the truncation occurred. See Section 13.5 for more details.

TRUNCATE is transaction-safe with respect to the data in the tables: the truncation will be safely rolled
back if the surrounding transaction does not commit.

When RESTART IDENTITY is specified, the implied ALTER SEQUENCE RESTART operations are
also done transactionally; that is, they will be rolled back if the surrounding transaction does not commit.
This is unlike the normal behavior of ALTER SEQUENCE RESTART. Be aware that if any additional
sequence operations are done on the restarted sequences before the transaction rolls back, the effects of
these operations on the sequences will be rolled back, but not their effects on currval(); that is, after
the transaction currval() will continue to reflect the last sequence value obtained inside the failed
transaction, even though the sequence itself may no longer be consistent with that. This is similar to the
usual behavior of currval() after a failed transaction.

TRUNCATE is not currently supported for foreign tables. This implies that if a specified table has any
descendant tables that are foreign, the command will fail.

Examples
Truncate the tables bigtable and fattable:

TRUNCATE bigtable, fattable;

The same, and also reset any associated sequence generators:

TRUNCATE bigtable, fattable RESTART IDENTITY;

Truncate the table othertable, and cascade to any tables that reference othertable via foreign-
key constraints:

TRUNCATE othertable CASCADE;

Compatibility
The SQL:2008 standard includes a TRUNCATE command with the syntax TRUNCATE TABLE
tablename. The clauses CONTINUE IDENTITY/RESTART IDENTITY also appear in that standard,
but have slightly different though related meanings. Some of the concurrency behavior of this command is

1902

TRUNCATE

left implementation-defined by the standard, so the above notes should be considered and compared with
other implementations if necessary.

See Also
DELETE

1903

UNLISTEN
UNLISTEN — stop listening for a notification

Synopsis

UNLISTEN { channel | * }

Description
UNLISTEN is used to remove an existing registration for NOTIFY events. UNLISTEN cancels any
existing registration of the current PostgreSQL session as a listener on the notification channel named
channel. The special wildcard * cancels all listener registrations for the current session.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Parameters
channel

Name of a notification channel (any identifier).

*

All current listen registrations for this session are cleared.

Notes
You can unlisten something you were not listening for; no warning or error will appear.

At the end of each session, UNLISTEN * is automatically executed.

A transaction that has executed UNLISTEN cannot be prepared for two-phase commit.

Examples
To make a registration:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with
 PID 8448.

Once UNLISTEN has been executed, further NOTIFY messages will be ignored:

UNLISTEN virtual;
NOTIFY virtual;
-- no NOTIFY event is received

1904

UNLISTEN

Compatibility
There is no UNLISTEN command in the SQL standard.

See Also
LISTEN, NOTIFY

1905

UPDATE
UPDATE — update rows of a table

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table_name [*] [[AS] alias]
 SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT }
 [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [FROM from_list]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Description
UPDATE changes the values of the specified columns in all rows that satisfy the condition. Only the
columns to be modified need be mentioned in the SET clause; columns not explicitly modified retain their
previous values.

There are two ways to modify a table using information contained in other tables in the database: using sub-
selects, or specifying additional tables in the FROM clause. Which technique is more appropriate depends
on the specific circumstances.

The optional RETURNING clause causes UPDATE to compute and return value(s) based on each row
actually updated. Any expression using the table's columns, and/or columns of other tables mentioned in
FROM, can be computed. The new (post-update) values of the table's columns are used. The syntax of the
RETURNING list is identical to that of the output list of SELECT.

You must have the UPDATE privilege on the table, or at least on the column(s) that are listed to be updated.
You must also have the SELECT privilege on any column whose values are read in the expressions
or condition.

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
UPDATE query. See Section 7.8 and SELECT for details.

table_name

The name (optionally schema-qualified) of the table to update. If ONLY is specified before the table
name, matching rows are updated in the named table only. If ONLY is not specified, matching rows
are also updated in any tables inheriting from the named table. Optionally, * can be specified after
the table name to explicitly indicate that descendant tables are included.

1906

UPDATE

alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given UPDATE foo AS f, the remainder of the UPDATE statement must
refer to this table as f not foo.

column_name

The name of a column in the table named by table_name. The column name can be qualified with
a subfield name or array subscript, if needed. Do not include the table's name in the specification of a
target column — for example, UPDATE table_name SET table_name.col = 1 is invalid.

expression

An expression to assign to the column. The expression can use the old values of this and other columns
in the table.

DEFAULT

Set the column to its default value (which will be NULL if no specific default expression has been
assigned to it).

sub-SELECT

A SELECT sub-query that produces as many output columns as are listed in the parenthesized column
list preceding it. The sub-query must yield no more than one row when executed. If it yields one row,
its column values are assigned to the target columns; if it yields no rows, NULL values are assigned to
the target columns. The sub-query can refer to old values of the current row of the table being updated.

from_list

A list of table expressions, allowing columns from other tables to appear in the WHERE condition and
the update expressions. This is similar to the list of tables that can be specified in the FROM Clause
of a SELECT statement. Note that the target table must not appear in the from_list, unless you
intend a self-join (in which case it must appear with an alias in the from_list).

condition

An expression that returns a value of type boolean. Only rows for which this expression returns
true will be updated.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be updated is the one
most recently fetched from this cursor. The cursor must be a non-grouping query on the UPDATE's
target table. Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
See DECLARE for more information about using cursors with WHERE CURRENT OF.

output_expression

An expression to be computed and returned by the UPDATE command after each row is updated. The
expression can use any column names of the table named by table_name or table(s) listed in FROM.
Write * to return all columns.

output_name

A name to use for a returned column.

1907

UPDATE

Outputs
On successful completion, an UPDATE command returns a command tag of the form

UPDATE count

The count is the number of rows updated, including matched rows whose values did not change. Note
that the number may be less than the number of rows that matched the condition when updates were
suppressed by a BEFORE UPDATE trigger. If count is 0, no rows were updated by the query (this is
not considered an error).

If the UPDATE command contains a RETURNING clause, the result will be similar to that of a SELECT
statement containing the columns and values defined in the RETURNING list, computed over the row(s)
updated by the command.

Notes
When a FROM clause is present, what essentially happens is that the target table is joined to the tables
mentioned in the from_list, and each output row of the join represents an update operation for the
target table. When using FROM you should ensure that the join produces at most one output row for each
row to be modified. In other words, a target row shouldn't join to more than one row from the other table(s).
If it does, then only one of the join rows will be used to update the target row, but which one will be used
is not readily predictable.

Because of this indeterminacy, referencing other tables only within sub-selects is safer, though often harder
to read and slower than using a join.

In the case of a partitioned table, updating a row might cause it to no longer satisfy the partition constraint
of the containing partition. In that case, if there is some other partition in the partition tree for which this
row satisfies its partition constraint, then the row is moved to that partition. If there is no such partition,
an error will occur. Behind the scenes, the row movement is actually a DELETE and INSERT operation.
However, there is a possibility that a concurrent UPDATE or DELETE on the same row may miss this
row. For details see the section Section 5.10.2.3. Currently, rows cannot be moved from a partition that
is a foreign table to some other partition, but they can be moved into a foreign table if the foreign data
wrapper supports it.

Examples
Change the word Drama to Dramatic in the column kind of the table films:

UPDATE films SET kind = 'Dramatic' WHERE kind = 'Drama';

Adjust temperature entries and reset precipitation to its default value in one row of the table weather:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp =
 DEFAULT
 WHERE city = 'San Francisco' AND date = '2003-07-03';

Perform the same operation and return the updated entries:

1908

UPDATE

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp =
 DEFAULT
 WHERE city = 'San Francisco' AND date = '2003-07-03'
 RETURNING temp_lo, temp_hi, prcp;

Use the alternative column-list syntax to do the same update:

UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1, temp_lo+15,
 DEFAULT)
 WHERE city = 'San Francisco' AND date = '2003-07-03';

Increment the sales count of the salesperson who manages the account for Acme Corporation, using the
FROM clause syntax:

UPDATE employees SET sales_count = sales_count + 1 FROM accounts
 WHERE accounts.name = 'Acme Corporation'
 AND employees.id = accounts.sales_person;

Perform the same operation, using a sub-select in the WHERE clause:

UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation');

Update contact names in an accounts table to match the currently assigned salesmen:

UPDATE accounts SET (contact_first_name, contact_last_name) =
 (SELECT first_name, last_name FROM salesmen
 WHERE salesmen.id = accounts.sales_id);

A similar result could be accomplished with a join:

UPDATE accounts SET contact_first_name = first_name,
 contact_last_name = last_name
 FROM salesmen WHERE salesmen.id = accounts.sales_id;

However, the second query may give unexpected results if salesmen.id is not a unique key, whereas
the first query is guaranteed to raise an error if there are multiple id matches. Also, if there is no match
for a particular accounts.sales_id entry, the first query will set the corresponding name fields to
NULL, whereas the second query will not update that row at all.

Update statistics in a summary table to match the current data:

UPDATE summary s SET (sum_x, sum_y, avg_x, avg_y) =
 (SELECT sum(x), sum(y), avg(x), avg(y) FROM data d
 WHERE d.group_id = s.group_id);

Attempt to insert a new stock item along with the quantity of stock. If the item already exists, instead
update the stock count of the existing item. To do this without failing the entire transaction, use savepoints:

1909

UPDATE

BEGIN;
-- other operations
SAVEPOINT sp1;
INSERT INTO wines VALUES('Chateau Lafite 2003', '24');
-- Assume the above fails because of a unique key violation,
-- so now we issue these commands:
ROLLBACK TO sp1;
UPDATE wines SET stock = stock + 24 WHERE winename = 'Chateau Lafite
 2003';
-- continue with other operations, and eventually
COMMIT;

Change the kind column of the table films in the row on which the cursor c_films is currently
positioned:

UPDATE films SET kind = 'Dramatic' WHERE CURRENT OF c_films;

Compatibility
This command conforms to the SQL standard, except that the FROM and RETURNING clauses are
PostgreSQL extensions, as is the ability to use WITH with UPDATE.

Some other database systems offer a FROM option in which the target table is supposed to be listed again
within FROM. That is not how PostgreSQL interprets FROM. Be careful when porting applications that use
this extension.

According to the standard, the source value for a parenthesized sub-list of target column names can be
any row-valued expression yielding the correct number of columns. PostgreSQL only allows the source
value to be a row constructor or a sub-SELECT. An individual column's updated value can be specified
as DEFAULT in the row-constructor case, but not inside a sub-SELECT.

1910

VACUUM
VACUUM — garbage-collect and optionally analyze a database

Synopsis

VACUUM [(option [, ...])] [table_and_columns [, ...]]
VACUUM [FULL] [FREEZE] [VERBOSE] [ANALYZE] [table_and_columns
 [, ...]]

where option can be one of:

 FULL
 FREEZE
 VERBOSE
 ANALYZE
 DISABLE_PAGE_SKIPPING

and table_and_columns is:

 table_name [(column_name [, ...])]

Description
VACUUM reclaims storage occupied by dead tuples. In normal PostgreSQL operation, tuples that are deleted
or obsoleted by an update are not physically removed from their table; they remain present until a VACUUM
is done. Therefore it's necessary to do VACUUM periodically, especially on frequently-updated tables.

Without a table_and_columns list, VACUUM processes every table and materialized view in the
current database that the current user has permission to vacuum. With a list, VACUUM processes only those
table(s).

VACUUM ANALYZE performs a VACUUM and then an ANALYZE for each selected table. This is a handy
combination form for routine maintenance scripts. See ANALYZE for more details about its processing.

Plain VACUUM (without FULL) simply reclaims space and makes it available for re-use. This form of the
command can operate in parallel with normal reading and writing of the table, as an exclusive lock is
not obtained. However, extra space is not returned to the operating system (in most cases); it's just kept
available for re-use within the same table. VACUUM FULL rewrites the entire contents of the table into a
new disk file with no extra space, allowing unused space to be returned to the operating system. This form
is much slower and requires an exclusive lock on each table while it is being processed.

When the option list is surrounded by parentheses, the options can be written in any order. Without
parentheses, options must be specified in exactly the order shown above. The parenthesized syntax was
added in PostgreSQL 9.0; the unparenthesized syntax is deprecated.

Parameters
FULL

Selects “full” vacuum, which can reclaim more space, but takes much longer and exclusively locks
the table. This method also requires extra disk space, since it writes a new copy of the table and

1911

VACUUM

doesn't release the old copy until the operation is complete. Usually this should only be used when a
significant amount of space needs to be reclaimed from within the table.

FREEZE

Selects aggressive “freezing” of tuples. Specifying FREEZE is equivalent to performing VACUUM
with the vacuum_freeze_min_age and vacuum_freeze_table_age parameters set to zero. Aggressive
freezing is always performed when the table is rewritten, so this option is redundant when FULL is
specified.

VERBOSE

Prints a detailed vacuum activity report for each table.

ANALYZE

Updates statistics used by the planner to determine the most efficient way to execute a query.

DISABLE_PAGE_SKIPPING

Normally, VACUUM will skip pages based on the visibility map. Pages where all tuples are known to be
frozen can always be skipped, and those where all tuples are known to be visible to all transactions may
be skipped except when performing an aggressive vacuum. Furthermore, except when performing an
aggressive vacuum, some pages may be skipped in order to avoid waiting for other sessions to finish
using them. This option disables all page-skipping behavior, and is intended to be used only when the
contents of the visibility map are suspect, which should happen only if there is a hardware or software
issue causing database corruption.

table_name

The name (optionally schema-qualified) of a specific table or materialized view to vacuum. If the
specified table is a partitioned table, all of its leaf partitions are vacuumed.

column_name

The name of a specific column to analyze. Defaults to all columns. If a column list is specified,
ANALYZE must also be specified.

Outputs
When VERBOSE is specified, VACUUM emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

Notes
To vacuum a table, one must ordinarily be the table's owner or a superuser. However, database owners are
allowed to vacuum all tables in their databases, except shared catalogs. (The restriction for shared catalogs
means that a true database-wide VACUUM can only be performed by a superuser.) VACUUM will skip over
any tables that the calling user does not have permission to vacuum.

VACUUM cannot be executed inside a transaction block.

For tables with GIN indexes, VACUUM (in any form) also completes any pending index insertions, by
moving pending index entries to the appropriate places in the main GIN index structure. See Section 66.4.1
for details.

1912

VACUUM

We recommend that active production databases be vacuumed frequently (at least nightly), in order to
remove dead rows. After adding or deleting a large number of rows, it might be a good idea to issue a
VACUUM ANALYZE command for the affected table. This will update the system catalogs with the results
of all recent changes, and allow the PostgreSQL query planner to make better choices in planning queries.

The FULL option is not recommended for routine use, but might be useful in special cases. An example
is when you have deleted or updated most of the rows in a table and would like the table to physically
shrink to occupy less disk space and allow faster table scans. VACUUM FULL will usually shrink the table
more than a plain VACUUM would.

VACUUM causes a substantial increase in I/O traffic, which might cause poor performance for other
active sessions. Therefore, it is sometimes advisable to use the cost-based vacuum delay feature. See
Section 19.4.4 for details.

PostgreSQL includes an “autovacuum” facility which can automate routine vacuum maintenance. For
more information about automatic and manual vacuuming, see Section 24.1.

Examples
To clean a single table onek, analyze it for the optimizer and print a detailed vacuum activity report:

VACUUM (VERBOSE, ANALYZE) onek;

Compatibility
There is no VACUUM statement in the SQL standard.

See Also
vacuumdb, Section 19.4.4, Section 24.1.6

1913

VALUES
VALUES — compute a set of rows

Synopsis

VALUES (expression [, ...]) [, ...]
 [ORDER BY sort_expression [ASC | DESC | USING operator]
 [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

Description
VALUES computes a row value or set of row values specified by value expressions. It is most commonly
used to generate a “constant table” within a larger command, but it can be used on its own.

When more than one row is specified, all the rows must have the same number of elements. The data
types of the resulting table's columns are determined by combining the explicit or inferred types of the
expressions appearing in that column, using the same rules as for UNION (see Section 10.5).

Within larger commands, VALUES is syntactically allowed anywhere that SELECT is. Because it is treated
like a SELECT by the grammar, it is possible to use the ORDER BY, LIMIT (or equivalently FETCH
FIRST), and OFFSET clauses with a VALUES command.

Parameters
expression

A constant or expression to compute and insert at the indicated place in the resulting table (set of
rows). In a VALUES list appearing at the top level of an INSERT, an expression can be replaced
by DEFAULT to indicate that the destination column's default value should be inserted. DEFAULT
cannot be used when VALUES appears in other contexts.

sort_expression

An expression or integer constant indicating how to sort the result rows. This expression can refer to
the columns of the VALUES result as column1, column2, etc. For more details see ORDER BY
Clause.

operator

A sorting operator. For details see ORDER BY Clause.

count

The maximum number of rows to return. For details see LIMIT Clause.

start

The number of rows to skip before starting to return rows. For details see LIMIT Clause.

1914

VALUES

Notes
VALUES lists with very large numbers of rows should be avoided, as you might encounter out-of-memory
failures or poor performance. VALUES appearing within INSERT is a special case (because the desired
column types are known from the INSERT's target table, and need not be inferred by scanning the VALUES
list), so it can handle larger lists than are practical in other contexts.

Examples
A bare VALUES command:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

This will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';

More usually, VALUES is used within a larger SQL command. The most common use is in INSERT:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

In the context of INSERT, entries of a VALUES list can be DEFAULT to indicate that the column default
should be used here instead of specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes'),
 ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama', DEFAULT);

VALUES can also be used where a sub-SELECT might be written, for example in a FROM clause:

SELECT f.*
 FROM films f, (VALUES('MGM', 'Horror'), ('UA', 'Sci-Fi')) AS t
 (studio, kind)
 WHERE f.studio = t.studio AND f.kind = t.kind;

UPDATE employees SET salary = salary * v.increase
 FROM (VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno, target,
 increase)
 WHERE employees.depno = v.depno AND employees.sales >= v.target;

Note that an AS clause is required when VALUES is used in a FROM clause, just as is true for SELECT. It
is not required that the AS clause specify names for all the columns, but it's good practice to do so. (The
default column names for VALUES are column1, column2, etc in PostgreSQL, but these names might
be different in other database systems.)

1915

VALUES

When VALUES is used in INSERT, the values are all automatically coerced to the data type of the
corresponding destination column. When it's used in other contexts, it might be necessary to specify the
correct data type. If the entries are all quoted literal constants, coercing the first is sufficient to determine
the assumed type for all:

SELECT * FROM machines
WHERE ip_address IN (VALUES('192.168.0.1'::inet), ('192.168.0.10'),
 ('192.168.1.43'));

Tip

For simple IN tests, it's better to rely on the list-of-scalars form of IN than to write a VALUES
query as shown above. The list of scalars method requires less writing and is often more efficient.

Compatibility
VALUES conforms to the SQL standard. LIMIT and OFFSET are PostgreSQL extensions; see also under
SELECT.

See Also
INSERT, SELECT

1916

PostgreSQL Client Applications
This part contains reference information for PostgreSQL client applications and utilities. Not all of these
commands are of general utility; some might require special privileges. The common feature of these
applications is that they can be run on any host, independent of where the database server resides.

When specified on the command line, user and database names have their case preserved — the presence
of spaces or special characters might require quoting. Table names and other identifiers do not have their
case preserved, except where documented, and might require quoting.

Table of Contents
clusterdb ... 1918
createdb .. 1921
createuser ... 1924
dropdb ... 1928
dropuser ... 1931
ecpg ... 1934
pg_basebackup .. 1936
pgbench .. 1944
pg_config ... 1961
pg_dump .. 1964
pg_dumpall ... 1977
pg_isready .. 1984
pg_receivewal ... 1986
pg_recvlogical ... 1990
pg_restore ... 1994
psql ... 2003
reindexdb .. 2045
vacuumdb ... 2048

1917

clusterdb
clusterdb — cluster a PostgreSQL database

Synopsis
clusterdb [connection-option...] [--verbose | -v] [--table | -t table] ... [dbname]

clusterdb [connection-option...] [--verbose | -v] --all | -a

Description
clusterdb is a utility for reclustering tables in a PostgreSQL database. It finds tables that have previously
been clustered, and clusters them again on the same index that was last used. Tables that have never been
clustered are not affected.

clusterdb is a wrapper around the SQL command CLUSTER. There is no effective difference between
clustering databases via this utility and via other methods for accessing the server.

Options
clusterdb accepts the following command-line arguments:

-a
--all

Cluster all databases.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be clustered. If this is not specified and -a (or --all) is not
used, the database name is read from the environment variable PGDATABASE. If that is not set, the
user name specified for the connection is used.

-e
--echo

Echo the commands that clusterdb generates and sends to the server.

-q
--quiet

Do not display progress messages.

-t table
--table=table

Cluster table only. Multiple tables can be clustered by writing multiple -t switches.

-v
--verbose

Print detailed information during processing.

1918

clusterdb

-V
--version

Print the clusterdb version and exit.

-?
--help

Show help about clusterdb command line arguments, and exit.

clusterdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force clusterdb to prompt for a password before connecting to a database.

This option is never essential, since clusterdb will automatically prompt for a password if the server
demands password authentication. However, clusterdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be clustered.
If not specified, the postgres database will be used, and if that does not exist, template1 will
be used.

1919

clusterdb

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Diagnostics
In case of difficulty, see CLUSTER and psql for discussions of potential problems and error messages. The
database server must be running at the targeted host. Also, any default connection settings and environment
variables used by the libpq front-end library will apply.

Examples
To cluster the database test:

$ clusterdb test

To cluster a single table foo in a database named xyzzy:

$ clusterdb --table=foo xyzzy

See Also
CLUSTER

1920

createdb
createdb — create a new PostgreSQL database

Synopsis
createdb [connection-option...] [option...] [dbname [description]]

Description
createdb creates a new PostgreSQL database.

Normally, the database user who executes this command becomes the owner of the new database.
However, a different owner can be specified via the -O option, if the executing user has appropriate
privileges.

createdb is a wrapper around the SQL command CREATE DATABASE. There is no effective difference
between creating databases via this utility and via other methods for accessing the server.

Options
createdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be created. The name must be unique among all PostgreSQL
databases in this cluster. The default is to create a database with the same name as the current system
user.

description

Specifies a comment to be associated with the newly created database.

-D tablespace
--tablespace=tablespace

Specifies the default tablespace for the database. (This name is processed as a double-quoted
identifier.)

-e
--echo

Echo the commands that createdb generates and sends to the server.

-E encoding
--encoding=encoding

Specifies the character encoding scheme to be used in this database. The character sets supported by
the PostgreSQL server are described in Section 23.3.1.

-l locale
--locale=locale

Specifies the locale to be used in this database. This is equivalent to specifying both --lc-collate
and --lc-ctype.

1921

createdb

--lc-collate=locale

Specifies the LC_COLLATE setting to be used in this database.

--lc-ctype=locale

Specifies the LC_CTYPE setting to be used in this database.

-O owner
--owner=owner

Specifies the database user who will own the new database. (This name is processed as a double-
quoted identifier.)

-T template
--template=template

Specifies the template database from which to build this database. (This name is processed as a double-
quoted identifier.)

-V
--version

Print the createdb version and exit.

-?
--help

Show help about createdb command line arguments, and exit.

The options -D, -l, -E, -O, and -T correspond to options of the underlying SQL command CREATE
DATABASE; see there for more information about them.

createdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or the local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

1922

createdb

-W
--password

Force createdb to prompt for a password before connecting to a database.

This option is never essential, since createdb will automatically prompt for a password if the server
demands password authentication. However, createdb will waste a connection attempt finding out that
the server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to when creating the new database. If not specified, the
postgres database will be used; if that does not exist (or if it is the name of the new database being
created), template1 will be used.

Environment
PGDATABASE

If set, the name of the database to create, unless overridden on the command line.

PGHOST
PGPORT
PGUSER

Default connection parameters. PGUSER also determines the name of the database to create, if it is
not specified on the command line or by PGDATABASE.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Diagnostics
In case of difficulty, see CREATE DATABASE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

Examples
To create the database demo using the default database server:

$ createdb demo

To create the database demo using the server on host eden, port 5000, using the template0 template
database, here is the command-line command and the underlying SQL command:

$ createdb -p 5000 -h eden -T template0 -e demo
CREATE DATABASE demo TEMPLATE template0;

See Also
dropdb, CREATE DATABASE

1923

createuser
createuser — define a new PostgreSQL user account

Synopsis
createuser [connection-option...] [option...] [username]

Description
createuser creates a new PostgreSQL user (or more precisely, a role). Only superusers and users with
CREATEROLE privilege can create new users, so createuser must be invoked by someone who can connect
as a superuser or a user with CREATEROLE privilege.

If you wish to create a new superuser, you must connect as a superuser, not merely with CREATEROLE
privilege. Being a superuser implies the ability to bypass all access permission checks within the database,
so superuserdom should not be granted lightly.

createuser is a wrapper around the SQL command CREATE ROLE. There is no effective difference
between creating users via this utility and via other methods for accessing the server.

Options
createuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be created. This name must be different from all existing
roles in this PostgreSQL installation.

-c number
--connection-limit=number

Set a maximum number of connections for the new user. The default is to set no limit.

-d
--createdb

The new user will be allowed to create databases.

-D
--no-createdb

The new user will not be allowed to create databases. This is the default.

-e
--echo

Echo the commands that createuser generates and sends to the server.

-E
--encrypted

This option is obsolete but still accepted for backward compatibility.

1924

createuser

-g role
--role=role

Indicates role to which this role will be added immediately as a new member. Multiple roles to which
this role will be added as a member can be specified by writing multiple -g switches.

-i
--inherit

The new role will automatically inherit privileges of roles it is a member of. This is the default.

-I
--no-inherit

The new role will not automatically inherit privileges of roles it is a member of.

--interactive

Prompt for the user name if none is specified on the command line, and also prompt for whichever
of the options -d/-D, -r/-R, -s/-S is not specified on the command line. (This was the default
behavior up to PostgreSQL 9.1.)

-l
--login

The new user will be allowed to log in (that is, the user name can be used as the initial session user
identifier). This is the default.

-L
--no-login

The new user will not be allowed to log in. (A role without login privilege is still useful as a means
of managing database permissions.)

-P
--pwprompt

If given, createuser will issue a prompt for the password of the new user. This is not necessary if you
do not plan on using password authentication.

-r
--createrole

The new user will be allowed to create new roles (that is, this user will have CREATEROLE privilege).

-R
--no-createrole

The new user will not be allowed to create new roles. This is the default.

-s
--superuser

The new user will be a superuser.

-S
--no-superuser

The new user will not be a superuser. This is the default.

1925

createuser

-V
--version

Print the createuser version and exit.

--replication

The new user will have the REPLICATION privilege, which is described more fully in the
documentation for CREATE ROLE.

--no-replication

The new user will not have the REPLICATION privilege, which is described more fully in the
documentation for CREATE ROLE.

-?
--help

Show help about createuser command line arguments, and exit.

createuser also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as (not the user name to create).

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force createuser to prompt for a password (for connecting to the server, not for the password of the
new user).

This option is never essential, since createuser will automatically prompt for a password if the server
demands password authentication. However, createuser will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

1926

createuser

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Diagnostics
In case of difficulty, see CREATE ROLE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

Examples
To create a user joe on the default database server:

$ createuser joe

To create a user joe on the default database server with prompting for some additional attributes:

$ createuser --interactive joe
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

To create the same user joe using the server on host eden, port 5000, with attributes explicitly specified,
taking a look at the underlying command:

$ createuser -h eden -p 5000 -S -D -R -e joe
CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT LOGIN;

To create the user joe as a superuser, and assign a password immediately:

$ createuser -P -s -e joe
Enter password for new role: xyzzy
Enter it again: xyzzy
CREATE ROLE joe PASSWORD 'md5b5f5ba1a423792b526f799ae4eb3d59e'
 SUPERUSER CREATEDB CREATEROLE INHERIT LOGIN;

In the above example, the new password isn't actually echoed when typed, but we show what was typed
for clarity. As you see, the password is encrypted before it is sent to the client.

See Also
dropuser, CREATE ROLE

1927

dropdb
dropdb — remove a PostgreSQL database

Synopsis
dropdb [connection-option...] [option...] dbname

Description
dropdb destroys an existing PostgreSQL database. The user who executes this command must be a database
superuser or the owner of the database.

dropdb is a wrapper around the SQL command DROP DATABASE. There is no effective difference
between dropping databases via this utility and via other methods for accessing the server.

Options
dropdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be removed.

-e
--echo

Echo the commands that dropdb generates and sends to the server.

-i
--interactive

Issues a verification prompt before doing anything destructive.

-V
--version

Print the dropdb version and exit.

--if-exists

Do not throw an error if the database does not exist. A notice is issued in this case.

-?
--help

Show help about dropdb command line arguments, and exit.

dropdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix domain socket.

1928

dropdb

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force dropdb to prompt for a password before connecting to a database.

This option is never essential, since dropdb will automatically prompt for a password if the server
demands password authentication. However, dropdb will waste a connection attempt finding out that
the server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to in order to drop the target database. If not specified,
the postgres database will be used; if that does not exist (or is the database being dropped),
template1 will be used.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Diagnostics
In case of difficulty, see DROP DATABASE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

Examples
To destroy the database demo on the default database server:

1929

dropdb

$ dropdb demo

To destroy the database demo using the server on host eden, port 5000, with verification and a peek at
the underlying command:

$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE demo;

See Also
createdb, DROP DATABASE

1930

dropuser
dropuser — remove a PostgreSQL user account

Synopsis
dropuser [connection-option...] [option...] [username]

Description
dropuser removes an existing PostgreSQL user. Only superusers and users with the CREATEROLE
privilege can remove PostgreSQL users. (To remove a superuser, you must yourself be a superuser.)

dropuser is a wrapper around the SQL command DROP ROLE. There is no effective difference between
dropping users via this utility and via other methods for accessing the server.

Options
dropuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be removed. You will be prompted for a name if none
is specified on the command line and the -i/--interactive option is used.

-e
--echo

Echo the commands that dropuser generates and sends to the server.

-i
--interactive

Prompt for confirmation before actually removing the user, and prompt for the user name if none is
specified on the command line.

-V
--version

Print the dropuser version and exit.

--if-exists

Do not throw an error if the user does not exist. A notice is issued in this case.

-?
--help

Show help about dropuser command line arguments, and exit.

dropuser also accepts the following command-line arguments for connection parameters:

1931

dropuser

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as (not the user name to drop).

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force dropuser to prompt for a password before connecting to a database.

This option is never essential, since dropuser will automatically prompt for a password if the server
demands password authentication. However, dropuser will waste a connection attempt finding out that
the server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Diagnostics
In case of difficulty, see DROP ROLE and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To remove user joe from the default database server:

1932

dropuser

$ dropuser joe

To remove user joe using the server on host eden, port 5000, with verification and a peek at the
underlying command:

$ dropuser -p 5000 -h eden -i -e joe
Role "joe" will be permanently removed.
Are you sure? (y/n) y
DROP ROLE joe;

See Also
createuser, DROP ROLE

1933

ecpg
ecpg — embedded SQL C preprocessor

Synopsis
ecpg [option...] file...

Description
ecpg is the embedded SQL preprocessor for C programs. It converts C programs with embedded SQL
statements to normal C code by replacing the SQL invocations with special function calls. The output files
can then be processed with any C compiler tool chain.

ecpg will convert each input file given on the command line to the corresponding C output file. Input
files preferably have the extension .pgc. The extension will be replaced by .c to determine the output
file name. The output file name can also be overridden using the -o option.

This reference page does not describe the embedded SQL language. See Chapter 36 for more information
on that topic.

Options
ecpg accepts the following command-line arguments:

-c

Automatically generate certain C code from SQL code. Currently, this works for EXEC SQL TYPE.

-C mode

Set a compatibility mode. mode can be INFORMIX, INFORMIX_SE, or ORACLE.

-D symbol

Define a C preprocessor symbol.

-i

Parse system include files as well.

-I directory

Specify an additional include path, used to find files included via EXEC SQL INCLUDE. Defaults are
. (current directory), /usr/local/include, the PostgreSQL include directory which is defined
at compile time (default: /usr/local/pgsql/include), and /usr/include, in that order.

-o filename

Specifies that ecpg should write all its output to the given filename.

-r option

Selects run-time behavior. Option can be one of the following:

1934

ecpg

no_indicator

Do not use indicators but instead use special values to represent null values. Historically there
have been databases using this approach.

prepare

Prepare all statements before using them. Libecpg will keep a cache of prepared statements and
reuse a statement if it gets executed again. If the cache runs full, libecpg will free the least used
statement.

questionmarks

Allow question mark as placeholder for compatibility reasons. This used to be the default long
ago.

-t

Turn on autocommit of transactions. In this mode, each SQL command is automatically committed
unless it is inside an explicit transaction block. In the default mode, commands are committed only
when EXEC SQL COMMIT is issued.

-v

Print additional information including the version and the "include" path.

--version

Print the ecpg version and exit.

-?
--help

Show help about ecpg command line arguments, and exit.

Notes
When compiling the preprocessed C code files, the compiler needs to be able to find the ECPG header
files in the PostgreSQL include directory. Therefore, you might have to use the -I option when invoking
the compiler (e.g., -I/usr/local/pgsql/include).

Programs using C code with embedded SQL have to be linked against the libecpg library, for example
using the linker options -L/usr/local/pgsql/lib -lecpg.

The value of either of these directories that is appropriate for the installation can be found out using
pg_config.

Examples
If you have an embedded SQL C source file named prog1.pgc, you can create an executable program
using the following sequence of commands:

ecpg prog1.pgc
cc -I/usr/local/pgsql/include -c prog1.c
cc -o prog1 prog1.o -L/usr/local/pgsql/lib -lecpg

1935

pg_basebackup
pg_basebackup — take a base backup of a PostgreSQL cluster

Synopsis

pg_basebackup [option...]

Description

pg_basebackup is used to take base backups of a running PostgreSQL database cluster. These are taken
without affecting other clients to the database, and can be used both for point-in-time recovery (see
Section 25.3) and as the starting point for a log shipping or streaming replication standby servers (see
Section 26.2).

pg_basebackup makes a binary copy of the database cluster files, while making sure the system is put in
and out of backup mode automatically. Backups are always taken of the entire database cluster; it is not
possible to back up individual databases or database objects. For individual database backups, a tool such
as pg_dump must be used.

The backup is made over a regular PostgreSQL connection, and uses the replication protocol. The
connection must be made with a superuser or a user having REPLICATION permissions (see Section 21.2),
and pg_hba.conf must explicitly permit the replication connection. The server must also be configured
with max_wal_senders set high enough to leave at least one session available for the backup and one for
WAL streaming (if used).

There can be multiple pg_basebackups running at the same time, but it is better from a performance
point of view to take only one backup, and copy the result.

pg_basebackup can make a base backup from not only the master but also the standby. To take a
backup from the standby, set up the standby so that it can accept replication connections (that is, set
max_wal_senders and hot_standby, and configure host-based authentication). You will also need to
enable full_page_writes on the master.

Note that there are some limitations in an online backup from the standby:

• The backup history file is not created in the database cluster backed up.

• If you are using -X none, there is no guarantee that all WAL files required for the backup are archived
at the end of backup.

• If the standby is promoted to the master during online backup, the backup fails.

• All WAL records required for the backup must contain sufficient full-page writes, which requires
you to enable full_page_writes on the master and not to use a tool like pg_compresslog as
archive_command to remove full-page writes from WAL files.

Options

The following command-line options control the location and format of the output.

1936

pg_basebackup

-D directory
--pgdata=directory

Directory to write the output to. pg_basebackup will create the directory and any parent directories
if necessary. The directory may already exist, but it is an error if the directory already exists and is
not empty.

When the backup is in tar mode, and the directory is specified as - (dash), the tar file will be written
to stdout.

This option is required.

-F format
--format=format

Selects the format for the output. format can be one of the following:

p
plain

Write the output as plain files, with the same layout as the current data directory and tablespaces.
When the cluster has no additional tablespaces, the whole database will be placed in the target
directory. If the cluster contains additional tablespaces, the main data directory will be placed
in the target directory, but all other tablespaces will be placed in the same absolute path as they
have on the server.

This is the default format.

t
tar

Write the output as tar files in the target directory. The main data directory will be written to a
file named base.tar, and all other tablespaces will be named after the tablespace OID.

If the value - (dash) is specified as target directory, the tar contents will be written to standard
output, suitable for piping to for example gzip. This is only possible if the cluster has no additional
tablespaces and WAL streaming is not used.

-r rate
--max-rate=rate

The maximum transfer rate of data transferred from the server. Values are in kilobytes per second.
Use a suffix of M to indicate megabytes per second. A suffix of k is also accepted, and has no effect.
Valid values are between 32 kilobytes per second and 1024 megabytes per second.

The purpose is to limit the impact of pg_basebackup on the running server.

This option always affects transfer of the data directory. Transfer of WAL files is only affected if the
collection method is fetch.

-R
--write-recovery-conf

Write a minimal recovery.conf in the output directory (or into the base archive file when using
tar format) to ease setting up a standby server. The recovery.conf file will record the connection

1937

pg_basebackup

settings and, if specified, the replication slot that pg_basebackup is using, so that the streaming
replication will use the same settings later on.

-T olddir=newdir
--tablespace-mapping=olddir=newdir

Relocate the tablespace in directory olddir to newdir during the backup. To be effective, olddir
must exactly match the path specification of the tablespace as it is currently defined. (But it is not an
error if there is no tablespace in olddir contained in the backup.) Both olddir and newdir must
be absolute paths. If a path happens to contain a = sign, escape it with a backslash. This option can
be specified multiple times for multiple tablespaces. See examples below.

If a tablespace is relocated in this way, the symbolic links inside the main data directory are updated
to point to the new location. So the new data directory is ready to be used for a new server instance
with all tablespaces in the updated locations.

--waldir=waldir

Specifies the location for the write-ahead log directory. waldir must be an absolute path. The write-
ahead log directory can only be specified when the backup is in plain mode.

-X method
--wal-method=method

Includes the required write-ahead log files (WAL files) in the backup. This will include all write-
ahead logs generated during the backup. Unless the method none is specified, it is possible to start a
postmaster directly in the extracted directory without the need to consult the log archive, thus making
this a completely standalone backup.

The following methods for collecting the write-ahead logs are supported:

n
none

Don't include write-ahead log in the backup.

f
fetch

The write-ahead log files are collected at the end of the backup. Therefore, it is necessary for
the wal_keep_segments parameter to be set high enough that the log is not removed before the
end of the backup. If the log has been rotated when it's time to transfer it, the backup will fail
and be unusable.

When tar format mode is used, the write-ahead log files will be written to the base.tar file.

s
stream

Stream the write-ahead log while the backup is created. This will open a second connection to the
server and start streaming the write-ahead log in parallel while running the backup. Therefore, it
will use up two connections configured by the max_wal_senders parameter. As long as the client
can keep up with write-ahead log received, using this mode requires no extra write-ahead logs
to be saved on the master.

When tar format mode is used, the write-ahead log files will be written to a separate file named
pg_wal.tar (if the server is a version earlier than 10, the file will be named pg_xlog.tar).

1938

pg_basebackup

This value is the default.

-z
--gzip

Enables gzip compression of tar file output, with the default compression level. Compression is only
available when using the tar format, and the suffix .gz will automatically be added to all tar filenames.

-Z level
--compress=level

Enables gzip compression of tar file output, and specifies the compression level (0 through 9, 0 being
no compression and 9 being best compression). Compression is only available when using the tar
format, and the suffix .gz will automatically be added to all tar filenames.

The following command-line options control the generation of the backup and the running of the program.

-c fast|spread
--checkpoint=fast|spread

Sets checkpoint mode to fast (immediate) or spread (default) (see Section 25.3.3).

-C
--create-slot

This option causes creation of a replication slot named by the --slot option before starting the
backup. An error is raised if the slot already exists.

-l label
--label=label

Sets the label for the backup. If none is specified, a default value of “pg_basebackup base
backup” will be used.

-n
--no-clean

By default, when pg_basebackup aborts with an error, it removes any directories it might have
created before discovering that it cannot finish the job (for example, data directory and write-ahead
log directory). This option inhibits tidying-up and is thus useful for debugging.

Note that tablespace directories are not cleaned up either way.

-N
--no-sync

By default, pg_basebackup will wait for all files to be written safely to disk. This option causes
pg_basebackup to return without waiting, which is faster, but means that a subsequent operating
system crash can leave the base backup corrupt. Generally, this option is useful for testing but should
not be used when creating a production installation.

-P
--progress

Enables progress reporting. Turning this on will deliver an approximate progress report during the
backup. Since the database may change during the backup, this is only an approximation and may not

1939

pg_basebackup

end at exactly 100%. In particular, when WAL log is included in the backup, the total amount of data
cannot be estimated in advance, and in this case the estimated target size will increase once it passes
the total estimate without WAL.

When this is enabled, the backup will start by enumerating the size of the entire database, and then go
back and send the actual contents. This may make the backup take slightly longer, and in particular
it will take longer before the first data is sent.

-S slotname
--slot=slotname

This option can only be used together with -X stream. It causes the WAL streaming to use the
specified replication slot. If the base backup is intended to be used as a streaming replication standby
using replication slots, it should then use the same replication slot name in recovery.conf. That
way, it is ensured that the server does not remove any necessary WAL data in the time between the
end of the base backup and the start of streaming replication.

The specified replication slot has to exist unless the option -C is also used.

If this option is not specified and the server supports temporary replication slots (version 10 and later),
then a temporary replication slot is automatically used for WAL streaming.

-v
--verbose

Enables verbose mode. Will output some extra steps during startup and shutdown, as well as show
the exact file name that is currently being processed if progress reporting is also enabled.

--no-slot

This option prevents the creation of a temporary replication slot during the backup even if it's
supported by the server.

Temporary replication slots are created by default if no slot name is given with the option -S when
using log streaming.

The main purpose of this option is to allow taking a base backup when the server is out of free
replication slots. Using replication slots is almost always preferred, because it prevents needed WAL
from being removed by the server during the backup.

--no-verify-checksums

Disables verification of checksums, if they are enabled on the server the base backup is taken from.

By default, checksums are verified and checksum failures will result in a non-zero exit status.
However, the base backup will not be removed in such a case, as if the --no-clean option had
been used.

The following command-line options control the database connection parameters.

-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string. See Section 34.1.1 for more
information.

1940

pg_basebackup

The option is called --dbname for consistency with other client applications, but because
pg_basebackup doesn't connect to any particular database in the cluster, database name in the
connection string will be ignored.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-s interval
--status-interval=interval

Specifies the number of seconds between status packets sent back to the server. This allows for
easier monitoring of the progress from server. A value of zero disables the periodic status updates
completely, although an update will still be sent when requested by the server, to avoid timeout
disconnect. The default value is 10 seconds.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_basebackup to prompt for a password before connecting to a database.

This option is never essential, since pg_basebackup will automatically prompt for a password if the
server demands password authentication. However, pg_basebackup will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

Other options are also available:

-V
--version

Print the pg_basebackup version and exit.

-?
--help

Show help about pg_basebackup command line arguments, and exit.

1941

pg_basebackup

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 34.14).

Notes
At the beginning of the backup, a checkpoint needs to be written on the server the backup is taken
from. Especially if the option --checkpoint=fast is not used, this can take some time during which
pg_basebackup will be appear to be idle.

The backup will include all files in the data directory and tablespaces, including the configuration files
and any additional files placed in the directory by third parties, except certain temporary files managed
by PostgreSQL. But only regular files and directories are copied, except that symbolic links used for
tablespaces are preserved. Symbolic links pointing to certain directories known to PostgreSQL are copied
as empty directories. Other symbolic links and special device files are skipped. See Section 53.4 for the
precise details.

Tablespaces will in plain format by default be backed up to the same path they have on the server, unless
the option --tablespace-mapping is used. Without this option, running a plain format base backup
on the same host as the server will not work if tablespaces are in use, because the backup would have to
be written to the same directory locations as the original tablespaces.

When tar format mode is used, it is the user's responsibility to unpack each tar file before starting the
PostgreSQL server. If there are additional tablespaces, the tar files for them need to be unpacked in
the correct locations. In this case the symbolic links for those tablespaces will be created by the server
according to the contents of the tablespace_map file that is included in the base.tar file.

pg_basebackup works with servers of the same or an older major version, down to 9.1. However, WAL
streaming mode (-X stream) only works with server version 9.3 and later, and tar format mode (--
format=tar) of the current version only works with server version 9.5 or later.

pg_basebackup will preserve group permissions in both the plain and tar formats if group permissions
are enabled on the source cluster.

Examples
To create a base backup of the server at mydbserver and store it in the local directory /usr/local/
pgsql/data:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data

To create a backup of the local server with one compressed tar file for each tablespace, and store it in the
directory backup, showing a progress report while running:

$ pg_basebackup -D backup -Ft -z -P

To create a backup of a single-tablespace local database and compress this with bzip2:

$ pg_basebackup -D - -Ft -X fetch | bzip2 > backup.tar.bz2

(This command will fail if there are multiple tablespaces in the database.)

1942

pg_basebackup

To create a backup of a local database where the tablespace in /opt/ts is relocated to ./backup/ts:

$ pg_basebackup -D backup/data -T /opt/ts=$(pwd)/backup/ts

See Also
pg_dump

1943

pgbench
pgbench — run a benchmark test on PostgreSQL

Synopsis

pgbench -i [option...] [dbname]

pgbench [option...] [dbname]

Description

pgbench is a simple program for running benchmark tests on PostgreSQL. It runs the same sequence of
SQL commands over and over, possibly in multiple concurrent database sessions, and then calculates the
average transaction rate (transactions per second). By default, pgbench tests a scenario that is loosely based
on TPC-B, involving five SELECT, UPDATE, and INSERT commands per transaction. However, it is
easy to test other cases by writing your own transaction script files.

Typical output from pgbench looks like:

transaction type: <builtin: TPC-B (sort of)>
scaling factor: 10
query mode: simple
number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
tps = 85.184871 (including connections establishing)
tps = 85.296346 (excluding connections establishing)

The first six lines report some of the most important parameter settings. The next line reports the number of
transactions completed and intended (the latter being just the product of number of clients and number of
transactions per client); these will be equal unless the run failed before completion. (In -T mode, only the
actual number of transactions is printed.) The last two lines report the number of transactions per second,
figured with and without counting the time to start database sessions.

The default TPC-B-like transaction test requires specific tables to be set up beforehand. pgbench should be
invoked with the -i (initialize) option to create and populate these tables. (When you are testing a custom
script, you don't need this step, but will instead need to do whatever setup your test needs.) Initialization
looks like:

pgbench -i [other-options] dbname

where dbname is the name of the already-created database to test in. (You may also need -h, -p, and/or
-U options to specify how to connect to the database server.)

1944

pgbench

Caution

pgbench -i creates four tables pgbench_accounts, pgbench_branches,
pgbench_history, and pgbench_tellers, destroying any existing tables of these names.
Be very careful to use another database if you have tables having these names!

At the default “scale factor” of 1, the tables initially contain this many rows:

table # of rows

pgbench_branches 1
pgbench_tellers 10
pgbench_accounts 100000
pgbench_history 0

You can (and, for most purposes, probably should) increase the number of rows by using the -s (scale
factor) option. The -F (fillfactor) option might also be used at this point.

Once you have done the necessary setup, you can run your benchmark with a command that doesn't include
-i, that is

pgbench [options] dbname

In nearly all cases, you'll need some options to make a useful test. The most important options are -c
(number of clients), -t (number of transactions), -T (time limit), and -f (specify a custom script file).
See below for a full list.

Options
The following is divided into three subsections. Different options are used during database initialization
and while running benchmarks, but some options are useful in both cases.

Initialization Options

pgbench accepts the following command-line initialization arguments:

-i
--initialize

Required to invoke initialization mode.

-I init_steps
--init-steps=init_steps

Perform just a selected set of the normal initialization steps. init_steps specifies the initialization
steps to be performed, using one character per step. Each step is invoked in the specified order. The
default is dtgvp. The available steps are:

d (Drop)

Drop any existing pgbench tables.

1945

pgbench

t (create Tables)

Create the tables used by the standard pgbench scenario, namely pgbench_accounts,
pgbench_branches, pgbench_history, and pgbench_tellers.

g (Generate data)

Generate data and load it into the standard tables, replacing any data already present.

v (Vacuum)

Invoke VACUUM on the standard tables.

p (create Primary keys)

Create primary key indexes on the standard tables.

f (create Foreign keys)

Create foreign key constraints between the standard tables. (Note that this step is not performed
by default.)

-F fillfactor
--fillfactor=fillfactor

Create the pgbench_accounts, pgbench_tellers and pgbench_branches tables with
the given fillfactor. Default is 100.

-n
--no-vacuum

Perform no vacuuming during initialization. (This option suppresses the v initialization step, even if
it was specified in -I.)

-q
--quiet

Switch logging to quiet mode, producing only one progress message per 5 seconds. The default
logging prints one message each 100000 rows, which often outputs many lines per second (especially
on good hardware).

-s scale_factor
--scale=scale_factor

Multiply the number of rows generated by the scale factor. For example, -s 100 will create
10,000,000 rows in the pgbench_accounts table. Default is 1. When the scale is 20,000 or larger,
the columns used to hold account identifiers (aid columns) will switch to using larger integers
(bigint), in order to be big enough to hold the range of account identifiers.

--foreign-keys

Create foreign key constraints between the standard tables. (This option adds the f step to the
initialization step sequence, if it is not already present.)

--index-tablespace=index_tablespace

Create indexes in the specified tablespace, rather than the default tablespace.

1946

pgbench

--tablespace=tablespace

Create tables in the specified tablespace, rather than the default tablespace.

--unlogged-tables

Create all tables as unlogged tables, rather than permanent tables.

Benchmarking Options

pgbench accepts the following command-line benchmarking arguments:

-b scriptname[@weight]
--builtin=scriptname[@weight]

Add the specified built-in script to the list of executed scripts. An optional integer weight after @
allows to adjust the probability of drawing the script. If not specified, it is set to 1. Available built-in
scripts are: tpcb-like, simple-update and select-only. Unambiguous prefixes of built-
in names are accepted. With special name list, show the list of built-in scripts and exit immediately.

-c clients
--client=clients

Number of clients simulated, that is, number of concurrent database sessions. Default is 1.

-C
--connect

Establish a new connection for each transaction, rather than doing it just once per client session. This
is useful to measure the connection overhead.

-d
--debug

Print debugging output.

-D varname=value
--define=varname=value

Define a variable for use by a custom script (see below). Multiple -D options are allowed.

-f filename[@weight]
--file=filename[@weight]

Add a transaction script read from filename to the list of executed scripts. An optional integer
weight after @ allows to adjust the probability of drawing the test. See below for details.

-j threads
--jobs=threads

Number of worker threads within pgbench. Using more than one thread can be helpful on multi-CPU
machines. Clients are distributed as evenly as possible among available threads. Default is 1.

-l
--log

Write information about each transaction to a log file. See below for details.

1947

pgbench

-L limit
--latency-limit=limit

Transaction which last more than limit milliseconds are counted and reported separately, as late.

When throttling is used (--rate=...), transactions that lag behind schedule by more than limit
ms, and thus have no hope of meeting the latency limit, are not sent to the server at all. They are
counted and reported separately as skipped.

-M querymode
--protocol=querymode

Protocol to use for submitting queries to the server:

• simple: use simple query protocol.

• extended: use extended query protocol.

• prepared: use extended query protocol with prepared statements.
The default is simple query protocol. (See Chapter 53 for more information.)

-n
--no-vacuum

Perform no vacuuming before running the test. This option is necessary if you are running a custom test
scenario that does not include the standard tables pgbench_accounts, pgbench_branches,
pgbench_history, and pgbench_tellers.

-N
--skip-some-updates

Run built-in simple-update script. Shorthand for -b simple-update.

-P sec
--progress=sec

Show progress report every sec seconds. The report includes the time since the beginning of the run,
the TPS since the last report, and the transaction latency average and standard deviation since the last
report. Under throttling (-R), the latency is computed with respect to the transaction scheduled start
time, not the actual transaction beginning time, thus it also includes the average schedule lag time.

-r
--report-latencies

Report the average per-statement latency (execution time from the perspective of the client) of each
command after the benchmark finishes. See below for details.

-R rate
--rate=rate

Execute transactions targeting the specified rate instead of running as fast as possible (the default).
The rate is given in transactions per second. If the targeted rate is above the maximum possible rate,
the rate limit won't impact the results.

The rate is targeted by starting transactions along a Poisson-distributed schedule time line. The
expected start time schedule moves forward based on when the client first started, not when the

1948

pgbench

previous transaction ended. That approach means that when transactions go past their original
scheduled end time, it is possible for later ones to catch up again.

When throttling is active, the transaction latency reported at the end of the run is calculated from the
scheduled start times, so it includes the time each transaction had to wait for the previous transaction
to finish. The wait time is called the schedule lag time, and its average and maximum are also reported
separately. The transaction latency with respect to the actual transaction start time, i.e. the time spent
executing the transaction in the database, can be computed by subtracting the schedule lag time from
the reported latency.

If --latency-limit is used together with --rate, a transaction can lag behind so much that it
is already over the latency limit when the previous transaction ends, because the latency is calculated
from the scheduled start time. Such transactions are not sent to the server, but are skipped altogether
and counted separately.

A high schedule lag time is an indication that the system cannot process transactions at the specified
rate, with the chosen number of clients and threads. When the average transaction execution time
is longer than the scheduled interval between each transaction, each successive transaction will fall
further behind, and the schedule lag time will keep increasing the longer the test run is. When that
happens, you will have to reduce the specified transaction rate.

-s scale_factor
--scale=scale_factor

Report the specified scale factor in pgbench's output. With the built-in tests, this is not necessary; the
correct scale factor will be detected by counting the number of rows in the pgbench_branches
table. However, when testing only custom benchmarks (-f option), the scale factor will be reported
as 1 unless this option is used.

-S
--select-only

Run built-in select-only script. Shorthand for -b select-only.

-t transactions
--transactions=transactions

Number of transactions each client runs. Default is 10.

-T seconds
--time=seconds

Run the test for this many seconds, rather than a fixed number of transactions per client. -t and -
T are mutually exclusive.

-v
--vacuum-all

Vacuum all four standard tables before running the test. With neither -n nor -v, pgbench
will vacuum the pgbench_tellers and pgbench_branches tables, and will truncate
pgbench_history.

--aggregate-interval=seconds

Length of aggregation interval (in seconds). May be used only with -l option. With this option, the
log contains per-interval summary data, as described below.

1949

pgbench

--log-prefix=prefix

Set the filename prefix for the log files created by --log. The default is pgbench_log.

--progress-timestamp

When showing progress (option -P), use a timestamp (Unix epoch) instead of the number of seconds
since the beginning of the run. The unit is in seconds, with millisecond precision after the dot. This
helps compare logs generated by various tools.

--random-seed=SEED

Set random generator seed. Seeds the system random number generator, which then produces a
sequence of initial generator states, one for each thread. Values for SEED may be: time (the
default, the seed is based on the current time), rand (use a strong random source, failing if none
is available), or an unsigned decimal integer value. The random generator is invoked explicitly
from a pgbench script (random... functions) or implicitly (for instance option --rate uses
it to schedule transactions). When explicitly set, the value used for seeding is shown on the
terminal. Any value allowed for SEED may also be provided through the environment variable
PGBENCH_RANDOM_SEED. To ensure that the provided seed impacts all possible uses, put this
option first or use the environment variable.

Setting the seed explicitly allows to reproduce a pgbench run exactly, as far as random numbers are
concerned. As the random state is managed per thread, this means the exact same pgbench run for
an identical invocation if there is one client per thread and there are no external or data dependencies.
From a statistical viewpoint reproducing runs exactly is a bad idea because it can hide the performance
variability or improve performance unduly, e.g. by hitting the same pages as a previous run. However,
it may also be of great help for debugging, for instance re-running a tricky case which leads to an
error. Use wisely.

--sampling-rate=rate

Sampling rate, used when writing data into the log, to reduce the amount of log generated. If this
option is given, only the specified fraction of transactions are logged. 1.0 means all transactions will
be logged, 0.05 means only 5% of the transactions will be logged.

Remember to take the sampling rate into account when processing the log file. For example, when
computing TPS values, you need to multiply the numbers accordingly (e.g. with 0.01 sample rate,
you'll only get 1/100 of the actual TPS).

Common Options

pgbench accepts the following command-line common arguments:

-h hostname
--host=hostname

The database server's host name

-p port
--port=port

The database server's port number

-U login
--username=login

The user name to connect as

1950

pgbench

-V
--version

Print the pgbench version and exit.

-?
--help

Show help about pgbench command line arguments, and exit.

Notes

What is the “Transaction” Actually Performed in pgbench?

pgbench executes test scripts chosen randomly from a specified list. They include built-in scripts with -b
and user-provided custom scripts with -f. Each script may be given a relative weight specified after a @
so as to change its drawing probability. The default weight is 1. Scripts with a weight of 0 are ignored.

The default built-in transaction script (also invoked with -b tpcb-like) issues seven commands per
transaction over randomly chosen aid, tid, bid and balance. The scenario is inspired by the TPC-
B benchmark, but is not actually TPC-B, hence the name.

1. BEGIN;

2. UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid
= :aid;

3. SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

4. UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid
= :tid;

5. UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid
= :bid;

6. INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
(:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);

7. END;

If you select the simple-update built-in (also -N), steps 4 and 5 aren't included in the transaction.
This will avoid update contention on these tables, but it makes the test case even less like TPC-B.

If you select the select-only built-in (also -S), only the SELECT is issued.

Custom Scripts

pgbench has support for running custom benchmark scenarios by replacing the default transaction script
(described above) with a transaction script read from a file (-f option). In this case a “transaction” counts
as one execution of a script file.

A script file contains one or more SQL commands terminated by semicolons. Empty lines and lines
beginning with -- are ignored. Script files can also contain “meta commands”, which are interpreted by
pgbench itself, as described below.

1951

pgbench

Note

Before PostgreSQL 9.6, SQL commands in script files were terminated by newlines, and so they
could not be continued across lines. Now a semicolon is required to separate consecutive SQL
commands (though a SQL command does not need one if it is followed by a meta command). If
you need to create a script file that works with both old and new versions of pgbench, be sure to
write each SQL command on a single line ending with a semicolon.

There is a simple variable-substitution facility for script files. Variable names must consist of letters
(including non-Latin letters), digits, and underscores. Variables can be set by the command-line -D option,
explained above, or by the meta commands explained below. In addition to any variables preset by -D
command-line options, there are a few variables that are preset automatically, listed in Table 241. A value
specified for these variables using -D takes precedence over the automatic presets. Once set, a variable's
value can be inserted into a SQL command by writing :variablename. When running more than one
client session, each session has its own set of variables.

Table 241. Automatic Variables

Variable Description

client_id unique number identifying the client session (starts
from zero)

default_seed seed used in hash functions by default

random_seed random generator seed (unless overwritten with -D)

scale current scale factor

Script file meta commands begin with a backslash (\) and normally extend to the end of the line, although
they can be continued to additional lines by writing backslash-return. Arguments to a meta command are
separated by white space. These meta commands are supported:

\if expression
\elif expression
\else
\endif

This group of commands implements nestable conditional blocks, similarly to psql's \if
expression. Conditional expressions are identical to those with \set, with non-zero values
interpreted as true.

\set varname expression

Sets variable varname to a value calculated from expression. The expression may contain
the NULL constant, Boolean constants TRUE and FALSE, integer constants such as 5432, double
constants such as 3.14159, references to variables :variablename, operators with their usual
SQL precedence and associativity, function calls, SQL CASE generic conditional expressions and
parentheses.

Functions and most operators return NULL on NULL input.

For conditional purposes, non zero numerical values are TRUE, zero numerical values and NULL are
FALSE.

When no final ELSE clause is provided to a CASE, the default value is NULL.

1952

pgbench

Examples:

\set ntellers 10 * :scale
\set aid (1021 * random(1, 100000 * :scale)) % \
 (100000 * :scale) + 1
\set divx CASE WHEN :x <> 0 THEN :y/:x ELSE NULL END

\sleep number [us | ms | s]

Causes script execution to sleep for the specified duration in microseconds (us), milliseconds (ms)
or seconds (s). If the unit is omitted then seconds are the default. number can be either an integer
constant or a :variablename reference to a variable having an integer value.

Example:

\sleep 10 ms

\setshell varname command [argument ...]

Sets variable varname to the result of the shell command command with the given argument(s).
The command must return an integer value through its standard output.

command and each argument can be either a text constant or a :variablename reference to
a variable. If you want to use an argument starting with a colon, write an additional colon at the
beginning of argument.

Example:

\setshell variable_to_be_assigned command
 literal_argument :variable ::literal_starting_with_colon

\shell command [argument ...]

Same as \setshell, but the result of the command is discarded.

Example:

\shell command
 literal_argument :variable ::literal_starting_with_colon

Built-In Operators

The arithmetic, bitwise, comparison and logical operators listed in Table 242 are built into pgbench and
may be used in expressions appearing in \set.

Table 242. pgbench Operators by increasing precedence

Operator Description Example Result

OR logical or 5 or 0 TRUE

AND logical and 3 and 0 FALSE

NOT logical not not false TRUE

IS [NOT] (NULL|
TRUE|FALSE)

value tests 1 is null FALSE

1953

pgbench

Operator Description Example Result

ISNULL|NOTNULL null tests 1 notnull TRUE

= is equal 5 = 4 FALSE

<> is not equal 5 <> 4 TRUE

!= is not equal 5 != 5 FALSE

< lower than 5 < 4 FALSE

<= lower or equal 5 <= 4 FALSE

> greater than 5 > 4 TRUE

>= greater or equal 5 >= 4 TRUE

| integer bitwise OR 1 | 2 3

integer bitwise XOR 1 # 3 2

& integer bitwise AND 1 & 3 1

~ integer bitwise NOT ~ 1 -2

<< integer bitwise shift left 1 << 2 4

>> integer bitwise shift right 8 >> 2 2

+ addition 5 + 4 9

- subtraction 3 - 2.0 1.0

* multiplication 5 * 4 20

/ division (integer
truncates the results)

5 / 3 1

% modulo 3 % 2 1

- opposite - 2.0 -2.0

Built-In Functions

The functions listed in Table 243 are built into pgbench and may be used in expressions appearing in \set.

Table 243. pgbench Functions

Function Return Type Description Example Result

abs(a) same as a absolute value abs(-17) 17

debug(a) same as a print a to stderr, and
return a

debug(5432.1) 5432.1

double(i) double cast to double double(5432) 5432.0

exp(x) double exponential exp(1.0) 2.718281828459045

greatest(a [,
...])

double if any a is
double, else integer

largest value among
arguments

greatest(5,
4, 3, 2)

5

hash(a [,
seed])

integer alias for
hash_murmur2()

hash(10,
5432)

-5817877081768721676

hash_fnv1a(a
[, seed])

integer FNV-1a hash1 hash_fnv1a(10,
5432)

-7793829335365542153

1 https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

1954

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

pgbench

Function Return Type Description Example Result

hash_murmur2(a
[, seed])

integer MurmurHash2
hash2

hash_murmur2(10,
5432)

-5817877081768721676

int(x) integer cast to int int(5.4 +
3.8)

9

least(a [,
...])

double if any a is
double, else integer

smallest value
among arguments

least(5, 4,
3, 2.1)

2.1

ln(x) double natural logarithm ln(2.718281828459045)1.0

mod(i, j) integer modulo mod(54, 32) 22

pi() double value of the
constant PI

pi() 3.14159265358979323846

pow(x, y),
power(x, y)

double exponentiation pow(2.0, 10),
power(2.0,
10)

1024.0

random(lb,
ub)

integer uniformly-
distributed random
integer in [lb,
ub]

random(1, 10) an integer between
1 and 10

random_exponential(lb,
ub,
parameter)

integer exponentially-
distributed random
integer in [lb,
ub], see below

random_exponential(1,
10, 3.0)

an integer between
1 and 10

random_gaussian(lb,
ub,
parameter)

integer Gaussian-
distributed random
integer in [lb,
ub], see below

random_gaussian(1,
10, 2.5)

an integer between
1 and 10

random_zipfian(lb,
ub,
parameter)

integer Zipfian-distributed
random integer in
[lb, ub], see
below

random_zipfian(1,
10, 1.5)

an integer between
1 and 10

sqrt(x) double square root sqrt(2.0) 1.414213562

The random function generates values using a uniform distribution, that is all the values are drawn within
the specified range with equal probability. The random_exponential, random_gaussian and
random_zipfian functions require an additional double parameter which determines the precise shape
of the distribution.

• For an exponential distribution, parameter controls the distribution by truncating a quickly-
decreasing exponential distribution at parameter, and then projecting onto integers between the
bounds. To be precise, with

f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1 - exp(-parameter))

Then value i between min and max inclusive is drawn with probability: f(i) - f(i + 1).

Intuitively, the larger the parameter, the more frequently values close to min are accessed, and the
less frequently values close to max are accessed. The closer to 0 parameter is, the flatter (more

2 https://en.wikipedia.org/wiki/MurmurHash

1955

https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/MurmurHash

pgbench

uniform) the access distribution. A crude approximation of the distribution is that the most frequent 1%
values in the range, close to min, are drawn parameter% of the time. The parameter value must
be strictly positive.

• For a Gaussian distribution, the interval is mapped onto a standard normal distribution (the classical bell-
shaped Gaussian curve) truncated at -parameter on the left and +parameter on the right. Values
in the middle of the interval are more likely to be drawn. To be precise, if PHI(x) is the cumulative
distribution function of the standard normal distribution, with mean mu defined as (max + min) /
2.0, with

f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
 (2.0 * PHI(parameter) - 1)

then value i between min and max inclusive is drawn with probability: f(i + 0.5) - f(i -
0.5). Intuitively, the larger the parameter, the more frequently values close to the middle of the
interval are drawn, and the less frequently values close to the min and max bounds. About 67% of
values are drawn from the middle 1.0 / parameter, that is a relative 0.5 / parameter around
the mean, and 95% in the middle 2.0 / parameter, that is a relative 1.0 / parameter around
the mean; for instance, if parameter is 4.0, 67% of values are drawn from the middle quarter (1.0 /
4.0) of the interval (i.e. from 3.0 / 8.0 to 5.0 / 8.0) and 95% from the middle half (2.0 /
4.0) of the interval (second and third quartiles). The minimum parameter is 2.0 for performance
of the Box-Muller transform.

• random_zipfian generates an approximated bounded Zipfian distribution. For parameter in (0,
1), an approximated algorithm is taken from "Quickly Generating Billion-Record Synthetic Databases",
Jim Gray et al, SIGMOD 1994. For parameter in (1, 1000), a rejection method is used, based on
"Non-Uniform Random Variate Generation", Luc Devroye, p. 550-551, Springer 1986. The distribution
is not defined when the parameter's value is 1.0. The function's performance is poor for parameter values
close and above 1.0 and on a small range.

parameter defines how skewed the distribution is. The larger the parameter, the more frequently
values closer to the beginning of the interval are drawn. The closer to 0 parameter is, the flatter
(more uniform) the output distribution. The distribution is such that, assuming the range starts from
1, the ratio of the probability of drawing k versus drawing k+1 is ((k+1)/k)**parameter. For
example, random_zipfian(1, ..., 2.5) produces the value 1 about (2/1)**2.5 = 5.66
times more frequently than 2, which itself is produced (3/2)*2.5 = 2.76 times more frequently
than 3, and so on.

Hash functions hash, hash_murmur2 and hash_fnv1a accept an input value and an optional
seed parameter. In case the seed isn't provided the value of :default_seed is used, which is
initialized randomly unless set by the command-line -D option. Hash functions can be used to scatter the
distribution of random functions such as random_zipfian or random_exponential. For instance,
the following pgbench script simulates possible real world workload typical for social media and blogging
platforms where few accounts generate excessive load:

\set r random_zipfian(0, 100000000, 1.07)
\set k abs(hash(:r)) % 1000000

In some cases several distinct distributions are needed which don't correlate with each other and this is
when implicit seed parameter comes in handy:

\set k1 abs(hash(:r, :default_seed + 123)) % 1000000
\set k2 abs(hash(:r, :default_seed + 321)) % 1000000

1956

pgbench

As an example, the full definition of the built-in TPC-B-like transaction is:

\set aid random(1, 100000 * :scale)
\set bid random(1, 1 * :scale)
\set tid random(1, 10 * :scale)
\set delta random(-5000, 5000)
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid
 = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid
 = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid
 = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
 (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;

This script allows each iteration of the transaction to reference different, randomly-chosen rows. (This
example also shows why it's important for each client session to have its own variables — otherwise they'd
not be independently touching different rows.)

Per-Transaction Logging

With the -l option (but without the --aggregate-interval option), pgbench writes information
about each transaction to a log file. The log file will be named prefix.nnn, where prefix defaults
to pgbench_log, and nnn is the PID of the pgbench process. The prefix can be changed by using the
--log-prefix option. If the -j option is 2 or higher, so that there are multiple worker threads, each
will have its own log file. The first worker will use the same name for its log file as in the standard single
worker case. The additional log files for the other workers will be named prefix.nnn.mmm, where mmm
is a sequential number for each worker starting with 1.

The format of the log is:

client_id transaction_no time script_no time_epoch time_us
 [schedule_lag]

where client_id indicates which client session ran the transaction, transaction_no counts
how many transactions have been run by that session, time is the total elapsed transaction time in
microseconds, script_no identifies which script file was used (useful when multiple scripts were
specified with -f or -b), and time_epoch/time_us are a Unix-epoch time stamp and an offset in
microseconds (suitable for creating an ISO 8601 time stamp with fractional seconds) showing when the
transaction completed. The schedule_lag field is the difference between the transaction's scheduled
start time, and the time it actually started, in microseconds. It is only present when the --rate option is
used. When both --rate and --latency-limit are used, the time for a skipped transaction will
be reported as skipped.

Here is a snippet of a log file generated in a single-client run:

0 199 2241 0 1175850568 995598
0 200 2465 0 1175850568 998079
0 201 2513 0 1175850569 608

1957

pgbench

0 202 2038 0 1175850569 2663

Another example with --rate=100 and --latency-limit=5 (note the additional
schedule_lag column):

0 81 4621 0 1412881037 912698 3005
0 82 6173 0 1412881037 914578 4304
0 83 skipped 0 1412881037 914578 5217
0 83 skipped 0 1412881037 914578 5099
0 83 4722 0 1412881037 916203 3108
0 84 4142 0 1412881037 918023 2333
0 85 2465 0 1412881037 919759 740

In this example, transaction 82 was late, because its latency (6.173 ms) was over the 5 ms limit. The next
two transactions were skipped, because they were already late before they were even started.

When running a long test on hardware that can handle a lot of transactions, the log files can become very
large. The --sampling-rate option can be used to log only a random sample of transactions.

Aggregated Logging

With the --aggregate-interval option, a different format is used for the log files:

interval_start num_transactions sum_latency sum_latency_2 min_latency max_latency
 [sum_lag sum_lag_2 min_lag max_lag [skipped]]

where interval_start is the start of the interval (as a Unix epoch time stamp),
num_transactions is the number of transactions within the interval, sum_latency is the sum
of the transaction latencies within the interval, sum_latency_2 is the sum of squares of the
transaction latencies within the interval, min_latency is the minimum latency within the interval, and
max_latency is the maximum latency within the interval. The next fields, sum_lag, sum_lag_2,
min_lag, and max_lag, are only present if the --rate option is used. They provide statistics about the
time each transaction had to wait for the previous one to finish, i.e. the difference between each transaction's
scheduled start time and the time it actually started. The very last field, skipped, is only present if the --
latency-limit option is used, too. It counts the number of transactions skipped because they would
have started too late. Each transaction is counted in the interval when it was committed.

Here is some example output:

1345828501 5601 1542744 483552416 61 2573
1345828503 7884 1979812 565806736 60 1479
1345828505 7208 1979422 567277552 59 1391
1345828507 7685 1980268 569784714 60 1398
1345828509 7073 1979779 573489941 236 1411

Notice that while the plain (unaggregated) log file shows which script was used for each transaction, the
aggregated log does not. Therefore if you need per-script data, you need to aggregate the data on your own.

Per-Statement Latencies

With the -r option, pgbench collects the elapsed transaction time of each statement executed by every
client. It then reports an average of those values, referred to as the latency for each statement, after the
benchmark has finished.

1958

pgbench

For the default script, the output will look similar to this:

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
latency average = 15.844 ms
latency stddev = 2.715 ms
tps = 618.764555 (including connections establishing)
tps = 622.977698 (excluding connections establishing)
statement latencies in milliseconds:
 0.002 \set aid random(1, 100000 * :scale)
 0.005 \set bid random(1, 1 * :scale)
 0.002 \set tid random(1, 10 * :scale)
 0.001 \set delta random(-5000, 5000)
 0.326 BEGIN;
 0.603 UPDATE pgbench_accounts SET abalance = abalance
 + :delta WHERE aid = :aid;
 0.454 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
 5.528 UPDATE pgbench_tellers SET tbalance = tbalance + :delta
 WHERE tid = :tid;
 7.335 UPDATE pgbench_branches SET bbalance = bbalance
 + :delta WHERE bid = :bid;
 0.371 INSERT INTO pgbench_history (tid, bid, aid, delta,
 mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
 1.212 END;

If multiple script files are specified, the averages are reported separately for each script file.

Note that collecting the additional timing information needed for per-statement latency computation adds
some overhead. This will slow average execution speed and lower the computed TPS. The amount of
slowdown varies significantly depending on platform and hardware. Comparing average TPS values with
and without latency reporting enabled is a good way to measure if the timing overhead is significant.

Good Practices

It is very easy to use pgbench to produce completely meaningless numbers. Here are some guidelines to
help you get useful results.

In the first place, never believe any test that runs for only a few seconds. Use the -t or -T option to make
the run last at least a few minutes, so as to average out noise. In some cases you could need hours to get
numbers that are reproducible. It's a good idea to try the test run a few times, to find out if your numbers
are reproducible or not.

For the default TPC-B-like test scenario, the initialization scale factor (-s) should be at least as large as
the largest number of clients you intend to test (-c); else you'll mostly be measuring update contention.
There are only -s rows in the pgbench_branches table, and every transaction wants to update one
of them, so -c values in excess of -s will undoubtedly result in lots of transactions blocked waiting for
other transactions.

1959

pgbench

The default test scenario is also quite sensitive to how long it's been since the tables were initialized:
accumulation of dead rows and dead space in the tables changes the results. To understand the results you
must keep track of the total number of updates and when vacuuming happens. If autovacuum is enabled
it can result in unpredictable changes in measured performance.

A limitation of pgbench is that it can itself become the bottleneck when trying to test a large number of
client sessions. This can be alleviated by running pgbench on a different machine from the database server,
although low network latency will be essential. It might even be useful to run several pgbench instances
concurrently, on several client machines, against the same database server.

Security

If untrusted users have access to a database that has not adopted a secure schema usage pattern, do not run
pgbench in that database. pgbench uses unqualified names and does not manipulate the search path.

1960

pg_config
pg_config — retrieve information about the installed version of PostgreSQL

Synopsis
pg_config [option...]

Description
The pg_config utility prints configuration parameters of the currently installed version of PostgreSQL. It
is intended, for example, to be used by software packages that want to interface to PostgreSQL to facilitate
finding the required header files and libraries.

Options
To use pg_config, supply one or more of the following options:

--bindir

Print the location of user executables. Use this, for example, to find the psql program. This is
normally also the location where the pg_config program resides.

--docdir

Print the location of documentation files.

--htmldir

Print the location of HTML documentation files.

--includedir

Print the location of C header files of the client interfaces.

--pkgincludedir

Print the location of other C header files.

--includedir-server

Print the location of C header files for server programming.

--libdir

Print the location of object code libraries.

--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for them. (Other
architecture-dependent data files might also be installed in this directory.)

1961

pg_config

--localedir

Print the location of locale support files. (This will be an empty string if locale support was not
configured when PostgreSQL was built.)

--mandir

Print the location of manual pages.

--sharedir

Print the location of architecture-independent support files.

--sysconfdir

Print the location of system-wide configuration files.

--pgxs

Print the location of extension makefiles.

--configure

Print the options that were given to the configure script when PostgreSQL was configured for
building. This can be used to reproduce the identical configuration, or to find out with what options a
binary package was built. (Note however that binary packages often contain vendor-specific custom
patches.) See also the examples below.

--cc

Print the value of the CC variable that was used for building PostgreSQL. This shows the C compiler
used.

--cppflags

Print the value of the CPPFLAGS variable that was used for building PostgreSQL. This shows C
compiler switches needed at preprocessing time (typically, -I switches).

--cflags

Print the value of the CFLAGS variable that was used for building PostgreSQL. This shows C compiler
switches.

--cflags_sl

Print the value of the CFLAGS_SL variable that was used for building PostgreSQL. This shows extra
C compiler switches used for building shared libraries.

--ldflags

Print the value of the LDFLAGS variable that was used for building PostgreSQL. This shows linker
switches.

--ldflags_ex

Print the value of the LDFLAGS_EX variable that was used for building PostgreSQL. This shows
linker switches used for building executables only.

1962

pg_config

--ldflags_sl

Print the value of the LDFLAGS_SL variable that was used for building PostgreSQL. This shows
linker switches used for building shared libraries only.

--libs

Print the value of the LIBS variable that was used for building PostgreSQL. This normally contains
-l switches for external libraries linked into PostgreSQL.

--version

Print the version of PostgreSQL.

-?
--help

Show help about pg_config command line arguments, and exit.

If more than one option is given, the information is printed in that order, one item per line. If no options
are given, all available information is printed, with labels.

Notes
The options --docdir, --pkgincludedir, --localedir, --mandir, --sharedir, --
sysconfdir, --cc, --cppflags, --cflags, --cflags_sl, --ldflags, --ldflags_sl,
and --libs were added in PostgreSQL 8.1. The option --htmldir was added in PostgreSQL 8.4. The
option --ldflags_ex was added in PostgreSQL 9.0.

Example
To reproduce the build configuration of the current PostgreSQL installation, run the following command:

eval ./configure `pg_config --configure`

The output of pg_config --configure contains shell quotation marks so arguments with spaces
are represented correctly. Therefore, using eval is required for proper results.

1963

pg_dump
pg_dump — extract a PostgreSQL database into a script file or other archive file

Synopsis
pg_dump [connection-option...] [option...] [dbname]

Description
pg_dump is a utility for backing up a PostgreSQL database. It makes consistent backups even if the
database is being used concurrently. pg_dump does not block other users accessing the database (readers
or writers).

pg_dump only dumps a single database. To back up an entire cluster, or to back up global objects that are
common to all databases in a cluster (such as roles and tablespaces), use pg_dumpall.

Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the
SQL commands required to reconstruct the database to the state it was in at the time it was saved. To
restore from such a script, feed it to psql. Script files can be used to reconstruct the database even on other
machines and other architectures; with some modifications, even on other SQL database products.

The alternative archive file formats must be used with pg_restore to rebuild the database. They allow
pg_restore to be selective about what is restored, or even to reorder the items prior to being restored. The
archive file formats are designed to be portable across architectures.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a flexible
archival and transfer mechanism. pg_dump can be used to backup an entire database, then pg_restore can
be used to examine the archive and/or select which parts of the database are to be restored. The most
flexible output file formats are the “custom” format (-Fc) and the “directory” format (-Fd). They allow
for selection and reordering of all archived items, support parallel restoration, and are compressed by
default. The “directory” format is the only format that supports parallel dumps.

While running pg_dump, one should examine the output for any warnings (printed on standard error),
especially in light of the limitations listed below.

Options
The following command-line options control the content and format of the output.

dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable
PGDATABASE is used. If that is not set, the user name specified for the connection is used.

-a
--data-only

Dump only the data, not the schema (data definitions). Table data, large objects, and sequence values
are dumped.

This option is similar to, but for historical reasons not identical to, specifying --section=data.

1964

pg_dump

-b
--blobs

Include large objects in the dump. This is the default behavior except when --schema, --table, or
--schema-only is specified. The -b switch is therefore only useful to add large objects to dumps
where a specific schema or table has been requested. Note that blobs are considered data and therefore
will be included when --data-only is used, but not when --schema-only is.

-B
--no-blobs

Exclude large objects in the dump.

When both -b and -B are given, the behavior is to output large objects, when data is being dumped,
see the -b documentation.

-c
--clean

Output commands to clean (drop) database objects prior to outputting the commands for creating them.
(Unless --if-exists is also specified, restore might generate some harmless error messages, if
any objects were not present in the destination database.)

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

-C
--create

Begin the output with a command to create the database itself and reconnect to the created database.
(With a script of this form, it doesn't matter which database in the destination installation you connect
to before running the script.) If --clean is also specified, the script drops and recreates the target
database before reconnecting to it.

With --create, the output also includes the database's comment if any, and any configuration
variable settings that are specific to this database, that is, any ALTER DATABASE ... SET ...
and ALTER ROLE ... IN DATABASE ... SET ... commands that mention this database.
Access privileges for the database itself are also dumped, unless --no-acl is specified.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

-E encoding
--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the database
encoding. (Another way to get the same result is to set the PGCLIENTENCODING environment
variable to the desired dump encoding.)

-f file
--file=file

Send output to the specified file. This parameter can be omitted for file based output formats, in which
case the standard output is used. It must be given for the directory output format however, where it
specifies the target directory instead of a file. In this case the directory is created by pg_dump and
must not exist before.

1965

pg_dump

-F format
--format=format

Selects the format of the output. format can be one of the following:

p
plain

Output a plain-text SQL script file (the default).

c
custom

Output a custom-format archive suitable for input into pg_restore. Together with the directory
output format, this is the most flexible output format in that it allows manual selection and
reordering of archived items during restore. This format is also compressed by default.

d
directory

Output a directory-format archive suitable for input into pg_restore. This will create a directory
with one file for each table and blob being dumped, plus a so-called Table of Contents
file describing the dumped objects in a machine-readable format that pg_restore can read. A
directory format archive can be manipulated with standard Unix tools; for example, files in an
uncompressed archive can be compressed with the gzip tool. This format is compressed by default
and also supports parallel dumps.

t
tar

Output a tar-format archive suitable for input into pg_restore. The tar format is compatible with
the directory format: extracting a tar-format archive produces a valid directory-format archive.
However, the tar format does not support compression. Also, when using tar format the relative
order of table data items cannot be changed during restore.

-j njobs
--jobs=njobs

Run the dump in parallel by dumping njobs tables simultaneously. This option reduces the time
of the dump but it also increases the load on the database server. You can only use this option with
the directory output format because this is the only output format where multiple processes can write
their data at the same time.

pg_dump will open njobs + 1 connections to the database, so make sure your max_connections
setting is high enough to accommodate all connections.

Requesting exclusive locks on database objects while running a parallel dump could cause the dump
to fail. The reason is that the pg_dump master process requests shared locks on the objects that the
worker processes are going to dump later in order to make sure that nobody deletes them and makes
them go away while the dump is running. If another client then requests an exclusive lock on a table,
that lock will not be granted but will be queued waiting for the shared lock of the master process to
be released. Consequently any other access to the table will not be granted either and will queue after
the exclusive lock request. This includes the worker process trying to dump the table. Without any
precautions this would be a classic deadlock situation. To detect this conflict, the pg_dump worker
process requests another shared lock using the NOWAIT option. If the worker process is not granted

1966

pg_dump

this shared lock, somebody else must have requested an exclusive lock in the meantime and there is
no way to continue with the dump, so pg_dump has no choice but to abort the dump.

For a consistent backup, the database server needs to support synchronized snapshots, a feature that
was introduced in PostgreSQL 9.2 for primary servers and 10 for standbys. With this feature, database
clients can ensure they see the same data set even though they use different connections. pg_dump
-j uses multiple database connections; it connects to the database once with the master process and
once again for each worker job. Without the synchronized snapshot feature, the different worker jobs
wouldn't be guaranteed to see the same data in each connection, which could lead to an inconsistent
backup.

If you want to run a parallel dump of a pre-9.2 server, you need to make sure that the database content
doesn't change from between the time the master connects to the database until the last worker job
has connected to the database. The easiest way to do this is to halt any data modifying processes
(DDL and DML) accessing the database before starting the backup. You also need to specify the
--no-synchronized-snapshots parameter when running pg_dump -j against a pre-9.2
PostgreSQL server.

-n schema
--schema=schema

Dump only schemas matching schema; this selects both the schema itself, and all its contained
objects. When this option is not specified, all non-system schemas in the target database will be
dumped. Multiple schemas can be selected by writing multiple -n switches. Also, the schema
parameter is interpreted as a pattern according to the same rules used by psql's \d commands (see
Patterns), so multiple schemas can also be selected by writing wildcard characters in the pattern. When
using wildcards, be careful to quote the pattern if needed to prevent the shell from expanding the
wildcards; see Examples.

Note

When -n is specified, pg_dump makes no attempt to dump any other database objects that
the selected schema(s) might depend upon. Therefore, there is no guarantee that the results of
a specific-schema dump can be successfully restored by themselves into a clean database.

Note

Non-schema objects such as blobs are not dumped when -n is specified. You can add blobs
back to the dump with the --blobs switch.

-N schema
--exclude-schema=schema

Do not dump any schemas matching the schema pattern. The pattern is interpreted according to the
same rules as for -n. -N can be given more than once to exclude schemas matching any of several
patterns.

When both -n and -N are given, the behavior is to dump just the schemas that match at least one -n
switch but no -N switches. If -N appears without -n, then schemas matching -N are excluded from
what is otherwise a normal dump.

1967

pg_dump

-o
--oids

Dump object identifiers (OIDs) as part of the data for every table. Use this option if your application
references the OID columns in some way (e.g., in a foreign key constraint). Otherwise, this option
should not be used.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership
of created database objects. These statements will fail when the script is run unless it is started by a
superuser (or the same user that owns all of the objects in the script). To make a script that can be
restored by any user, but will give that user ownership of all the objects, specify -O.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

-R
--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s
--schema-only

Dump only the object definitions (schema), not data.

This option is the inverse of --data-only. It is similar to, but for historical reasons not identical
to, specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word “schema” in a different
meaning.)

To exclude table data for only a subset of tables in the database, see --exclude-table-data.

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-
triggers is used. (Usually, it's better to leave this out, and instead start the resulting script as
superuser.)

-t table
--table=table

Dump only tables with names matching table. For this purpose, “table” includes views, materialized
views, sequences, and foreign tables. Multiple tables can be selected by writing multiple -t switches.
Also, the table parameter is interpreted as a pattern according to the same rules used by psql's \d
commands (see Patterns), so multiple tables can also be selected by writing wildcard characters in
the pattern. When using wildcards, be careful to quote the pattern if needed to prevent the shell from
expanding the wildcards; see Examples.

The -n and -N switches have no effect when -t is used, because tables selected by -t will be dumped
regardless of those switches, and non-table objects will not be dumped.

1968

pg_dump

Note

When -t is specified, pg_dump makes no attempt to dump any other database objects that
the selected table(s) might depend upon. Therefore, there is no guarantee that the results of a
specific-table dump can be successfully restored by themselves into a clean database.

Note

The behavior of the -t switch is not entirely upward compatible with pre-8.2 PostgreSQL
versions. Formerly, writing -t tab would dump all tables named tab, but now it just dumps
whichever one is visible in your default search path. To get the old behavior you can write -t
'*.tab'. Also, you must write something like -t sch.tab to select a table in a particular
schema, rather than the old locution of -n sch -t tab.

-T table
--exclude-table=table

Do not dump any tables matching the table pattern. The pattern is interpreted according to the same
rules as for -t. -T can be given more than once to exclude tables matching any of several patterns.

When both -t and -T are given, the behavior is to dump just the tables that match at least one -
t switch but no -T switches. If -T appears without -t, then tables matching -T are excluded from
what is otherwise a normal dump.

-v
--verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and start/stop
times to the dump file, and progress messages to standard error.

-V
--version

Print the pg_dump version and exit.

-x
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

-Z 0..9
--compress=0..9

Specify the compression level to use. Zero means no compression. For the custom archive format, this
specifies compression of individual table-data segments, and the default is to compress at a moderate
level. For plain text output, setting a nonzero compression level causes the entire output file to be
compressed, as though it had been fed through gzip; but the default is not to compress. The tar archive
format currently does not support compression at all.

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

1969

pg_dump

--column-inserts
--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table
(column, ...) VALUES ...). This will make restoration very slow; it is mainly useful
for making dumps that can be loaded into non-PostgreSQL databases. However, since this option
generates a separate command for each row, an error in reloading a row causes only that row to be
lost rather than the entire table contents.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using
SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dump to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if
you have referential integrity checks or other triggers on the tables that you do not want to invoke
during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you
should also specify a superuser name with -S, or preferably be careful to start the resulting script
as a superuser.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

--enable-row-security

This option is relevant only when dumping the contents of a table which has row security. By default,
pg_dump will set row_security to off, to ensure that all data is dumped from the table. If the user does
not have sufficient privileges to bypass row security, then an error is thrown. This parameter instructs
pg_dump to set row_security to on instead, allowing the user to dump the parts of the contents of the
table that they have access to.

Note that if you use this option currently, you probably also want the dump be in INSERT format, as
the COPY FROM during restore does not support row security.

--exclude-table-data=table

Do not dump data for any tables matching the table pattern. The pattern is interpreted according to
the same rules as for -t. --exclude-table-data can be given more than once to exclude tables
matching any of several patterns. This option is useful when you need the definition of a particular
table even though you do not need the data in it.

To exclude data for all tables in the database, see --schema-only.

--if-exists

Use conditional commands (i.e. add an IF EXISTS clause) when cleaning database objects. This
option is not valid unless --clean is also specified.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is
mainly useful for making dumps that can be loaded into non-PostgreSQL databases. However, since

1970

pg_dump

this option generates a separate command for each row, an error in reloading a row causes only that
row to be lost rather than the entire table contents. Note that the restore might fail altogether if you have
rearranged column order. The --column-inserts option is safe against column order changes,
though even slower.

--load-via-partition-root

When dumping data for a table partition, make the COPY or INSERT statements target the root of
the partitioning hierarchy that contains it, rather than the partition itself. This causes the appropriate
partition to be re-determined for each row when the data is loaded. This may be useful when reloading
data on a server where rows do not always fall into the same partitions as they did on the original
server. That could happen, for example, if the partitioning column is of type text and the two systems
have different definitions of the collation used to sort the partitioning column.

It is best not to use parallelism when restoring from an archive made with this option, because
pg_restore will not know exactly which partition(s) a given archive data item will load data into. This
could result in inefficiency due to lock conflicts between parallel jobs, or perhaps even reload failures
due to foreign key constraints being set up before all the relevant data is loaded.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead fail if unable
to lock a table within the specified timeout. The timeout may be specified in any of the formats
accepted by SET statement_timeout. (Allowed formats vary depending on the server version
you are dumping from, but an integer number of milliseconds is accepted by all versions.)

--no-comments

Do not dump comments.

--no-publications

Do not dump publications.

--no-security-labels

Do not dump security labels.

--no-subscriptions

Do not dump subscriptions.

--no-sync

By default, pg_dump will wait for all files to be written safely to disk. This option causes pg_dump
to return without waiting, which is faster, but means that a subsequent operating system crash can leave
the dump corrupt. Generally, this option is useful for testing but should not be used when dumping
data from production installation.

--no-synchronized-snapshots

This option allows running pg_dump -j against a pre-9.2 server, see the documentation of the -
j parameter for more details.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in
whichever tablespace is the default during restore.

1971

pg_dump

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table
definitions (schema) are dumped; it only suppresses dumping the table data. Data in unlogged tables
is always excluded when dumping from a standby server.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a server
whose PostgreSQL major version is different from pg_dump's, or when the output is intended to be
loaded into a server of a different major version. By default, pg_dump quotes only identifiers that
are reserved words in its own major version. This sometimes results in compatibility issues when
dealing with servers of other versions that may have slightly different sets of reserved words. Using
--quote-all-identifiers prevents such issues, at the price of a harder-to-read dump script.

--section=sectionname

Only dump the named section. The section name can be pre-data, data, or post-data. This
option can be specified more than once to select multiple sections. The default is to dump all sections.

The data section contains actual table data, large-object contents, and sequence values. Post-data items
include definitions of indexes, triggers, rules, and constraints other than validated check constraints.
Pre-data items include all other data definition items.

--serializable-deferrable

Use a serializable transaction for the dump, to ensure that the snapshot used is consistent with
later database states; but do this by waiting for a point in the transaction stream at which no anomalies
can be present, so that there isn't a risk of the dump failing or causing other transactions to roll
back with a serialization_failure. See Chapter 13 for more information about transaction
isolation and concurrency control.

This option is not beneficial for a dump which is intended only for disaster recovery. It could be useful
for a dump used to load a copy of the database for reporting or other read-only load sharing while
the original database continues to be updated. Without it the dump may reflect a state which is not
consistent with any serial execution of the transactions eventually committed. For example, if batch
processing techniques are used, a batch may show as closed in the dump without all of the items which
are in the batch appearing.

This option will make no difference if there are no read-write transactions active when pg_dump is
started. If read-write transactions are active, the start of the dump may be delayed for an indeterminate
length of time. Once running, performance with or without the switch is the same.

--snapshot=snapshotname

Use the specified synchronized snapshot when making a dump of the database (see Table 9.82 for
more details).

This option is useful when needing to synchronize the dump with a logical replication slot (see
Chapter 49) or with a concurrent session.

In the case of a parallel dump, the snapshot name defined by this option is used rather than taking
a new snapshot.

1972

pg_dump

--strict-names

Require that each schema (-n/--schema) and table (-t/--table) qualifier match at least one
schema/table in the database to be dumped. Note that if none of the schema/table qualifiers find
matches, pg_dump will generate an error even without --strict-names.

This option has no effect on -N/--exclude-schema, -T/--exclude-table, or --
exclude-table-data. An exclude pattern failing to match any objects is not considered an error.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER
commands to determine object ownership. This makes the dump more standards-compatible, but
depending on the history of the objects in the dump, might not restore properly. Also, a dump using
SET SESSION AUTHORIZATION will certainly require superuser privileges to restore correctly,
whereas ALTER OWNER requires lesser privileges.

-?
--help

Show help about pg_dump command line arguments, and exit.

The following command-line options control the database connection parameters.

-d dbname
--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first
non-option argument on the command line.

If this parameter contains an = sign or starts with a valid URI prefix (postgresql:// or
postgres://), it is treated as a conninfo string. See Section 34.1 for more information.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

1973

pg_dump

-W
--password

Force pg_dump to prompt for a password before connecting to a database.

This option is never essential, since pg_dump will automatically prompt for a password if the server
demands password authentication. However, pg_dump will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dump to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_dump, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows dumps to be made without violating the policy.

Environment
PGDATABASE
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Diagnostics
pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure you
are able to select information from the database using, for example, psql. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

The database activity of pg_dump is normally collected by the statistics collector. If this is undesirable,
you can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.

Notes
If your database cluster has any local additions to the template1 database, be careful to restore the output
of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate definitions
of the added objects. To make an empty database without any local additions, copy from template0
not template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits
commands to disable triggers on user tables before inserting the data, and then commands to re-enable
them after the data has been inserted. If the restore is stopped in the middle, the system catalogs might
be left in the wrong state.

1974

pg_dump

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make query
planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to ensure optimal
performance; see Section 24.1.3 and Section 24.1.6 for more information.

Because pg_dump is used to transfer data to newer versions of PostgreSQL, the output of pg_dump can
be expected to load into PostgreSQL server versions newer than pg_dump's version. pg_dump can also
dump from PostgreSQL servers older than its own version. (Currently, servers back to version 8.0 are
supported.) However, pg_dump cannot dump from PostgreSQL servers newer than its own major version;
it will refuse to even try, rather than risk making an invalid dump. Also, it is not guaranteed that pg_dump's
output can be loaded into a server of an older major version — not even if the dump was taken from a
server of that version. Loading a dump file into an older server may require manual editing of the dump
file to remove syntax not understood by the older server. Use of the --quote-all-identifiers
option is recommended in cross-version cases, as it can prevent problems arising from varying reserved-
word lists in different PostgreSQL versions.

When dumping logical replication subscriptions, pg_dump will generate CREATE SUBSCRIPTION
commands that use the connect = false option, so that restoring the subscription does not make
remote connections for creating a replication slot or for initial table copy. That way, the dump can be
restored without requiring network access to the remote servers. It is then up to the user to reactivate the
subscriptions in a suitable way. If the involved hosts have changed, the connection information might
have to be changed. It might also be appropriate to truncate the target tables before initiating a new full
table copy.

Examples
To dump a database called mydb into a SQL-script file:

$ pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

$ psql -d newdb -f db.sql

To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

To dump a database into a directory-format archive in parallel with 5 worker jobs:

$ pg_dump -Fd mydb -j 5 -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

$ pg_restore -d newdb db.dump

To reload an archive file into the same database it was dumped from, discarding the current contents of
that database:

1975

pg_dump

$ pg_restore -d postgres --clean --create db.dump

To dump a single table named mytab:

$ pg_dump -t mytab mydb > db.sql

To dump all tables whose names start with emp in the detroit schema, except for the table named
employee_log:

$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql

To dump all schemas whose names start with east or west and end in gsm, excluding any schemas
whose names contain the word test:

$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql

The same, using regular expression notation to consolidate the switches:

$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql

To dump all database objects except for tables whose names begin with ts_:

$ pg_dump -T 'ts_*' mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the
name; else it will be folded to lower case (see Patterns). But double quotes are special to the shell, so in
turn they must be quoted. Thus, to dump a single table with a mixed-case name, you need something like

$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql

See Also
pg_dumpall, pg_restore, psql

1976

pg_dumpall
pg_dumpall — extract a PostgreSQL database cluster into a script file

Synopsis
pg_dumpall [connection-option...] [option...]

Description
pg_dumpall is a utility for writing out (“dumping”) all PostgreSQL databases of a cluster into one script
file. The script file contains SQL commands that can be used as input to psql to restore the databases. It
does this by calling pg_dump for each database in the cluster. pg_dumpall also dumps global objects that
are common to all databases, that is, database roles and tablespaces. (pg_dump does not save these objects.)

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute the
saved script in order to be allowed to add roles and create databases.

The SQL script will be written to the standard output. Use the [-f|file] option or shell operators to redirect
it into a file.

pg_dumpall needs to connect several times to the PostgreSQL server (once per database). If you use
password authentication it will ask for a password each time. It is convenient to have a ~/.pgpass file
in such cases. See Section 34.15 for more information.

Options
The following command-line options control the content and format of the output.

-a
--data-only

Dump only the data, not the schema (data definitions).

-c
--clean

Include SQL commands to clean (drop) databases before recreating them. DROP commands for roles
and tablespaces are added as well.

-E encoding
--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the database
encoding. (Another way to get the same result is to set the PGCLIENTENCODING environment
variable to the desired dump encoding.)

-f filename
--file=filename

Send output to the specified file. If this is omitted, the standard output is used.

1977

pg_dumpall

-g
--globals-only

Dump only global objects (roles and tablespaces), no databases.

-o
--oids

Dump object identifiers (OIDs) as part of the data for every table. Use this option if your application
references the OID columns in some way (e.g., in a foreign key constraint). Otherwise, this option
should not be used.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dumpall issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set
ownership of created schema elements. These statements will fail when the script is run unless it is
started by a superuser (or the same user that owns all of the objects in the script). To make a script
that can be restored by any user, but will give that user ownership of all the objects, specify -O.

-r
--roles-only

Dump only roles, no databases or tablespaces.

-s
--schema-only

Dump only the object definitions (schema), not data.

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-
triggers is used. (Usually, it's better to leave this out, and instead start the resulting script as
superuser.)

-t
--tablespaces-only

Dump only tablespaces, no databases or roles.

-v
--verbose

Specifies verbose mode. This will cause pg_dumpall to output start/stop times to the dump file, and
progress messages to standard error. It will also enable verbose output in pg_dump.

-V
--version

Print the pg_dumpall version and exit.

-x
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

1978

pg_dumpall

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

--column-inserts
--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table
(column, ...) VALUES ...). This will make restoration very slow; it is mainly useful for
making dumps that can be loaded into non-PostgreSQL databases.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using
SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dumpall to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if
you have referential integrity checks or other triggers on the tables that you do not want to invoke
during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you
should also specify a superuser name with -S, or preferably be careful to start the resulting script
as a superuser.

--if-exists

Use conditional commands (i.e. add an IF EXISTS clause) to drop databases and other objects. This
option is not valid unless --clean is also specified.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is
mainly useful for making dumps that can be loaded into non-PostgreSQL databases. Note that the
restore might fail altogether if you have rearranged column order. The --column-inserts option
is safer, though even slower.

--load-via-partition-root

When dumping data for a table partition, make the COPY or INSERT statements target the root of
the partitioning hierarchy that contains it, rather than the partition itself. This causes the appropriate
partition to be re-determined for each row when the data is loaded. This may be useful when reloading
data on a server where rows do not always fall into the same partitions as they did on the original
server. That could happen, for example, if the partitioning column is of type text and the two systems
have different definitions of the collation used to sort the partitioning column.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead, fail if unable
to lock a table within the specified timeout. The timeout may be specified in any of the formats
accepted by SET statement_timeout. Allowed values vary depending on the server version
you are dumping from, but an integer number of milliseconds is accepted by all versions since 7.3.
This option is ignored when dumping from a pre-7.3 server.

1979

pg_dumpall

--no-comments

Do not dump comments.

--no-publications

Do not dump publications.

--no-role-passwords

Do not dump passwords for roles. When restored, roles will have a null password, and password
authentication will always fail until the password is set. Since password values aren't needed when
this option is specified, the role information is read from the catalog view pg_roles instead of
pg_authid. Therefore, this option also helps if access to pg_authid is restricted by some security
policy.

--no-security-labels

Do not dump security labels.

--no-subscriptions

Do not dump subscriptions.

--no-sync

By default, pg_dumpall will wait for all files to be written safely to disk. This option causes
pg_dumpall to return without waiting, which is faster, but means that a subsequent operating system
crash can leave the dump corrupt. Generally, this option is useful for testing but should not be used
when dumping data from production installation.

--no-tablespaces

Do not output commands to create tablespaces nor select tablespaces for objects. With this option, all
objects will be created in whichever tablespace is the default during restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table
definitions (schema) are dumped; it only suppresses dumping the table data.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a server
whose PostgreSQL major version is different from pg_dumpall's, or when the output is intended to
be loaded into a server of a different major version. By default, pg_dumpall quotes only identifiers
that are reserved words in its own major version. This sometimes results in compatibility issues when
dealing with servers of other versions that may have slightly different sets of reserved words. Using
--quote-all-identifiers prevents such issues, at the price of a harder-to-read dump script.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER
commands to determine object ownership. This makes the dump more standards compatible, but
depending on the history of the objects in the dump, might not restore properly.

1980

pg_dumpall

-?
--help

Show help about pg_dumpall command line arguments, and exit.

The following command-line options control the database connection parameters.

-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string. See Section 34.1.1 for more
information.

The option is called --dbname for consistency with other client applications, but because
pg_dumpall needs to connect to many databases, the database name in the connection string will be
ignored. Use the -l option to specify the name of the database used for the initial connection, which
will dump global objects and discover what other databases should be dumped.

-h host
--host=host

Specifies the host name of the machine on which the database server is running. If the value begins
with a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOST environment variable, if set, else a Unix domain socket connection is attempted.

-l dbname
--database=dbname

Specifies the name of the database to connect to for dumping global objects and discovering what
other databases should be dumped. If not specified, the postgres database will be used, and if that
does not exist, template1 will be used.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_dumpall to prompt for a password before connecting to a database.

This option is never essential, since pg_dumpall will automatically prompt for a password if the server
demands password authentication. However, pg_dumpall will waste a connection attempt finding out

1981

pg_dumpall

that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Note that the password prompt will occur again for each database to be dumped. Usually, it's better
to set up a ~/.pgpass file than to rely on manual password entry.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dumpall to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_dumpall, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows dumps to be made without violating the policy.

Environment
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Notes
Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

The --clean option can be useful even when your intention is to restore the dump script into a
fresh cluster. Use of --clean authorizes the script to drop and re-create the built-in postgres and
template1 databases, ensuring that those databases will retain the same properties (for instance, locale
and encoding) that they had in the source cluster. Without the option, those databases will retain their
existing database-level properties, as well as any pre-existing contents.

Once restored, it is wise to run ANALYZE on each database so the optimizer has useful statistics. You can
also run vacuumdb -a -z to analyze all databases.

The dump script should not be expected to run completely without errors. In particular, because the script
will issue CREATE ROLE for every role existing in the source cluster, it is certain to get a “role already
exists” error for the bootstrap superuser, unless the destination cluster was initialized with a different
bootstrap superuser name. This error is harmless and should be ignored. Use of the --clean option
is likely to produce additional harmless error messages about non-existent objects, although you can
minimize those by adding --if-exists.

pg_dumpall requires all needed tablespace directories to exist before the restore; otherwise, database
creation will fail for databases in non-default locations.

Examples
To dump all databases:

1982

pg_dumpall

$ pg_dumpall > db.out

To reload database(s) from this file, you can use:

$ psql -f db.out postgres

It is not important to which database you connect here since the script file created by pg_dumpall will
contain the appropriate commands to create and connect to the saved databases. An exception is that if
you specified --clean, you must connect to the postgres database initially; the script will attempt to
drop other databases immediately, and that will fail for the database you are connected to.

See Also
Check pg_dump for details on possible error conditions.

1983

pg_isready
pg_isready — check the connection status of a PostgreSQL server

Synopsis
pg_isready [connection-option...] [option...]

Description
pg_isready is a utility for checking the connection status of a PostgreSQL database server. The exit status
specifies the result of the connection check.

Options
-d dbname
--dbname=dbname

Specifies the name of the database to connect to.

If this parameter contains an = sign or starts with a valid URI prefix (postgresql:// or
postgres://), it is treated as a conninfo string. See Section 34.1.1 for more information.

-h hostname
--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix-domain socket.

-p port
--port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening
for connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port
specified at compile time, usually 5432.

-q
--quiet

Do not display status message. This is useful when scripting.

-t seconds
--timeout=seconds

The maximum number of seconds to wait when attempting connection before returning that the server
is not responding. Setting to 0 disables. The default is 3 seconds.

-U username
--username=username

Connect to the database as the user username instead of the default.

1984

pg_isready

-V
--version

Print the pg_isready version and exit.

-?
--help

Show help about pg_isready command line arguments, and exit.

Exit Status
pg_isready returns 0 to the shell if the server is accepting connections normally, 1 if the server is rejecting
connections (for example during startup), 2 if there was no response to the connection attempt, and 3 if
no attempt was made (for example due to invalid parameters).

Environment
pg_isready, like most other PostgreSQL utilities, also uses the environment variables supported by
libpq (see Section 34.14).

Notes
It is not necessary to supply correct user name, password, or database name values to obtain the server
status; however, if incorrect values are provided, the server will log a failed connection attempt.

Examples
Standard Usage:

$ pg_isready
/tmp:5432 - accepting connections
$ echo $?
0

Running with connection parameters to a PostgreSQL cluster in startup:

$ pg_isready -h localhost -p 5433
localhost:5433 - rejecting connections
$ echo $?
1

Running with connection parameters to a non-responsive PostgreSQL cluster:

$ pg_isready -h someremotehost
someremotehost:5432 - no response
$ echo $?
2

1985

pg_receivewal
pg_receivewal — stream write-ahead logs from a PostgreSQL server

Synopsis
pg_receivewal [option...]

Description
pg_receivewal is used to stream the write-ahead log from a running PostgreSQL cluster. The write-
ahead log is streamed using the streaming replication protocol, and is written to a local directory of files.
This directory can be used as the archive location for doing a restore using point-in-time recovery (see
Section 25.3).

pg_receivewal streams the write-ahead log in real time as it's being generated on the server, and does
not wait for segments to complete like archive_command does. For this reason, it is not necessary to set
archive_timeout when using pg_receivewal.

Unlike the WAL receiver of a PostgreSQL standby server, pg_receivewal by default flushes WAL data
only when a WAL file is closed. The option --synchronous must be specified to flush WAL data in
real time.

The write-ahead log is streamed over a regular PostgreSQL connection and uses the replication protocol.
The connection must be made with a superuser or a user having REPLICATION permissions (see
Section 21.2), and pg_hba.conf must permit the replication connection. The server must also be
configured with max_wal_senders set high enough to leave at least one session available for the stream.

If the connection is lost, or if it cannot be initially established, with a non-fatal error, pg_receivewal will
retry the connection indefinitely, and reestablish streaming as soon as possible. To avoid this behavior,
use the -n parameter.

In the absence of fatal errors, pg_receivewal will run until terminated by the SIGINT signal (Control+C).

Options
-D directory
--directory=directory

Directory to write the output to.

This parameter is required.

-E lsn
--endpos=lsn

Automatically stop replication and exit with normal exit status 0 when receiving reaches the specified
LSN.

If there is a record with LSN exactly equal to lsn, the record will be processed.

--if-not-exists

Do not error out when --create-slot is specified and a slot with the specified name already
exists.

1986

pg_receivewal

-n
--no-loop

Don't loop on connection errors. Instead, exit right away with an error.

--no-sync

This option causes pg_receivewal to not force WAL data to be flushed to disk. This is faster,
but means that a subsequent operating system crash can leave the WAL segments corrupt. Generally,
this option is useful for testing but should not be used when doing WAL archiving on a production
deployment.

This option is incompatible with --synchronous.

-s interval
--status-interval=interval

Specifies the number of seconds between status packets sent back to the server. This allows for
easier monitoring of the progress from server. A value of zero disables the periodic status updates
completely, although an update will still be sent when requested by the server, to avoid timeout
disconnect. The default value is 10 seconds.

-S slotname
--slot=slotname

Require pg_receivewal to use an existing replication slot (see Section 26.2.6). When this option is
used, pg_receivewal will report a flush position to the server, indicating when each segment has been
synchronized to disk so that the server can remove that segment if it is not otherwise needed.

When the replication client of pg_receivewal is configured on the server as a synchronous standby,
then using a replication slot will report the flush position to the server, but only when a WAL file is
closed. Therefore, that configuration will cause transactions on the primary to wait for a long time
and effectively not work satisfactorily. The option --synchronous (see below) must be specified
in addition to make this work correctly.

--synchronous

Flush the WAL data to disk immediately after it has been received. Also send a status packet back to
the server immediately after flushing, regardless of --status-interval.

This option should be specified if the replication client of pg_receivewal is configured on the server
as a synchronous standby, to ensure that timely feedback is sent to the server.

-v
--verbose

Enables verbose mode.

-Z level
--compress=level

Enables gzip compression of write-ahead logs, and specifies the compression level (0 through 9, 0
being no compression and 9 being best compression). The suffix .gz will automatically be added
to all filenames.

The following command-line options control the database connection parameters.

1987

pg_receivewal

-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string. See Section 34.1.1 for more
information.

The option is called --dbname for consistency with other client applications, but because
pg_receivewal doesn't connect to any particular database in the cluster, database name in the
connection string will be ignored.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_receivewal to prompt for a password before connecting to a database.

This option is never essential, since pg_receivewal will automatically prompt for a password if the
server demands password authentication. However, pg_receivewal will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

pg_receivewal can perform one of the two following actions in order to control physical replication slots:

--create-slot

Create a new physical replication slot with the name specified in --slot, then exit.

--drop-slot

Drop the replication slot with the name specified in --slot, then exit.

Other options are also available:

1988

pg_receivewal

-V
--version

Print the pg_receivewal version and exit.

-?
--help

Show help about pg_receivewal command line arguments, and exit.

Exit Status
pg_receivewal will exit with status 0 when terminated by the SIGINT signal. (That is the normal way to
end it. Hence it is not an error.) For fatal errors or other signals, the exit status will be nonzero.

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 34.14).

Notes
When using pg_receivewal instead of archive_command as the main WAL backup method, it is strongly
recommended to use replication slots. Otherwise, the server is free to recycle or remove write-ahead log
files before they are backed up, because it does not have any information, either from archive_command
or the replication slots, about how far the WAL stream has been archived. Note, however, that a replication
slot will fill up the server's disk space if the receiver does not keep up with fetching the WAL data.

pg_receivewal will preserve group permissions on the received WAL files if group permissions are enabled
on the source cluster.

Examples
To stream the write-ahead log from the server at mydbserver and store it in the local directory /usr/
local/pgsql/archive:

$ pg_receivewal -h mydbserver -D /usr/local/pgsql/archive

See Also
pg_basebackup

1989

pg_recvlogical
pg_recvlogical — control PostgreSQL logical decoding streams

Synopsis
pg_recvlogical [option...]

Description
pg_recvlogical controls logical decoding replication slots and streams data from such replication
slots.

It creates a replication-mode connection, so it is subject to the same constraints as pg_receivewal, plus
those for logical replication (see Chapter 49).

pg_recvlogical has no equivalent to the logical decoding SQL interface's peek and get modes. It
sends replay confirmations for data lazily as it receives it and on clean exit. To examine pending data on
a slot without consuming it, use pg_logical_slot_peek_changes.

Options
At least one of the following options must be specified to select an action:

--create-slot

Create a new logical replication slot with the name specified by --slot, using the output plugin
specified by --plugin, for the database specified by --dbname.

--drop-slot

Drop the replication slot with the name specified by --slot, then exit.

--start

Begin streaming changes from the logical replication slot specified by --slot, continuing until
terminated by a signal. If the server side change stream ends with a server shutdown or disconnect,
retry in a loop unless --no-loop is specified.

The stream format is determined by the output plugin specified when the slot was created.

The connection must be to the same database used to create the slot.

--create-slot and --start can be specified together. --drop-slot cannot be combined with
another action.

The following command-line options control the location and format of the output and other replication
behavior:

-E lsn
--endpos=lsn

In --start mode, automatically stop replication and exit with normal exit status 0 when receiving
reaches the specified LSN. If specified when not in --start mode, an error is raised.

1990

pg_recvlogical

If there's a record with LSN exactly equal to lsn, the record will be output.

The --endpos option is not aware of transaction boundaries and may truncate output partway
through a transaction. Any partially output transaction will not be consumed and will be replayed
again when the slot is next read from. Individual messages are never truncated.

-f filename
--file=filename

Write received and decoded transaction data into this file. Use - for stdout.

-F interval_seconds
--fsync-interval=interval_seconds

Specifies how often pg_recvlogical should issue fsync() calls to ensure the output file is safely
flushed to disk.

The server will occasionally request the client to perform a flush and report the flush position to the
server. This setting is in addition to that, to perform flushes more frequently.

Specifying an interval of 0 disables issuing fsync() calls altogether, while still reporting progress
to the server. In this case, data could be lost in the event of a crash.

-I lsn
--startpos=lsn

In --start mode, start replication from the given LSN. For details on the effect of this, see the
documentation in Chapter 49 and Section 53.4. Ignored in other modes.

--if-not-exists

Do not error out when --create-slot is specified and a slot with the specified name already
exists.

-n
--no-loop

When the connection to the server is lost, do not retry in a loop, just exit.

-o name[=value]
--option=name[=value]

Pass the option name to the output plugin with, if specified, the option value value. Which options
exist and their effects depends on the used output plugin.

-P plugin
--plugin=plugin

When creating a slot, use the specified logical decoding output plugin. See Chapter 49. This option
has no effect if the slot already exists.

-s interval_seconds
--status-interval=interval_seconds

This option has the same effect as the option of the same name in pg_receivewal. See the description
there.

1991

pg_recvlogical

-S slot_name
--slot=slot_name

In --start mode, use the existing logical replication slot named slot_name. In --create-
slot mode, create the slot with this name. In --drop-slot mode, delete the slot with this name.

-v
--verbose

Enables verbose mode.

The following command-line options control the database connection parameters.

-d database
--dbname=database

The database to connect to. See the description of the actions for what this means in detail. This can
be a libpq connection string; see Section 34.1.1 for more information. Defaults to user name.

-h hostname-or-ip
--host=hostname-or-ip

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U user
--username=user

User name to connect as. Defaults to current operating system user name.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_recvlogical to prompt for a password before connecting to a database.

This option is never essential, since pg_recvlogical will automatically prompt for a password if the
server demands password authentication. However, pg_recvlogical will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

The following additional options are available:

1992

pg_recvlogical

-V
--version

Print the pg_recvlogical version and exit.

-?
--help

Show help about pg_recvlogical command line arguments, and exit.

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 34.14).

Notes
pg_recvlogical will preserve group permissions on the received WAL files if group permissions are enabled
on the source cluster.

Examples
See Section 49.1 for an example.

See Also
pg_receivewal

1993

pg_restore
pg_restore — restore a PostgreSQL database from an archive file created by pg_dump

Synopsis
pg_restore [connection-option...] [option...] [filename]

Description
pg_restore is a utility for restoring a PostgreSQL database from an archive created by pg_dump in one of
the non-plain-text formats. It will issue the commands necessary to reconstruct the database to the state
it was in at the time it was saved. The archive files also allow pg_restore to be selective about what is
restored, or even to reorder the items prior to being restored. The archive files are designed to be portable
across architectures.

pg_restore can operate in two modes. If a database name is specified, pg_restore connects to that database
and restores archive contents directly into the database. Otherwise, a script containing the SQL commands
necessary to rebuild the database is created and written to a file or standard output. This script output
is equivalent to the plain text output format of pg_dump. Some of the options controlling the output are
therefore analogous to pg_dump options.

Obviously, pg_restore cannot restore information that is not present in the archive file. For instance, if the
archive was made using the “dump data as INSERT commands” option, pg_restore will not be able to
load the data using COPY statements.

Options
pg_restore accepts the following command line arguments.

filename

Specifies the location of the archive file (or directory, for a directory-format archive) to be restored.
If not specified, the standard input is used.

-a
--data-only

Restore only the data, not the schema (data definitions). Table data, large objects, and sequence values
are restored, if present in the archive.

This option is similar to, but for historical reasons not identical to, specifying --section=data.

-c
--clean

Clean (drop) database objects before recreating them. (Unless --if-exists is used, this might
generate some harmless error messages, if any objects were not present in the destination database.)

-C
--create

Create the database before restoring into it. If --clean is also specified, drop and recreate the target
database before connecting to it.

1994

pg_restore

With --create, pg_restore also restores the database's comment if any, and any configuration
variable settings that are specific to this database, that is, any ALTER DATABASE ... SET ...
and ALTER ROLE ... IN DATABASE ... SET ... commands that mention this database.
Access privileges for the database itself are also restored, unless --no-acl is specified.

When this option is used, the database named with -d is used only to issue the initial DROP
DATABASE and CREATE DATABASE commands. All data is restored into the database name that
appears in the archive.

-d dbname
--dbname=dbname

Connect to database dbname and restore directly into the database.

-e
--exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The default is to continue
and to display a count of errors at the end of the restoration.

-f filename
--file=filename

Specify output file for generated script, or for the listing when used with -l. Default is the standard
output.

-F format
--format=format

Specify format of the archive. It is not necessary to specify the format, since pg_restore will determine
the format automatically. If specified, it can be one of the following:

c
custom

The archive is in the custom format of pg_dump.

d
directory

The archive is a directory archive.

t
tar

The archive is a tar archive.

-I index
--index=index

Restore definition of named index only. Multiple indexes may be specified with multiple -I switches.

-j number-of-jobs
--jobs=number-of-jobs

Run the most time-consuming parts of pg_restore — those which load data, create indexes, or create
constraints — using multiple concurrent jobs. This option can dramatically reduce the time to restore
a large database to a server running on a multiprocessor machine.

1995

pg_restore

Each job is one process or one thread, depending on the operating system, and uses a separate
connection to the server.

The optimal value for this option depends on the hardware setup of the server, of the client, and of
the network. Factors include the number of CPU cores and the disk setup. A good place to start is
the number of CPU cores on the server, but values larger than that can also lead to faster restore
times in many cases. Of course, values that are too high will lead to decreased performance because
of thrashing.

Only the custom and directory archive formats are supported with this option. The input must be a
regular file or directory (not, for example, a pipe). This option is ignored when emitting a script rather
than connecting directly to a database server. Also, multiple jobs cannot be used together with the
option --single-transaction.

-l
--list

List the table of contents of the archive. The output of this operation can be used as input to the -L
option. Note that if filtering switches such as -n or -t are used with -l, they will restrict the items
listed.

-L list-file
--use-list=list-file

Restore only those archive elements that are listed in list-file, and restore them in the order they
appear in the file. Note that if filtering switches such as -n or -t are used with -L, they will further
restrict the items restored.

list-file is normally created by editing the output of a previous -l operation. Lines can be moved
or removed, and can also be commented out by placing a semicolon (;) at the start of the line. See
below for examples.

-n schema
--schema=schema

Restore only objects that are in the named schema. Multiple schemas may be specified with multiple
-n switches. This can be combined with the -t option to restore just a specific table.

-N schema
--exclude-schema=schema

Do not restore objects that are in the named schema. Multiple schemas to be excluded may be specified
with multiple -N switches.

When both -n and -N are given for the same schema name, the -N switch wins and the schema is
excluded.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_restore issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership
of created schema elements. These statements will fail unless the initial connection to the database is
made by a superuser (or the same user that owns all of the objects in the script). With -O, any user
name can be used for the initial connection, and this user will own all the created objects.

1996

pg_restore

-P function-name(argtype [, ...])
--function=function-name(argtype [, ...])

Restore the named function only. Be careful to spell the function name and arguments exactly as
they appear in the dump file's table of contents. Multiple functions may be specified with multiple
-P switches.

-R
--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s
--schema-only

Restore only the schema (data definitions), not data, to the extent that schema entries are present in
the archive.

This option is the inverse of --data-only. It is similar to, but for historical reasons not identical
to, specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word “schema” in a different
meaning.)

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-
triggers is used.

-t table
--table=table

Restore definition and/or data of only the named table. For this purpose, “table” includes views,
materialized views, sequences, and foreign tables. Multiple tables can be selected by writing multiple
-t switches. This option can be combined with the -n option to specify table(s) in a particular schema.

Note

When -t is specified, pg_restore makes no attempt to restore any other database objects that
the selected table(s) might depend upon. Therefore, there is no guarantee that a specific-table
restore into a clean database will succeed.

Note

This flag does not behave identically to the -t flag of pg_dump. There is not currently any
provision for wild-card matching in pg_restore, nor can you include a schema name within its
-t. And, while pg_dump's -t flag will also dump subsidiary objects (such as indexes) of the
selected table(s), pg_restore's -t flag does not include such subsidiary objects.

1997

pg_restore

Note

In versions prior to PostgreSQL 9.6, this flag matched only tables, not any other type of
relation.

-T trigger
--trigger=trigger

Restore named trigger only. Multiple triggers may be specified with multiple -T switches.

-v
--verbose

Specifies verbose mode.

-V
--version

Print the pg_restore version and exit.

-x
--no-privileges
--no-acl

Prevent restoration of access privileges (grant/revoke commands).

-1
--single-transaction

Execute the restore as a single transaction (that is, wrap the emitted commands in BEGIN/COMMIT).
This ensures that either all the commands complete successfully, or no changes are applied. This
option implies --exit-on-error.

--disable-triggers

This option is relevant only when performing a data-only restore. It instructs pg_restore to execute
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if
you have referential integrity checks or other triggers on the tables that you do not want to invoke
during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So
you should also specify a superuser name with -S or, preferably, run pg_restore as a PostgreSQL
superuser.

--enable-row-security

This option is relevant only when restoring the contents of a table which has row security. By default,
pg_restore will set row_security to off, to ensure that all data is restored in to the table. If the user does
not have sufficient privileges to bypass row security, then an error is thrown. This parameter instructs
pg_restore to set row_security to on instead, allowing the user to attempt to restore the contents of
the table with row security enabled. This might still fail if the user does not have the right to insert
the rows from the dump into the table.

Note that this option currently also requires the dump be in INSERT format, as COPY FROM does
not support row security.

1998

pg_restore

--if-exists

Use conditional commands (i.e. add an IF EXISTS clause) to drop database objects. This option is
not valid unless --clean is also specified.

--no-comments

Do not output commands to restore comments, even if the archive contains them.

--no-data-for-failed-tables

By default, table data is restored even if the creation command for the table failed (e.g., because it
already exists). With this option, data for such a table is skipped. This behavior is useful if the target
database already contains the desired table contents. For example, auxiliary tables for PostgreSQL
extensions such as PostGIS might already be loaded in the target database; specifying this option
prevents duplicate or obsolete data from being loaded into them.

This option is effective only when restoring directly into a database, not when producing SQL script
output.

--no-publications

Do not output commands to restore publications, even if the archive contains them.

--no-security-labels

Do not output commands to restore security labels, even if the archive contains them.

--no-subscriptions

Do not output commands to restore subscriptions, even if the archive contains them.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in
whichever tablespace is the default during restore.

--section=sectionname

Only restore the named section. The section name can be pre-data, data, or post-data. This
option can be specified more than once to select multiple sections. The default is to restore all sections.

The data section contains actual table data as well as large-object definitions. Post-data items consist
of definitions of indexes, triggers, rules and constraints other than validated check constraints. Pre-
data items consist of all other data definition items.

--strict-names

Require that each schema (-n/--schema) and table (-t/--table) qualifier match at least one
schema/table in the backup file.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER
commands to determine object ownership. This makes the dump more standards-compatible, but
depending on the history of the objects in the dump, might not restore properly.

1999

pg_restore

-?
--help

Show help about pg_restore command line arguments, and exit.

pg_restore also accepts the following command line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_restore to prompt for a password before connecting to a database.

This option is never essential, since pg_restore will automatically prompt for a password if the server
demands password authentication. However, pg_restore will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--role=rolename

Specifies a role name to be used to perform the restore. This option causes pg_restore to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_restore, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows restores to be performed without violating the policy.

Environment
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters

2000

pg_restore

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14). However, it does not read PGDATABASE when a database name is not supplied.

Diagnostics
When a direct database connection is specified using the -d option, pg_restore internally executes SQL
statements. If you have problems running pg_restore, make sure you are able to select information from
the database using, for example, psql. Also, any default connection settings and environment variables
used by the libpq front-end library will apply.

Notes
If your installation has any local additions to the template1 database, be careful to load the output of
pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate definitions
of the added objects. To make an empty database without any local additions, copy from template0
not template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

The limitations of pg_restore are detailed below.

• When restoring data to a pre-existing table and the option --disable-triggers is used, pg_restore
emits commands to disable triggers on user tables before inserting the data, then emits commands to re-
enable them after the data has been inserted. If the restore is stopped in the middle, the system catalogs
might be left in the wrong state.

• pg_restore cannot restore large objects selectively; for instance, only those for a specific table. If an
archive contains large objects, then all large objects will be restored, or none of them if they are excluded
via -L, -t, or other options.

See also the pg_dump documentation for details on limitations of pg_dump.

Once restored, it is wise to run ANALYZE on each restored table so the optimizer has useful statistics; see
Section 24.1.3 and Section 24.1.6 for more information.

Examples
Assume we have dumped a database called mydb into a custom-format dump file:

$ pg_dump -Fc mydb > db.dump

To drop the database and recreate it from the dump:

$ dropdb mydb
$ pg_restore -C -d postgres db.dump

The database named in the -d switch can be any database existing in the cluster; pg_restore only uses it
to issue the CREATE DATABASE command for mydb. With -C, data is always restored into the database
name that appears in the dump file.

To reload the dump into a new database called newdb:

2001

pg_restore

$ createdb -T template0 newdb
$ pg_restore -d newdb db.dump

Notice we don't use -C, and instead connect directly to the database to be restored into. Also note that we
clone the new database from template0 not template1, to ensure it is initially empty.

To reorder database items, it is first necessary to dump the table of contents of the archive:

$ pg_restore -l db.dump > db.list

The listing file consists of a header and one line for each item, e.g.:

;
; Archive created at Mon Sep 14 13:55:39 2009
; dbname: DBDEMOS
; TOC Entries: 81
; Compression: 9
; Dump Version: 1.10-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 8.3.5
; Dumped by pg_dump version: 8.3.8
;
;
; Selected TOC Entries:
;
3; 2615 2200 SCHEMA - public pasha
1861; 0 0 COMMENT - SCHEMA public pasha
1862; 0 0 ACL - public pasha
317; 1247 17715 TYPE public composite pasha
319; 1247 25899 DOMAIN public domain0 pasha

Semicolons start a comment, and the numbers at the start of lines refer to the internal archive ID assigned
to each item.

Lines in the file can be commented out, deleted, and reordered. For example:

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

could be used as input to pg_restore and would only restore items 10 and 6, in that order:

$ pg_restore -L db.list db.dump

See Also
pg_dump, pg_dumpall, psql

2002

psql
psql — PostgreSQL interactive terminal

Synopsis
psql [option...] [dbname [username]]

Description
psql is a terminal-based front-end to PostgreSQL. It enables you to type in queries interactively, issue
them to PostgreSQL, and see the query results. Alternatively, input can be from a file or from command
line arguments. In addition, psql provides a number of meta-commands and various shell-like features to
facilitate writing scripts and automating a wide variety of tasks.

Options
-a
--echo-all

Print all nonempty input lines to standard output as they are read. (This does not apply to lines read
interactively.) This is equivalent to setting the variable ECHO to all.

-A
--no-align

Switches to unaligned output mode. (The default output mode is otherwise aligned.) This is equivalent
to \pset format unaligned.

-b
--echo-errors

Print failed SQL commands to standard error output. This is equivalent to setting the variable ECHO
to errors.

-c command
--command=command

Specifies that psql is to execute the given command string, command. This option can be repeated
and combined in any order with the -f option. When either -c or -f is specified, psql does not read
commands from standard input; instead it terminates after processing all the -c and -f options in
sequence.

command must be either a command string that is completely parsable by the server (i.e., it contains
no psql-specific features), or a single backslash command. Thus you cannot mix SQL and psql meta-
commands within a -c option. To achieve that, you could use repeated -c options or pipe the string
into psql, for example:

psql -c '\x' -c 'SELECT * FROM foo;'

or

2003

psql

echo '\x \\ SELECT * FROM foo;' | psql

(\\ is the separator meta-command.)

Each SQL command string passed to -c is sent to the server as a single request. Because of this,
the server executes it as a single transaction even if the string contains multiple SQL commands,
unless there are explicit BEGIN/COMMIT commands included in the string to divide it into multiple
transactions. (See Section 53.2.2.1 for more details about how the server handles multi-query strings.)
Also, psql only prints the result of the last SQL command in the string. This is different from the
behavior when the same string is read from a file or fed to psql's standard input, because then psql
sends each SQL command separately.

Because of this behavior, putting more than one SQL command in a single -c string often has
unexpected results. It's better to use repeated -c commands or feed multiple commands to psql's
standard input, either using echo as illustrated above, or via a shell here-document, for example:

psql <<EOF
\x
SELECT * FROM foo;
EOF

-d dbname
--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first
non-option argument on the command line.

If this parameter contains an = sign or starts with a valid URI prefix (postgresql:// or
postgres://), it is treated as a conninfo string. See Section 34.1.1 for more information.

-e
--echo-queries

Copy all SQL commands sent to the server to standard output as well. This is equivalent to setting
the variable ECHO to queries.

-E
--echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can use this to study
psql's internal operations. This is equivalent to setting the variable ECHO_HIDDEN to on.

-f filename
--file=filename

Read commands from the file filename, rather than standard input. This option can be repeated
and combined in any order with the -c option. When either -c or -f is specified, psql does not read
commands from standard input; instead it terminates after processing all the -c and -f options in
sequence. Except for that, this option is largely equivalent to the meta-command \i.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-command.
This can be used to intersperse interactive input with input from files. Note however that Readline is
not used in this case (much as if -n had been specified).

2004

psql

Using this option is subtly different from writing psql < filename. In general, both will do what
you expect, but using -f enables some nice features such as error messages with line numbers. There
is also a slight chance that using this option will reduce the start-up overhead. On the other hand, the
variant using the shell's input redirection is (in theory) guaranteed to yield exactly the same output
you would have received had you entered everything by hand.

-F separator
--field-separator=separator

Use separator as the field separator for unaligned output. This is equivalent to \pset fieldsep
or \f.

-h hostname
--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix-domain socket.

-H
--html

Turn on HTML tabular output. This is equivalent to \pset format html or the \H command.

-l
--list

List all available databases, then exit. Other non-connection options are ignored. This is similar to
the meta-command \list.

When this option is used, psql will connect to the database postgres, unless a different database
is named on the command line (option -d or non-option argument, possibly via a service entry, but
not via an environment variable).

-L filename
--log-file=filename

Write all query output into file filename, in addition to the normal output destination.

-n
--no-readline

Do not use Readline for line editing and do not use the command history. This can be useful to turn
off tab expansion when cutting and pasting.

-o filename
--output=filename

Put all query output into file filename. This is equivalent to the command \o.

-p port
--port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening
for connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port
specified at compile time, usually 5432.

2005

psql

-P assignment
--pset=assignment

Specifies printing options, in the style of \pset. Note that here you have to separate name and value
with an equal sign instead of a space. For example, to set the output format to LaTeX, you could write
-P format=latex.

-q
--quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the -c option.
This is equivalent to setting the variable QUIET to on.

-R separator
--record-separator=separator

Use separator as the record separator for unaligned output. This is equivalent to \pset
recordsep.

-s
--single-step

Run in single-step mode. That means the user is prompted before each command is sent to the server,
with the option to cancel execution as well. Use this to debug scripts.

-S
--single-line

Runs in single-line mode where a newline terminates an SQL command, as a semicolon does.

Note

This mode is provided for those who insist on it, but you are not necessarily encouraged to use
it. In particular, if you mix SQL and meta-commands on a line the order of execution might
not always be clear to the inexperienced user.

-t
--tuples-only

Turn off printing of column names and result row count footers, etc. This is equivalent to \t or \pset
tuples_only.

-T table_options
--table-attr=table_options

Specifies options to be placed within the HTML table tag. See \pset tableattr for details.

-U username
--username=username

Connect to the database as the user username instead of the default. (You must have permission
to do so, of course.)

2006

psql

-v assignment
--set=assignment
--variable=assignment

Perform a variable assignment, like the \set meta-command. Note that you must separate name and
value, if any, by an equal sign on the command line. To unset a variable, leave off the equal sign. To set
a variable with an empty value, use the equal sign but leave off the value. These assignments are done
during command line processing, so variables that reflect connection state will get overwritten later.

-V
--version

Print the psql version and exit.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

Note that this option will remain set for the entire session, and so it affects uses of the meta-command
\connect as well as the initial connection attempt.

-W
--password

Force psql to prompt for a password before connecting to a database.

This option is never essential, since psql will automatically prompt for a password if the server
demands password authentication. However, psql will waste a connection attempt finding out that the
server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.

Note that this option will remain set for the entire session, and so it affects uses of the meta-command
\connect as well as the initial connection attempt.

-x
--expanded

Turn on the expanded table formatting mode. This is equivalent to \x or \pset expanded.

-X,
--no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user's ~/.psqlrc file).

-z
--field-separator-zero

Set the field separator for unaligned output to a zero byte. This is equivalent to \pset
fieldsep_zero.

-0
--record-separator-zero

Set the record separator for unaligned output to a zero byte. This is useful for interfacing, for example,
with xargs -0. This is equivalent to \pset recordsep_zero.

2007

psql

-1
--single-transaction

This option can only be used in combination with one or more -c and/or -f options. It causes psql
to issue a BEGIN command before the first such option and a COMMIT command after the last one,
thereby wrapping all the commands into a single transaction. This ensures that either all the commands
complete successfully, or no changes are applied.

If the commands themselves contain BEGIN, COMMIT, or ROLLBACK, this option will not have
the desired effects. Also, if an individual command cannot be executed inside a transaction block,
specifying this option will cause the whole transaction to fail.

-?
--help[=topic]

Show help about psql and exit. The optional topic parameter (defaulting to options) selects which
part of psql is explained: commands describes psql's backslash commands; options describes
the command-line options that can be passed to psql; and variables shows help about psql
configuration variables.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own occurs (e.g. out of memory,
file not found), 2 if the connection to the server went bad and the session was not interactive, and 3 if an
error occurred in a script and the variable ON_ERROR_STOP was set.

Usage

Connecting to a Database

psql is a regular PostgreSQL client application. In order to connect to a database you need to know the
name of your target database, the host name and port number of the server, and what user name you want
to connect as. psql can be told about those parameters via command line options, namely -d, -h, -p,
and -U respectively. If an argument is found that does not belong to any option it will be interpreted as
the database name (or the user name, if the database name is already given). Not all of these options are
required; there are useful defaults. If you omit the host name, psql will connect via a Unix-domain socket
to a server on the local host, or via TCP/IP to localhost on machines that don't have Unix-domain
sockets. The default port number is determined at compile time. Since the database server uses the same
default, you will not have to specify the port in most cases. The default user name is your operating-system
user name, as is the default database name. Note that you cannot just connect to any database under any
user name. Your database administrator should have informed you about your access rights.

When the defaults aren't quite right, you can save yourself some typing by setting the environment variables
PGDATABASE, PGHOST, PGPORT and/or PGUSER to appropriate values. (For additional environment
variables, see Section 34.14.) It is also convenient to have a ~/.pgpass file to avoid regularly having
to type in passwords. See Section 34.15 for more information.

An alternative way to specify connection parameters is in a conninfo string or a URI, which is used
instead of a database name. This mechanism give you very wide control over the connection. For example:

$ psql "service=myservice sslmode=require"
$ psql postgresql://dbmaster:5433/mydb?sslmode=require

2008

psql

This way you can also use LDAP for connection parameter lookup as described in Section 34.17. See
Section 34.1.2 for more information on all the available connection options.

If the connection could not be made for any reason (e.g., insufficient privileges, server is not running on
the targeted host, etc.), psql will return an error and terminate.

If both standard input and standard output are a terminal, then psql sets the client encoding to “auto”, which
will detect the appropriate client encoding from the locale settings (LC_CTYPE environment variable
on Unix systems). If this doesn't work out as expected, the client encoding can be overridden using the
environment variable PGCLIENTENCODING.

Entering SQL Commands

In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string =>. For example:

$ psql testdb
psql (11.2)
Type "help" for help.

testdb=>

At the prompt, the user can type in SQL commands. Ordinarily, input lines are sent to the server when
a command-terminating semicolon is reached. An end of line does not terminate a command. Thus
commands can be spread over several lines for clarity. If the command was sent and executed without
error, the results of the command are displayed on the screen.

If untrusted users have access to a database that has not adopted a secure schema usage
pattern, begin your session by removing publicly-writable schemas from search_path.
One can add options=-csearch_path= to the connection string or issue SELECT
pg_catalog.set_config('search_path', '', false) before other SQL commands. This
consideration is not specific to psql; it applies to every interface for executing arbitrary SQL commands.

Whenever a command is executed, psql also polls for asynchronous notification events generated by
LISTEN and NOTIFY.

While C-style block comments are passed to the server for processing and removal, SQL-standard
comments are removed by psql.

Meta-Commands

Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands make psql more useful for administration or scripting. Meta-
commands are often called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace in an argument you can quote it with single quotes. To include a single quote
in an argument, write two single quotes within single-quoted text. Anything contained in single quotes
is furthermore subject to C-like substitutions for \n (new line), \t (tab), \b (backspace), \r (carriage
return), \f (form feed), \digits (octal), and \xdigits (hexadecimal). A backslash preceding any
other character within single-quoted text quotes that single character, whatever it is.

2009

psql

If an unquoted colon (:) followed by a psql variable name appears within an argument, it is replaced
by the variable's value, as described in SQL Interpolation. The forms :'variable_name' and
:"variable_name" described there work as well. The :{?variable_name} syntax allows testing
whether a variable is defined. It is substituted by TRUE or FALSE. Escaping the colon with a backslash
protects it from substitution.

Within an argument, text that is enclosed in backquotes (`) is taken as a command line that is passed to the
shell. The output of the command (with any trailing newline removed) replaces the backquoted text. Within
the text enclosed in backquotes, no special quoting or other processing occurs, except that appearances
of :variable_name where variable_name is a psql variable name are replaced by the variable's
value. Also, appearances of :'variable_name' are replaced by the variable's value suitably quoted
to become a single shell command argument. (The latter form is almost always preferable, unless you are
very sure of what is in the variable.) Because carriage return and line feed characters cannot be safely
quoted on all platforms, the :'variable_name' form prints an error message and does not substitute
the variable value when such characters appear in the value.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow the
syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect letters from
case conversion and allow incorporation of whitespace into the identifier. Within double quotes, paired
double quotes reduce to a single double quote in the resulting name. For example, FOO"BAR"BAZ is
interpreted as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops at the end of the line, or when another unquoted backslash is found. An
unquoted backslash is taken as the beginning of a new meta-command. The special sequence \\ (two
backslashes) marks the end of arguments and continues parsing SQL commands, if any. That way SQL
and psql commands can be freely mixed on a line. But in any case, the arguments of a meta-command
cannot continue beyond the end of the line.

Many of the meta-commands act on the current query buffer. This is simply a buffer holding whatever
SQL command text has been typed but not yet sent to the server for execution. This will include previous
input lines as well as any text appearing before the meta-command on the same line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned, it is
set to unaligned. This command is kept for backwards compatibility. See \pset for a more general
solution.

\c or \connect [-reuse-previous=on|off] [dbname [username] [host
] [port] | conninfo]

Establishes a new connection to a PostgreSQL server. The connection parameters to use can be
specified either using a positional syntax, or using conninfo connection strings as detailed in
Section 34.1.1.

Where the command omits database name, user, host, or port, the new connection can reuse values
from the previous connection. By default, values from the previous connection are reused except when
processing a conninfo string. Passing a first argument of -reuse-previous=on or -reuse-
previous=off overrides that default. When the command neither specifies nor reuses a particular
parameter, the libpq default is used. Specifying any of dbname, username, host or port as -
is equivalent to omitting that parameter.

If the new connection is successfully made, the previous connection is closed. If the connection
attempt failed (wrong user name, access denied, etc.), the previous connection will only be kept if

2010

psql

psql is in interactive mode. When executing a non-interactive script, processing will immediately stop
with an error. This distinction was chosen as a user convenience against typos on the one hand, and a
safety mechanism that scripts are not accidentally acting on the wrong database on the other hand.

Examples:

=> \c mydb myuser host.dom 6432
=> \c service=foo
=> \c "host=localhost port=5432 dbname=mydb connect_timeout=10
 sslmode=disable"
=> \c postgresql://tom@localhost/mydb?application_name=myapp

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such title. This command
is equivalent to \pset title title. (The name of this command derives from “caption”, as it
was previously only used to set the caption in an HTML table.)

\cd [directory]

Changes the current working directory to directory. Without argument, changes to the current
user's home directory.

Tip

To print your current working directory, use \! pwd.

\conninfo

Outputs information about the current database connection.

\copy { table [(column_list)] | (query) } { from | to } { 'filename'
| program 'command' | stdin | stdout | pstdin | pstdout } [[with]
(option [, ...])]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but instead
of the server reading or writing the specified file, psql reads or writes the file and routes the data
between the server and the local file system. This means that file accessibility and privileges are those
of the local user, not the server, and no SQL superuser privileges are required.

When program is specified, command is executed by psql and the data passed from or to command
is routed between the server and the client. Again, the execution privileges are those of the local user,
not the server, and no SQL superuser privileges are required.

For \copy ... from stdin, data rows are read from the same source that issued the command,
continuing until \. is read or the stream reaches EOF. This option is useful for populating tables in-
line within a SQL script file. For \copy ... to stdout, output is sent to the same place as psql
command output, and the COPY count command status is not printed (since it might be confused
with a data row). To read/write psql's standard input or output regardless of the current command
source or \o option, write from pstdin or to pstdout.

The syntax of this command is similar to that of the SQL COPY command. All options other than the
data source/destination are as specified for COPY. Because of this, special parsing rules apply to the
\copy meta-command. Unlike most other meta-commands, the entire remainder of the line is always

2011

psql

taken to be the arguments of \copy, and neither variable interpolation nor backquote expansion are
performed in the arguments.

Tip

Another way to obtain the same result as \copy ... to is to use the SQL COPY ...
TO STDOUT command and terminate it with \g filename or \g |program. Unlike
\copy, this method allows the command to span multiple lines; also, variable interpolation
and backquote expansion can be used.

Tip

These operations are not as efficient as the SQL COPY command with a file or program data
source or destination, because all data must pass through the client/server connection. For
large amounts of data the SQL command might be preferable.

\copyright

Shows the copyright and distribution terms of PostgreSQL.

\crosstabview [colV [colH [colD [sortcolH]]]]

Executes the current query buffer (like \g) and shows the results in a crosstab grid. The query must
return at least three columns. The output column identified by colV becomes a vertical header and the
output column identified by colH becomes a horizontal header. colD identifies the output column
to display within the grid. sortcolH identifies an optional sort column for the horizontal header.

Each column specification can be a column number (starting at 1) or a column name. The usual SQL
case folding and quoting rules apply to column names. If omitted, colV is taken as column 1 and
colH as column 2. colH must differ from colV. If colD is not specified, then there must be exactly
three columns in the query result, and the column that is neither colV nor colH is taken to be colD.

The vertical header, displayed as the leftmost column, contains the values found in column colV, in
the same order as in the query results, but with duplicates removed.

The horizontal header, displayed as the first row, contains the values found in column colH, with
duplicates removed. By default, these appear in the same order as in the query results. But if the
optional sortcolH argument is given, it identifies a column whose values must be integer numbers,
and the values from colH will appear in the horizontal header sorted according to the corresponding
sortcolH values.

Inside the crosstab grid, for each distinct value x of colH and each distinct value y of colV, the cell
located at the intersection (x,y) contains the value of the colD column in the query result row for
which the value of colH is x and the value of colV is y. If there is no such row, the cell is empty.
If there are multiple such rows, an error is reported.

\d[S+] [pattern]

For each relation (table, view, materialized view, index, sequence, or foreign table) or composite type
matching the pattern, show all columns, their types, the tablespace (if not the default) and any
special attributes such as NOT NULL or defaults. Associated indexes, constraints, rules, and triggers
are also shown. For foreign tables, the associated foreign server is shown as well. (“Matching the
pattern” is defined in Patterns below.)

2012

psql

For some types of relation, \d shows additional information for each column: column values for
sequences, indexed expressions for indexes, and foreign data wrapper options for foreign tables.

The command form \d+ is identical, except that more information is displayed: any comments
associated with the columns of the table are shown, as is the presence of OIDs in the table, the view
definition if the relation is a view, a non-default replica identity setting.

By default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects.

Note

If \d is used without a pattern argument, it is equivalent to \dtvmsE which will show a
list of all visible tables, views, materialized views, sequences and foreign tables. This is purely
a convenience measure.

\da[S] [pattern]

Lists aggregate functions, together with their return type and the data types they operate on. If
pattern is specified, only aggregates whose names match the pattern are shown. By default, only
user-created objects are shown; supply a pattern or the S modifier to include system objects.

\dA[+] [pattern]

Lists access methods. If pattern is specified, only access methods whose names match the pattern
are shown. If + is appended to the command name, each access method is listed with its associated
handler function and description.

\db[+] [pattern]

Lists tablespaces. If pattern is specified, only tablespaces whose names match the pattern are
shown. If + is appended to the command name, each tablespace is listed with its associated options,
on-disk size, permissions and description.

\dc[S+] [pattern]

Lists conversions between character-set encodings. If pattern is specified, only conversions whose
names match the pattern are listed. By default, only user-created objects are shown; supply a pattern
or the S modifier to include system objects. If + is appended to the command name, each object is
listed with its associated description.

\dC[+] [pattern]

Lists type casts. If pattern is specified, only casts whose source or target types match the pattern
are listed. If + is appended to the command name, each object is listed with its associated description.

\dd[S] [pattern]

Shows the descriptions of objects of type constraint, operator class, operator family,
rule, and trigger. All other comments may be viewed by the respective backslash commands
for those object types.

\dd displays descriptions for objects matching the pattern, or of visible objects of the appropriate
type if no argument is given. But in either case, only objects that have a description are listed. By
default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects.

2013

psql

Descriptions for objects can be created with the COMMENT SQL command.

\dD[S+] [pattern]

Lists domains. If pattern is specified, only domains whose names match the pattern are shown.
By default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects. If + is appended to the command name, each object is listed with its associated permissions
and description.

\ddp [pattern]

Lists default access privilege settings. An entry is shown for each role (and schema, if applicable)
for which the default privilege settings have been changed from the built-in defaults. If pattern is
specified, only entries whose role name or schema name matches the pattern are listed.

The ALTER DEFAULT PRIVILEGES command is used to set default access privileges. The meaning
of the privilege display is explained under GRANT.

\dE[S+] [pattern]
\di[S+] [pattern]
\dm[S+] [pattern]
\ds[S+] [pattern]
\dt[S+] [pattern]
\dv[S+] [pattern]

In this group of commands, the letters E, i, m, s, t, and v stand for foreign table, index, materialized
view, sequence, table, and view, respectively. You can specify any or all of these letters, in any order,
to obtain a listing of objects of these types. For example, \dit lists indexes and tables. If + is appended
to the command name, each object is listed with its physical size on disk and its associated description,
if any. If pattern is specified, only objects whose names match the pattern are listed. By default,
only user-created objects are shown; supply a pattern or the S modifier to include system objects.

\des[+] [pattern]

Lists foreign servers (mnemonic: “external servers”). If pattern is specified, only those servers
whose name matches the pattern are listed. If the form \des+ is used, a full description of each server
is shown, including the server's ACL, type, version, options, and description.

\det[+] [pattern]

Lists foreign tables (mnemonic: “external tables”). If pattern is specified, only entries whose table
name or schema name matches the pattern are listed. If the form \det+ is used, generic options and
the foreign table description are also displayed.

\deu[+] [pattern]

Lists user mappings (mnemonic: “external users”). If pattern is specified, only those mappings
whose user names match the pattern are listed. If the form \deu+ is used, additional information
about each mapping is shown.

Caution

\deu+ might also display the user name and password of the remote user, so care should be
taken not to disclose them.

2014

psql

\dew[+] [pattern]

Lists foreign-data wrappers (mnemonic: “external wrappers”). If pattern is specified, only those
foreign-data wrappers whose name matches the pattern are listed. If the form \dew+ is used, the
ACL, options, and description of the foreign-data wrapper are also shown.

\df[anptwS+] [pattern]

Lists functions, together with their result data types, argument data types, and function types, which
are classified as “agg” (aggregate), “normal”, “procedure”, “trigger”, or “window”. To display only
functions of specific type(s), add the corresponding letters a, n, p, t, or w to the command. If
pattern is specified, only functions whose names match the pattern are shown. By default, only
user-created objects are shown; supply a pattern or the S modifier to include system objects. If the
form \df+ is used, additional information about each function is shown, including volatility, parallel
safety, owner, security classification, access privileges, language, source code and description.

Tip

To look up functions taking arguments or returning values of a specific data type, use your
pager's search capability to scroll through the \df output.

\dF[+] [pattern]

Lists text search configurations. If pattern is specified, only configurations whose names match
the pattern are shown. If the form \dF+ is used, a full description of each configuration is shown,
including the underlying text search parser and the dictionary list for each parser token type.

\dFd[+] [pattern]

Lists text search dictionaries. If pattern is specified, only dictionaries whose names match the
pattern are shown. If the form \dFd+ is used, additional information is shown about each selected
dictionary, including the underlying text search template and the option values.

\dFp[+] [pattern]

Lists text search parsers. If pattern is specified, only parsers whose names match the pattern are
shown. If the form \dFp+ is used, a full description of each parser is shown, including the underlying
functions and the list of recognized token types.

\dFt[+] [pattern]

Lists text search templates. If pattern is specified, only templates whose names match the pattern
are shown. If the form \dFt+ is used, additional information is shown about each template, including
the underlying function names.

\dg[S+] [pattern]

Lists database roles. (Since the concepts of “users” and “groups” have been unified into “roles”, this
command is now equivalent to \du.) By default, only user-created roles are shown; supply the S
modifier to include system roles. If pattern is specified, only those roles whose names match the
pattern are listed. If the form \dg+ is used, additional information is shown about each role; currently
this adds the comment for each role.

\dl

This is an alias for \lo_list, which shows a list of large objects.

2015

psql

\dL[S+] [pattern]

Lists procedural languages. If pattern is specified, only languages whose names match the pattern
are listed. By default, only user-created languages are shown; supply the S modifier to include system
objects. If + is appended to the command name, each language is listed with its call handler, validator,
access privileges, and whether it is a system object.

\dn[S+] [pattern]

Lists schemas (namespaces). If pattern is specified, only schemas whose names match the pattern
are listed. By default, only user-created objects are shown; supply a pattern or the S modifier to
include system objects. If + is appended to the command name, each object is listed with its associated
permissions and description, if any.

\do[S+] [pattern]

Lists operators with their operand and result types. If pattern is specified, only operators whose
names match the pattern are listed. By default, only user-created objects are shown; supply a pattern
or the S modifier to include system objects. If + is appended to the command name, additional
information about each operator is shown, currently just the name of the underlying function.

\dO[S+] [pattern]

Lists collations. If pattern is specified, only collations whose names match the pattern are listed.
By default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects. If + is appended to the command name, each collation is listed with its associated description,
if any. Note that only collations usable with the current database's encoding are shown, so the results
may vary in different databases of the same installation.

\dp [pattern]

Lists tables, views and sequences with their associated access privileges. If pattern is specified,
only tables, views and sequences whose names match the pattern are listed.

The GRANT and REVOKE commands are used to set access privileges. The meaning of the privilege
display is explained under GRANT.

\drds [role-pattern [database-pattern]]

Lists defined configuration settings. These settings can be role-specific, database-specific, or both.
role-pattern and database-pattern are used to select specific roles and databases to list,
respectively. If omitted, or if * is specified, all settings are listed, including those not role-specific
or database-specific, respectively.

The ALTER ROLE and ALTER DATABASE commands are used to define per-role and per-database
configuration settings.

\dRp[+] [pattern]

Lists replication publications. If pattern is specified, only those publications whose names match
the pattern are listed. If + is appended to the command name, the tables associated with each
publication are shown as well.

\dRs[+] [pattern]

Lists replication subscriptions. If pattern is specified, only those subscriptions whose names match
the pattern are listed. If + is appended to the command name, additional properties of the subscriptions
are shown.

2016

psql

\dT[S+] [pattern]

Lists data types. If pattern is specified, only types whose names match the pattern are listed. If + is
appended to the command name, each type is listed with its internal name and size, its allowed values
if it is an enum type, and its associated permissions. By default, only user-created objects are shown;
supply a pattern or the S modifier to include system objects.

\du[S+] [pattern]

Lists database roles. (Since the concepts of “users” and “groups” have been unified into “roles”, this
command is now equivalent to \dg.) By default, only user-created roles are shown; supply the S
modifier to include system roles. If pattern is specified, only those roles whose names match the
pattern are listed. If the form \du+ is used, additional information is shown about each role; currently
this adds the comment for each role.

\dx[+] [pattern]

Lists installed extensions. If pattern is specified, only those extensions whose names match the
pattern are listed. If the form \dx+ is used, all the objects belonging to each matching extension are
listed.

\dy[+] [pattern]

Lists event triggers. If pattern is specified, only those event triggers whose names match the pattern
are listed. If + is appended to the command name, each object is listed with its associated description.

\e or \edit [filename] [line_number]

If filename is specified, the file is edited; after the editor exits, the file's content is copied into the
current query buffer. If no filename is given, the current query buffer is copied to a temporary file
which is then edited in the same fashion. Or, if the current query buffer is empty, the most recently
executed query is copied to a temporary file and edited in the same fashion.

The new contents of the query buffer are then re-parsed according to the normal rules of psql, treating
the whole buffer as a single line. Any complete queries are immediately executed; that is, if the query
buffer contains or ends with a semicolon, everything up to that point is executed. Whatever remains
will wait in the query buffer; type semicolon or \g to send it, or \r to cancel it by clearing the query
buffer. Treating the buffer as a single line primarily affects meta-commands: whatever is in the buffer
after a meta-command will be taken as argument(s) to the meta-command, even if it spans multiple
lines. (Thus you cannot make meta-command-using scripts this way. Use \i for that.)

If a line number is specified, psql will position the cursor on the specified line of the file or query
buffer. Note that if a single all-digits argument is given, psql assumes it is a line number, not a file
name.

Tip

See under Environment for how to configure and customize your editor.

\echo text [...]

Prints the arguments to the standard output, separated by one space and followed by a newline. This
can be useful to intersperse information in the output of scripts. For example:

2017

psql

=> \echo `date`
Tue Oct 26 21:40:57 CEST 1999

If the first argument is an unquoted -n the trailing newline is not written.

Tip

If you use the \o command to redirect your query output you might wish to use \qecho
instead of this command.

\ef [function_description [line_number]]

This command fetches and edits the definition of the named function or procedure, in the form of a
CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE command. Editing
is done in the same way as for \edit. After the editor exits, the updated command waits in the query
buffer; type semicolon or \g to send it, or \r to cancel.

The target function can be specified by name alone, or by name and arguments, for example
foo(integer, text). The argument types must be given if there is more than one function of
the same name.

If no function is specified, a blank CREATE FUNCTION template is presented for editing.

If a line number is specified, psql will position the cursor on the specified line of the function body.
(Note that the function body typically does not begin on the first line of the file.)

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \ef, and neither variable interpolation nor backquote expansion are performed in the
arguments.

Tip

See under Environment for how to configure and customize your editor.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the current
encoding.

\errverbose

Repeats the most recent server error message at maximum verbosity, as though VERBOSITY were
set to verbose and SHOW_CONTEXT were set to always.

\ev [view_name [line_number]]

This command fetches and edits the definition of the named view, in the form of a CREATE OR
REPLACE VIEW command. Editing is done in the same way as for \edit. After the editor exits,
the updated command waits in the query buffer; type semicolon or \g to send it, or \r to cancel.

If no view is specified, a blank CREATE VIEW template is presented for editing.

2018

psql

If a line number is specified, psql will position the cursor on the specified line of the view definition.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \ev, and neither variable interpolation nor backquote expansion are performed in the
arguments.

\f [string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). It is equivalent
to \pset fieldsep.

\g [filename]
\g [|command]

Sends the current query buffer to the server for execution. If an argument is given, the query's output
is written to the named file or piped to the given shell command, instead of displaying it as usual.
The file or command is written to only if the query successfully returns zero or more tuples, not if the
query fails or is a non-data-returning SQL command.

If the current query buffer is empty, the most recently sent query is re-executed instead. Except for
that behavior, \g without an argument is essentially equivalent to a semicolon. A \g with argument
is a “one-shot” alternative to the \o command.

If the argument begins with |, then the entire remainder of the line is taken to be the command to
execute, and neither variable interpolation nor backquote expansion are performed in it. The rest of
the line is simply passed literally to the shell.

\gdesc

Shows the description (that is, the column names and data types) of the result of the current query
buffer. The query is not actually executed; however, if it contains some type of syntax error, that error
will be reported in the normal way.

If the current query buffer is empty, the most recently sent query is described instead.

\gexec

Sends the current query buffer to the server, then treats each column of each row of the query's
output (if any) as a SQL statement to be executed. For example, to create an index on each column
of my_table:

=> SELECT format('create index on my_table(%I)', attname)
-> FROM pg_attribute
-> WHERE attrelid = 'my_table'::regclass AND attnum > 0
-> ORDER BY attnum
-> \gexec
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX

The generated queries are executed in the order in which the rows are returned, and left-to-right
within each row if there is more than one column. NULL fields are ignored. The generated queries
are sent literally to the server for processing, so they cannot be psql meta-commands nor contain psql

2019

psql

variable references. If any individual query fails, execution of the remaining queries continues unless
ON_ERROR_STOP is set. Execution of each query is subject to ECHO processing. (Setting ECHO to
all or queries is often advisable when using \gexec.) Query logging, single-step mode, timing,
and other query execution features apply to each generated query as well.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\gset [prefix]

Sends the current query buffer to the server and stores the query's output into psql variables (see
Variables). The query to be executed must return exactly one row. Each column of the row is stored
into a separate variable, named the same as the column. For example:

=> SELECT 'hello' AS var1, 10 AS var2
-> \gset
=> \echo :var1 :var2
hello 10

If you specify a prefix, that string is prepended to the query's column names to create the variable
names to use:

=> SELECT 'hello' AS var1, 10 AS var2
-> \gset result_
=> \echo :result_var1 :result_var2
hello 10

If a column result is NULL, the corresponding variable is unset rather than being set.

If the query fails or does not return one row, no variables are changed.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\gx [filename]
\gx [|command]

\gx is equivalent to \g, but forces expanded output mode for this query. See \x.

\h or \help [command]

Gives syntax help on the specified SQL command. If command is not specified, then psql will list
all the commands for which syntax help is available. If command is an asterisk (*), then syntax help
on all SQL commands is shown.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \help, and neither variable interpolation nor backquote expansion are performed in
the arguments.

Note

To simplify typing, commands that consists of several words do not have to be quoted. Thus
it is fine to type \help alter table.

2020

psql

\H or \html

Turns on HTML query output format. If the HTML format is already on, it is switched back to the
default aligned text format. This command is for compatibility and convenience, but see \pset about
setting other output options.

\i or \include filename

Reads input from the file filename and executes it as though it had been typed on the keyboard.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-command.
This can be used to intersperse interactive input with input from files. Note that Readline behavior
will be used only if it is active at the outermost level.

Note

If you want to see the lines on the screen as they are read you must set the variable ECHO
to all.

\if expression
\elif expression
\else
\endif

This group of commands implements nestable conditional blocks. A conditional block must begin
with an \if and end with an \endif. In between there may be any number of \elif clauses, which
may optionally be followed by a single \else clause. Ordinary queries and other types of backslash
commands may (and usually do) appear between the commands forming a conditional block.

The \if and \elif commands read their argument(s) and evaluate them as a boolean expression.
If the expression yields true then processing continues normally; otherwise, lines are skipped until
a matching \elif, \else, or \endif is reached. Once an \if or \elif test has succeeded, the
arguments of later \elif commands in the same block are not evaluated but are treated as false.
Lines following an \else are processed only if no earlier matching \if or \elif succeeded.

The expression argument of an \if or \elif command is subject to variable interpolation and
backquote expansion, just like any other backslash command argument. After that it is evaluated like
the value of an on/off option variable. So a valid value is any unambiguous case-insensitive match
for one of: true, false, 1, 0, on, off, yes, no. For example, t, T, and tR will all be considered
to be true.

Expressions that do not properly evaluate to true or false will generate a warning and be treated as
false.

Lines being skipped are parsed normally to identify queries and backslash commands, but queries
are not sent to the server, and backslash commands other than conditionals (\if, \elif, \else,
\endif) are ignored. Conditional commands are checked only for valid nesting. Variable references
in skipped lines are not expanded, and backquote expansion is not performed either.

All the backslash commands of a given conditional block must appear in the same source file. If EOF
is reached on the main input file or an \include-ed file before all local \if-blocks have been
closed, then psql will raise an error.

Here is an example:

2021

psql

-- check for the existence of two separate records in the database
 and store
-- the results in separate psql variables
SELECT
 EXISTS(SELECT 1 FROM customer WHERE customer_id = 123) as
 is_customer,
 EXISTS(SELECT 1 FROM employee WHERE employee_id = 456) as
 is_employee
\gset
\if :is_customer
 SELECT * FROM customer WHERE customer_id = 123;
\elif :is_employee
 \echo 'is not a customer but is an employee'
 SELECT * FROM employee WHERE employee_id = 456;
\else
 \if yes
 \echo 'not a customer or employee'
 \else
 \echo 'this will never print'
 \endif
\endif

\ir or \include_relative filename

The \ir command is similar to \i, but resolves relative file names differently. When executing in
interactive mode, the two commands behave identically. However, when invoked from a script, \ir
interprets file names relative to the directory in which the script is located, rather than the current
working directory.

\l[+] or \list[+] [pattern]

List the databases in the server and show their names, owners, character set encodings, and access
privileges. If pattern is specified, only databases whose names match the pattern are listed. If
+ is appended to the command name, database sizes, default tablespaces, and descriptions are also
displayed. (Size information is only available for databases that the current user can connect to.)

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename. Note that this
is subtly different from the server function lo_export, which acts with the permissions of the user
that the database server runs as and on the server's file system.

Tip

Use \lo_list to find out the large object's OID.

\lo_import filename [comment]

Stores the file into a PostgreSQL large object. Optionally, it associates the given comment with the
object. Example:

2022

psql

foo=> \lo_import '/home/peter/pictures/photo.xcf' 'a picture of me'
lo_import 152801

The response indicates that the large object received object ID 152801, which can be used to access
the newly-created large object in the future. For the sake of readability, it is recommended to always
associate a human-readable comment with every object. Both OIDs and comments can be viewed
with the \lo_list command.

Note that this command is subtly different from the server-side lo_import because it acts as the
local user on the local file system, rather than the server's user and file system.

\lo_list

Shows a list of all PostgreSQL large objects currently stored in the database, along with any comments
provided for them.

\lo_unlink loid

Deletes the large object with OID loid from the database.

Tip

Use \lo_list to find out the large object's OID.

\o or \out [filename]
\o or \out [|command]

Arranges to save future query results to the file filename or pipe future results to the shell command
command. If no argument is specified, the query output is reset to the standard output.

If the argument begins with |, then the entire remainder of the line is taken to be the command to
execute, and neither variable interpolation nor backquote expansion are performed in it. The rest of
the line is simply passed literally to the shell.

“Query results” includes all tables, command responses, and notices obtained from the database server,
as well as output of various backslash commands that query the database (such as \d); but not error
messages.

Tip

To intersperse text output in between query results, use \qecho.

\p or \print

Print the current query buffer to the standard output. If the current query buffer is empty, the most
recently executed query is printed instead.

\password [username]

Changes the password of the specified user (by default, the current user). This command prompts for
the new password, encrypts it, and sends it to the server as an ALTER ROLE command. This makes

2023

psql

sure that the new password does not appear in cleartext in the command history, the server log, or
elsewhere.

\prompt [text] name

Prompts the user to supply text, which is assigned to the variable name. An optional prompt string,
text, can be specified. (For multiword prompts, surround the text with single quotes.)

By default, \prompt uses the terminal for input and output. However, if the -f command line switch
was used, \prompt uses standard input and standard output.

\pset [option [value]]

This command sets options affecting the output of query result tables. option indicates which option
is to be set. The semantics of value vary depending on the selected option. For some options, omitting
value causes the option to be toggled or unset, as described under the particular option. If no such
behavior is mentioned, then omitting value just results in the current setting being displayed.

\pset without any arguments displays the current status of all printing options.

Adjustable printing options are:

border

The value must be a number. In general, the higher the number the more borders and lines the
tables will have, but details depend on the particular format. In HTML format, this will translate
directly into the border=... attribute. In most other formats only values 0 (no border), 1
(internal dividing lines), and 2 (table frame) make sense, and values above 2 will be treated the
same as border = 2. The latex and latex-longtable formats additionally allow a
value of 3 to add dividing lines between data rows.

columns

Sets the target width for the wrapped format, and also the width limit for determining whether
output is wide enough to require the pager or switch to the vertical display in expanded auto
mode. Zero (the default) causes the target width to be controlled by the environment variable
COLUMNS, or the detected screen width if COLUMNS is not set. In addition, if columns is zero
then the wrapped format only affects screen output. If columns is nonzero then file and pipe
output is wrapped to that width as well.

expanded (or x)

If value is specified it must be either on or off, which will enable or disable expanded mode,
or auto. If value is omitted the command toggles between the on and off settings. When
expanded mode is enabled, query results are displayed in two columns, with the column name on
the left and the data on the right. This mode is useful if the data wouldn't fit on the screen in the
normal “horizontal” mode. In the auto setting, the expanded mode is used whenever the query
output has more than one column and is wider than the screen; otherwise, the regular mode is
used. The auto setting is only effective in the aligned and wrapped formats. In other formats, it
always behaves as if the expanded mode is off.

fieldsep

Specifies the field separator to be used in unaligned output format. That way one can create, for
example, tab- or comma-separated output, which other programs might prefer. To set a tab as field
separator, type \pset fieldsep '\t'. The default field separator is '|' (a vertical bar).

2024

psql

fieldsep_zero

Sets the field separator to use in unaligned output format to a zero byte.

footer

If value is specified it must be either on or off which will enable or disable display of the table
footer (the (n rows) count). If value is omitted the command toggles footer display on or off.

format

Sets the output format to one of unaligned, aligned, wrapped, html, asciidoc,
latex (uses tabular), latex-longtable, or troff-ms. Unique abbreviations are
allowed.

unaligned format writes all columns of a row on one line, separated by the currently active
field separator. This is useful for creating output that might be intended to be read in by other
programs (for example, tab-separated or comma-separated format).

aligned format is the standard, human-readable, nicely formatted text output; this is the default.

wrapped format is like aligned but wraps wide data values across lines to make the output
fit in the target column width. The target width is determined as described under the columns
option. Note that psql will not attempt to wrap column header titles; therefore, wrapped format
behaves the same as aligned if the total width needed for column headers exceeds the target.

The html, asciidoc, latex, latex-longtable, and troff-ms formats put out tables
that are intended to be included in documents using the respective mark-up language. They are
not complete documents! This might not be necessary in HTML, but in LaTeX you must have a
complete document wrapper. latex-longtable also requires the LaTeX longtable and
booktabs packages.

linestyle

Sets the border line drawing style to one of ascii, old-ascii, or unicode. Unique
abbreviations are allowed. (That would mean one letter is enough.) The default setting is ascii.
This option only affects the aligned and wrapped output formats.

ascii style uses plain ASCII characters. Newlines in data are shown using a + symbol in the
right-hand margin. When the wrapped format wraps data from one line to the next without a
newline character, a dot (.) is shown in the right-hand margin of the first line, and again in the
left-hand margin of the following line.

old-ascii style uses plain ASCII characters, using the formatting style used in PostgreSQL
8.4 and earlier. Newlines in data are shown using a : symbol in place of the left-hand column
separator. When the data is wrapped from one line to the next without a newline character, a ;
symbol is used in place of the left-hand column separator.

unicode style uses Unicode box-drawing characters. Newlines in data are shown using a
carriage return symbol in the right-hand margin. When the data is wrapped from one line to the
next without a newline character, an ellipsis symbol is shown in the right-hand margin of the first
line, and again in the left-hand margin of the following line.

When the border setting is greater than zero, the linestyle option also determines the
characters with which the border lines are drawn. Plain ASCII characters work everywhere, but
Unicode characters look nicer on displays that recognize them.

2025

psql

null

Sets the string to be printed in place of a null value. The default is to print nothing, which can easily
be mistaken for an empty string. For example, one might prefer \pset null '(null)'.

numericlocale

If value is specified it must be either on or off which will enable or disable display of a
locale-specific character to separate groups of digits to the left of the decimal marker. If value
is omitted the command toggles between regular and locale-specific numeric output.

pager

Controls use of a pager program for query and psql help output. If the environment variable
PSQL_PAGER or PAGER is set, the output is piped to the specified program. Otherwise a
platform-dependent default program (such as more) is used.

When the pager option is off, the pager program is not used. When the pager option is on,
the pager is used when appropriate, i.e., when the output is to a terminal and will not fit on the
screen. The pager option can also be set to always, which causes the pager to be used for all
terminal output regardless of whether it fits on the screen. \pset pager without a value
toggles pager use on and off.

pager_min_lines

If pager_min_lines is set to a number greater than the page height, the pager program will
not be called unless there are at least this many lines of output to show. The default setting is 0.

recordsep

Specifies the record (line) separator to use in unaligned output format. The default is a newline
character.

recordsep_zero

Sets the record separator to use in unaligned output format to a zero byte.

tableattr (or T)

In HTML format, this specifies attributes to be placed inside the table tag. This could for
example be cellpadding or bgcolor. Note that you probably don't want to specify border
here, as that is already taken care of by \pset border. If no value is given, the table attributes
are unset.

In latex-longtable format, this controls the proportional width of each column containing
a left-aligned data type. It is specified as a whitespace-separated list of values, e.g. '0.2 0.2
0.6'. Unspecified output columns use the last specified value.

title (or C)

Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no value is given, the title is unset.

tuples_only (or t)

If value is specified it must be either on or off which will enable or disable tuples-only mode.
If value is omitted the command toggles between regular and tuples-only output. Regular output

2026

psql

includes extra information such as column headers, titles, and various footers. In tuples-only
mode, only actual table data is shown.

unicode_border_linestyle

Sets the border drawing style for the unicode line style to one of single or double.

unicode_column_linestyle

Sets the column drawing style for the unicode line style to one of single or double.

unicode_header_linestyle

Sets the header drawing style for the unicode line style to one of single or double.

Illustrations of how these different formats look can be seen in the Examples section.

Tip

There are various shortcut commands for \pset. See \a, \C, \f, \H, \t, \T, and \x.

\q or \quit

Quits the psql program. In a script file, only execution of that script is terminated.

\qecho text [...]

This command is identical to \echo except that the output will be written to the query output channel,
as set by \o.

\r or \reset

Resets (clears) the query buffer.

\s [filename]

Print psql's command line history to filename. If filename is omitted, the history is written to
the standard output (using the pager if appropriate). This command is not available if psql was built
without Readline support.

\set [name [value [...]]]

Sets the psql variable name to value, or if more than one value is given, to the concatenation of
all of them. If only one argument is given, the variable is set to an empty-string value. To unset a
variable, use the \unset command.

\set without any arguments displays the names and values of all currently-set psql variables.

Valid variable names can contain letters, digits, and underscores. See the section Variables below for
details. Variable names are case-sensitive.

Certain variables are special, in that they control psql's behavior or are automatically set to reflect
connection state. These variables are documented in Variables, below.

2027

psql

Note

This command is unrelated to the SQL command SET.

\setenv name [value]

Sets the environment variable name to value, or if the value is not supplied, unsets the
environment variable. Example:

testdb=> \setenv PAGER less
testdb=> \setenv LESS -imx4F

\sf[+] function_description

This command fetches and shows the definition of the named function or procedure, in the form of
a CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE command. The
definition is printed to the current query output channel, as set by \o.

The target function can be specified by name alone, or by name and arguments, for example
foo(integer, text). The argument types must be given if there is more than one function of
the same name.

If + is appended to the command name, then the output lines are numbered, with the first line of the
function body being line 1.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \sf, and neither variable interpolation nor backquote expansion are performed in the
arguments.

\sv[+] view_name

This command fetches and shows the definition of the named view, in the form of a CREATE OR
REPLACE VIEW command. The definition is printed to the current query output channel, as set by \o.

If + is appended to the command name, then the output lines are numbered from 1.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \sv, and neither variable interpolation nor backquote expansion are performed in the
arguments.

\t

Toggles the display of output column name headings and row count footer. This command is
equivalent to \pset tuples_only and is provided for convenience.

\T table_options

Specifies attributes to be placed within the table tag in HTML output format. This command is
equivalent to \pset tableattr table_options.

\timing [on | off]

With a parameter, turns displaying of how long each SQL statement takes on or off. Without a
parameter, toggles the display between on and off. The display is in milliseconds; intervals longer
than 1 second are also shown in minutes:seconds format, with hours and days fields added if needed.

2028

psql

\unset name

Unsets (deletes) the psql variable name.

Most variables that control psql's behavior cannot be unset; instead, an \unset command is
interpreted as setting them to their default values. See Variables, below.

\w or \write filename
\w or \write |command

Writes the current query buffer to the file filename or pipes it to the shell command command. If
the current query buffer is empty, the most recently executed query is written instead.

If the argument begins with |, then the entire remainder of the line is taken to be the command to
execute, and neither variable interpolation nor backquote expansion are performed in it. The rest of
the line is simply passed literally to the shell.

\watch [seconds]

Repeatedly execute the current query buffer (as \g does) until interrupted or the query fails. Wait
the specified number of seconds (default 2) between executions. Each query result is displayed with
a header that includes the \pset title string (if any), the time as of query start, and the delay
interval.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\x [on | off | auto]

Sets or toggles expanded table formatting mode. As such it is equivalent to \pset expanded.

\z [pattern]

Lists tables, views and sequences with their associated access privileges. If a pattern is specified,
only tables, views and sequences whose names match the pattern are listed.

This is an alias for \dp (“display privileges”).

\! [command]

With no argument, escapes to a sub-shell; psql resumes when the sub-shell exits. With an argument,
executes the shell command command.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \!, and neither variable interpolation nor backquote expansion are performed in the
arguments. The rest of the line is simply passed literally to the shell.

\? [topic]

Shows help information. The optional topic parameter (defaulting to commands) selects which
part of psql is explained: commands describes psql's backslash commands; options describes
the command-line options that can be passed to psql; and variables shows help about psql
configuration variables.

\;

Backslash-semicolon is not a meta-command in the same way as the preceding commands; rather, it
simply causes a semicolon to be added to the query buffer without any further processing.

2029

psql

Normally, psql will dispatch a SQL command to the server as soon as it reaches the command-ending
semicolon, even if more input remains on the current line. Thus for example entering

select 1; select 2; select 3;

will result in the three SQL commands being individually sent to the server, with each one's results
being displayed before continuing to the next command. However, a semicolon entered as \; will not
trigger command processing, so that the command before it and the one after are effectively combined
and sent to the server in one request. So for example

select 1\; select 2\; select 3;

results in sending the three SQL commands to the server in a single request, when the non-backslashed
semicolon is reached. The server executes such a request as a single transaction, unless there are
explicit BEGIN/COMMIT commands included in the string to divide it into multiple transactions. (See
Section 53.2.2.1 for more details about how the server handles multi-query strings.) psql prints only
the last query result it receives for each request; in this example, although all three SELECTs are
indeed executed, psql only prints the 3.

Patterns

The various \d commands accept a pattern parameter to specify the object name(s) to be displayed.
In the simplest case, a pattern is just the exact name of the object. The characters within a pattern are
normally folded to lower case, just as in SQL names; for example, \dt FOO will display the table named
foo. As in SQL names, placing double quotes around a pattern stops folding to lower case. Should you
need to include an actual double quote character in a pattern, write it as a pair of double quotes within
a double-quote sequence; again this is in accord with the rules for SQL quoted identifiers. For example,
\dt "FOO""BAR" will display the table named FOO"BAR (not foo"bar). Unlike the normal rules for
SQL names, you can put double quotes around just part of a pattern, for instance \dt FOO"FOO"BAR
will display the table named fooFOObar.

Whenever the pattern parameter is omitted completely, the \d commands display all objects that are
visible in the current schema search path — this is equivalent to using * as the pattern. (An object is said
to be visible if its containing schema is in the search path and no object of the same kind and name appears
earlier in the search path. This is equivalent to the statement that the object can be referenced by name
without explicit schema qualification.) To see all objects in the database regardless of visibility, use *.*
as the pattern.

Within a pattern, * matches any sequence of characters (including no characters) and ? matches any single
character. (This notation is comparable to Unix shell file name patterns.) For example, \dt int* displays
tables whose names begin with int. But within double quotes, * and ? lose these special meanings and
are just matched literally.

A pattern that contains a dot (.) is interpreted as a schema name pattern followed by an object name
pattern. For example, \dt foo*.*bar* displays all tables whose table name includes bar that are
in schemas whose schema name starts with foo. When no dot appears, then the pattern matches only
objects that are visible in the current schema search path. Again, a dot within double quotes loses its special
meaning and is matched literally.

Advanced users can use regular-expression notations such as character classes, for example [0-9] to
match any digit. All regular expression special characters work as specified in Section 9.7.3, except for .
which is taken as a separator as mentioned above, * which is translated to the regular-expression notation
.*, ? which is translated to ., and $ which is matched literally. You can emulate these pattern characters at

2030

psql

need by writing ? for ., (R+|) for R*, or (R|) for R?. $ is not needed as a regular-expression character
since the pattern must match the whole name, unlike the usual interpretation of regular expressions (in
other words, $ is automatically appended to your pattern). Write * at the beginning and/or end if you don't
wish the pattern to be anchored. Note that within double quotes, all regular expression special characters
lose their special meanings and are matched literally. Also, the regular expression special characters are
matched literally in operator name patterns (i.e., the argument of \do).

Advanced Features

Variables

psql provides variable substitution features similar to common Unix command shells. Variables are simply
name/value pairs, where the value can be any string of any length. The name must consist of letters
(including non-Latin letters), digits, and underscores.

To set a variable, use the psql meta-command \set. For example,

testdb=> \set foo bar

sets the variable foo to the value bar. To retrieve the content of the variable, precede the name with a
colon, for example:

testdb=> \echo :foo
bar

This works in both regular SQL commands and meta-commands; there is more detail in SQL Interpolation,
below.

If you call \set without a second argument, the variable is set to an empty-string value. To unset (i.e.,
delete) a variable, use the command \unset. To show the values of all variables, call \set without
any argument.

Note

The arguments of \set are subject to the same substitution rules as with other commands. Thus
you can construct interesting references such as \set :foo 'something' and get “soft links”
or “variable variables” of Perl or PHP fame, respectively. Unfortunately (or fortunately?), there is
no way to do anything useful with these constructs. On the other hand, \set bar :foo is a
perfectly valid way to copy a variable.

A number of these variables are treated specially by psql. They represent certain option settings that can
be changed at run time by altering the value of the variable, or in some cases represent changeable state
of psql. By convention, all specially treated variables' names consist of all upper-case ASCII letters (and
possibly digits and underscores). To ensure maximum compatibility in the future, avoid using such variable
names for your own purposes.

Variables that control psql's behavior generally cannot be unset or set to invalid values. An \unset
command is allowed but is interpreted as setting the variable to its default value. A \set command without
a second argument is interpreted as setting the variable to on, for control variables that accept that value,
and is rejected for others. Also, control variables that accept the values on and off will also accept other
common spellings of Boolean values, such as true and false.

2031

psql

The specially treated variables are:

AUTOCOMMIT

When on (the default), each SQL command is automatically committed upon successful completion.
To postpone commit in this mode, you must enter a BEGIN or START TRANSACTION SQL
command. When off or unset, SQL commands are not committed until you explicitly issue COMMIT
or END. The autocommit-off mode works by issuing an implicit BEGIN for you, just before any
command that is not already in a transaction block and is not itself a BEGIN or other transaction-
control command, nor a command that cannot be executed inside a transaction block (such as
VACUUM).

Note

In autocommit-off mode, you must explicitly abandon any failed transaction by entering
ABORT or ROLLBACK. Also keep in mind that if you exit the session without committing,
your work will be lost.

Note

The autocommit-on mode is PostgreSQL's traditional behavior, but autocommit-off is closer
to the SQL spec. If you prefer autocommit-off, you might wish to set it in the system-wide
psqlrc file or your ~/.psqlrc file.

COMP_KEYWORD_CASE

Determines which letter case to use when completing an SQL key word. If set to lower or upper,
the completed word will be in lower or upper case, respectively. If set to preserve-lower or
preserve-upper (the default), the completed word will be in the case of the word already entered,
but words being completed without anything entered will be in lower or upper case, respectively.

DBNAME

The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be changed or unset.

ECHO

If set to all, all nonempty input lines are printed to standard output as they are read. (This does not
apply to lines read interactively.) To select this behavior on program start-up, use the switch -a. If
set to queries, psql prints each query to standard output as it is sent to the server. The switch to
select this behavior is -e. If set to errors, then only failed queries are displayed on standard error
output. The switch for this behavior is -b. If set to none (the default), then no queries are displayed.

ECHO_HIDDEN

When this variable is set to on and a backslash command queries the database, the query is first shown.
This feature helps you to study PostgreSQL internals and provide similar functionality in your own
programs. (To select this behavior on program start-up, use the switch -E.) If you set this variable
to the value noexec, the queries are just shown but are not actually sent to the server and executed.
The default value is off.

2032

psql

ENCODING

The current client character set encoding. This is set every time you connect to a database (including
program start-up), and when you change the encoding with \encoding, but it can be changed or
unset.

ERROR

true if the last SQL query failed, false if it succeeded. See also SQLSTATE.

FETCH_COUNT

If this variable is set to an integer value greater than zero, the results of SELECT queries are fetched
and displayed in groups of that many rows, rather than the default behavior of collecting the entire
result set before display. Therefore only a limited amount of memory is used, regardless of the size of
the result set. Settings of 100 to 1000 are commonly used when enabling this feature. Keep in mind
that when using this feature, a query might fail after having already displayed some rows.

Tip

Although you can use any output format with this feature, the default aligned format tends
to look bad because each group of FETCH_COUNT rows will be formatted separately, leading
to varying column widths across the row groups. The other output formats work better.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not entered into the history
list. If set to a value of ignoredups, lines matching the previous history line are not entered. A value
of ignoreboth combines the two options. If set to none (the default), all lines read in interactive
mode are saved on the history list.

Note

This feature was shamelessly plagiarized from Bash.

HISTFILE

The file name that will be used to store the history list. If unset, the file name is taken from the
PSQL_HISTORY environment variable. If that is not set either, the default is ~/.psql_history,
or %APPDATA%\postgresql\psql_history on Windows. For example, putting:

\set HISTFILE ~/.psql_history- :DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

Note

This feature was shamelessly plagiarized from Bash.

2033

psql

HISTSIZE

The maximum number of commands to store in the command history (default 500). If set to a negative
value, no limit is applied.

Note

This feature was shamelessly plagiarized from Bash.

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be changed or unset.

IGNOREEOF

If set to 1 or less, sending an EOF character (usually Control+D) to an interactive session of psql
will terminate the application. If set to a larger numeric value, that many consecutive EOF characters
must be typed to make an interactive session terminate. If the variable is set to a non-numeric value,
it is interpreted as 10. The default is 0.

Note

This feature was shamelessly plagiarized from Bash.

LASTOID

The value of the last affected OID, as returned from an INSERT or \lo_import command. This
variable is only guaranteed to be valid until after the result of the next SQL command has been
displayed.

LAST_ERROR_MESSAGE
LAST_ERROR_SQLSTATE

The primary error message and associated SQLSTATE code for the most recent failed query in the
current psql session, or an empty string and 00000 if no error has occurred in the current session.

ON_ERROR_ROLLBACK

When set to on, if a statement in a transaction block generates an error, the error is ignored and
the transaction continues. When set to interactive, such errors are only ignored in interactive
sessions, and not when reading script files. When set to off (the default), a statement in a transaction
block that generates an error aborts the entire transaction. The error rollback mode works by issuing
an implicit SAVEPOINT for you, just before each command that is in a transaction block, and then
rolling back to the savepoint if the command fails.

ON_ERROR_STOP

By default, command processing continues after an error. When this variable is set to on, processing
will instead stop immediately. In interactive mode, psql will return to the command prompt; otherwise,
psql will exit, returning error code 3 to distinguish this case from fatal error conditions, which are

2034

psql

reported using error code 1. In either case, any currently running scripts (the top-level script, if any,
and any other scripts which it may have in invoked) will be terminated immediately. If the top-level
command string contained multiple SQL commands, processing will stop with the current command.

PORT

The database server port to which you are currently connected. This is set every time you connect to
a database (including program start-up), but can be changed or unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompts psql issues should look like. See Prompting below.

QUIET

Setting this variable to on is equivalent to the command line option -q. It is probably not too useful
in interactive mode.

ROW_COUNT

The number of rows returned or affected by the last SQL query, or 0 if the query failed or did not
report a row count.

SERVER_VERSION_NAME
SERVER_VERSION_NUM

The server's version number as a string, for example 9.6.2, 10.1 or 11beta1, and in numeric
form, for example 90602 or 100001. These are set every time you connect to a database (including
program start-up), but can be changed or unset.

SHOW_CONTEXT

This variable can be set to the values never, errors, or always to control whether CONTEXT
fields are displayed in messages from the server. The default is errors (meaning that context will
be shown in error messages, but not in notice or warning messages). This setting has no effect when
VERBOSITY is set to terse. (See also \errverbose, for use when you want a verbose version
of the error you just got.)

SINGLELINE

Setting this variable to on is equivalent to the command line option -S.

SINGLESTEP

Setting this variable to on is equivalent to the command line option -s.

SQLSTATE

The error code (see Appendix A) associated with the last SQL query's failure, or 00000 if it
succeeded.

USER

The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be changed or unset.

2035

psql

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the verbosity of error
reports. (See also \errverbose, for use when you want a verbose version of the error you just got.)

VERSION
VERSION_NAME
VERSION_NUM

These variables are set at program start-up to reflect psql's version, respectively as a verbose string,
a short string (e.g., 9.6.2, 10.1, or 11beta1), and a number (e.g., 90602 or 100001). They
can be changed or unset.

SQL Interpolation

A key feature of psql variables is that you can substitute (“interpolate”) them into regular SQL statements,
as well as the arguments of meta-commands. Furthermore, psql provides facilities for ensuring that variable
values used as SQL literals and identifiers are properly quoted. The syntax for interpolating a value without
any quoting is to prepend the variable name with a colon (:). For example,

testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :foo;

would query the table my_table. Note that this may be unsafe: the value of the variable is copied literally,
so it can contain unbalanced quotes, or even backslash commands. You must make sure that it makes
sense where you put it.

When a value is to be used as an SQL literal or identifier, it is safest to arrange for it to be quoted. To quote
the value of a variable as an SQL literal, write a colon followed by the variable name in single quotes. To
quote the value as an SQL identifier, write a colon followed by the variable name in double quotes. These
constructs deal correctly with quotes and other special characters embedded within the variable value. The
previous example would be more safely written this way:

testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :"foo";

Variable interpolation will not be performed within quoted SQL literals and identifiers. Therefore, a
construction such as ':foo' doesn't work to produce a quoted literal from a variable's value (and it would
be unsafe if it did work, since it wouldn't correctly handle quotes embedded in the value).

One example use of this mechanism is to copy the contents of a file into a table column. First load the file
into a variable and then interpolate the variable's value as a quoted string:

testdb=> \set content `cat my_file.txt`
testdb=> INSERT INTO my_table VALUES (:'content');

(Note that this still won't work if my_file.txt contains NUL bytes. psql does not support embedded
NUL bytes in variable values.)

Since colons can legally appear in SQL commands, an apparent attempt at interpolation (that is, :name,
:'name', or :"name") is not replaced unless the named variable is currently set. In any case, you can
escape a colon with a backslash to protect it from substitution.

2036

psql

The :{?name} special syntax returns TRUE or FALSE depending on whether the variable exists or not,
and is thus always substituted, unless the colon is backslash-escaped.

The colon syntax for variables is standard SQL for embedded query languages, such as ECPG. The colon
syntaxes for array slices and type casts are PostgreSQL extensions, which can sometimes conflict with
the standard usage. The colon-quote syntax for escaping a variable's value as an SQL literal or identifier
is a psql extension.

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1, PROMPT2,
and PROMPT3 contain strings and special escape sequences that describe the appearance of the prompt.
Prompt 1 is the normal prompt that is issued when psql requests a new command. Prompt 2 is issued when
more input is expected during command entry, for example because the command was not terminated with
a semicolon or a quote was not closed. Prompt 3 is issued when you are running an SQL COPY FROM
STDIN command and you need to type in a row value on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is encountered.
Depending on the next character, certain other text is substituted instead. Defined substitutions are:

%M

The full host name (with domain name) of the database server, or [local] if the connection is over
a Unix domain socket, or [local:/dir/name], if the Unix domain socket is not at the compiled
in default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the connection is over
a Unix domain socket.

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a database session
as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of this value might
change during a database session as the result of the command SET SESSION AUTHORIZATION.)

%p

The process ID of the backend currently connected to.

2037

psql

%R

In prompt 1 normally =, but @ if the session is in an inactive branch of a conditional block, or ^
if in single-line mode, or ! if the session is disconnected from the database (which can happen if
\connect fails). In prompt 2 %R is replaced by a character that depends on why psql expects more
input: - if the command simply wasn't terminated yet, but * if there is an unfinished /* ...
*/ comment, a single quote if there is an unfinished quoted string, a double quote if there is an
unfinished quoted identifier, a dollar sign if there is an unfinished dollar-quoted string, or (if there
is an unmatched left parenthesis. In prompt 3 %R doesn't produce anything.

%x

Transaction status: an empty string when not in a transaction block, or * when in a transaction block,
or ! when in a failed transaction block, or ? when the transaction state is indeterminate (for example,
because there is no connection).

%l

The line number inside the current statement, starting from 1.

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See the section Variables for details.

%`command`

The output of command, similar to ordinary “back-tick” substitution.

%[... %]

Prompts can contain terminal control characters which, for example, change the color, background, or
style of the prompt text, or change the title of the terminal window. In order for the line editing features
of Readline to work properly, these non-printing control characters must be designated as invisible by
surrounding them with %[and %]. Multiple pairs of these can occur within the prompt. For example:

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%# '

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible, color-capable
terminals.

To insert a percent sign into your prompt, write %%. The default prompts are '%/%R%# ' for prompts
1 and 2, and '>> ' for prompt 3.

Note

This feature was shamelessly plagiarized from tcsh.

Command-Line Editing

psql supports the Readline library for convenient line editing and retrieval. The command history is
automatically saved when psql exits and is reloaded when psql starts up. Tab-completion is also supported,

2038

psql

although the completion logic makes no claim to be an SQL parser. The queries generated by tab-
completion can also interfere with other SQL commands, e.g. SET TRANSACTION ISOLATION
LEVEL. If for some reason you do not like the tab completion, you can turn it off by putting this in a file
named .inputrc in your home directory:

$if psql
set disable-completion on
$endif

(This is not a psql but a Readline feature. Read its documentation for further details.)

Environment
COLUMNS

If \pset columns is zero, controls the width for the wrapped format and width for determining
if wide output requires the pager or should be switched to the vertical format in expanded auto mode.

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters (see Section 34.14).

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e, \ef, and \ev commands. These variables are examined in the order listed;
the first that is set is used. If none of them is set, the default is to use vi on Unix systems or
notepad.exe on Windows systems.

PSQL_EDITOR_LINENUMBER_ARG

When \e, \ef, or \ev is used with a line number argument, this variable specifies the command-
line argument used to pass the starting line number to the user's editor. For editors such as Emacs or
vi, this is a plus sign. Include a trailing space in the value of the variable if there needs to be space
between the option name and the line number. Examples:

PSQL_EDITOR_LINENUMBER_ARG='+'
PSQL_EDITOR_LINENUMBER_ARG='--line '

The default is + on Unix systems (corresponding to the default editor vi, and useful for many other
common editors); but there is no default on Windows systems.

PSQL_HISTORY

Alternative location for the command history file. Tilde (~) expansion is performed.

PSQL_PAGER
PAGER

If a query's results do not fit on the screen, they are piped through this command. Typical values are
more or less. Use of the pager can be disabled by setting PSQL_PAGER or PAGER to an empty

2039

psql

string, or by adjusting the pager-related options of the \pset command. These variables are examined
in the order listed; the first that is set is used. If none of them is set, the default is to use more on
most platforms, but less on Cygwin.

PSQLRC

Alternative location of the user's .psqlrc file. Tilde (~) expansion is performed.

SHELL

Command executed by the \! command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Files
psqlrc and ~/.psqlrc

Unless it is passed an -X option, psql attempts to read and execute commands from the system-wide
startup file (psqlrc) and then the user's personal startup file (~/.psqlrc), after connecting to the
database but before accepting normal commands. These files can be used to set up the client and/or
the server to taste, typically with \set and SET commands.

The system-wide startup file is named psqlrc and is sought in the installation's “system
configuration” directory, which is most reliably identified by running pg_config --
sysconfdir. By default this directory will be ../etc/ relative to the directory containing the
PostgreSQL executables. The name of this directory can be set explicitly via the PGSYSCONFDIR
environment variable.

The user's personal startup file is named .psqlrc and is sought in the invoking user's home
directory. On Windows, which lacks such a concept, the personal startup file is named %APPDATA%
\postgresql\psqlrc.conf. The location of the user's startup file can be set explicitly via the
PSQLRC environment variable.

Both the system-wide startup file and the user's personal startup file can be made psql-version-specific
by appending a dash and the PostgreSQL major or minor release number to the file name, for example
~/.psqlrc-9.2 or ~/.psqlrc-9.2.5. The most specific version-matching file will be read in
preference to a non-version-specific file.

.psql_history

The command-line history is stored in the file ~/.psql_history, or %APPDATA%
\postgresql\psql_history on Windows.

The location of the history file can be set explicitly via the HISTFILE psql variable or the
PSQL_HISTORY environment variable.

Notes
• psql works best with servers of the same or an older major version. Backslash commands are particularly

likely to fail if the server is of a newer version than psql itself. However, backslash commands of the \d

2040

psql

family should work with servers of versions back to 7.4, though not necessarily with servers newer than
psql itself. The general functionality of running SQL commands and displaying query results should
also work with servers of a newer major version, but this cannot be guaranteed in all cases.

If you want to use psql to connect to several servers of different major versions, it is recommended that
you use the newest version of psql. Alternatively, you can keep around a copy of psql from each major
version and be sure to use the version that matches the respective server. But in practice, this additional
complication should not be necessary.

• Before PostgreSQL 9.6, the -c option implied -X (--no-psqlrc); this is no longer the case.

• Before PostgreSQL 8.4, psql allowed the first argument of a single-letter backslash command to start
directly after the command, without intervening whitespace. Now, some whitespace is required.

Notes for Windows Users
psql is built as a “console application”. Since the Windows console windows use a different encoding
than the rest of the system, you must take special care when using 8-bit characters within psql. If psql
detects a problematic console code page, it will warn you at startup. To change the console code page,
two things are necessary:

• Set the code page by entering cmd.exe /c chcp 1252. (1252 is a code page that is appropriate
for German; replace it with your value.) If you are using Cygwin, you can put this command in /etc/
profile.

• Set the console font to Lucida Console, because the raster font does not work with the ANSI code
page.

Examples
The first example shows how to spread a command over several lines of input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

Now look at the table definition again:

testdb=> \d my_table
 Table "public.my_table"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 first | integer | | not null | 0
 second | text | | |

Now we change the prompt to something more interesting:

testdb=> \set PROMPT1 '%n@%m %~%R%# '
peter@localhost testdb=>

2041

psql

Let's assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;
 first | second
-------+--------
 1 | one
 2 | two
 3 | three
 4 | four
(4 rows)

You can display tables in different ways by using the \pset command:

peter@localhost testdb=> \pset border 2
Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;
+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0
Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;
first second
----- ------
 1 one
 2 two
 3 three
 4 four
(4 rows)

peter@localhost testdb=> \pset border 1
Border style is 1.
peter@localhost testdb=> \pset format unaligned
Output format is unaligned.
peter@localhost testdb=> \pset fieldsep ","
Field separator is ",".
peter@localhost testdb=> \pset tuples_only
Showing only tuples.
peter@localhost testdb=> SELECT second, first FROM my_table;
one,1
two,2
three,3
four,4

Alternatively, use the short commands:

2042

psql

peter@localhost testdb=> \a \t \x
Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;
-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

When suitable, query results can be shown in a crosstab representation with the \crosstabview
command:

testdb=> SELECT first, second, first > 2 AS gt2 FROM my_table;
 first | second | gt2
-------+--------+-----
 1 | one | f
 2 | two | f
 3 | three | t
 4 | four | t
(4 rows)

testdb=> \crosstabview first second
 first | one | two | three | four
-------+-----+-----+-------+------
 1 | f | | |
 2 | | f | |
 3 | | | t |
 4 | | | | t
(4 rows)

This second example shows a multiplication table with rows sorted in reverse numerical order and columns
with an independent, ascending numerical order.

testdb=> SELECT t1.first as "A", t2.first+100 AS "B",
 t1.first*(t2.first+100) as "AxB",
testdb(> row_number() over(order by t2.first) AS ord
testdb(> FROM my_table t1 CROSS JOIN my_table t2 ORDER BY 1 DESC
testdb(> \crosstabview "A" "B" "AxB" ord
 A | 101 | 102 | 103 | 104
---+-----+-----+-----+-----
 4 | 404 | 408 | 412 | 416
 3 | 303 | 306 | 309 | 312
 2 | 202 | 204 | 206 | 208

2043

psql

 1 | 101 | 102 | 103 | 104
(4 rows)

2044

reindexdb
reindexdb — reindex a PostgreSQL database

Synopsis
reindexdb [connection-option...] [option...] [--schema | -S schema] ... [--table | -
t table] ... [--index | -i index] ... [dbname]

reindexdb [connection-option...] [option...] --all | -a

reindexdb [connection-option...] [option...] --system | -s [dbname]

Description
reindexdb is a utility for rebuilding indexes in a PostgreSQL database.

reindexdb is a wrapper around the SQL command REINDEX. There is no effective difference between
reindexing databases via this utility and via other methods for accessing the server.

Options
reindexdb accepts the following command-line arguments:

-a
--all

Reindex all databases.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be reindexed. If this is not specified and -a (or --all) is not
used, the database name is read from the environment variable PGDATABASE. If that is not set, the
user name specified for the connection is used.

-e
--echo

Echo the commands that reindexdb generates and sends to the server.

-i index
--index=index

Recreate index only. Multiple indexes can be recreated by writing multiple -i switches.

-q
--quiet

Do not display progress messages.

-s
--system

Reindex database's system catalogs.

2045

reindexdb

-S schema
--schema=schema

Reindex schema only. Multiple schemas can be reindexed by writing multiple -S switches.

-t table
--table=table

Reindex table only. Multiple tables can be reindexed by writing multiple -t switches.

-v
--verbose

Print detailed information during processing.

-V
--version

Print the reindexdb version and exit.

-?
--help

Show help about reindexdb command line arguments, and exit.

reindexdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force reindexdb to prompt for a password before connecting to a database.

This option is never essential, since reindexdb will automatically prompt for a password if the server
demands password authentication. However, reindexdb will waste a connection attempt finding out

2046

reindexdb

that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be reindexed.
If not specified, the postgres database will be used, and if that does not exist, template1 will
be used.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Diagnostics
In case of difficulty, see REINDEX and psql for discussions of potential problems and error messages. The
database server must be running at the targeted host. Also, any default connection settings and environment
variables used by the libpq front-end library will apply.

Notes
reindexdb might need to connect several times to the PostgreSQL server, asking for a password each time.
It is convenient to have a ~/.pgpass file in such cases. See Section 34.15 for more information.

Examples
To reindex the database test:

$ reindexdb test

To reindex the table foo and the index bar in a database named abcd:

$ reindexdb --table=foo --index=bar abcd

See Also
REINDEX

2047

vacuumdb
vacuumdb — garbage-collect and analyze a PostgreSQL database

Synopsis
vacuumdb [connection-option...] [option...] [--table | -t table [(column [,...])]] ...
[dbname]

vacuumdb [connection-option...] [option...] --all | -a

Description
vacuumdb is a utility for cleaning a PostgreSQL database. vacuumdb will also generate internal statistics
used by the PostgreSQL query optimizer.

vacuumdb is a wrapper around the SQL command VACUUM. There is no effective difference between
vacuuming and analyzing databases via this utility and via other methods for accessing the server.

Options
vacuumdb accepts the following command-line arguments:

-a
--all

Vacuum all databases.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be cleaned or analyzed. If this is not specified and -a (or --
all) is not used, the database name is read from the environment variable PGDATABASE. If that is
not set, the user name specified for the connection is used.

-e
--echo

Echo the commands that vacuumdb generates and sends to the server.

-f
--full

Perform “full” vacuuming.

-F
--freeze

Aggressively “freeze” tuples.

-j njobs
--jobs=njobs

Execute the vacuum or analyze commands in parallel by running njobs commands simultaneously.
This option reduces the time of the processing but it also increases the load on the database server.

2048

vacuumdb

vacuumdb will open njobs connections to the database, so make sure your max_connections setting
is high enough to accommodate all connections.

Note that using this mode together with the -f (FULL) option might cause deadlock failures if certain
system catalogs are processed in parallel.

-q
--quiet

Do not display progress messages.

-t table [(column [,...])]
--table=table [(column [,...])]

Clean or analyze table only. Column names can be specified only in conjunction with the --
analyze or --analyze-only options. Multiple tables can be vacuumed by writing multiple -
t switches.

Tip

If you specify columns, you probably have to escape the parentheses from the shell. (See
examples below.)

-v
--verbose

Print detailed information during processing.

-V
--version

Print the vacuumdb version and exit.

-z
--analyze

Also calculate statistics for use by the optimizer.

-Z
--analyze-only

Only calculate statistics for use by the optimizer (no vacuum).

--analyze-in-stages

Only calculate statistics for use by the optimizer (no vacuum), like --analyze-only. Run several
(currently three) stages of analyze with different configuration settings, to produce usable statistics
faster.

This option is useful to analyze a database that was newly populated from a restored dump or by
pg_upgrade. This option will try to create some statistics as fast as possible, to make the database
usable, and then produce full statistics in the subsequent stages.

2049

vacuumdb

-?
--help

Show help about vacuumdb command line arguments, and exit.

vacuumdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash,
it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force vacuumdb to prompt for a password before connecting to a database.

This option is never essential, since vacuumdb will automatically prompt for a password if the server
demands password authentication. However, vacuumdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be vacuumed.
If not specified, the postgres database will be used, and if that does not exist, template1 will
be used.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

2050

vacuumdb

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

Diagnostics
In case of difficulty, see VACUUM and psql for discussions of potential problems and error messages. The
database server must be running at the targeted host. Also, any default connection settings and environment
variables used by the libpq front-end library will apply.

Notes
vacuumdb might need to connect several times to the PostgreSQL server, asking for a password each time.
It is convenient to have a ~/.pgpass file in such cases. See Section 34.15 for more information.

Examples
To clean the database test:

$ vacuumdb test

To clean and analyze for the optimizer a database named bigdb:

$ vacuumdb --analyze bigdb

To clean a single table foo in a database named xyzzy, and analyze a single column bar of the table
for the optimizer:

$ vacuumdb --analyze --verbose --table='foo(bar)' xyzzy

See Also
VACUUM

2051

PostgreSQL Server Applications
This part contains reference information for PostgreSQL server applications and support utilities. These
commands can only be run usefully on the host where the database server resides. Other utility programs
are listed in PostgreSQL Client Applications.

Table of Contents
initdb ... 2053
pg_archivecleanup .. 2058
pg_controldata ... 2060
pg_ctl .. 2061
pg_resetwal ... 2067
pg_rewind ... 2071
pg_test_fsync .. 2074
pg_test_timing ... 2075
pg_upgrade ... 2079
pg_verify_checksums .. 2087
pg_waldump ... 2088
postgres .. 2090
postmaster .. 2098

2052

initdb
initdb — create a new PostgreSQL database cluster

Synopsis

initdb [option...] [--pgdata | -D] directory

Description

initdb creates a new PostgreSQL database cluster. A database cluster is a collection of databases that
are managed by a single server instance.

Creating a database cluster consists of creating the directories in which the database data will live,
generating the shared catalog tables (tables that belong to the whole cluster rather than to any particular
database), and creating the template1 and postgres databases. When you later create a new database,
everything in the template1 database is copied. (Therefore, anything installed in template1 is
automatically copied into each database created later.) The postgres database is a default database
meant for use by users, utilities and third party applications.

Although initdb will attempt to create the specified data directory, it might not have permission if the
parent directory of the desired data directory is root-owned. To initialize in such a setup, create an empty
data directory as root, then use chown to assign ownership of that directory to the database user account,
then su to become the database user to run initdb.

initdb must be run as the user that will own the server process, because the server needs to have access
to the files and directories that initdb creates. Since the server cannot be run as root, you must not run
initdb as root either. (It will in fact refuse to do so.)

For security reasons the new cluster created by initdb will only be accessible by the cluster owner by
default. The --allow-group-access option allows any user in the same group as the cluster owner
to read files in the cluster. This is useful for performing backups as a non-privileged user.

initdb initializes the database cluster's default locale and character set encoding. The character set
encoding, collation order (LC_COLLATE) and character set classes (LC_CTYPE, e.g. upper, lower,
digit) can be set separately for a database when it is created. initdb determines those settings for the
template1 database, which will serve as the default for all other databases.

To alter the default collation order or character set classes, use the --lc-collate and --lc-ctype
options. Collation orders other than C or POSIX also have a performance penalty. For these reasons it is
important to choose the right locale when running initdb.

The remaining locale categories can be changed later when the server is started. You can also use --
locale to set the default for all locale categories, including collation order and character set classes. All
server locale values (lc_*) can be displayed via SHOW ALL. More details can be found in Section 23.1.

To alter the default encoding, use the --encoding. More details can be found in Section 23.3.

2053

initdb

Options
-A authmethod
--auth=authmethod

This option specifies the default authentication method for local users used in pg_hba.conf
(host and local lines). initdb will prepopulate pg_hba.conf entries using the specified
authentication method for non-replication as well as replication connections.

Do not use trust unless you trust all local users on your system. trust is the default for ease of
installation.

--auth-host=authmethod

This option specifies the authentication method for local users via TCP/IP connections used in
pg_hba.conf (host lines).

--auth-local=authmethod

This option specifies the authentication method for local users via Unix-domain socket connections
used in pg_hba.conf (local lines).

-D directory
--pgdata=directory

This option specifies the directory where the database cluster should be stored. This is the only
information required by initdb, but you can avoid writing it by setting the PGDATA environment
variable, which can be convenient since the database server (postgres) can find the database
directory later by the same variable.

-E encoding
--encoding=encoding

Selects the encoding of the template database. This will also be the default encoding of any database
you create later, unless you override it there. The default is derived from the locale, or SQL_ASCII
if that does not work. The character sets supported by the PostgreSQL server are described in
Section 23.3.1.

-g
--allow-group-access

Allows users in the same group as the cluster owner to read all cluster files created by initdb. This
option is ignored on Windows as it does not support POSIX-style group permissions.

-k
--data-checksums

Use checksums on data pages to help detect corruption by the I/O system that would otherwise be
silent. Enabling checksums may incur a noticeable performance penalty. This option can only be set
during initialization, and cannot be changed later. If set, checksums are calculated for all objects, in
all databases.

--locale=locale

Sets the default locale for the database cluster. If this option is not specified, the locale is inherited
from the environment that initdb runs in. Locale support is described in Section 23.1.

2054

initdb

--lc-collate=locale
--lc-ctype=locale
--lc-messages=locale
--lc-monetary=locale
--lc-numeric=locale
--lc-time=locale

Like --locale, but only sets the locale in the specified category.

--no-locale

Equivalent to --locale=C.

-N
--no-sync

By default, initdb will wait for all files to be written safely to disk. This option causes initdb to
return without waiting, which is faster, but means that a subsequent operating system crash can leave
the data directory corrupt. Generally, this option is useful for testing, but should not be used when
creating a production installation.

--pwfile=filename

Makes initdb read the database superuser's password from a file. The first line of the file is taken
as the password.

-S
--sync-only

Safely write all database files to disk and exit. This does not perform any of the normal initdb
operations.

-T config
--text-search-config=config

Sets the default text search configuration. See default_text_search_config for further information.

-U username
--username=username

Selects the user name of the database superuser. This defaults to the name of the effective user running
initdb. It is really not important what the superuser's name is, but one might choose to keep the
customary name postgres, even if the operating system user's name is different.

-W
--pwprompt

Makes initdb prompt for a password to give the database superuser. If you don't plan on
using password authentication, this is not important. Otherwise you won't be able to use password
authentication until you have a password set up.

-X directory
--waldir=directory

This option specifies the directory where the write-ahead log should be stored.

2055

initdb

--wal-segsize=size

Set the WAL segment size, in megabytes. This is the size of each individual file in the WAL log. The
default size is 16 megabytes. The value must be a power of 2 between 1 and 1024 (megabytes). This
option can only be set during initialization, and cannot be changed later.

It may be useful to adjust this size to control the granularity of WAL log shipping or archiving. Also,
in databases with a high volume of WAL, the sheer number of WAL files per directory can become
a performance and management problem. Increasing the WAL file size will reduce the number of
WAL files.

Other, less commonly used, options are also available:

-d
--debug

Print debugging output from the bootstrap backend and a few other messages of lesser interest for the
general public. The bootstrap backend is the program initdb uses to create the catalog tables. This
option generates a tremendous amount of extremely boring output.

-L directory

Specifies where initdb should find its input files to initialize the database cluster. This is normally
not necessary. You will be told if you need to specify their location explicitly.

-n
--no-clean

By default, when initdb determines that an error prevented it from completely creating the database
cluster, it removes any files it might have created before discovering that it cannot finish the job. This
option inhibits tidying-up and is thus useful for debugging.

Other options:

-V
--version

Print the initdb version and exit.

-?
--help

Show help about initdb command line arguments, and exit.

Environment
PGDATA

Specifies the directory where the database cluster is to be stored; can be overridden using the -D
option.

TZ

Specifies the default time zone of the created database cluster. The value should be a full time zone
name (see Section 8.5.3).

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

2056

initdb

Notes
initdb can also be invoked via pg_ctl initdb.

See Also
pg_ctl, postgres

2057

pg_archivecleanup
pg_archivecleanup — clean up PostgreSQL WAL archive files

Synopsis
pg_archivecleanup [option...] archivelocation oldestkeptwalfile

Description
pg_archivecleanup is designed to be used as an archive_cleanup_command to clean up WAL file
archives when running as a standby server (see Section 26.2). pg_archivecleanup can also be used as a
standalone program to clean WAL file archives.

To configure a standby server to use pg_archivecleanup, put this into its recovery.conf configuration
file:

archive_cleanup_command = 'pg_archivecleanup archivelocation %r'

where archivelocation is the directory from which WAL segment files should be removed.

When used within archive_cleanup_command, all WAL files logically preceding the value of the %r
argument will be removed from archivelocation. This minimizes the number of files that need
to be retained, while preserving crash-restart capability. Use of this parameter is appropriate if the
archivelocation is a transient staging area for this particular standby server, but not when the
archivelocation is intended as a long-term WAL archive area, or when multiple standby servers are
recovering from the same archive location.

When used as a standalone program all WAL files logically preceding the oldestkeptwalfile
will be removed from archivelocation. In this mode, if you specify a .partial or .backup
file name, then only the file prefix will be used as the oldestkeptwalfile. This treatment of
.backup file name allows you to remove all WAL files archived prior to a specific base backup
without error. For example, the following example will remove all files older than WAL file name
000000010000003700000010:

pg_archivecleanup -d archive 000000010000003700000010.00000020.backup

pg_archivecleanup: keep WAL file "archive/000000010000003700000010"
 and later
pg_archivecleanup: removing file "archive/00000001000000370000000F"
pg_archivecleanup: removing file "archive/00000001000000370000000E"

pg_archivecleanup assumes that archivelocation is a directory readable and writable by the server-
owning user.

Options
pg_archivecleanup accepts the following command-line arguments:

2058

pg_archivecleanup

-d

Print lots of debug logging output on stderr.

-n

Print the names of the files that would have been removed on stdout (performs a dry run).

-V
--version

Print the pg_archivecleanup version and exit.

-x extension

Provide an extension that will be stripped from all file names before deciding if they should be
deleted. This is typically useful for cleaning up archives that have been compressed during storage,
and therefore have had an extension added by the compression program. For example: -x .gz.

-?
--help

Show help about pg_archivecleanup command line arguments, and exit.

Notes
pg_archivecleanup is designed to work with PostgreSQL 8.0 and later when used as a standalone utility,
or with PostgreSQL 9.0 and later when used as an archive cleanup command.

pg_archivecleanup is written in C and has an easy-to-modify source code, with specifically designated
sections to modify for your own needs

Examples
On Linux or Unix systems, you might use:

archive_cleanup_command = 'pg_archivecleanup -d /mnt/standby/archive
 %r 2>>cleanup.log'

where the archive directory is physically located on the standby server, so that the archive_command
is accessing it across NFS, but the files are local to the standby. This will:

• produce debugging output in cleanup.log

• remove no-longer-needed files from the archive directory

See Also
pg_standby

2059

pg_controldata
pg_controldata — display control information of a PostgreSQL database cluster

Synopsis
pg_controldata [option] [[--pgdata | -D] datadir]

Description
pg_controldata prints information initialized during initdb, such as the catalog version. It also
shows information about write-ahead logging and checkpoint processing. This information is cluster-wide,
and not specific to any one database.

This utility can only be run by the user who initialized the cluster because it requires read access to the
data directory. You can specify the data directory on the command line, or use the environment variable
PGDATA. This utility supports the options -V and --version, which print the pg_controldata version
and exit. It also supports options -? and --help, which output the supported arguments.

Environment
PGDATA

Default data directory location

2060

pg_ctl
pg_ctl — initialize, start, stop, or control a PostgreSQL server

Synopsis
pg_ctl init[db] [-D datadir] [-s] [-o initdb-options]

pg_ctl start [-D datadir] [-l filename] [-W] [-t seconds] [-s] [-o options] [-p path]
[-c]

pg_ctl stop [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-W] [-t seconds] [-s]

pg_ctl restart [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-W] [-t seconds]
[-s] [-o options] [-c]

pg_ctl reload [-D datadir] [-s]

pg_ctl status [-D datadir]

pg_ctl promote [-D datadir] [-W] [-t seconds] [-s]

pg_ctl kill signal_name process_id

On Microsoft Windows, also:

pg_ctl register [-D datadir] [-N servicename] [-U username] [-P password] [-S
a[uto] | d[emand]] [-e source] [-W] [-t seconds] [-s] [-o options]

pg_ctl unregister [-N servicename]

Description
pg_ctl is a utility for initializing a PostgreSQL database cluster, starting, stopping, or restarting the
PostgreSQL database server (postgres), or displaying the status of a running server. Although the server
can be started manually, pg_ctl encapsulates tasks such as redirecting log output and properly detaching
from the terminal and process group. It also provides convenient options for controlled shutdown.

The init or initdb mode creates a new PostgreSQL database cluster, that is, a collection of databases
that will be managed by a single server instance. This mode invokes the initdb command. See initdb
for details.

start mode launches a new server. The server is started in the background, and its standard input is
attached to /dev/null (or nul on Windows). On Unix-like systems, by default, the server's standard
output and standard error are sent to pg_ctl's standard output (not standard error). The standard output of
pg_ctl should then be redirected to a file or piped to another process such as a log rotating program like
rotatelogs; otherwise postgres will write its output to the controlling terminal (from the background)
and will not leave the shell's process group. On Windows, by default the server's standard output and
standard error are sent to the terminal. These default behaviors can be changed by using -l to append the
server's output to a log file. Use of either -l or output redirection is recommended.

stop mode shuts down the server that is running in the specified data directory. Three different shutdown
methods can be selected with the -m option. “Smart” mode waits for all active clients to disconnect and any
online backup to finish. If the server is in hot standby, recovery and streaming replication will be terminated

2061

pg_ctl

once all clients have disconnected. “Fast” mode (the default) does not wait for clients to disconnect and
will terminate an online backup in progress. All active transactions are rolled back and clients are forcibly
disconnected, then the server is shut down. “Immediate” mode will abort all server processes immediately,
without a clean shutdown. This choice will lead to a crash-recovery cycle during the next server start.

restart mode effectively executes a stop followed by a start. This allows changing the postgres
command-line options, or changing configuration-file options that cannot be changed without restarting
the server. If relative paths were used on the command line during server start, restart might fail unless
pg_ctl is executed in the same current directory as it was during server start.

reload mode simply sends the postgres server process a SIGHUP signal, causing it to reread its
configuration files (postgresql.conf, pg_hba.conf, etc.). This allows changing configuration-
file options that do not require a full server restart to take effect.

status mode checks whether a server is running in the specified data directory. If it is, the server's PID
and the command line options that were used to invoke it are displayed. If the server is not running, pg_ctl
returns an exit status of 3. If an accessible data directory is not specified, pg_ctl returns an exit status of 4.

promote mode commands the standby server that is running in the specified data directory to end standby
mode and begin read-write operations.

kill mode sends a signal to a specified process. This is primarily valuable on Microsoft Windows which
does not have a built-in kill command. Use --help to see a list of supported signal names.

register mode registers the PostgreSQL server as a system service on Microsoft Windows. The -S
option allows selection of service start type, either “auto” (start service automatically on system startup)
or “demand” (start service on demand).

unregister mode unregisters a system service on Microsoft Windows. This undoes the effects of the
register command.

Options
-c
--core-files

Attempt to allow server crashes to produce core files, on platforms where this is possible, by lifting
any soft resource limit placed on core files. This is useful in debugging or diagnosing problems by
allowing a stack trace to be obtained from a failed server process.

-D datadir
--pgdata=datadir

Specifies the file system location of the database configuration files. If this option is omitted, the
environment variable PGDATA is used.

-l filename
--log=filename

Append the server log output to filename. If the file does not exist, it is created. The umask is set
to 077, so access to the log file is disallowed to other users by default.

-m mode
--mode=mode

Specifies the shutdown mode. mode can be smart, fast, or immediate, or the first letter of one
of these three. If this option is omitted, fast is the default.

2062

pg_ctl

-o options
--options=options

Specifies options to be passed directly to the postgres command. -o can be specified multiple
times, with all the given options being passed through.

The options should usually be surrounded by single or double quotes to ensure that they are passed
through as a group.

-o initdb-options
--options=initdb-options

Specifies options to be passed directly to the initdb command. -o can be specified multiple times,
with all the given options being passed through.

The initdb-options should usually be surrounded by single or double quotes to ensure that they
are passed through as a group.

-p path

Specifies the location of the postgres executable. By default the postgres executable is taken
from the same directory as pg_ctl, or failing that, the hard-wired installation directory. It is not
necessary to use this option unless you are doing something unusual and get errors that the postgres
executable was not found.

In init mode, this option analogously specifies the location of the initdb executable.

-s
--silent

Print only errors, no informational messages.

-t seconds
--timeout=seconds

Specifies the maximum number of seconds to wait when waiting for an operation to complete (see
option -w). Defaults to the value of the PGCTLTIMEOUT environment variable or, if not set, to 60
seconds.

-V
--version

Print the pg_ctl version and exit.

-w
--wait

Wait for the operation to complete. This is supported for the modes start, stop, restart,
promote, and register, and is the default for those modes.

When waiting, pg_ctl repeatedly checks the server's PID file, sleeping for a short amount of time
between checks. Startup is considered complete when the PID file indicates that the server is ready to
accept connections. Shutdown is considered complete when the server removes the PID file. pg_ctl
returns an exit code based on the success of the startup or shutdown.

If the operation does not complete within the timeout (see option -t), then pg_ctl exits with a
nonzero exit status. But note that the operation might continue in the background and eventually
succeed.

2063

pg_ctl

-W
--no-wait

Do not wait for the operation to complete. This is the opposite of the option -w.

If waiting is disabled, the requested action is triggered, but there is no feedback about its success.
In that case, the server log file or an external monitoring system would have to be used to check the
progress and success of the operation.

In prior releases of PostgreSQL, this was the default except for the stop mode.

-?
--help

Show help about pg_ctl command line arguments, and exit.

If an option is specified that is valid, but not relevant to the selected operating mode, pg_ctl ignores it.

Options for Windows

-e source

Name of the event source for pg_ctl to use for logging to the event log when running as a Windows
service. The default is PostgreSQL. Note that this only controls messages sent from pg_ctl itself;
once started, the server will use the event source specified by its event_source parameter. Should the
server fail very early in startup, before that parameter has been set, it might also log using the default
event source name PostgreSQL.

-N servicename

Name of the system service to register. This name will be used as both the service name and the
display name. The default is PostgreSQL.

-P password

Password for the user to run the service as.

-S start-type

Start type of the system service. start-type can be auto, or demand, or the first letter of one of
these two. If this option is omitted, auto is the default.

-U username

User name for the user to run the service as. For domain users, use the format DOMAIN\username.

Environment
PGCTLTIMEOUT

Default limit on the number of seconds to wait when waiting for startup or shutdown to complete. If
not set, the default is 60 seconds.

PGDATA

Default data directory location.

2064

pg_ctl

Most pg_ctl modes require knowing the data directory location; therefore, the -D option is required
unless PGDATA is set.

pg_ctl, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 34.14).

For additional variables that affect the server, see postgres.

Files
postmaster.pid

pg_ctl examines this file in the data directory to determine whether the server is currently running.

postmaster.opts

If this file exists in the data directory, pg_ctl (in restart mode) will pass the contents of the file as
options to postgres, unless overridden by the -o option. The contents of this file are also displayed
in status mode.

Examples

Starting the Server

To start the server, waiting until the server is accepting connections:

$ pg_ctl start

To start the server using port 5433, and running without fsync, use:

$ pg_ctl -o "-F -p 5433" start

Stopping the Server

To stop the server, use:

$ pg_ctl stop

The -m option allows control over how the server shuts down:

$ pg_ctl stop -m smart

Restarting the Server

Restarting the server is almost equivalent to stopping the server and starting it again, except that by default,
pg_ctl saves and reuses the command line options that were passed to the previously-running instance.
To restart the server using the same options as before, use:

$ pg_ctl restart

2065

pg_ctl

But if -o is specified, that replaces any previous options. To restart using port 5433, disabling fsync
upon restart:

$ pg_ctl -o "-F -p 5433" restart

Showing the Server Status

Here is sample status output from pg_ctl:

$ pg_ctl status

pg_ctl: server is running (PID: 13718)
/usr/local/pgsql/bin/postgres "-D" "/usr/local/pgsql/data" "-p" "5433"
 "-B" "128"

The second line is the command that would be invoked in restart mode.

See Also
initdb, postgres

2066

pg_resetwal
pg_resetwal — reset the write-ahead log and other control information of a PostgreSQL database cluster

Synopsis
pg_resetwal [--force | -f] [--dry-run | -n] [option...] [--pgdata | -D] datadir

Description
pg_resetwal clears the write-ahead log (WAL) and optionally resets some other control information
stored in the pg_control file. This function is sometimes needed if these files have become corrupted.
It should be used only as a last resort, when the server will not start due to such corruption.

After running this command, it should be possible to start the server, but bear in mind that the database
might contain inconsistent data due to partially-committed transactions. You should immediately dump
your data, run initdb, and reload. After reload, check for inconsistencies and repair as needed.

This utility can only be run by the user who installed the server, because it requires read/write access
to the data directory. For safety reasons, you must specify the data directory on the command line.
pg_resetwal does not use the environment variable PGDATA.

If pg_resetwal complains that it cannot determine valid data for pg_control, you can force it to
proceed anyway by specifying the -f (force) option. In this case plausible values will be substituted for the
missing data. Most of the fields can be expected to match, but manual assistance might be needed for the
next OID, next transaction ID and epoch, next multitransaction ID and offset, and WAL starting location
fields. These fields can be set using the options discussed below. If you are not able to determine correct
values for all these fields, -f can still be used, but the recovered database must be treated with even more
suspicion than usual: an immediate dump and reload is imperative. Do not execute any data-modifying
operations in the database before you dump, as any such action is likely to make the corruption worse.

Options
-f
--force

Force pg_resetwal to proceed even if it cannot determine valid data for pg_control, as
explained above.

-n
--dry-run

The -n/--dry-run option instructs pg_resetwal to print the values reconstructed from
pg_control and values about to be changed, and then exit without modifying anything. This is
mainly a debugging tool, but can be useful as a sanity check before allowing pg_resetwal to
proceed for real.

-V
--version

Display version information, then exit.

2067

pg_resetwal

-?
--help

Show help, then exit.

The following options are only needed when pg_resetwal is unable to determine appropriate values by
reading pg_control. Safe values can be determined as described below. For values that take numeric
arguments, hexadecimal values can be specified by using the prefix 0x.

-c xid,xid
--commit-timestamp-ids=xid,xid

Manually set the oldest and newest transaction IDs for which the commit time can be retrieved.

A safe value for the oldest transaction ID for which the commit time can be retrieved (first part) can be
determined by looking for the numerically smallest file name in the directory pg_commit_ts under
the data directory. Conversely, a safe value for the newest transaction ID for which the commit time
can be retrieved (second part) can be determined by looking for the numerically greatest file name in
the same directory. The file names are in hexadecimal.

-e xid_epoch
--epoch=xid_epoch

Manually set the next transaction ID's epoch.

The transaction ID epoch is not actually stored anywhere in the database except in the field that is set
by pg_resetwal, so any value will work so far as the database itself is concerned. You might need
to adjust this value to ensure that replication systems such as Slony-I and Skytools work correctly —
if so, an appropriate value should be obtainable from the state of the downstream replicated database.

-l walfile
--next-wal-file=walfile

Manually set the WAL starting location by specifying the name of the next WAL segment file.

The name of next WAL segment file should be larger than any WAL segment file name currently
existing in the directory pg_wal under the data directory. These names are also in hexadecimal
and have three parts. The first part is the “timeline ID” and should usually be kept the same.
For example, if 00000001000000320000004A is the largest entry in pg_wal, use -l
00000001000000320000004B or higher.

Note that when using nondefault WAL segment sizes, the numbers in the WAL file names are different
from the LSNs that are reported by system functions and system views. This option takes a WAL file
name, not an LSN.

Note

pg_resetwal itself looks at the files in pg_wal and chooses a default -l setting beyond
the last existing file name. Therefore, manual adjustment of -l should only be needed if you
are aware of WAL segment files that are not currently present in pg_wal, such as entries in
an offline archive; or if the contents of pg_wal have been lost entirely.

-m mxid,mxid
--multixact-ids=mxid,mxid

Manually set the next and oldest multitransaction ID.

2068

pg_resetwal

A safe value for the next multitransaction ID (first part) can be determined by looking for the
numerically largest file name in the directory pg_multixact/offsets under the data directory,
adding one, and then multiplying by 65536 (0x10000). Conversely, a safe value for the oldest
multitransaction ID (second part of -m) can be determined by looking for the numerically smallest
file name in the same directory and multiplying by 65536. The file names are in hexadecimal, so the
easiest way to do this is to specify the option value in hexadecimal and append four zeroes.

-o oid
--next-oid=oid

Manually set the next OID.

There is no comparably easy way to determine a next OID that's beyond the largest one in the database,
but fortunately it is not critical to get the next-OID setting right.

-O mxoff
--multixact-offset=mxoff

Manually set the next multitransaction offset.

A safe value can be determined by looking for the numerically largest file name in the directory
pg_multixact/members under the data directory, adding one, and then multiplying by 52352
(0xCC80). The file names are in hexadecimal. There is no simple recipe such as the ones for other
options of appending zeroes.

--wal-segsize=wal_segment_size

Set the new WAL segment size, in megabytes. The value must be set to a power of 2 between 1 and
1024 (megabytes). See the same option of initdb for more information.

Note

While pg_resetwal will set the WAL starting address beyond the latest existing WAL
segment file, some segment size changes can cause previous WAL file names to be reused. It
is recommended to use -l together with this option to manually set the WAL starting address
if WAL file name overlap will cause problems with your archiving strategy.

-x xid
--next-transaction-id=xid

Manually set the next transaction ID.

A safe value can be determined by looking for the numerically largest file name in the directory
pg_xact under the data directory, adding one, and then multiplying by 1048576 (0x100000). Note
that the file names are in hexadecimal. It is usually easiest to specify the option value in hexadecimal
too. For example, if 0011 is the largest entry in pg_xact, -x 0x1200000 will work (five trailing
zeroes provide the proper multiplier).

Notes
This command must not be used when the server is running. pg_resetwal will refuse to start up if it
finds a server lock file in the data directory. If the server crashed then a lock file might have been left
behind; in that case you can remove the lock file to allow pg_resetwal to run. But before you do so,
make doubly certain that there is no server process still alive.

2069

pg_resetwal

pg_resetwal works only with servers of the same major version.

See Also
pg_controldata

2070

pg_rewind
pg_rewind — synchronize a PostgreSQL data directory with another data directory that was forked from it

Synopsis
pg_rewind [option...] { -D | --target-pgdata } directory { --source-
pgdata=directory | --source-server=connstr }

Description
pg_rewind is a tool for synchronizing a PostgreSQL cluster with another copy of the same cluster, after
the clusters' timelines have diverged. A typical scenario is to bring an old master server back online after
failover as a standby that follows the new master.

The result is equivalent to replacing the target data directory with the source one. Only changed blocks
from relation files are copied; all other files are copied in full, including configuration files. The advantage
of pg_rewind over taking a new base backup, or tools like rsync, is that pg_rewind does not require reading
through unchanged blocks in the cluster. This makes it a lot faster when the database is large and only a
small fraction of blocks differ between the clusters.

pg_rewind examines the timeline histories of the source and target clusters to determine the point where
they diverged, and expects to find WAL in the target cluster's pg_wal directory reaching all the way
back to the point of divergence. The point of divergence can be found either on the target timeline, the
source timeline, or their common ancestor. In the typical failover scenario where the target cluster was
shut down soon after the divergence, this is not a problem, but if the target cluster ran for a long time after
the divergence, the old WAL files might no longer be present. In that case, they can be manually copied
from the WAL archive to the pg_wal directory, or fetched on startup by configuring recovery.conf.
The use of pg_rewind is not limited to failover, e.g. a standby server can be promoted, run some write
transactions, and then rewinded to become a standby again.

When the target server is started for the first time after running pg_rewind, it will go into recovery mode
and replay all WAL generated in the source server after the point of divergence. If some of the WAL was
no longer available in the source server when pg_rewind was run, and therefore could not be copied by
the pg_rewind session, it must be made available when the target server is started. This can be done by
creating a recovery.conf file in the target data directory with a suitable restore_command.

pg_rewind requires that the target server either has the wal_log_hints option enabled in
postgresql.conf or data checksums enabled when the cluster was initialized with initdb. Neither of
these are currently on by default. full_page_writes must also be set to on, but is enabled by default.

Warning

If pg_rewind fails while processing, then the data folder of the target is likely not in a state that
can be recovered. In such a case, taking a new fresh backup is recommended.

pg_rewind will fail immediately if it finds files it cannot write directly to. This can happen for
example when the source and the target server use the same file mapping for read-only SSL keys
and certificates. If such files are present on the target server it is recommended to remove them
before running pg_rewind. After doing the rewind, some of those files may have been copied from

2071

pg_rewind

the source, in which case it may be necessary to remove the data copied and restore back the set
of links used before the rewind.

Options
pg_rewind accepts the following command-line arguments:

-D directory
--target-pgdata=directory

This option specifies the target data directory that is synchronized with the source. The target server
must be shut down cleanly before running pg_rewind

--source-pgdata=directory

Specifies the file system path to the data directory of the source server to synchronize the target with.
This option requires the source server to be cleanly shut down.

--source-server=connstr

Specifies a libpq connection string to connect to the source PostgreSQL server to synchronize the
target with. The connection must be a normal (non-replication) connection with superuser access. This
option requires the source server to be running and not in recovery mode.

-n
--dry-run

Do everything except actually modifying the target directory.

-P
--progress

Enables progress reporting. Turning this on will deliver an approximate progress report while copying
data from the source cluster.

--debug

Print verbose debugging output that is mostly useful for developers debugging pg_rewind.

-V
--version

Display version information, then exit.

-?
--help

Show help, then exit.

Environment
When --source-server option is used, pg_rewind also uses the environment variables supported by
libpq (see Section 34.14).

2072

pg_rewind

Notes

How it works

The basic idea is to copy all file system-level changes from the source cluster to the target cluster:

1. Scan the WAL log of the target cluster, starting from the last checkpoint before the point where the
source cluster's timeline history forked off from the target cluster. For each WAL record, record each
data block that was touched. This yields a list of all the data blocks that were changed in the target
cluster, after the source cluster forked off.

2. Copy all those changed blocks from the source cluster to the target cluster, either using direct file
system access (--source-pgdata) or SQL (--source-server).

3. Copy all other files such as pg_xact and configuration files from the source cluster
to the target cluster (everything except the relation files). Similarly to base backups, the
contents of the directories pg_dynshmem/, pg_notify/, pg_replslot/, pg_serial/,
pg_snapshots/, pg_stat_tmp/, and pg_subtrans/ are omitted from the data copied
from the source cluster. Any file or directory beginning with pgsql_tmp is omitted, as well
as are backup_label, tablespace_map, pg_internal.init, postmaster.opts and
postmaster.pid.

4. Apply the WAL from the source cluster, starting from the checkpoint created at failover. (Strictly
speaking, pg_rewind doesn't apply the WAL, it just creates a backup label file that makes PostgreSQL
start by replaying all WAL from that checkpoint forward.)

2073

pg_test_fsync
pg_test_fsync — determine fastest wal_sync_method for PostgreSQL

Synopsis
pg_test_fsync [option...]

Description
pg_test_fsync is intended to give you a reasonable idea of what the fastest wal_sync_method is on your
specific system, as well as supplying diagnostic information in the event of an identified I/O problem.
However, differences shown by pg_test_fsync might not make any significant difference in real database
throughput, especially since many database servers are not speed-limited by their write-ahead logs.
pg_test_fsync reports average file sync operation time in microseconds for each wal_sync_method,
which can also be used to inform efforts to optimize the value of commit_delay.

Options
pg_test_fsync accepts the following command-line options:

-f
--filename

Specifies the file name to write test data in. This file should be in the same file system that
the pg_wal directory is or will be placed in. (pg_wal contains the WAL files.) The default is
pg_test_fsync.out in the current directory.

-s
--secs-per-test

Specifies the number of seconds for each test. The more time per test, the greater the test's accuracy,
but the longer it takes to run. The default is 5 seconds, which allows the program to complete in under
2 minutes.

-V
--version

Print the pg_test_fsync version and exit.

-?
--help

Show help about pg_test_fsync command line arguments, and exit.

See Also
postgres

2074

pg_test_timing
pg_test_timing — measure timing overhead

Synopsis
pg_test_timing [option...]

Description
pg_test_timing is a tool to measure the timing overhead on your system and confirm that the system time
never moves backwards. Systems that are slow to collect timing data can give less accurate EXPLAIN
ANALYZE results.

Options
pg_test_timing accepts the following command-line options:

-d duration
--duration=duration

Specifies the test duration, in seconds. Longer durations give slightly better accuracy, and are more
likely to discover problems with the system clock moving backwards. The default test duration is 3
seconds.

-V
--version

Print the pg_test_timing version and exit.

-?
--help

Show help about pg_test_timing command line arguments, and exit.

Usage

Interpreting results

Good results will show most (>90%) individual timing calls take less than one microsecond. Average per
loop overhead will be even lower, below 100 nanoseconds. This example from an Intel i7-860 system
using a TSC clock source shows excellent performance:

Testing timing overhead for 3 seconds.
Per loop time including overhead: 35.96 ns
Histogram of timing durations:
 < us % of total count
 1 96.40465 80435604
 2 3.59518 2999652
 4 0.00015 126

2075

pg_test_timing

 8 0.00002 13
 16 0.00000 2

Note that different units are used for the per loop time than the histogram. The loop can have resolution
within a few nanoseconds (ns), while the individual timing calls can only resolve down to one microsecond
(us).

Measuring executor timing overhead

When the query executor is running a statement using EXPLAIN ANALYZE, individual operations are
timed as well as showing a summary. The overhead of your system can be checked by counting rows with
the psql program:

CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
\timing
SELECT COUNT(*) FROM t;
EXPLAIN ANALYZE SELECT COUNT(*) FROM t;

The i7-860 system measured runs the count query in 9.8 ms while the EXPLAIN ANALYZE version takes
16.6 ms, each processing just over 100,000 rows. That 6.8 ms difference means the timing overhead per
row is 68 ns, about twice what pg_test_timing estimated it would be. Even that relatively small amount of
overhead is making the fully timed count statement take almost 70% longer. On more substantial queries,
the timing overhead would be less problematic.

Changing time sources

On some newer Linux systems, it's possible to change the clock source used to collect timing data at any
time. A second example shows the slowdown possible from switching to the slower acpi_pm time source,
on the same system used for the fast results above:

cat /sys/devices/system/clocksource/clocksource0/
available_clocksource
tsc hpet acpi_pm
echo acpi_pm > /sys/devices/system/clocksource/clocksource0/
current_clocksource
pg_test_timing
Per loop time including overhead: 722.92 ns
Histogram of timing durations:
 < us % of total count
 1 27.84870 1155682
 2 72.05956 2990371
 4 0.07810 3241
 8 0.01357 563
 16 0.00007 3

In this configuration, the sample EXPLAIN ANALYZE above takes 115.9 ms. That's 1061 ns of timing
overhead, again a small multiple of what's measured directly by this utility. That much timing overhead
means the actual query itself is only taking a tiny fraction of the accounted for time, most of it is being
consumed in overhead instead. In this configuration, any EXPLAIN ANALYZE totals involving many
timed operations would be inflated significantly by timing overhead.

FreeBSD also allows changing the time source on the fly, and it logs information about the timer selected
during boot:

2076

pg_test_timing

dmesg | grep "Timecounter"
Timecounter "ACPI-fast" frequency 3579545 Hz quality 900
Timecounter "i8254" frequency 1193182 Hz quality 0
Timecounters tick every 10.000 msec
Timecounter "TSC" frequency 2531787134 Hz quality 800
sysctl kern.timecounter.hardware=TSC
kern.timecounter.hardware: ACPI-fast -> TSC

Other systems may only allow setting the time source on boot. On older Linux systems the "clock" kernel
setting is the only way to make this sort of change. And even on some more recent ones, the only option
you'll see for a clock source is "jiffies". Jiffies are the older Linux software clock implementation, which
can have good resolution when it's backed by fast enough timing hardware, as in this example:

$ cat /sys/devices/system/clocksource/clocksource0/
available_clocksource
jiffies
$ dmesg | grep time.c
time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
time.c: Detected 2400.153 MHz processor.
$ pg_test_timing
Testing timing overhead for 3 seconds.
Per timing duration including loop overhead: 97.75 ns
Histogram of timing durations:
 < us % of total count
 1 90.23734 27694571
 2 9.75277 2993204
 4 0.00981 3010
 8 0.00007 22
 16 0.00000 1
 32 0.00000 1

Clock hardware and timing accuracy

Collecting accurate timing information is normally done on computers using hardware clocks with various
levels of accuracy. With some hardware the operating systems can pass the system clock time almost
directly to programs. A system clock can also be derived from a chip that simply provides timing interrupts,
periodic ticks at some known time interval. In either case, operating system kernels provide a clock source
that hides these details. But the accuracy of that clock source and how quickly it can return results varies
based on the underlying hardware.

Inaccurate time keeping can result in system instability. Test any change to the clock source very carefully.
Operating system defaults are sometimes made to favor reliability over best accuracy. And if you are using
a virtual machine, look into the recommended time sources compatible with it. Virtual hardware faces
additional difficulties when emulating timers, and there are often per operating system settings suggested
by vendors.

The Time Stamp Counter (TSC) clock source is the most accurate one available on current generation
CPUs. It's the preferred way to track the system time when it's supported by the operating system and
the TSC clock is reliable. There are several ways that TSC can fail to provide an accurate timing source,
making it unreliable. Older systems can have a TSC clock that varies based on the CPU temperature,
making it unusable for timing. Trying to use TSC on some older multicore CPUs can give a reported
time that's inconsistent among multiple cores. This can result in the time going backwards, a problem

2077

pg_test_timing

this program checks for. And even the newest systems can fail to provide accurate TSC timing with very
aggressive power saving configurations.

Newer operating systems may check for the known TSC problems and switch to a slower, more stable
clock source when they are seen. If your system supports TSC time but doesn't default to that, it may be
disabled for a good reason. And some operating systems may not detect all the possible problems correctly,
or will allow using TSC even in situations where it's known to be inaccurate.

The High Precision Event Timer (HPET) is the preferred timer on systems where it's available and TSC
is not accurate. The timer chip itself is programmable to allow up to 100 nanosecond resolution, but you
may not see that much accuracy in your system clock.

Advanced Configuration and Power Interface (ACPI) provides a Power Management (PM) Timer, which
Linux refers to as the acpi_pm. The clock derived from acpi_pm will at best provide 300 nanosecond
resolution.

Timers used on older PC hardware include the 8254 Programmable Interval Timer (PIT), the real-time
clock (RTC), the Advanced Programmable Interrupt Controller (APIC) timer, and the Cyclone timer.
These timers aim for millisecond resolution.

See Also
EXPLAIN

2078

pg_upgrade
pg_upgrade — upgrade a PostgreSQL server instance

Synopsis
pg_upgrade -b oldbindir -B newbindir -d oldconfigdir -D newconfigdir
[option...]

Description
pg_upgrade (formerly called pg_migrator) allows data stored in PostgreSQL data files to be upgraded
to a later PostgreSQL major version without the data dump/reload typically required for major version
upgrades, e.g. from 9.5.8 to 9.6.4 or from 10.7 to 11.2. It is not required for minor version upgrades, e.g.
from 9.6.2 to 9.6.3 or from 10.1 to 10.2.

Major PostgreSQL releases regularly add new features that often change the layout of the system tables,
but the internal data storage format rarely changes. pg_upgrade uses this fact to perform rapid upgrades
by creating new system tables and simply reusing the old user data files. If a future major release ever
changes the data storage format in a way that makes the old data format unreadable, pg_upgrade will not
be usable for such upgrades. (The community will attempt to avoid such situations.)

pg_upgrade does its best to make sure the old and new clusters are binary-compatible, e.g. by checking for
compatible compile-time settings, including 32/64-bit binaries. It is important that any external modules
are also binary compatible, though this cannot be checked by pg_upgrade.

pg_upgrade supports upgrades from 8.4.X and later to the current major release of PostgreSQL, including
snapshot and beta releases.

Options
pg_upgrade accepts the following command-line arguments:

-b bindir
--old-bindir=bindir

the old PostgreSQL executable directory; environment variable PGBINOLD

-B bindir
--new-bindir=bindir

the new PostgreSQL executable directory; environment variable PGBINNEW

-c
--check

check clusters only, don't change any data

-d configdir
--old-datadir=configdir

the old database cluster configuration directory; environment variable PGDATAOLD

2079

pg_upgrade

-D configdir
--new-datadir=configdir

the new database cluster configuration directory; environment variable PGDATANEW

-j
--jobs

number of simultaneous processes or threads to use

-k
--link

use hard links instead of copying files to the new cluster

-o options
--old-options options

options to be passed directly to the old postgres command; multiple option invocations are
appended

-O options
--new-options options

options to be passed directly to the new postgres command; multiple option invocations are
appended

-p port
--old-port=port

the old cluster port number; environment variable PGPORTOLD

-P port
--new-port=port

the new cluster port number; environment variable PGPORTNEW

-r
--retain

retain SQL and log files even after successful completion

-U username
--username=username

cluster's install user name; environment variable PGUSER

-v
--verbose

enable verbose internal logging

-V
--version

display version information, then exit

-?
--help

show help, then exit

2080

pg_upgrade

Usage
These are the steps to perform an upgrade with pg_upgrade:

1. Optionally move the old cluster

If you are using a version-specific installation directory, e.g. /opt/PostgreSQL/11, you do not
need to move the old cluster. The graphical installers all use version-specific installation directories.

If your installation directory is not version-specific, e.g. /usr/local/pgsql, it is necessary to
move the current PostgreSQL install directory so it does not interfere with the new PostgreSQL
installation. Once the current PostgreSQL server is shut down, it is safe to rename the PostgreSQL
installation directory; assuming the old directory is /usr/local/pgsql, you can do:

mv /usr/local/pgsql /usr/local/pgsql.old

to rename the directory.

2. For source installs, build the new version

Build the new PostgreSQL source with configure flags that are compatible with the old cluster.
pg_upgrade will check pg_controldata to make sure all settings are compatible before starting
the upgrade.

3. Install the new PostgreSQL binaries

Install the new server's binaries and support files. pg_upgrade is included in a default installation.

For source installs, if you wish to install the new server in a custom location, use the prefix variable:

make prefix=/usr/local/pgsql.new install

4. Initialize the new PostgreSQL cluster

Initialize the new cluster using initdb. Again, use compatible initdb flags that match the old
cluster. Many prebuilt installers do this step automatically. There is no need to start the new cluster.

5. Install custom shared object files

Install any custom shared object files (or DLLs) used by the old cluster into the new cluster, e.g.
pgcrypto.so, whether they are from contrib or some other source. Do not install the schema
definitions, e.g. CREATE EXTENSION pgcrypto, because these will be upgraded from the old
cluster. Also, any custom full text search files (dictionary, synonym, thesaurus, stop words) must also
be copied to the new cluster.

6. Adjust authentication

pg_upgrade will connect to the old and new servers several times, so you might want to set
authentication to peer in pg_hba.conf or use a ~/.pgpass file (see Section 34.15).

7. Stop both servers

Make sure both database servers are stopped using, on Unix, e.g.:

pg_ctl -D /opt/PostgreSQL/9.6 stop

2081

pg_upgrade

pg_ctl -D /opt/PostgreSQL/11 stop

or on Windows, using the proper service names:

NET STOP postgresql-9.6
NET STOP postgresql-11

Streaming replication and log-shipping standby servers can remain running until a later step.

8. Prepare for standby server upgrades

If you are upgrading standby servers using methods outlined in section Step 10, verify that the old
standby servers are caught up by running pg_controldata against the old primary and standby clusters.
Verify that the “Latest checkpoint location” values match in all clusters. (There will be a mismatch
if old standby servers were shut down before the old primary or if the old standby servers are still
running.) Also, change wal_level to replica in the postgresql.conf file on the new
primary cluster.

9. Run pg_upgrade

Always run the pg_upgrade binary of the new server, not the old one. pg_upgrade requires the
specification of the old and new cluster's data and executable (bin) directories. You can also specify
user and port values, and whether you want the data files linked instead of the default copy behavior.

If you use link mode, the upgrade will be much faster (no file copying) and use less disk space, but you
will not be able to access your old cluster once you start the new cluster after the upgrade. Link mode
also requires that the old and new cluster data directories be in the same file system. (Tablespaces
and pg_wal can be on different file systems.) See pg_upgrade --help for a full list of options.

The --jobs option allows multiple CPU cores to be used for copying/linking of files and to dump
and reload database schemas in parallel; a good place to start is the maximum of the number of CPU
cores and tablespaces. This option can dramatically reduce the time to upgrade a multi-database server
running on a multiprocessor machine.

For Windows users, you must be logged into an administrative account, and then start a shell as the
postgres user and set the proper path:

RUNAS /USER:postgres "CMD.EXE"
SET PATH=%PATH%;C:\Program Files\PostgreSQL\11\bin;

and then run pg_upgrade with quoted directories, e.g.:

pg_upgrade.exe
 --old-datadir "C:/Program Files/PostgreSQL/9.6/data"
 --new-datadir "C:/Program Files/PostgreSQL/11/data"
 --old-bindir "C:/Program Files/PostgreSQL/9.6/bin"
 --new-bindir "C:/Program Files/PostgreSQL/11/bin"

Once started, pg_upgrade will verify the two clusters are compatible and then do the upgrade. You
can use pg_upgrade --check to perform only the checks, even if the old server is still running.
pg_upgrade --check will also outline any manual adjustments you will need to make after the
upgrade. If you are going to be using link mode, you should use the --link option with --check to
enable link-mode-specific checks. pg_upgrade requires write permission in the current directory.

2082

pg_upgrade

Obviously, no one should be accessing the clusters during the upgrade. pg_upgrade defaults to running
servers on port 50432 to avoid unintended client connections. You can use the same port number for
both clusters when doing an upgrade because the old and new clusters will not be running at the same
time. However, when checking an old running server, the old and new port numbers must be different.

If an error occurs while restoring the database schema, pg_upgrade will exit and you will have
to revert to the old cluster as outlined in Step 16 below. To try pg_upgrade again, you will need
to modify the old cluster so the pg_upgrade schema restore succeeds. If the problem is a contrib
module, you might need to uninstall the contrib module from the old cluster and install it in the
new cluster after the upgrade, assuming the module is not being used to store user data.

10. Upgrade Streaming Replication and Log-Shipping standby servers

If you used link mode and have Streaming Replication (see Section 26.2.5) or Log-Shipping (see
Section 26.2) standby servers, you can follow these steps to quickly upgrade them. You will not be
running pg_upgrade on the standby servers, but rather rsync on the primary. Do not start any servers
yet.

If you did not use link mode, do not have or do not want to use rsync, or want an easier solution, skip
the instructions in this section and simply recreate the standby servers once pg_upgrade completes
and the new primary is running.

a. Install the new PostgreSQL binaries on standby servers

Make sure the new binaries and support files are installed on all standby servers.

b. Make sure the new standby data directories do not exist

Make sure the new standby data directories do not exist or are empty. If initdb was run, delete
the standby servers' new data directories.

c. Install custom shared object files

Install the same custom shared object files on the new standbys that you installed in the new
primary cluster.

d. Stop standby servers

If the standby servers are still running, stop them now using the above instructions.

e. Save configuration files

Save any configuration files from the old standbys' configuration directories you need to keep,
e.g. postgresql.conf, recovery.conf, because these will be overwritten or removed
in the next step.

f. Run rsync

When using link mode, standby servers can be quickly upgraded using rsync. To accomplish this,
from a directory on the primary server that is above the old and new database cluster directories,
run this on the primary for each standby server:

rsync --archive --delete --hard-links --size-only --no-inc-
recursive old_cluster new_cluster remote_dir

2083

pg_upgrade

where old_cluster and new_cluster are relative to the current directory on the primary,
and remote_dir is above the old and new cluster directories on the standby. The directory
structure under the specified directories on the primary and standbys must match. Consult the
rsync manual page for details on specifying the remote directory, e.g.

rsync --archive --delete --hard-links --size-only --no-inc-
recursive /opt/PostgreSQL/9.5 \
 /opt/PostgreSQL/9.6 standby.example.com:/opt/PostgreSQL

You can verify what the command will do using rsync's --dry-run option. While rsync must
be run on the primary for at least one standby, it is possible to run rsync on an upgraded standby
to upgrade other standbys, as long as the upgraded standby has not been started.

What this does is to record the links created by pg_upgrade's link mode that connect files in
the old and new clusters on the primary server. It then finds matching files in the standby's old
cluster and creates links for them in the standby's new cluster. Files that were not linked on the
primary are copied from the primary to the standby. (They are usually small.) This provides
rapid standby upgrades. Unfortunately, rsync needlessly copies files associated with temporary
and unlogged tables because these files don't normally exist on standby servers.

If you have tablespaces, you will need to run a similar rsync command for each tablespace
directory, e.g.:

rsync --archive --delete --hard-links --size-only --no-inc-
recursive /vol1/pg_tblsp/PG_9.5_201510051 \
 /vol1/pg_tblsp/PG_9.6_201608131 standby.example.com:/
vol1/pg_tblsp

If you have relocated pg_wal outside the data directories, rsync must be run on those directories
too.

g. Configure streaming replication and log-shipping standby servers

Configure the servers for log shipping. (You do not need to run pg_start_backup() and
pg_stop_backup() or take a file system backup as the standbys are still synchronized with
the primary.)

11. Restore pg_hba.conf

If you modified pg_hba.conf, restore its original settings. It might also be necessary to adjust
other configuration files in the new cluster to match the old cluster, e.g. postgresql.conf.

12. Start the new server

The new server can now be safely started, and then any rsync'ed standby servers.

13. Post-Upgrade processing

If any post-upgrade processing is required, pg_upgrade will issue warnings as it completes. It will
also generate script files that must be run by the administrator. The script files will connect to each
database that needs post-upgrade processing. Each script should be run using:

psql --username=postgres --file=script.sql postgres

2084

pg_upgrade

The scripts can be run in any order and can be deleted once they have been run.

Caution

In general it is unsafe to access tables referenced in rebuild scripts until the rebuild scripts
have run to completion; doing so could yield incorrect results or poor performance. Tables
not referenced in rebuild scripts can be accessed immediately.

14. Statistics

Because optimizer statistics are not transferred by pg_upgrade, you will be instructed to run a
command to regenerate that information at the end of the upgrade. You might need to set connection
parameters to match your new cluster.

15. Delete old cluster

Once you are satisfied with the upgrade, you can delete the old cluster's data directories by running
the script mentioned when pg_upgrade completes. (Automatic deletion is not possible if you
have user-defined tablespaces inside the old data directory.) You can also delete the old installation
directories (e.g. bin, share).

16. Reverting to old cluster

If, after running pg_upgrade, you wish to revert to the old cluster, there are several options:

• If you ran pg_upgrade with --check, no modifications were made to the old cluster and you
can re-use it anytime.

• If you ran pg_upgrade with --link, the data files are shared between the old and new cluster.
If you started the new cluster, the new server has written to those shared files and it is unsafe to
use the old cluster.

• If you ran pg_upgrade without --link or did not start the new server, the old cluster was
not modified except that, if linking started, a .old suffix was appended to $PGDATA/global/
pg_control. To reuse the old cluster, possibly remove the .old suffix from $PGDATA/
global/pg_control; you can then restart the old cluster.

Notes
pg_upgrade does not support upgrading of databases containing table columns using these reg* OID-
referencing system data types: regproc, regprocedure, regoper, regoperator, regconfig,
and regdictionary. (regtype can be upgraded.)

All failure, rebuild, and reindex cases will be reported by pg_upgrade if they affect your installation; post-
upgrade scripts to rebuild tables and indexes will be generated automatically. If you are trying to automate
the upgrade of many clusters, you should find that clusters with identical database schemas require the
same post-upgrade steps for all cluster upgrades; this is because the post-upgrade steps are based on the
database schemas, and not user data.

For deployment testing, create a schema-only copy of the old cluster, insert dummy data, and upgrade that.

If you are upgrading a pre-PostgreSQL 9.2 cluster that uses a configuration-file-only directory, you must
pass the real data directory location to pg_upgrade, and pass the configuration directory location to the
server, e.g. -d /real-data-directory -o '-D /configuration-directory'.

2085

pg_upgrade

If using a pre-9.1 old server that is using a non-default Unix-domain socket directory or a default that
differs from the default of the new cluster, set PGHOST to point to the old server's socket location. (This
is not relevant on Windows.)

If you want to use link mode and you do not want your old cluster to be modified when the new cluster
is started, make a copy of the old cluster and upgrade that in link mode. To make a valid copy of the old
cluster, use rsync to create a dirty copy of the old cluster while the server is running, then shut down the
old server and run rsync --checksum again to update the copy with any changes to make it consistent.
(--checksum is necessary because rsync only has file modification-time granularity of one second.)
You might want to exclude some files, e.g. postmaster.pid, as documented in Section 25.3.3. If your
file system supports file system snapshots or copy-on-write file copies, you can use that to make a backup
of the old cluster and tablespaces, though the snapshot and copies must be created simultaneously or while
the database server is down.

See Also
initdb, pg_ctl, pg_dump, postgres

2086

pg_verify_checksums
pg_verify_checksums — verify data checksums in a PostgreSQL database cluster

Synopsis
pg_verify_checksums [option...] [[-D | --pgdata] datadir]

Description
pg_verify_checksums verifies data checksums in a PostgreSQL cluster. The server must be shut
down cleanly before running pg_verify_checksums. The exit status is zero if there are no checksum errors,
otherwise nonzero.

Options
The following command-line options are available:

-D directory
--pgdata=directory

Specifies the directory where the database cluster is stored.

-v
--verbose

Enable verbose output. Lists all checked files.

-r relfilenode

Only validate checksums in the relation with specified relfilenode.

-V
--version

Print the pg_verify_checksums version and exit.

-?
--help

Show help about pg_verify_checksums command line arguments, and exit.

Environment
PGDATA

Specifies the directory where the database cluster is stored; can be overridden using the -D option.

2087

pg_waldump
pg_waldump — display a human-readable rendering of the write-ahead log of a PostgreSQL database
cluster

Synopsis
pg_waldump [option...] [startseg [endseg]]

Description
pg_waldump displays the write-ahead log (WAL) and is mainly useful for debugging or educational
purposes.

This utility can only be run by the user who installed the server, because it requires read-only access to
the data directory.

Options
The following command-line options control the location and format of the output:

startseg

Start reading at the specified log segment file. This implicitly determines the path in which files will
be searched for, and the timeline to use.

endseg

Stop after reading the specified log segment file.

-b
--bkp-details

Output detailed information about backup blocks.

-e end
--end=end

Stop reading at the specified WAL location, instead of reading to the end of the log stream.

-f
--follow

After reaching the end of valid WAL, keep polling once per second for new WAL to appear.

-n limit
--limit=limit

Display the specified number of records, then stop.

-p path
--path=path

Specifies a directory to search for log segment files or a directory with a pg_wal subdirectory that
contains such files. The default is to search in the current directory, the pg_wal subdirectory of the
current directory, and the pg_wal subdirectory of PGDATA.

2088

pg_waldump

-r rmgr
--rmgr=rmgr

Only display records generated by the specified resource manager. If list is passed as name, print
a list of valid resource manager names, and exit.

-s start
--start=start

WAL location at which to start reading. The default is to start reading the first valid log record found
in the earliest file found.

-t timeline
--timeline=timeline

Timeline from which to read log records. The default is to use the value in startseg, if that is
specified; otherwise, the default is 1.

-V
--version

Print the pg_waldump version and exit.

-x xid
--xid=xid

Only display records marked with the given transaction ID.

-z
--stats[=record]

Display summary statistics (number and size of records and full-page images) instead of individual
records. Optionally generate statistics per-record instead of per-rmgr.

-?
--help

Show help about pg_waldump command line arguments, and exit.

Notes
Can give wrong results when the server is running.

Only the specified timeline is displayed (or the default, if none is specified). Records in other timelines
are ignored.

pg_waldump cannot read WAL files with suffix .partial. If those files need to be read, .partial
suffix needs to be removed from the file name.

See Also
Section 30.5

2089

postgres
postgres — PostgreSQL database server

Synopsis

postgres [option...]

Description

postgres is the PostgreSQL database server. In order for a client application to access a database it
connects (over a network or locally) to a running postgres instance. The postgres instance then
starts a separate server process to handle the connection.

One postgres instance always manages the data of exactly one database cluster. A database cluster is
a collection of databases that is stored at a common file system location (the “data area”). More than one
postgres instance can run on a system at one time, so long as they use different data areas and different
communication ports (see below). When postgres starts it needs to know the location of the data area.
The location must be specified by the -D option or the PGDATA environment variable; there is no default.
Typically, -D or PGDATA points directly to the data area directory created by initdb. Other possible file
layouts are discussed in Section 19.2.

By default postgres starts in the foreground and prints log messages to the standard error stream. In
practical applications postgres should be started as a background process, perhaps at boot time.

The postgres command can also be called in single-user mode. The primary use for this mode is during
bootstrapping by initdb. Sometimes it is used for debugging or disaster recovery; note that running a single-
user server is not truly suitable for debugging the server, since no realistic interprocess communication
and locking will happen. When invoked in single-user mode from the shell, the user can enter queries and
the results will be printed to the screen, but in a form that is more useful for developers than end users.
In the single-user mode, the session user will be set to the user with ID 1, and implicit superuser powers
are granted to this user. This user does not actually have to exist, so the single-user mode can be used to
manually recover from certain kinds of accidental damage to the system catalogs.

Options

postgres accepts the following command-line arguments. For a detailed discussion of the options
consult Chapter 19. You can save typing most of these options by setting up a configuration file. Some
(safe) options can also be set from the connecting client in an application-dependent way to apply only for
that session. For example, if the environment variable PGOPTIONS is set, then libpq-based clients will
pass that string to the server, which will interpret it as postgres command-line options.

General Purpose

-B nbuffers

Sets the number of shared buffers for use by the server processes. The default value of this parameter
is chosen automatically by initdb. Specifying this option is equivalent to setting the shared_buffers
configuration parameter.

2090

postgres

-c name=value

Sets a named run-time parameter. The configuration parameters supported by PostgreSQL are
described in Chapter 19. Most of the other command line options are in fact short forms of such a
parameter assignment. -c can appear multiple times to set multiple parameters.

-C name

Prints the value of the named run-time parameter, and exits. (See the -c option above for details.)
This can be used on a running server, and returns values from postgresql.conf, modified by
any parameters supplied in this invocation. It does not reflect parameters supplied when the cluster
was started.

This option is meant for other programs that interact with a server instance, such as pg_ctl, to
query configuration parameter values. User-facing applications should instead use SHOW or the
pg_settings view.

-d debug-level

Sets the debug level. The higher this value is set, the more debugging output is written to the server
log. Values are from 1 to 5. It is also possible to pass -d 0 for a specific session, which will prevent
the server log level of the parent postgres process from being propagated to this session.

-D datadir

Specifies the file system location of the database configuration files. See Section 19.2 for details.

-e

Sets the default date style to “European”, that is DMY ordering of input date fields. This also causes the
day to be printed before the month in certain date output formats. See Section 8.5 for more information.

-F

Disables fsync calls for improved performance, at the risk of data corruption in the event of a system
crash. Specifying this option is equivalent to disabling the fsync configuration parameter. Read the
detailed documentation before using this!

-h hostname

Specifies the IP host name or address on which postgres is to listen for TCP/IP connections from
client applications. The value can also be a comma-separated list of addresses, or * to specify listening
on all available interfaces. An empty value specifies not listening on any IP addresses, in which case
only Unix-domain sockets can be used to connect to the server. Defaults to listening only on localhost.
Specifying this option is equivalent to setting the listen_addresses configuration parameter.

-i

Allows remote clients to connect via TCP/IP (Internet domain) connections. Without this option, only
local connections are accepted. This option is equivalent to setting listen_addresses to * in
postgresql.conf or via -h.

This option is deprecated since it does not allow access to the full functionality of listen_addresses.
It's usually better to set listen_addresses directly.

-k directory

Specifies the directory of the Unix-domain socket on which postgres is to listen for connections
from client applications. The value can also be a comma-separated list of directories. An empty value

2091

postgres

specifies not listening on any Unix-domain sockets, in which case only TCP/IP sockets can be used
to connect to the server. The default value is normally /tmp, but that can be changed at build time.
Specifying this option is equivalent to setting the unix_socket_directories configuration parameter.

-l

Enables secure connections using SSL. PostgreSQL must have been compiled with support for SSL
for this option to be available. For more information on using SSL, refer to Section 18.9.

-N max-connections

Sets the maximum number of client connections that this server will accept. The default value of
this parameter is chosen automatically by initdb. Specifying this option is equivalent to setting the
max_connections configuration parameter.

-o extra-options

The command-line-style arguments specified in extra-options are passed to all server processes
started by this postgres process.

Spaces within extra-options are considered to separate arguments, unless escaped with a
backslash (\); write \\ to represent a literal backslash. Multiple arguments can also be specified via
multiple uses of -o.

The use of this option is obsolete; all command-line options for server processes can be specified
directly on the postgres command line.

-p port

Specifies the TCP/IP port or local Unix domain socket file extension on which postgres is to listen
for connections from client applications. Defaults to the value of the PGPORT environment variable,
or if PGPORT is not set, then defaults to the value established during compilation (normally 5432). If
you specify a port other than the default port, then all client applications must specify the same port
using either command-line options or PGPORT.

-s

Print time information and other statistics at the end of each command. This is useful for benchmarking
or for use in tuning the number of buffers.

-S work-mem

Specifies the amount of memory to be used by internal sorts and hashes before resorting to temporary
disk files. See the description of the work_mem configuration parameter in Section 19.4.1.

-V
--version

Print the postgres version and exit.

--name=value

Sets a named run-time parameter; a shorter form of -c.

--describe-config

This option dumps out the server's internal configuration variables, descriptions, and defaults in tab-
delimited COPY format. It is designed primarily for use by administration tools.

2092

postgres

-?
--help

Show help about postgres command line arguments, and exit.

Semi-internal Options

The options described here are used mainly for debugging purposes, and in some cases to assist with
recovery of severely damaged databases. There should be no reason to use them in a production database
setup. They are listed here only for use by PostgreSQL system developers. Furthermore, these options
might change or be removed in a future release without notice.

-f { s | i | o | b | t | n | m | h }

Forbids the use of particular scan and join methods: s and i disable sequential and index scans
respectively, o, b and t disable index-only scans, bitmap index scans, and TID scans respectively,
while n, m, and h disable nested-loop, merge and hash joins respectively.

Neither sequential scans nor nested-loop joins can be disabled completely; the -fs and -fn options
simply discourage the optimizer from using those plan types if it has any other alternative.

-n

This option is for debugging problems that cause a server process to die abnormally. The ordinary
strategy in this situation is to notify all other server processes that they must terminate and then
reinitialize the shared memory and semaphores. This is because an errant server process could
have corrupted some shared state before terminating. This option specifies that postgres will not
reinitialize shared data structures. A knowledgeable system programmer can then use a debugger to
examine shared memory and semaphore state.

-O

Allows the structure of system tables to be modified. This is used by initdb.

-P

Ignore system indexes when reading system tables, but still update the indexes when modifying the
tables. This is useful when recovering from damaged system indexes.

-t pa[rser] | pl[anner] | e[xecutor]

Print timing statistics for each query relating to each of the major system modules. This option cannot
be used together with the -s option.

-T

This option is for debugging problems that cause a server process to die abnormally. The ordinary
strategy in this situation is to notify all other server processes that they must terminate and then
reinitialize the shared memory and semaphores. This is because an errant server process could have
corrupted some shared state before terminating. This option specifies that postgres will stop all
other server processes by sending the signal SIGSTOP, but will not cause them to terminate. This
permits system programmers to collect core dumps from all server processes by hand.

-v protocol

Specifies the version number of the frontend/backend protocol to be used for a particular session. This
option is for internal use only.

2093

postgres

-W seconds

A delay of this many seconds occurs when a new server process is started, after it conducts the
authentication procedure. This is intended to give an opportunity to attach to the server process with
a debugger.

Options for Single-User Mode

The following options only apply to the single-user mode (see Single-User Mode).

--single

Selects the single-user mode. This must be the first argument on the command line.

database

Specifies the name of the database to be accessed. This must be the last argument on the command
line. If it is omitted it defaults to the user name.

-E

Echo all commands to standard output before executing them.

-j

Use semicolon followed by two newlines, rather than just newline, as the command entry terminator.

-r filename

Send all server log output to filename. This option is only honored when supplied as a command-
line option.

Environment
PGCLIENTENCODING

Default character encoding used by clients. (The clients can override this individually.) This value
can also be set in the configuration file.

PGDATA

Default data directory location

PGDATESTYLE

Default value of the DateStyle run-time parameter. (The use of this environment variable is
deprecated.)

PGPORT

Default port number (preferably set in the configuration file)

Diagnostics
A failure message mentioning semget or shmget probably indicates you need to configure your kernel
to provide adequate shared memory and semaphores. For more discussion see Section 18.4. You might

2094

postgres

be able to postpone reconfiguring your kernel by decreasing shared_buffers to reduce the shared memory
consumption of PostgreSQL, and/or by reducing max_connections to reduce the semaphore consumption.

A failure message suggesting that another server is already running should be checked carefully, for
example by using the command

$ ps ax | grep postgres

or

$ ps -ef | grep postgres

depending on your system. If you are certain that no conflicting server is running, you can remove the
lock file mentioned in the message and try again.

A failure message indicating inability to bind to a port might indicate that that port is already in use by
some non-PostgreSQL process. You might also get this error if you terminate postgres and immediately
restart it using the same port; in this case, you must simply wait a few seconds until the operating system
closes the port before trying again. Finally, you might get this error if you specify a port number that your
operating system considers to be reserved. For example, many versions of Unix consider port numbers
under 1024 to be “trusted” and only permit the Unix superuser to access them.

Notes
The utility command pg_ctl can be used to start and shut down the postgres server safely and
comfortably.

If at all possible, do not use SIGKILL to kill the main postgres server. Doing so will prevent
postgres from freeing the system resources (e.g., shared memory and semaphores) that it holds before
terminating. This might cause problems for starting a fresh postgres run.

To terminate the postgres server normally, the signals SIGTERM, SIGINT, or SIGQUIT can be used.
The first will wait for all clients to terminate before quitting, the second will forcefully disconnect all
clients, and the third will quit immediately without proper shutdown, resulting in a recovery run during
restart.

The SIGHUP signal will reload the server configuration files. It is also possible to send SIGHUP to an
individual server process, but that is usually not sensible.

To cancel a running query, send the SIGINT signal to the process running that command. To terminate
a backend process cleanly, send SIGTERM to that process. See also pg_cancel_backend and
pg_terminate_backend in Section 9.26.2 for the SQL-callable equivalents of these two actions.

The postgres server uses SIGQUIT to tell subordinate server processes to terminate without normal
cleanup. This signal should not be used by users. It is also unwise to send SIGKILL to a server process
— the main postgres process will interpret this as a crash and will force all the sibling processes to
quit as part of its standard crash-recovery procedure.

Bugs
The -- options will not work on FreeBSD or OpenBSD. Use -c instead. This is a bug in the affected
operating systems; a future release of PostgreSQL will provide a workaround if this is not fixed.

2095

postgres

Single-User Mode
To start a single-user mode server, use a command like

postgres --single -D /usr/local/pgsql/data other-options my_database

Provide the correct path to the database directory with -D, or make sure that the environment variable
PGDATA is set. Also specify the name of the particular database you want to work in.

Normally, the single-user mode server treats newline as the command entry terminator; there is no
intelligence about semicolons, as there is in psql. To continue a command across multiple lines, you must
type backslash just before each newline except the last one. The backslash and adjacent newline are both
dropped from the input command. Note that this will happen even when within a string literal or comment.

But if you use the -j command line switch, a single newline does not terminate command entry;
instead, the sequence semicolon-newline-newline does. That is, type a semicolon immediately followed
by a completely empty line. Backslash-newline is not treated specially in this mode. Again, there is no
intelligence about such a sequence appearing within a string literal or comment.

In either input mode, if you type a semicolon that is not just before or part of a command entry terminator,
it is considered a command separator. When you do type a command entry terminator, the multiple
statements you've entered will be executed as a single transaction.

To quit the session, type EOF (Control+D, usually). If you've entered any text since the last command
entry terminator, then EOF will be taken as a command entry terminator, and another EOF will be needed
to exit.

Note that the single-user mode server does not provide sophisticated line-editing features (no command
history, for example). Single-user mode also does not do any background processing, such as automatic
checkpoints or replication.

Examples
To start postgres in the background using default values, type:

$ nohup postgres >logfile 2>&1 </dev/null &

To start postgres with a specific port, e.g. 1234:

$ postgres -p 1234

To connect to this server using psql, specify this port with the -p option:

$ psql -p 1234

or set the environment variable PGPORT:

$ export PGPORT=1234
$ psql

Named run-time parameters can be set in either of these styles:

2096

postgres

$ postgres -c work_mem=1234
$ postgres --work-mem=1234

Either form overrides whatever setting might exist for work_mem in postgresql.conf. Notice that
underscores in parameter names can be written as either underscore or dash on the command line. Except
for short-term experiments, it's probably better practice to edit the setting in postgresql.conf than
to rely on a command-line switch to set a parameter.

See Also
initdb, pg_ctl

2097

postmaster
postmaster — PostgreSQL database server

Synopsis
postmaster [option...]

Description
postmaster is a deprecated alias of postgres.

See Also
postgres

2098

Part VII. Internals
This part contains assorted information that might be of use to PostgreSQL developers.

Table of Contents
51. Overview of PostgreSQL Internals .. 2105

51.1. The Path of a Query ... 2105
51.2. How Connections are Established ... 2106
51.3. The Parser Stage .. 2106

51.3.1. Parser .. 2106
51.3.2. Transformation Process ... 2107

51.4. The PostgreSQL Rule System .. 2107
51.5. Planner/Optimizer .. 2107

51.5.1. Generating Possible Plans ... 2108
51.6. Executor ... 2109

52. System Catalogs ... 2110
52.1. Overview .. 2110
52.2. pg_aggregate ... 2112
52.3. pg_am ... 2114
52.4. pg_amop ... 2115
52.5. pg_amproc ... 2116
52.6. pg_attrdef ... 2116
52.7. pg_attribute ... 2117
52.8. pg_authid ... 2120
52.9. pg_auth_members ... 2122
52.10. pg_cast ... 2122
52.11. pg_class ... 2123
52.12. pg_collation ... 2127
52.13. pg_constraint ... 2128
52.14. pg_conversion ... 2131
52.15. pg_database ... 2132
52.16. pg_db_role_setting ... 2134
52.17. pg_default_acl ... 2134
52.18. pg_depend ... 2135
52.19. pg_description ... 2136
52.20. pg_enum ... 2137
52.21. pg_event_trigger ... 2138
52.22. pg_extension ... 2138
52.23. pg_foreign_data_wrapper ... 2139
52.24. pg_foreign_server ... 2140
52.25. pg_foreign_table ... 2140
52.26. pg_index ... 2141
52.27. pg_inherits ... 2144
52.28. pg_init_privs ... 2144
52.29. pg_language ... 2145
52.30. pg_largeobject ... 2146
52.31. pg_largeobject_metadata ... 2147
52.32. pg_namespace ... 2147
52.33. pg_opclass ... 2147
52.34. pg_operator ... 2148
52.35. pg_opfamily ... 2149
52.36. pg_partitioned_table ... 2150
52.37. pg_pltemplate ... 2151
52.38. pg_policy ... 2152
52.39. pg_proc ... 2153
52.40. pg_publication ... 2157

2100

Internals

52.41. pg_publication_rel ... 2158
52.42. pg_range ... 2158
52.43. pg_replication_origin ... 2158
52.44. pg_rewrite ... 2159
52.45. pg_seclabel ... 2160
52.46. pg_sequence ... 2160
52.47. pg_shdepend ... 2161
52.48. pg_shdescription ... 2162
52.49. pg_shseclabel ... 2163
52.50. pg_statistic ... 2163
52.51. pg_statistic_ext ... 2165
52.52. pg_subscription ... 2166
52.53. pg_subscription_rel ... 2167
52.54. pg_tablespace ... 2167
52.55. pg_transform ... 2168
52.56. pg_trigger ... 2169
52.57. pg_ts_config ... 2170
52.58. pg_ts_config_map ... 2171
52.59. pg_ts_dict ... 2171
52.60. pg_ts_parser ... 2172
52.61. pg_ts_template ... 2172
52.62. pg_type ... 2173
52.63. pg_user_mapping ... 2180
52.64. System Views .. 2180
52.65. pg_available_extensions ... 2181
52.66. pg_available_extension_versions ... 2182
52.67. pg_config ... 2182
52.68. pg_cursors ... 2182
52.69. pg_file_settings ... 2183
52.70. pg_group ... 2184
52.71. pg_hba_file_rules ... 2184
52.72. pg_indexes ... 2185
52.73. pg_locks ... 2186
52.74. pg_matviews ... 2189
52.75. pg_policies ... 2189
52.76. pg_prepared_statements ... 2190
52.77. pg_prepared_xacts ... 2191
52.78. pg_publication_tables ... 2192
52.79. pg_replication_origin_status ... 2192
52.80. pg_replication_slots ... 2192
52.81. pg_roles ... 2194
52.82. pg_rules ... 2195
52.83. pg_seclabels ... 2195
52.84. pg_sequences ... 2196
52.85. pg_settings ... 2197
52.86. pg_shadow ... 2199
52.87. pg_stats ... 2200
52.88. pg_tables ... 2203
52.89. pg_timezone_abbrevs ... 2203
52.90. pg_timezone_names ... 2204
52.91. pg_user ... 2204
52.92. pg_user_mappings ... 2205
52.93. pg_views ... 2205

53. Frontend/Backend Protocol ... 2207

2101

Internals

53.1. Overview .. 2207
53.1.1. Messaging Overview .. 2207
53.1.2. Extended Query Overview .. 2208
53.1.3. Formats and Format Codes .. 2208

53.2. Message Flow ... 2209
53.2.1. Start-up .. 2209
53.2.2. Simple Query .. 2211
53.2.3. Extended Query .. 2214
53.2.4. Function Call .. 2217
53.2.5. COPY Operations .. 2218
53.2.6. Asynchronous Operations .. 2219
53.2.7. Canceling Requests in Progress .. 2220
53.2.8. Termination .. 2220
53.2.9. SSL Session Encryption .. 2221

53.3. SASL Authentication .. 2221
53.3.1. SCRAM-SHA-256 authentication ... 2222

53.4. Streaming Replication Protocol ... 2223
53.5. Logical Streaming Replication Protocol ... 2230

53.5.1. Logical Streaming Replication Parameters .. 2230
53.5.2. Logical Replication Protocol Messages .. 2230
53.5.3. Logical Replication Protocol Message Flow ... 2230

53.6. Message Data Types ... 2231
53.7. Message Formats ... 2231
53.8. Error and Notice Message Fields .. 2249
53.9. Logical Replication Message Formats .. 2251
53.10. Summary of Changes since Protocol 2.0 ... 2255

54. PostgreSQL Coding Conventions .. 2257
54.1. Formatting .. 2257
54.2. Reporting Errors Within the Server ... 2258
54.3. Error Message Style Guide .. 2261
54.4. Miscellaneous Coding Conventions ... 2265

55. Native Language Support ... 2267
55.1. For the Translator .. 2267

55.1.1. Requirements .. 2267
55.1.2. Concepts .. 2267
55.1.3. Creating and Maintaining Message Catalogs ... 2268
55.1.4. Editing the PO Files ... 2269

55.2. For the Programmer ... 2270
55.2.1. Mechanics .. 2270
55.2.2. Message-writing Guidelines ... 2271

56. Writing A Procedural Language Handler .. 2273
57. Writing A Foreign Data Wrapper .. 2276

57.1. Foreign Data Wrapper Functions .. 2276
57.2. Foreign Data Wrapper Callback Routines ... 2276

57.2.1. FDW Routines For Scanning Foreign Tables .. 2277
57.2.2. FDW Routines For Scanning Foreign Joins .. 2279
57.2.3. FDW Routines For Planning Post-Scan/Join Processing 2279
57.2.4. FDW Routines For Updating Foreign Tables .. 2280
57.2.5. FDW Routines For Row Locking ... 2285
57.2.6. FDW Routines for EXPLAIN .. 2287
57.2.7. FDW Routines for ANALYZE .. 2287
57.2.8. FDW Routines For IMPORT FOREIGN SCHEMA 2288
57.2.9. FDW Routines for Parallel Execution .. 2289
57.2.10. FDW Routines For reparameterization of paths 2290

2102

Internals

57.3. Foreign Data Wrapper Helper Functions .. 2290
57.4. Foreign Data Wrapper Query Planning .. 2291
57.5. Row Locking in Foreign Data Wrappers .. 2294

58. Writing A Table Sampling Method .. 2296
58.1. Sampling Method Support Functions ... 2297

59. Writing A Custom Scan Provider .. 2300
59.1. Creating Custom Scan Paths .. 2300

59.1.1. Custom Scan Path Callbacks ... 2301
59.2. Creating Custom Scan Plans .. 2301

59.2.1. Custom Scan Plan Callbacks ... 2302
59.3. Executing Custom Scans ... 2302

59.3.1. Custom Scan Execution Callbacks .. 2302
60. Genetic Query Optimizer ... 2305

60.1. Query Handling as a Complex Optimization Problem ... 2305
60.2. Genetic Algorithms .. 2305
60.3. Genetic Query Optimization (GEQO) in PostgreSQL .. 2306

60.3.1. Generating Possible Plans with GEQO .. 2307
60.3.2. Future Implementation Tasks for PostgreSQL GEQO 2307

60.4. Further Reading ... 2307
61. Index Access Method Interface Definition .. 2309

61.1. Basic API Structure for Indexes .. 2309
61.2. Index Access Method Functions ... 2311
61.3. Index Scanning .. 2317
61.4. Index Locking Considerations .. 2318
61.5. Index Uniqueness Checks .. 2319
61.6. Index Cost Estimation Functions ... 2321

62. Generic WAL Records .. 2324
63. B-Tree Indexes ... 2326

63.1. Introduction ... 2326
63.2. Behavior of B-Tree Operator Classes ... 2326
63.3. B-Tree Support Functions .. 2327
63.4. Implementation .. 2328

64. GiST Indexes ... 2329
64.1. Introduction ... 2329
64.2. Built-in Operator Classes ... 2329
64.3. Extensibility .. 2330
64.4. Implementation .. 2339

64.4.1. GiST buffering build .. 2339
64.5. Examples .. 2340

65. SP-GiST Indexes .. 2341
65.1. Introduction ... 2341
65.2. Built-in Operator Classes ... 2341
65.3. Extensibility .. 2342
65.4. Implementation .. 2350

65.4.1. SP-GiST Limits ... 2350
65.4.2. SP-GiST Without Node Labels .. 2350
65.4.3. “All-the-same” Inner Tuples .. 2351

65.5. Examples .. 2351
66. GIN Indexes .. 2352

66.1. Introduction ... 2352
66.2. Built-in Operator Classes ... 2352
66.3. Extensibility .. 2352
66.4. Implementation .. 2355

66.4.1. GIN Fast Update Technique .. 2355

2103

Internals

66.4.2. Partial Match Algorithm ... 2356
66.5. GIN Tips and Tricks .. 2356
66.6. Limitations .. 2357
66.7. Examples .. 2357

67. BRIN Indexes .. 2358
67.1. Introduction ... 2358

67.1.1. Index Maintenance ... 2358
67.2. Built-in Operator Classes ... 2359
67.3. Extensibility .. 2360

68. Database Physical Storage .. 2364
68.1. Database File Layout .. 2364
68.2. TOAST .. 2366

68.2.1. Out-of-line, on-disk TOAST storage ... 2367
68.2.2. Out-of-line, in-memory TOAST storage ... 2368

68.3. Free Space Map ... 2369
68.4. Visibility Map ... 2369
68.5. The Initialization Fork .. 2370
68.6. Database Page Layout ... 2370

68.6.1. Table Row Layout ... 2372
69. System Catalog Declarations and Initial Contents ... 2373

69.1. System Catalog Declaration Rules ... 2373
69.2. System Catalog Initial Data ... 2374

69.2.1. Data File Format ... 2374
69.2.2. OID Assignment .. 2376
69.2.3. OID Reference Lookup ... 2376
69.2.4. Recipes for Editing Data Files ... 2377

69.3. BKI File Format .. 2378
69.4. BKI Commands ... 2378
69.5. Structure of the Bootstrap BKI File ... 2379
69.6. BKI Example .. 2380

70. How the Planner Uses Statistics .. 2381
70.1. Row Estimation Examples ... 2381
70.2. Multivariate Statistics Examples ... 2387

70.2.1. Functional Dependencies ... 2387
70.2.2. Multivariate N-Distinct Counts .. 2388

70.3. Planner Statistics and Security .. 2389

2104

Chapter 51. Overview of PostgreSQL
Internals

Author

This chapter originated as part of [sim98], Stefan Simkovics' Master's Thesis prepared at Vienna
University of Technology under the direction of O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass.
Mag. Katrin Seyr.

This chapter gives an overview of the internal structure of the backend of PostgreSQL. After having read
the following sections you should have an idea of how a query is processed. This chapter does not aim to
provide a detailed description of the internal operation of PostgreSQL, as such a document would be very
extensive. Rather, this chapter is intended to help the reader understand the general sequence of operations
that occur within the backend from the point at which a query is received, to the point at which the results
are returned to the client.

51.1. The Path of a Query
Here we give a short overview of the stages a query has to pass in order to obtain a result.

1. A connection from an application program to the PostgreSQL server has to be established. The
application program transmits a query to the server and waits to receive the results sent back by the
server.

2. The parser stage checks the query transmitted by the application program for correct syntax and
creates a query tree.

3. The rewrite system takes the query tree created by the parser stage and looks for any rules (stored in
the system catalogs) to apply to the query tree. It performs the transformations given in the rule bodies.

One application of the rewrite system is in the realization of views. Whenever a query against a view
(i.e., a virtual table) is made, the rewrite system rewrites the user's query to a query that accesses the
base tables given in the view definition instead.

4. The planner/optimizer takes the (rewritten) query tree and creates a query plan that will be the input
to the executor.

It does so by first creating all possible paths leading to the same result. For example if there is an index
on a relation to be scanned, there are two paths for the scan. One possibility is a simple sequential
scan and the other possibility is to use the index. Next the cost for the execution of each path is
estimated and the cheapest path is chosen. The cheapest path is expanded into a complete plan that
the executor can use.

5. The executor recursively steps through the plan tree and retrieves rows in the way represented by
the plan. The executor makes use of the storage system while scanning relations, performs sorts and
joins, evaluates qualifications and finally hands back the rows derived.

In the following sections we will cover each of the above listed items in more detail to give a better
understanding of PostgreSQL's internal control and data structures.

2105

Overview of PostgreSQL Internals

51.2. How Connections are Established
PostgreSQL is implemented using a simple “process per user” client/server model. In this model there is
one client process connected to exactly one server process. As we do not know ahead of time how many
connections will be made, we have to use a master process that spawns a new server process every time a
connection is requested. This master process is called postgres and listens at a specified TCP/IP port for
incoming connections. Whenever a request for a connection is detected the postgres process spawns a
new server process. The server tasks communicate with each other using semaphores and shared memory
to ensure data integrity throughout concurrent data access.

The client process can be any program that understands the PostgreSQL protocol described in Chapter 53.
Many clients are based on the C-language library libpq, but several independent implementations of the
protocol exist, such as the Java JDBC driver.

Once a connection is established the client process can send a query to the backend (server). The query
is transmitted using plain text, i.e., there is no parsing done in the frontend (client). The server parses
the query, creates an execution plan, executes the plan and returns the retrieved rows to the client by
transmitting them over the established connection.

51.3. The Parser Stage
The parser stage consists of two parts:

• The parser defined in gram.y and scan.l is built using the Unix tools bison and flex.

• The transformation process does modifications and augmentations to the data structures returned by
the parser.

51.3.1. Parser
The parser has to check the query string (which arrives as plain text) for valid syntax. If the syntax is
correct a parse tree is built up and handed back; otherwise an error is returned. The parser and lexer are
implemented using the well-known Unix tools bison and flex.

The lexer is defined in the file scan.l and is responsible for recognizing identifiers, the SQL key words
etc. For every key word or identifier that is found, a token is generated and handed to the parser.

The parser is defined in the file gram.y and consists of a set of grammar rules and actions that are
executed whenever a rule is fired. The code of the actions (which is actually C code) is used to build up
the parse tree.

The file scan.l is transformed to the C source file scan.c using the program flex and gram.y is
transformed to gram.c using bison. After these transformations have taken place a normal C compiler can
be used to create the parser. Never make any changes to the generated C files as they will be overwritten
the next time flex or bison is called.

Note

The mentioned transformations and compilations are normally done automatically using the
makefiles shipped with the PostgreSQL source distribution.

2106

Overview of PostgreSQL Internals

A detailed description of bison or the grammar rules given in gram.y would be beyond the scope of
this paper. There are many books and documents dealing with flex and bison. You should be familiar
with bison before you start to study the grammar given in gram.y otherwise you won't understand what
happens there.

51.3.2. Transformation Process
The parser stage creates a parse tree using only fixed rules about the syntactic structure of SQL. It does not
make any lookups in the system catalogs, so there is no possibility to understand the detailed semantics of
the requested operations. After the parser completes, the transformation process takes the tree handed back
by the parser as input and does the semantic interpretation needed to understand which tables, functions,
and operators are referenced by the query. The data structure that is built to represent this information is
called the query tree.

The reason for separating raw parsing from semantic analysis is that system catalog lookups can only
be done within a transaction, and we do not wish to start a transaction immediately upon receiving a
query string. The raw parsing stage is sufficient to identify the transaction control commands (BEGIN,
ROLLBACK, etc), and these can then be correctly executed without any further analysis. Once we know
that we are dealing with an actual query (such as SELECT or UPDATE), it is okay to start a transaction if
we're not already in one. Only then can the transformation process be invoked.

The query tree created by the transformation process is structurally similar to the raw parse tree in most
places, but it has many differences in detail. For example, a FuncCall node in the parse tree represents
something that looks syntactically like a function call. This might be transformed to either a FuncExpr
or Aggref node depending on whether the referenced name turns out to be an ordinary function or an
aggregate function. Also, information about the actual data types of columns and expression results is
added to the query tree.

51.4. The PostgreSQL Rule System
PostgreSQL supports a powerful rule system for the specification of views and ambiguous view updates.
Originally the PostgreSQL rule system consisted of two implementations:

• The first one worked using row level processing and was implemented deep in the executor. The rule
system was called whenever an individual row had been accessed. This implementation was removed
in 1995 when the last official release of the Berkeley Postgres project was transformed into Postgres95.

• The second implementation of the rule system is a technique called query rewriting. The rewrite system
is a module that exists between the parser stage and the planner/optimizer. This technique is still
implemented.

The query rewriter is discussed in some detail in Chapter 41, so there is no need to cover it here. We
will only point out that both the input and the output of the rewriter are query trees, that is, there is no
change in the representation or level of semantic detail in the trees. Rewriting can be thought of as a form
of macro expansion.

51.5. Planner/Optimizer
The task of the planner/optimizer is to create an optimal execution plan. A given SQL query (and hence,
a query tree) can be actually executed in a wide variety of different ways, each of which will produce
the same set of results. If it is computationally feasible, the query optimizer will examine each of these
possible execution plans, ultimately selecting the execution plan that is expected to run the fastest.

2107

Overview of PostgreSQL Internals

Note

In some situations, examining each possible way in which a query can be executed would take
an excessive amount of time and memory space. In particular, this occurs when executing queries
involving large numbers of join operations. In order to determine a reasonable (not necessarily
optimal) query plan in a reasonable amount of time, PostgreSQL uses a Genetic Query Optimizer
(see Chapter 60) when the number of joins exceeds a threshold (see geqo_threshold).

The planner's search procedure actually works with data structures called paths, which are simply cut-down
representations of plans containing only as much information as the planner needs to make its decisions.
After the cheapest path is determined, a full-fledged plan tree is built to pass to the executor. This represents
the desired execution plan in sufficient detail for the executor to run it. In the rest of this section we'll
ignore the distinction between paths and plans.

51.5.1. Generating Possible Plans
The planner/optimizer starts by generating plans for scanning each individual relation (table) used in the
query. The possible plans are determined by the available indexes on each relation. There is always the
possibility of performing a sequential scan on a relation, so a sequential scan plan is always created.
Assume an index is defined on a relation (for example a B-tree index) and a query contains the restriction
relation.attribute OPR constant. If relation.attribute happens to match the key
of the B-tree index and OPR is one of the operators listed in the index's operator class, another plan is
created using the B-tree index to scan the relation. If there are further indexes present and the restrictions
in the query happen to match a key of an index, further plans will be considered. Index scan plans are also
generated for indexes that have a sort ordering that can match the query's ORDER BY clause (if any), or
a sort ordering that might be useful for merge joining (see below).

If the query requires joining two or more relations, plans for joining relations are considered after all
feasible plans have been found for scanning single relations. The three available join strategies are:

• nested loop join: The right relation is scanned once for every row found in the left relation. This strategy
is easy to implement but can be very time consuming. (However, if the right relation can be scanned
with an index scan, this can be a good strategy. It is possible to use values from the current row of the
left relation as keys for the index scan of the right.)

• merge join: Each relation is sorted on the join attributes before the join starts. Then the two relations
are scanned in parallel, and matching rows are combined to form join rows. This kind of join is more
attractive because each relation has to be scanned only once. The required sorting might be achieved
either by an explicit sort step, or by scanning the relation in the proper order using an index on the
join key.

• hash join: the right relation is first scanned and loaded into a hash table, using its join attributes as hash
keys. Next the left relation is scanned and the appropriate values of every row found are used as hash
keys to locate the matching rows in the table.

When the query involves more than two relations, the final result must be built up by a tree of join steps,
each with two inputs. The planner examines different possible join sequences to find the cheapest one.

If the query uses fewer than geqo_threshold relations, a near-exhaustive search is conducted to find the
best join sequence. The planner preferentially considers joins between any two relations for which there
exist a corresponding join clause in the WHERE qualification (i.e., for which a restriction like where
rel1.attr1=rel2.attr2 exists). Join pairs with no join clause are considered only when there is no
other choice, that is, a particular relation has no available join clauses to any other relation. All possible

2108

Overview of PostgreSQL Internals

plans are generated for every join pair considered by the planner, and the one that is (estimated to be) the
cheapest is chosen.

When geqo_threshold is exceeded, the join sequences considered are determined by heuristics, as
described in Chapter 60. Otherwise the process is the same.

The finished plan tree consists of sequential or index scans of the base relations, plus nested-loop, merge,
or hash join nodes as needed, plus any auxiliary steps needed, such as sort nodes or aggregate-function
calculation nodes. Most of these plan node types have the additional ability to do selection (discarding
rows that do not meet a specified Boolean condition) and projection (computation of a derived column
set based on given column values, that is, evaluation of scalar expressions where needed). One of the
responsibilities of the planner is to attach selection conditions from the WHERE clause and computation of
required output expressions to the most appropriate nodes of the plan tree.

51.6. Executor
The executor takes the plan created by the planner/optimizer and recursively processes it to extract the
required set of rows. This is essentially a demand-pull pipeline mechanism. Each time a plan node is called,
it must deliver one more row, or report that it is done delivering rows.

To provide a concrete example, assume that the top node is a MergeJoin node. Before any merge can
be done two rows have to be fetched (one from each subplan). So the executor recursively calls itself to
process the subplans (it starts with the subplan attached to lefttree). The new top node (the top node of
the left subplan) is, let's say, a Sort node and again recursion is needed to obtain an input row. The child
node of the Sort might be a SeqScan node, representing actual reading of a table. Execution of this
node causes the executor to fetch a row from the table and return it up to the calling node. The Sort node
will repeatedly call its child to obtain all the rows to be sorted. When the input is exhausted (as indicated
by the child node returning a NULL instead of a row), the Sort code performs the sort, and finally is able
to return its first output row, namely the first one in sorted order. It keeps the remaining rows stored so
that it can deliver them in sorted order in response to later demands.

The MergeJoin node similarly demands the first row from its right subplan. Then it compares the two
rows to see if they can be joined; if so, it returns a join row to its caller. On the next call, or immediately
if it cannot join the current pair of inputs, it advances to the next row of one table or the other (depending
on how the comparison came out), and again checks for a match. Eventually, one subplan or the other is
exhausted, and the MergeJoin node returns NULL to indicate that no more join rows can be formed.

Complex queries can involve many levels of plan nodes, but the general approach is the same: each node
computes and returns its next output row each time it is called. Each node is also responsible for applying
any selection or projection expressions that were assigned to it by the planner.

The executor mechanism is used to evaluate all four basic SQL query types: SELECT, INSERT, UPDATE,
and DELETE. For SELECT, the top-level executor code only needs to send each row returned by the query
plan tree off to the client. For INSERT, each returned row is inserted into the target table specified for the
INSERT. This is done in a special top-level plan node called ModifyTable. (A simple INSERT ...
VALUES command creates a trivial plan tree consisting of a single Result node, which computes just
one result row, and ModifyTable above it to perform the insertion. But INSERT ... SELECT can
demand the full power of the executor mechanism.) For UPDATE, the planner arranges that each computed
row includes all the updated column values, plus the TID (tuple ID, or row ID) of the original target row;
this data is fed into a ModifyTable node, which uses the information to create a new updated row and
mark the old row deleted. For DELETE, the only column that is actually returned by the plan is the TID,
and the ModifyTable node simply uses the TID to visit each target row and mark it deleted.

2109

Chapter 52. System Catalogs
The system catalogs are the place where a relational database management system stores schema metadata,
such as information about tables and columns, and internal bookkeeping information. PostgreSQL's system
catalogs are regular tables. You can drop and recreate the tables, add columns, insert and update values,
and severely mess up your system that way. Normally, one should not change the system catalogs by hand,
there are normally SQL commands to do that. (For example, CREATE DATABASE inserts a row into
the pg_database catalog — and actually creates the database on disk.) There are some exceptions for
particularly esoteric operations, but many of those have been made available as SQL commands over time,
and so the need for direct manipulation of the system catalogs is ever decreasing.

52.1. Overview
Table 52.1 lists the system catalogs. More detailed documentation of each catalog follows below.

Most system catalogs are copied from the template database during database creation and are thereafter
database-specific. A few catalogs are physically shared across all databases in a cluster; these are noted
in the descriptions of the individual catalogs.

Table 52.1. System Catalogs

Catalog Name Purpose

pg_aggregate aggregate functions

pg_am index access methods

pg_amop access method operators

pg_amproc access method support functions

pg_attrdef column default values

pg_attribute table columns (“attributes”)

pg_authid authorization identifiers (roles)

pg_auth_members authorization identifier membership relationships

pg_cast casts (data type conversions)

pg_class tables, indexes, sequences, views (“relations”)

pg_collation collations (locale information)

pg_constraint check constraints, unique constraints, primary key
constraints, foreign key constraints

pg_conversion encoding conversion information

pg_database databases within this database cluster

pg_db_role_setting per-role and per-database settings

pg_default_acl default privileges for object types

pg_depend dependencies between database objects

pg_description descriptions or comments on database objects

pg_enum enum label and value definitions

pg_event_trigger event triggers

pg_extension installed extensions

2110

System Catalogs

Catalog Name Purpose

pg_foreign_data_wrapper foreign-data wrapper definitions

pg_foreign_server foreign server definitions

pg_foreign_table additional foreign table information

pg_index additional index information

pg_inherits table inheritance hierarchy

pg_init_privs object initial privileges

pg_language languages for writing functions

pg_largeobject data pages for large objects

pg_largeobject_metadata metadata for large objects

pg_namespace schemas

pg_opclass access method operator classes

pg_operator operators

pg_opfamily access method operator families

pg_partitioned_table information about partition key of tables

pg_pltemplate template data for procedural languages

pg_policy row-security policies

pg_proc functions and procedures

pg_publication publications for logical replication

pg_publication_rel relation to publication mapping

pg_range information about range types

pg_replication_origin registered replication origins

pg_rewrite query rewrite rules

pg_seclabel security labels on database objects

pg_sequence information about sequences

pg_shdepend dependencies on shared objects

pg_shdescription comments on shared objects

pg_shseclabel security labels on shared database objects

pg_statistic planner statistics

pg_statistic_ext extended planner statistics

pg_subscription logical replication subscriptions

pg_subscription_rel relation state for subscriptions

pg_tablespace tablespaces within this database cluster

pg_transform transforms (data type to procedural language
conversions)

pg_trigger triggers

pg_ts_config text search configurations

pg_ts_config_map text search configurations' token mappings

pg_ts_dict text search dictionaries

2111

System Catalogs

Catalog Name Purpose

pg_ts_parser text search parsers

pg_ts_template text search templates

pg_type data types

pg_user_mapping mappings of users to foreign servers

52.2. pg_aggregate
The catalog pg_aggregate stores information about aggregate functions. An aggregate function is
a function that operates on a set of values (typically one column from each row that matches a query
condition) and returns a single value computed from all these values. Typical aggregate functions are sum,
count, and max. Each entry in pg_aggregate is an extension of an entry in pg_proc. The pg_proc
entry carries the aggregate's name, input and output data types, and other information that is similar to
ordinary functions.

Table 52.2. pg_aggregate Columns

Name Type References Description

aggfnoid regproc pg_proc.oid pg_proc OID of the
aggregate function

aggkind char Aggregate kind: n
for “normal” aggregates,
o for “ordered-set”
aggregates, or h
for “hypothetical-set”
aggregates

aggnumdirectargs int2 Number of direct (non-
aggregated) arguments
of an ordered-
set or hypothetical-
set aggregate, counting
a variadic array as
one argument. If equal
to pronargs, the
aggregate must be
variadic and the variadic
array describes the
aggregated arguments as
well as the final direct
arguments. Always zero
for normal aggregates.

aggtransfn regproc pg_proc.oid Transition function

aggfinalfn regproc pg_proc.oid Final function (zero if
none)

aggcombinefn regproc pg_proc.oid Combine function (zero
if none)

aggserialfn regproc pg_proc.oid Serialization function
(zero if none)

2112

System Catalogs

Name Type References Description

aggdeserialfn regproc pg_proc.oid Deserialization function
(zero if none)

aggmtransfn regproc pg_proc.oid Forward transition
function for moving-
aggregate mode (zero if
none)

aggminvtransfn regproc pg_proc.oid Inverse transition
function for moving-
aggregate mode (zero if
none)

aggmfinalfn regproc pg_proc.oid Final function for
moving-aggregate mode
(zero if none)

aggfinalextra bool True to pass extra
dummy arguments to
aggfinalfn

aggmfinalextra bool True to pass extra
dummy arguments to
aggmfinalfn

aggfinalmodify char Whether aggfinalfn
modifies the transition
state value: r if it
is read-only, s if the
aggtransfn cannot
be applied after the
aggfinalfn, or w if it
writes on the value

aggmfinalmodify char Like
aggfinalmodify,
but for the
aggmfinalfn

aggsortop oid pg_operator.oid Associated sort operator
(zero if none)

aggtranstype oid pg_type.oid Data type of the
aggregate function's
internal transition (state)
data

aggtransspace int4 Approximate average
size (in bytes) of the
transition state data, or
zero to use a default
estimate

aggmtranstype oid pg_type.oid Data type of the
aggregate function's
internal transition (state)
data for moving-
aggregate mode (zero if
none)

2113

System Catalogs

Name Type References Description

aggmtransspace int4 Approximate average
size (in bytes) of the
transition state data for
moving-aggregate mode,
or zero to use a default
estimate

agginitval text The initial value of
the transition state.
This is a text field
containing the initial
value in its external
string representation. If
this field is null, the
transition state value
starts out null.

aggminitval text The initial value of
the transition state for
moving-aggregate mode.
This is a text field
containing the initial
value in its external
string representation. If
this field is null, the
transition state value
starts out null.

New aggregate functions are registered with the CREATE AGGREGATE command. See Section 38.11
for more information about writing aggregate functions and the meaning of the transition functions, etc.

52.3. pg_am
The catalog pg_am stores information about relation access methods. There is one row for each access
method supported by the system. Currently, only indexes have access methods. The requirements for index
access methods are discussed in detail in Chapter 61.

Table 52.3. pg_am Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

amname name Name of the access
method

amhandler regproc pg_proc.oid OID of a handler
function that is
responsible for supplying
information about the
access method

amtype char Currently always i to
indicate an index access

2114

System Catalogs

Name Type References Description

method; other values
may be allowed in future

Note

Before PostgreSQL 9.6, pg_am contained many additional columns representing properties of
index access methods. That data is now only directly visible at the C code level. However,
pg_index_column_has_property() and related functions have been added to allow SQL
queries to inspect index access method properties; see Table 9.63.

52.4. pg_amop
The catalog pg_amop stores information about operators associated with access method operator families.
There is one row for each operator that is a member of an operator family. A family member can be either
a search operator or an ordering operator. An operator can appear in more than one family, but cannot
appear in more than one search position nor more than one ordering position within a family. (It is allowed,
though unlikely, for an operator to be used for both search and ordering purposes.)

Table 52.4. pg_amop Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

amopfamily oid pg_opfamily.oid The operator family this
entry is for

amoplefttype oid pg_type.oid Left-hand input data type
of operator

amoprighttype oid pg_type.oid Right-hand input data
type of operator

amopstrategy int2 Operator strategy
number

amoppurpose char Operator purpose, either
s for search or o for
ordering

amopopr oid pg_operator.oid OID of the operator

amopmethod oid pg_am.oid Index access method
operator family is for

amopsortfamily oid pg_opfamily.oid The B-tree operator
family this entry sorts
according to, if an
ordering operator; zero if
a search operator

A “search” operator entry indicates that an index of this operator family can be searched to find all rows
satisfying WHERE indexed_column operator constant. Obviously, such an operator must return
boolean, and its left-hand input type must match the index's column data type.

2115

System Catalogs

An “ordering” operator entry indicates that an index of this operator family can be scanned to return rows
in the order represented by ORDER BY indexed_column operator constant. Such an operator
could return any sortable data type, though again its left-hand input type must match the index's column
data type. The exact semantics of the ORDER BY are specified by the amopsortfamily column, which
must reference a B-tree operator family for the operator's result type.

Note

At present, it's assumed that the sort order for an ordering operator is the default for the referenced
operator family, i.e., ASC NULLS LAST. This might someday be relaxed by adding additional
columns to specify sort options explicitly.

An entry's amopmethod must match the opfmethod of its containing operator family (including
amopmethod here is an intentional denormalization of the catalog structure for performance reasons).
Also, amoplefttype and amoprighttype must match the oprleft and oprright fields of the
referenced pg_operator entry.

52.5. pg_amproc
The catalog pg_amproc stores information about support functions associated with access method
operator families. There is one row for each support function belonging to an operator family.

Table 52.5. pg_amproc Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

amprocfamily oid pg_opfamily.oid The operator family this
entry is for

amproclefttype oid pg_type.oid Left-hand input data type
of associated operator

amprocrighttype oid pg_type.oid Right-hand input data
type of associated
operator

amprocnum int2 Support function number

amproc regproc pg_proc.oid OID of the function

The usual interpretation of the amproclefttype and amprocrighttype fields is that they identify
the left and right input types of the operator(s) that a particular support function supports. For some
access methods these match the input data type(s) of the support function itself, for others not. There
is a notion of “default” support functions for an index, which are those with amproclefttype and
amprocrighttype both equal to the index operator class's opcintype.

52.6. pg_attrdef
The catalog pg_attrdef stores column default values. The main information about columns is stored
in pg_attribute (see below). Only columns that explicitly specify a default value (when the table is
created or the column is added) will have an entry here.

2116

System Catalogs

Table 52.6. pg_attrdef Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

adrelid oid pg_class.oid The table this column
belongs to

adnum int2 pg_attribute.attnumThe number of the
column

adbin pg_node_tree The internal
representation of the
column default value

adsrc text A human-readable
representation of the
default value

The adsrc field is historical, and is best not used, because it does not track outside changes that might
affect the representation of the default value. Reverse-compiling the adbin field (with pg_get_expr
for example) is a better way to display the default value.

52.7. pg_attribute
The catalog pg_attribute stores information about table columns. There will be exactly one
pg_attribute row for every column in every table in the database. (There will also be attribute entries
for indexes, and indeed all objects that have pg_class entries.)

The term attribute is equivalent to column and is used for historical reasons.

Table 52.7. pg_attribute Columns

Name Type References Description

attrelid oid pg_class.oid The table this column
belongs to

attname name The column name

atttypid oid pg_type.oid The data type of this
column

attstattarget int4 attstattarget
controls the level of
detail of statistics
accumulated for this
column by ANALYZE.
A zero value indicates
that no statistics
should be collected.
A negative value says
to use the system
default statistics target.
The exact meaning
of positive values
is data type-dependent.

2117

System Catalogs

Name Type References Description

For scalar data types,
attstattarget is
both the target number of
“most common values”
to collect, and the target
number of histogram
bins to create.

attlen int2 A copy of
pg_type.typlen of
this column's type

attnum int2 The number of
the column. Ordinary
columns are numbered
from 1 up. System
columns, such as oid,
have (arbitrary) negative
numbers.

attndims int4 Number of dimensions,
if the column is an
array type; otherwise 0.
(Presently, the number of
dimensions of an array
is not enforced, so any
nonzero value effectively
means “it's an array”.)

attcacheoff int4 Always -1 in storage, but
when loaded into a row
descriptor in memory
this might be updated to
cache the offset of the
attribute within the row

atttypmod int4 atttypmod records
type-specific data
supplied at table creation
time (for example, the
maximum length of a
varchar column). It
is passed to type-
specific input functions
and length coercion
functions. The value will
generally be -1 for
types that do not need
atttypmod.

attbyval bool A copy of
pg_type.typbyval
of this column's type

attstorage char Normally a copy of
pg_type.typstorage

2118

System Catalogs

Name Type References Description

of this column's type.
For TOAST-able data
types, this can be altered
after column creation to
control storage policy.

attalign char A copy of
pg_type.typalign
of this column's type

attnotnull bool This represents a not-null
constraint.

atthasdef bool This column has a
default value, in which
case there will be
a corresponding entry
in the pg_attrdef
catalog that actually
defines the value.

atthasmissing bool This column has a value
which is used where
the column is entirely
missing from the row,
as happens when a
column is added with
a non-volatile DEFAULT
value after the row
is created. The actual
value used is stored in
the attmissingval
column.

attidentity char If a zero byte (''), then
not an identity column.
Otherwise, a = generated
always, d = generated by
default.

attisdropped bool This column has been
dropped and is no longer
valid. A dropped column
is still physically present
in the table, but is ignored
by the parser and so
cannot be accessed via
SQL.

attislocal bool This column is defined
locally in the relation.
Note that a column can
be locally defined and
inherited simultaneously.

attinhcount int4 The number of direct
ancestors this column

2119

System Catalogs

Name Type References Description

has. A column with
a nonzero number of
ancestors cannot be
dropped nor renamed.

attcollation oid pg_collation.oid The defined collation of
the column, or zero if
the column is not of a
collatable data type.

attacl aclitem[] Column-level access
privileges, if any have
been granted specifically
on this column

attoptions text[] Attribute-level options,
as “keyword=value”
strings

attfdwoptions text[] Attribute-level foreign
data wrapper options, as
“keyword=value” strings

attmissingval anyarray This column has a one
element array containing
the value used when
the column is entirely
missing from the row,
as happens when the
column is added with
a non-volatile DEFAULT
value after the row
is created. The value
is only used when
atthasmissing is
true. If there is no value
the column is null.

In a dropped column's pg_attribute entry, atttypid is reset to zero, but attlen and the other
fields copied from pg_type are still valid. This arrangement is needed to cope with the situation where
the dropped column's data type was later dropped, and so there is no pg_type row anymore. attlen
and the other fields can be used to interpret the contents of a row of the table.

52.8. pg_authid
The catalog pg_authid contains information about database authorization identifiers (roles). A
role subsumes the concepts of “users” and “groups”. A user is essentially just a role with the
rolcanlogin flag set. Any role (with or without rolcanlogin) can have other roles as members;
see pg_auth_members.

Since this catalog contains passwords, it must not be publicly readable. pg_roles is a publicly readable
view on pg_authid that blanks out the password field.

Chapter 21 contains detailed information about user and privilege management.

2120

System Catalogs

Because user identities are cluster-wide, pg_authid is shared across all databases of a cluster: there is
only one copy of pg_authid per cluster, not one per database.

Table 52.8. pg_authid Columns

Name Type Description

oid oid Row identifier (hidden attribute;
must be explicitly selected)

rolname name Role name

rolsuper bool Role has superuser privileges

rolinherit bool Role automatically inherits
privileges of roles it is a member
of

rolcreaterole bool Role can create more roles

rolcreatedb bool Role can create databases

rolcanlogin bool Role can log in. That is, this role
can be given as the initial session
authorization identifier

rolreplication bool Role is a replication role.
A replication role can initiate
replication connections and create
and drop replication slots.

rolbypassrls bool Role bypasses every row level
security policy, see Section 5.7 for
more information.

rolconnlimit int4 For roles that can log in, this sets
maximum number of concurrent
connections this role can make. -1
means no limit.

rolpassword text Password (possibly encrypted);
null if none. The format depends
on the form of encryption used.

rolvaliduntil timestamptz Password expiry time (only used
for password authentication); null
if no expiration

For an MD5 encrypted password, rolpassword column will begin with the string md5 followed by a 32-
character hexadecimal MD5 hash. The MD5 hash will be of the user's password concatenated to their user
name. For example, if user joe has password xyzzy, PostgreSQL will store the md5 hash of xyzzyjoe.

If the password is encrypted with SCRAM-SHA-256, it has the format:

SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>

where salt, StoredKey and ServerKey are in Base64 encoded format. This format is the same as
that specified by RFC 5803.

A password that does not follow either of those formats is assumed to be unencrypted.

2121

System Catalogs

52.9. pg_auth_members
The catalog pg_auth_members shows the membership relations between roles. Any non-circular set
of relationships is allowed.

Because user identities are cluster-wide, pg_auth_members is shared across all databases of a cluster:
there is only one copy of pg_auth_members per cluster, not one per database.

Table 52.9. pg_auth_members Columns

Name Type References Description

roleid oid pg_authid.oid ID of a role that has a
member

member oid pg_authid.oid ID of a role that is a
member of roleid

grantor oid pg_authid.oid ID of the role that granted
this membership

admin_option bool True if member can
grant membership in
roleid to others

52.10. pg_cast
The catalog pg_cast stores data type conversion paths, both built-in and user-defined.

It should be noted that pg_cast does not represent every type conversion that the system knows how
to perform; only those that cannot be deduced from some generic rule. For example, casting between a
domain and its base type is not explicitly represented in pg_cast. Another important exception is that
“automatic I/O conversion casts”, those performed using a data type's own I/O functions to convert to or
from text or other string types, are not explicitly represented in pg_cast.

Table 52.10. pg_cast Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

castsource oid pg_type.oid OID of the source data
type

casttarget oid pg_type.oid OID of the target data
type

castfunc oid pg_proc.oid The OID of the function
to use to perform this
cast. Zero is stored if
the cast method doesn't
require a function.

castcontext char Indicates what contexts
the cast can be invoked
in. e means only as an
explicit cast (using CAST

2122

System Catalogs

Name Type References Description

or :: syntax). a means
implicitly in assignment
to a target column,
as well as explicitly.
i means implicitly in
expressions, as well as
the other cases.

castmethod char Indicates how the cast is
performed. f means that
the function specified
in the castfunc field
is used. i means
that the input/output
functions are used. b
means that the types are
binary-coercible, thus no
conversion is required.

The cast functions listed in pg_cast must always take the cast source type as their first argument type,
and return the cast destination type as their result type. A cast function can have up to three arguments.
The second argument, if present, must be type integer; it receives the type modifier associated with the
destination type, or -1 if there is none. The third argument, if present, must be type boolean; it receives
true if the cast is an explicit cast, false otherwise.

It is legitimate to create a pg_cast entry in which the source and target types are the same, if the
associated function takes more than one argument. Such entries represent “length coercion functions” that
coerce values of the type to be legal for a particular type modifier value.

When a pg_cast entry has different source and target types and a function that takes more than one
argument, it represents converting from one type to another and applying a length coercion in a single step.
When no such entry is available, coercion to a type that uses a type modifier involves two steps, one to
convert between data types and a second to apply the modifier.

52.11. pg_class
The catalog pg_class catalogs tables and most everything else that has columns or is otherwise similar
to a table. This includes indexes (but see also pg_index), sequences (but see also pg_sequence),
views, materialized views, composite types, and TOAST tables; see relkind. Below, when we mean all
of these kinds of objects we speak of “relations”. Not all columns are meaningful for all relation types.

Table 52.11. pg_class Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

relname name Name of the table, index,
view, etc.

relnamespace oid pg_namespace.oid The OID of the
namespace that contains
this relation

2123

System Catalogs

Name Type References Description

reltype oid pg_type.oid The OID of the data type
that corresponds to this
table's row type, if any
(zero for indexes, which
have no pg_type entry)

reloftype oid pg_type.oid For typed tables, the
OID of the underlying
composite type, zero for
all other relations

relowner oid pg_authid.oid Owner of the relation

relam oid pg_am.oid If this is an index, the
access method used (B-
tree, hash, etc.)

relfilenode oid Name of the on-disk
file of this relation; zero
means this is a “mapped”
relation whose disk file
name is determined by
low-level state

reltablespace oid pg_tablespace.oid The tablespace in which
this relation is stored.
If zero, the database's
default tablespace is
implied. (Not meaningful
if the relation has no on-
disk file.)

relpages int4 Size of the on-disk
representation of this
table in pages (of
size BLCKSZ). This is
only an estimate used
by the planner. It is
updated by VACUUM,
ANALYZE, and a few
DDL commands such as
CREATE INDEX.

reltuples float4 Number of live rows
in the table. This is
only an estimate used
by the planner. It is
updated by VACUUM,
ANALYZE, and a few
DDL commands such as
CREATE INDEX.

relallvisible int4 Number of pages that
are marked all-visible in
the table's visibility map.
This is only an estimate
used by the planner. It

2124

System Catalogs

Name Type References Description

is updated by VACUUM,
ANALYZE, and a few
DDL commands such as
CREATE INDEX.

reltoastrelid oid pg_class.oid OID of the TOAST
table associated with this
table, 0 if none. The
TOAST table stores large
attributes “out of line” in
a secondary table.

relhasindex bool True if this is a table and
it has (or recently had)
any indexes

relisshared bool True if this table is shared
across all databases in
the cluster. Only certain
system catalogs (such
as pg_database) are
shared.

relpersistence char p = permanent table, u
= unlogged table, t =
temporary table

relkind char r = ordinary table, i =
index, S = sequence, t =
TOAST table, v = view,
m = materialized view,
c = composite type, f
= foreign table, p =
partitioned table, I =
partitioned index

relnatts int2 Number of user columns
in the relation (system
columns not counted).
There must be this many
corresponding entries in
pg_attribute. See
also
pg_attribute.attnum.

relchecks int2 Number of CHECK
constraints on the table;
see pg_constraint
catalog

relhasoids bool True if we generate an
OID for each row of the
relation

relhasrules bool True if table has (or
once had) rules; see
pg_rewrite catalog

2125

System Catalogs

Name Type References Description

relhastriggers bool True if table has (or
once had) triggers; see
pg_trigger catalog

relhassubclass bool True if table has (or once
had) any inheritance
children

relrowsecurity bool True if table has row
level security enabled;
see pg_policy catalog

relforcerowsecuritybool True if row level security
(when enabled) will also
apply to table owner; see
pg_policy catalog

relispopulated bool True if relation is
populated (this is true
for all relations other
than some materialized
views)

relreplident char Columns used to form
“replica identity” for
rows: d = default
(primary key, if any),
n = nothing, f = all
columns i = index with
indisreplident set,
or default

relispartition bool True if table or index is a
partition

relrewrite oid pg_class.oid For new relations being
written during a DDL
operation that requires
a table rewrite, this
contains the OID of
the original relation;
otherwise 0. That state
is only visible internally;
this field should never
contain anything other
than 0 for a user-visible
relation.

relfrozenxid xid All transaction IDs
before this one have
been replaced with
a permanent (“frozen”)
transaction ID in this
table. This is used
to track whether the
table needs to be
vacuumed in order

2126

System Catalogs

Name Type References Description

to prevent transaction
ID wraparound or
to allow pg_xact
to be shrunk. Zero
(InvalidTransactionId)
if the relation is not a
table.

relminmxid xid All multixact IDs before
this one have been
replaced by a transaction
ID in this table. This
is used to track whether
the table needs to
be vacuumed in order
to prevent multixact
ID wraparound or to
allow pg_multixact
to be shrunk. Zero
(InvalidMultiXactId)
if the relation is not a
table.

relacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

reloptions text[] Access-method-specific
options, as
“keyword=value” strings

relpartbound pg_node_tree If table is a partition (see
relispartition),
internal representation of
the partition bound

Several of the Boolean flags in pg_class are maintained lazily: they are guaranteed to be true if that's the
correct state, but may not be reset to false immediately when the condition is no longer true. For example,
relhasindex is set by CREATE INDEX, but it is never cleared by DROP INDEX. Instead, VACUUM
clears relhasindex if it finds the table has no indexes. This arrangement avoids race conditions and
improves concurrency.

52.12. pg_collation
The catalog pg_collation describes the available collations, which are essentially mappings from an
SQL name to operating system locale categories. See Section 23.2 for more information.

Table 52.12. pg_collation Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

2127

System Catalogs

Name Type References Description

collname name Collation name (unique
per namespace and
encoding)

collnamespace oid pg_namespace.oid The OID of the
namespace that contains
this collation

collowner oid pg_authid.oid Owner of the collation

collprovider char Provider of the collation:
d = database default, c =
libc, i = icu

collencoding int4 Encoding in which the
collation is applicable, or
-1 if it works for any
encoding

collcollate name LC_COLLATE for this
collation object

collctype name LC_CTYPE for this
collation object

collversion text Provider-specific version
of the collation. This
is recorded when the
collation is created and
then checked when it is
used, to detect changes
in the collation definition
that could lead to data
corruption.

Note that the unique key on this catalog is (collname, collencoding, collnamespace) not
just (collname, collnamespace). PostgreSQL generally ignores all collations that do not have
collencoding equal to either the current database's encoding or -1, and creation of new entries with the
same name as an entry with collencoding = -1 is forbidden. Therefore it is sufficient to use a qualified
SQL name (schema.name) to identify a collation, even though this is not unique according to the catalog
definition. The reason for defining the catalog this way is that initdb fills it in at cluster initialization time
with entries for all locales available on the system, so it must be able to hold entries for all encodings that
might ever be used in the cluster.

In the template0 database, it could be useful to create collations whose encoding does not match the
database encoding, since they could match the encodings of databases later cloned from template0.
This would currently have to be done manually.

52.13. pg_constraint
The catalog pg_constraint stores check, primary key, unique, foreign key, and exclusion constraints
on tables. (Column constraints are not treated specially. Every column constraint is equivalent to some
table constraint.) Not-null constraints are represented in the pg_attribute catalog, not here.

User-defined constraint triggers (created with CREATE CONSTRAINT TRIGGER) also give rise to an
entry in this table.

2128

System Catalogs

Check constraints on domains are stored here, too.

Table 52.13. pg_constraint Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

conname name Constraint name (not
necessarily unique!)

connamespace oid pg_namespace.oid The OID of the
namespace that contains
this constraint

contype char c = check constraint, f =
foreign key constraint, p
= primary key constraint,
u = unique constraint, t
= constraint trigger, x =
exclusion constraint

condeferrable bool Is the constraint
deferrable?

condeferred bool Is the constraint deferred
by default?

convalidated bool Has the constraint been
validated? Currently, can
only be false for foreign
keys and CHECK
constraints

conrelid oid pg_class.oid The table this constraint
is on; 0 if not a table
constraint

contypid oid pg_type.oid The domain this
constraint is on; 0 if not a
domain constraint

conindid oid pg_class.oid The index supporting this
constraint, if it's a unique,
primary key, foreign key,
or exclusion constraint;
else 0

conparentid oid pg_constraint.oid The corresponding
constraint in the parent
partitioned table, if this is
a constraint in a partition;
else 0

confrelid oid pg_class.oid If a foreign key, the
referenced table; else 0

confupdtype char Foreign key update
action code: a = no
action, r = restrict, c =

2129

System Catalogs

Name Type References Description

cascade, n = set null, d =
set default

confdeltype char Foreign key deletion
action code: a = no
action, r = restrict, c =
cascade, n = set null, d =
set default

confmatchtype char Foreign key match type:
f = full, p = partial, s =
simple

conislocal bool This constraint is defined
locally for the relation.
Note that a constraint can
be locally defined and
inherited simultaneously.

coninhcount int4 The number of direct
inheritance ancestors
this constraint has. A
constraint with a nonzero
number of ancestors
cannot be dropped nor
renamed.

connoinherit bool This constraint is defined
locally for the relation.
It is a non-inheritable
constraint.

conkey int2[] pg_attribute.attnumIf a table constraint
(including foreign keys,
but not constraint
triggers), list of the
constrained columns

confkey int2[] pg_attribute.attnumIf a foreign key, list of the
referenced columns

conpfeqop oid[] pg_operator.oid If a foreign key, list of the
equality operators for PK
= FK comparisons

conppeqop oid[] pg_operator.oid If a foreign key, list of the
equality operators for PK
= PK comparisons

conffeqop oid[] pg_operator.oid If a foreign key, list of the
equality operators for FK
= FK comparisons

conexclop oid[] pg_operator.oid If an exclusion
constraint, list of the
per-column exclusion
operators

2130

System Catalogs

Name Type References Description

conbin pg_node_tree If a check constraint, an
internal representation of
the expression

consrc text If a check constraint, a
human-readable
representation of the
expression

In the case of an exclusion constraint, conkey is only useful for constraint elements that are simple column
references. For other cases, a zero appears in conkey and the associated index must be consulted to
discover the expression that is constrained. (conkey thus has the same contents as pg_index.indkey
for the index.)

Note

consrc is not updated when referenced objects change; for example, it won't track renaming
of columns. Rather than relying on this field, it's best to use pg_get_constraintdef() to
extract the definition of a check constraint.

Note

pg_class.relchecks needs to agree with the number of check-constraint entries found in
this table for each relation.

52.14. pg_conversion
The catalog pg_conversion describes encoding conversion functions. See CREATE CONVERSION
for more information.

Table 52.14. pg_conversion Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

conname name Conversion name
(unique within a
namespace)

connamespace oid pg_namespace.oid The OID of the
namespace that contains
this conversion

conowner oid pg_authid.oid Owner of the conversion

conforencoding int4 Source encoding ID

contoencoding int4 Destination encoding ID

conproc regproc pg_proc.oid Conversion function

2131

System Catalogs

Name Type References Description

condefault bool True if this is the default
conversion

52.15. pg_database
The catalog pg_database stores information about the available databases. Databases are created with
the CREATE DATABASE command. Consult Chapter 22 for details about the meaning of some of the
parameters.

Unlike most system catalogs, pg_database is shared across all databases of a cluster: there is only one
copy of pg_database per cluster, not one per database.

Table 52.15. pg_database Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

datname name Database name

datdba oid pg_authid.oid Owner of the database,
usually the user who
created it

encoding int4 Character encoding
for this database
(pg_encoding_to_char()
can translate this number
to the encoding name)

datcollate name LC_COLLATE for this
database

datctype name LC_CTYPE for this
database

datistemplate bool If true, then this database
can be cloned by any
user with CREATEDB
privileges; if false, then
only superusers or the
owner of the database
can clone it.

datallowconn bool If false then no one can
connect to this database.
This is used to protect the
template0 database
from being altered.

datconnlimit int4 Sets maximum number
of concurrent
connections that can be
made to this database. -1
means no limit.

2132

System Catalogs

Name Type References Description

datlastsysoid oid Last system OID in
the database; useful
particularly to pg_dump

datfrozenxid xid All transaction IDs
before this one
have been replaced
with a permanent
(“frozen”) transaction
ID in this database.
This is used to
track whether the
database needs to be
vacuumed in order
to prevent transaction
ID wraparound or
to allow pg_xact
to be shrunk. It
is the minimum of
the per-table
pg_class.relfrozenxid
values.

datminmxid xid All multixact IDs
before this one have
been replaced with
a transaction ID
in this database.
This is used to
track whether the
database needs to be
vacuumed in order
to prevent multixact
ID wraparound or to
allow pg_multixact
to be shrunk. It
is the minimum of
the per-table
pg_class.relminmxid
values.

dattablespace oid pg_tablespace.oid The default tablespace
for the database.
Within this database,
all tables for which
pg_class.reltablespace
is zero will be stored
in this tablespace; in
particular, all the non-
shared system catalogs
will be there.

2133

System Catalogs

Name Type References Description

datacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

52.16. pg_db_role_setting
The catalog pg_db_role_setting records the default values that have been set for run-time
configuration variables, for each role and database combination.

Unlike most system catalogs, pg_db_role_setting is shared across all databases of a cluster: there
is only one copy of pg_db_role_setting per cluster, not one per database.

Table 52.16. pg_db_role_setting Columns

Name Type References Description

setdatabase oid pg_database.oid The OID of the database
the setting is applicable
to, or zero if not
database-specific

setrole oid pg_authid.oid The OID of the role the
setting is applicable to, or
zero if not role-specific

setconfig text[] Defaults for run-time
configuration variables

52.17. pg_default_acl
The catalog pg_default_acl stores initial privileges to be assigned to newly created objects.

Table 52.17. pg_default_acl Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

defaclrole oid pg_authid.oid The OID of the role
associated with this entry

defaclnamespace oid pg_namespace.oid The OID of the
namespace associated
with this entry, or 0 if
none

defaclobjtype char Type of object this entry
is for: r = relation (table,
view), S = sequence, f =
function, T = type, n =
schema

defaclacl aclitem[] Access privileges that
this type of object should
have on creation

2134

System Catalogs

A pg_default_acl entry shows the initial privileges to be assigned to an object belonging to the
indicated user. There are currently two types of entry: “global” entries with defaclnamespace = 0,
and “per-schema” entries that reference a particular schema. If a global entry is present then it overrides
the normal hard-wired default privileges for the object type. A per-schema entry, if present, represents
privileges to be added to the global or hard-wired default privileges.

Note that when an ACL entry in another catalog is null, it is taken to represent the hard-wired
default privileges for its object, not whatever might be in pg_default_acl at the moment.
pg_default_acl is only consulted during object creation.

52.18. pg_depend
The catalog pg_depend records the dependency relationships between database objects. This
information allows DROP commands to find which other objects must be dropped by DROP CASCADE
or prevent dropping in the DROP RESTRICT case.

See also pg_shdepend, which performs a similar function for dependencies involving objects that are
shared across a database cluster.

Table 52.18. pg_depend Columns

Name Type References Description

classid oid pg_class.oid The OID of the system
catalog the dependent
object is in

objid oid any OID column The OID of the specific
dependent object

objsubid int4 For a table column, this is
the column number (the
objid and classid
refer to the table itself).
For all other object types,
this column is zero.

refclassid oid pg_class.oid The OID of the system
catalog the referenced
object is in

refobjid oid any OID column The OID of the specific
referenced object

refobjsubid int4 For a table column, this
is the column number
(the refobjid and
refclassid refer to
the table itself). For all
other object types, this
column is zero.

deptype char A code defining the
specific semantics of this
dependency relationship;
see text

In all cases, a pg_depend entry indicates that the referenced object cannot be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

2135

System Catalogs

DEPENDENCY_NORMAL (n)

A normal relationship between separately-created objects. The dependent object can be dropped
without affecting the referenced object. The referenced object can only be dropped by specifying
CASCADE, in which case the dependent object is dropped, too. Example: a table column has a normal
dependency on its data type.

DEPENDENCY_AUTO (a)

The dependent object can be dropped separately from the referenced object, and should be
automatically dropped (regardless of RESTRICT or CASCADE mode) if the referenced object is
dropped. Example: a named constraint on a table is made autodependent on the table, so that it will
go away if the table is dropped.

DEPENDENCY_INTERNAL (i)

The dependent object was created as part of creation of the referenced object, and is really just a
part of its internal implementation. A DROP of the dependent object will be disallowed outright
(we'll tell the user to issue a DROP against the referenced object, instead). A DROP of the referenced
object will be propagated through to drop the dependent object whether CASCADE is specified or not.
Example: a trigger that's created to enforce a foreign-key constraint is made internally dependent on
the constraint's pg_constraint entry.

DEPENDENCY_INTERNAL_AUTO (I)

The dependent object was created as part of creation of the referenced object, and is really just a
part of its internal implementation. A DROP of the dependent object will be disallowed outright
(we'll tell the user to issue a DROP against the referenced object, instead). While a regular internal
dependency will prevent the dependent object from being dropped while any such dependencies
remain, DEPENDENCY_INTERNAL_AUTO will allow such a drop as long as the object can be found
by following any of such dependencies. Example: an index on a partition is made internal-auto-
dependent on both the partition itself as well as on the index on the parent partitioned table; so the
partition index is dropped together with either the partition it indexes, or with the parent index it is
attached to.

DEPENDENCY_EXTENSION (e)

The dependent object is a member of the extension that is the referenced object (see
pg_extension). The dependent object can be dropped only via DROP EXTENSION on the
referenced object. Functionally this dependency type acts the same as an internal dependency, but it's
kept separate for clarity and to simplify pg_dump.

DEPENDENCY_AUTO_EXTENSION (x)

The dependent object is not a member of the extension that is the referenced object (and so should not
be ignored by pg_dump), but cannot function without it and should be dropped when the extension
itself is. The dependent object may be dropped on its own as well.

DEPENDENCY_PIN (p)

There is no dependent object; this type of entry is a signal that the system itself depends on the
referenced object, and so that object must never be deleted. Entries of this type are created only by
initdb. The columns for the dependent object contain zeroes.

Other dependency flavors might be needed in future.

52.19. pg_description

2136

System Catalogs

The catalog pg_description stores optional descriptions (comments) for each database object.
Descriptions can be manipulated with the COMMENT command and viewed with psql's \d commands.
Descriptions of many built-in system objects are provided in the initial contents of pg_description.

See also pg_shdescription, which performs a similar function for descriptions involving objects that
are shared across a database cluster.

Table 52.19. pg_description Columns

Name Type References Description

objoid oid any OID column The OID of the object
this description pertains
to

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

objsubid int4 For a comment on
a table column, this
is the column number
(the objoid and
classoid refer to the
table itself). For all other
object types, this column
is zero.

description text Arbitrary text that serves
as the description of this
object

52.20. pg_enum
The pg_enum catalog contains entries showing the values and labels for each enum type. The internal
representation of a given enum value is actually the OID of its associated row in pg_enum.

Table 52.20. pg_enum Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

enumtypid oid pg_type.oid The OID of the
pg_type entry owning
this enum value

enumsortorder float4 The sort position of this
enum value within its
enum type

enumlabel name The textual label for this
enum value

The OIDs for pg_enum rows follow a special rule: even-numbered OIDs are guaranteed to be ordered
in the same way as the sort ordering of their enum type. That is, if two even OIDs belong to the same
enum type, the smaller OID must have the smaller enumsortorder value. Odd-numbered OID values

2137

System Catalogs

need bear no relationship to the sort order. This rule allows the enum comparison routines to avoid catalog
lookups in many common cases. The routines that create and alter enum types attempt to assign even OIDs
to enum values whenever possible.

When an enum type is created, its members are assigned sort-order positions 1..n. But members added
later might be given negative or fractional values of enumsortorder. The only requirement on these
values is that they be correctly ordered and unique within each enum type.

52.21. pg_event_trigger
The catalog pg_event_trigger stores event triggers. See Chapter 40 for more information.

Table 52.21. pg_event_trigger Columns

Name Type References Description

evtname name Trigger name (must be
unique)

evtevent name Identifies the event for
which this trigger fires

evtowner oid pg_authid.oid Owner of the event
trigger

evtfoid oid pg_proc.oid The function to be called

evtenabled char Controls in which
session_replication_role
modes the event trigger
fires. O = trigger fires
in “origin” and “local”
modes, D = trigger is
disabled, R = trigger fires
in “replica” mode, A =
trigger fires always.

evttags text[] Command tags for which
this trigger will fire. If
NULL, the firing of this
trigger is not restricted on
the basis of the command
tag.

52.22. pg_extension
The catalog pg_extension stores information about the installed extensions. See Section 38.16 for
details about extensions.

Table 52.22. pg_extension Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

extname name Name of the extension

2138

System Catalogs

Name Type References Description

extowner oid pg_authid.oid Owner of the extension

extnamespace oid pg_namespace.oid Schema containing the
extension's exported
objects

extrelocatable bool True if extension can
be relocated to another
schema

extversion text Version name for the
extension

extconfig oid[] pg_class.oid Array of regclass
OIDs for the extension's
configuration table(s), or
NULL if none

extcondition text[] Array of WHERE-clause
filter conditions for the
extension's configuration
table(s), or NULL if none

Note that unlike most catalogs with a “namespace” column, extnamespace is not meant to
imply that the extension belongs to that schema. Extension names are never schema-qualified.
Rather, extnamespace indicates the schema that contains most or all of the extension's objects. If
extrelocatable is true, then this schema must in fact contain all schema-qualifiable objects belonging
to the extension.

52.23. pg_foreign_data_wrapper
The catalog pg_foreign_data_wrapper stores foreign-data wrapper definitions. A foreign-data
wrapper is the mechanism by which external data, residing on foreign servers, is accessed.

Table 52.23. pg_foreign_data_wrapper Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

fdwname name Name of the foreign-data
wrapper

fdwowner oid pg_authid.oid Owner of the foreign-
data wrapper

fdwhandler oid pg_proc.oid References a handler
function that is
responsible for supplying
execution routines for
the foreign-data wrapper.
Zero if no handler is
provided

fdwvalidator oid pg_proc.oid References a validator
function that is

2139

System Catalogs

Name Type References Description

responsible for checking
the validity of the
options given to the
foreign-data wrapper, as
well as options for
foreign servers and
user mappings using
the foreign-data wrapper.
Zero if no validator is
provided

fdwacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

fdwoptions text[] Foreign-data wrapper
specific options, as
“keyword=value” strings

52.24. pg_foreign_server
The catalog pg_foreign_server stores foreign server definitions. A foreign server describes a source
of external data, such as a remote server. Foreign servers are accessed via foreign-data wrappers.

Table 52.24. pg_foreign_server Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

srvname name Name of the foreign
server

srvowner oid pg_authid.oid Owner of the foreign
server

srvfdw oid pg_foreign_data_wrapper.oidOID of the foreign-data
wrapper of this foreign
server

srvtype text Type of the server
(optional)

srvversion text Version of the server
(optional)

srvacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

srvoptions text[] Foreign server specific
options, as
“keyword=value” strings

52.25. pg_foreign_table

2140

System Catalogs

The catalog pg_foreign_table contains auxiliary information about foreign tables. A foreign table
is primarily represented by a pg_class entry, just like a regular table. Its pg_foreign_table entry
contains the information that is pertinent only to foreign tables and not any other kind of relation.

Table 52.25. pg_foreign_table Columns

Name Type References Description

ftrelid oid pg_class.oid OID of the pg_class
entry for this foreign
table

ftserver oid pg_foreign_server.oidOID of the foreign server
for this foreign table

ftoptions text[] Foreign table options, as
“keyword=value” strings

52.26. pg_index
The catalog pg_index contains part of the information about indexes. The rest is mostly in pg_class.

Table 52.26. pg_index Columns

Name Type References Description

indexrelid oid pg_class.oid The OID of the
pg_class entry for this
index

indrelid oid pg_class.oid The OID of the
pg_class entry for the
table this index is for

indnatts int2 The total number
of columns in
the index (duplicates
pg_class.relnatts);
this number includes
both key and included
attributes

indnkeyatts int2 The number of key
columns in the index, not
counting any included
columns, which are
merely stored and do not
participate in the index
semantics

indisunique bool If true, this is a unique
index

indisprimary bool If true, this index
represents the primary
key of the table
(indisunique should
always be true when this
is true)

2141

System Catalogs

Name Type References Description

indisexclusion bool If true, this index
supports an exclusion
constraint

indimmediate bool If true, the uniqueness
check is enforced
immediately on insertion
(irrelevant if
indisunique is not
true)

indisclustered bool If true, the table was last
clustered on this index

indisvalid bool If true, the index
is currently valid for
queries. False means
the index is possibly
incomplete: it must still
be modified by INSERT/
UPDATE operations, but
it cannot safely be used
for queries. If it is unique,
the uniqueness property
is not guaranteed true
either.

indcheckxmin bool If true, queries must not
use the index until the
xmin of this pg_index
row is below their
TransactionXmin
event horizon, because
the table may contain
broken HOT chains with
incompatible rows that
they can see

indisready bool If true, the index
is currently ready for
inserts. False means
the index must be
ignored by INSERT/
UPDATE operations.

indislive bool If false, the index is
in process of being
dropped, and should be
ignored for all purposes
(including HOT-safety
decisions)

indisreplident bool If true this index has
been chosen as “replica
identity” using ALTER
TABLE ... REPLICA

2142

System Catalogs

Name Type References Description

IDENTITY USING
INDEX ...

indkey int2vector pg_attribute.attnumThis is an array of
indnatts values that
indicate which table
columns this index
indexes. For example a
value of 1 3 would
mean that the first and
the third table columns
make up the index
entries. Key columns
come before non-
key (included) columns.
A zero in this
array indicates that
the corresponding index
attribute is an expression
over the table columns,
rather than a simple
column reference.

indcollation oidvector pg_collation.oid For each column
in the index key
(indnkeyatts
values), this contains the
OID of the collation to
use for the index, or zero
if the column is not of a
collatable data type.

indclass oidvector pg_opclass.oid For each column
in the index key
(indnkeyatts
values), this contains
the OID of the
operator class to use.
See pg_opclass for
details.

indoption int2vector This is an array of
indnkeyatts values
that store per-column
flag bits. The meaning of
the bits is defined by the
index's access method.

indexprs pg_node_tree Expression trees (in
nodeToString()
representation) for index
attributes that are
not simple column
references. This is a
list with one element

2143

System Catalogs

Name Type References Description

for each zero entry
in indkey. Null if
all index attributes are
simple references.

indpred pg_node_tree Expression tree (in
nodeToString()
representation) for
partial index predicate.
Null if not a partial index.

52.27. pg_inherits
The catalog pg_inherits records information about table inheritance hierarchies. There is one entry
for each direct parent-child table relationship in the database. (Indirect inheritance can be determined by
following chains of entries.)

Table 52.27. pg_inherits Columns

Name Type References Description

inhrelid oid pg_class.oid The OID of the child
table

inhparent oid pg_class.oid The OID of the parent
table

inhseqno int4 If there is more than
one direct parent for
a child table (multiple
inheritance), this number
tells the order in which
the inherited columns are
to be arranged. The count
starts at 1.

52.28. pg_init_privs
The catalog pg_init_privs records information about the initial privileges of objects in the system.
There is one entry for each object in the database which has a non-default (non-NULL) initial set of
privileges.

Objects can have initial privileges either by having those privileges set when the system is initialized
(by initdb) or when the object is created during a CREATE EXTENSION and the extension script sets
initial privileges using the GRANT system. Note that the system will automatically handle recording of the
privileges during the extension script and that extension authors need only use the GRANT and REVOKE
statements in their script to have the privileges recorded. The privtype column indicates if the initial
privilege was set by initdb or during a CREATE EXTENSION command.

Objects which have initial privileges set by initdb will have entries where privtype is 'i', while objects
which have initial privileges set by CREATE EXTENSION will have entries where privtype is 'e'.

2144

System Catalogs

Table 52.28. pg_init_privs Columns

Name Type References Description

objoid oid any OID column The OID of the specific
object

classoid oid pg_class.oid The OID of the system
catalog the object is in

objsubid int4 For a table column,
this is the column
number (the objoid
and classoid refer to
the table itself). For all
other object types, this
column is zero.

privtype char A code defining the type
of initial privilege of this
object; see text

initprivs aclitem[] The initial access
privileges; see GRANT
and REVOKE for details

52.29. pg_language
The catalog pg_language registers languages in which you can write functions or stored procedures.
See CREATE LANGUAGE and Chapter 42 for more information about language handlers.

Table 52.29. pg_language Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

lanname name Name of the language

lanowner oid pg_authid.oid Owner of the language

lanispl bool This is false for
internal languages (such
as SQL) and true for
user-defined languages.
Currently, pg_dump still
uses this to determine
which languages need
to be dumped, but this
might be replaced by a
different mechanism in
the future.

lanpltrusted bool True if this is a trusted
language, which means
that it is believed not to
grant access to anything
outside the normal SQL

2145

System Catalogs

Name Type References Description

execution environment.
Only superusers can
create functions in
untrusted languages.

lanplcallfoid oid pg_proc.oid For noninternal
languages this references
the language handler,
which is a special
function that is
responsible for executing
all functions that are
written in the particular
language

laninline oid pg_proc.oid This references a
function that is
responsible for executing
“inline” anonymous code
blocks (DO blocks). Zero
if inline blocks are not
supported.

lanvalidator oid pg_proc.oid This references a
language validator
function that is
responsible for checking
the syntax and validity of
new functions when they
are created. Zero if no
validator is provided.

lanacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

52.30. pg_largeobject
The catalog pg_largeobject holds the data making up “large objects”. A large object is identified by
an OID assigned when it is created. Each large object is broken into segments or “pages” small enough
to be conveniently stored as rows in pg_largeobject. The amount of data per page is defined to be
LOBLKSIZE (which is currently BLCKSZ/4, or typically 2 kB).

Prior to PostgreSQL 9.0, there was no permission structure associated with large objects. As a result,
pg_largeobject was publicly readable and could be used to obtain the OIDs (and contents) of all
large objects in the system. This is no longer the case; use pg_largeobject_metadata to obtain a
list of large object OIDs.

Table 52.30. pg_largeobject Columns

Name Type References Description

loid oid pg_largeobject_metadata.oidIdentifier of the large
object that includes this
page

2146

System Catalogs

Name Type References Description

pageno int4 Page number of this page
within its large object
(counting from zero)

data bytea Actual data stored in
the large object. This
will never be more than
LOBLKSIZE bytes and
might be less.

Each row of pg_largeobject holds data for one page of a large object, beginning at byte offset
(pageno * LOBLKSIZE) within the object. The implementation allows sparse storage: pages might
be missing, and might be shorter than LOBLKSIZE bytes even if they are not the last page of the object.
Missing regions within a large object read as zeroes.

52.31. pg_largeobject_metadata
The catalog pg_largeobject_metadata holds metadata associated with large objects. The actual
large object data is stored in pg_largeobject.

Table 52.31. pg_largeobject_metadata Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

lomowner oid pg_authid.oid Owner of the large object

lomacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

52.32. pg_namespace
The catalog pg_namespace stores namespaces. A namespace is the structure underlying SQL schemas:
each namespace can have a separate collection of relations, types, etc. without name conflicts.

Table 52.32. pg_namespace Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

nspname name Name of the namespace

nspowner oid pg_authid.oid Owner of the namespace

nspacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

52.33. pg_opclass

2147

System Catalogs

The catalog pg_opclass defines index access method operator classes. Each operator class defines
semantics for index columns of a particular data type and a particular index access method. An operator
class essentially specifies that a particular operator family is applicable to a particular indexable column
data type. The set of operators from the family that are actually usable with the indexed column are
whichever ones accept the column's data type as their left-hand input.

Operator classes are described at length in Section 38.15.

Table 52.33. pg_opclass Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

opcmethod oid pg_am.oid Index access method
operator class is for

opcname name Name of this operator
class

opcnamespace oid pg_namespace.oid Namespace of this
operator class

opcowner oid pg_authid.oid Owner of the operator
class

opcfamily oid pg_opfamily.oid Operator family
containing the operator
class

opcintype oid pg_type.oid Data type that the
operator class indexes

opcdefault bool True if this operator
class is the default for
opcintype

opckeytype oid pg_type.oid Type of data stored in
index, or zero if same as
opcintype

An operator class's opcmethod must match the opfmethod of its containing operator family. Also,
there must be no more than one pg_opclass row having opcdefault true for any given combination
of opcmethod and opcintype.

52.34. pg_operator
The catalog pg_operator stores information about operators. See CREATE OPERATOR and
Section 38.13 for more information.

Table 52.34. pg_operator Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

oprname name Name of the operator

2148

System Catalogs

Name Type References Description

oprnamespace oid pg_namespace.oid The OID of the
namespace that contains
this operator

oprowner oid pg_authid.oid Owner of the operator

oprkind char b = infix (“both”), l
= prefix (“left”), r =
postfix (“right”)

oprcanmerge bool This operator supports
merge joins

oprcanhash bool This operator supports
hash joins

oprleft oid pg_type.oid Type of the left operand

oprright oid pg_type.oid Type of the right operand

oprresult oid pg_type.oid Type of the result

oprcom oid pg_operator.oid Commutator of this
operator, if any

oprnegate oid pg_operator.oid Negator of this operator,
if any

oprcode regproc pg_proc.oid Function that
implements this operator

oprrest regproc pg_proc.oid Restriction selectivity
estimation function for
this operator

oprjoin regproc pg_proc.oid Join selectivity
estimation function for
this operator

Unused column contain zeroes. For example, oprleft is zero for a prefix operator.

52.35. pg_opfamily
The catalog pg_opfamily defines operator families. Each operator family is a collection of operators
and associated support routines that implement the semantics specified for a particular index access
method. Furthermore, the operators in a family are all “compatible”, in a way that is specified by the access
method. The operator family concept allows cross-data-type operators to be used with indexes and to be
reasoned about using knowledge of access method semantics.

Operator families are described at length in Section 38.15.

Table 52.35. pg_opfamily Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

opfmethod oid pg_am.oid Index access method
operator family is for

2149

System Catalogs

Name Type References Description

opfname name Name of this operator
family

opfnamespace oid pg_namespace.oid Namespace of this
operator family

opfowner oid pg_authid.oid Owner of the operator
family

The majority of the information defining an operator family is not in its pg_opfamily row, but in the
associated rows in pg_amop, pg_amproc, and pg_opclass.

52.36. pg_partitioned_table
The catalog pg_partitioned_table stores information about how tables are partitioned.

Table 52.36. pg_partitioned_table Columns

Name Type References Description

partrelid oid pg_class.oid The OID of the
pg_class entry for this
partitioned table

partstrat char Partitioning strategy; h =
hash partitioned table, l
= list partitioned table, r
= range partitioned table

partnatts int2 The number of columns
in partition key

partdefid oid pg_class.oid The OID of the
pg_class entry for the
default partition of this
partitioned table, or zero
if this partitioned table
does not have a default
partition.

partattrs int2vector pg_attribute.attnumThis is an array of
partnatts values that
indicate which table
columns are part of
the partition key. For
example, a value of 1
3 would mean that the
first and the third table
columns make up the
partition key. A zero
in this array indicates
that the corresponding
partition key column
is an expression, rather
than a simple column
reference.

2150

System Catalogs

Name Type References Description

partclass oidvector pg_opclass.oid For each column in
the partition key, this
contains the OID of the
operator class to use.
See pg_opclass for
details.

partcollation oidvector pg_opclass.oid For each column in
the partition key, this
contains the OID of
the collation to use for
partitioning, or zero if
the column is not of a
collatable data type.

partexprs pg_node_tree Expression trees (in
nodeToString()
representation) for
partition key columns
that are not simple
column references. This
is a list with one element
for each zero entry in
partattrs. Null if all
partition key columns are
simple references.

52.37. pg_pltemplate
The catalog pg_pltemplate stores “template” information for procedural languages. A template for
a language allows the language to be created in a particular database by a simple CREATE LANGUAGE
command, with no need to specify implementation details.

Unlike most system catalogs, pg_pltemplate is shared across all databases of a cluster: there is only
one copy of pg_pltemplate per cluster, not one per database. This allows the information to be
accessible in each database as it is needed.

Table 52.37. pg_pltemplate Columns

Name Type Description

tmplname name Name of the language this
template is for

tmpltrusted boolean True if language is considered
trusted

tmpldbacreate boolean True if language may be created
by a database owner

tmplhandler text Name of call handler function

tmplinline text Name of anonymous-block
handler function, or null if none

tmplvalidator text Name of validator function, or
null if none

2151

System Catalogs

Name Type Description

tmpllibrary text Path of shared library that
implements language

tmplacl aclitem[] Access privileges for template
(not actually used)

There are not currently any commands that manipulate procedural language templates; to change the
built-in information, a superuser must modify the table using ordinary INSERT, DELETE, or UPDATE
commands.

Note

It is likely that pg_pltemplate will be removed in some future release of PostgreSQL, in favor
of keeping this knowledge about procedural languages in their respective extension installation
scripts.

52.38. pg_policy
The catalog pg_policy stores row level security policies for tables. A policy includes the kind of
command that it applies to (possibly all commands), the roles that it applies to, the expression to be added
as a security-barrier qualification to queries that include the table, and the expression to be added as a
WITH CHECK option for queries that attempt to add new records to the table.

Table 52.38. pg_policy Columns

Name Type References Description

polname name The name of the policy

polrelid oid pg_class.oid The table to which the
policy applies

polcmd char The command type to
which the policy is
applied: r for SELECT,
a for INSERT, w for
UPDATE, d for DELETE,
or * for all

polpermissive boolean Is the policy permissive
or restrictive?

polroles oid[] pg_authid.oid The roles to which the
policy is applied

polqual pg_node_tree The expression tree to
be added to the security
barrier qualifications for
queries that use the table

polwithcheck pg_node_tree The expression tree to
be added to the WITH
CHECK qualifications
for queries that attempt to
add rows to the table

2152

System Catalogs

Note

Policies stored in pg_policy are applied only when pg_class.relrowsecurity is set for
their table.

52.39. pg_proc
The catalog pg_proc stores information about functions, procedures, aggregate functions, and window
functions (collectively also known as routines). See CREATE FUNCTION, CREATE PROCEDURE, and
Section 38.3 for more information.

If prokind indicates that the entry is for an aggregate function, there should be a matching row in
pg_aggregate.

Table 52.39. pg_proc Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

proname name Name of the function

pronamespace oid pg_namespace.oid The OID of the
namespace that contains
this function

proowner oid pg_authid.oid Owner of the function

prolang oid pg_language.oid Implementation
language or call interface
of this function

procost float4 Estimated execution
cost (in units of
cpu_operator_cost); if
proretset, this is cost
per row returned

prorows float4 Estimated number of
result rows (zero if not
proretset)

provariadic oid pg_type.oid Data type of the variadic
array parameter's
elements, or zero if the
function does not have a
variadic parameter

protransform regproc pg_proc.oid Calls to this function
can be simplified by
this other function (see
Section 38.10.10)

prokind char f for a normal function,
p for a procedure, a for

2153

System Catalogs

Name Type References Description

an aggregate function, or
w for a window function

prosecdef bool Function is a security
definer (i.e., a “setuid”
function)

proleakproof bool The function has no side
effects. No information
about the arguments is
conveyed except via
the return value. Any
function that might throw
an error depending on the
values of its arguments is
not leak-proof.

proisstrict bool Function returns null if
any call argument is null.
In that case the function
won't actually be called
at all. Functions that
are not “strict” must be
prepared to handle null
inputs.

proretset bool Function returns a set
(i.e., multiple values of
the specified data type)

provolatile char provolatile tells
whether the function's
result depends only on
its input arguments, or
is affected by outside
factors. It is i for
“immutable” functions,
which always deliver the
same result for the same
inputs. It is s for “stable”
functions, whose results
(for fixed inputs) do not
change within a scan.
It is v for “volatile”
functions, whose results
might change at any time.
(Use v also for functions
with side-effects, so that
calls to them cannot get
optimized away.)

proparallel char proparallel tells
whether the function can
be safely run in parallel
mode. It is s for
functions which are safe

2154

System Catalogs

Name Type References Description

to run in parallel mode
without restriction. It is r
for functions which can
be run in parallel mode,
but their execution is
restricted to the parallel
group leader; parallel
worker processes cannot
invoke these functions. It
is u for functions which
are unsafe in parallel
mode; the presence of
such a function forces a
serial execution plan.

pronargs int2 Number of input
arguments

pronargdefaults int2 Number of arguments
that have defaults

prorettype oid pg_type.oid Data type of the return
value

proargtypes oidvector pg_type.oid An array with the data
types of the function
arguments. This includes
only input arguments
(including INOUT and
VARIADIC arguments),
and thus represents the
call signature of the
function.

proallargtypes oid[] pg_type.oid An array with the data
types of the function
arguments. This includes
all arguments (including
OUT and INOUT
arguments); however, if
all the arguments are
IN arguments, this field
will be null. Note that
subscripting is 1-based,
whereas for historical
reasons proargtypes
is subscripted from 0.

proargmodes char[] An array with the
modes of the function
arguments, encoded as i
for IN arguments, o for
OUT arguments, b for
INOUT arguments, v for
VARIADIC arguments,
t for TABLE arguments.

2155

System Catalogs

Name Type References Description

If all the arguments
are IN arguments, this
field will be null.
Note that subscripts
correspond to positions
of proallargtypes
not proargtypes.

proargnames text[] An array with the
names of the function
arguments. Arguments
without a name are
set to empty strings in
the array. If none of
the arguments have a
name, this field will be
null. Note that subscripts
correspond to positions
of proallargtypes
not proargtypes.

proargdefaults pg_node_tree Expression trees (in
nodeToString()
representation) for
default values. This
is a list with
pronargdefaults
elements, corresponding
to the last N input
arguments (i.e., the
last N proargtypes
positions). If none of the
arguments have defaults,
this field will be null.

protrftypes oid[] Data type OIDs
for which to apply
transforms.

prosrc text This tells the function
handler how to invoke
the function. It might
be the actual source
code of the function for
interpreted languages, a
link symbol, a file
name, or just about
anything else, depending
on the implementation
language/call
convention.

probin text Additional information
about how to invoke
the function. Again,

2156

System Catalogs

Name Type References Description

the interpretation is
language-specific.

proconfig text[] Function's local settings
for run-time
configuration variables

proacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

For compiled functions, both built-in and dynamically loaded, prosrc contains the function's C-language
name (link symbol). For all other currently-known language types, prosrc contains the function's source
text. probin is unused except for dynamically-loaded C functions, for which it gives the name of the
shared library file containing the function.

52.40. pg_publication
The catalog pg_publication contains all publications created in the database. For more on
publications see Section 31.1.

Table 52.40. pg_publication Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

pubname name Name of the publication

pubowner oid pg_authid.oid Owner of the publication

puballtables bool If true, this publication
automatically includes
all tables in the database,
including any that will be
created in the future.

pubinsert bool If true, INSERT
operations are replicated
for tables in the
publication.

pubupdate bool If true, UPDATE
operations are replicated
for tables in the
publication.

pubdelete bool If true, DELETE
operations are replicated
for tables in the
publication.

pubtruncate bool If true, TRUNCATE
operations are replicated
for tables in the
publication.

2157

System Catalogs

52.41. pg_publication_rel
The catalog pg_publication_rel contains the mapping between relations and publications in the
database. This is a many-to-many mapping. See also Section 52.78 for a more user-friendly view of this
information.

Table 52.41. pg_publication_rel Columns

Name Type References Description

prpubid oid pg_publication.oidReference to publication

prrelid oid pg_class.oid Reference to relation

52.42. pg_range
The catalog pg_range stores information about range types. This is in addition to the types' entries in
pg_type.

Table 52.42. pg_range Columns

Name Type References Description

rngtypid oid pg_type.oid OID of the range type

rngsubtype oid pg_type.oid OID of the element type
(subtype) of this range
type

rngcollation oid pg_collation.oid OID of the collation used
for range comparisons, or
0 if none

rngsubopc oid pg_opclass.oid OID of the subtype's
operator class used for
range comparisons

rngcanonical regproc pg_proc.oid OID of the function to
convert a range value
into canonical form, or 0
if none

rngsubdiff regproc pg_proc.oid OID of the function
to return the difference
between two element
values as double
precision, or 0 if
none

rngsubopc (plus rngcollation, if the element type is collatable) determines the sort ordering used
by the range type. rngcanonical is used when the element type is discrete. rngsubdiff is optional
but should be supplied to improve performance of GiST indexes on the range type.

52.43. pg_replication_origin
The pg_replication_origin catalog contains all replication origins created. For more on
replication origins see Chapter 50.

2158

System Catalogs

Unlike most system catalogs, pg_replication_origin is shared across all databases of a cluster:
there is only one copy of pg_replication_origin per cluster, not one per database.

Table 52.43. pg_replication_origin Columns

Name Type References Description

roident Oid A unique, cluster-
wide identifier for
the replication origin.
Should never leave the
system.

roname text The external, user
defined, name of a
replication origin.

52.44. pg_rewrite
The catalog pg_rewrite stores rewrite rules for tables and views.

Table 52.44. pg_rewrite Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

rulename name Rule name

ev_class oid pg_class.oid The table this rule is for

ev_type char Event type that the rule
is for: 1 = SELECT, 2 =
UPDATE, 3 = INSERT, 4
= DELETE

ev_enabled char Controls in which
session_replication_role
modes the rule fires. O =
rule fires in “origin” and
“local” modes, D = rule is
disabled, R = rule fires in
“replica” mode, A = rule
fires always.

is_instead bool True if the rule is an
INSTEAD rule

ev_qual pg_node_tree Expression tree (in
the form of a
nodeToString()
representation) for the
rule's qualifying
condition

ev_action pg_node_tree Query tree (in the form
of a nodeToString()

2159

System Catalogs

Name Type References Description

representation) for the
rule's action

Note

pg_class.relhasrules must be true if a table has any rules in this catalog.

52.45. pg_seclabel
The catalog pg_seclabel stores security labels on database objects. Security labels can be manipulated
with the SECURITY LABEL command. For an easier way to view security labels, see Section 52.83.

See also pg_shseclabel, which performs a similar function for security labels of database objects that
are shared across a database cluster.

Table 52.45. pg_seclabel Columns

Name Type References Description

objoid oid any OID column The OID of the
object this security label
pertains to

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

objsubid int4 For a security label
on a table column,
this is the column
number (the objoid
and classoid refer to
the table itself). For all
other object types, this
column is zero.

provider text The label provider
associated with this label.

label text The security label
applied to this object.

52.46. pg_sequence
The catalog pg_sequence contains information about sequences. Some of the information about
sequences, such as the name and the schema, is in pg_class.

Table 52.46. pg_sequence Columns

Name Type References Description

seqrelid oid pg_class.oid The OID of the
pg_class entry for this
sequence

2160

System Catalogs

Name Type References Description

seqtypid oid pg_type.oid Data type of the sequence

seqstart int8 Start value of the
sequence

seqincrement int8 Increment value of the
sequence

seqmax int8 Maximum value of the
sequence

seqmin int8 Minimum value of the
sequence

seqcache int8 Cache size of the
sequence

seqcycle bool Whether the sequence
cycles

52.47. pg_shdepend
The catalog pg_shdepend records the dependency relationships between database objects and shared
objects, such as roles. This information allows PostgreSQL to ensure that those objects are unreferenced
before attempting to delete them.

See also pg_depend, which performs a similar function for dependencies involving objects within a
single database.

Unlike most system catalogs, pg_shdepend is shared across all databases of a cluster: there is only one
copy of pg_shdepend per cluster, not one per database.

Table 52.47. pg_shdepend Columns

Name Type References Description

dbid oid pg_database.oid The OID of the database
the dependent object is
in, or zero for a shared
object

classid oid pg_class.oid The OID of the system
catalog the dependent
object is in

objid oid any OID column The OID of the specific
dependent object

objsubid int4 For a table column, this is
the column number (the
objid and classid
refer to the table itself).
For all other object types,
this column is zero.

refclassid oid pg_class.oid The OID of the system
catalog the referenced
object is in (must be a
shared catalog)

2161

System Catalogs

Name Type References Description

refobjid oid any OID column The OID of the specific
referenced object

deptype char A code defining the
specific semantics of this
dependency relationship;
see text

In all cases, a pg_shdepend entry indicates that the referenced object cannot be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

SHARED_DEPENDENCY_OWNER (o)

The referenced object (which must be a role) is the owner of the dependent object.

SHARED_DEPENDENCY_ACL (a)

The referenced object (which must be a role) is mentioned in the ACL (access control list, i.e.,
privileges list) of the dependent object. (A SHARED_DEPENDENCY_ACL entry is not made for the
owner of the object, since the owner will have a SHARED_DEPENDENCY_OWNER entry anyway.)

SHARED_DEPENDENCY_POLICY (r)

The referenced object (which must be a role) is mentioned as the target of a dependent policy object.

SHARED_DEPENDENCY_PIN (p)

There is no dependent object; this type of entry is a signal that the system itself depends on the
referenced object, and so that object must never be deleted. Entries of this type are created only by
initdb. The columns for the dependent object contain zeroes.

Other dependency flavors might be needed in future. Note in particular that the current definition only
supports roles as referenced objects.

52.48. pg_shdescription
The catalog pg_shdescription stores optional descriptions (comments) for shared database objects.
Descriptions can be manipulated with the COMMENT command and viewed with psql's \d commands.

See also pg_description, which performs a similar function for descriptions involving objects within
a single database.

Unlike most system catalogs, pg_shdescription is shared across all databases of a cluster: there is
only one copy of pg_shdescription per cluster, not one per database.

Table 52.48. pg_shdescription Columns

Name Type References Description

objoid oid any OID column The OID of the object
this description pertains
to

2162

System Catalogs

Name Type References Description

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

description text Arbitrary text that serves
as the description of this
object

52.49. pg_shseclabel
The catalog pg_shseclabel stores security labels on shared database objects. Security labels can
be manipulated with the SECURITY LABEL command. For an easier way to view security labels, see
Section 52.83.

See also pg_seclabel, which performs a similar function for security labels involving objects within
a single database.

Unlike most system catalogs, pg_shseclabel is shared across all databases of a cluster: there is only
one copy of pg_shseclabel per cluster, not one per database.

Table 52.49. pg_shseclabel Columns

Name Type References Description

objoid oid any OID column The OID of the
object this security label
pertains to

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

provider text The label provider
associated with this label.

label text The security label
applied to this object.

52.50. pg_statistic
The catalog pg_statistic stores statistical data about the contents of the database. Entries are created
by ANALYZE and subsequently used by the query planner. Note that all the statistical data is inherently
approximate, even assuming that it is up-to-date.

Normally there is one entry, with stainherit = false, for each table column that has been analyzed.
If the table has inheritance children, a second entry with stainherit = true is also created. This
row represents the column's statistics over the inheritance tree, i.e., statistics for the data you'd see with
SELECT column FROM table*, whereas the stainherit = false row represents the results of
SELECT column FROM ONLY table.

pg_statistic also stores statistical data about the values of index expressions. These are described
as if they were actual data columns; in particular, starelid references the index. No entry is made for
an ordinary non-expression index column, however, since it would be redundant with the entry for the
underlying table column. Currently, entries for index expressions always have stainherit = false.

2163

System Catalogs

Since different kinds of statistics might be appropriate for different kinds of data, pg_statistic is
designed not to assume very much about what sort of statistics it stores. Only extremely general statistics
(such as nullness) are given dedicated columns in pg_statistic. Everything else is stored in “slots”,
which are groups of associated columns whose content is identified by a code number in one of the slot's
columns. For more information see src/include/catalog/pg_statistic.h.

pg_statistic should not be readable by the public, since even statistical information about a table's
contents might be considered sensitive. (Example: minimum and maximum values of a salary column
might be quite interesting.) pg_stats is a publicly readable view on pg_statistic that only exposes
information about those tables that are readable by the current user.

Table 52.50. pg_statistic Columns

Name Type References Description

starelid oid pg_class.oid The table or index that
the described column
belongs to

staattnum int2 pg_attribute.attnumThe number of the
described column

stainherit bool If true, the stats
include inheritance child
columns, not just the
values in the specified
relation

stanullfrac float4 The fraction of the
column's entries that are
null

stawidth int4 The average stored
width, in bytes, of
nonnull entries

stadistinct float4 The number of distinct
nonnull data values in
the column. A value
greater than zero is
the actual number of
distinct values. A value
less than zero is the
negative of a multiplier
for the number of rows
in the table; for example,
a column in which
about 80% of the values
are nonnull and each
nonnull value appears
about twice on average
could be represented by
stadistinct = -0.4.
A zero value means the
number of distinct values
is unknown.

stakindN int2 A code number
indicating the kind of

2164

System Catalogs

Name Type References Description

statistics stored in the
Nth “slot” of the
pg_statistic row.

staopN oid pg_operator.oid An operator used to
derive the statistics
stored in the Nth “slot”.
For example, a histogram
slot would show the <
operator that defines the
sort order of the data.

stanumbersN float4[] Numerical statistics of
the appropriate kind for
the Nth “slot”, or null
if the slot kind does not
involve numerical values

stavaluesN anyarray Column data values of
the appropriate kind for
the Nth “slot”, or null
if the slot kind does not
store any data values.
Each array's element
values are actually of
the specific column's
data type, or a related
type such as an array's
element type, so there
is no way to define
these columns' type
more specifically than
anyarray.

52.51. pg_statistic_ext
The catalog pg_statistic_ext holds extended planner statistics. Each row in this catalog
corresponds to a statistics object created with CREATE STATISTICS.

Table 52.51. pg_statistic_ext Columns

Name Type References Description

stxrelid oid pg_class.oid Table containing the
columns described by
this object

stxname name Name of the statistics
object

stxnamespace oid pg_namespace.oid The OID of the
namespace that contains
this statistics object

stxowner oid pg_authid.oid Owner of the statistics
object

2165

System Catalogs

Name Type References Description

stxkeys int2vector pg_attribute.attnumAn array of attribute
numbers, indicating
which table columns are
covered by this statistics
object; for example a
value of 1 3 would
mean that the first and the
third table columns are
covered

stxkind char[] An array containing
codes for the enabled
statistic kinds; valid
values are: d for n-
distinct statistics, f for
functional dependency
statistics

stxndistinct pg_ndistinct N-distinct counts,
serialized as
pg_ndistinct type

stxdependencies pg_dependencies Functional dependency
statistics, serialized
as pg_dependencies
type

The stxkind field is filled at creation of the statistics object, indicating which statistic type(s) are desired.
The fields after it are initially NULL and are filled only when the corresponding statistic has been computed
by ANALYZE.

52.52. pg_subscription
The catalog pg_subscription contains all existing logical replication subscriptions. For more
information about logical replication see Chapter 31.

Unlike most system catalogs, pg_subscription is shared across all databases of a cluster: there is
only one copy of pg_subscription per cluster, not one per database.

Access to the column subconninfo is revoked from normal users, because it could contain plain-text
passwords.

Table 52.52. pg_subscription Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

subdbid oid pg_database.oid OID of the database
which the subscription
resides in

subname name Name of the subscription

2166

System Catalogs

Name Type References Description

subowner oid pg_authid.oid Owner of the
subscription

subenabled bool If true, the subscription
is enabled and should be
replicating.

subsynccommit text Contains the value of the
synchronous_commit
setting for the
subscription workers.

subconninfo text Connection string to the
upstream database

subslotname name Name of the replication
slot in the upstream
database. Also used for
local replication origin
name.

subpublications text[] Array of subscribed
publication names.
These reference the
publications on the
publisher server. For
more on publications see
Section 31.1.

52.53. pg_subscription_rel
The catalog pg_subscription_rel contains the state for each replicated relation in each subscription.
This is a many-to-many mapping.

This catalog only contains tables known to the subscription after running either CREATE
SUBSCRIPTION or ALTER SUBSCRIPTION ... REFRESH PUBLICATION.

Table 52.53. pg_subscription_rel Columns

Name Type References Description

srsubid oid pg_subscription.oidReference to
subscription

srrelid oid pg_class.oid Reference to relation

srsubstate char State code: i =
initialize, d = data
is being copied, s =
synchronized, r = ready
(normal replication)

srsublsn pg_lsn End LSN for s and r
states.

52.54. pg_tablespace

2167

System Catalogs

The catalog pg_tablespace stores information about the available tablespaces. Tables can be placed
in particular tablespaces to aid administration of disk layout.

Unlike most system catalogs, pg_tablespace is shared across all databases of a cluster: there is only
one copy of pg_tablespace per cluster, not one per database.

Table 52.54. pg_tablespace Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

spcname name Tablespace name

spcowner oid pg_authid.oid Owner of the tablespace,
usually the user who
created it

spcacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

spcoptions text[] Tablespace-level
options, as
“keyword=value” strings

52.55. pg_transform
The catalog pg_transform stores information about transforms, which are a mechanism to adapt data
types to procedural languages. See CREATE TRANSFORM for more information.

Table 52.55. pg_transform Columns

Name Type References Description

trftype oid pg_type.oid OID of the data type this
transform is for

trflang oid pg_language.oid OID of the language this
transform is for

trffromsql regproc pg_proc.oid The OID of the function
to use when converting
the data type for
input to the procedural
language (e.g., function
parameters). Zero is
stored if this operation is
not supported.

trftosql regproc pg_proc.oid The OID of the
function to use when
converting output from
the procedural language
(e.g., return values) to the
data type. Zero is stored

2168

System Catalogs

Name Type References Description

if this operation is not
supported.

52.56. pg_trigger
The catalog pg_trigger stores triggers on tables and views. See CREATE TRIGGER for more
information.

Table 52.56. pg_trigger Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

tgrelid oid pg_class.oid The table this trigger is
on

tgname name Trigger name (must be
unique among triggers of
same table)

tgfoid oid pg_proc.oid The function to be called

tgtype int2 Bit mask identifying
trigger firing conditions

tgenabled char Controls in which
session_replication_role
modes the trigger fires. O
= trigger fires in “origin”
and “local” modes, D =
trigger is disabled, R =
trigger fires in “replica”
mode, A = trigger fires
always.

tgisinternal bool True if trigger is
internally generated
(usually, to enforce the
constraint identified by
tgconstraint)

tgconstrrelid oid pg_class.oid The table referenced by
a referential integrity
constraint

tgconstrindid oid pg_class.oid The index supporting
a unique, primary key,
referential integrity, or
exclusion constraint

tgconstraint oid pg_constraint.oid The pg_constraint
entry associated with the
trigger, if any

tgdeferrable bool True if constraint trigger
is deferrable

2169

System Catalogs

Name Type References Description

tginitdeferred bool True if constraint trigger
is initially deferred

tgnargs int2 Number of argument
strings passed to trigger
function

tgattr int2vector pg_attribute.attnumColumn numbers, if
trigger is column-
specific; otherwise an
empty array

tgargs bytea Argument strings to pass
to trigger, each NULL-
terminated

tgqual pg_node_tree Expression tree (in
nodeToString()
representation) for the
trigger's WHEN condition,
or null if none

tgoldtable name REFERENCING clause
name for OLD TABLE,
or null if none

tgnewtable name REFERENCING clause
name for NEW TABLE,
or null if none

Currently, column-specific triggering is supported only for UPDATE events, and so tgattr is relevant
only for that event type. tgtype might contain bits for other event types as well, but those are presumed
to be table-wide regardless of what is in tgattr.

Note

When tgconstraint is nonzero, tgconstrrelid, tgconstrindid, tgdeferrable,
and tginitdeferred are largely redundant with the referenced pg_constraint entry.
However, it is possible for a non-deferrable trigger to be associated with a deferrable constraint:
foreign key constraints can have some deferrable and some non-deferrable triggers.

Note

pg_class.relhastriggers must be true if a relation has any triggers in this catalog.

52.57. pg_ts_config
The pg_ts_config catalog contains entries representing text search configurations. A configuration
specifies a particular text search parser and a list of dictionaries to use for each of the parser's output token
types. The parser is shown in the pg_ts_config entry, but the token-to-dictionary mapping is defined
by subsidiary entries in pg_ts_config_map.

2170

System Catalogs

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.57. pg_ts_config Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

cfgname name Text search
configuration name

cfgnamespace oid pg_namespace.oid The OID of the
namespace that contains
this configuration

cfgowner oid pg_authid.oid Owner of the
configuration

cfgparser oid pg_ts_parser.oid The OID of the text
search parser for this
configuration

52.58. pg_ts_config_map
The pg_ts_config_map catalog contains entries showing which text search dictionaries should be
consulted, and in what order, for each output token type of each text search configuration's parser.

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.58. pg_ts_config_map Columns

Name Type References Description

mapcfg oid pg_ts_config.oid The OID of the
pg_ts_config entry
owning this map entry

maptokentype integer A token type emitted by
the configuration's parser

mapseqno integer Order in which to
consult this entry (lower
mapseqnos first)

mapdict oid pg_ts_dict.oid The OID of the text
search dictionary to
consult

52.59. pg_ts_dict
The pg_ts_dict catalog contains entries defining text search dictionaries. A dictionary depends on a
text search template, which specifies all the implementation functions needed; the dictionary itself provides
values for the user-settable parameters supported by the template. This division of labor allows dictionaries
to be created by unprivileged users. The parameters are specified by a text string dictinitoption,
whose format and meaning vary depending on the template.

PostgreSQL's text search features are described at length in Chapter 12.

2171

System Catalogs

Table 52.59. pg_ts_dict Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

dictname name Text search dictionary
name

dictnamespace oid pg_namespace.oid The OID of the
namespace that contains
this dictionary

dictowner oid pg_authid.oid Owner of the dictionary

dicttemplate oid pg_ts_template.oidThe OID of the text
search template for this
dictionary

dictinitoption text Initialization option
string for the template

52.60. pg_ts_parser
The pg_ts_parser catalog contains entries defining text search parsers. A parser is responsible for
splitting input text into lexemes and assigning a token type to each lexeme. Since a parser must be
implemented by C-language-level functions, creation of new parsers is restricted to database superusers.

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.60. pg_ts_parser Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

prsname name Text search parser name

prsnamespace oid pg_namespace.oid The OID of the
namespace that contains
this parser

prsstart regproc pg_proc.oid OID of the parser's
startup function

prstoken regproc pg_proc.oid OID of the parser's next-
token function

prsend regproc pg_proc.oid OID of the parser's
shutdown function

prsheadline regproc pg_proc.oid OID of the parser's
headline function

prslextype regproc pg_proc.oid OID of the parser's
lextype function

52.61. pg_ts_template

2172

System Catalogs

The pg_ts_template catalog contains entries defining text search templates. A template is the
implementation skeleton for a class of text search dictionaries. Since a template must be implemented by
C-language-level functions, creation of new templates is restricted to database superusers.

PostgreSQL's text search features are described at length in Chapter 12.

Table 52.61. pg_ts_template Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

tmplname name Text search template
name

tmplnamespace oid pg_namespace.oid The OID of the
namespace that contains
this template

tmplinit regproc pg_proc.oid OID of the template's
initialization function

tmpllexize regproc pg_proc.oid OID of the template's
lexize function

52.62. pg_type
The catalog pg_type stores information about data types. Base types and enum types (scalar types) are
created with CREATE TYPE, and domains with CREATE DOMAIN. A composite type is automatically
created for each table in the database, to represent the row structure of the table. It is also possible to create
composite types with CREATE TYPE AS.

Table 52.62. pg_type Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

typname name Data type name

typnamespace oid pg_namespace.oid The OID of the
namespace that contains
this type

typowner oid pg_authid.oid Owner of the type

typlen int2 For a fixed-size type,
typlen is the number
of bytes in the internal
representation of the
type. But for a variable-
length type, typlen
is negative. -1 indicates
a “varlena” type (one
that has a length word),

2173

System Catalogs

Name Type References Description

-2 indicates a null-
terminated C string.

typbyval bool typbyval determines
whether internal routines
pass a value of this type
by value or by reference.
typbyval had better be
false if typlen is not
1, 2, or 4 (or 8 on
machines where Datum
is 8 bytes). Variable-
length types are always
passed by reference.
Note that typbyval
can be false even if the
length would allow pass-
by-value.

typtype char typtype is b for a base
type, c for a composite
type (e.g., a table's row
type), d for a domain,
e for an enum type,
p for a pseudo-type,
or r for a range type.
See also typrelid and
typbasetype.

typcategory char typcategory is an
arbitrary classification of
data types that is used by
the parser to determine
which implicit casts
should be “preferred”.
See Table 52.63.

typispreferred bool True if the type
is a preferred cast
target within its
typcategory

typisdefined bool True if the type is
defined, false if this is
a placeholder entry for
a not-yet-defined type.
When typisdefined
is false, nothing
except the type name,
namespace, and OID can
be relied on.

typdelim char Character that separates
two values of this type
when parsing array input.
Note that the delimiter is

2174

System Catalogs

Name Type References Description

associated with the array
element data type, not the
array data type.

typrelid oid pg_class.oid If this is a composite
type (see typtype),
then this column points
to the pg_class
entry that defines
the corresponding table.
(For a free-standing
composite type, the
pg_class entry doesn't
really represent a table,
but it is needed
anyway for the type's
pg_attribute entries
to link to.) Zero for non-
composite types.

typelem oid pg_type.oid If typelem is not 0
then it identifies another
row in pg_type. The
current type can then
be subscripted like an
array yielding values
of type typelem. A
“true” array type is
variable length (typlen
= -1), but some fixed-
length (typlen > 0)
types also have nonzero
typelem, for example
name and point. If
a fixed-length type has
a typelem then its
internal representation
must be some number of
values of the typelem
data type with no
other data. Variable-
length array types have
a header defined by the
array subroutines.

typarray oid pg_type.oid If typarray is not 0
then it identifies another
row in pg_type, which
is the “true” array type
having this type as
element

typinput regproc pg_proc.oid Input conversion
function (text format)

2175

System Catalogs

Name Type References Description

typoutput regproc pg_proc.oid Output conversion
function (text format)

typreceive regproc pg_proc.oid Input conversion
function (binary format),
or 0 if none

typsend regproc pg_proc.oid Output conversion
function (binary format),
or 0 if none

typmodin regproc pg_proc.oid Type modifier input
function, or 0 if type does
not support modifiers

typmodout regproc pg_proc.oid Type modifier output
function, or 0 to use the
standard format

typanalyze regproc pg_proc.oid Custom ANALYZE
function, or 0 to use the
standard function

typalign char typalign is the
alignment required when
storing a value of this
type. It applies to storage
on disk as well as most
representations of the
value inside PostgreSQL.
When multiple values
are stored consecutively,
such as in the
representation of a
complete row on disk,
padding is inserted
before a datum of this
type so that it begins on
the specified boundary.
The alignment reference
is the beginning of
the first datum in the
sequence.

Possible values are:

• c = char alignment,
i.e., no alignment
needed.

• s = short alignment
(2 bytes on most
machines).

2176

System Catalogs

Name Type References Description

• i = int alignment
(4 bytes on most
machines).

• d = double
alignment (8 bytes on
many machines, but by
no means all).

Note

For types used
in system tables,
it is critical
that the size
and alignment
defined in
pg_type agree
with the way
that the compiler
will lay out
the column
in a structure
representing a
table row.

typstorage char typstorage tells for
varlena types (those with
typlen = -1) if the type
is prepared for toasting
and what the default
strategy for attributes
of this type should be.
Possible values are

• p: Value must always
be stored plain.

• e: Value can be stored
in a “secondary”
relation (if relation has
one, see
pg_class.reltoastrelid).

• m: Value can be stored
compressed inline.

• x: Value can be stored
compressed inline or
stored in “secondary”
storage.

2177

System Catalogs

Name Type References Description

Note that m columns can
also be moved out to
secondary storage, but
only as a last resort (e
and x columns are moved
first).

typnotnull bool typnotnull
represents a not-null
constraint on a type.
Used for domains only.

typbasetype oid pg_type.oid If this is a
domain (see typtype),
then typbasetype
identifies the type that
this one is based on.
Zero if this type is not a
domain.

typtypmod int4 Domains use
typtypmod to record
the typmod to be
applied to their base type
(-1 if base type does not
use a typmod). -1 if this
type is not a domain.

typndims int4 typndims is the
number of array
dimensions for a domain
over an array (that is,
typbasetype is an
array type). Zero for
types other than domains
over array types.

typcollation oid pg_collation.oid typcollation
specifies the collation of
the type. If the type does
not support collations,
this will be zero. A
base type that supports
collations will have
DEFAULT_COLLATION_OID
here. A domain over a
collatable type can have
some other collation
OID, if one was specified
for the domain.

typdefaultbin pg_node_tree If typdefaultbin
is not null, it is
the nodeToString()
representation of a
default expression for the

2178

System Catalogs

Name Type References Description

type. This is only used for
domains.

typdefault text typdefault is null
if the type has no
associated default value.
If typdefaultbin is
not null, typdefault
must contain a
human-readable version
of the default
expression represented
by typdefaultbin.
If typdefaultbin is
null and typdefault
is not, then
typdefault is the
external representation
of the type's default
value, which can be
fed to the type's input
converter to produce a
constant.

typacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

Table 52.63 lists the system-defined values of typcategory. Any future additions to this list will also
be upper-case ASCII letters. All other ASCII characters are reserved for user-defined categories.

Table 52.63. typcategory Codes

Code Category

A Array types

B Boolean types

C Composite types

D Date/time types

E Enum types

G Geometric types

I Network address types

N Numeric types

P Pseudo-types

R Range types

S String types

T Timespan types

U User-defined types

V Bit-string types

2179

System Catalogs

Code Category

X unknown type

52.63. pg_user_mapping
The catalog pg_user_mapping stores the mappings from local user to remote. Access to this catalog
is restricted from normal users, use the view pg_user_mappings instead.

Table 52.64. pg_user_mapping Columns

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

umuser oid pg_authid.oid OID of the local role
being mapped, 0 if the
user mapping is public

umserver oid pg_foreign_server.oidThe OID of the foreign
server that contains this
mapping

umoptions text[] User mapping specific
options, as
“keyword=value” strings

52.64. System Views
In addition to the system catalogs, PostgreSQL provides a number of built-in views. Some system views
provide convenient access to some commonly used queries on the system catalogs. Other views provide
access to internal server state.

The information schema (Chapter 37) provides an alternative set of views which overlap the functionality
of the system views. Since the information schema is SQL-standard whereas the views described here are
PostgreSQL-specific, it's usually better to use the information schema if it provides all the information
you need.

Table 52.65 lists the system views described here. More detailed documentation of each view follows
below. There are some additional views that provide access to the results of the statistics collector; they
are described in Table 28.2.

Except where noted, all the views described here are read-only.

Table 52.65. System Views

View Name Purpose

pg_available_extensions available extensions

pg_available_extension_versions available versions of extensions

pg_config compile-time configuration parameters

pg_cursors open cursors

pg_file_settings summary of configuration file contents

pg_group groups of database users

2180

System Catalogs

View Name Purpose

pg_hba_file_rules summary of client authentication configuration file
contents

pg_indexes indexes

pg_locks locks currently held or awaited

pg_matviews materialized views

pg_policies policies

pg_prepared_statements prepared statements

pg_prepared_xacts prepared transactions

pg_publication_tables publications and their associated tables

pg_replication_origin_status information about replication origins, including
replication progress

pg_replication_slots replication slot information

pg_roles database roles

pg_rules rules

pg_seclabels security labels

pg_sequences sequences

pg_settings parameter settings

pg_shadow database users

pg_stats planner statistics

pg_tables tables

pg_timezone_abbrevs time zone abbreviations

pg_timezone_names time zone names

pg_user database users

pg_user_mappings user mappings

pg_views views

52.65. pg_available_extensions
The pg_available_extensions view lists the extensions that are available for installation. See also
the pg_extension catalog, which shows the extensions currently installed.

Table 52.66. pg_available_extensions Columns

Name Type Description

name name Extension name

default_version text Name of default version, or NULL
if none is specified

installed_version text Currently installed version of the
extension, or NULL if not installed

comment text Comment string from the
extension's control file

2181

System Catalogs

The pg_available_extensions view is read only.

52.66. pg_available_extension_versions
The pg_available_extension_versions view lists the specific extension versions that are
available for installation. See also the pg_extension catalog, which shows the extensions currently
installed.

Table 52.67. pg_available_extension_versions Columns

Name Type Description

name name Extension name

version text Version name

installed bool True if this version of this
extension is currently installed

superuser bool True if only superusers are
allowed to install this extension

relocatable bool True if extension can be relocated
to another schema

schema name Name of the schema that the
extension must be installed into,
or NULL if partially or fully
relocatable

requires name[] Names of prerequisite extensions,
or NULL if none

comment text Comment string from the
extension's control file

The pg_available_extension_versions view is read only.

52.67. pg_config
The view pg_config describes the compile-time configuration parameters of the currently installed
version of PostgreSQL. It is intended, for example, to be used by software packages that want to interface
to PostgreSQL to facilitate finding the required header files and libraries. It provides the same basic
information as the pg_config PostgreSQL client application.

By default, the pg_config view can be read only by superusers.

Table 52.68. pg_config Columns

Name Type Description

name text The parameter name

setting text The parameter value

52.68. pg_cursors
The pg_cursors view lists the cursors that are currently available. Cursors can be defined in several
ways:

2182

System Catalogs

• via the DECLARE statement in SQL

• via the Bind message in the frontend/backend protocol, as described in Section 53.2.3

• via the Server Programming Interface (SPI), as described in Section 47.1

The pg_cursors view displays cursors created by any of these means. Cursors only exist for the duration
of the transaction that defines them, unless they have been declared WITH HOLD. Therefore non-holdable
cursors are only present in the view until the end of their creating transaction.

Note

Cursors are used internally to implement some of the components of PostgreSQL, such as
procedural languages. Therefore, the pg_cursors view might include cursors that have not been
explicitly created by the user.

Table 52.69. pg_cursors Columns

Name Type Description

name text The name of the cursor

statement text The verbatim query string
submitted to declare this cursor

is_holdable boolean true if the cursor is holdable
(that is, it can be accessed after
the transaction that declared the
cursor has committed); false
otherwise

is_binary boolean true if the cursor was declared
BINARY; false otherwise

is_scrollable boolean true if the cursor is scrollable
(that is, it allows rows to
be retrieved in a nonsequential
manner); false otherwise

creation_time timestamptz The time at which the cursor was
declared

The pg_cursors view is read only.

52.69. pg_file_settings
The view pg_file_settings provides a summary of the contents of the server's configuration file(s).
A row appears in this view for each “name = value” entry appearing in the files, with annotations indicating
whether the value could be applied successfully. Additional row(s) may appear for problems not linked to
a “name = value” entry, such as syntax errors in the files.

This view is helpful for checking whether planned changes in the configuration files will work, or for
diagnosing a previous failure. Note that this view reports on the current contents of the files, not on what
was last applied by the server. (The pg_settings view is usually sufficient to determine that.)

By default, the pg_file_settings view can be read only by superusers.

2183

System Catalogs

Table 52.70. pg_file_settings Columns

Name Type Description

sourcefile text Full path name of the
configuration file

sourceline integer Line number within the
configuration file where the entry
appears

seqno integer Order in which the entries are
processed (1..n)

name text Configuration parameter name

setting text Value to be assigned to the
parameter

applied boolean True if the value can be applied
successfully

error text If not null, an error message
indicating why this entry could
not be applied

If the configuration file contains syntax errors or invalid parameter names, the server will not attempt to
apply any settings from it, and therefore all the applied fields will read as false. In such a case there will
be one or more rows with non-null error fields indicating the problem(s). Otherwise, individual settings
will be applied if possible. If an individual setting cannot be applied (e.g., invalid value, or the setting
cannot be changed after server start) it will have an appropriate message in the error field. Another way
that an entry might have applied = false is that it is overridden by a later entry for the same parameter
name; this case is not considered an error so nothing appears in the error field.

See Section 19.1 for more information about the various ways to change run-time parameters.

52.70. pg_group
The view pg_group exists for backwards compatibility: it emulates a catalog that existed in PostgreSQL
before version 8.1. It shows the names and members of all roles that are marked as not rolcanlogin,
which is an approximation to the set of roles that are being used as groups.

Table 52.71. pg_group Columns

Name Type References Description

groname name pg_authid.rolname Name of the group

grosysid oid pg_authid.oid ID of this group

grolist oid[] pg_authid.oid An array containing the
IDs of the roles in this
group

52.71. pg_hba_file_rules
The view pg_hba_file_rules provides a summary of the contents of the client authentication
configuration file, pg_hba.conf. A row appears in this view for each non-empty, non-comment line in
the file, with annotations indicating whether the rule could be applied successfully.

2184

System Catalogs

This view can be helpful for checking whether planned changes in the authentication configuration file
will work, or for diagnosing a previous failure. Note that this view reports on the current contents of the
file, not on what was last loaded by the server.

By default, the pg_hba_file_rules view can be read only by superusers.

Table 52.72. pg_hba_file_rules Columns

Name Type Description

line_number integer Line number of this rule in
pg_hba.conf

type text Type of connection

database text[] List of database name(s) to which
this rule applies

user_name text[] List of user and group name(s) to
which this rule applies

address text Host name or IP address, or one of
all, samehost, or samenet,
or null for local connections

netmask text IP address mask, or null if not
applicable

auth_method text Authentication method

options text[] Options specified for
authentication method, if any

error text If not null, an error message
indicating why this line could not
be processed

Usually, a row reflecting an incorrect entry will have values for only the line_number and error
fields.

See Chapter 20 for more information about client authentication configuration.

52.72. pg_indexes
The view pg_indexes provides access to useful information about each index in the database.

Table 52.73. pg_indexes Columns

Name Type References Description

schemaname name pg_namespace.nspnameName of schema
containing table and
index

tablename name pg_class.relname Name of table the index
is for

indexname name pg_class.relname Name of index

tablespace name pg_tablespace.spcnameName of tablespace
containing index (null if
default for database)

2185

System Catalogs

Name Type References Description

indexdef text Index definition (a
reconstructed CREATE
INDEX command)

52.73. pg_locks
The view pg_locks provides access to information about the locks held by active processes within the
database server. See Chapter 13 for more discussion of locking.

pg_locks contains one row per active lockable object, requested lock mode, and relevant process. Thus,
the same lockable object might appear many times, if multiple processes are holding or waiting for locks
on it. However, an object that currently has no locks on it will not appear at all.

There are several distinct types of lockable objects: whole relations (e.g., tables), individual pages of
relations, individual tuples of relations, transaction IDs (both virtual and permanent IDs), and general
database objects (identified by class OID and object OID, in the same way as in pg_description
or pg_depend). Also, the right to extend a relation is represented as a separate lockable object. Also,
“advisory” locks can be taken on numbers that have user-defined meanings.

Table 52.74. pg_locks Columns

Name Type References Description

locktype text Type of the lockable
object: relation,
extend, page,
tuple,
transactionid,
virtualxid,
object, userlock,
or advisory

database oid pg_database.oid OID of the database in
which the lock target
exists, or zero if the target
is a shared object, or
null if the target is a
transaction ID

relation oid pg_class.oid OID of the relation
targeted by the lock, or
null if the target is not
a relation or part of a
relation

page integer Page number targeted
by the lock within the
relation, or null if the
target is not a relation
page or tuple

tuple smallint Tuple number targeted
by the lock within the
page, or null if the target
is not a tuple

2186

System Catalogs

Name Type References Description

virtualxid text Virtual ID of the
transaction targeted by
the lock, or null if the
target is not a virtual
transaction ID

transactionid xid ID of the transaction
targeted by the lock, or
null if the target is not a
transaction ID

classid oid pg_class.oid OID of the system
catalog containing the
lock target, or null if the
target is not a general
database object

objid oid any OID column OID of the lock target
within its system catalog,
or null if the target is not
a general database object

objsubid smallint Column number targeted
by the lock (the
classid and objid
refer to the table itself),
or zero if the target
is some other general
database object, or null if
the target is not a general
database object

virtualtransactiontext Virtual ID of the
transaction that is
holding or awaiting this
lock

pid integer Process ID of the
server process holding or
awaiting this lock, or null
if the lock is held by a
prepared transaction

mode text Name of the lock
mode held or desired
by this process (see
Section 13.3.1 and
Section 13.2.3)

granted boolean True if lock is held, false
if lock is awaited

fastpath boolean True if lock was taken via
fast path, false if taken
via main lock table

granted is true in a row representing a lock held by the indicated process. False indicates that this process
is currently waiting to acquire this lock, which implies that at least one other process is holding or waiting

2187

System Catalogs

for a conflicting lock mode on the same lockable object. The waiting process will sleep until the other
lock is released (or a deadlock situation is detected). A single process can be waiting to acquire at most
one lock at a time.

Throughout running a transaction, a server process holds an exclusive lock on the transaction's virtual
transaction ID. If a permanent ID is assigned to the transaction (which normally happens only if the
transaction changes the state of the database), it also holds an exclusive lock on the transaction's permanent
transaction ID until it ends. When a process finds it necessary to wait specifically for another transaction to
end, it does so by attempting to acquire share lock on the other transaction's ID (either virtual or permanent
ID depending on the situation). That will succeed only when the other transaction terminates and releases
its locks.

Although tuples are a lockable type of object, information about row-level locks is stored on disk, not in
memory, and therefore row-level locks normally do not appear in this view. If a process is waiting for a
row-level lock, it will usually appear in the view as waiting for the permanent transaction ID of the current
holder of that row lock.

Advisory locks can be acquired on keys consisting of either a single bigint value or two integer values.
A bigint key is displayed with its high-order half in the classid column, its low-order half in the
objid column, and objsubid equal to 1. The original bigint value can be reassembled with the
expression (classid::bigint << 32) | objid::bigint. Integer keys are displayed with the
first key in the classid column, the second key in the objid column, and objsubid equal to 2. The
actual meaning of the keys is up to the user. Advisory locks are local to each database, so the database
column is meaningful for an advisory lock.

pg_locks provides a global view of all locks in the database cluster, not only those relevant to the
current database. Although its relation column can be joined against pg_class.oid to identify
locked relations, this will only work correctly for relations in the current database (those for which the
database column is either the current database's OID or zero).

The pid column can be joined to the pid column of the pg_stat_activity view to get more
information on the session holding or awaiting each lock, for example

SELECT * FROM pg_locks pl LEFT JOIN pg_stat_activity psa
 ON pl.pid = psa.pid;

Also, if you are using prepared transactions, the virtualtransaction column can be joined to
the transaction column of the pg_prepared_xacts view to get more information on prepared
transactions that hold locks. (A prepared transaction can never be waiting for a lock, but it continues to
hold the locks it acquired while running.) For example:

SELECT * FROM pg_locks pl LEFT JOIN pg_prepared_xacts ppx
 ON pl.virtualtransaction = '-1/' || ppx.transaction;

While it is possible to obtain information about which processes block which other processes by joining
pg_locks against itself, this is very difficult to get right in detail. Such a query would have to encode
knowledge about which lock modes conflict with which others. Worse, the pg_locks view does not
expose information about which processes are ahead of which others in lock wait queues, nor information
about which processes are parallel workers running on behalf of which other client sessions. It is better
to use the pg_blocking_pids() function (see Table 9.60) to identify which process(es) a waiting
process is blocked behind.

The pg_locks view displays data from both the regular lock manager and the predicate lock manager,
which are separate systems; in addition, the regular lock manager subdivides its locks into regular and

2188

System Catalogs

fast-path locks. This data is not guaranteed to be entirely consistent. When the view is queried, data on
fast-path locks (with fastpath = true) is gathered from each backend one at a time, without freezing
the state of the entire lock manager, so it is possible for locks to be taken or released while information
is gathered. Note, however, that these locks are known not to conflict with any other lock currently in
place. After all backends have been queried for fast-path locks, the remainder of the regular lock manager
is locked as a unit, and a consistent snapshot of all remaining locks is collected as an atomic action. After
unlocking the regular lock manager, the predicate lock manager is similarly locked and all predicate locks
are collected as an atomic action. Thus, with the exception of fast-path locks, each lock manager will
deliver a consistent set of results, but as we do not lock both lock managers simultaneously, it is possible
for locks to be taken or released after we interrogate the regular lock manager and before we interrogate
the predicate lock manager.

Locking the regular and/or predicate lock manager could have some impact on database performance if
this view is very frequently accessed. The locks are held only for the minimum amount of time necessary to
obtain data from the lock managers, but this does not completely eliminate the possibility of a performance
impact.

52.74. pg_matviews
The view pg_matviews provides access to useful information about each materialized view in the
database.

Table 52.75. pg_matviews Columns

Name Type References Description

schemaname name pg_namespace.nspnameName of schema
containing materialized
view

matviewname name pg_class.relname Name of materialized
view

matviewowner name pg_authid.rolname Name of materialized
view's owner

tablespace name pg_tablespace.spcnameName of tablespace
containing materialized
view (null if default for
database)

hasindexes boolean True if materialized view
has (or recently had) any
indexes

ispopulated boolean True if materialized view
is currently populated

definition text Materialized view
definition (a
reconstructed SELECT
query)

52.75. pg_policies
The view pg_policies provides access to useful information about each row-level security policy in
the database.

2189

System Catalogs

Table 52.76. pg_policies Columns

Name Type References Description

schemaname name pg_namespace.nspnameName of schema
containing table policy is
on

tablename name pg_class.relname Name of table policy is
on

policyname name pg_policy.polname Name of policy

polpermissive text Is the policy permissive
or restrictive?

roles name[] The roles to which this
policy applies

cmd text The command type to
which the policy is
applied

qual text The expression added
to the security barrier
qualifications for queries
that this policy applies to

with_check text The expression added
to the WITH CHECK
qualifications for queries
that attempt to add rows
to this table

52.76. pg_prepared_statements
The pg_prepared_statements view displays all the prepared statements that are available in the
current session. See PREPARE for more information about prepared statements.

pg_prepared_statements contains one row for each prepared statement. Rows are added to the
view when a new prepared statement is created and removed when a prepared statement is released (for
example, via the DEALLOCATE command).

Table 52.77. pg_prepared_statements Columns

Name Type Description

name text The identifier of the prepared
statement

statement text The query string submitted
by the client to create this
prepared statement. For prepared
statements created via SQL,
this is the PREPARE statement
submitted by the client. For
prepared statements created via
the frontend/backend protocol,
this is the text of the prepared
statement itself.

2190

System Catalogs

Name Type Description

prepare_time timestamptz The time at which the prepared
statement was created

parameter_types regtype[] The expected parameter types for
the prepared statement in the form
of an array of regtype. The
OID corresponding to an element
of this array can be obtained by
casting the regtype value to
oid.

from_sql boolean true if the prepared statement
was created via the PREPARE
SQL command; false if the
statement was prepared via the
frontend/backend protocol

The pg_prepared_statements view is read only.

52.77. pg_prepared_xacts
The view pg_prepared_xacts displays information about transactions that are currently prepared for
two-phase commit (see PREPARE TRANSACTION for details).

pg_prepared_xacts contains one row per prepared transaction. An entry is removed when the
transaction is committed or rolled back.

Table 52.78. pg_prepared_xacts Columns

Name Type References Description

transaction xid Numeric transaction
identifier of the prepared
transaction

gid text Global transaction
identifier that was
assigned to the
transaction

prepared timestamp with
time zone

Time at which the
transaction was prepared
for commit

owner name pg_authid.rolname Name of the user that
executed the transaction

database name pg_database.datnameName of the database
in which the transaction
was executed

When the pg_prepared_xacts view is accessed, the internal transaction manager data structures are
momentarily locked, and a copy is made for the view to display. This ensures that the view produces a
consistent set of results, while not blocking normal operations longer than necessary. Nonetheless there
could be some impact on database performance if this view is frequently accessed.

2191

System Catalogs

52.78. pg_publication_tables
The view pg_publication_tables provides information about the mapping between publications
and the tables they contain. Unlike the underlying catalog pg_publication_rel, this view expands
publications defined as FOR ALL TABLES, so for such publications there will be a row for each eligible
table.

Table 52.79. pg_publication_tables Columns

Name Type References Description

pubname name pg_publication.pubnameName of publication

schemaname name pg_namespace.nspnameName of schema
containing table

tablename name pg_class.relname Name of table

52.79. pg_replication_origin_status
The pg_replication_origin_status view contains information about how far replay for a
certain origin has progressed. For more on replication origins see Chapter 50.

Table 52.80. pg_replication_origin_status Columns

Name Type References Description

local_id Oid pg_replication_origin.roidentinternal node identifier

external_id text pg_replication_origin.ronameexternal node identifier

remote_lsn pg_lsn The origin node's LSN up
to which data has been
replicated.

local_lsn pg_lsn This node's LSN at which
remote_lsn has been
replicated. Used to
flush commit records
before persisting data
to disk when using
asynchronous commits.

52.80. pg_replication_slots
The pg_replication_slots view provides a listing of all replication slots that currently exist on the
database cluster, along with their current state.

For more on replication slots, see Section 26.2.6 and Chapter 49.

Table 52.81. pg_replication_slots Columns

Name Type References Description

slot_name name A unique, cluster-
wide identifier for the
replication slot

2192

System Catalogs

Name Type References Description

plugin name The base name of the
shared object containing
the output plugin this
logical slot is using, or
null for physical slots.

slot_type text The slot type
- physical or
logical

datoid oid pg_database.oid The OID of the database
this slot is associated
with, or null. Only
logical slots have an
associated database.

database text pg_database.datnameThe name of the database
this slot is associated
with, or null. Only
logical slots have an
associated database.

temporary boolean True if this is a
temporary replication
slot. Temporary slots
are not saved to disk
and are automatically
dropped on error or when
the session has finished.

active boolean True if this slot is
currently actively being
used

active_pid integer The process ID of the
session using this slot
if the slot is currently
actively being used.
NULL if inactive.

xmin xid The oldest transaction
that this slot needs
the database to retain.
VACUUM cannot remove
tuples deleted by any
later transaction.

catalog_xmin xid The oldest transaction
affecting the system
catalogs that this slot
needs the database to
retain. VACUUM cannot
remove catalog tuples
deleted by any later
transaction.

restart_lsn pg_lsn The address (LSN) of
oldest WAL which still

2193

System Catalogs

Name Type References Description

might be required by
the consumer of this
slot and thus won't be
automatically removed
during checkpoints.
NULL if the LSN of
this slot has never been
reserved.

confirmed_flush_lsnpg_lsn The address (LSN) up to
which the logical slot's
consumer has confirmed
receiving data. Data
older than this is
not available anymore.
NULL for physical slots.

52.81. pg_roles
The view pg_roles provides access to information about database roles. This is simply a publicly
readable view of pg_authid that blanks out the password field.

This view explicitly exposes the OID column of the underlying table, since that is needed to do joins to
other catalogs.

Table 52.82. pg_roles Columns

Name Type References Description

rolname name Role name

rolsuper bool Role has superuser
privileges

rolinherit bool Role automatically
inherits privileges of
roles it is a member of

rolcreaterole bool Role can create more
roles

rolcreatedb bool Role can create databases

rolcanlogin bool Role can log in. That is,
this role can be given
as the initial session
authorization identifier

rolreplication bool Role is a replication
role. A replication role
can initiate replication
connections and create
and drop replication
slots.

rolconnlimit int4 For roles that can log
in, this sets maximum
number of concurrent

2194

System Catalogs

Name Type References Description

connections this role can
make. -1 means no limit.

rolpassword text Not the password
(always reads as
********)

rolvaliduntil timestamptz Password expiry time
(only used for password
authentication); null if no
expiration

rolbypassrls bool Role bypasses every row
level security policy, see
Section 5.7 for more
information.

rolconfig text[] Role-specific defaults for
run-time configuration
variables

oid oid pg_authid.oid ID of role

52.82. pg_rules
The view pg_rules provides access to useful information about query rewrite rules.

Table 52.83. pg_rules Columns

Name Type References Description

schemaname name pg_namespace.nspnameName of schema
containing table

tablename name pg_class.relname Name of table the rule is
for

rulename name pg_rewrite.rulenameName of rule

definition text Rule definition (a
reconstructed creation
command)

The pg_rules view excludes the ON SELECT rules of views and materialized views; those can be seen
in pg_views and pg_matviews.

52.83. pg_seclabels
The view pg_seclabels provides information about security labels. It as an easier-to-query version
of the pg_seclabel catalog.

Table 52.84. pg_seclabels Columns

Name Type References Description

objoid oid any OID column The OID of the
object this security label
pertains to

2195

System Catalogs

Name Type References Description

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

objsubid int4 For a security label
on a table column,
this is the column
number (the objoid
and classoid refer to
the table itself). For all
other object types, this
column is zero.

objtype text The type of object to
which this label applies,
as text.

objnamespace oid pg_namespace.oid The OID of the
namespace for this
object, if applicable;
otherwise NULL.

objname text The name of the object to
which this label applies,
as text.

provider text pg_seclabel.providerThe label provider
associated with this label.

label text pg_seclabel.label The security label
applied to this object.

52.84. pg_sequences
The view pg_sequences provides access to useful information about each sequence in the database.

Table 52.85. pg_sequences Columns

Name Type References Description

schemaname name pg_namespace.nspnameName of schema
containing sequence

sequencename name pg_class.relname Name of sequence

sequenceowner name pg_authid.rolname Name of sequence's
owner

data_type regtype pg_type.oid Data type of the sequence

start_value bigint Start value of the
sequence

min_value bigint Minimum value of the
sequence

max_value bigint Maximum value of the
sequence

2196

System Catalogs

Name Type References Description

increment_by bigint Increment value of the
sequence

cycle boolean Whether the sequence
cycles

cache_size bigint Cache size of the
sequence

last_value bigint The last sequence value
written to disk. If caching
is used, this value can
be greater than the last
value handed out from
the sequence. Null if the
sequence has not been
read from yet. Also, if
the current user does
not have USAGE or
SELECT privilege on the
sequence, the value is
null.

52.85. pg_settings
The view pg_settings provides access to run-time parameters of the server. It is essentially an
alternative interface to the SHOW and SET commands. It also provides access to some facts about each
parameter that are not directly available from SHOW, such as minimum and maximum values.

Table 52.86. pg_settings Columns

Name Type Description

name text Run-time configuration parameter
name

setting text Current value of the parameter

unit text Implicit unit of the parameter

category text Logical group of the parameter

short_desc text A brief description of the
parameter

extra_desc text Additional, more detailed,
description of the parameter

context text Context required to set the
parameter's value (see below)

vartype text Parameter type (bool, enum,
integer, real, or string)

source text Source of the current parameter
value

min_val text Minimum allowed value of the
parameter (null for non-numeric
values)

2197

System Catalogs

Name Type Description

max_val text Maximum allowed value of the
parameter (null for non-numeric
values)

enumvals text[] Allowed values of an enum
parameter (null for non-enum
values)

boot_val text Parameter value assumed at server
startup if the parameter is not
otherwise set

reset_val text Value that RESET would reset the
parameter to in the current session

sourcefile text Configuration file the current
value was set in (null for
values set from sources other
than configuration files, or when
examined by a user who is neither
a superuser or a member of
pg_read_all_settings);
helpful when using include
directives in configuration files

sourceline integer Line number within the
configuration file the current
value was set at (null for
values set from sources other
than configuration files, or when
examined by a user who is neither
a superuser or a member of
pg_read_all_settings).

pending_restart boolean true if the value has been
changed in the configuration file
but needs a restart; or false
otherwise.

There are several possible values of context. In order of decreasing difficulty of changing the setting,
they are:

internal

These settings cannot be changed directly; they reflect internally determined values. Some of them
may be adjustable by rebuilding the server with different configuration options, or by changing options
supplied to initdb.

postmaster

These settings can only be applied when the server starts, so any change requires restarting the server.
Values for these settings are typically stored in the postgresql.conf file, or passed on the
command line when starting the server. Of course, settings with any of the lower context types
can also be set at server start time.

2198

System Catalogs

sighup

Changes to these settings can be made in postgresql.conf without restarting the server. Send a
SIGHUP signal to the postmaster to cause it to re-read postgresql.conf and apply the changes.
The postmaster will also forward the SIGHUP signal to its child processes so that they all pick up
the new value.

superuser-backend

Changes to these settings can be made in postgresql.conf without restarting the server. They
can also be set for a particular session in the connection request packet (for example, via libpq's
PGOPTIONS environment variable), but only if the connecting user is a superuser. However, these
settings never change in a session after it is started. If you change them in postgresql.conf, send
a SIGHUP signal to the postmaster to cause it to re-read postgresql.conf. The new values will
only affect subsequently-launched sessions.

backend

Changes to these settings can be made in postgresql.conf without restarting the server. They
can also be set for a particular session in the connection request packet (for example, via libpq's
PGOPTIONS environment variable); any user can make such a change for their session. However,
these settings never change in a session after it is started. If you change them in postgresql.conf,
send a SIGHUP signal to the postmaster to cause it to re-read postgresql.conf. The new values
will only affect subsequently-launched sessions.

superuser

These settings can be set from postgresql.conf, or within a session via the SET command;
but only superusers can change them via SET. Changes in postgresql.conf will affect existing
sessions only if no session-local value has been established with SET.

user

These settings can be set from postgresql.conf, or within a session via the SET command.
Any user is allowed to change their session-local value. Changes in postgresql.conf will affect
existing sessions only if no session-local value has been established with SET.

See Section 19.1 for more information about the various ways to change these parameters.

The pg_settings view cannot be inserted into or deleted from, but it can be updated. An UPDATE
applied to a row of pg_settings is equivalent to executing the SET command on that named parameter.
The change only affects the value used by the current session. If an UPDATE is issued within a transaction
that is later aborted, the effects of the UPDATE command disappear when the transaction is rolled back.
Once the surrounding transaction is committed, the effects will persist until the end of the session, unless
overridden by another UPDATE or SET.

52.86. pg_shadow
The view pg_shadow exists for backwards compatibility: it emulates a catalog that existed in
PostgreSQL before version 8.1. It shows properties of all roles that are marked as rolcanlogin in
pg_authid.

The name stems from the fact that this table should not be readable by the public since it contains
passwords. pg_user is a publicly readable view on pg_shadow that blanks out the password field.

2199

System Catalogs

Table 52.87. pg_shadow Columns

Name Type References Description

usename name pg_authid.rolname User name

usesysid oid pg_authid.oid ID of this user

usecreatedb bool User can create databases

usesuper bool User is a superuser

userepl bool User can initiate
streaming replication and
put the system in and out
of backup mode.

usebypassrls bool User bypasses every row
level security policy, see
Section 5.7 for more
information.

passwd text Password (possibly
encrypted); null if none.
See pg_authid for
details of how encrypted
passwords are stored.

valuntil abstime Password expiry time
(only used for password
authentication)

useconfig text[] Session defaults for
run-time configuration
variables

52.87. pg_stats
The view pg_stats provides access to the information stored in the pg_statistic catalog. This
view allows access only to rows of pg_statistic that correspond to tables the user has permission to
read, and therefore it is safe to allow public read access to this view.

pg_stats is also designed to present the information in a more readable format than the underlying
catalog — at the cost that its schema must be extended whenever new slot types are defined for
pg_statistic.

Table 52.88. pg_stats Columns

Name Type References Description

schemaname name pg_namespace.nspnameName of schema
containing table

tablename name pg_class.relname Name of table

attname name pg_attribute.attnameName of the column
described by this row

inherited bool If true, this row
includes inheritance
child columns, not just

2200

System Catalogs

Name Type References Description

the values in the
specified table

null_frac real Fraction of column
entries that are null

avg_width integer Average width in bytes
of column's entries

n_distinct real If greater than zero,
the estimated number of
distinct values in the
column. If less than
zero, the negative of the
number of distinct values
divided by the number of
rows. (The negated form
is used when ANALYZE
believes that the number
of distinct values is
likely to increase as the
table grows; the positive
form is used when the
column seems to have a
fixed number of possible
values.) For example,
-1 indicates a unique
column in which the
number of distinct values
is the same as the number
of rows.

most_common_vals anyarray A list of the most
common values in the
column. (Null if no
values seem to be
more common than any
others.)

most_common_freqs real[] A list of the frequencies
of the most common
values, i.e., number of
occurrences of each
divided by total number
of rows. (Null when
most_common_vals
is.)

histogram_bounds anyarray A list of values
that divide the
column's values into
groups of approximately
equal population. The
values in
most_common_vals,
if present, are

2201

System Catalogs

Name Type References Description

omitted from this
histogram calculation.
(This column is null
if the column data
type does not have a
< operator or if the
most_common_vals
list accounts for the
entire population.)

correlation real Statistical correlation
between physical row
ordering and logical
ordering of the column
values. This ranges from
-1 to +1. When the
value is near -1 or +1,
an index scan on the
column will be estimated
to be cheaper than when
it is near zero, due
to reduction of random
access to the disk. (This
column is null if the
column data type does
not have a < operator.)

most_common_elems anyarray A list of non-null
element values most
often appearing within
values of the column.
(Null for scalar types.)

most_common_elem_freqsreal[] A list of the frequencies
of the most common
element values, i.e.,
the fraction of rows
containing at least
one instance of the
given value. Two or
three additional values
follow the per-element
frequencies; these are the
minimum and maximum
of the preceding per-
element frequencies,
and optionally the
frequency of null
elements. (Null when
most_common_elems
is.)

elem_count_histogramreal[] A histogram of the
counts of distinct non-
null element values

2202

System Catalogs

Name Type References Description

within the values of
the column, followed
by the average number
of distinct non-null
elements. (Null for scalar
types.)

The maximum number of entries in the array fields can be controlled on a column-by-column basis using
the ALTER TABLE SET STATISTICS command, or globally by setting the default_statistics_target
run-time parameter.

52.88. pg_tables
The view pg_tables provides access to useful information about each table in the database.

Table 52.89. pg_tables Columns

Name Type References Description

schemaname name pg_namespace.nspnameName of schema
containing table

tablename name pg_class.relname Name of table

tableowner name pg_authid.rolname Name of table's owner

tablespace name pg_tablespace.spcnameName of tablespace
containing table (null if
default for database)

hasindexes boolean pg_class.relhasindexTrue if table has (or
recently had) any indexes

hasrules boolean pg_class.relhasrulesTrue if table has (or once
had) rules

hastriggers boolean pg_class.relhastriggersTrue if table has (or once
had) triggers

rowsecurity boolean pg_class.relrowsecurityTrue if row security is
enabled on the table

52.89. pg_timezone_abbrevs
The view pg_timezone_abbrevs provides a list of time zone abbreviations that are currently
recognized by the datetime input routines. The contents of this view change when the
timezone_abbreviations run-time parameter is modified.

Table 52.90. pg_timezone_abbrevs Columns

Name Type Description

abbrev text Time zone abbreviation

utc_offset interval Offset from UTC (positive means
east of Greenwich)

2203

System Catalogs

Name Type Description

is_dst boolean True if this is a daylight-savings
abbreviation

While most timezone abbreviations represent fixed offsets from UTC, there are some that have historically
varied in value (see Section B.4 for more information). In such cases this view presents their current
meaning.

52.90. pg_timezone_names
The view pg_timezone_names provides a list of time zone names that are recognized by SET
TIMEZONE, along with their associated abbreviations, UTC offsets, and daylight-savings status.
(Technically, PostgreSQL does not use UTC because leap seconds are not handled.) Unlike the
abbreviations shown in pg_timezone_abbrevs, many of these names imply a set of daylight-savings
transition date rules. Therefore, the associated information changes across local DST boundaries. The
displayed information is computed based on the current value of CURRENT_TIMESTAMP.

Table 52.91. pg_timezone_names Columns

Name Type Description

name text Time zone name

abbrev text Time zone abbreviation

utc_offset interval Offset from UTC (positive means
east of Greenwich)

is_dst boolean True if currently observing
daylight savings

52.91. pg_user
The view pg_user provides access to information about database users. This is simply a publicly readable
view of pg_shadow that blanks out the password field.

Table 52.92. pg_user Columns

Name Type Description

usename name User name

usesysid oid ID of this user

usecreatedb bool User can create databases

usesuper bool User is a superuser

userepl bool User can initiate streaming
replication and put the system in
and out of backup mode.

usebypassrls bool User bypasses every row level
security policy, see Section 5.7 for
more information.

passwd text Not the password (always reads as
********)

2204

System Catalogs

Name Type Description

valuntil abstime Password expiry time (only used
for password authentication)

useconfig text[] Session defaults for run-time
configuration variables

52.92. pg_user_mappings
The view pg_user_mappings provides access to information about user mappings. This is essentially
a publicly readable view of pg_user_mapping that leaves out the options field if the user has no rights
to use it.

Table 52.93. pg_user_mappings Columns

Name Type References Description

umid oid pg_user_mapping.oidOID of the user mapping

srvid oid pg_foreign_server.oidThe OID of the foreign
server that contains this
mapping

srvname name pg_foreign_server.srvnameName of the foreign
server

umuser oid pg_authid.oid OID of the local role
being mapped, 0 if the
user mapping is public

usename name Name of the local user to
be mapped

umoptions text[] User mapping specific
options, as
“keyword=value” strings

To protect password information stored as a user mapping option, the umoptions column will read as
null unless one of the following applies:

• current user is the user being mapped, and owns the server or holds USAGE privilege on it

• current user is the server owner and mapping is for PUBLIC

• current user is a superuser

52.93. pg_views
The view pg_views provides access to useful information about each view in the database.

Table 52.94. pg_views Columns

Name Type References Description

schemaname name pg_namespace.nspnameName of schema
containing view

viewname name pg_class.relname Name of view

2205

System Catalogs

Name Type References Description

viewowner name pg_authid.rolname Name of view's owner

definition text View definition (a
reconstructed SELECT
query)

2206

Chapter 53. Frontend/Backend
Protocol

PostgreSQL uses a message-based protocol for communication between frontends and backends (clients
and servers). The protocol is supported over TCP/IP and also over Unix-domain sockets. Port number 5432
has been registered with IANA as the customary TCP port number for servers supporting this protocol,
but in practice any non-privileged port number can be used.

This document describes version 3.0 of the protocol, implemented in PostgreSQL 7.4 and later. For
descriptions of the earlier protocol versions, see previous releases of the PostgreSQL documentation. A
single server can support multiple protocol versions. The initial startup-request message tells the server
which protocol version the client is attempting to use. If the major version requested by the client is
not supported by the server, the connection will be rejected (for example, this would occur if the client
requested protocol version 4.0, which does not exist as of this writing). If the minor version requested by
the client is not supported by the server (e.g. the client requests version 3.1, but the server supports only
3.0), the server may either reject the connection or may respond with a NegotiateProtocolVersion message
containing the highest minor protocol version which it supports. The client may then choose either to
continue with the connection using the specified protocol version or to abort the connection.

In order to serve multiple clients efficiently, the server launches a new “backend” process for each client.
In the current implementation, a new child process is created immediately after an incoming connection is
detected. This is transparent to the protocol, however. For purposes of the protocol, the terms “backend”
and “server” are interchangeable; likewise “frontend” and “client” are interchangeable.

53.1. Overview
The protocol has separate phases for startup and normal operation. In the startup phase, the frontend opens
a connection to the server and authenticates itself to the satisfaction of the server. (This might involve
a single message, or multiple messages depending on the authentication method being used.) If all goes
well, the server then sends status information to the frontend, and finally enters normal operation. Except
for the initial startup-request message, this part of the protocol is driven by the server.

During normal operation, the frontend sends queries and other commands to the backend, and the backend
sends back query results and other responses. There are a few cases (such as NOTIFY) wherein the backend
will send unsolicited messages, but for the most part this portion of a session is driven by frontend requests.

Termination of the session is normally by frontend choice, but can be forced by the backend in certain cases.
In any case, when the backend closes the connection, it will roll back any open (incomplete) transaction
before exiting.

Within normal operation, SQL commands can be executed through either of two sub-protocols. In the
“simple query” protocol, the frontend just sends a textual query string, which is parsed and immediately
executed by the backend. In the “extended query” protocol, processing of queries is separated into multiple
steps: parsing, binding of parameter values, and execution. This offers flexibility and performance benefits,
at the cost of extra complexity.

Normal operation has additional sub-protocols for special operations such as COPY.

53.1.1. Messaging Overview
All communication is through a stream of messages. The first byte of a message identifies the message
type, and the next four bytes specify the length of the rest of the message (this length count includes itself,

2207

Frontend/Backend Protocol

but not the message-type byte). The remaining contents of the message are determined by the message
type. For historical reasons, the very first message sent by the client (the startup message) has no initial
message-type byte.

To avoid losing synchronization with the message stream, both servers and clients typically read an entire
message into a buffer (using the byte count) before attempting to process its contents. This allows easy
recovery if an error is detected while processing the contents. In extreme situations (such as not having
enough memory to buffer the message), the receiver can use the byte count to determine how much input
to skip before it resumes reading messages.

Conversely, both servers and clients must take care never to send an incomplete message. This is commonly
done by marshaling the entire message in a buffer before beginning to send it. If a communications failure
occurs partway through sending or receiving a message, the only sensible response is to abandon the
connection, since there is little hope of recovering message-boundary synchronization.

53.1.2. Extended Query Overview
In the extended-query protocol, execution of SQL commands is divided into multiple steps. The state
retained between steps is represented by two types of objects: prepared statements and portals. A prepared
statement represents the result of parsing and semantic analysis of a textual query string. A prepared
statement is not in itself ready to execute, because it might lack specific values for parameters. A portal
represents a ready-to-execute or already-partially-executed statement, with any missing parameter values
filled in. (For SELECT statements, a portal is equivalent to an open cursor, but we choose to use a different
term since cursors don't handle non-SELECT statements.)

The overall execution cycle consists of a parse step, which creates a prepared statement from a textual
query string; a bind step, which creates a portal given a prepared statement and values for any needed
parameters; and an execute step that runs a portal's query. In the case of a query that returns rows (SELECT,
SHOW, etc), the execute step can be told to fetch only a limited number of rows, so that multiple execute
steps might be needed to complete the operation.

The backend can keep track of multiple prepared statements and portals (but note that these exist only
within a session, and are never shared across sessions). Existing prepared statements and portals are
referenced by names assigned when they were created. In addition, an “unnamed” prepared statement and
portal exist. Although these behave largely the same as named objects, operations on them are optimized
for the case of executing a query only once and then discarding it, whereas operations on named objects
are optimized on the expectation of multiple uses.

53.1.3. Formats and Format Codes
Data of a particular data type might be transmitted in any of several different formats. As of PostgreSQL 7.4
the only supported formats are “text” and “binary”, but the protocol makes provision for future extensions.
The desired format for any value is specified by a format code. Clients can specify a format code for each
transmitted parameter value and for each column of a query result. Text has format code zero, binary has
format code one, and all other format codes are reserved for future definition.

The text representation of values is whatever strings are produced and accepted by the input/output
conversion functions for the particular data type. In the transmitted representation, there is no trailing null
character; the frontend must add one to received values if it wants to process them as C strings. (The text
format does not allow embedded nulls, by the way.)

Binary representations for integers use network byte order (most significant byte first). For other data
types consult the documentation or source code to learn about the binary representation. Keep in mind
that binary representations for complex data types might change across server versions; the text format is
usually the more portable choice.

2208

Frontend/Backend Protocol

53.2. Message Flow
This section describes the message flow and the semantics of each message type. (Details of the
exact representation of each message appear in Section 53.7.) There are several different sub-protocols
depending on the state of the connection: start-up, query, function call, COPY, and termination. There
are also special provisions for asynchronous operations (including notification responses and command
cancellation), which can occur at any time after the start-up phase.

53.2.1. Start-up
To begin a session, a frontend opens a connection to the server and sends a startup message. This message
includes the names of the user and of the database the user wants to connect to; it also identifies the
particular protocol version to be used. (Optionally, the startup message can include additional settings for
run-time parameters.) The server then uses this information and the contents of its configuration files (such
as pg_hba.conf) to determine whether the connection is provisionally acceptable, and what additional
authentication is required (if any).

The server then sends an appropriate authentication request message, to which the frontend must reply
with an appropriate authentication response message (such as a password). For all authentication methods
except GSSAPI, SSPI and SASL, there is at most one request and one response. In some methods, no
response at all is needed from the frontend, and so no authentication request occurs. For GSSAPI, SSPI
and SASL, multiple exchanges of packets may be needed to complete the authentication.

The authentication cycle ends with the server either rejecting the connection attempt (ErrorResponse), or
sending AuthenticationOk.

The possible messages from the server in this phase are:

ErrorResponse

The connection attempt has been rejected. The server then immediately closes the connection.

AuthenticationOk

The authentication exchange is successfully completed.

AuthenticationKerberosV5

The frontend must now take part in a Kerberos V5 authentication dialog (not described here, part
of the Kerberos specification) with the server. If this is successful, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse. This is no longer supported.

AuthenticationCleartextPassword

The frontend must now send a PasswordMessage containing the password in clear-text form. If this
is the correct password, the server responds with an AuthenticationOk, otherwise it responds with an
ErrorResponse.

AuthenticationMD5Password

The frontend must now send a PasswordMessage containing the password (with user name)
encrypted via MD5, then encrypted again using the 4-byte random salt specified in the
AuthenticationMD5Password message. If this is the correct password, the server responds with
an AuthenticationOk, otherwise it responds with an ErrorResponse. The actual PasswordMessage
can be computed in SQL as concat('md5', md5(concat(md5(concat(password,

2209

Frontend/Backend Protocol

username)), random-salt))). (Keep in mind the md5() function returns its result as a hex
string.)

AuthenticationSCMCredential

This response is only possible for local Unix-domain connections on platforms that support SCM
credential messages. The frontend must issue an SCM credential message and then send a single data
byte. (The contents of the data byte are uninteresting; it's only used to ensure that the server waits long
enough to receive the credential message.) If the credential is acceptable, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse. (This message type is only issued
by pre-9.1 servers. It may eventually be removed from the protocol specification.)

AuthenticationGSS

The frontend must now initiate a GSSAPI negotiation. The frontend will send a GSSResponse message
with the first part of the GSSAPI data stream in response to this. If further messages are needed, the
server will respond with AuthenticationGSSContinue.

AuthenticationSSPI

The frontend must now initiate a SSPI negotiation. The frontend will send a GSSResponse with the
first part of the SSPI data stream in response to this. If further messages are needed, the server will
respond with AuthenticationGSSContinue.

AuthenticationGSSContinue

This message contains the response data from the previous step of GSSAPI or SSPI negotiation
(AuthenticationGSS, AuthenticationSSPI or a previous AuthenticationGSSContinue). If the GSSAPI
or SSPI data in this message indicates more data is needed to complete the authentication, the frontend
must send that data as another GSSResponse message. If GSSAPI or SSPI authentication is completed
by this message, the server will next send AuthenticationOk to indicate successful authentication or
ErrorResponse to indicate failure.

AuthenticationSASL

The frontend must now initiate a SASL negotiation, using one of the SASL mechanisms listed in the
message. The frontend will send a SASLInitialResponse with the name of the selected mechanism,
and the first part of the SASL data stream in response to this. If further messages are needed, the server
will respond with AuthenticationSASLContinue. See Section 53.3 for details.

AuthenticationSASLContinue

This message contains challenge data from the previous step of SASL negotiation
(AuthenticationSASL, or a previous AuthenticationSASLContinue). The frontend must respond with
a SASLResponse message.

AuthenticationSASLFinal

SASL authentication has completed with additional mechanism-specific data for the client. The server
will next send AuthenticationOk to indicate successful authentication, or an ErrorResponse to indicate
failure. This message is sent only if the SASL mechanism specifies additional data to be sent from
server to client at completion.

NegotiateProtocolVersion

The server does not support the minor protocol version requested by the client, but does support
an earlier version of the protocol; this message indicates the highest supported minor version. This

2210

Frontend/Backend Protocol

message will also be sent if the client requested unsupported protocol options (i.e. beginning with
pq.) in the startup packet. This message will be followed by an ErrorResponse or a message
indicating the success or failure of authentication.

If the frontend does not support the authentication method requested by the server, then it should
immediately close the connection.

After having received AuthenticationOk, the frontend must wait for further messages from the server. In
this phase a backend process is being started, and the frontend is just an interested bystander. It is still
possible for the startup attempt to fail (ErrorResponse) or the server to decline support for the requested
minor protocol version (NegotiateProtocolVersion), but in the normal case the backend will send some
ParameterStatus messages, BackendKeyData, and finally ReadyForQuery.

During this phase the backend will attempt to apply any additional run-time parameter settings that
were given in the startup message. If successful, these values become session defaults. An error causes
ErrorResponse and exit.

The possible messages from the backend in this phase are:

BackendKeyData

This message provides secret-key data that the frontend must save if it wants to be able to issue cancel
requests later. The frontend should not respond to this message, but should continue listening for a
ReadyForQuery message.

ParameterStatus

This message informs the frontend about the current (initial) setting of backend parameters, such as
client_encoding or DateStyle. The frontend can ignore this message, or record the settings for its
future use; see Section 53.2.6 for more details. The frontend should not respond to this message, but
should continue listening for a ReadyForQuery message.

ReadyForQuery

Start-up is completed. The frontend can now issue commands.

ErrorResponse

Start-up failed. The connection is closed after sending this message.

NoticeResponse

A warning message has been issued. The frontend should display the message but continue listening
for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each command cycle.
Depending on the coding needs of the frontend, it is reasonable to consider ReadyForQuery as starting a
command cycle, or to consider ReadyForQuery as ending the start-up phase and each subsequent command
cycle.

53.2.2. Simple Query
A simple query cycle is initiated by the frontend sending a Query message to the backend. The message
includes an SQL command (or commands) expressed as a text string. The backend then sends one or more
response messages depending on the contents of the query command string, and finally a ReadyForQuery
response message. ReadyForQuery informs the frontend that it can safely send a new command. (It is
not actually necessary for the frontend to wait for ReadyForQuery before issuing another command, but

2211

Frontend/Backend Protocol

the frontend must then take responsibility for figuring out what happens if the earlier command fails and
already-issued later commands succeed.)

The possible response messages from the backend are:

CommandComplete

An SQL command completed normally.

CopyInResponse

The backend is ready to copy data from the frontend to a table; see Section 53.2.5.

CopyOutResponse

The backend is ready to copy data from a table to the frontend; see Section 53.2.5.

RowDescription

Indicates that rows are about to be returned in response to a SELECT, FETCH, etc query. The contents
of this message describe the column layout of the rows. This will be followed by a DataRow message
for each row being returned to the frontend.

DataRow

One of the set of rows returned by a SELECT, FETCH, etc query.

EmptyQueryResponse

An empty query string was recognized.

ErrorResponse

An error has occurred.

ReadyForQuery

Processing of the query string is complete. A separate message is sent to indicate this because the query
string might contain multiple SQL commands. (CommandComplete marks the end of processing
one SQL command, not the whole string.) ReadyForQuery will always be sent, whether processing
terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the query. Notices are in addition to other responses,
i.e., the backend will continue processing the command.

The response to a SELECT query (or other queries that return row sets, such as EXPLAIN or SHOW)
normally consists of RowDescription, zero or more DataRow messages, and then CommandComplete.
COPY to or from the frontend invokes special protocol as described in Section 53.2.5. All other query types
normally produce only a CommandComplete message.

Since a query string could contain several queries (separated by semicolons), there might be several such
response sequences before the backend finishes processing the query string. ReadyForQuery is issued
when the entire string has been processed and the backend is ready to accept a new query string.

If a completely empty (no contents other than whitespace) query string is received, the response is
EmptyQueryResponse followed by ReadyForQuery.

2212

Frontend/Backend Protocol

In the event of an error, ErrorResponse is issued followed by ReadyForQuery. All further processing of
the query string is aborted by ErrorResponse (even if more queries remained in it). Note that this might
occur partway through the sequence of messages generated by an individual query.

In simple Query mode, the format of retrieved values is always text, except when the given command is
a FETCH from a cursor declared with the BINARY option. In that case, the retrieved values are in binary
format. The format codes given in the RowDescription message tell which format is being used.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is
expecting any other type of message. See also Section 53.2.6 concerning messages that the backend might
generate due to outside events.

Recommended practice is to code frontends in a state-machine style that will accept any message type at
any time that it could make sense, rather than wiring in assumptions about the exact sequence of messages.

53.2.2.1. Multiple Statements in a Simple Query

When a simple Query message contains more than one SQL statement (separated by semicolons), those
statements are executed as a single transaction, unless explicit transaction control commands are included
to force a different behavior. For example, if the message contains

INSERT INTO mytable VALUES(1);
SELECT 1/0;
INSERT INTO mytable VALUES(2);

then the divide-by-zero failure in the SELECT will force rollback of the first INSERT. Furthermore,
because execution of the message is abandoned at the first error, the second INSERT is never attempted
at all.

If instead the message contains

BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELECT 1/0;

then the first INSERT is committed by the explicit COMMIT command. The second INSERT and the
SELECT are still treated as a single transaction, so that the divide-by-zero failure will roll back the second
INSERT, but not the first one.

This behavior is implemented by running the statements in a multi-statement Query message in an implicit
transaction block unless there is some explicit transaction block for them to run in. The main difference
between an implicit transaction block and a regular one is that an implicit block is closed automatically at
the end of the Query message, either by an implicit commit if there was no error, or an implicit rollback if
there was an error. This is similar to the implicit commit or rollback that happens for a statement executed
by itself (when not in a transaction block).

If the session is already in a transaction block, as a result of a BEGIN in some previous message, then the
Query message simply continues that transaction block, whether the message contains one statement or
several. However, if the Query message contains a COMMIT or ROLLBACK closing the existing transaction
block, then any following statements are executed in an implicit transaction block. Conversely, if a BEGIN
appears in a multi-statement Query message, then it starts a regular transaction block that will only be

2213

Frontend/Backend Protocol

terminated by an explicit COMMIT or ROLLBACK, whether that appears in this Query message or a later
one. If the BEGIN follows some statements that were executed as an implicit transaction block, those
statements are not immediately committed; in effect, they are retroactively included into the new regular
transaction block.

A COMMIT or ROLLBACK appearing in an implicit transaction block is executed as normal, closing the
implicit block; however, a warning will be issued since a COMMIT or ROLLBACK without a previous
BEGIN might represent a mistake. If more statements follow, a new implicit transaction block will be
started for them.

Savepoints are not allowed in an implicit transaction block, since they would conflict with the behavior
of automatically closing the block upon any error.

Remember that, regardless of any transaction control commands that may be present, execution of the
Query message stops at the first error. Thus for example given

BEGIN;
SELECT 1/0;
ROLLBACK;

in a single Query message, the session will be left inside a failed regular transaction block, since the
ROLLBACK is not reached after the divide-by-zero error. Another ROLLBACK will be needed to restore
the session to a usable state.

Another behavior of note is that initial lexical and syntactic analysis is done on the entire query string
before any of it is executed. Thus simple errors (such as a misspelled keyword) in later statements can
prevent execution of any of the statements. This is normally invisible to users since the statements would all
roll back anyway when done as an implicit transaction block. However, it can be visible when attempting
to do multiple transactions within a multi-statement Query. For instance, if a typo turned our previous
example into

BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELCT 1/0;

then none of the statements would get run, resulting in the visible difference that the first INSERT is not
committed. Errors detected at semantic analysis or later, such as a misspelled table or column name, do
not have this effect.

53.2.3. Extended Query
The extended query protocol breaks down the above-described simple query protocol into multiple steps.
The results of preparatory steps can be re-used multiple times for improved efficiency. Furthermore,
additional features are available, such as the possibility of supplying data values as separate parameters
instead of having to insert them directly into a query string.

In the extended protocol, the frontend first sends a Parse message, which contains a textual query string,
optionally some information about data types of parameter placeholders, and the name of a destination
prepared-statement object (an empty string selects the unnamed prepared statement). The response is either
ParseComplete or ErrorResponse. Parameter data types can be specified by OID; if not given, the parser
attempts to infer the data types in the same way as it would do for untyped literal string constants.

2214

Frontend/Backend Protocol

Note

A parameter data type can be left unspecified by setting it to zero, or by making the array of
parameter type OIDs shorter than the number of parameter symbols ($n) used in the query string.
Another special case is that a parameter's type can be specified as void (that is, the OID of the
void pseudo-type). This is meant to allow parameter symbols to be used for function parameters
that are actually OUT parameters. Ordinarily there is no context in which a void parameter could
be used, but if such a parameter symbol appears in a function's parameter list, it is effectively
ignored. For example, a function call such as foo($1,$2,$3,$4) could match a function with
two IN and two OUT arguments, if $3 and $4 are specified as having type void.

Note

The query string contained in a Parse message cannot include more than one SQL statement; else
a syntax error is reported. This restriction does not exist in the simple-query protocol, but it does
exist in the extended protocol, because allowing prepared statements or portals to contain multiple
commands would complicate the protocol unduly.

If successfully created, a named prepared-statement object lasts till the end of the current session, unless
explicitly destroyed. An unnamed prepared statement lasts only until the next Parse statement specifying
the unnamed statement as destination is issued. (Note that a simple Query message also destroys the
unnamed statement.) Named prepared statements must be explicitly closed before they can be redefined
by another Parse message, but this is not required for the unnamed statement. Named prepared statements
can also be created and accessed at the SQL command level, using PREPARE and EXECUTE.

Once a prepared statement exists, it can be readied for execution using a Bind message. The Bind message
gives the name of the source prepared statement (empty string denotes the unnamed prepared statement),
the name of the destination portal (empty string denotes the unnamed portal), and the values to use for
any parameter placeholders present in the prepared statement. The supplied parameter set must match
those needed by the prepared statement. (If you declared any void parameters in the Parse message, pass
NULL values for them in the Bind message.) Bind also specifies the format to use for any data returned
by the query; the format can be specified overall, or per-column. The response is either BindComplete
or ErrorResponse.

Note

The choice between text and binary output is determined by the format codes given in Bind,
regardless of the SQL command involved. The BINARY attribute in cursor declarations is
irrelevant when using extended query protocol.

Query planning typically occurs when the Bind message is processed. If the prepared statement has no
parameters, or is executed repeatedly, the server might save the created plan and re-use it during subsequent
Bind messages for the same prepared statement. However, it will do so only if it finds that a generic plan
can be created that is not much less efficient than a plan that depends on the specific parameter values
supplied. This happens transparently so far as the protocol is concerned.

If successfully created, a named portal object lasts till the end of the current transaction, unless explicitly
destroyed. An unnamed portal is destroyed at the end of the transaction, or as soon as the next Bind
statement specifying the unnamed portal as destination is issued. (Note that a simple Query message also
destroys the unnamed portal.) Named portals must be explicitly closed before they can be redefined by

2215

Frontend/Backend Protocol

another Bind message, but this is not required for the unnamed portal. Named portals can also be created
and accessed at the SQL command level, using DECLARE CURSOR and FETCH.

Once a portal exists, it can be executed using an Execute message. The Execute message specifies the
portal name (empty string denotes the unnamed portal) and a maximum result-row count (zero meaning
“fetch all rows”). The result-row count is only meaningful for portals containing commands that return
row sets; in other cases the command is always executed to completion, and the row count is ignored. The
possible responses to Execute are the same as those described above for queries issued via simple query
protocol, except that Execute doesn't cause ReadyForQuery or RowDescription to be issued.

If Execute terminates before completing the execution of a portal (due to reaching a nonzero result-
row count), it will send a PortalSuspended message; the appearance of this message tells the frontend
that another Execute should be issued against the same portal to complete the operation. The
CommandComplete message indicating completion of the source SQL command is not sent until the
portal's execution is completed. Therefore, an Execute phase is always terminated by the appearance of
exactly one of these messages: CommandComplete, EmptyQueryResponse (if the portal was created from
an empty query string), ErrorResponse, or PortalSuspended.

At completion of each series of extended-query messages, the frontend should issue a Sync message.
This parameterless message causes the backend to close the current transaction if it's not inside a
BEGIN/COMMIT transaction block (“close” meaning to commit if no error, or roll back if error). Then a
ReadyForQuery response is issued. The purpose of Sync is to provide a resynchronization point for error
recovery. When an error is detected while processing any extended-query message, the backend issues
ErrorResponse, then reads and discards messages until a Sync is reached, then issues ReadyForQuery
and returns to normal message processing. (But note that no skipping occurs if an error is detected while
processing Sync — this ensures that there is one and only one ReadyForQuery sent for each Sync.)

Note

Sync does not cause a transaction block opened with BEGIN to be closed. It is possible to detect
this situation since the ReadyForQuery message includes transaction status information.

In addition to these fundamental, required operations, there are several optional operations that can be
used with extended-query protocol.

The Describe message (portal variant) specifies the name of an existing portal (or an empty string for the
unnamed portal). The response is a RowDescription message describing the rows that will be returned by
executing the portal; or a NoData message if the portal does not contain a query that will return rows; or
ErrorResponse if there is no such portal.

The Describe message (statement variant) specifies the name of an existing prepared statement (or an
empty string for the unnamed prepared statement). The response is a ParameterDescription message
describing the parameters needed by the statement, followed by a RowDescription message describing the
rows that will be returned when the statement is eventually executed (or a NoData message if the statement
will not return rows). ErrorResponse is issued if there is no such prepared statement. Note that since Bind
has not yet been issued, the formats to be used for returned columns are not yet known to the backend; the
format code fields in the RowDescription message will be zeroes in this case.

Tip

In most scenarios the frontend should issue one or the other variant of Describe before issuing
Execute, to ensure that it knows how to interpret the results it will get back.

2216

Frontend/Backend Protocol

The Close message closes an existing prepared statement or portal and releases resources. It is not an error
to issue Close against a nonexistent statement or portal name. The response is normally CloseComplete,
but could be ErrorResponse if some difficulty is encountered while releasing resources. Note that closing
a prepared statement implicitly closes any open portals that were constructed from that statement.

The Flush message does not cause any specific output to be generated, but forces the backend to deliver any
data pending in its output buffers. A Flush must be sent after any extended-query command except Sync,
if the frontend wishes to examine the results of that command before issuing more commands. Without
Flush, messages returned by the backend will be combined into the minimum possible number of packets
to minimize network overhead.

Note

The simple Query message is approximately equivalent to the series Parse, Bind, portal Describe,
Execute, Close, Sync, using the unnamed prepared statement and portal objects and no parameters.
One difference is that it will accept multiple SQL statements in the query string, automatically
performing the bind/describe/execute sequence for each one in succession. Another difference is
that it will not return ParseComplete, BindComplete, CloseComplete, or NoData messages.

53.2.4. Function Call
The Function Call sub-protocol allows the client to request a direct call of any function that exists in the
database's pg_proc system catalog. The client must have execute permission for the function.

Note

The Function Call sub-protocol is a legacy feature that is probably best avoided in new code.
Similar results can be accomplished by setting up a prepared statement that does SELECT
function($1, ...). The Function Call cycle can then be replaced with Bind/Execute.

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the backend. The
backend then sends one or more response messages depending on the results of the function call, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it can safely send
a new query or function call.

The possible response messages from the backend are:

ErrorResponse

An error has occurred.

FunctionCallResponse

The function call was completed and returned the result given in the message. (Note that the Function
Call protocol can only handle a single scalar result, not a row type or set of results.)

ReadyForQuery

Processing of the function call is complete. ReadyForQuery will always be sent, whether processing
terminates successfully or with an error.

2217

Frontend/Backend Protocol

NoticeResponse

A warning message has been issued in relation to the function call. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

53.2.5. COPY Operations
The COPY command allows high-speed bulk data transfer to or from the server. Copy-in and copy-
out operations each switch the connection into a distinct sub-protocol, which lasts until the operation is
completed.

Copy-in mode (data transfer to the server) is initiated when the backend executes a COPY FROM STDIN
SQL statement. The backend sends a CopyInResponse message to the frontend. The frontend should then
send zero or more CopyData messages, forming a stream of input data. (The message boundaries are not
required to have anything to do with row boundaries, although that is often a reasonable choice.) The
frontend can terminate the copy-in mode by sending either a CopyDone message (allowing successful
termination) or a CopyFail message (which will cause the COPY SQL statement to fail with an error). The
backend then reverts to the command-processing mode it was in before the COPY started, which will be
either simple or extended query protocol. It will next send either CommandComplete (if successful) or
ErrorResponse (if not).

In the event of a backend-detected error during copy-in mode (including receipt of a CopyFail message),
the backend will issue an ErrorResponse message. If the COPY command was issued via an extended-
query message, the backend will now discard frontend messages until a Sync message is received, then it
will issue ReadyForQuery and return to normal processing. If the COPY command was issued in a simple
Query message, the rest of that message is discarded and ReadyForQuery is issued. In either case, any
subsequent CopyData, CopyDone, or CopyFail messages issued by the frontend will simply be dropped.

The backend will ignore Flush and Sync messages received during copy-in mode. Receipt of any other non-
copy message type constitutes an error that will abort the copy-in state as described above. (The exception
for Flush and Sync is for the convenience of client libraries that always send Flush or Sync after an Execute
message, without checking whether the command to be executed is a COPY FROM STDIN.)

Copy-out mode (data transfer from the server) is initiated when the backend executes a COPY TO STDOUT
SQL statement. The backend sends a CopyOutResponse message to the frontend, followed by zero or
more CopyData messages (always one per row), followed by CopyDone. The backend then reverts to the
command-processing mode it was in before the COPY started, and sends CommandComplete. The frontend
cannot abort the transfer (except by closing the connection or issuing a Cancel request), but it can discard
unwanted CopyData and CopyDone messages.

In the event of a backend-detected error during copy-out mode, the backend will issue an ErrorResponse
message and revert to normal processing. The frontend should treat receipt of ErrorResponse as terminating
the copy-out mode.

It is possible for NoticeResponse and ParameterStatus messages to be interspersed between CopyData
messages; frontends must handle these cases, and should be prepared for other asynchronous message
types as well (see Section 53.2.6). Otherwise, any message type other than CopyData or CopyDone may
be treated as terminating copy-out mode.

There is another Copy-related mode called copy-both, which allows high-speed bulk data transfer to
and from the server. Copy-both mode is initiated when a backend in walsender mode executes a
START_REPLICATION statement. The backend sends a CopyBothResponse message to the frontend.
Both the backend and the frontend may then send CopyData messages until either end sends a CopyDone
message. After the client sends a CopyDone message, the connection goes from copy-both mode to copy-

2218

Frontend/Backend Protocol

out mode, and the client may not send any more CopyData messages. Similarly, when the server sends
a CopyDone message, the connection goes into copy-in mode, and the server may not send any more
CopyData messages. After both sides have sent a CopyDone message, the copy mode is terminated, and
the backend reverts to the command-processing mode. In the event of a backend-detected error during
copy-both mode, the backend will issue an ErrorResponse message, discard frontend messages until a Sync
message is received, and then issue ReadyForQuery and return to normal processing. The frontend should
treat receipt of ErrorResponse as terminating the copy in both directions; no CopyDone should be sent in
this case. See Section 53.4 for more information on the subprotocol transmitted over copy-both mode.

The CopyInResponse, CopyOutResponse and CopyBothResponse messages include fields that inform the
frontend of the number of columns per row and the format codes being used for each column. (As of the
present implementation, all columns in a given COPY operation will use the same format, but the message
design does not assume this.)

53.2.6. Asynchronous Operations
There are several cases in which the backend will send messages that are not specifically prompted by the
frontend's command stream. Frontends must be prepared to deal with these messages at any time, even
when not engaged in a query. At minimum, one should check for these cases before beginning to read
a query response.

It is possible for NoticeResponse messages to be generated due to outside activity; for example, if the
database administrator commands a “fast” database shutdown, the backend will send a NoticeResponse
indicating this fact before closing the connection. Accordingly, frontends should always be prepared to
accept and display NoticeResponse messages, even when the connection is nominally idle.

ParameterStatus messages will be generated whenever the active value changes for any of the parameters
the backend believes the frontend should know about. Most commonly this occurs in response to a SET
SQL command executed by the frontend, and this case is effectively synchronous — but it is also possible
for parameter status changes to occur because the administrator changed a configuration file and then sent
the SIGHUP signal to the server. Also, if a SET command is rolled back, an appropriate ParameterStatus
message will be generated to report the current effective value.

At present there is a hard-wired set of parameters for which ParameterStatus will be generated:
they are server_version, server_encoding, client_encoding, application_name,
is_superuser, session_authorization, DateStyle, IntervalStyle, TimeZone,
integer_datetimes, and standard_conforming_strings. (server_encoding,
TimeZone, and integer_datetimes were not reported by releases before 8.0;
standard_conforming_strings was not reported by releases before 8.1; IntervalStyle was
not reported by releases before 8.4; application_name was not reported by releases before 9.0.) Note
that server_version, server_encoding and integer_datetimes are pseudo-parameters
that cannot change after startup. This set might change in the future, or even become configurable.
Accordingly, a frontend should simply ignore ParameterStatus for parameters that it does not understand
or care about.

If a frontend issues a LISTEN command, then the backend will send a NotificationResponse message (not
to be confused with NoticeResponse!) whenever a NOTIFY command is executed for the same channel
name.

Note

At present, NotificationResponse can only be sent outside a transaction, and thus it will not occur
in the middle of a command-response series, though it might occur just before ReadyForQuery. It

2219

Frontend/Backend Protocol

is unwise to design frontend logic that assumes that, however. Good practice is to be able to accept
NotificationResponse at any point in the protocol.

53.2.7. Canceling Requests in Progress
During the processing of a query, the frontend might request cancellation of the query. The cancel request is
not sent directly on the open connection to the backend for reasons of implementation efficiency: we don't
want to have the backend constantly checking for new input from the frontend during query processing.
Cancel requests should be relatively infrequent, so we make them slightly cumbersome in order to avoid
a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the server and sends a CancelRequest
message, rather than the StartupMessage message that would ordinarily be sent across a new connection.
The server will process this request and then close the connection. For security reasons, no direct reply
is made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and secret key) passed
to the frontend during connection start-up. If the request matches the PID and secret key for a currently
executing backend, the processing of the current query is aborted. (In the existing implementation, this is
done by sending a special signal to the backend process that is processing the query.)

The cancellation signal might or might not have any effect — for example, if it arrives after the backend
has finished processing the query, then it will have no effect. If the cancellation is effective, it results in
the current command being terminated early with an error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no direct way
to tell whether a cancel request has succeeded. It must continue to wait for the backend to respond to the
query. Issuing a cancel simply improves the odds that the current query will finish soon, and improves the
odds that it will fail with an error message instead of succeeding.

Since the cancel request is sent across a new connection to the server and not across the regular frontend/
backend communication link, it is possible for the cancel request to be issued by any process, not just the
frontend whose query is to be canceled. This might provide additional flexibility when building multiple-
process applications. It also introduces a security risk, in that unauthorized persons might try to cancel
queries. The security risk is addressed by requiring a dynamically generated secret key to be supplied in
cancel requests.

53.2.8. Termination
The normal, graceful termination procedure is that the frontend sends a Terminate message and
immediately closes the connection. On receipt of this message, the backend closes the connection and
terminates.

In rare cases (such as an administrator-commanded database shutdown) the backend might disconnect
without any frontend request to do so. In such cases the backend will attempt to send an error or notice
message giving the reason for the disconnection before it closes the connection.

Other termination scenarios arise from various failure cases, such as core dump at one end or the other, loss
of the communications link, loss of message-boundary synchronization, etc. If either frontend or backend
sees an unexpected closure of the connection, it should clean up and terminate. The frontend has the option
of launching a new backend by recontacting the server if it doesn't want to terminate itself. Closing the
connection is also advisable if an unrecognizable message type is received, since this probably indicates
loss of message-boundary sync.

2220

Frontend/Backend Protocol

For either normal or abnormal termination, any open transaction is rolled back, not committed. One should
note however that if a frontend disconnects while a non-SELECT query is being processed, the backend
will probably finish the query before noticing the disconnection. If the query is outside any transaction
block (BEGIN ... COMMIT sequence) then its results might be committed before the disconnection is
recognized.

53.2.9. SSL Session Encryption
If PostgreSQL was built with SSL support, frontend/backend communications can be encrypted using
SSL. This provides communication security in environments where attackers might be able to capture the
session traffic. For more information on encrypting PostgreSQL sessions with SSL, see Section 18.9.

To initiate an SSL-encrypted connection, the frontend initially sends an SSLRequest message rather than
a StartupMessage. The server then responds with a single byte containing S or N, indicating that it is
willing or unwilling to perform SSL, respectively. The frontend might close the connection at this point if
it is dissatisfied with the response. To continue after S, perform an SSL startup handshake (not described
here, part of the SSL specification) with the server. If this is successful, continue with sending the usual
StartupMessage. In this case the StartupMessage and all subsequent data will be SSL-encrypted. To
continue after N, send the usual StartupMessage and proceed without encryption.

The frontend should also be prepared to handle an ErrorMessage response to SSLRequest from the server.
This would only occur if the server predates the addition of SSL support to PostgreSQL. (Such servers are
now very ancient, and likely do not exist in the wild anymore.) In this case the connection must be closed,
but the frontend might choose to open a fresh connection and proceed without requesting SSL.

An initial SSLRequest can also be used in a connection that is being opened to send a CancelRequest
message.

While the protocol itself does not provide a way for the server to force SSL encryption, the administrator
can configure the server to reject unencrypted sessions as a byproduct of authentication checking.

53.3. SASL Authentication
SASL is a framework for authentication in connection-oriented protocols. At the moment, PostgreSQL
implements two SASL authentication mechanisms, SCRAM-SHA-256 and SCRAM-SHA-256-PLUS.
More might be added in the future. The below steps illustrate how SASL authentication is performed in
general, while the next subsection gives more details on SCRAM-SHA-256 and SCRAM-SHA-256-PLUS.

SASL Authentication Message Flow

1. To begin a SASL authentication exchange, the server sends an AuthenticationSASL message. It
includes a list of SASL authentication mechanisms that the server can accept, in the server's preferred
order.

2. The client selects one of the supported mechanisms from the list, and sends a SASLInitialResponse
message to the server. The message includes the name of the selected mechanism, and an optional
Initial Client Response, if the selected mechanism uses that.

3. One or more server-challenge and client-response message will follow. Each server-challenge
is sent in an AuthenticationSASLContinue message, followed by a response from client in an
SASLResponse message. The particulars of the messages are mechanism specific.

4. Finally, when the authentication exchange is completed successfully, the server sends an
AuthenticationSASLFinal message, followed immediately by an AuthenticationOk message. The

2221

Frontend/Backend Protocol

AuthenticationSASLFinal contains additional server-to-client data, whose content is particular to the
selected authentication mechanism. If the authentication mechanism doesn't use additional data that's
sent at completion, the AuthenticationSASLFinal message is not sent.

On error, the server can abort the authentication at any stage, and send an ErrorMessage.

53.3.1. SCRAM-SHA-256 authentication
The implemented SASL mechanisms at the moment are SCRAM-SHA-256 and its variant with channel
binding SCRAM-SHA-256-PLUS. They are described in detail in RFC 7677 and RFC 5802.

When SCRAM-SHA-256 is used in PostgreSQL, the server will ignore the user name that the client sends
in the client-first-message. The user name that was already sent in the startup message is used
instead. PostgreSQL supports multiple character encodings, while SCRAM dictates UTF-8 to be used for
the user name, so it might be impossible to represent the PostgreSQL user name in UTF-8.

The SCRAM specification dictates that the password is also in UTF-8, and is processed with the SASLprep
algorithm. PostgreSQL, however, does not require UTF-8 to be used for the password. When a user's
password is set, it is processed with SASLprep as if it was in UTF-8, regardless of the actual encoding used.
However, if it is not a legal UTF-8 byte sequence, or it contains UTF-8 byte sequences that are prohibited
by the SASLprep algorithm, the raw password will be used without SASLprep processing, instead of
throwing an error. This allows the password to be normalized when it is in UTF-8, but still allows a non-
UTF-8 password to be used, and doesn't require the system to know which encoding the password is in.

Channel binding is supported in PostgreSQL builds with SSL support. The SASL mechanism name
for SCRAM with channel binding is SCRAM-SHA-256-PLUS. The channel binding type used by
PostgreSQL is tls-server-end-point.

In SCRAM without channel binding, the server chooses a random number that is transmitted to the
client to be mixed with the user-supplied password in the transmitted password hash. While this prevents
the password hash from being successfully retransmitted in a later session, it does not prevent a fake
server between the real server and client from passing through the server's random value and successfully
authenticating.

SCRAM with channel binding prevents such man-in-the-middle attacks by mixing the signature of the
server's certificate into the transmitted password hash. While a fake server can retransmit the real server's
certificate, it doesn't have access to the private key matching that certificate, and therefore cannot prove
it is the owner, causing SSL connection failure.

Example

1. The server sends an AuthenticationSASL message. It includes a list of SASL authentication
mechanisms that the server can accept. This will be SCRAM-SHA-256-PLUS and SCRAM-
SHA-256 if the server is built with SSL support, or else just the latter.

2. The client responds by sending a SASLInitialResponse message, which indicates the chosen
mechanism, SCRAM-SHA-256 or SCRAM-SHA-256-PLUS. (A client is free to choose either
mechanism, but for better security it should choose the channel-binding variant if it can support it.)
In the Initial Client response field, the message contains the SCRAM client-first-message.
The client-first-message also contains the channel binding type chosen by the client.

3. Server sends an AuthenticationSASLContinue message, with a SCRAM server-first-
message as the content.

4. Client sends a SASLResponse message, with SCRAM client-final-message as the content.

2222

Frontend/Backend Protocol

5. Server sends an AuthenticationSASLFinal message, with the SCRAM server-final-message,
followed immediately by an AuthenticationOk message.

53.4. Streaming Replication Protocol
To initiate streaming replication, the frontend sends the replication parameter in the startup message.
A Boolean value of true (or on, yes, 1) tells the backend to go into physical replication walsender mode,
wherein a small set of replication commands, shown below, can be issued instead of SQL statements.

Passing database as the value for the replication parameter instructs the backend to go into logical
replication walsender mode, connecting to the database specified in the dbname parameter. In logical
replication walsender mode, the replication commands shown below as well as normal SQL commands
can be issued.

In either physical replication or logical replication walsender mode, only the simple query protocol can
be used.

For the purpose of testing replication commands, you can make a replication connection via psql or any
other libpq-using tool with a connection string including the replication option, e.g.:

psql "dbname=postgres replication=database" -c "IDENTIFY_SYSTEM;"

However, it is often more useful to use pg_receivewal (for physical replication) or pg_recvlogical (for
logical replication).

Replication commands are logged in the server log when log_replication_commands is enabled.

The commands accepted in replication mode are:

IDENTIFY_SYSTEM

Requests the server to identify itself. Server replies with a result set of a single row, containing four
fields:

systemid (text)

The unique system identifier identifying the cluster. This can be used to check that the base backup
used to initialize the standby came from the same cluster.

timeline (int4)

Current timeline ID. Also useful to check that the standby is consistent with the master.

xlogpos (text)

Current WAL flush location. Useful to get a known location in the write-ahead log where
streaming can start.

dbname (text)

Database connected to or null.

SHOW name

Requests the server to send the current setting of a run-time parameter. This is similar to the SQL
command SHOW.

2223

Frontend/Backend Protocol

name

The name of a run-time parameter. Available parameters are documented in Chapter 19.

TIMELINE_HISTORY tli

Requests the server to send over the timeline history file for timeline tli. Server replies with a result
set of a single row, containing two fields:

filename (text)

File name of the timeline history file, e.g., 00000002.history.

content (bytea)

Contents of the timeline history file.

CREATE_REPLICATION_SLOT slot_name [TEMPORARY] { PHYSICAL [RESERVE_WAL] |
LOGICAL output_plugin [EXPORT_SNAPSHOT | NOEXPORT_SNAPSHOT | USE_SNAPSHOT] }

Create a physical or logical replication slot. See Section 26.2.6 for more about replication slots.

slot_name

The name of the slot to create. Must be a valid replication slot name (see Section 26.2.6.1).

output_plugin

The name of the output plugin used for logical decoding (see Section 49.6).

TEMPORARY

Specify that this replication slot is a temporary one. Temporary slots are not saved to disk and
are automatically dropped on error or when the session has finished.

RESERVE_WAL

Specify that this physical replication slot reserves WAL immediately. Otherwise, WAL is only
reserved upon connection from a streaming replication client.

EXPORT_SNAPSHOT
NOEXPORT_SNAPSHOT
USE_SNAPSHOT

Decides what to do with the snapshot created during logical slot initialization.
EXPORT_SNAPSHOT, which is the default, will export the snapshot for use in other sessions.
This option can't be used inside a transaction. USE_SNAPSHOT will use the snapshot for the
current transaction executing the command. This option must be used in a transaction, and
CREATE_REPLICATION_SLOT must be the first command run in that transaction. Finally,
NOEXPORT_SNAPSHOT will just use the snapshot for logical decoding as normal but won't do
anything else with it.

In response to this command, the server will send a one-row result set containing the following fields:

slot_name (text)

The name of the newly-created replication slot.

2224

Frontend/Backend Protocol

consistent_point (text)

The WAL location at which the slot became consistent. This is the earliest location from which
streaming can start on this replication slot.

snapshot_name (text)

The identifier of the snapshot exported by the command. The snapshot is valid until a new
command is executed on this connection or the replication connection is closed. Null if the created
slot is physical.

output_plugin (text)

The name of the output plugin used by the newly-created replication slot. Null if the created slot
is physical.

START_REPLICATION [SLOT slot_name] [PHYSICAL] XXX/XXX [TIMELINE tli]

Instructs server to start streaming WAL, starting at WAL location XXX/XXX. If TIMELINE option
is specified, streaming starts on timeline tli; otherwise, the server's current timeline is selected. The
server can reply with an error, for example if the requested section of WAL has already been recycled.
On success, server responds with a CopyBothResponse message, and then starts to stream WAL to
the frontend.

If a slot's name is provided via slot_name, it will be updated as replication progresses so that the
server knows which WAL segments, and if hot_standby_feedback is on which transactions,
are still needed by the standby.

If the client requests a timeline that's not the latest but is part of the history of the server, the server
will stream all the WAL on that timeline starting from the requested start point up to the point where
the server switched to another timeline. If the client requests streaming at exactly the end of an old
timeline, the server responds immediately with CommandComplete without entering COPY mode.

After streaming all the WAL on a timeline that is not the latest one, the server will end streaming by
exiting the COPY mode. When the client acknowledges this by also exiting COPY mode, the server
sends a result set with one row and two columns, indicating the next timeline in this server's history.
The first column is the next timeline's ID (type int8), and the second column is the WAL location
where the switch happened (type text). Usually, the switch position is the end of the WAL that was
streamed, but there are corner cases where the server can send some WAL from the old timeline that it
has not itself replayed before promoting. Finally, the server sends CommandComplete message, and
is ready to accept a new command.

WAL data is sent as a series of CopyData messages. (This allows other information to be intermixed;
in particular the server can send an ErrorResponse message if it encounters a failure after beginning
to stream.) The payload of each CopyData message from server to the client contains a message of
one of the following formats:

XLogData (B)

Byte1('w')

Identifies the message as WAL data.

Int64

The starting point of the WAL data in this message.

2225

Frontend/Backend Protocol

Int64

The current end of WAL on the server.

Int64

The server's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byten

A section of the WAL data stream.

A single WAL record is never split across two XLogData messages. When a WAL record
crosses a WAL page boundary, and is therefore already split using continuation records, it can
be split at the page boundary. In other words, the first main WAL record and its continuation
records can be sent in different XLogData messages.

Primary keepalive message (B)

Byte1('k')

Identifies the message as a sender keepalive.

Int64

The current end of WAL on the server.

Int64

The server's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byte1

1 means that the client should reply to this message as soon as possible, to avoid a timeout
disconnect. 0 otherwise.

The receiving process can send replies back to the sender at any time, using one of the following
message formats (also in the payload of a CopyData message):

Standby status update (F)

Byte1('r')

Identifies the message as a receiver status update.

Int64

The location of the last WAL byte + 1 received and written to disk in the standby.

Int64

The location of the last WAL byte + 1 flushed to disk in the standby.

Int64

The location of the last WAL byte + 1 applied in the standby.

2226

Frontend/Backend Protocol

Int64

The client's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byte1

If 1, the client requests the server to reply to this message immediately. This can be used to
ping the server, to test if the connection is still healthy.

Hot Standby feedback message (F)

Byte1('h')

Identifies the message as a Hot Standby feedback message.

Int64

The client's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Int32

The standby's current global xmin, excluding the catalog_xmin from any replication slots.
If both this value and the following catalog_xmin are 0 this is treated as a notification that
Hot Standby feedback will no longer be sent on this connection. Later non-zero messages
may reinitiate the feedback mechanism.

Int32

The epoch of the global xmin xid on the standby.

Int32

The lowest catalog_xmin of any replication slots on the standby. Set to 0 if no catalog_xmin
exists on the standby or if hot standby feedback is being disabled.

Int32

The epoch of the catalog_xmin xid on the standby.

START_REPLICATION SLOT slot_name LOGICAL XXX/XXX [(option_name [
option_value] [, ...])]

Instructs server to start streaming WAL for logical replication, starting at WAL location XXX/XXX.
The server can reply with an error, for example if the requested section of WAL has already been
recycled. On success, server responds with a CopyBothResponse message, and then starts to stream
WAL to the frontend.

The messages inside the CopyBothResponse messages are of the same format documented for
START_REPLICATION ... PHYSICAL.

The output plugin associated with the selected slot is used to process the output for streaming.

SLOT slot_name

The name of the slot to stream changes from. This parameter is required, and must correspond to
an existing logical replication slot created with CREATE_REPLICATION_SLOT in LOGICAL
mode.

2227

Frontend/Backend Protocol

XXX/XXX

The WAL location to begin streaming at.

option_name

The name of an option passed to the slot's logical decoding plugin.

option_value

Optional value, in the form of a string constant, associated with the specified option.

DROP_REPLICATION_SLOT slot_name [WAIT]

Drops a replication slot, freeing any reserved server-side resources. If the slot is a logical slot that was
created in a database other than the database the walsender is connected to, this command fails.

slot_name

The name of the slot to drop.

WAIT

This option causes the command to wait if the slot is active until it becomes inactive, instead of
the default behavior of raising an error.

BASE_BACKUP [LABEL 'label'] [PROGRESS] [FAST] [WAL] [NOWAIT] [MAX_RATE rate
] [TABLESPACE_MAP] [NOVERIFY_CHECKSUMS]

Instructs the server to start streaming a base backup. The system will automatically be put in backup
mode before the backup is started, and taken out of it when the backup is complete. The following
options are accepted:

LABEL 'label'

Sets the label of the backup. If none is specified, a backup label of base backup
will be used. The quoting rules for the label are the same as a standard SQL string with
standard_conforming_strings turned on.

PROGRESS

Request information required to generate a progress report. This will send back an approximate
size in the header of each tablespace, which can be used to calculate how far along the stream is
done. This is calculated by enumerating all the file sizes once before the transfer is even started,
and might as such have a negative impact on the performance. In particular, it might take longer
before the first data is streamed. Since the database files can change during the backup, the size
is only approximate and might both grow and shrink between the time of approximation and the
sending of the actual files.

FAST

Request a fast checkpoint.

WAL

Include the necessary WAL segments in the backup. This will include all the files between start
and stop backup in the pg_wal directory of the base directory tar file.

2228

Frontend/Backend Protocol

NOWAIT

By default, the backup will wait until the last required WAL segment has been archived, or emit
a warning if log archiving is not enabled. Specifying NOWAIT disables both the waiting and the
warning, leaving the client responsible for ensuring the required log is available.

MAX_RATE rate

Limit (throttle) the maximum amount of data transferred from server to client per unit of time.
The expected unit is kilobytes per second. If this option is specified, the value must either be equal
to zero or it must fall within the range from 32 kB through 1 GB (inclusive). If zero is passed or
the option is not specified, no restriction is imposed on the transfer.

TABLESPACE_MAP

Include information about symbolic links present in the directory pg_tblspc in a file named
tablespace_map. The tablespace map file includes each symbolic link name as it exists in
the directory pg_tblspc/ and the full path of that symbolic link.

NOVERIFY_CHECKSUMS

By default, checksums are verified during a base backup if they are enabled. Specifying
NOVERIFY_CHECKSUMS disables this verification.

When the backup is started, the server will first send two ordinary result sets, followed by one or more
CopyResponse results.

The first ordinary result set contains the starting position of the backup, in a single row with two
columns. The first column contains the start position given in XLogRecPtr format, and the second
column contains the corresponding timeline ID.

The second ordinary result set has one row for each tablespace. The fields in this row are:

spcoid (oid)

The OID of the tablespace, or null if it's the base directory.

spclocation (text)

The full path of the tablespace directory, or null if it's the base directory.

size (int8)

The approximate size of the tablespace, if progress report has been requested; otherwise it's null.

After the second regular result set, one or more CopyResponse results will be sent, one for the main
data directory and one for each additional tablespace other than pg_default and pg_global.
The data in the CopyResponse results will be a tar format (following the “ustar interchange format”
specified in the POSIX 1003.1-2008 standard) dump of the tablespace contents, except that the two
trailing blocks of zeroes specified in the standard are omitted. After the tar data is complete, a final
ordinary result set will be sent, containing the WAL end position of the backup, in the same format
as the start position.

The tar archive for the data directory and each tablespace will contain all files in the directories,
regardless of whether they are PostgreSQL files or other files added to the same directory. The only
excluded files are:
• postmaster.pid
• postmaster.opts

2229

Frontend/Backend Protocol

• pg_internal.init (found in multiple directories)
• Various temporary files and directories created during the operation of the PostgreSQL server, such

as any file or directory beginning with pgsql_tmp and temporary relations.
• Unlogged relations, except for the init fork which is required to recreate the (empty) unlogged

relation on recovery.
• pg_wal, including subdirectories. If the backup is run with WAL files included, a synthesized

version of pg_wal will be included, but it will only contain the files necessary for the backup to
work, not the rest of the contents.

• pg_dynshmem, pg_notify, pg_replslot, pg_serial, pg_snapshots,
pg_stat_tmp, and pg_subtrans are copied as empty directories (even if they are symbolic
links).

• Files other than regular files and directories, such as symbolic links (other than for the directories
listed above) and special device files, are skipped. (Symbolic links in pg_tblspc are maintained.)

Owner, group, and file mode are set if the underlying file system on the server supports it.

53.5. Logical Streaming Replication Protocol
This section describes the logical replication protocol, which is the message flow started by the
START_REPLICATION SLOT slot_name LOGICAL replication command.

The logical streaming replication protocol builds on the primitives of the physical streaming replication
protocol.

53.5.1. Logical Streaming Replication Parameters
The logical replication START_REPLICATION command accepts following parameters:

proto_version

Protocol version. Currently only version 1 is supported.

publication_names

Comma separated list of publication names for which to subscribe (receive changes). The individual
publication names are treated as standard objects names and can be quoted the same as needed.

53.5.2. Logical Replication Protocol Messages
The individual protocol messages are discussed in the following subsections. Individual messages are
described in Section 53.9.

All top-level protocol messages begin with a message type byte. While represented in code as a character,
this is a signed byte with no associated encoding.

Since the streaming replication protocol supplies a message length there is no need for top-level protocol
messages to embed a length in their header.

53.5.3. Logical Replication Protocol Message Flow
With the exception of the START_REPLICATION command and the replay progress messages, all
information flows only from the backend to the frontend.

The logical replication protocol sends individual transactions one by one. This means that all messages
between a pair of Begin and Commit messages belong to the same transaction.

2230

Frontend/Backend Protocol

Every sent transaction contains zero or more DML messages (Insert, Update, Delete). In case of a cascaded
setup it can also contain Origin messages. The origin message indicated that the transaction originated
on different replication node. Since a replication node in the scope of logical replication protocol can be
pretty much anything, the only identifier is the origin name. It's downstream's responsibility to handle this
as needed (if needed). The Origin message is always sent before any DML messages in the transaction.

Every DML message contains an arbitrary relation ID, which can be mapped to an ID in the Relation
messages. The Relation messages describe the schema of the given relation. The Relation message is sent
for a given relation either because it is the first time we send a DML message for given relation in the
current session or because the relation definition has changed since the last Relation message was sent for
it. The protocol assumes that the client is capable of caching the metadata for as many relations as needed.

53.6. Message Data Types
This section describes the base data types used in messages.

Intn(i)

An n-bit integer in network byte order (most significant byte first). If i is specified it is the exact
value that will appear, otherwise the value is variable. Eg. Int16, Int32(42).

Intn[k]

An array of k n-bit integers, each in network byte order. The array length k is always determined by
an earlier field in the message. Eg. Int16[M].

String(s)

A null-terminated string (C-style string). There is no specific length limitation on strings. If s
is specified it is the exact value that will appear, otherwise the value is variable. Eg. String,
String("user").

Note

There is no predefined limit on the length of a string that can be returned by the backend.
Good coding strategy for a frontend is to use an expandable buffer so that anything that fits
in memory can be accepted. If that's not feasible, read the full string and discard trailing
characters that don't fit into your fixed-size buffer.

Byten(c)

Exactly n bytes. If the field width n is not a constant, it is always determinable from an earlier field
in the message. If c is specified it is the exact value. Eg. Byte2, Byte1('\n').

53.7. Message Formats
This section describes the detailed format of each message. Each is marked to indicate that it can be sent
by a frontend (F), a backend (B), or both (F & B). Notice that although each message includes a byte count
at the beginning, the message format is defined so that the message end can be found without reference to
the byte count. This aids validity checking. (The CopyData message is an exception, because it forms part
of a data stream; the contents of any individual CopyData message cannot be interpretable on their own.)

2231

Frontend/Backend Protocol

AuthenticationOk (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(0)

Specifies that the authentication was successful.

AuthenticationKerberosV5 (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(2)

Specifies that Kerberos V5 authentication is required.

AuthenticationCleartextPassword (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(3)

Specifies that a clear-text password is required.

AuthenticationMD5Password (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(12)

Length of message contents in bytes, including self.

Int32(5)

Specifies that an MD5-encrypted password is required.

Byte4

The salt to use when encrypting the password.

2232

Frontend/Backend Protocol

AuthenticationSCMCredential (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(6)

Specifies that an SCM credentials message is required.

AuthenticationGSS (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(7)

Specifies that GSSAPI authentication is required.

AuthenticationSSPI (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(9)

Specifies that SSPI authentication is required.

AuthenticationGSSContinue (B)

Byte1('R')

Identifies the message as an authentication request.

Int32

Length of message contents in bytes, including self.

Int32(8)

Specifies that this message contains GSSAPI or SSPI data.

Byten

GSSAPI or SSPI authentication data.

2233

Frontend/Backend Protocol

AuthenticationSASL (B)

Byte1('R')

Identifies the message as an authentication request.

Int32

Length of message contents in bytes, including self.

Int32(10)

Specifies that SASL authentication is required.

The message body is a list of SASL authentication mechanisms, in the server's order of preference. A
zero byte is required as terminator after the last authentication mechanism name. For each mechanism,
there is the following:

String

Name of a SASL authentication mechanism.

AuthenticationSASLContinue (B)

Byte1('R')

Identifies the message as an authentication request.

Int32

Length of message contents in bytes, including self.

Int32(11)

Specifies that this message contains a SASL challenge.

Byten

SASL data, specific to the SASL mechanism being used.

AuthenticationSASLFinal (B)

Byte1('R')

Identifies the message as an authentication request.

Int32

Length of message contents in bytes, including self.

Int32(12)

Specifies that SASL authentication has completed.

Byten

SASL outcome "additional data", specific to the SASL mechanism being used.

2234

Frontend/Backend Protocol

BackendKeyData (B)

Byte1('K')

Identifies the message as cancellation key data. The frontend must save these values if it wishes
to be able to issue CancelRequest messages later.

Int32(12)

Length of message contents in bytes, including self.

Int32

The process ID of this backend.

Int32

The secret key of this backend.

Bind (F)

Byte1('B')

Identifies the message as a Bind command.

Int32

Length of message contents in bytes, including self.

String

The name of the destination portal (an empty string selects the unnamed portal).

String

The name of the source prepared statement (an empty string selects the unnamed prepared
statement).

Int16

The number of parameter format codes that follow (denoted C below). This can be zero to indicate
that there are no parameters or that the parameters all use the default format (text); or one, in
which case the specified format code is applied to all parameters; or it can equal the actual number
of parameters.

Int16[C]

The parameter format codes. Each must presently be zero (text) or one (binary).

Int16

The number of parameter values that follow (possibly zero). This must match the number of
parameters needed by the query.

Next, the following pair of fields appear for each parameter:

Int32

The length of the parameter value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL parameter value. No value bytes follow in the NULL case.

2235

Frontend/Backend Protocol

Byten

The value of the parameter, in the format indicated by the associated format code. n is the above
length.

After the last parameter, the following fields appear:

Int16

The number of result-column format codes that follow (denoted R below). This can be zero to
indicate that there are no result columns or that the result columns should all use the default format
(text); or one, in which case the specified format code is applied to all result columns (if any); or
it can equal the actual number of result columns of the query.

Int16[R]

The result-column format codes. Each must presently be zero (text) or one (binary).

BindComplete (B)

Byte1('2')

Identifies the message as a Bind-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CancelRequest (F)

Int32(16)

Length of message contents in bytes, including self.

Int32(80877102)

The cancel request code. The value is chosen to contain 1234 in the most significant 16 bits,
and 5678 in the least significant 16 bits. (To avoid confusion, this code must not be the same
as any protocol version number.)

Int32

The process ID of the target backend.

Int32

The secret key for the target backend.

Close (F)

Byte1('C')

Identifies the message as a Close command.

Int32

Length of message contents in bytes, including self.

2236

Frontend/Backend Protocol

Byte1

'S' to close a prepared statement; or 'P' to close a portal.

String

The name of the prepared statement or portal to close (an empty string selects the unnamed
prepared statement or portal).

CloseComplete (B)

Byte1('3')

Identifies the message as a Close-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CommandComplete (B)

Byte1('C')

Identifies the message as a command-completed response.

Int32

Length of message contents in bytes, including self.

String

The command tag. This is usually a single word that identifies which SQL command was
completed.

For an INSERT command, the tag is INSERT oid rows, where rows is the number of rows
inserted. oid is the object ID of the inserted row if rows is 1 and the target table has OIDs;
otherwise oid is 0.

For a DELETE command, the tag is DELETE rows where rows is the number of rows deleted.

For an UPDATE command, the tag is UPDATE rows where rows is the number of rows updated.

For a SELECT or CREATE TABLE AS command, the tag is SELECT rows where rows is
the number of rows retrieved.

For a MOVE command, the tag is MOVE rows where rows is the number of rows the cursor's
position has been changed by.

For a FETCH command, the tag is FETCH rows where rows is the number of rows that have
been retrieved from the cursor.

For a COPY command, the tag is COPY rows where rows is the number of rows copied. (Note:
the row count appears only in PostgreSQL 8.2 and later.)

CopyData (F & B)

Byte1('d')

Identifies the message as COPY data.

2237

Frontend/Backend Protocol

Int32

Length of message contents in bytes, including self.

Byten

Data that forms part of a COPY data stream. Messages sent from the backend will always
correspond to single data rows, but messages sent by frontends might divide the data stream
arbitrarily.

CopyDone (F & B)

Byte1('c')

Identifies the message as a COPY-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CopyFail (F)

Byte1('f')

Identifies the message as a COPY-failure indicator.

Int32

Length of message contents in bytes, including self.

String

An error message to report as the cause of failure.

CopyInResponse (B)

Byte1('G')

Identifies the message as a Start Copy In response. The frontend must now send copy-in data (if
not prepared to do so, send a CopyFail message).

Int32

Length of message contents in bytes, including self.

Int8

0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16

The number of columns in the data to be copied (denoted N below).

Int16[N]

The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

2238

Frontend/Backend Protocol

CopyOutResponse (B)

Byte1('H')

Identifies the message as a Start Copy Out response. This message will be followed by copy-
out data.

Int32

Length of message contents in bytes, including self.

Int8

0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16

The number of columns in the data to be copied (denoted N below).

Int16[N]

The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

CopyBothResponse (B)

Byte1('W')

Identifies the message as a Start Copy Both response. This message is used only for Streaming
Replication.

Int32

Length of message contents in bytes, including self.

Int8

0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16

The number of columns in the data to be copied (denoted N below).

Int16[N]

The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

DataRow (B)

Byte1('D')

Identifies the message as a data row.

2239

Frontend/Backend Protocol

Int32

Length of message contents in bytes, including self.

Int16

The number of column values that follow (possibly zero).

Next, the following pair of fields appear for each column:

Int32

The length of the column value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL column value. No value bytes follow in the NULL case.

Byten

The value of the column, in the format indicated by the associated format code. n is the above
length.

Describe (F)

Byte1('D')

Identifies the message as a Describe command.

Int32

Length of message contents in bytes, including self.

Byte1

'S' to describe a prepared statement; or 'P' to describe a portal.

String

The name of the prepared statement or portal to describe (an empty string selects the unnamed
prepared statement or portal).

EmptyQueryResponse (B)

Byte1('I')

Identifies the message as a response to an empty query string. (This substitutes for
CommandComplete.)

Int32(4)

Length of message contents in bytes, including self.

ErrorResponse (B)

Byte1('E')

Identifies the message as an error.

Int32

Length of message contents in bytes, including self.

2240

Frontend/Backend Protocol

The message body consists of one or more identified fields, followed by a zero byte as a terminator.
Fields can appear in any order. For each field there is the following:

Byte1

A code identifying the field type; if zero, this is the message terminator and no string follows.
The presently defined field types are listed in Section 53.8. Since more field types might be added
in future, frontends should silently ignore fields of unrecognized type.

String

The field value.

Execute (F)

Byte1('E')

Identifies the message as an Execute command.

Int32

Length of message contents in bytes, including self.

String

The name of the portal to execute (an empty string selects the unnamed portal).

Int32

Maximum number of rows to return, if portal contains a query that returns rows (ignored
otherwise). Zero denotes “no limit”.

Flush (F)

Byte1('H')

Identifies the message as a Flush command.

Int32(4)

Length of message contents in bytes, including self.

FunctionCall (F)

Byte1('F')

Identifies the message as a function call.

Int32

Length of message contents in bytes, including self.

Int32

Specifies the object ID of the function to call.

Int16

The number of argument format codes that follow (denoted C below). This can be zero to indicate
that there are no arguments or that the arguments all use the default format (text); or one, in which

2241

Frontend/Backend Protocol

case the specified format code is applied to all arguments; or it can equal the actual number of
arguments.

Int16[C]

The argument format codes. Each must presently be zero (text) or one (binary).

Int16

Specifies the number of arguments being supplied to the function.

Next, the following pair of fields appear for each argument:

Int32

The length of the argument value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL argument value. No value bytes follow in the NULL case.

Byten

The value of the argument, in the format indicated by the associated format code. n is the above
length.

After the last argument, the following field appears:

Int16

The format code for the function result. Must presently be zero (text) or one (binary).

FunctionCallResponse (B)

Byte1('V')

Identifies the message as a function call result.

Int32

Length of message contents in bytes, including self.

Int32

The length of the function result value, in bytes (this count does not include itself). Can be zero.
As a special case, -1 indicates a NULL function result. No value bytes follow in the NULL case.

Byten

The value of the function result, in the format indicated by the associated format code. n is the
above length.

GSSResponse (F)

Byte1('p')

Identifies the message as a GSSAPI or SSPI response. Note that this is also used for SASL and
password response messages. The exact message type can be deduced from the context.

Int32

Length of message contents in bytes, including self.

2242

Frontend/Backend Protocol

Byten

GSSAPI/SSPI specific message data.

NegotiateProtocolVersion (B)

Byte1('v')

Identifies the message as a protocol version negotiation message.

Int32

Length of message contents in bytes, including self.

Int32

Newest minor protocol version supported by the server for the major protocol version requested
by the client.

Int32

Number of protocol options not recognized by the server.

Then, for protocol option not recognized by the server, there is the following:

String

The option name.

NoData (B)

Byte1('n')

Identifies the message as a no-data indicator.

Int32(4)

Length of message contents in bytes, including self.

NoticeResponse (B)

Byte1('N')

Identifies the message as a notice.

Int32

Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a terminator.
Fields can appear in any order. For each field there is the following:

Byte1

A code identifying the field type; if zero, this is the message terminator and no string follows.
The presently defined field types are listed in Section 53.8. Since more field types might be added
in future, frontends should silently ignore fields of unrecognized type.

2243

Frontend/Backend Protocol

String

The field value.

NotificationResponse (B)

Byte1('A')

Identifies the message as a notification response.

Int32

Length of message contents in bytes, including self.

Int32

The process ID of the notifying backend process.

String

The name of the channel that the notify has been raised on.

String

The “payload” string passed from the notifying process.

ParameterDescription (B)

Byte1('t')

Identifies the message as a parameter description.

Int32

Length of message contents in bytes, including self.

Int16

The number of parameters used by the statement (can be zero).

Then, for each parameter, there is the following:

Int32

Specifies the object ID of the parameter data type.

ParameterStatus (B)

Byte1('S')

Identifies the message as a run-time parameter status report.

Int32

Length of message contents in bytes, including self.

String

The name of the run-time parameter being reported.

2244

Frontend/Backend Protocol

String

The current value of the parameter.

Parse (F)

Byte1('P')

Identifies the message as a Parse command.

Int32

Length of message contents in bytes, including self.

String

The name of the destination prepared statement (an empty string selects the unnamed prepared
statement).

String

The query string to be parsed.

Int16

The number of parameter data types specified (can be zero). Note that this is not an indication of
the number of parameters that might appear in the query string, only the number that the frontend
wants to prespecify types for.

Then, for each parameter, there is the following:

Int32

Specifies the object ID of the parameter data type. Placing a zero here is equivalent to leaving
the type unspecified.

ParseComplete (B)

Byte1('1')

Identifies the message as a Parse-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

PasswordMessage (F)

Byte1('p')

Identifies the message as a password response. Note that this is also used for GSSAPI, SSPI and
SASL response messages. The exact message type can be deduced from the context.

Int32

Length of message contents in bytes, including self.

String

The password (encrypted, if requested).

2245

Frontend/Backend Protocol

PortalSuspended (B)

Byte1('s')

Identifies the message as a portal-suspended indicator. Note this only appears if an Execute
message's row-count limit was reached.

Int32(4)

Length of message contents in bytes, including self.

Query (F)

Byte1('Q')

Identifies the message as a simple query.

Int32

Length of message contents in bytes, including self.

String

The query string itself.

ReadyForQuery (B)

Byte1('Z')

Identifies the message type. ReadyForQuery is sent whenever the backend is ready for a new
query cycle.

Int32(5)

Length of message contents in bytes, including self.

Byte1

Current backend transaction status indicator. Possible values are 'I' if idle (not in a transaction
block); 'T' if in a transaction block; or 'E' if in a failed transaction block (queries will be rejected
until block is ended).

RowDescription (B)

Byte1('T')

Identifies the message as a row description.

Int32

Length of message contents in bytes, including self.

Int16

Specifies the number of fields in a row (can be zero).

Then, for each field, there is the following:

String

The field name.

2246

Frontend/Backend Protocol

Int32

If the field can be identified as a column of a specific table, the object ID of the table; otherwise
zero.

Int16

If the field can be identified as a column of a specific table, the attribute number of the column;
otherwise zero.

Int32

The object ID of the field's data type.

Int16

The data type size (see pg_type.typlen). Note that negative values denote variable-width
types.

Int32

The type modifier (see pg_attribute.atttypmod). The meaning of the modifier is type-
specific.

Int16

The format code being used for the field. Currently will be zero (text) or one (binary). In a
RowDescription returned from the statement variant of Describe, the format code is not yet known
and will always be zero.

SASLInitialResponse (F)

Byte1('p')

Identifies the message as an initial SASL response. Note that this is also used for GSSAPI, SSPI
and password response messages. The exact message type is deduced from the context.

Int32

Length of message contents in bytes, including self.

String

Name of the SASL authentication mechanism that the client selected.

Int32

Length of SASL mechanism specific "Initial Client Response" that follows, or -1 if there is no
Initial Response.

Byten

SASL mechanism specific "Initial Response".

SASLResponse (F)

Byte1('p')

Identifies the message as a SASL response. Note that this is also used for GSSAPI, SSPI and
password response messages. The exact message type can be deduced from the context.

2247

Frontend/Backend Protocol

Int32

Length of message contents in bytes, including self.

Byten

SASL mechanism specific message data.

SSLRequest (F)

Int32(8)

Length of message contents in bytes, including self.

Int32(80877103)

The SSL request code. The value is chosen to contain 1234 in the most significant 16 bits, and
5679 in the least significant 16 bits. (To avoid confusion, this code must not be the same as any
protocol version number.)

StartupMessage (F)

Int32

Length of message contents in bytes, including self.

Int32(196608)

The protocol version number. The most significant 16 bits are the major version number (3 for
the protocol described here). The least significant 16 bits are the minor version number (0 for
the protocol described here).

The protocol version number is followed by one or more pairs of parameter name and value strings.
A zero byte is required as a terminator after the last name/value pair. Parameters can appear in any
order. user is required, others are optional. Each parameter is specified as:

String

The parameter name. Currently recognized names are:

user

The database user name to connect as. Required; there is no default.

database

The database to connect to. Defaults to the user name.

options

Command-line arguments for the backend. (This is deprecated in favor of setting individual
run-time parameters.) Spaces within this string are considered to separate arguments, unless
escaped with a backslash (\); write \\ to represent a literal backslash.

replication

Used to connect in streaming replication mode, where a small set of replication commands
can be issued instead of SQL statements. Value can be true, false, or database, and
the default is false. See Section 53.4 for details.

2248

Frontend/Backend Protocol

In addition to the above, other parameters may be listed. Parameter names beginning with _pq_.
are reserved for use as protocol extensions, while others are treated as run-time parameters to
be set at backend start time. Such settings will be applied during backend start (after parsing the
command-line arguments if any) and will act as session defaults.

String

The parameter value.

Sync (F)

Byte1('S')

Identifies the message as a Sync command.

Int32(4)

Length of message contents in bytes, including self.

Terminate (F)

Byte1('X')

Identifies the message as a termination.

Int32(4)

Length of message contents in bytes, including self.

53.8. Error and Notice Message Fields
This section describes the fields that can appear in ErrorResponse and NoticeResponse messages. Each
field type has a single-byte identification token. Note that any given field type should appear at most once
per message.

S

Severity: the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING,
NOTICE, DEBUG, INFO, or LOG (in a notice message), or a localized translation of one of these.
Always present.

V

Severity: the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING,
NOTICE, DEBUG, INFO, or LOG (in a notice message). This is identical to the S field except that
the contents are never localized. This is present only in messages generated by PostgreSQL versions
9.6 and later.

C

Code: the SQLSTATE code for the error (see Appendix A). Not localizable. Always present.

M

Message: the primary human-readable error message. This should be accurate but terse (typically one
line). Always present.

2249

Frontend/Backend Protocol

D

Detail: an optional secondary error message carrying more detail about the problem. Might run to
multiple lines.

H

Hint: an optional suggestion what to do about the problem. This is intended to differ from Detail in
that it offers advice (potentially inappropriate) rather than hard facts. Might run to multiple lines.

P

Position: the field value is a decimal ASCII integer, indicating an error cursor position as an index
into the original query string. The first character has index 1, and positions are measured in characters
not bytes.

p

Internal position: this is defined the same as the P field, but it is used when the cursor position refers to
an internally generated command rather than the one submitted by the client. The q field will always
appear when this field appears.

q

Internal query: the text of a failed internally-generated command. This could be, for example, a SQL
query issued by a PL/pgSQL function.

W

Where: an indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The trace is one
entry per line, most recent first.

s

Schema name: if the error was associated with a specific database object, the name of the schema
containing that object, if any.

t

Table name: if the error was associated with a specific table, the name of the table. (Refer to the
schema name field for the name of the table's schema.)

c

Column name: if the error was associated with a specific table column, the name of the column. (Refer
to the schema and table name fields to identify the table.)

d

Data type name: if the error was associated with a specific data type, the name of the data type. (Refer
to the schema name field for the name of the data type's schema.)

n

Constraint name: if the error was associated with a specific constraint, the name of the constraint.
Refer to fields listed above for the associated table or domain. (For this purpose, indexes are treated
as constraints, even if they weren't created with constraint syntax.)

2250

Frontend/Backend Protocol

F

File: the file name of the source-code location where the error was reported.

L

Line: the line number of the source-code location where the error was reported.

R

Routine: the name of the source-code routine reporting the error.

Note

The fields for schema name, table name, column name, data type name, and constraint name are
supplied only for a limited number of error types; see Appendix A. Frontends should not assume
that the presence of any of these fields guarantees the presence of another field. Core error sources
observe the interrelationships noted above, but user-defined functions may use these fields in other
ways. In the same vein, clients should not assume that these fields denote contemporary objects
in the current database.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be treated as
paragraph breaks, not line breaks.

53.9. Logical Replication Message Formats
This section describes the detailed format of each logical replication message. These messages are returned
either by the replication slot SQL interface or are sent by a walsender. In case of a walsender they are
encapsulated inside the replication protocol WAL messages as described in Section 53.4 and generally
obey same message flow as physical replication.

Begin

Byte1('B')

Identifies the message as a begin message.

Int64

The final LSN of the transaction.

Int64

Commit timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Int32

Xid of the transaction.

Commit

Byte1('C')

Identifies the message as a commit message.

2251

Frontend/Backend Protocol

Int8

Flags; currently unused (must be 0).

Int64

The LSN of the commit.

Int64

The end LSN of the transaction.

Int64

Commit timestamp of the transaction. The value is in number of microseconds since PostgreSQL
epoch (2000-01-01).

Origin

Byte1('O')

Identifies the message as an origin message.

Int64

The LSN of the commit on the origin server.

String

Name of the origin.

Note that there can be multiple Origin messages inside a single transaction.

Relation

Byte1('R')

Identifies the message as a relation message.

Int32

ID of the relation.

String

Namespace (empty string for pg_catalog).

String

Relation name.

Int8

Replica identity setting for the relation (same as relreplident in pg_class).

Int16

Number of columns.

2252

Frontend/Backend Protocol

Next, the following message part appears for each column:

Int8

Flags for the column. Currently can be either 0 for no flags or 1 which marks the column as part
of the key.

String

Name of the column.

Int32

ID of the column's data type.

Int32

Type modifier of the column (atttypmod).

Type

Byte1('Y')

Identifies the message as a type message.

Int32

ID of the data type.

String

Namespace (empty string for pg_catalog).

String

Name of the data type.

Insert

Byte1('I')

Identifies the message as an insert message.

Int32

ID of the relation corresponding to the ID in the relation message.

Byte1('N')

Identifies the following TupleData message as a new tuple.

TupleData

TupleData message part representing the contents of new tuple.

Update

Byte1('U')

Identifies the message as an update message.

2253

Frontend/Backend Protocol

Int32

ID of the relation corresponding to the ID in the relation message.

Byte1('K')

Identifies the following TupleData submessage as a key. This field is optional and is only present
if the update changed data in any of the column(s) that are part of the REPLICA IDENTITY index.

Byte1('O')

Identifies the following TupleData submessage as an old tuple. This field is optional and is only
present if table in which the update happened has REPLICA IDENTITY set to FULL.

TupleData

TupleData message part representing the contents of the old tuple or primary key. Only present
if the previous 'O' or 'K' part is present.

Byte1('N')

Identifies the following TupleData message as a new tuple.

TupleData

TupleData message part representing the contents of a new tuple.

The Update message may contain either a 'K' message part or an 'O' message part or neither of them,
but never both of them.

Delete

Byte1('D')

Identifies the message as a delete message.

Int32

ID of the relation corresponding to the ID in the relation message.

Byte1('K')

Identifies the following TupleData submessage as a key. This field is present if the table in which
the delete has happened uses an index as REPLICA IDENTITY.

Byte1('O')

Identifies the following TupleData message as a old tuple. This field is present if the table in
which the delete has happened has REPLICA IDENTITY set to FULL.

TupleData

TupleData message part representing the contents of the old tuple or primary key, depending on
the previous field.

The Delete message may contain either a 'K' message part or an 'O' message part, but never both of
them.

2254

Frontend/Backend Protocol

Truncate

Byte1('T')

Identifies the message as a truncate message.

Int32

Number of relations

Int8

Option bits for TRUNCATE: 1 for CASCADE, 2 for RESTART IDENTITY

Int32

ID of the relation corresponding to the ID in the relation message. This field is repeated for each
relation.

The following message parts are shared by the above messages.

TupleData

Int16

Number of columns.

Next, one of the following submessages appears for each column:

Byte1('n')

Identifies the data as NULL value.

Or

Byte1('u')

Identifies unchanged TOASTed value (the actual value is not sent).

Or

Byte1('t')

Identifies the data as text formatted value.

Int32

Length of the column value.

Byten

The value of the column, in text format. (A future release might support additional formats.) n
is the above length.

53.10. Summary of Changes since Protocol 2.0
This section provides a quick checklist of changes, for the benefit of developers trying to update existing
client libraries to protocol 3.0.

2255

Frontend/Backend Protocol

The initial startup packet uses a flexible list-of-strings format instead of a fixed format. Notice that session
default values for run-time parameters can now be specified directly in the startup packet. (Actually, you
could do that before using the options field, but given the limited width of options and the lack of
any way to quote whitespace in the values, it wasn't a very safe technique.)

All messages now have a length count immediately following the message type byte (except for startup
packets, which have no type byte). Also note that PasswordMessage now has a type byte.

ErrorResponse and NoticeResponse ('E' and 'N') messages now contain multiple fields, from which the
client code can assemble an error message of the desired level of verbosity. Note that individual fields will
typically not end with a newline, whereas the single string sent in the older protocol always did.

The ReadyForQuery ('Z') message includes a transaction status indicator.

The distinction between BinaryRow and DataRow message types is gone; the single DataRow message
type serves for returning data in all formats. Note that the layout of DataRow has changed to make it easier
to parse. Also, the representation of binary values has changed: it is no longer directly tied to the server's
internal representation.

There is a new “extended query” sub-protocol, which adds the frontend message types Parse, Bind,
Execute, Describe, Close, Flush, and Sync, and the backend message types ParseComplete, BindComplete,
PortalSuspended, ParameterDescription, NoData, and CloseComplete. Existing clients do not have to
concern themselves with this sub-protocol, but making use of it might allow improvements in performance
or functionality.

COPY data is now encapsulated into CopyData and CopyDone messages. There is a well-defined way
to recover from errors during COPY. The special “\.” last line is not needed anymore, and is not sent
during COPY OUT. (It is still recognized as a terminator during COPY IN, but its use is deprecated
and will eventually be removed.) Binary COPY is supported. The CopyInResponse and CopyOutResponse
messages include fields indicating the number of columns and the format of each column.

The layout of FunctionCall and FunctionCallResponse messages has changed. FunctionCall can now
support passing NULL arguments to functions. It also can handle passing parameters and retrieving results
in either text or binary format. There is no longer any reason to consider FunctionCall a potential security
hole, since it does not offer direct access to internal server data representations.

The backend sends ParameterStatus ('S') messages during connection startup for all parameters it considers
interesting to the client library. Subsequently, a ParameterStatus message is sent whenever the active value
changes for any of these parameters.

The RowDescription ('T') message carries new table OID and column number fields for each column of
the described row. It also shows the format code for each column.

The CursorResponse ('P') message is no longer generated by the backend.

The NotificationResponse ('A') message has an additional string field, which can carry a “payload” string
passed from the NOTIFY event sender.

The EmptyQueryResponse ('I') message used to include an empty string parameter; this has been removed.

2256

Chapter 54. PostgreSQL Coding
Conventions
54.1. Formatting

Source code formatting uses 4 column tab spacing, with tabs preserved (i.e., tabs are not expanded to
spaces). Each logical indentation level is one additional tab stop.

Layout rules (brace positioning, etc) follow BSD conventions. In particular, curly braces for the controlled
blocks of if, while, switch, etc go on their own lines.

Limit line lengths so that the code is readable in an 80-column window. (This doesn't mean that you must
never go past 80 columns. For instance, breaking a long error message string in arbitrary places just to
keep the code within 80 columns is probably not a net gain in readability.)

Do not use C++ style comments (// comments). Strict ANSI C compilers do not accept them. For the
same reason, do not use C++ extensions such as declaring new variables mid-block.

The preferred style for multi-line comment blocks is

/*
 * comment text begins here
 * and continues here
 */

Note that comment blocks that begin in column 1 will be preserved as-is by pgindent, but it will re-flow
indented comment blocks as though they were plain text. If you want to preserve the line breaks in an
indented block, add dashes like this:

 /*----------
 * comment text begins here
 * and continues here
 *----------
 */

While submitted patches do not absolutely have to follow these formatting rules, it's a good idea to do so.
Your code will get run through pgindent before the next release, so there's no point in making it look nice
under some other set of formatting conventions. A good rule of thumb for patches is “make the new code
look like the existing code around it”.

The src/tools directory contains sample settings files that can be used with the emacs, xemacs or vim
editors to help ensure that they format code according to these conventions.

The text browsing tools more and less can be invoked as:

more -x4
less -x4

to make them show tabs appropriately.

2257

PostgreSQL Coding Conventions

54.2. Reporting Errors Within the Server
Error, warning, and log messages generated within the server code should be created using ereport, or
its older cousin elog. The use of this function is complex enough to require some explanation.

There are two required elements for every message: a severity level (ranging from DEBUG to PANIC)
and a primary message text. In addition there are optional elements, the most common of which is an
error identifier code that follows the SQL spec's SQLSTATE conventions. ereport itself is just a
shell function, that exists mainly for the syntactic convenience of making message generation look like a
function call in the C source code. The only parameter accepted directly by ereport is the severity level.
The primary message text and any optional message elements are generated by calling auxiliary functions,
such as errmsg, within the ereport call.

A typical call to ereport might look like this:

ereport(ERROR,
 (errcode(ERRCODE_DIVISION_BY_ZERO),
 errmsg("division by zero")));

This specifies error severity level ERROR (a run-of-the-mill error). The errcode call specifies the
SQLSTATE error code using a macro defined in src/include/utils/errcodes.h. The errmsg
call provides the primary message text. Notice the extra set of parentheses surrounding the auxiliary
function calls — these are annoying but syntactically necessary.

Here is a more complex example:

ereport(ERROR,
 (errcode(ERRCODE_AMBIGUOUS_FUNCTION),
 errmsg("function %s is not unique",
 func_signature_string(funcname, nargs,
 NIL, actual_arg_types)),
 errhint("Unable to choose a best candidate function. "
 "You might need to add explicit typecasts.")));

This illustrates the use of format codes to embed run-time values into a message text. Also, an optional
“hint” message is provided.

If the severity level is ERROR or higher, ereport aborts the execution of the user-defined function and
does not return to the caller. If the severity level is lower than ERROR, ereport returns normally.

The available auxiliary routines for ereport are:

• errcode(sqlerrcode) specifies the SQLSTATE error identifier code for the condition. If this
routine is not called, the error identifier defaults to ERRCODE_INTERNAL_ERROR when the error
severity level is ERROR or higher, ERRCODE_WARNING when the error level is WARNING, otherwise
(for NOTICE and below) ERRCODE_SUCCESSFUL_COMPLETION. While these defaults are often
convenient, always think whether they are appropriate before omitting the errcode() call.

• errmsg(const char *msg, ...) specifies the primary error message text, and possibly run-
time values to insert into it. Insertions are specified by sprintf-style format codes. In addition to the
standard format codes accepted by sprintf, the format code %m can be used to insert the error message
returned by strerror for the current value of errno. 1 %m does not require any corresponding entry in

1 That is, the value that was current when the ereport call was reached; changes of errno within the auxiliary reporting routines will not affect
it. That would not be true if you were to write strerror(errno) explicitly in errmsg's parameter list; accordingly, do not do so.

2258

PostgreSQL Coding Conventions

the parameter list for errmsg. Note that the message string will be run through gettext for possible
localization before format codes are processed.

• errmsg_internal(const char *msg, ...) is the same as errmsg, except that the message
string will not be translated nor included in the internationalization message dictionary. This should be
used for “cannot happen” cases that are probably not worth expending translation effort on.

• errmsg_plural(const char *fmt_singular, const char *fmt_plural,
unsigned long n, ...) is like errmsg, but with support for various plural forms of the message.
fmt_singular is the English singular format, fmt_plural is the English plural format, n is the
integer value that determines which plural form is needed, and the remaining arguments are formatted
according to the selected format string. For more information see Section 55.2.2.

• errdetail(const char *msg, ...) supplies an optional “detail” message; this is to be
used when there is additional information that seems inappropriate to put in the primary message. The
message string is processed in just the same way as for errmsg.

• errdetail_internal(const char *msg, ...) is the same as errdetail, except that
the message string will not be translated nor included in the internationalization message dictionary.
This should be used for detail messages that are not worth expending translation effort on, for instance
because they are too technical to be useful to most users.

• errdetail_plural(const char *fmt_singular, const char *fmt_plural,
unsigned long n, ...) is like errdetail, but with support for various plural forms of the
message. For more information see Section 55.2.2.

• errdetail_log(const char *msg, ...) is the same as errdetail except that this string
goes only to the server log, never to the client. If both errdetail (or one of its equivalents above)
and errdetail_log are used then one string goes to the client and the other to the log. This is useful
for error details that are too security-sensitive or too bulky to include in the report sent to the client.

• errdetail_log_plural(const char *fmt_singular, const char *fmt_plural,
unsigned long n, ...) is like errdetail_log, but with support for various plural forms of
the message. For more information see Section 55.2.2.

• errhint(const char *msg, ...) supplies an optional “hint” message; this is to be used when
offering suggestions about how to fix the problem, as opposed to factual details about what went wrong.
The message string is processed in just the same way as for errmsg.

• errcontext(const char *msg, ...) is not normally called directly from an ereport
message site; rather it is used in error_context_stack callback functions to provide information
about the context in which an error occurred, such as the current location in a PL function. The message
string is processed in just the same way as for errmsg. Unlike the other auxiliary functions, this can
be called more than once per ereport call; the successive strings thus supplied are concatenated with
separating newlines.

• errposition(int cursorpos) specifies the textual location of an error within a query string.
Currently it is only useful for errors detected in the lexical and syntactic analysis phases of query
processing.

• errtable(Relation rel) specifies a relation whose name and schema name should be included
as auxiliary fields in the error report.

• errtablecol(Relation rel, int attnum) specifies a column whose name, table name,
and schema name should be included as auxiliary fields in the error report.

2259

PostgreSQL Coding Conventions

• errtableconstraint(Relation rel, const char *conname) specifies a table
constraint whose name, table name, and schema name should be included as auxiliary fields in the error
report. Indexes should be considered to be constraints for this purpose, whether or not they have an
associated pg_constraint entry. Be careful to pass the underlying heap relation, not the index itself,
as rel.

• errdatatype(Oid datatypeOid) specifies a data type whose name and schema name should
be included as auxiliary fields in the error report.

• errdomainconstraint(Oid datatypeOid, const char *conname) specifies a domain
constraint whose name, domain name, and schema name should be included as auxiliary fields in the
error report.

• errcode_for_file_access() is a convenience function that selects an appropriate SQLSTATE
error identifier for a failure in a file-access-related system call. It uses the saved errno to determine
which error code to generate. Usually this should be used in combination with %m in the primary error
message text.

• errcode_for_socket_access() is a convenience function that selects an appropriate
SQLSTATE error identifier for a failure in a socket-related system call.

• errhidestmt(bool hide_stmt) can be called to specify suppression of the STATEMENT:
portion of a message in the postmaster log. Generally this is appropriate if the message text includes
the current statement already.

• errhidecontext(bool hide_ctx) can be called to specify suppression of the CONTEXT:
portion of a message in the postmaster log. This should only be used for verbose debugging messages
where the repeated inclusion of context would bloat the log volume too much.

Note

At most one of the functions errtable, errtablecol, errtableconstraint,
errdatatype, or errdomainconstraint should be used in an ereport call. These
functions exist to allow applications to extract the name of a database object associated with the
error condition without having to examine the potentially-localized error message text. These
functions should be used in error reports for which it's likely that applications would wish to
have automatic error handling. As of PostgreSQL 9.3, complete coverage exists only for errors in
SQLSTATE class 23 (integrity constraint violation), but this is likely to be expanded in future.

There is an older function elog that is still heavily used. An elog call:

elog(level, "format string", ...);

is exactly equivalent to:

ereport(level, (errmsg_internal("format string", ...)));

Notice that the SQLSTATE error code is always defaulted, and the message string is not subject to
translation. Therefore, elog should be used only for internal errors and low-level debug logging. Any
message that is likely to be of interest to ordinary users should go through ereport. Nonetheless, there
are enough internal “cannot happen” error checks in the system that elog is still widely used; it is preferred
for those messages for its notational simplicity.

2260

PostgreSQL Coding Conventions

Advice about writing good error messages can be found in Section 54.3.

54.3. Error Message Style Guide
This style guide is offered in the hope of maintaining a consistent, user-friendly style throughout all the
messages generated by PostgreSQL.

What Goes Where
The primary message should be short, factual, and avoid reference to implementation details such as
specific function names. “Short” means “should fit on one line under normal conditions”. Use a detail
message if needed to keep the primary message short, or if you feel a need to mention implementation
details such as the particular system call that failed. Both primary and detail messages should be factual.
Use a hint message for suggestions about what to do to fix the problem, especially if the suggestion might
not always be applicable.

For example, instead of:

IpcMemoryCreate: shmget(key=%d, size=%u, 0%o) failed: %m
(plus a long addendum that is basically a hint)

write:

Primary: could not create shared memory segment: %m
Detail: Failed syscall was shmget(key=%d, size=%u, 0%o).
Hint: the addendum

Rationale: keeping the primary message short helps keep it to the point, and lets clients lay out screen space
on the assumption that one line is enough for error messages. Detail and hint messages can be relegated
to a verbose mode, or perhaps a pop-up error-details window. Also, details and hints would normally be
suppressed from the server log to save space. Reference to implementation details is best avoided since
users aren't expected to know the details.

Formatting
Don't put any specific assumptions about formatting into the message texts. Expect clients and the server
log to wrap lines to fit their own needs. In long messages, newline characters (\n) can be used to indicate
suggested paragraph breaks. Don't end a message with a newline. Don't use tabs or other formatting
characters. (In error context displays, newlines are automatically added to separate levels of context such
as function calls.)

Rationale: Messages are not necessarily displayed on terminal-type displays. In GUI displays or browsers
these formatting instructions are at best ignored.

Quotation Marks
English text should use double quotes when quoting is appropriate. Text in other languages should
consistently use one kind of quotes that is consistent with publishing customs and computer output of
other programs.

Rationale: The choice of double quotes over single quotes is somewhat arbitrary, but tends to be the
preferred use. Some have suggested choosing the kind of quotes depending on the type of object according

2261

PostgreSQL Coding Conventions

to SQL conventions (namely, strings single quoted, identifiers double quoted). But this is a language-
internal technical issue that many users aren't even familiar with, it won't scale to other kinds of quoted
terms, it doesn't translate to other languages, and it's pretty pointless, too.

Use of Quotes
Use quotes always to delimit file names, user-supplied identifiers, and other variables that might contain
words. Do not use them to mark up variables that will not contain words (for example, operator names).

There are functions in the backend that will double-quote their own output at need (for example,
format_type_be()). Do not put additional quotes around the output of such functions.

Rationale: Objects can have names that create ambiguity when embedded in a message. Be consistent
about denoting where a plugged-in name starts and ends. But don't clutter messages with unnecessary or
duplicate quote marks.

Grammar and Punctuation
The rules are different for primary error messages and for detail/hint messages:

Primary error messages: Do not capitalize the first letter. Do not end a message with a period. Do not even
think about ending a message with an exclamation point.

Detail and hint messages: Use complete sentences, and end each with a period. Capitalize the first word
of sentences. Put two spaces after the period if another sentence follows (for English text; might be
inappropriate in other languages).

Error context strings: Do not capitalize the first letter and do not end the string with a period. Context
strings should normally not be complete sentences.

Rationale: Avoiding punctuation makes it easier for client applications to embed the message into a variety
of grammatical contexts. Often, primary messages are not grammatically complete sentences anyway.
(And if they're long enough to be more than one sentence, they should be split into primary and detail
parts.) However, detail and hint messages are longer and might need to include multiple sentences. For
consistency, they should follow complete-sentence style even when there's only one sentence.

Upper Case vs. Lower Case
Use lower case for message wording, including the first letter of a primary error message. Use upper case
for SQL commands and key words if they appear in the message.

Rationale: It's easier to make everything look more consistent this way, since some messages are complete
sentences and some not.

Avoid Passive Voice
Use the active voice. Use complete sentences when there is an acting subject (“A could not do B”). Use
telegram style without subject if the subject would be the program itself; do not use “I” for the program.

Rationale: The program is not human. Don't pretend otherwise.

Present vs. Past Tense
Use past tense if an attempt to do something failed, but could perhaps succeed next time (perhaps after
fixing some problem). Use present tense if the failure is certainly permanent.

2262

PostgreSQL Coding Conventions

There is a nontrivial semantic difference between sentences of the form:

could not open file "%s": %m

and:

cannot open file "%s"

The first one means that the attempt to open the file failed. The message should give a reason, such as
“disk full” or “file doesn't exist”. The past tense is appropriate because next time the disk might not be
full anymore or the file in question might exist.

The second form indicates that the functionality of opening the named file does not exist at all in the
program, or that it's conceptually impossible. The present tense is appropriate because the condition will
persist indefinitely.

Rationale: Granted, the average user will not be able to draw great conclusions merely from the tense of
the message, but since the language provides us with a grammar we should use it correctly.

Type of the Object
When citing the name of an object, state what kind of object it is.

Rationale: Otherwise no one will know what “foo.bar.baz” refers to.

Brackets
Square brackets are only to be used (1) in command synopses to denote optional arguments, or (2) to
denote an array subscript.

Rationale: Anything else does not correspond to widely-known customary usage and will confuse people.

Assembling Error Messages
When a message includes text that is generated elsewhere, embed it in this style:

could not open file %s: %m

Rationale: It would be difficult to account for all possible error codes to paste this into a single smooth
sentence, so some sort of punctuation is needed. Putting the embedded text in parentheses has also been
suggested, but it's unnatural if the embedded text is likely to be the most important part of the message,
as is often the case.

Reasons for Errors
Messages should always state the reason why an error occurred. For example:

BAD: could not open file %s
BETTER: could not open file %s (I/O failure)

If no reason is known you better fix the code.

2263

PostgreSQL Coding Conventions

Function Names
Don't include the name of the reporting routine in the error text. We have other mechanisms for finding
that out when needed, and for most users it's not helpful information. If the error text doesn't make as much
sense without the function name, reword it.

BAD: pg_atoi: error in "z": cannot parse "z"
BETTER: invalid input syntax for integer: "z"

Avoid mentioning called function names, either; instead say what the code was trying to do:

BAD: open() failed: %m
BETTER: could not open file %s: %m

If it really seems necessary, mention the system call in the detail message. (In some cases, providing the
actual values passed to the system call might be appropriate information for the detail message.)

Rationale: Users don't know what all those functions do.

Tricky Words to Avoid
Unable. “Unable” is nearly the passive voice. Better use “cannot” or “could not”, as appropriate.

Bad. Error messages like “bad result” are really hard to interpret intelligently. It's better to write why
the result is “bad”, e.g., “invalid format”.

Illegal. “Illegal” stands for a violation of the law, the rest is “invalid”. Better yet, say why it's invalid.

Unknown. Try to avoid “unknown”. Consider “error: unknown response”. If you don't know what the
response is, how do you know it's erroneous? “Unrecognized” is often a better choice. Also, be sure to
include the value being complained of.

BAD: unknown node type
BETTER: unrecognized node type: 42

Find vs. Exists. If the program uses a nontrivial algorithm to locate a resource (e.g., a path search) and
that algorithm fails, it is fair to say that the program couldn't “find” the resource. If, on the other hand,
the expected location of the resource is known but the program cannot access it there then say that the
resource doesn't “exist”. Using “find” in this case sounds weak and confuses the issue.

May vs. Can vs. Might. “May” suggests permission (e.g., "You may borrow my rake."), and has little
use in documentation or error messages. “Can” suggests ability (e.g., "I can lift that log."), and “might”
suggests possibility (e.g., "It might rain today."). Using the proper word clarifies meaning and assists
translation.

Contractions. Avoid contractions, like “can't”; use “cannot” instead.

Proper Spelling
Spell out words in full. For instance, avoid:

• spec

2264

PostgreSQL Coding Conventions

• stats

• parens

• auth

• xact

Rationale: This will improve consistency.

Localization
Keep in mind that error message texts need to be translated into other languages. Follow the guidelines in
Section 55.2.2 to avoid making life difficult for translators.

54.4. Miscellaneous Coding Conventions

C Standard
Code in PostgreSQL should only rely on language features available in the C89 standard. That means a
conforming C89 compiler has to be able to compile postgres, at least aside from a few platform dependent
pieces. Features from later revision of the C standard or compiler specific features can be used, if a fallback
is provided.

For example static inline and _StaticAssert() are currently used, even though they are from
newer revisions of the C standard. If not available we respectively fall back to defining the functions
without inline, and to using a C89 compatible replacement that performs the same checks, but emits rather
cryptic messages.

Function-Like Macros and Inline Functions
Both, macros with arguments and static inline functions, may be used. The latter are preferable if
there are multiple-evaluation hazards when written as a macro, as e.g. the case with

#define Max(x, y) ((x) > (y) ? (x) : (y))

or when the macro would be very long. In other cases it's only possible to use macros, or at least easier.
For example because expressions of various types need to be passed to the macro.

When the definition of an inline function references symbols (i.e. variables, functions) that are only
available as part of the backend, the function may not be visible when included from frontend code.

#ifndef FRONTEND
static inline MemoryContext
MemoryContextSwitchTo(MemoryContext context)
{
 MemoryContext old = CurrentMemoryContext;

 CurrentMemoryContext = context;
 return old;
}

2265

PostgreSQL Coding Conventions

#endif /* FRONTEND */

In this example CurrentMemoryContext, which is only available in the backend, is referenced and
the function thus hidden with a #ifndef FRONTEND. This rule exists because some compilers emit
references to symbols contained in inline functions even if the function is not used.

Writing Signal Handlers
To be suitable to run inside a signal handler code has to be written very carefully. The fundamental problem
is that, unless blocked, a signal handler can interrupt code at any time. If code inside the signal handler
uses the same state as code outside chaos may ensue. As an example consider what happens if a signal
handler tries to acquire a lock that's already held in the interrupted code.

Barring special arrangements code in signal handlers may only call async-signal safe functions (as defined
in POSIX) and access variables of type volatile sig_atomic_t. A few functions in postgres
are also deemed signal safe, importantly SetLatch().

In most cases signal handlers should do nothing more than note that a signal has arrived, and wake up code
running outside of the handler using a latch. An example of such a handler is the following:

static void
handle_sighup(SIGNAL_ARGS)
{
 int save_errno = errno;

 got_SIGHUP = true;
 SetLatch(MyLatch);

 errno = save_errno;
}

errno is saved and restored because SetLatch() might change it. If that were not done interrupted
code that's currently inspecting errno might see the wrong value.

Calling Function Pointers
For clarity, it is preferred to explicitly dereference a function pointer when calling the pointed-to function
if the pointer is a simple variable, for example:

(*emit_log_hook) (edata);

(even though emit_log_hook(edata) would also work). When the function pointer is part of a
structure, then the extra punctuation can and usually should be omitted, for example:

paramInfo->paramFetch(paramInfo, paramId);

2266

Chapter 55. Native Language Support

55.1. For the Translator
PostgreSQL programs (server and client) can issue their messages in your favorite language — if the
messages have been translated. Creating and maintaining translated message sets needs the help of people
who speak their own language well and want to contribute to the PostgreSQL effort. You do not have to
be a programmer at all to do this. This section explains how to help.

55.1.1. Requirements

We won't judge your language skills — this section is about software tools. Theoretically, you only need
a text editor. But this is only in the unlikely event that you do not want to try out your translated messages.
When you configure your source tree, be sure to use the --enable-nls option. This will also check for
the libintl library and the msgfmt program, which all end users will need anyway. To try out your work,
follow the applicable portions of the installation instructions.

If you want to start a new translation effort or want to do a message catalog merge (described later), you
will need the programs xgettext and msgmerge, respectively, in a GNU-compatible implementation.
Later, we will try to arrange it so that if you use a packaged source distribution, you won't need xgettext.
(If working from Git, you will still need it.) GNU Gettext 0.10.36 or later is currently recommended.

Your local gettext implementation should come with its own documentation. Some of that is probably
duplicated in what follows, but for additional details you should look there.

55.1.2. Concepts

The pairs of original (English) messages and their (possibly) translated equivalents are kept in message
catalogs, one for each program (although related programs can share a message catalog) and for each
target language. There are two file formats for message catalogs: The first is the “PO” file (for Portable
Object), which is a plain text file with special syntax that translators edit. The second is the “MO” file
(for Machine Object), which is a binary file generated from the respective PO file and is used while the
internationalized program is run. Translators do not deal with MO files; in fact hardly anyone does.

The extension of the message catalog file is to no surprise either .po or .mo. The base name is either the
name of the program it accompanies, or the language the file is for, depending on the situation. This is a
bit confusing. Examples are psql.po (PO file for psql) or fr.mo (MO file in French).

The file format of the PO files is illustrated here:

comment

msgid "original string"
msgstr "translated string"

msgid "more original"
msgstr "another translated"
"string can be broken up like this"

2267

Native Language Support

...

The msgid's are extracted from the program source. (They need not be, but this is the most common way.)
The msgstr lines are initially empty and are filled in with useful strings by the translator. The strings can
contain C-style escape characters and can be continued across lines as illustrated. (The next line must start
at the beginning of the line.)

The # character introduces a comment. If whitespace immediately follows the # character, then this is
a comment maintained by the translator. There can also be automatic comments, which have a non-
whitespace character immediately following the #. These are maintained by the various tools that operate
on the PO files and are intended to aid the translator.

#. automatic comment
#: filename.c:1023
#, flags, flags

The #. style comments are extracted from the source file where the message is used. Possibly the
programmer has inserted information for the translator, such as about expected alignment. The #: comment
indicates the exact location(s) where the message is used in the source. The translator need not look at the
program source, but can if there is doubt about the correct translation. The #, comments contain flags that
describe the message in some way. There are currently two flags: fuzzy is set if the message has possibly
been outdated because of changes in the program source. The translator can then verify this and possibly
remove the fuzzy flag. Note that fuzzy messages are not made available to the end user. The other flag
is c-format, which indicates that the message is a printf-style format template. This means that the
translation should also be a format string with the same number and type of placeholders. There are tools
that can verify this, which key off the c-format flag.

55.1.3. Creating and Maintaining Message Catalogs
OK, so how does one create a “blank” message catalog? First, go into the directory that contains the
program whose messages you want to translate. If there is a file nls.mk, then this program has been
prepared for translation.

If there are already some .po files, then someone has already done some translation work. The files are
named language.po, where language is the ISO 639-1 two-letter language code (in lower case)1,
e.g., fr.po for French. If there is really a need for more than one translation effort per language then the
files can also be named language_region.po where region is the ISO 3166-1 two-letter country
code (in upper case)2, e.g., pt_BR.po for Portuguese in Brazil. If you find the language you wanted you
can just start working on that file.

If you need to start a new translation effort, then first run the command:

make init-po

This will create a file progname.pot. (.pot to distinguish it from PO files that are “in production”.
The T stands for “template”.) Copy this file to language.po and edit it. To make it known that the new
language is available, also edit the file nls.mk and add the language (or language and country) code to
the line that looks like:

1 http://www.loc.gov/standards/iso639-2/php/English_list.php
2 https://www.iso.org/iso-3166-country-codes.html

2268

http://www.loc.gov/standards/iso639-2/php/English_list.php
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html
http://www.loc.gov/standards/iso639-2/php/English_list.php
https://www.iso.org/iso-3166-country-codes.html

Native Language Support

AVAIL_LANGUAGES := de fr

(Other languages can appear, of course.)

As the underlying program or library changes, messages might be changed or added by the programmers.
In this case you do not need to start from scratch. Instead, run the command:

make update-po

which will create a new blank message catalog file (the pot file you started with) and will merge it with
the existing PO files. If the merge algorithm is not sure about a particular message it marks it “fuzzy” as
explained above. The new PO file is saved with a .po.new extension.

55.1.4. Editing the PO Files

The PO files can be edited with a regular text editor. The translator should only change the area between
the quotes after the msgstr directive, add comments, and alter the fuzzy flag. There is (unsurprisingly) a
PO mode for Emacs, which I find quite useful.

The PO files need not be completely filled in. The software will automatically fall back to the original string
if no translation (or an empty translation) is available. It is no problem to submit incomplete translations
for inclusions in the source tree; that gives room for other people to pick up your work. However, you are
encouraged to give priority to removing fuzzy entries after doing a merge. Remember that fuzzy entries
will not be installed; they only serve as reference for what might be the right translation.

Here are some things to keep in mind while editing the translations:

• Make sure that if the original ends with a newline, the translation does, too. Similarly for tabs, etc.

• If the original is a printf format string, the translation also needs to be. The translation also needs to
have the same format specifiers in the same order. Sometimes the natural rules of the language make
this impossible or at least awkward. In that case you can modify the format specifiers like this:

msgstr "Die Datei %2$s hat %1$u Zeichen."

Then the first placeholder will actually use the second argument from the list. The digits$ needs
to follow the % immediately, before any other format manipulators. (This feature really exists in the
printf family of functions. You might not have heard of it before because there is little use for it
outside of message internationalization.)

• If the original string contains a linguistic mistake, report that (or fix it yourself in the program source) and
translate normally. The corrected string can be merged in when the program sources have been updated.
If the original string contains a factual mistake, report that (or fix it yourself) and do not translate it.
Instead, you can mark the string with a comment in the PO file.

• Maintain the style and tone of the original string. Specifically, messages that are not sentences (cannot
open file %s) should probably not start with a capital letter (if your language distinguishes letter
case) or end with a period (if your language uses punctuation marks). It might help to read Section 54.3.

• If you don't know what a message means, or if it is ambiguous, ask on the developers' mailing list.
Chances are that English speaking end users might also not understand it or find it ambiguous, so it's
best to improve the message.

2269

Native Language Support

55.2. For the Programmer

55.2.1. Mechanics
This section describes how to implement native language support in a program or library that is part of the
PostgreSQL distribution. Currently, it only applies to C programs.

Adding NLS Support to a Program

1. Insert this code into the start-up sequence of the program:

#ifdef ENABLE_NLS
#include <locale.h>
#endif

...

#ifdef ENABLE_NLS
setlocale(LC_ALL, "");
bindtextdomain("progname", LOCALEDIR);
textdomain("progname");
#endif

(The progname can actually be chosen freely.)

2. Wherever a message that is a candidate for translation is found, a call to gettext() needs to be
inserted. E.g.:

fprintf(stderr, "panic level %d\n", lvl);

would be changed to:

fprintf(stderr, gettext("panic level %d\n"), lvl);

(gettext is defined as a no-op if NLS support is not configured.)

This tends to add a lot of clutter. One common shortcut is to use:

#define _(x) gettext(x)

Another solution is feasible if the program does much of its communication through one or a few
functions, such as ereport() in the backend. Then you make this function call gettext internally
on all input strings.

3. Add a file nls.mk in the directory with the program sources. This file will be read as a makefile.
The following variable assignments need to be made here:

CATALOG_NAME

The program name, as provided in the textdomain() call.

2270

Native Language Support

AVAIL_LANGUAGES

List of provided translations — initially empty.

GETTEXT_FILES

List of files that contain translatable strings, i.e., those marked with gettext or an alternative
solution. Eventually, this will include nearly all source files of the program. If this list gets too
long you can make the first “file” be a + and the second word be a file that contains one file
name per line.

GETTEXT_TRIGGERS

The tools that generate message catalogs for the translators to work on need to know what
function calls contain translatable strings. By default, only gettext() calls are known. If you
used _ or other identifiers you need to list them here. If the translatable string is not the first
argument, the item needs to be of the form func:2 (for the second argument). If you have a
function that supports pluralized messages, the item should look like func:1,2 (identifying
the singular and plural message arguments).

The build system will automatically take care of building and installing the message catalogs.

55.2.2. Message-writing Guidelines

Here are some guidelines for writing messages that are easily translatable.

• Do not construct sentences at run-time, like:

printf("Files were %s.\n", flag ? "copied" : "removed");

The word order within the sentence might be different in other languages. Also, even if you remember
to call gettext() on each fragment, the fragments might not translate well separately. It's better to
duplicate a little code so that each message to be translated is a coherent whole. Only numbers, file
names, and such-like run-time variables should be inserted at run time into a message text.

• For similar reasons, this won't work:

printf("copied %d file%s", n, n!=1 ? "s" : "");

because it assumes how the plural is formed. If you figured you could solve it like this:

if (n==1)
 printf("copied 1 file");
else
 printf("copied %d files", n):

then be disappointed. Some languages have more than two forms, with some peculiar rules. It's often
best to design the message to avoid the issue altogether, for instance like this:

printf("number of copied files: %d", n);

2271

Native Language Support

If you really want to construct a properly pluralized message, there is support for this, but it's a bit
awkward. When generating a primary or detail error message in ereport(), you can write something
like this:

errmsg_plural("copied %d file",
 "copied %d files",
 n,
 n)

The first argument is the format string appropriate for English singular form, the second is the format
string appropriate for English plural form, and the third is the integer control value that determines which
plural form to use. Subsequent arguments are formatted per the format string as usual. (Normally, the
pluralization control value will also be one of the values to be formatted, so it has to be written twice.)
In English it only matters whether n is 1 or not 1, but in other languages there can be many different
plural forms. The translator sees the two English forms as a group and has the opportunity to supply
multiple substitute strings, with the appropriate one being selected based on the run-time value of n.

If you need to pluralize a message that isn't going directly to an errmsg or errdetail report, you
have to use the underlying function ngettext. See the gettext documentation.

• If you want to communicate something to the translator, such as about how a message is intended to line
up with other output, precede the occurrence of the string with a comment that starts with translator,
e.g.:

/* translator: This message is not what it seems to be. */

These comments are copied to the message catalog files so that the translators can see them.

2272

Chapter 56. Writing A Procedural
Language Handler

All calls to functions that are written in a language other than the current “version 1” interface for compiled
languages (this includes functions in user-defined procedural languages and functions written in SQL)
go through a call handler function for the specific language. It is the responsibility of the call handler to
execute the function in a meaningful way, such as by interpreting the supplied source text. This chapter
outlines how a new procedural language's call handler can be written.

The call handler for a procedural language is a “normal” function that must be written in a compiled
language such as C, using the version-1 interface, and registered with PostgreSQL as taking no arguments
and returning the type language_handler. This special pseudo-type identifies the function as a call
handler and prevents it from being called directly in SQL commands. For more details on C language
calling conventions and dynamic loading, see Section 38.10.

The call handler is called in the same way as any other function: It receives a pointer to a
FunctionCallInfoData struct containing argument values and information about the called
function, and it is expected to return a Datum result (and possibly set the isnull field of the
FunctionCallInfoData structure, if it wishes to return an SQL null result). The difference
between a call handler and an ordinary callee function is that the flinfo->fn_oid field of the
FunctionCallInfoData structure will contain the OID of the actual function to be called, not of the
call handler itself. The call handler must use this field to determine which function to execute. Also, the
passed argument list has been set up according to the declaration of the target function, not of the call
handler.

It's up to the call handler to fetch the entry of the function from the pg_proc system catalog and to
analyze the argument and return types of the called function. The AS clause from the CREATE FUNCTION
command for the function will be found in the prosrc column of the pg_proc row. This is commonly
source text in the procedural language, but in theory it could be something else, such as a path name to a
file, or anything else that tells the call handler what to do in detail.

Often, the same function is called many times per SQL statement. A call handler can avoid repeated lookups
of information about the called function by using the flinfo->fn_extra field. This will initially be
NULL, but can be set by the call handler to point at information about the called function. On subsequent
calls, if flinfo->fn_extra is already non-NULL then it can be used and the information lookup step
skipped. The call handler must make sure that flinfo->fn_extra is made to point at memory that will
live at least until the end of the current query, since an FmgrInfo data structure could be kept that long.
One way to do this is to allocate the extra data in the memory context specified by flinfo->fn_mcxt;
such data will normally have the same lifespan as the FmgrInfo itself. But the handler could also choose
to use a longer-lived memory context so that it can cache function definition information across queries.

When a procedural-language function is invoked as a trigger, no arguments are passed in the usual way,
but the FunctionCallInfoData's context field points at a TriggerData structure, rather than
being NULL as it is in a plain function call. A language handler should provide mechanisms for procedural-
language functions to get at the trigger information.

This is a template for a procedural-language handler written in C:

#include "postgres.h"
#include "executor/spi.h"
#include "commands/trigger.h"
#include "fmgr.h"

2273

Writing A Procedural
Language Handler

#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(plsample_call_handler);

Datum
plsample_call_handler(PG_FUNCTION_ARGS)
{
 Datum retval;

 if (CALLED_AS_TRIGGER(fcinfo))
 {
 /*
 * Called as a trigger function
 */
 TriggerData *trigdata = (TriggerData *) fcinfo->context;

 retval = ...
 }
 else
 {
 /*
 * Called as a function
 */

 retval = ...
 }

 return retval;
}

Only a few thousand lines of code have to be added instead of the dots to complete the call handler.

After having compiled the handler function into a loadable module (see Section 38.10.5), the following
commands then register the sample procedural language:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
 AS 'filename'
 LANGUAGE C;
CREATE LANGUAGE plsample
 HANDLER plsample_call_handler;

Although providing a call handler is sufficient to create a minimal procedural language, there are two
other functions that can optionally be provided to make the language more convenient to use. These are
a validator and an inline handler. A validator can be provided to allow language-specific checking to be
done during CREATE FUNCTION. An inline handler can be provided to allow the language to support
anonymous code blocks executed via the DO command.

If a validator is provided by a procedural language, it must be declared as a function taking a single
parameter of type oid. The validator's result is ignored, so it is customarily declared to return void.

2274

Writing A Procedural
Language Handler

The validator will be called at the end of a CREATE FUNCTION command that has created or updated
a function written in the procedural language. The passed-in OID is the OID of the function's pg_proc
row. The validator must fetch this row in the usual way, and do whatever checking is appropriate. First,
call CheckFunctionValidatorAccess() to diagnose explicit calls to the validator that the user
could not achieve through CREATE FUNCTION. Typical checks then include verifying that the function's
argument and result types are supported by the language, and that the function's body is syntactically
correct in the language. If the validator finds the function to be okay, it should just return. If it finds an
error, it should report that via the normal ereport() error reporting mechanism. Throwing an error will
force a transaction rollback and thus prevent the incorrect function definition from being committed.

Validator functions should typically honor the check_function_bodies parameter: if it is turned off then any
expensive or context-sensitive checking should be skipped. If the language provides for code execution
at compilation time, the validator must suppress checks that would induce such execution. In particular,
this parameter is turned off by pg_dump so that it can load procedural language functions without
worrying about side effects or dependencies of the function bodies on other database objects. (Because
of this requirement, the call handler should avoid assuming that the validator has fully checked the
function. The point of having a validator is not to let the call handler omit checks, but to notify the
user immediately if there are obvious errors in a CREATE FUNCTION command.) While the choice of
exactly what to check is mostly left to the discretion of the validator function, note that the core CREATE
FUNCTION code only executes SET clauses attached to a function when check_function_bodies
is on. Therefore, checks whose results might be affected by GUC parameters definitely should be skipped
when check_function_bodies is off, to avoid false failures when reloading a dump.

If an inline handler is provided by a procedural language, it must be declared as a function taking a
single parameter of type internal. The inline handler's result is ignored, so it is customarily declared to
return void. The inline handler will be called when a DO statement is executed specifying the procedural
language. The parameter actually passed is a pointer to an InlineCodeBlock struct, which contains
information about the DO statement's parameters, in particular the text of the anonymous code block to be
executed. The inline handler should execute this code and return.

It's recommended that you wrap all these function declarations, as well as the CREATE LANGUAGE
command itself, into an extension so that a simple CREATE EXTENSION command is sufficient to install
the language. See Section 38.16 for information about writing extensions.

The procedural languages included in the standard distribution are good references when trying to write
your own language handler. Look into the src/pl subdirectory of the source tree. The CREATE
LANGUAGE reference page also has some useful details.

2275

Chapter 57. Writing A Foreign Data
Wrapper

All operations on a foreign table are handled through its foreign data wrapper, which consists of a set
of functions that the core server calls. The foreign data wrapper is responsible for fetching data from
the remote data source and returning it to the PostgreSQL executor. If updating foreign tables is to be
supported, the wrapper must handle that, too. This chapter outlines how to write a new foreign data
wrapper.

The foreign data wrappers included in the standard distribution are good references when trying to write
your own. Look into the contrib subdirectory of the source tree. The CREATE FOREIGN DATA
WRAPPER reference page also has some useful details.

Note

The SQL standard specifies an interface for writing foreign data wrappers. However, PostgreSQL
does not implement that API, because the effort to accommodate it into PostgreSQL would be
large, and the standard API hasn't gained wide adoption anyway.

57.1. Foreign Data Wrapper Functions
The FDW author needs to implement a handler function, and optionally a validator function. Both functions
must be written in a compiled language such as C, using the version-1 interface. For details on C language
calling conventions and dynamic loading, see Section 38.10.

The handler function simply returns a struct of function pointers to callback functions that will be called
by the planner, executor, and various maintenance commands. Most of the effort in writing an FDW is
in implementing these callback functions. The handler function must be registered with PostgreSQL as
taking no arguments and returning the special pseudo-type fdw_handler. The callback functions are
plain C functions and are not visible or callable at the SQL level. The callback functions are described
in Section 57.2.

The validator function is responsible for validating options given in CREATE and ALTER
commands for its foreign data wrapper, as well as foreign servers, user mappings, and foreign
tables using the wrapper. The validator function must be registered as taking two arguments, a
text array containing the options to be validated, and an OID representing the type of object
the options are associated with (in the form of the OID of the system catalog the object
would be stored in, either ForeignDataWrapperRelationId, ForeignServerRelationId,
UserMappingRelationId, or ForeignTableRelationId). If no validator function is supplied,
options are not checked at object creation time or object alteration time.

57.2. Foreign Data Wrapper Callback Routines
The FDW handler function returns a palloc'd FdwRoutine struct containing pointers to the callback
functions described below. The scan-related functions are required, the rest are optional.

The FdwRoutine struct type is declared in src/include/foreign/fdwapi.h, which see for
additional details.

2276

Writing A Foreign Data Wrapper

57.2.1. FDW Routines For Scanning Foreign Tables

void
GetForeignRelSize(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid);

Obtain relation size estimates for a foreign table. This is called at the beginning of planning for a query
that scans a foreign table. root is the planner's global information about the query; baserel is the
planner's information about this table; and foreigntableid is the pg_class OID of the foreign
table. (foreigntableid could be obtained from the planner data structures, but it's passed explicitly
to save effort.)

This function should update baserel->rows to be the expected number of rows returned by the table
scan, after accounting for the filtering done by the restriction quals. The initial value of baserel->rows
is just a constant default estimate, which should be replaced if at all possible. The function may also choose
to update baserel->width if it can compute a better estimate of the average result row width.

See Section 57.4 for additional information.

void
GetForeignPaths(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid);

Create possible access paths for a scan on a foreign table. This is called during query planning. The
parameters are the same as for GetForeignRelSize, which has already been called.

This function must generate at least one access path (ForeignPath node) for a scan on the foreign table
and must call add_path to add each such path to baserel->pathlist. It's recommended to use
create_foreignscan_path to build the ForeignPath nodes. The function can generate multiple
access paths, e.g., a path which has valid pathkeys to represent a pre-sorted result. Each access path
must contain cost estimates, and can contain any FDW-private information that is needed to identify the
specific scan method intended.

See Section 57.4 for additional information.

ForeignScan *
GetForeignPlan(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid,
 ForeignPath *best_path,
 List *tlist,
 List *scan_clauses,
 Plan *outer_plan);

Create a ForeignScan plan node from the selected foreign access path. This is called at
the end of query planning. The parameters are as for GetForeignRelSize, plus the selected
ForeignPath (previously produced by GetForeignPaths, GetForeignJoinPaths, or
GetForeignUpperPaths), the target list to be emitted by the plan node, the restriction clauses
to be enforced by the plan node, and the outer subplan of the ForeignScan, which is used for

2277

Writing A Foreign Data Wrapper

rechecks performed by RecheckForeignScan. (If the path is for a join rather than a base relation,
foreigntableid is InvalidOid.)

This function must create and return a ForeignScan plan node; it's recommended to use
make_foreignscan to build the ForeignScan node.

See Section 57.4 for additional information.

void
BeginForeignScan(ForeignScanState *node,
 int eflags);

Begin executing a foreign scan. This is called during executor startup. It should perform any initialization
needed before the scan can start, but not start executing the actual scan (that should be done upon
the first call to IterateForeignScan). The ForeignScanState node has already been created,
but its fdw_state field is still NULL. Information about the table to scan is accessible through
the ForeignScanState node (in particular, from the underlying ForeignScan plan node, which
contains any FDW-private information provided by GetForeignPlan). eflags contains flag bits
describing the executor's operating mode for this plan node.

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform
any externally-visible actions; it should only do the minimum required to make the node state valid for
ExplainForeignScan and EndForeignScan.

TupleTableSlot *
IterateForeignScan(ForeignScanState *node);

Fetch one row from the foreign source, returning it in a tuple table slot (the node's ScanTupleSlot
should be used for this purpose). Return NULL if no more rows are available. The tuple table slot
infrastructure allows either a physical or virtual tuple to be returned; in most cases the latter choice is
preferable from a performance standpoint. Note that this is called in a short-lived memory context that
will be reset between invocations. Create a memory context in BeginForeignScan if you need longer-
lived storage, or use the es_query_cxt of the node's EState.

The rows returned must match the fdw_scan_tlist target list if one was supplied, otherwise they
must match the row type of the foreign table being scanned. If you choose to optimize away fetching
columns that are not needed, you should insert nulls in those column positions, or else generate a
fdw_scan_tlist list with those columns omitted.

Note that PostgreSQL's executor doesn't care whether the rows returned violate any constraints that were
defined on the foreign table — but the planner does care, and may optimize queries incorrectly if there are
rows visible in the foreign table that do not satisfy a declared constraint. If a constraint is violated when
the user has declared that the constraint should hold true, it may be appropriate to raise an error (just as
you would need to do in the case of a data type mismatch).

void
ReScanForeignScan(ForeignScanState *node);

Restart the scan from the beginning. Note that any parameters the scan depends on may have changed
value, so the new scan does not necessarily return exactly the same rows.

void
EndForeignScan(ForeignScanState *node);

2278

Writing A Foreign Data Wrapper

End the scan and release resources. It is normally not important to release palloc'd memory, but for example
open files and connections to remote servers should be cleaned up.

57.2.2. FDW Routines For Scanning Foreign Joins
If an FDW supports performing foreign joins remotely (rather than by fetching both tables' data and doing
the join locally), it should provide this callback function:

void
GetForeignJoinPaths(PlannerInfo *root,
 RelOptInfo *joinrel,
 RelOptInfo *outerrel,
 RelOptInfo *innerrel,
 JoinType jointype,
 JoinPathExtraData *extra);

Create possible access paths for a join of two (or more) foreign tables that all belong to the same foreign
server. This optional function is called during query planning. As with GetForeignPaths, this function
should generate ForeignPath path(s) for the supplied joinrel, and call add_path to add these
paths to the set of paths considered for the join. But unlike GetForeignPaths, it is not necessary that
this function succeed in creating at least one path, since paths involving local joining are always possible.

Note that this function will be invoked repeatedly for the same join relation, with different combinations
of inner and outer relations; it is the responsibility of the FDW to minimize duplicated work.

If a ForeignPath path is chosen for the join, it will represent the entire join process; paths generated
for the component tables and subsidiary joins will not be used. Subsequent processing of the join path
proceeds much as it does for a path scanning a single foreign table. One difference is that the scanrelid
of the resulting ForeignScan plan node should be set to zero, since there is no single relation that it
represents; instead, the fs_relids field of the ForeignScan node represents the set of relations that
were joined. (The latter field is set up automatically by the core planner code, and need not be filled by
the FDW.) Another difference is that, because the column list for a remote join cannot be found from
the system catalogs, the FDW must fill fdw_scan_tlist with an appropriate list of TargetEntry
nodes, representing the set of columns it will supply at run time in the tuples it returns.

See Section 57.4 for additional information.

57.2.3. FDW Routines For Planning Post-Scan/Join
Processing

If an FDW supports performing remote post-scan/join processing, such as remote aggregation, it should
provide this callback function:

void
GetForeignUpperPaths(PlannerInfo *root,
 UpperRelationKind stage,
 RelOptInfo *input_rel,
 RelOptInfo *output_rel,
 void *extra);

Create possible access paths for upper relation processing, which is the planner's term for all post-scan/
join query processing, such as aggregation, window functions, sorting, and table updates. This optional

2279

Writing A Foreign Data Wrapper

function is called during query planning. Currently, it is called only if all base relation(s) involved in the
query belong to the same FDW. This function should generate ForeignPath path(s) for any post-scan/
join processing that the FDW knows how to perform remotely, and call add_path to add these paths
to the indicated upper relation. As with GetForeignJoinPaths, it is not necessary that this function
succeed in creating any paths, since paths involving local processing are always possible.

The stage parameter identifies which post-scan/join step is currently being considered. output_rel is
the upper relation that should receive paths representing computation of this step, and input_rel is the
relation representing the input to this step. The extra parameter provides additional details, currently, it is
set only for UPPERREL_PARTIAL_GROUP_AGG or UPPERREL_GROUP_AGG, in which case it points
to a GroupPathExtraData structure. (Note that ForeignPath paths added to output_rel would
typically not have any direct dependency on paths of the input_rel, since their processing is expected
to be done externally. However, examining paths previously generated for the previous processing step
can be useful to avoid redundant planning work.)

See Section 57.4 for additional information.

57.2.4. FDW Routines For Updating Foreign Tables
If an FDW supports writable foreign tables, it should provide some or all of the following callback
functions depending on the needs and capabilities of the FDW:

void
AddForeignUpdateTargets(Query *parsetree,
 RangeTblEntry *target_rte,
 Relation target_relation);

UPDATE and DELETE operations are performed against rows previously fetched by the table-scanning
functions. The FDW may need extra information, such as a row ID or the values of primary-key columns,
to ensure that it can identify the exact row to update or delete. To support that, this function can add extra
hidden, or “junk”, target columns to the list of columns that are to be retrieved from the foreign table
during an UPDATE or DELETE.

To do that, add TargetEntry items to parsetree->targetList, containing expressions for the
extra values to be fetched. Each such entry must be marked resjunk = true, and must have a distinct
resname that will identify it at execution time. Avoid using names matching ctidN, wholerow, or
wholerowN, as the core system can generate junk columns of these names. If the extra expressions are
more complex than simple Vars, they must be run through eval_const_expressions before adding
them to the targetlist.

Although this function is called during planning, the information provided is a bit different from that
available to other planning routines. parsetree is the parse tree for the UPDATE or DELETE command,
while target_rte and target_relation describe the target foreign table.

If the AddForeignUpdateTargets pointer is set to NULL, no extra target expressions are added.
(This will make it impossible to implement DELETE operations, though UPDATE may still be feasible if
the FDW relies on an unchanging primary key to identify rows.)

List *
PlanForeignModify(PlannerInfo *root,
 ModifyTable *plan,
 Index resultRelation,
 int subplan_index);

2280

Writing A Foreign Data Wrapper

Perform any additional planning actions needed for an insert, update, or delete on a foreign table. This
function generates the FDW-private information that will be attached to the ModifyTable plan node that
performs the update action. This private information must have the form of a List, and will be delivered
to BeginForeignModify during the execution stage.

root is the planner's global information about the query. plan is the ModifyTable plan node, which
is complete except for the fdwPrivLists field. resultRelation identifies the target foreign table
by its range table index. subplan_index identifies which target of the ModifyTable plan node this
is, counting from zero; use this if you want to index into plan->plans or other substructure of the
plan node.

See Section 57.4 for additional information.

If the PlanForeignModify pointer is set to NULL, no additional plan-time actions are taken, and the
fdw_private list delivered to BeginForeignModify will be NIL.

void
BeginForeignModify(ModifyTableState *mtstate,
 ResultRelInfo *rinfo,
 List *fdw_private,
 int subplan_index,
 int eflags);

Begin executing a foreign table modification operation. This routine is called during executor startup.
It should perform any initialization needed prior to the actual table modifications. Subsequently,
ExecForeignInsert, ExecForeignUpdate or ExecForeignDelete will be called for each
tuple to be inserted, updated, or deleted.

mtstate is the overall state of the ModifyTable plan node being executed; global data about the
plan and execution state is available via this structure. rinfo is the ResultRelInfo struct describing
the target foreign table. (The ri_FdwState field of ResultRelInfo is available for the FDW to
store any private state it needs for this operation.) fdw_private contains the private data generated by
PlanForeignModify, if any. subplan_index identifies which target of the ModifyTable plan
node this is. eflags contains flag bits describing the executor's operating mode for this plan node.

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform
any externally-visible actions; it should only do the minimum required to make the node state valid for
ExplainForeignModify and EndForeignModify.

If the BeginForeignModify pointer is set to NULL, no action is taken during executor startup.

TupleTableSlot *
ExecForeignInsert(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

Insert one tuple into the foreign table. estate is global execution state for the query. rinfo is the
ResultRelInfo struct describing the target foreign table. slot contains the tuple to be inserted; it
will match the row-type definition of the foreign table. planSlot contains the tuple that was generated
by the ModifyTable plan node's subplan; it differs from slot in possibly containing additional
“junk” columns. (The planSlot is typically of little interest for INSERT cases, but is provided for
completeness.)

2281

Writing A Foreign Data Wrapper

The return value is either a slot containing the data that was actually inserted (this might differ from the
data supplied, for example as a result of trigger actions), or NULL if no row was actually inserted (again,
typically as a result of triggers). The passed-in slot can be re-used for this purpose.

The data in the returned slot is used only if the INSERT query has a RETURNING clause or the foreign
table has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose to optimize
away returning some or all columns depending on the contents of the RETURNING clause. Regardless,
some slot must be returned to indicate success, or the query's reported row count will be wrong.

If the ExecForeignInsert pointer is set to NULL, attempts to insert into the foreign table will fail
with an error message.

TupleTableSlot *
ExecForeignUpdate(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

Update one tuple in the foreign table. estate is global execution state for the query. rinfo is the
ResultRelInfo struct describing the target foreign table. slot contains the new data for the tuple; it
will match the row-type definition of the foreign table. planSlot contains the tuple that was generated
by the ModifyTable plan node's subplan; it differs from slot in possibly containing additional “junk”
columns. In particular, any junk columns that were requested by AddForeignUpdateTargets will
be available from this slot.

The return value is either a slot containing the row as it was actually updated (this might differ from the
data supplied, for example as a result of trigger actions), or NULL if no row was actually updated (again,
typically as a result of triggers). The passed-in slot can be re-used for this purpose.

The data in the returned slot is used only if the UPDATE query has a RETURNING clause or the foreign
table has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose to optimize
away returning some or all columns depending on the contents of the RETURNING clause. Regardless,
some slot must be returned to indicate success, or the query's reported row count will be wrong.

If the ExecForeignUpdate pointer is set to NULL, attempts to update the foreign table will fail with
an error message.

TupleTableSlot *
ExecForeignDelete(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

Delete one tuple from the foreign table. estate is global execution state for the query. rinfo is the
ResultRelInfo struct describing the target foreign table. slot contains nothing useful upon call,
but can be used to hold the returned tuple. planSlot contains the tuple that was generated by the
ModifyTable plan node's subplan; in particular, it will carry any junk columns that were requested by
AddForeignUpdateTargets. The junk column(s) must be used to identify the tuple to be deleted.

The return value is either a slot containing the row that was deleted, or NULL if no row was deleted
(typically as a result of triggers). The passed-in slot can be used to hold the tuple to be returned.

The data in the returned slot is used only if the DELETE query has a RETURNING clause or the foreign
table has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose to optimize

2282

Writing A Foreign Data Wrapper

away returning some or all columns depending on the contents of the RETURNING clause. Regardless,
some slot must be returned to indicate success, or the query's reported row count will be wrong.

If the ExecForeignDelete pointer is set to NULL, attempts to delete from the foreign table will fail
with an error message.

void
EndForeignModify(EState *estate,
 ResultRelInfo *rinfo);

End the table update and release resources. It is normally not important to release palloc'd memory, but
for example open files and connections to remote servers should be cleaned up.

If the EndForeignModify pointer is set to NULL, no action is taken during executor shutdown.

Tuples inserted into a partitioned table by INSERT or COPY FROM are routed to partitions. If an FDW
supports routable foreign-table partitions, it should also provide the following callback functions. These
functions are also called when COPY FROM is executed on a foreign table.

void
BeginForeignInsert(ModifyTableState *mtstate,
 ResultRelInfo *rinfo);

Begin executing an insert operation on a foreign table. This routine is called right before the first tuple
is inserted into the foreign table in both cases when it is the partition chosen for tuple routing and the
target specified in a COPY FROM command. It should perform any initialization needed prior to the
actual insertion. Subsequently, ExecForeignInsert will be called for each tuple to be inserted into
the foreign table.

mtstate is the overall state of the ModifyTable plan node being executed; global data about the plan
and execution state is available via this structure. rinfo is the ResultRelInfo struct describing the
target foreign table. (The ri_FdwState field of ResultRelInfo is available for the FDW to store
any private state it needs for this operation.)

When this is called by a COPY FROM command, the plan-related global data in mtstate is not provided
and the planSlot parameter of ExecForeignInsert subsequently called for each inserted tuple
is NULL, whether the foreign table is the partition chosen for tuple routing or the target specified in the
command.

If the BeginForeignInsert pointer is set to NULL, no action is taken for the initialization.

void
EndForeignInsert(EState *estate,
 ResultRelInfo *rinfo);

End the insert operation and release resources. It is normally not important to release palloc'd memory,
but for example open files and connections to remote servers should be cleaned up.

If the EndForeignInsert pointer is set to NULL, no action is taken for the termination.

int
IsForeignRelUpdatable(Relation rel);

2283

Writing A Foreign Data Wrapper

Report which update operations the specified foreign table supports. The return value should be a bit mask
of rule event numbers indicating which operations are supported by the foreign table, using the CmdType
enumeration; that is, (1 << CMD_UPDATE) = 4 for UPDATE, (1 << CMD_INSERT) = 8 for
INSERT, and (1 << CMD_DELETE) = 16 for DELETE.

If the IsForeignRelUpdatable pointer is set to NULL, foreign tables are assumed to be insertable,
updatable, or deletable if the FDW provides ExecForeignInsert, ExecForeignUpdate, or
ExecForeignDelete respectively. This function is only needed if the FDW supports some tables that
are updatable and some that are not. (Even then, it's permissible to throw an error in the execution routine
instead of checking in this function. However, this function is used to determine updatability for display
in the information_schema views.)

Some inserts, updates, and deletes to foreign tables can be optimized by implementing an alternative set
of interfaces. The ordinary interfaces for inserts, updates, and deletes fetch rows from the remote server
and then modify those rows one at a time. In some cases, this row-by-row approach is necessary, but
it can be inefficient. If it is possible for the foreign server to determine which rows should be modified
without actually retrieving them, and if there are no local triggers which would affect the operation, then it
is possible to arrange things so that the entire operation is performed on the remote server. The interfaces
described below make this possible.

bool
PlanDirectModify(PlannerInfo *root,
 ModifyTable *plan,
 Index resultRelation,
 int subplan_index);

Decide whether it is safe to execute a direct modification on the remote server. If so, return true after
performing planning actions needed for that. Otherwise, return false. This optional function is called
during query planning. If this function succeeds, BeginDirectModify, IterateDirectModify
and EndDirectModify will be called at the execution stage, instead. Otherwise, the table modification
will be executed using the table-updating functions described above. The parameters are the same as for
PlanForeignModify.

To execute the direct modification on the remote server, this function must rewrite the target subplan
with a ForeignScan plan node that executes the direct modification on the remote server. The
operation field of the ForeignScan must be set to the CmdType enumeration appropriately; that
is, CMD_UPDATE for UPDATE, CMD_INSERT for INSERT, and CMD_DELETE for DELETE.

See Section 57.4 for additional information.

If the PlanDirectModify pointer is set to NULL, no attempts to execute a direct modification on the
remote server are taken.

void
BeginDirectModify(ForeignScanState *node,
 int eflags);

Prepare to execute a direct modification on the remote server. This is called during executor startup. It
should perform any initialization needed prior to the direct modification (that should be done upon the
first call to IterateDirectModify). The ForeignScanState node has already been created,
but its fdw_state field is still NULL. Information about the table to modify is accessible through
the ForeignScanState node (in particular, from the underlying ForeignScan plan node, which
contains any FDW-private information provided by PlanDirectModify). eflags contains flag bits
describing the executor's operating mode for this plan node.

2284

Writing A Foreign Data Wrapper

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform
any externally-visible actions; it should only do the minimum required to make the node state valid for
ExplainDirectModify and EndDirectModify.

If the BeginDirectModify pointer is set to NULL, no attempts to execute a direct modification on
the remote server are taken.

TupleTableSlot *
IterateDirectModify(ForeignScanState *node);

When the INSERT, UPDATE or DELETE query doesn't have a RETURNING clause, just return NULL
after a direct modification on the remote server. When the query has the clause, fetch one result
containing the data needed for the RETURNING calculation, returning it in a tuple table slot (the
node's ScanTupleSlot should be used for this purpose). The data that was actually inserted, updated
or deleted must be stored in the es_result_relation_info->ri_projectReturning-
>pi_exprContext->ecxt_scantuple of the node's EState. Return NULL if no more rows are
available. Note that this is called in a short-lived memory context that will be reset between invocations.
Create a memory context in BeginDirectModify if you need longer-lived storage, or use the
es_query_cxt of the node's EState.

The rows returned must match the fdw_scan_tlist target list if one was supplied, otherwise they must
match the row type of the foreign table being updated. If you choose to optimize away fetching columns
that are not needed for the RETURNING calculation, you should insert nulls in those column positions, or
else generate a fdw_scan_tlist list with those columns omitted.

Whether the query has the clause or not, the query's reported row count must be incremented by the
FDW itself. When the query doesn't have the clause, the FDW must also increment the row count for the
ForeignScanState node in the EXPLAIN ANALYZE case.

If the IterateDirectModify pointer is set to NULL, no attempts to execute a direct modification on
the remote server are taken.

void
EndDirectModify(ForeignScanState *node);

Clean up following a direct modification on the remote server. It is normally not important to release
palloc'd memory, but for example open files and connections to the remote server should be cleaned up.

If the EndDirectModify pointer is set to NULL, no attempts to execute a direct modification on the
remote server are taken.

57.2.5. FDW Routines For Row Locking
If an FDW wishes to support late row locking (as described in Section 57.5), it must provide the following
callback functions:

RowMarkType
GetForeignRowMarkType(RangeTblEntry *rte,
 LockClauseStrength strength);

Report which row-marking option to use for a foreign table. rte is the RangeTblEntry node for the
table and strength describes the lock strength requested by the relevant FOR UPDATE/SHARE clause,
if any. The result must be a member of the RowMarkType enum type.

2285

Writing A Foreign Data Wrapper

This function is called during query planning for each foreign table that appears in an UPDATE, DELETE,
or SELECT FOR UPDATE/SHARE query and is not the target of UPDATE or DELETE.

If the GetForeignRowMarkType pointer is set to NULL, the ROW_MARK_COPY option is always used.
(This implies that RefetchForeignRow will never be called, so it need not be provided either.)

See Section 57.5 for more information.

HeapTuple
RefetchForeignRow(EState *estate,
 ExecRowMark *erm,
 Datum rowid,
 bool *updated);

Re-fetch one tuple from the foreign table, after locking it if required. estate is global execution state
for the query. erm is the ExecRowMark struct describing the target foreign table and the row lock type
(if any) to acquire. rowid identifies the tuple to be fetched. updated is an output parameter.

This function should return a palloc'ed copy of the fetched tuple, or NULL if the row lock couldn't be
obtained. The row lock type to acquire is defined by erm->markType, which is the value previously
returned by GetForeignRowMarkType. (ROW_MARK_REFERENCE means to just re-fetch the tuple
without acquiring any lock, and ROW_MARK_COPY will never be seen by this routine.)

In addition, *updated should be set to true if what was fetched was an updated version of the tuple
rather than the same version previously obtained. (If the FDW cannot be sure about this, always returning
true is recommended.)

Note that by default, failure to acquire a row lock should result in raising an error; a NULL return is only
appropriate if the SKIP LOCKED option is specified by erm->waitPolicy.

The rowid is the ctid value previously read for the row to be re-fetched. Although the rowid value
is passed as a Datum, it can currently only be a tid. The function API is chosen in hopes that it may be
possible to allow other data types for row IDs in future.

If the RefetchForeignRow pointer is set to NULL, attempts to re-fetch rows will fail with an error
message.

See Section 57.5 for more information.

bool
RecheckForeignScan(ForeignScanState *node,
 TupleTableSlot *slot);

Recheck that a previously-returned tuple still matches the relevant scan and join qualifiers, and possibly
provide a modified version of the tuple. For foreign data wrappers which do not perform join pushdown,
it will typically be more convenient to set this to NULL and instead set fdw_recheck_quals
appropriately. When outer joins are pushed down, however, it isn't sufficient to reapply the checks
relevant to all the base tables to the result tuple, even if all needed attributes are present, because failure
to match some qualifier might result in some attributes going to NULL, rather than in no tuple being
returned. RecheckForeignScan can recheck qualifiers and return true if they are still satisfied and
false otherwise, but it can also store a replacement tuple into the supplied slot.

To implement join pushdown, a foreign data wrapper will typically construct an alternative local join
plan which is used only for rechecks; this will become the outer subplan of the ForeignScan. When
a recheck is required, this subplan can be executed and the resulting tuple can be stored in the slot.

2286

Writing A Foreign Data Wrapper

This plan need not be efficient since no base table will return more than one row; for example, it may
implement all joins as nested loops. The function GetExistingLocalJoinPath may be used to
search existing paths for a suitable local join path, which can be used as the alternative local join plan.
GetExistingLocalJoinPath searches for an unparameterized path in the path list of the specified
join relation. (If it does not find such a path, it returns NULL, in which case a foreign data wrapper may
build the local path by itself or may choose not to create access paths for that join.)

57.2.6. FDW Routines for EXPLAIN

void
ExplainForeignScan(ForeignScanState *node,
 ExplainState *es);

Print additional EXPLAIN output for a foreign table scan. This function can call
ExplainPropertyText and related functions to add fields to the EXPLAIN output. The flag fields
in es can be used to determine what to print, and the state of the ForeignScanState node can be
inspected to provide run-time statistics in the EXPLAIN ANALYZE case.

If the ExplainForeignScan pointer is set to NULL, no additional information is printed during
EXPLAIN.

void
ExplainForeignModify(ModifyTableState *mtstate,
 ResultRelInfo *rinfo,
 List *fdw_private,
 int subplan_index,
 struct ExplainState *es);

Print additional EXPLAIN output for a foreign table update. This function can call
ExplainPropertyText and related functions to add fields to the EXPLAIN output. The flag fields
in es can be used to determine what to print, and the state of the ModifyTableState node can be
inspected to provide run-time statistics in the EXPLAIN ANALYZE case. The first four arguments are the
same as for BeginForeignModify.

If the ExplainForeignModify pointer is set to NULL, no additional information is printed during
EXPLAIN.

void
ExplainDirectModify(ForeignScanState *node,
 ExplainState *es);

Print additional EXPLAIN output for a direct modification on the remote server. This function can call
ExplainPropertyText and related functions to add fields to the EXPLAIN output. The flag fields
in es can be used to determine what to print, and the state of the ForeignScanState node can be
inspected to provide run-time statistics in the EXPLAIN ANALYZE case.

If the ExplainDirectModify pointer is set to NULL, no additional information is printed during
EXPLAIN.

57.2.7. FDW Routines for ANALYZE

2287

Writing A Foreign Data Wrapper

bool
AnalyzeForeignTable(Relation relation,
 AcquireSampleRowsFunc *func,
 BlockNumber *totalpages);

This function is called when ANALYZE is executed on a foreign table. If the FDW can collect statistics
for this foreign table, it should return true, and provide a pointer to a function that will collect sample
rows from the table in func, plus the estimated size of the table in pages in totalpages. Otherwise,
return false.

If the FDW does not support collecting statistics for any tables, the AnalyzeForeignTable pointer
can be set to NULL.

If provided, the sample collection function must have the signature

int
AcquireSampleRowsFunc(Relation relation,
 int elevel,
 HeapTuple *rows,
 int targrows,
 double *totalrows,
 double *totaldeadrows);

A random sample of up to targrows rows should be collected from the table and stored into the caller-
provided rows array. The actual number of rows collected must be returned. In addition, store estimates
of the total numbers of live and dead rows in the table into the output parameters totalrows and
totaldeadrows. (Set totaldeadrows to zero if the FDW does not have any concept of dead rows.)

57.2.8. FDW Routines For IMPORT FOREIGN SCHEMA

List *
ImportForeignSchema(ImportForeignSchemaStmt *stmt, Oid serverOid);

Obtain a list of foreign table creation commands. This function is called when executing IMPORT
FOREIGN SCHEMA, and is passed the parse tree for that statement, as well as the OID of the foreign
server to use. It should return a list of C strings, each of which must contain a CREATE FOREIGN TABLE
command. These strings will be parsed and executed by the core server.

Within the ImportForeignSchemaStmt struct, remote_schema is the name of the remote
schema from which tables are to be imported. list_type identifies how to filter table names:
FDW_IMPORT_SCHEMA_ALL means that all tables in the remote schema should be imported (in
this case table_list is empty), FDW_IMPORT_SCHEMA_LIMIT_TO means to include only tables
listed in table_list, and FDW_IMPORT_SCHEMA_EXCEPT means to exclude the tables listed in
table_list. options is a list of options used for the import process. The meanings of the options are
up to the FDW. For example, an FDW could use an option to define whether the NOT NULL attributes
of columns should be imported. These options need not have anything to do with those supported by the
FDW as database object options.

The FDW may ignore the local_schema field of the ImportForeignSchemaStmt, because the
core server will automatically insert that name into the parsed CREATE FOREIGN TABLE commands.

The FDW does not have to concern itself with implementing the filtering specified by list_type
and table_list, either, as the core server will automatically skip any returned commands for tables

2288

Writing A Foreign Data Wrapper

excluded according to those options. However, it's often useful to avoid the work of creating commands
for excluded tables in the first place. The function IsImportableForeignTable() may be useful
to test whether a given foreign-table name will pass the filter.

If the FDW does not support importing table definitions, the ImportForeignSchema pointer can be
set to NULL.

57.2.9. FDW Routines for Parallel Execution
A ForeignScan node can, optionally, support parallel execution. A parallel ForeignScan will be
executed in multiple processes and must return each row exactly once across all cooperating processes.
To do this, processes can coordinate through fixed-size chunks of dynamic shared memory. This shared
memory is not guaranteed to be mapped at the same address in every process, so it must not contain
pointers. The following functions are all optional, but most are required if parallel execution is to be
supported.

bool
IsForeignScanParallelSafe(PlannerInfo *root, RelOptInfo *rel,
 RangeTblEntry *rte);

Test whether a scan can be performed within a parallel worker. This function will only be called when the
planner believes that a parallel plan might be possible, and should return true if it is safe for that scan to
run within a parallel worker. This will generally not be the case if the remote data source has transaction
semantics, unless the worker's connection to the data can somehow be made to share the same transaction
context as the leader.

If this function is not defined, it is assumed that the scan must take place within the parallel leader. Note
that returning true does not mean that the scan itself can be done in parallel, only that the scan can be
performed within a parallel worker. Therefore, it can be useful to define this method even when parallel
execution is not supported.

Size
EstimateDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt);

Estimate the amount of dynamic shared memory that will be required for parallel operation. This may be
higher than the amount that will actually be used, but it must not be lower. The return value is in bytes.
This function is optional, and can be omitted if not needed; but if it is omitted, the next three functions
must be omitted as well, because no shared memory will be allocated for the FDW's use.

void
InitializeDSMForeignScan(ForeignScanState *node, ParallelContext
 *pcxt,
 void *coordinate);

Initialize the dynamic shared memory that will be required for parallel operation. coordinate points to
a shared memory area of size equal to the return value of EstimateDSMForeignScan. This function
is optional, and can be omitted if not needed.

void
ReInitializeDSMForeignScan(ForeignScanState *node, ParallelContext
 *pcxt,

2289

Writing A Foreign Data Wrapper

 void *coordinate);

Re-initialize the dynamic shared memory required for parallel operation when the foreign-scan plan node
is about to be re-scanned. This function is optional, and can be omitted if not needed. Recommended
practice is that this function reset only shared state, while the ReScanForeignScan function resets
only local state. Currently, this function will be called before ReScanForeignScan, but it's best not
to rely on that ordering.

void
InitializeWorkerForeignScan(ForeignScanState *node, shm_toc *toc,
 void *coordinate);

Initialize a parallel worker's local state based on the shared state set up by the leader during
InitializeDSMForeignScan. This function is optional, and can be omitted if not needed.

void
ShutdownForeignScan(ForeignScanState *node);

Release resources when it is anticipated the node will not be executed to completion. This is not called in
all cases; sometimes, EndForeignScan may be called without this function having been called first.
Since the DSM segment used by parallel query is destroyed just after this callback is invoked, foreign data
wrappers that wish to take some action before the DSM segment goes away should implement this method.

57.2.10. FDW Routines For reparameterization of paths

List *
ReparameterizeForeignPathByChild(PlannerInfo *root, List *fdw_private,
 RelOptInfo *child_rel);

This function is called while converting a path parameterized by the top-most parent of the given child
relation child_rel to be parameterized by the child relation. The function is used to reparameterize any
paths or translate any expression nodes saved in the given fdw_private member of a ForeignPath.
The callback may use reparameterize_path_by_child, adjust_appendrel_attrs or
adjust_appendrel_attrs_multilevel as required.

57.3. Foreign Data Wrapper Helper Functions
Several helper functions are exported from the core server so that authors of foreign data wrappers can
get easy access to attributes of FDW-related objects, such as FDW options. To use any of these functions,
you need to include the header file foreign/foreign.h in your source file. That header also defines
the struct types that are returned by these functions.

ForeignDataWrapper *
GetForeignDataWrapper(Oid fdwid);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given OID.
A ForeignDataWrapper object contains properties of the FDW (see foreign/foreign.h for
details).

ForeignServer *

2290

Writing A Foreign Data Wrapper

GetForeignServer(Oid serverid);

This function returns a ForeignServer object for the foreign server with the given OID. A
ForeignServer object contains properties of the server (see foreign/foreign.h for details).

UserMapping *
GetUserMapping(Oid userid, Oid serverid);

This function returns a UserMapping object for the user mapping of the given role on the given server.
(If there is no mapping for the specific user, it will return the mapping for PUBLIC, or throw error if there
is none.) A UserMapping object contains properties of the user mapping (see foreign/foreign.h
for details).

ForeignTable *
GetForeignTable(Oid relid);

This function returns a ForeignTable object for the foreign table with the given OID. A
ForeignTable object contains properties of the foreign table (see foreign/foreign.h for details).

List *
GetForeignColumnOptions(Oid relid, AttrNumber attnum);

This function returns the per-column FDW options for the column with the given foreign table OID and
attribute number, in the form of a list of DefElem. NIL is returned if the column has no options.

Some object types have name-based lookup functions in addition to the OID-based ones:

ForeignDataWrapper *
GetForeignDataWrapperByName(const char *name, bool missing_ok);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given name.
If the wrapper is not found, return NULL if missing_ok is true, otherwise raise an error.

ForeignServer *
GetForeignServerByName(const char *name, bool missing_ok);

This function returns a ForeignServer object for the foreign server with the given name. If the server
is not found, return NULL if missing_ok is true, otherwise raise an error.

57.4. Foreign Data Wrapper Query Planning
The FDW callback functions GetForeignRelSize, GetForeignPaths, GetForeignPlan,
PlanForeignModify, GetForeignJoinPaths, GetForeignUpperPaths, and
PlanDirectModify must fit into the workings of the PostgreSQL planner. Here are some notes about
what they must do.

The information in root and baserel can be used to reduce the amount of information that has to
be fetched from the foreign table (and therefore reduce the cost). baserel->baserestrictinfo is
particularly interesting, as it contains restriction quals (WHERE clauses) that should be used to filter the
rows to be fetched. (The FDW itself is not required to enforce these quals, as the core executor can check
them instead.) baserel->reltarget->exprs can be used to determine which columns need to be

2291

Writing A Foreign Data Wrapper

fetched; but note that it only lists columns that have to be emitted by the ForeignScan plan node, not
columns that are used in qual evaluation but not output by the query.

Various private fields are available for the FDW planning functions to keep information in. Generally,
whatever you store in FDW private fields should be palloc'd, so that it will be reclaimed at the end of
planning.

baserel->fdw_private is a void pointer that is available for FDW planning functions to store
information relevant to the particular foreign table. The core planner does not touch it except to initialize
it to NULL when the RelOptInfo node is created. It is useful for passing information forward from
GetForeignRelSize to GetForeignPaths and/or GetForeignPaths to GetForeignPlan,
thereby avoiding recalculation.

GetForeignPaths can identify the meaning of different access paths by storing private information
in the fdw_private field of ForeignPath nodes. fdw_private is declared as a List pointer,
but could actually contain anything since the core planner does not touch it. However, best practice is to
use a representation that's dumpable by nodeToString, for use with debugging support available in
the backend.

GetForeignPlan can examine the fdw_private field of the selected ForeignPath node, and can
generate fdw_exprs and fdw_private lists to be placed in the ForeignScan plan node, where they
will be available at execution time. Both of these lists must be represented in a form that copyObject
knows how to copy. The fdw_private list has no other restrictions and is not interpreted by the core
backend in any way. The fdw_exprs list, if not NIL, is expected to contain expression trees that are
intended to be executed at run time. These trees will undergo post-processing by the planner to make them
fully executable.

In GetForeignPlan, generally the passed-in target list can be copied into the plan node as-is. The
passed scan_clauses list contains the same clauses as baserel->baserestrictinfo, but may
be re-ordered for better execution efficiency. In simple cases the FDW can just strip RestrictInfo
nodes from the scan_clauses list (using extract_actual_clauses) and put all the clauses into
the plan node's qual list, which means that all the clauses will be checked by the executor at run time. More
complex FDWs may be able to check some of the clauses internally, in which case those clauses can be
removed from the plan node's qual list so that the executor doesn't waste time rechecking them.

As an example, the FDW might identify some restriction clauses of the form foreign_variable =
sub_expression, which it determines can be executed on the remote server given the locally-evaluated
value of the sub_expression. The actual identification of such a clause should happen during
GetForeignPaths, since it would affect the cost estimate for the path. The path's fdw_private
field would probably include a pointer to the identified clause's RestrictInfo node. Then
GetForeignPlan would remove that clause from scan_clauses, but add the sub_expression
to fdw_exprs to ensure that it gets massaged into executable form. It would probably also put control
information into the plan node's fdw_private field to tell the execution functions what to do at run time.
The query transmitted to the remote server would involve something like WHERE foreign_variable
= $1, with the parameter value obtained at run time from evaluation of the fdw_exprs expression tree.

Any clauses removed from the plan node's qual list must instead be added to fdw_recheck_quals or
rechecked by RecheckForeignScan in order to ensure correct behavior at the READ COMMITTED
isolation level. When a concurrent update occurs for some other table involved in the query, the executor
may need to verify that all of the original quals are still satisfied for the tuple, possibly against a different set
of parameter values. Using fdw_recheck_quals is typically easier than implementing checks inside
RecheckForeignScan, but this method will be insufficient when outer joins have been pushed down,
since the join tuples in that case might have some fields go to NULL without rejecting the tuple entirely.

Another ForeignScan field that can be filled by FDWs is fdw_scan_tlist, which describes the
tuples returned by the FDW for this plan node. For simple foreign table scans this can be set to NIL,

2292

Writing A Foreign Data Wrapper

implying that the returned tuples have the row type declared for the foreign table. A non-NIL value must
be a target list (list of TargetEntrys) containing Vars and/or expressions representing the returned
columns. This might be used, for example, to show that the FDW has omitted some columns that it noticed
won't be needed for the query. Also, if the FDW can compute expressions used by the query more cheaply
than can be done locally, it could add those expressions to fdw_scan_tlist. Note that join plans
(created from paths made by GetForeignJoinPaths) must always supply fdw_scan_tlist to
describe the set of columns they will return.

The FDW should always construct at least one path that depends only on the table's restriction
clauses. In join queries, it might also choose to construct path(s) that depend on join clauses, for
example foreign_variable = local_variable. Such clauses will not be found in baserel-
>baserestrictinfo but must be sought in the relation's join lists. A path using such a clause is
called a “parameterized path”. It must identify the other relations used in the selected join clause(s) with
a suitable value of param_info; use get_baserel_parampathinfo to compute that value. In
GetForeignPlan, the local_variable portion of the join clause would be added to fdw_exprs,
and then at run time the case works the same as for an ordinary restriction clause.

If an FDW supports remote joins, GetForeignJoinPaths should produce ForeignPaths for
potential remote joins in much the same way as GetForeignPaths works for base tables. Information
about the intended join can be passed forward to GetForeignPlan in the same ways described
above. However, baserestrictinfo is not relevant for join relations; instead, the relevant join
clauses for a particular join are passed to GetForeignJoinPaths as a separate parameter (extra-
>restrictlist).

An FDW might additionally support direct execution of some plan actions that are above the level
of scans and joins, such as grouping or aggregation. To offer such options, the FDW should generate
paths and insert them into the appropriate upper relation. For example, a path representing remote
aggregation should be inserted into the UPPERREL_GROUP_AGG relation, using add_path. This path
will be compared on a cost basis with local aggregation performed by reading a simple scan path for
the foreign relation (note that such a path must also be supplied, else there will be an error at plan
time). If the remote-aggregation path wins, which it usually would, it will be converted into a plan in
the usual way, by calling GetForeignPlan. The recommended place to generate such paths is in the
GetForeignUpperPaths callback function, which is called for each upper relation (i.e., each post-
scan/join processing step), if all the base relations of the query come from the same FDW.

PlanForeignModify and the other callbacks described in Section 57.2.4 are designed around the
assumption that the foreign relation will be scanned in the usual way and then individual row updates
will be driven by a local ModifyTable plan node. This approach is necessary for the general case
where an update requires reading local tables as well as foreign tables. However, if the operation could be
executed entirely by the foreign server, the FDW could generate a path representing that and insert it into
the UPPERREL_FINAL upper relation, where it would compete against the ModifyTable approach.
This approach could also be used to implement remote SELECT FOR UPDATE, rather than using the row
locking callbacks described in Section 57.2.5. Keep in mind that a path inserted into UPPERREL_FINAL
is responsible for implementing all behavior of the query.

When planning an UPDATE or DELETE, PlanForeignModify and PlanDirectModify can look
up the RelOptInfo struct for the foreign table and make use of the baserel->fdw_private data
previously created by the scan-planning functions. However, in INSERT the target table is not scanned so
there is no RelOptInfo for it. The List returned by PlanForeignModify has the same restrictions
as the fdw_private list of a ForeignScan plan node, that is it must contain only structures that
copyObject knows how to copy.

INSERT with an ON CONFLICT clause does not support specifying the conflict target, as unique
constraints or exclusion constraints on remote tables are not locally known. This in turn implies that ON
CONFLICT DO UPDATE is not supported, since the specification is mandatory there.

2293

Writing A Foreign Data Wrapper

57.5. Row Locking in Foreign Data Wrappers
If an FDW's underlying storage mechanism has a concept of locking individual rows to prevent concurrent
updates of those rows, it is usually worthwhile for the FDW to perform row-level locking with as close
an approximation as practical to the semantics used in ordinary PostgreSQL tables. There are multiple
considerations involved in this.

One key decision to be made is whether to perform early locking or late locking. In early locking, a row
is locked when it is first retrieved from the underlying store, while in late locking, the row is locked only
when it is known that it needs to be locked. (The difference arises because some rows may be discarded by
locally-checked restriction or join conditions.) Early locking is much simpler and avoids extra round trips
to a remote store, but it can cause locking of rows that need not have been locked, resulting in reduced
concurrency or even unexpected deadlocks. Also, late locking is only possible if the row to be locked can
be uniquely re-identified later. Preferably the row identifier should identify a specific version of the row,
as PostgreSQL TIDs do.

By default, PostgreSQL ignores locking considerations when interfacing to FDWs, but an FDW can
perform early locking without any explicit support from the core code. The API functions described in
Section 57.2.5, which were added in PostgreSQL 9.5, allow an FDW to use late locking if it wishes.

An additional consideration is that in READ COMMITTED isolation mode, PostgreSQL may need to re-
check restriction and join conditions against an updated version of some target tuple. Rechecking join
conditions requires re-obtaining copies of the non-target rows that were previously joined to the target
tuple. When working with standard PostgreSQL tables, this is done by including the TIDs of the non-target
tables in the column list projected through the join, and then re-fetching non-target rows when required.
This approach keeps the join data set compact, but it requires inexpensive re-fetch capability, as well as a
TID that can uniquely identify the row version to be re-fetched. By default, therefore, the approach used
with foreign tables is to include a copy of the entire row fetched from a foreign table in the column list
projected through the join. This puts no special demands on the FDW but can result in reduced performance
of merge and hash joins. An FDW that is capable of meeting the re-fetch requirements can choose to do
it the first way.

For an UPDATE or DELETE on a foreign table, it is recommended that the ForeignScan operation
on the target table perform early locking on the rows that it fetches, perhaps via the equivalent of
SELECT FOR UPDATE. An FDW can detect whether a table is an UPDATE/DELETE target at plan
time by comparing its relid to root->parse->resultRelation, or at execution time by using
ExecRelationIsTargetRelation(). An alternative possibility is to perform late locking within
the ExecForeignUpdate or ExecForeignDelete callback, but no special support is provided for
this.

For foreign tables that are specified to be locked by a SELECT FOR UPDATE/SHARE command,
the ForeignScan operation can again perform early locking by fetching tuples with the equivalent of
SELECT FOR UPDATE/SHARE. To perform late locking instead, provide the callback functions defined
in Section 57.2.5. In GetForeignRowMarkType, select rowmark option ROW_MARK_EXCLUSIVE,
ROW_MARK_NOKEYEXCLUSIVE, ROW_MARK_SHARE, or ROW_MARK_KEYSHARE depending on the
requested lock strength. (The core code will act the same regardless of which of these four options you
choose.) Elsewhere, you can detect whether a foreign table was specified to be locked by this type of
command by using get_plan_rowmark at plan time, or ExecFindRowMark at execution time; you
must check not only whether a non-null rowmark struct is returned, but that its strength field is not
LCS_NONE.

Lastly, for foreign tables that are used in an UPDATE, DELETE or SELECT FOR UPDATE/SHARE
command but are not specified to be row-locked, you can override the default choice to copy entire rows by
having GetForeignRowMarkType select option ROW_MARK_REFERENCE when it sees lock strength

2294

Writing A Foreign Data Wrapper

LCS_NONE. This will cause RefetchForeignRow to be called with that value for markType; it
should then re-fetch the row without acquiring any new lock. (If you have a GetForeignRowMarkType
function but don't wish to re-fetch unlocked rows, select option ROW_MARK_COPY for LCS_NONE.)

See src/include/nodes/lockoptions.h, the comments for RowMarkType and
PlanRowMark in src/include/nodes/plannodes.h, and the comments for ExecRowMark in
src/include/nodes/execnodes.h for additional information.

2295

Chapter 58. Writing A Table Sampling
Method

PostgreSQL's implementation of the TABLESAMPLE clause supports custom table sampling methods, in
addition to the BERNOULLI and SYSTEM methods that are required by the SQL standard. The sampling
method determines which rows of the table will be selected when the TABLESAMPLE clause is used.

At the SQL level, a table sampling method is represented by a single SQL function, typically implemented
in C, having the signature

method_name(internal) RETURNS tsm_handler

The name of the function is the same method name appearing in the TABLESAMPLE clause. The
internal argument is a dummy (always having value zero) that simply serves to prevent this function
from being called directly from a SQL command. The result of the function must be a palloc'd struct of
type TsmRoutine, which contains pointers to support functions for the sampling method. These support
functions are plain C functions and are not visible or callable at the SQL level. The support functions are
described in Section 58.1.

In addition to function pointers, the TsmRoutine struct must provide these additional fields:

List *parameterTypes

This is an OID list containing the data type OIDs of the parameter(s) that will be accepted by the
TABLESAMPLE clause when this sampling method is used. For example, for the built-in methods,
this list contains a single item with value FLOAT4OID, which represents the sampling percentage.
Custom sampling methods can have more or different parameters.

bool repeatable_across_queries

If true, the sampling method can deliver identical samples across successive queries, if the same
parameters and REPEATABLE seed value are supplied each time and the table contents have not
changed. When this is false, the REPEATABLE clause is not accepted for use with the sampling
method.

bool repeatable_across_scans

If true, the sampling method can deliver identical samples across successive scans in the same query
(assuming unchanging parameters, seed value, and snapshot). When this is false, the planner will
not select plans that would require scanning the sampled table more than once, since that might result
in inconsistent query output.

The TsmRoutine struct type is declared in src/include/access/tsmapi.h, which see for
additional details.

The table sampling methods included in the standard distribution are good references when trying to write
your own. Look into the src/backend/access/tablesample subdirectory of the source tree for
the built-in sampling methods, and into the contrib subdirectory for add-on methods.

2296

Writing A Table Sampling Method

58.1. Sampling Method Support Functions
The TSM handler function returns a palloc'd TsmRoutine struct containing pointers to the support
functions described below. Most of the functions are required, but some are optional, and those pointers
can be NULL.

void
SampleScanGetSampleSize (PlannerInfo *root,
 RelOptInfo *baserel,
 List *paramexprs,
 BlockNumber *pages,
 double *tuples);

This function is called during planning. It must estimate the number of relation pages that will be
read during a sample scan, and the number of tuples that will be selected by the scan. (For example,
these might be determined by estimating the sampling fraction, and then multiplying the baserel-
>pages and baserel->tuples numbers by that, being sure to round the results to integral values.)
The paramexprs list holds the expression(s) that are parameters to the TABLESAMPLE clause. It
is recommended to use estimate_expression_value() to try to reduce these expressions to
constants, if their values are needed for estimation purposes; but the function must provide size estimates
even if they cannot be reduced, and it should not fail even if the values appear invalid (remember that they're
only estimates of what the run-time values will be). The pages and tuples parameters are outputs.

void
InitSampleScan (SampleScanState *node,
 int eflags);

Initialize for execution of a SampleScan plan node. This is called during executor startup. It should
perform any initialization needed before processing can start. The SampleScanState node has already
been created, but its tsm_state field is NULL. The InitSampleScan function can palloc whatever
internal state data is needed by the sampling method, and store a pointer to it in node->tsm_state.
Information about the table to scan is accessible through other fields of the SampleScanState node (but
note that the node->ss.ss_currentScanDesc scan descriptor is not set up yet). eflags contains
flag bits describing the executor's operating mode for this plan node.

When (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, the scan will not actually be performed,
so this function should only do the minimum required to make the node state valid for EXPLAIN and
EndSampleScan.

This function can be omitted (set the pointer to NULL), in which case BeginSampleScan must perform
all initialization needed by the sampling method.

void
BeginSampleScan (SampleScanState *node,
 Datum *params,
 int nparams,
 uint32 seed);

Begin execution of a sampling scan. This is called just before the first attempt to fetch a tuple, and may
be called again if the scan needs to be restarted. Information about the table to scan is accessible through
fields of the SampleScanState node (but note that the node->ss.ss_currentScanDesc scan

2297

Writing A Table Sampling Method

descriptor is not set up yet). The params array, of length nparams, contains the values of the parameters
supplied in the TABLESAMPLE clause. These will have the number and types specified in the sampling
method's parameterTypes list, and have been checked to not be null. seed contains a seed to use
for any random numbers generated within the sampling method; it is either a hash derived from the
REPEATABLE value if one was given, or the result of random() if not.

This function may adjust the fields node->use_bulkread and node->use_pagemode. If node-
>use_bulkread is true, which it is by default, the scan will use a buffer access strategy that
encourages recycling buffers after use. It might be reasonable to set this to false if the scan will visit only
a small fraction of the table's pages. If node->use_pagemode is true, which it is by default, the scan
will perform visibility checking in a single pass for all tuples on each visited page. It might be reasonable
to set this to false if the scan will select only a small fraction of the tuples on each visited page. That will
result in fewer tuple visibility checks being performed, though each one will be more expensive because
it will require more locking.

If the sampling method is marked repeatable_across_scans, it must be able to select the same
set of tuples during a rescan as it did originally, that is a fresh call of BeginSampleScan must lead to
selecting the same tuples as before (if the TABLESAMPLE parameters and seed don't change).

BlockNumber
NextSampleBlock (SampleScanState *node);

Returns the block number of the next page to be scanned, or InvalidBlockNumber if no pages remain
to be scanned.

This function can be omitted (set the pointer to NULL), in which case the core code will perform a
sequential scan of the entire relation. Such a scan can use synchronized scanning, so that the sampling
method cannot assume that the relation pages are visited in the same order on each scan.

OffsetNumber
NextSampleTuple (SampleScanState *node,
 BlockNumber blockno,
 OffsetNumber maxoffset);

Returns the offset number of the next tuple to be sampled on the specified page, or
InvalidOffsetNumber if no tuples remain to be sampled. maxoffset is the largest offset number
in use on the page.

Note

NextSampleTuple is not explicitly told which of the offset numbers in the range
1 .. maxoffset actually contain valid tuples. This is not normally a problem
since the core code ignores requests to sample missing or invisible tuples; that should not
result in any bias in the sample. However, if necessary, the function can examine node-
>ss.ss_currentScanDesc->rs_vistuples[] to identify which tuples are valid and
visible. (This requires node->use_pagemode to be true.)

Note

NextSampleTuple must not assume that blockno is the same page number returned by the
most recent NextSampleBlock call. It was returned by some previous NextSampleBlock

2298

Writing A Table Sampling Method

call, but the core code is allowed to call NextSampleBlock in advance of actually scanning
pages, so as to support prefetching. It is OK to assume that once sampling of a given page begins,
successive NextSampleTuple calls all refer to the same page until InvalidOffsetNumber
is returned.

void
EndSampleScan (SampleScanState *node);

End the scan and release resources. It is normally not important to release palloc'd memory, but any
externally-visible resources should be cleaned up. This function can be omitted (set the pointer to NULL)
in the common case where no such resources exist.

2299

Chapter 59. Writing A Custom Scan
Provider

PostgreSQL supports a set of experimental facilities which are intended to allow extension modules to add
new scan types to the system. Unlike a foreign data wrapper, which is only responsible for knowing how
to scan its own foreign tables, a custom scan provider can provide an alternative method of scanning any
relation in the system. Typically, the motivation for writing a custom scan provider will be to allow the
use of some optimization not supported by the core system, such as caching or some form of hardware
acceleration. This chapter outlines how to write a new custom scan provider.

Implementing a new type of custom scan is a three-step process. First, during planning, it is necessary to
generate access paths representing a scan using the proposed strategy. Second, if one of those access paths
is selected by the planner as the optimal strategy for scanning a particular relation, the access path must
be converted to a plan. Finally, it must be possible to execute the plan and generate the same results that
would have been generated for any other access path targeting the same relation.

59.1. Creating Custom Scan Paths
A custom scan provider will typically add paths for a base relation by setting the following hook, which is
called after the core code has generated all the access paths it can for the relation (except for Gather paths,
which are made after this call so that they can use partial paths added by the hook):

typedef void (*set_rel_pathlist_hook_type) (PlannerInfo *root,
 RelOptInfo *rel,
 Index rti,
 RangeTblEntry *rte);
extern PGDLLIMPORT set_rel_pathlist_hook_type set_rel_pathlist_hook;

Although this hook function can be used to examine, modify, or remove paths generated by the core system,
a custom scan provider will typically confine itself to generating CustomPath objects and adding them
to rel using add_path. The custom scan provider is responsible for initializing the CustomPath
object, which is declared like this:

typedef struct CustomPath
{
 Path path;
 uint32 flags;
 List *custom_paths;
 List *custom_private;
 const CustomPathMethods *methods;
} CustomPath;

path must be initialized as for any other path, including the row-count estimate, start and
total cost, and sort ordering provided by this path. flags is a bit mask, which should include
CUSTOMPATH_SUPPORT_BACKWARD_SCAN if the custom path can support a backward scan and
CUSTOMPATH_SUPPORT_MARK_RESTORE if it can support mark and restore. Both capabilities are
optional. An optional custom_paths is a list of Path nodes used by this custom-path node; these will
be transformed into Plan nodes by planner. custom_private can be used to store the custom path's
private data. Private data should be stored in a form that can be handled by nodeToString, so that

2300

Writing A Custom Scan Provider

debugging routines that attempt to print the custom path will work as designed. methods must point
to a (usually statically allocated) object implementing the required custom path methods, of which there
is currently only one. The LibraryName and SymbolName fields must also be initialized so that the
dynamic loader can resolve them to locate the method table.

A custom scan provider can also provide join paths. Just as for base relations, such a path must produce the
same output as would normally be produced by the join it replaces. To do this, the join provider should set
the following hook, and then within the hook function, create CustomPath path(s) for the join relation.

typedef void (*set_join_pathlist_hook_type) (PlannerInfo *root,
 RelOptInfo *joinrel,
 RelOptInfo *outerrel,
 RelOptInfo *innerrel,
 JoinType jointype,
 JoinPathExtraData
 *extra);
extern PGDLLIMPORT set_join_pathlist_hook_type set_join_pathlist_hook;

This hook will be invoked repeatedly for the same join relation, with different combinations of inner and
outer relations; it is the responsibility of the hook to minimize duplicated work.

59.1.1. Custom Scan Path Callbacks

Plan *(*PlanCustomPath) (PlannerInfo *root,
 RelOptInfo *rel,
 CustomPath *best_path,
 List *tlist,
 List *clauses,
 List *custom_plans);

Convert a custom path to a finished plan. The return value will generally be a CustomScan object, which
the callback must allocate and initialize. See Section 59.2 for more details.

59.2. Creating Custom Scan Plans
A custom scan is represented in a finished plan tree using the following structure:

typedef struct CustomScan
{
 Scan scan;
 uint32 flags;
 List *custom_plans;
 List *custom_exprs;
 List *custom_private;
 List *custom_scan_tlist;
 Bitmapset *custom_relids;
 const CustomScanMethods *methods;
} CustomScan;

scan must be initialized as for any other scan, including estimated costs, target lists, qualifications, and
so on. flags is a bit mask with the same meaning as in CustomPath. custom_plans can be used

2301

Writing A Custom Scan Provider

to store child Plan nodes. custom_exprs should be used to store expression trees that will need to be
fixed up by setrefs.c and subselect.c, while custom_private should be used to store other
private data that is only used by the custom scan provider itself. custom_scan_tlist can be NIL when
scanning a base relation, indicating that the custom scan returns scan tuples that match the base relation's
row type. Otherwise it is a target list describing the actual scan tuples. custom_scan_tlist must be
provided for joins, and could be provided for scans if the custom scan provider can compute some non-
Var expressions. custom_relids is set by the core code to the set of relations (range table indexes) that
this scan node handles; except when this scan is replacing a join, it will have only one member. methods
must point to a (usually statically allocated) object implementing the required custom scan methods, which
are further detailed below.

When a CustomScan scans a single relation, scan.scanrelid must be the range table index of the
table to be scanned. When it replaces a join, scan.scanrelid should be zero.

Plan trees must be able to be duplicated using copyObject, so all the data stored within the “custom”
fields must consist of nodes that that function can handle. Furthermore, custom scan providers cannot
substitute a larger structure that embeds a CustomScan for the structure itself, as would be possible for
a CustomPath or CustomScanState.

59.2.1. Custom Scan Plan Callbacks

Node *(*CreateCustomScanState) (CustomScan *cscan);

Allocate a CustomScanState for this CustomScan. The actual allocation will often be larger than
required for an ordinary CustomScanState, because many providers will wish to embed that as the
first field of a larger structure. The value returned must have the node tag and methods set appropriately,
but other fields should be left as zeroes at this stage; after ExecInitCustomScan performs basic
initialization, the BeginCustomScan callback will be invoked to give the custom scan provider a chance
to do whatever else is needed.

59.3. Executing Custom Scans
When a CustomScan is executed, its execution state is represented by a CustomScanState, which
is declared as follows:

typedef struct CustomScanState
{
 ScanState ss;
 uint32 flags;
 const CustomExecMethods *methods;
} CustomScanState;

ss is initialized as for any other scan state, except that if the scan is for a join rather than a base
relation, ss.ss_currentRelation is left NULL. flags is a bit mask with the same meaning as
in CustomPath and CustomScan. methods must point to a (usually statically allocated) object
implementing the required custom scan state methods, which are further detailed below. Typically,
a CustomScanState, which need not support copyObject, will actually be a larger structure
embedding the above as its first member.

59.3.1. Custom Scan Execution Callbacks

2302

Writing A Custom Scan Provider

void (*BeginCustomScan) (CustomScanState *node,
 EState *estate,
 int eflags);

Complete initialization of the supplied CustomScanState. Standard fields have been initialized by
ExecInitCustomScan, but any private fields should be initialized here.

TupleTableSlot *(*ExecCustomScan) (CustomScanState *node);

Fetch the next scan tuple. If any tuples remain, it should fill ps_ResultTupleSlot with the next tuple
in the current scan direction, and then return the tuple slot. If not, NULL or an empty slot should be returned.

void (*EndCustomScan) (CustomScanState *node);

Clean up any private data associated with the CustomScanState. This method is required, but it does
not need to do anything if there is no associated data or it will be cleaned up automatically.

void (*ReScanCustomScan) (CustomScanState *node);

Rewind the current scan to the beginning and prepare to rescan the relation.

void (*MarkPosCustomScan) (CustomScanState *node);

Save the current scan position so that it can subsequently be restored by the
RestrPosCustomScan callback. This callback is optional, and need only be supplied if the
CUSTOMPATH_SUPPORT_MARK_RESTORE flag is set.

void (*RestrPosCustomScan) (CustomScanState *node);

Restore the previous scan position as saved by the MarkPosCustomScan callback. This callback is
optional, and need only be supplied if the CUSTOMPATH_SUPPORT_MARK_RESTORE flag is set.

Size (*EstimateDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt);

Estimate the amount of dynamic shared memory that will be required for parallel operation. This may be
higher than the amount that will actually be used, but it must not be lower. The return value is in bytes. This
callback is optional, and need only be supplied if this custom scan provider supports parallel execution.

void (*InitializeDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt,
 void *coordinate);

Initialize the dynamic shared memory that will be required for parallel operation. coordinate points to
a shared memory area of size equal to the return value of EstimateDSMCustomScan. This callback is
optional, and need only be supplied if this custom scan provider supports parallel execution.

void (*ReInitializeDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt,

2303

Writing A Custom Scan Provider

 void *coordinate);

Re-initialize the dynamic shared memory required for parallel operation when the custom-scan plan node
is about to be re-scanned. This callback is optional, and need only be supplied if this custom scan provider
supports parallel execution. Recommended practice is that this callback reset only shared state, while
the ReScanCustomScan callback resets only local state. Currently, this callback will be called before
ReScanCustomScan, but it's best not to rely on that ordering.

void (*InitializeWorkerCustomScan) (CustomScanState *node,
 shm_toc *toc,
 void *coordinate);

Initialize a parallel worker's local state based on the shared state set up by the leader during
InitializeDSMCustomScan. This callback is optional, and need only be supplied if this custom scan
provider supports parallel execution.

void (*ShutdownCustomScan) (CustomScanState *node);

Release resources when it is anticipated the node will not be executed to completion. This is not called
in all cases; sometimes, EndCustomScan may be called without this function having been called first.
Since the DSM segment used by parallel query is destroyed just after this callback is invoked, custom scan
providers that wish to take some action before the DSM segment goes away should implement this method.

void (*ExplainCustomScan) (CustomScanState *node,
 List *ancestors,
 ExplainState *es);

Output additional information for EXPLAIN of a custom-scan plan node. This callback is optional.
Common data stored in the ScanState, such as the target list and scan relation, will be shown even
without this callback, but the callback allows the display of additional, private state.

2304

Chapter 60. Genetic Query Optimizer

Author

Written by Martin Utesch (<utesch@aut.tu-freiberg.de>) for the Institute of Automatic
Control at the University of Mining and Technology in Freiberg, Germany.

60.1. Query Handling as a Complex
Optimization Problem

Among all relational operators the most difficult one to process and optimize is the join. The number
of possible query plans grows exponentially with the number of joins in the query. Further optimization
effort is caused by the support of a variety of join methods (e.g., nested loop, hash join, merge join in
PostgreSQL) to process individual joins and a diversity of indexes (e.g., B-tree, hash, GiST and GIN in
PostgreSQL) as access paths for relations.

The normal PostgreSQL query optimizer performs a near-exhaustive search over the space of alternative
strategies. This algorithm, first introduced in IBM's System R database, produces a near-optimal join order,
but can take an enormous amount of time and memory space when the number of joins in the query grows
large. This makes the ordinary PostgreSQL query optimizer inappropriate for queries that join a large
number of tables.

The Institute of Automatic Control at the University of Mining and Technology, in Freiberg, Germany,
encountered some problems when it wanted to use PostgreSQL as the backend for a decision support
knowledge based system for the maintenance of an electrical power grid. The DBMS needed to handle
large join queries for the inference machine of the knowledge based system. The number of joins in these
queries made using the normal query optimizer infeasible.

In the following we describe the implementation of a genetic algorithm to solve the join ordering problem
in a manner that is efficient for queries involving large numbers of joins.

60.2. Genetic Algorithms
The genetic algorithm (GA) is a heuristic optimization method which operates through randomized search.
The set of possible solutions for the optimization problem is considered as a population of individuals.
The degree of adaptation of an individual to its environment is specified by its fitness.

The coordinates of an individual in the search space are represented by chromosomes, in essence a set of
character strings. A gene is a subsection of a chromosome which encodes the value of a single parameter
being optimized. Typical encodings for a gene could be binary or integer.

Through simulation of the evolutionary operations recombination, mutation, and selection new generations
of search points are found that show a higher average fitness than their ancestors.

According to the comp.ai.genetic FAQ it cannot be stressed too strongly that a GA is not a pure random
search for a solution to a problem. A GA uses stochastic processes, but the result is distinctly non-random
(better than random).

2305

Genetic Query Optimizer

Figure 60.1. Structured Diagram of a Genetic Algorithm

P(t) generation of ancestors at a time t

P''(t) generation of descendants at a time t

+===+
|>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<|
+===+
| INITIALIZE t := 0 |
+===+
| INITIALIZE P(t) |
+===+
| evaluate FITNESS of P(t) |
+===+
| while not STOPPING CRITERION do |
| +-------------------------------------+
| | P'(t) := RECOMBINATION{P(t)} |
| +-------------------------------------+
| | P''(t) := MUTATION{P'(t)} |
| +-------------------------------------+
| | P(t+1) := SELECTION{P''(t) + P(t)} |
| +-------------------------------------+
| | evaluate FITNESS of P''(t) |
| +-------------------------------------+
| | t := t + 1 |
+===+=====================================+

60.3. Genetic Query Optimization (GEQO) in
PostgreSQL

The GEQO module approaches the query optimization problem as though it were the well-known traveling
salesman problem (TSP). Possible query plans are encoded as integer strings. Each string represents the
join order from one relation of the query to the next. For example, the join tree

 /\
 /\ 2
 /\ 3
4 1

is encoded by the integer string '4-1-3-2', which means, first join relation '4' and '1', then '3', and then '2',
where 1, 2, 3, 4 are relation IDs within the PostgreSQL optimizer.

Specific characteristics of the GEQO implementation in PostgreSQL are:

• Usage of a steady state GA (replacement of the least fit individuals in a population, not whole-
generational replacement) allows fast convergence towards improved query plans. This is essential for
query handling with reasonable time;

• Usage of edge recombination crossover which is especially suited to keep edge losses low for the
solution of the TSP by means of a GA;

• Mutation as genetic operator is deprecated so that no repair mechanisms are needed to generate legal
TSP tours.

2306

Genetic Query Optimizer

Parts of the GEQO module are adapted from D. Whitley's Genitor algorithm.

The GEQO module allows the PostgreSQL query optimizer to support large join queries effectively
through non-exhaustive search.

60.3.1. Generating Possible Plans with GEQO
The GEQO planning process uses the standard planner code to generate plans for scans of individual
relations. Then join plans are developed using the genetic approach. As shown above, each candidate
join plan is represented by a sequence in which to join the base relations. In the initial stage, the GEQO
code simply generates some possible join sequences at random. For each join sequence considered, the
standard planner code is invoked to estimate the cost of performing the query using that join sequence.
(For each step of the join sequence, all three possible join strategies are considered; and all the initially-
determined relation scan plans are available. The estimated cost is the cheapest of these possibilities.) Join
sequences with lower estimated cost are considered “more fit” than those with higher cost. The genetic
algorithm discards the least fit candidates. Then new candidates are generated by combining genes of more-
fit candidates — that is, by using randomly-chosen portions of known low-cost join sequences to create
new sequences for consideration. This process is repeated until a preset number of join sequences have
been considered; then the best one found at any time during the search is used to generate the finished plan.

This process is inherently nondeterministic, because of the randomized choices made during both the initial
population selection and subsequent “mutation” of the best candidates. To avoid surprising changes of
the selected plan, each run of the GEQO algorithm restarts its random number generator with the current
geqo_seed parameter setting. As long as geqo_seed and the other GEQO parameters are kept fixed, the
same plan will be generated for a given query (and other planner inputs such as statistics). To experiment
with different search paths, try changing geqo_seed.

60.3.2. Future Implementation Tasks for PostgreSQL
GEQO

Work is still needed to improve the genetic algorithm parameter settings. In
file src/backend/optimizer/geqo/geqo_main.c, routines gimme_pool_size and
gimme_number_generations, we have to find a compromise for the parameter settings to satisfy
two competing demands:

• Optimality of the query plan
• Computing time

In the current implementation, the fitness of each candidate join sequence is estimated by running the
standard planner's join selection and cost estimation code from scratch. To the extent that different
candidates use similar sub-sequences of joins, a great deal of work will be repeated. This could be
made significantly faster by retaining cost estimates for sub-joins. The problem is to avoid expending
unreasonable amounts of memory on retaining that state.

At a more basic level, it is not clear that solving query optimization with a GA algorithm designed for TSP
is appropriate. In the TSP case, the cost associated with any substring (partial tour) is independent of the
rest of the tour, but this is certainly not true for query optimization. Thus it is questionable whether edge
recombination crossover is the most effective mutation procedure.

60.4. Further Reading
The following resources contain additional information about genetic algorithms:

2307

Genetic Query Optimizer

• The Hitch-Hiker's Guide to Evolutionary Computation1, (FAQ for news://comp.ai.genetic)

• Evolutionary Computation and its application to art and design2, by Craig Reynolds

• [elma04]

• [fong]

1 http://www.aip.de/~ast/EvolCompFAQ/
2 http://www.red3d.com/cwr/evolve.html

2308

http://www.aip.de/~ast/EvolCompFAQ/
news://comp.ai.genetic
http://www.red3d.com/cwr/evolve.html
http://www.aip.de/~ast/EvolCompFAQ/
http://www.red3d.com/cwr/evolve.html

Chapter 61. Index Access Method
Interface Definition

This chapter defines the interface between the core PostgreSQL system and index access methods, which
manage individual index types. The core system knows nothing about indexes beyond what is specified
here, so it is possible to develop entirely new index types by writing add-on code.

All indexes in PostgreSQL are what are known technically as secondary indexes; that is, the index is
physically separate from the table file that it describes. Each index is stored as its own physical relation
and so is described by an entry in the pg_class catalog. The contents of an index are entirely under the
control of its index access method. In practice, all index access methods divide indexes into standard-size
pages so that they can use the regular storage manager and buffer manager to access the index contents. (All
the existing index access methods furthermore use the standard page layout described in Section 68.6, and
most use the same format for index tuple headers; but these decisions are not forced on an access method.)

An index is effectively a mapping from some data key values to tuple identifiers, or TIDs, of row versions
(tuples) in the index's parent table. A TID consists of a block number and an item number within that block
(see Section 68.6). This is sufficient information to fetch a particular row version from the table. Indexes
are not directly aware that under MVCC, there might be multiple extant versions of the same logical row;
to an index, each tuple is an independent object that needs its own index entry. Thus, an update of a row
always creates all-new index entries for the row, even if the key values did not change. (HOT tuples are
an exception to this statement; but indexes do not deal with those, either.) Index entries for dead tuples are
reclaimed (by vacuuming) when the dead tuples themselves are reclaimed.

61.1. Basic API Structure for Indexes
Each index access method is described by a row in the pg_am system catalog. The pg_am entry specifies
a name and a handler function for the access method. These entries can be created and deleted using the
CREATE ACCESS METHOD and DROP ACCESS METHOD SQL commands.

An index access method handler function must be declared to accept a single argument of type internal
and to return the pseudo-type index_am_handler. The argument is a dummy value that simply serves
to prevent handler functions from being called directly from SQL commands. The result of the function
must be a palloc'd struct of type IndexAmRoutine, which contains everything that the core code needs
to know to make use of the index access method. The IndexAmRoutine struct, also called the access
method's API struct, includes fields specifying assorted fixed properties of the access method, such as
whether it can support multicolumn indexes. More importantly, it contains pointers to support functions
for the access method, which do all of the real work to access indexes. These support functions are
plain C functions and are not visible or callable at the SQL level. The support functions are described in
Section 61.2.

The structure IndexAmRoutine is defined thus:

typedef struct IndexAmRoutine
{
 NodeTag type;

 /*
 * Total number of strategies (operators) by which we can
 traverse/search

2309

Index Access Method
Interface Definition

 * this AM. Zero if AM does not have a fixed set of strategy
 assignments.
 */
 uint16 amstrategies;
 /* total number of support functions that this AM uses */
 uint16 amsupport;
 /* does AM support ORDER BY indexed column's value? */
 bool amcanorder;
 /* does AM support ORDER BY result of an operator on indexed
 column? */
 bool amcanorderbyop;
 /* does AM support backward scanning? */
 bool amcanbackward;
 /* does AM support UNIQUE indexes? */
 bool amcanunique;
 /* does AM support multi-column indexes? */
 bool amcanmulticol;
 /* does AM require scans to have a constraint on the first index
 column? */
 bool amoptionalkey;
 /* does AM handle ScalarArrayOpExpr quals? */
 bool amsearcharray;
 /* does AM handle IS NULL/IS NOT NULL quals? */
 bool amsearchnulls;
 /* can index storage data type differ from column data type? */
 bool amstorage;
 /* can an index of this type be clustered on? */
 bool amclusterable;
 /* does AM handle predicate locks? */
 bool ampredlocks;
 /* does AM support parallel scan? */
 bool amcanparallel;
 /* does AM support columns included with clause INCLUDE? */
 bool amcaninclude;
 /* type of data stored in index, or InvalidOid if variable */
 Oid amkeytype;

 /* interface functions */
 ambuild_function ambuild;
 ambuildempty_function ambuildempty;
 aminsert_function aminsert;
 ambulkdelete_function ambulkdelete;
 amvacuumcleanup_function amvacuumcleanup;
 amcanreturn_function amcanreturn; /* can be NULL */
 amcostestimate_function amcostestimate;
 amoptions_function amoptions;
 amproperty_function amproperty; /* can be NULL */
 amvalidate_function amvalidate;
 ambeginscan_function ambeginscan;
 amrescan_function amrescan;
 amgettuple_function amgettuple; /* can be NULL */
 amgetbitmap_function amgetbitmap; /* can be NULL */
 amendscan_function amendscan;
 ammarkpos_function ammarkpos; /* can be NULL */

2310

Index Access Method
Interface Definition

 amrestrpos_function amrestrpos; /* can be NULL */

 /* interface functions to support parallel index scans */
 amestimateparallelscan_function amestimateparallelscan; /* can
 be NULL */
 aminitparallelscan_function aminitparallelscan; /* can be NULL
 */
 amparallelrescan_function amparallelrescan; /* can be NULL */
} IndexAmRoutine;

To be useful, an index access method must also have one or more operator families and operator classes
defined in pg_opfamily, pg_opclass, pg_amop, and pg_amproc. These entries allow the planner
to determine what kinds of query qualifications can be used with indexes of this access method. Operator
families and classes are described in Section 38.15, which is prerequisite material for reading this chapter.

An individual index is defined by a pg_class entry that describes it as a physical relation, plus a
pg_index entry that shows the logical content of the index — that is, the set of index columns it has and
the semantics of those columns, as captured by the associated operator classes. The index columns (key
values) can be either simple columns of the underlying table or expressions over the table rows. The index
access method normally has no interest in where the index key values come from (it is always handed
precomputed key values) but it will be very interested in the operator class information in pg_index.
Both of these catalog entries can be accessed as part of the Relation data structure that is passed to
all operations on the index.

Some of the flag fields of IndexAmRoutine have nonobvious implications. The requirements of
amcanunique are discussed in Section 61.5. The amcanmulticol flag asserts that the access method
supports multicolumn indexes, while amoptionalkey asserts that it allows scans where no indexable
restriction clause is given for the first index column. When amcanmulticol is false, amoptionalkey
essentially says whether the access method supports full-index scans without any restriction clause. Access
methods that support multiple index columns must support scans that omit restrictions on any or all of
the columns after the first; however they are permitted to require some restriction to appear for the first
index column, and this is signaled by setting amoptionalkey false. One reason that an index AM might
set amoptionalkey false is if it doesn't index null values. Since most indexable operators are strict
and hence cannot return true for null inputs, it is at first sight attractive to not store index entries for null
values: they could never be returned by an index scan anyway. However, this argument fails when an
index scan has no restriction clause for a given index column. In practice this means that indexes that have
amoptionalkey true must index nulls, since the planner might decide to use such an index with no
scan keys at all. A related restriction is that an index access method that supports multiple index columns
must support indexing null values in columns after the first, because the planner will assume the index can
be used for queries that do not restrict these columns. For example, consider an index on (a,b) and a query
with WHERE a = 4. The system will assume the index can be used to scan for rows with a = 4, which
is wrong if the index omits rows where b is null. It is, however, OK to omit rows where the first indexed
column is null. An index access method that does index nulls may also set amsearchnulls, indicating
that it supports IS NULL and IS NOT NULL clauses as search conditions.

61.2. Index Access Method Functions
The index construction and maintenance functions that an index access method must provide in
IndexAmRoutine are:

IndexBuildResult *
ambuild (Relation heapRelation,
 Relation indexRelation,

2311

Index Access Method
Interface Definition

 IndexInfo *indexInfo);

Build a new index. The index relation has been physically created, but is empty. It must be filled in with
whatever fixed data the access method requires, plus entries for all tuples already existing in the table.
Ordinarily the ambuild function will call IndexBuildHeapScan() to scan the table for existing
tuples and compute the keys that need to be inserted into the index. The function must return a palloc'd
struct containing statistics about the new index.

void
ambuildempty (Relation indexRelation);

Build an empty index, and write it to the initialization fork (INIT_FORKNUM) of the given relation. This
method is called only for unlogged indexes; the empty index written to the initialization fork will be copied
over the main relation fork on each server restart.

bool
aminsert (Relation indexRelation,
 Datum *values,
 bool *isnull,
 ItemPointer heap_tid,
 Relation heapRelation,
 IndexUniqueCheck checkUnique,
 IndexInfo *indexInfo);

Insert a new tuple into an existing index. The values and isnull arrays give the key values to be
indexed, and heap_tid is the TID to be indexed. If the access method supports unique indexes (its
amcanunique flag is true) then checkUnique indicates the type of uniqueness check to perform. This
varies depending on whether the unique constraint is deferrable; see Section 61.5 for details. Normally the
access method only needs the heapRelation parameter when performing uniqueness checking (since
then it will have to look into the heap to verify tuple liveness).

The function's Boolean result value is significant only when checkUnique is
UNIQUE_CHECK_PARTIAL. In this case a true result means the new entry is known unique, whereas
false means it might be non-unique (and a deferred uniqueness check must be scheduled). For other cases
a constant false result is recommended.

Some indexes might not index all tuples. If the tuple is not to be indexed, aminsert should just return
without doing anything.

If the index AM wishes to cache data across successive index insertions within a SQL statement, it
can allocate space in indexInfo->ii_Context and store a pointer to the data in indexInfo-
>ii_AmCache (which will be NULL initially).

IndexBulkDeleteResult *
ambulkdelete (IndexVacuumInfo *info,
 IndexBulkDeleteResult *stats,
 IndexBulkDeleteCallback callback,
 void *callback_state);

Delete tuple(s) from the index. This is a “bulk delete” operation that is intended to be implemented by
scanning the whole index and checking each entry to see if it should be deleted. The passed-in callback
function must be called, in the style callback(TID, callback_state) returns bool, to
determine whether any particular index entry, as identified by its referenced TID, is to be deleted. Must

2312

Index Access Method
Interface Definition

return either NULL or a palloc'd struct containing statistics about the effects of the deletion operation. It
is OK to return NULL if no information needs to be passed on to amvacuumcleanup.

Because of limited maintenance_work_mem, ambulkdelete might need to be called more than
once when many tuples are to be deleted. The stats argument is the result of the previous call for
this index (it is NULL for the first call within a VACUUM operation). This allows the AM to accumulate
statistics across the whole operation. Typically, ambulkdelete will modify and return the same struct
if the passed stats is not null.

IndexBulkDeleteResult *
amvacuumcleanup (IndexVacuumInfo *info,
 IndexBulkDeleteResult *stats);

Clean up after a VACUUM operation (zero or more ambulkdelete calls). This does not have to do
anything beyond returning index statistics, but it might perform bulk cleanup such as reclaiming empty
index pages. stats is whatever the last ambulkdelete call returned, or NULL if ambulkdelete
was not called because no tuples needed to be deleted. If the result is not NULL it must be a palloc'd struct.
The statistics it contains will be used to update pg_class, and will be reported by VACUUM if VERBOSE
is given. It is OK to return NULL if the index was not changed at all during the VACUUM operation, but
otherwise correct stats should be returned.

As of PostgreSQL 8.4, amvacuumcleanup will also be called at completion of an ANALYZE operation.
In this case stats is always NULL and any return value will be ignored. This case can be distinguished
by checking info->analyze_only. It is recommended that the access method do nothing except post-
insert cleanup in such a call, and that only in an autovacuum worker process.

bool
amcanreturn (Relation indexRelation, int attno);

Check whether the index can support index-only scans on the given column, by returning the indexed
column values for an index entry in the form of an IndexTuple. The attribute number is 1-based, i.e.
the first column's attno is 1. Returns true if supported, else false. If the access method does not support
index-only scans at all, the amcanreturn field in its IndexAmRoutine struct can be set to NULL.

void
amcostestimate (PlannerInfo *root,
 IndexPath *path,
 double loop_count,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity,
 double *indexCorrelation,
 double *indexPages);

Estimate the costs of an index scan. This function is described fully in Section 61.6, below.

bytea *
amoptions (ArrayType *reloptions,
 bool validate);

Parse and validate the reloptions array for an index. This is called only when a non-null reloptions array
exists for the index. reloptions is a text array containing entries of the form name=value. The

2313

Index Access Method
Interface Definition

function should construct a bytea value, which will be copied into the rd_options field of the index's
relcache entry. The data contents of the bytea value are open for the access method to define; most of the
standard access methods use struct StdRdOptions. When validate is true, the function should report
a suitable error message if any of the options are unrecognized or have invalid values; when validate
is false, invalid entries should be silently ignored. (validate is false when loading options already
stored in pg_catalog; an invalid entry could only be found if the access method has changed its rules
for options, and in that case ignoring obsolete entries is appropriate.) It is OK to return NULL if default
behavior is wanted.

bool
amproperty (Oid index_oid, int attno,
 IndexAMProperty prop, const char *propname,
 bool *res, bool *isnull);

The amproperty method allows index access methods to override the default behavior of
pg_index_column_has_property and related functions. If the access method does not have
any special behavior for index property inquiries, the amproperty field in its IndexAmRoutine
struct can be set to NULL. Otherwise, the amproperty method will be called with index_oid and
attno both zero for pg_indexam_has_property calls, or with index_oid valid and attno
zero for pg_index_has_property calls, or with index_oid valid and attno greater than zero
for pg_index_column_has_property calls. prop is an enum value identifying the property being
tested, while propname is the original property name string. If the core code does not recognize the
property name then prop is AMPROP_UNKNOWN. Access methods can define custom property names by
checking propname for a match (use pg_strcasecmp to match, for consistency with the core code);
for names known to the core code, it's better to inspect prop. If the amproperty method returns true
then it has determined the property test result: it must set *res to the boolean value to return, or set
*isnull to true to return a NULL. (Both of the referenced variables are initialized to false before
the call.) If the amproperty method returns false then the core code will proceed with its normal
logic for determining the property test result.

Access methods that support ordering operators should implement AMPROP_DISTANCE_ORDERABLE
property testing, as the core code does not know how to do that and will return NULL. It may also be
advantageous to implement AMPROP_RETURNABLE testing, if that can be done more cheaply than by
opening the index and calling amcanreturn, which is the core code's default behavior. The default
behavior should be satisfactory for all other standard properties.

bool
amvalidate (Oid opclassoid);

Validate the catalog entries for the specified operator class, so far as the access method can reasonably
do that. For example, this might include testing that all required support functions are provided. The
amvalidate function must return false if the opclass is invalid. Problems should be reported with
ereport messages.

The purpose of an index, of course, is to support scans for tuples matching an indexable WHERE condition,
often called a qualifier or scan key. The semantics of index scanning are described more fully in
Section 61.3, below. An index access method can support “plain” index scans, “bitmap” index scans, or
both. The scan-related functions that an index access method must or may provide are:

IndexScanDesc
ambeginscan (Relation indexRelation,
 int nkeys,
 int norderbys);

2314

Index Access Method
Interface Definition

Prepare for an index scan. The nkeys and norderbys parameters indicate the number of quals
and ordering operators that will be used in the scan; these may be useful for space allocation
purposes. Note that the actual values of the scan keys aren't provided yet. The result must be a
palloc'd struct. For implementation reasons the index access method must create this struct by calling
RelationGetIndexScan(). In most cases ambeginscan does little beyond making that call and
perhaps acquiring locks; the interesting parts of index-scan startup are in amrescan.

void
amrescan (IndexScanDesc scan,
 ScanKey keys,
 int nkeys,
 ScanKey orderbys,
 int norderbys);

Start or restart an index scan, possibly with new scan keys. (To restart using previously-passed keys, NULL
is passed for keys and/or orderbys.) Note that it is not allowed for the number of keys or order-by
operators to be larger than what was passed to ambeginscan. In practice the restart feature is used when
a new outer tuple is selected by a nested-loop join and so a new key comparison value is needed, but the
scan key structure remains the same.

boolean
amgettuple (IndexScanDesc scan,
 ScanDirection direction);

Fetch the next tuple in the given scan, moving in the given direction (forward or backward in the index).
Returns true if a tuple was obtained, false if no matching tuples remain. In the true case the tuple TID is
stored into the scan structure. Note that “success” means only that the index contains an entry that matches
the scan keys, not that the tuple necessarily still exists in the heap or will pass the caller's snapshot test.
On success, amgettuple must also set scan->xs_recheck to true or false. False means it is certain
that the index entry matches the scan keys. true means this is not certain, and the conditions represented by
the scan keys must be rechecked against the heap tuple after fetching it. This provision supports “lossy”
index operators. Note that rechecking will extend only to the scan conditions; a partial index predicate (if
any) is never rechecked by amgettuple callers.

If the index supports index-only scans (i.e., amcanreturn returns true for it), then on success the AM
must also check scan->xs_want_itup, and if that is true it must return the originally indexed data
for the index entry. The data can be returned in the form of an IndexTuple pointer stored at scan-
>xs_itup, with tuple descriptor scan->xs_itupdesc; or in the form of a HeapTuple pointer
stored at scan->xs_hitup, with tuple descriptor scan->xs_hitupdesc. (The latter format should
be used when reconstructing data that might possibly not fit into an IndexTuple.) In either case,
management of the data referenced by the pointer is the access method's responsibility. The data must
remain good at least until the next amgettuple, amrescan, or amendscan call for the scan.

The amgettuple function need only be provided if the access method supports “plain” index scans. If
it doesn't, the amgettuple field in its IndexAmRoutine struct must be set to NULL.

int64
amgetbitmap (IndexScanDesc scan,
 TIDBitmap *tbm);

Fetch all tuples in the given scan and add them to the caller-supplied TIDBitmap (that is, OR the set of
tuple IDs into whatever set is already in the bitmap). The number of tuples fetched is returned (this might
be just an approximate count, for instance some AMs do not detect duplicates). While inserting tuple IDs

2315

Index Access Method
Interface Definition

into the bitmap, amgetbitmap can indicate that rechecking of the scan conditions is required for specific
tuple IDs. This is analogous to the xs_recheck output parameter of amgettuple. Note: in the current
implementation, support for this feature is conflated with support for lossy storage of the bitmap itself, and
therefore callers recheck both the scan conditions and the partial index predicate (if any) for recheckable
tuples. That might not always be true, however. amgetbitmap and amgettuple cannot be used in the
same index scan; there are other restrictions too when using amgetbitmap, as explained in Section 61.3.

The amgetbitmap function need only be provided if the access method supports “bitmap” index scans.
If it doesn't, the amgetbitmap field in its IndexAmRoutine struct must be set to NULL.

void
amendscan (IndexScanDesc scan);

End a scan and release resources. The scan struct itself should not be freed, but any locks or pins
taken internally by the access method must be released, as well as any other memory allocated by
ambeginscan and other scan-related functions.

void
ammarkpos (IndexScanDesc scan);

Mark current scan position. The access method need only support one remembered scan position per scan.

The ammarkpos function need only be provided if the access method supports ordered scans. If it doesn't,
the ammarkpos field in its IndexAmRoutine struct may be set to NULL.

void
amrestrpos (IndexScanDesc scan);

Restore the scan to the most recently marked position.

The amrestrpos function need only be provided if the access method supports ordered scans. If it
doesn't, the amrestrpos field in its IndexAmRoutine struct may be set to NULL.

In addition to supporting ordinary index scans, some types of index may wish to support parallel index
scans, which allow multiple backends to cooperate in performing an index scan. The index access method
should arrange things so that each cooperating process returns a subset of the tuples that would be
performed by an ordinary, non-parallel index scan, but in such a way that the union of those subsets is
equal to the set of tuples that would be returned by an ordinary, non-parallel index scan. Furthermore,
while there need not be any global ordering of tuples returned by a parallel scan, the ordering of that subset
of tuples returned within each cooperating backend must match the requested ordering. The following
functions may be implemented to support parallel index scans:

Size
amestimateparallelscan (void);

Estimate and return the number of bytes of dynamic shared memory which the access method will be
needed to perform a parallel scan. (This number is in addition to, not in lieu of, the amount of space needed
for AM-independent data in ParallelIndexScanDescData.)

It is not necessary to implement this function for access methods which do not support parallel scans or
for which the number of additional bytes of storage required is zero.

void

2316

Index Access Method
Interface Definition

aminitparallelscan (void *target);

This function will be called to initialize dynamic shared memory at the beginning of a parallel scan.
target will point to at least the number of bytes previously returned by amestimateparallelscan,
and this function may use that amount of space to store whatever data it wishes.

It is not necessary to implement this function for access methods which do not support parallel scans or in
cases where the shared memory space required needs no initialization.

void
amparallelrescan (IndexScanDesc scan);

This function, if implemented, will be called when a parallel index scan must be restarted. It should
reset any shared state set up by aminitparallelscan such that the scan will be restarted from the
beginning.

61.3. Index Scanning
In an index scan, the index access method is responsible for regurgitating the TIDs of all the tuples it has
been told about that match the scan keys. The access method is not involved in actually fetching those
tuples from the index's parent table, nor in determining whether they pass the scan's time qualification
test or other conditions.

A scan key is the internal representation of a WHERE clause of the form index_key operator
constant, where the index key is one of the columns of the index and the operator is one of the members
of the operator family associated with that index column. An index scan has zero or more scan keys, which
are implicitly ANDed — the returned tuples are expected to satisfy all the indicated conditions.

The access method can report that the index is lossy, or requires rechecks, for a particular query. This
implies that the index scan will return all the entries that pass the scan key, plus possibly additional entries
that do not. The core system's index-scan machinery will then apply the index conditions again to the heap
tuple to verify whether or not it really should be selected. If the recheck option is not specified, the index
scan must return exactly the set of matching entries.

Note that it is entirely up to the access method to ensure that it correctly finds all and only the entries
passing all the given scan keys. Also, the core system will simply hand off all the WHERE clauses that
match the index keys and operator families, without any semantic analysis to determine whether they are
redundant or contradictory. As an example, given WHERE x > 4 AND x > 14 where x is a b-tree
indexed column, it is left to the b-tree amrescan function to realize that the first scan key is redundant
and can be discarded. The extent of preprocessing needed during amrescan will depend on the extent to
which the index access method needs to reduce the scan keys to a “normalized” form.

Some access methods return index entries in a well-defined order, others do not. There are actually two
different ways that an access method can support sorted output:

• Access methods that always return entries in the natural ordering of their data (such as btree) should
set amcanorder to true. Currently, such access methods must use btree-compatible strategy numbers
for their equality and ordering operators.

• Access methods that support ordering operators should set amcanorderbyop to true. This indicates
that the index is capable of returning entries in an order satisfying ORDER BY index_key operator
constant. Scan modifiers of that form can be passed to amrescan as described previously.

The amgettuple function has a direction argument, which can be either
ForwardScanDirection (the normal case) or BackwardScanDirection. If the first call after

2317

Index Access Method
Interface Definition

amrescan specifies BackwardScanDirection, then the set of matching index entries is to be
scanned back-to-front rather than in the normal front-to-back direction, so amgettuple must return the
last matching tuple in the index, rather than the first one as it normally would. (This will only occur for
access methods that set amcanorder to true.) After the first call, amgettuple must be prepared to
advance the scan in either direction from the most recently returned entry. (But if amcanbackward is
false, all subsequent calls will have the same direction as the first one.)

Access methods that support ordered scans must support “marking” a position in a scan and later returning
to the marked position. The same position might be restored multiple times. However, only one position
need be remembered per scan; a new ammarkpos call overrides the previously marked position. An
access method that does not support ordered scans need not provide ammarkpos and amrestrpos
functions in IndexAmRoutine; set those pointers to NULL instead.

Both the scan position and the mark position (if any) must be maintained consistently in the face of
concurrent insertions or deletions in the index. It is OK if a freshly-inserted entry is not returned by a
scan that would have found the entry if it had existed when the scan started, or for the scan to return
such an entry upon rescanning or backing up even though it had not been returned the first time through.
Similarly, a concurrent delete might or might not be reflected in the results of a scan. What is important is
that insertions or deletions not cause the scan to miss or multiply return entries that were not themselves
being inserted or deleted.

If the index stores the original indexed data values (and not some lossy representation of them), it is useful
to support index-only scans, in which the index returns the actual data not just the TID of the heap tuple.
This will only avoid I/O if the visibility map shows that the TID is on an all-visible page; else the heap
tuple must be visited anyway to check MVCC visibility. But that is no concern of the access method's.

Instead of using amgettuple, an index scan can be done with amgetbitmap to fetch all tuples in
one call. This can be noticeably more efficient than amgettuple because it allows avoiding lock/unlock
cycles within the access method. In principle amgetbitmap should have the same effects as repeated
amgettuple calls, but we impose several restrictions to simplify matters. First of all, amgetbitmap
returns all tuples at once and marking or restoring scan positions isn't supported. Secondly, the tuples are
returned in a bitmap which doesn't have any specific ordering, which is why amgetbitmap doesn't take
a direction argument. (Ordering operators will never be supplied for such a scan, either.) Also, there
is no provision for index-only scans with amgetbitmap, since there is no way to return the contents
of index tuples. Finally, amgetbitmap does not guarantee any locking of the returned tuples, with
implications spelled out in Section 61.4.

Note that it is permitted for an access method to implement only amgetbitmap and not amgettuple,
or vice versa, if its internal implementation is unsuited to one API or the other.

61.4. Index Locking Considerations
Index access methods must handle concurrent updates of the index by multiple processes. The
core PostgreSQL system obtains AccessShareLock on the index during an index scan, and
RowExclusiveLock when updating the index (including plain VACUUM). Since these lock types do
not conflict, the access method is responsible for handling any fine-grained locking it might need. An
exclusive lock on the index as a whole will be taken only during index creation, destruction, or REINDEX.

Building an index type that supports concurrent updates usually requires extensive and subtle analysis of
the required behavior. For the b-tree and hash index types, you can read about the design decisions involved
in src/backend/access/nbtree/README and src/backend/access/hash/README.

Aside from the index's own internal consistency requirements, concurrent updates create issues about
consistency between the parent table (the heap) and the index. Because PostgreSQL separates accesses and

2318

Index Access Method
Interface Definition

updates of the heap from those of the index, there are windows in which the index might be inconsistent
with the heap. We handle this problem with the following rules:

• A new heap entry is made before making its index entries. (Therefore a concurrent index scan is likely to
fail to see the heap entry. This is okay because the index reader would be uninterested in an uncommitted
row anyway. But see Section 61.5.)

• When a heap entry is to be deleted (by VACUUM), all its index entries must be removed first.

• An index scan must maintain a pin on the index page holding the item last returned by amgettuple,
and ambulkdelete cannot delete entries from pages that are pinned by other backends. The need
for this rule is explained below.

Without the third rule, it is possible for an index reader to see an index entry just before it is removed
by VACUUM, and then to arrive at the corresponding heap entry after that was removed by VACUUM. This
creates no serious problems if that item number is still unused when the reader reaches it, since an empty
item slot will be ignored by heap_fetch(). But what if a third backend has already re-used the item
slot for something else? When using an MVCC-compliant snapshot, there is no problem because the new
occupant of the slot is certain to be too new to pass the snapshot test. However, with a non-MVCC-
compliant snapshot (such as SnapshotAny), it would be possible to accept and return a row that does
not in fact match the scan keys. We could defend against this scenario by requiring the scan keys to be
rechecked against the heap row in all cases, but that is too expensive. Instead, we use a pin on an index
page as a proxy to indicate that the reader might still be “in flight” from the index entry to the matching
heap entry. Making ambulkdelete block on such a pin ensures that VACUUM cannot delete the heap
entry before the reader is done with it. This solution costs little in run time, and adds blocking overhead
only in the rare cases where there actually is a conflict.

This solution requires that index scans be “synchronous”: we have to fetch each heap tuple immediately
after scanning the corresponding index entry. This is expensive for a number of reasons. An
“asynchronous” scan in which we collect many TIDs from the index, and only visit the heap tuples
sometime later, requires much less index locking overhead and can allow a more efficient heap access
pattern. Per the above analysis, we must use the synchronous approach for non-MVCC-compliant
snapshots, but an asynchronous scan is workable for a query using an MVCC snapshot.

In an amgetbitmap index scan, the access method does not keep an index pin on any of the returned
tuples. Therefore it is only safe to use such scans with MVCC-compliant snapshots.

When the ampredlocks flag is not set, any scan using that index access method within a serializable
transaction will acquire a nonblocking predicate lock on the full index. This will generate a read-write
conflict with the insert of any tuple into that index by a concurrent serializable transaction. If certain
patterns of read-write conflicts are detected among a set of concurrent serializable transactions, one of
those transactions may be canceled to protect data integrity. When the flag is set, it indicates that the index
access method implements finer-grained predicate locking, which will tend to reduce the frequency of
such transaction cancellations.

61.5. Index Uniqueness Checks
PostgreSQL enforces SQL uniqueness constraints using unique indexes, which are indexes that disallow
multiple entries with identical keys. An access method that supports this feature sets amcanunique true.
(At present, only b-tree supports it.) Columns listed in the INCLUDE clause are not considered when
enforcing uniqueness.

Because of MVCC, it is always necessary to allow duplicate entries to exist physically in an index: the
entries might refer to successive versions of a single logical row. The behavior we actually want to enforce

2319

Index Access Method
Interface Definition

is that no MVCC snapshot could include two rows with equal index keys. This breaks down into the
following cases that must be checked when inserting a new row into a unique index:

• If a conflicting valid row has been deleted by the current transaction, it's okay. (In particular, since
an UPDATE always deletes the old row version before inserting the new version, this will allow an
UPDATE on a row without changing the key.)

• If a conflicting row has been inserted by an as-yet-uncommitted transaction, the would-be inserter must
wait to see if that transaction commits. If it rolls back then there is no conflict. If it commits without
deleting the conflicting row again, there is a uniqueness violation. (In practice we just wait for the other
transaction to end and then redo the visibility check in toto.)

• Similarly, if a conflicting valid row has been deleted by an as-yet-uncommitted transaction, the would-
be inserter must wait for that transaction to commit or abort, and then repeat the test.

Furthermore, immediately before reporting a uniqueness violation according to the above rules, the access
method must recheck the liveness of the row being inserted. If it is committed dead then no violation should
be reported. (This case cannot occur during the ordinary scenario of inserting a row that's just been created
by the current transaction. It can happen during CREATE UNIQUE INDEX CONCURRENTLY, however.)

We require the index access method to apply these tests itself, which means that it must reach into the
heap to check the commit status of any row that is shown to have a duplicate key according to the index
contents. This is without a doubt ugly and non-modular, but it saves redundant work: if we did a separate
probe then the index lookup for a conflicting row would be essentially repeated while finding the place to
insert the new row's index entry. What's more, there is no obvious way to avoid race conditions unless the
conflict check is an integral part of insertion of the new index entry.

If the unique constraint is deferrable, there is additional complexity: we need to be able to insert an index
entry for a new row, but defer any uniqueness-violation error until end of statement or even later. To avoid
unnecessary repeat searches of the index, the index access method should do a preliminary uniqueness
check during the initial insertion. If this shows that there is definitely no conflicting live tuple, we are
done. Otherwise, we schedule a recheck to occur when it is time to enforce the constraint. If, at the time
of the recheck, both the inserted tuple and some other tuple with the same key are live, then the error must
be reported. (Note that for this purpose, “live” actually means “any tuple in the index entry's HOT chain
is live”.) To implement this, the aminsert function is passed a checkUnique parameter having one
of the following values:

• UNIQUE_CHECK_NO indicates that no uniqueness checking should be done (this is not a unique index).

• UNIQUE_CHECK_YES indicates that this is a non-deferrable unique index, and the uniqueness check
must be done immediately, as described above.

• UNIQUE_CHECK_PARTIAL indicates that the unique constraint is deferrable. PostgreSQL will use
this mode to insert each row's index entry. The access method must allow duplicate entries into the
index, and report any potential duplicates by returning false from aminsert. For each row for which
false is returned, a deferred recheck will be scheduled.

The access method must identify any rows which might violate the unique constraint, but it is not an error
for it to report false positives. This allows the check to be done without waiting for other transactions to
finish; conflicts reported here are not treated as errors and will be rechecked later, by which time they
may no longer be conflicts.

• UNIQUE_CHECK_EXISTING indicates that this is a deferred recheck of a row that was reported as a
potential uniqueness violation. Although this is implemented by calling aminsert, the access method
must not insert a new index entry in this case. The index entry is already present. Rather, the access

2320

Index Access Method
Interface Definition

method must check to see if there is another live index entry. If so, and if the target row is also still
live, report error.

It is recommended that in a UNIQUE_CHECK_EXISTING call, the access method further verify that
the target row actually does have an existing entry in the index, and report error if not. This is a good idea
because the index tuple values passed to aminsert will have been recomputed. If the index definition
involves functions that are not really immutable, we might be checking the wrong area of the index.
Checking that the target row is found in the recheck verifies that we are scanning for the same tuple
values as were used in the original insertion.

61.6. Index Cost Estimation Functions
The amcostestimate function is given information describing a possible index scan, including lists
of WHERE and ORDER BY clauses that have been determined to be usable with the index. It must return
estimates of the cost of accessing the index and the selectivity of the WHERE clauses (that is, the fraction
of parent-table rows that will be retrieved during the index scan). For simple cases, nearly all the work
of the cost estimator can be done by calling standard routines in the optimizer; the point of having an
amcostestimate function is to allow index access methods to provide index-type-specific knowledge,
in case it is possible to improve on the standard estimates.

Each amcostestimate function must have the signature:

void
amcostestimate (PlannerInfo *root,
 IndexPath *path,
 double loop_count,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity,
 double *indexCorrelation,
 double *indexPages);

The first three parameters are inputs:

root

The planner's information about the query being processed.

path

The index access path being considered. All fields except cost and selectivity values are valid.

loop_count

The number of repetitions of the index scan that should be factored into the cost estimates. This will
typically be greater than one when considering a parameterized scan for use in the inside of a nestloop
join. Note that the cost estimates should still be for just one scan; a larger loop_count means that
it may be appropriate to allow for some caching effects across multiple scans.

The last five parameters are pass-by-reference outputs:

*indexStartupCost

Set to cost of index start-up processing

2321

Index Access Method
Interface Definition

*indexTotalCost

Set to total cost of index processing

*indexSelectivity

Set to index selectivity

*indexCorrelation

Set to correlation coefficient between index scan order and underlying table's order

*indexPages

Set to number of index leaf pages

Note that cost estimate functions must be written in C, not in SQL or any available procedural language,
because they must access internal data structures of the planner/optimizer.

The index access costs should be computed using the parameters used by src/backend/optimizer/
path/costsize.c: a sequential disk block fetch has cost seq_page_cost, a nonsequential fetch
has cost random_page_cost, and the cost of processing one index row should usually be taken as
cpu_index_tuple_cost. In addition, an appropriate multiple of cpu_operator_cost should
be charged for any comparison operators invoked during index processing (especially evaluation of the
indexquals themselves).

The access costs should include all disk and CPU costs associated with scanning the index itself, but not
the costs of retrieving or processing the parent-table rows that are identified by the index.

The “start-up cost” is the part of the total scan cost that must be expended before we can begin to fetch
the first row. For most indexes this can be taken as zero, but an index type with a high start-up cost might
want to set it nonzero.

The indexSelectivity should be set to the estimated fraction of the parent table rows that will be
retrieved during the index scan. In the case of a lossy query, this will typically be higher than the fraction
of rows that actually pass the given qual conditions.

The indexCorrelation should be set to the correlation (ranging between -1.0 and 1.0) between the
index order and the table order. This is used to adjust the estimate for the cost of fetching rows from the
parent table.

The indexPages should be set to the number of leaf pages. This is used to estimate the number of
workers for parallel index scan.

When loop_count is greater than one, the returned numbers should be averages expected for any one
scan of the index.

Cost Estimation

A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of parent-table rows that will be visited based on the given qual
conditions. In the absence of any index-type-specific knowledge, use the standard optimizer function
clauselist_selectivity():

*indexSelectivity = clauselist_selectivity(root, path->indexquals,

2322

Index Access Method
Interface Definition

 path->indexinfo->rel-
>relid,
 JOIN_INNER, NULL);

2. Estimate the number of index rows that will be visited during the scan. For many index types this
is the same as indexSelectivity times the number of rows in the index, but it might be more.
(Note that the index's size in pages and rows is available from the path->indexinfo struct.)

3. Estimate the number of index pages that will be retrieved during the scan. This might be just
indexSelectivity times the index's size in pages.

4. Compute the index access cost. A generic estimator might do this:

/*
 * Our generic assumption is that the index pages will be read
 * sequentially, so they cost seq_page_cost each, not
 random_page_cost.
 * Also, we charge for evaluation of the indexquals at each index
 row.
 * All the costs are assumed to be paid incrementally during the
 scan.
 */
cost_qual_eval(&index_qual_cost, path->indexquals, root);
*indexStartupCost = index_qual_cost.startup;
*indexTotalCost = seq_page_cost * numIndexPages +
 (cpu_index_tuple_cost + index_qual_cost.per_tuple) *
 numIndexTuples;

However, the above does not account for amortization of index reads across repeated index scans.

5. Estimate the index correlation. For a simple ordered index on a single field, this can be retrieved from
pg_statistic. If the correlation is not known, the conservative estimate is zero (no correlation).

Examples of cost estimator functions can be found in src/backend/utils/adt/selfuncs.c.

2323

Chapter 62. Generic WAL Records
Although all built-in WAL-logged modules have their own types of WAL records, there is also a generic
WAL record type, which describes changes to pages in a generic way. This is useful for extensions that
provide custom access methods, because they cannot register their own WAL redo routines.

The API for constructing generic WAL records is defined in access/generic_xlog.h and
implemented in access/transam/generic_xlog.c.

To perform a WAL-logged data update using the generic WAL record facility, follow these steps:

1. state = GenericXLogStart(relation) — start construction of a generic WAL record for
the given relation.

2. page = GenericXLogRegisterBuffer(state, buffer, flags) — register a buffer
to be modified within the current generic WAL record. This function returns a pointer to a temporary
copy of the buffer's page, where modifications should be made. (Do not modify the buffer's contents
directly.) The third argument is a bit mask of flags applicable to the operation. Currently the only such
flag is GENERIC_XLOG_FULL_IMAGE, which indicates that a full-page image rather than a delta
update should be included in the WAL record. Typically this flag would be set if the page is new or has
been rewritten completely. GenericXLogRegisterBuffer can be repeated if the WAL-logged
action needs to modify multiple pages.

3. Apply modifications to the page images obtained in the previous step.

4. GenericXLogFinish(state) — apply the changes to the buffers and emit the generic WAL
record.

WAL record construction can be canceled between any of the above steps by calling
GenericXLogAbort(state). This will discard all changes to the page image copies.

Please note the following points when using the generic WAL record facility:

• No direct modifications of buffers are allowed! All modifications must be done in copies acquired from
GenericXLogRegisterBuffer(). In other words, code that makes generic WAL records should
never call BufferGetPage() for itself. However, it remains the caller's responsibility to pin/unpin
and lock/unlock the buffers at appropriate times. Exclusive lock must be held on each target buffer from
before GenericXLogRegisterBuffer() until after GenericXLogFinish().

• Registrations of buffers (step 2) and modifications of page images (step 3) can be mixed freely, i.e.,
both steps may be repeated in any sequence. Keep in mind that buffers should be registered in the same
order in which locks are to be obtained on them during replay.

• The maximum number of buffers that can be registered for a generic WAL record is
MAX_GENERIC_XLOG_PAGES. An error will be thrown if this limit is exceeded.

• Generic WAL assumes that the pages to be modified have standard layout, and in particular that there
is no useful data between pd_lower and pd_upper.

• Since you are modifying copies of buffer pages, GenericXLogStart() does not start a
critical section. Thus, you can safely do memory allocation, error throwing, etc. between
GenericXLogStart() and GenericXLogFinish(). The only actual critical section is present
inside GenericXLogFinish(). There is no need to worry about calling GenericXLogAbort()
during an error exit, either.

2324

Generic WAL Records

• GenericXLogFinish() takes care of marking buffers dirty and setting their LSNs. You do not
need to do this explicitly.

• For unlogged relations, everything works the same except that no actual WAL record is emitted. Thus,
you typically do not need to do any explicit checks for unlogged relations.

• The generic WAL redo function will acquire exclusive locks to buffers in the same order as they were
registered. After redoing all changes, the locks will be released in the same order.

• If GENERIC_XLOG_FULL_IMAGE is not specified for a registered buffer, the generic WAL record
contains a delta between the old and the new page images. This delta is based on byte-by-byte
comparison. This is not very compact for the case of moving data within a page, and might be improved
in the future.

2325

Chapter 63. B-Tree Indexes
63.1. Introduction

PostgreSQL includes an implementation of the standard btree (multi-way balanced tree) index data
structure. Any data type that can be sorted into a well-defined linear order can be indexed by a btree index.
The only limitation is that an index entry cannot exceed approximately one-third of a page (after TOAST
compression, if applicable).

Because each btree operator class imposes a sort order on its data type, btree operator classes (or, really,
operator families) have come to be used as PostgreSQL's general representation and understanding of
sorting semantics. Therefore, they've acquired some features that go beyond what would be needed just to
support btree indexes, and parts of the system that are quite distant from the btree AM make use of them.

63.2. Behavior of B-Tree Operator Classes
As shown in Table 38.2, a btree operator class must provide five comparison operators, <, <=, =, >= and
>. One might expect that <> should also be part of the operator class, but it is not, because it would almost
never be useful to use a <> WHERE clause in an index search. (For some purposes, the planner treats
<> as associated with a btree operator class; but it finds that operator via the = operator's negator link,
rather than from pg_amop.)

When several data types share near-identical sorting semantics, their operator classes can be grouped into
an operator family. Doing so is advantageous because it allows the planner to make deductions about cross-
type comparisons. Each operator class within the family should contain the single-type operators (and
associated support functions) for its input data type, while cross-type comparison operators and support
functions are “loose” in the family. It is recommendable that a complete set of cross-type operators be
included in the family, thus ensuring that the planner can represent any comparison conditions that it
deduces from transitivity.

There are some basic assumptions that a btree operator family must satisfy:

• An = operator must be an equivalence relation; that is, for all non-null values A, B, C of the data type:

• A = A is true (reflexive law)

• if A = B, then B = A (symmetric law)

• if A = B and B = C, then A = C (transitive law)

• A < operator must be a strong ordering relation; that is, for all non-null values A, B, C:

• A < A is false (irreflexive law)

• if A < B and B < C, then A < C (transitive law)

• Furthermore, the ordering is total; that is, for all non-null values A, B:

• exactly one of A < B, A = B, and B < A is true (trichotomy law)
(The trichotomy law justifies the definition of the comparison support function, of course.)

The other three operators are defined in terms of = and < in the obvious way, and must act consistently
with them.

2326

B-Tree Indexes

For an operator family supporting multiple data types, the above laws must hold when A, B, C are taken
from any data types in the family. The transitive laws are the trickiest to ensure, as in cross-type situations
they represent statements that the behaviors of two or three different operators are consistent. As an
example, it would not work to put float8 and numeric into the same operator family, at least not
with the current semantics that numeric values are converted to float8 for comparison to a float8.
Because of the limited accuracy of float8, this means there are distinct numeric values that will
compare equal to the same float8 value, and thus the transitive law would fail.

Another requirement for a multiple-data-type family is that any implicit or binary-coercion casts that are
defined between data types included in the operator family must not change the associated sort ordering.

It should be fairly clear why a btree index requires these laws to hold within a single data type: without
them there is no ordering to arrange the keys with. Also, index searches using a comparison key of a
different data type require comparisons to behave sanely across two data types. The extensions to three
or more data types within a family are not strictly required by the btree index mechanism itself, but the
planner relies on them for optimization purposes.

63.3. B-Tree Support Functions
As shown in Table 38.8, btree defines one required and two optional support functions.

For each combination of data types that a btree operator family provides comparison operators for, it must
provide a comparison support function, registered in pg_amproc with support function number 1 and
amproclefttype/amprocrighttype equal to the left and right data types for the comparison (i.e.,
the same data types that the matching operators are registered with in pg_amop). The comparison function
must take two non-null values A and B and return an int32 value that is < 0, 0, or > 0 when A < B, A =
B, or A > B, respectively. A null result is disallowed: all values of the data type must be comparable. See
src/backend/access/nbtree/nbtcompare.c for examples.

If the compared values are of a collatable data type, the appropriate collation OID will be passed to the
comparison support function, using the standard PG_GET_COLLATION() mechanism.

Optionally, a btree operator family may provide sort support function(s), registered under support function
number 2. These functions allow implementing comparisons for sorting purposes in a more efficient way
than naively calling the comparison support function. The APIs involved in this are defined in src/
include/utils/sortsupport.h.

Optionally, a btree operator family may provide in_range support function(s), registered under support
function number 3. These are not used during btree index operations; rather, they extend the semantics of
the operator family so that it can support window clauses containing the RANGE offset PRECEDING
and RANGE offset FOLLOWING frame bound types (see Section 4.2.8). Fundamentally, the extra
information provided is how to add or subtract an offset value in a way that is compatible with the
family's data ordering.

An in_range function must have the signature

in_range(val type1, base type1, offset type2, sub bool, less bool)
returns bool

val and base must be of the same type, which is one of the types supported by the operator family (i.e.,
a type for which it provides an ordering). However, offset could be of a different type, which might be
one otherwise unsupported by the family. An example is that the built-in time_ops family provides an
in_range function that has offset of type interval. A family can provide in_range functions

2327

B-Tree Indexes

for any of its supported types and one or more offset types. Each in_range function should be entered
in pg_amproc with amproclefttype equal to type1 and amprocrighttype equal to type2.

The essential semantics of an in_range function depend on the two boolean flag parameters. It should
add or subtract base and offset, then compare val to the result, as follows:

• if !sub and !less, return val >= (base + offset)

• if !sub and less, return val <= (base + offset)

• if sub and !less, return val >= (base - offset)

• if sub and less, return val <= (base - offset)

Before doing so, the function should check the sign of offset: if it is less than zero, raise error
ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE (22013) with error text like “invalid
preceding or following size in window function”. (This is required by the SQL standard, although
nonstandard operator families might perhaps choose to ignore this restriction, since there seems to be little
semantic necessity for it.) This requirement is delegated to the in_range function so that the core code
needn't understand what “less than zero” means for a particular data type.

An additional expectation is that in_range functions should, if practical, avoid throwing an error if
base + offset or base - offset would overflow. The correct comparison result can be determined
even if that value would be out of the data type's range. Note that if the data type includes concepts such as
“infinity” or “NaN”, extra care may be needed to ensure that in_range's results agree with the normal
sort order of the operator family.

The results of the in_range function must be consistent with the sort ordering imposed by the operator
family. To be precise, given any fixed values of offset and sub, then:

• If in_range with less = true is true for some val1 and base, it must be true for every val2 <=
val1 with the same base.

• If in_range with less = true is false for some val1 and base, it must be false for every val2
>= val1 with the same base.

• If in_range with less = true is true for some val and base1, it must be true for every base2
>= base1 with the same val.

• If in_range with less = true is false for some val and base1, it must be false for every base2
<= base1 with the same val.

Analogous statements with inverted conditions hold when less = false.

If the type being ordered (type1) is collatable, the appropriate collation OID will be passed to the
in_range function, using the standard PG_GET_COLLATION() mechanism.

in_range functions need not handle NULL inputs, and typically will be marked strict.

63.4. Implementation
An introduction to the btree index implementation can be found in src/backend/access/nbtree/
README.

2328

Chapter 64. GiST Indexes
64.1. Introduction

GiST stands for Generalized Search Tree. It is a balanced, tree-structured access method, that acts as a
base template in which to implement arbitrary indexing schemes. B-trees, R-trees and many other indexing
schemes can be implemented in GiST.

One advantage of GiST is that it allows the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from the University of California at Berkeley's GiST Indexing
Project web site1 and Marcel Kornacker's thesis, Access Methods for Next-Generation Database Systems2.
The GiST implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg Bartunov,
and there is more information on their web site3.

64.2. Built-in Operator Classes
The core PostgreSQL distribution includes the GiST operator classes shown in Table 64.1. (Some of the
optional modules described in Appendix F provide additional GiST operator classes.)

Table 64.1. Built-in GiST Operator Classes

Name Indexed Data Type Indexable Operators Ordering Operators

box_ops box && &> &< &<| >> <<
<<| <@ @> @ |&> |>>
~ ~=

circle_ops circle && &> &< &<| >> <<
<<| <@ @> @ |&> |>>
~ ~=

<->

inet_ops inet, cidr && >> >>= > >= <> <<
<<= < <= =

point_ops point >> >^ << <@ <@ <@ <^
~=

<->

poly_ops polygon && &> &< &<| >> <<
<<| <@ @> @ |&> |>>
~ ~=

<->

range_ops any range type && &> &< >> << <@ -|-
= @> @>

tsquery_ops tsquery <@ @>

tsvector_ops tsvector @@

For historical reasons, the inet_ops operator class is not the default class for types inet and cidr.
To use it, mention the class name in CREATE INDEX, for example

1 http://gist.cs.berkeley.edu/
2 http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz
3 http://www.sai.msu.su/~megera/postgres/gist/

2329

http://gist.cs.berkeley.edu/
http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz
http://www.sai.msu.su/~megera/postgres/gist/
http://gist.cs.berkeley.edu/
http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz
http://www.sai.msu.su/~megera/postgres/gist/

GiST Indexes

CREATE INDEX ON my_table USING GIST (my_inet_column inet_ops);

64.3. Extensibility
Traditionally, implementing a new index access method meant a lot of difficult work. It was necessary to
understand the inner workings of the database, such as the lock manager and Write-Ahead Log. The GiST
interface has a high level of abstraction, requiring the access method implementer only to implement the
semantics of the data type being accessed. The GiST layer itself takes care of concurrency, logging and
searching the tree structure.

This extensibility should not be confused with the extensibility of the other standard search trees in terms
of the data they can handle. For example, PostgreSQL supports extensible B-trees and hash indexes. That
means that you can use PostgreSQL to build a B-tree or hash over any data type you want. But B-trees
only support range predicates (<, =, >), and hash indexes only support equality queries.

So if you index, say, an image collection with a PostgreSQL B-tree, you can only issue queries such as “is
imagex equal to imagey”, “is imagex less than imagey” and “is imagex greater than imagey”. Depending
on how you define “equals”, “less than” and “greater than” in this context, this could be useful. However,
by using a GiST based index, you could create ways to ask domain-specific questions, perhaps “find all
images of horses” or “find all over-exposed images”.

All it takes to get a GiST access method up and running is to implement several user-defined methods,
which define the behavior of keys in the tree. Of course these methods have to be pretty fancy to support
fancy queries, but for all the standard queries (B-trees, R-trees, etc.) they're relatively straightforward. In
short, GiST combines extensibility along with generality, code reuse, and a clean interface.

There are five methods that an index operator class for GiST must provide, and four that are optional.
Correctness of the index is ensured by proper implementation of the same, consistent and union
methods, while efficiency (size and speed) of the index will depend on the penalty and picksplit
methods. Two optional methods are compress and decompress, which allow an index to have internal
tree data of a different type than the data it indexes. The leaves are to be of the indexed data type, while
the other tree nodes can be of any C struct (but you still have to follow PostgreSQL data type rules here,
see about varlena for variable sized data). If the tree's internal data type exists at the SQL level, the
STORAGE option of the CREATE OPERATOR CLASS command can be used. The optional eighth method
is distance, which is needed if the operator class wishes to support ordered scans (nearest-neighbor
searches). The optional ninth method fetch is needed if the operator class wishes to support index-only
scans, except when the compress method is omitted.

consistent

Given an index entry p and a query value q, this function determines whether the index
entry is “consistent” with the query; that is, could the predicate “indexed_column
indexable_operator q” be true for any row represented by the index entry? For a leaf index
entry this is equivalent to testing the indexable condition, while for an internal tree node this
determines whether it is necessary to scan the subtree of the index represented by the tree node. When
the result is true, a recheck flag must also be returned. This indicates whether the predicate is
certainly true or only possibly true. If recheck = false then the index has tested the predicate
condition exactly, whereas if recheck = true the row is only a candidate match. In that case the
system will automatically evaluate the indexable_operator against the actual row value to see
if it is really a match. This convention allows GiST to support both lossless and lossy index structures.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_consistent(internal, data_type,
 smallint, oid, internal)

2330

GiST Indexes

RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_consistent);

Datum
my_consistent(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 data_type *query = PG_GETARG_DATA_TYPE_P(1);
 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 /* Oid subtype = PG_GETARG_OID(3); */
 bool *recheck = (bool *) PG_GETARG_POINTER(4);
 data_type *key = DatumGetDataType(entry->key);
 bool retval;

 /*
 * determine return value as a function of strategy, key and
 query.
 *
 * Use GIST_LEAF(entry) to know where you're called in the
 index tree,
 * which comes handy when supporting the = operator for example
 (you could
 * check for non empty union() in non-leaf nodes and equality
 in leaf
 * nodes).
 */

 recheck = true; / or false if check is exact */

 PG_RETURN_BOOL(retval);
}

Here, key is an element in the index and query the value being looked up in the index. The
StrategyNumber parameter indicates which operator of your operator class is being applied — it
matches one of the operator numbers in the CREATE OPERATOR CLASS command.

Depending on which operators you have included in the class, the data type of query could vary
with the operator, since it will be whatever type is on the righthand side of the operator, which might
be different from the indexed data type appearing on the lefthand side. (The above code skeleton
assumes that only one type is possible; if not, fetching the query argument value would have to
depend on the operator.) It is recommended that the SQL declaration of the consistent function
use the opclass's indexed data type for the query argument, even though the actual type might be
something else depending on the operator.

union

This method consolidates information in the tree. Given a set of entries, this function generates a new
index entry that represents all the given entries.

The SQL declaration of the function must look like this:

2331

GiST Indexes

CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS storage_type
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_union);

Datum
my_union(PG_FUNCTION_ARGS)
{
 GistEntryVector *entryvec = (GistEntryVector *)
 PG_GETARG_POINTER(0);
 GISTENTRY *ent = entryvec->vector;
 data_type *out,
 *tmp,
 *old;
 int numranges,
 i = 0;

 numranges = entryvec->n;
 tmp = DatumGetDataType(ent[0].key);
 out = tmp;

 if (numranges == 1)
 {
 out = data_type_deep_copy(tmp);

 PG_RETURN_DATA_TYPE_P(out);
 }

 for (i = 1; i < numranges; i++)
 {
 old = out;
 tmp = DatumGetDataType(ent[i].key);
 out = my_union_implementation(out, tmp);
 }

 PG_RETURN_DATA_TYPE_P(out);
}

As you can see, in this skeleton we're dealing with a data type where union(X, Y, Z) =
union(union(X, Y), Z). It's easy enough to support data types where this is not the case, by
implementing the proper union algorithm in this GiST support method.

The result of the union function must be a value of the index's storage type, whatever that is (it
might or might not be different from the indexed column's type). The union function should return
a pointer to newly palloc()ed memory. You can't just return the input value as-is, even if there
is no type change.

As shown above, the union function's first internal argument is actually a GistEntryVector
pointer. The second argument is a pointer to an integer variable, which can be ignored. (It used to

2332

GiST Indexes

be required that the union function store the size of its result value into that variable, but this is no
longer necessary.)

compress

Converts a data item into a format suitable for physical storage in an index page. If the compress
method is omitted, data items are stored in the index without modification.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 GISTENTRY *retval;

 if (entry->leafkey)
 {
 /* replace entry->key with a compressed version */
 compressed_data_type *compressed_data =
 palloc(sizeof(compressed_data_type));

 /* fill *compressed_data from entry->key ... */

 retval = palloc(sizeof(GISTENTRY));
 gistentryinit(*retval, PointerGetDatum(compressed_data),
 entry->rel, entry->page, entry->offset,
 FALSE);
 }
 else
 {
 /* typically we needn't do anything with non-leaf entries
 */
 retval = entry;
 }

 PG_RETURN_POINTER(retval);
}

You have to adapt compressed_data_type to the specific type you're converting to in order to
compress your leaf nodes, of course.

decompress

Converts the stored representation of a data item into a format that can be manipulated by the other
GiST methods in the operator class. If the decompress method is omitted, it is assumed that the

2333

GiST Indexes

other GiST methods can work directly on the stored data format. (decompress is not necessarily
the reverse of the compress method; in particular, if compress is lossy then it's impossible for
decompress to exactly reconstruct the original data. decompress is not necessarily equivalent
to fetch, either, since the other GiST methods might not require full reconstruction of the data.)

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_decompress);

Datum
my_decompress(PG_FUNCTION_ARGS)
{
 PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}

The above skeleton is suitable for the case where no decompression is needed. (But, of course, omitting
the method altogether is even easier, and is recommended in such cases.)

penalty

Returns a value indicating the “cost” of inserting the new entry into a particular branch of the tree.
Items will be inserted down the path of least penalty in the tree. Values returned by penalty
should be non-negative. If a negative value is returned, it will be treated as zero.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT; -- in some cases penalty functions need not be
 strict

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_penalty);

Datum
my_penalty(PG_FUNCTION_ARGS)
{
 GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
 GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
 float *penalty = (float *) PG_GETARG_POINTER(2);
 data_type *orig = DatumGetDataType(origentry->key);
 data_type *new = DatumGetDataType(newentry->key);

2334

GiST Indexes

 *penalty = my_penalty_implementation(orig, new);
 PG_RETURN_POINTER(penalty);
}

For historical reasons, the penalty function doesn't just return a float result; instead it has to store
the value at the location indicated by the third argument. The return value per se is ignored, though
it's conventional to pass back the address of that argument.

The penalty function is crucial to good performance of the index. It'll get used at insertion time to
determine which branch to follow when choosing where to add the new entry in the tree. At query
time, the more balanced the index, the quicker the lookup.

picksplit

When an index page split is necessary, this function decides which entries on the page are to stay on
the old page, and which are to move to the new page.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_picksplit);

Datum
my_picksplit(PG_FUNCTION_ARGS)
{
 GistEntryVector *entryvec = (GistEntryVector *)
 PG_GETARG_POINTER(0);
 GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
 OffsetNumber maxoff = entryvec->n - 1;
 GISTENTRY *ent = entryvec->vector;
 int i,
 nbytes;
 OffsetNumber *left,
 *right;
 data_type *tmp_union;
 data_type *unionL;
 data_type *unionR;
 GISTENTRY **raw_entryvec;

 maxoff = entryvec->n - 1;
 nbytes = (maxoff + 1) * sizeof(OffsetNumber);

 v->spl_left = (OffsetNumber *) palloc(nbytes);
 left = v->spl_left;
 v->spl_nleft = 0;

 v->spl_right = (OffsetNumber *) palloc(nbytes);

2335

GiST Indexes

 right = v->spl_right;
 v->spl_nright = 0;

 unionL = NULL;
 unionR = NULL;

 /* Initialize the raw entry vector. */
 raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void
 *));
 for (i = FirstOffsetNumber; i <= maxoff; i =
 OffsetNumberNext(i))
 raw_entryvec[i] = &(entryvec->vector[i]);

 for (i = FirstOffsetNumber; i <= maxoff; i =
 OffsetNumberNext(i))
 {
 int real_index = raw_entryvec[i] - entryvec-
>vector;

 tmp_union = DatumGetDataType(entryvec-
>vector[real_index].key);
 Assert(tmp_union != NULL);

 /*
 * Choose where to put the index entries and update unionL
 and unionR
 * accordingly. Append the entries to either v_spl_left or
 * v_spl_right, and care about the counters.
 */

 if (my_choice_is_left(unionL, curl, unionR, curr))
 {
 if (unionL == NULL)
 unionL = tmp_union;
 else
 unionL = my_union_implementation(unionL,
 tmp_union);

 *left = real_index;
 ++left;
 ++(v->spl_nleft);
 }
 else
 {
 /*
 * Same on the right
 */
 }
 }

 v->spl_ldatum = DataTypeGetDatum(unionL);
 v->spl_rdatum = DataTypeGetDatum(unionR);
 PG_RETURN_POINTER(v);
}

2336

GiST Indexes

Notice that the picksplit function's result is delivered by modifying the passed-in v structure. The
return value per se is ignored, though it's conventional to pass back the address of v.

Like penalty, the picksplit function is crucial to good performance of the index. Designing
suitable penalty and picksplit implementations is where the challenge of implementing well-
performing GiST indexes lies.

same

Returns true if two index entries are identical, false otherwise. (An “index entry” is a value of the
index's storage type, not necessarily the original indexed column's type.)

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_same(storage_type, storage_type,
 internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_same);

Datum
my_same(PG_FUNCTION_ARGS)
{
 prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
 prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
 bool *result = (bool *) PG_GETARG_POINTER(2);

 *result = my_eq(v1, v2);
 PG_RETURN_POINTER(result);
}

For historical reasons, the same function doesn't just return a Boolean result; instead it has to store
the flag at the location indicated by the third argument. The return value per se is ignored, though it's
conventional to pass back the address of that argument.

distance

Given an index entry p and a query value q, this function determines the index entry's “distance” from
the query value. This function must be supplied if the operator class contains any ordering operators.
A query using the ordering operator will be implemented by returning index entries with the smallest
“distance” values first, so the results must be consistent with the operator's semantics. For a leaf index
entry the result just represents the distance to the index entry; for an internal tree node, the result must
be the smallest distance that any child entry could have.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_distance(internal, data_type,
 smallint, oid, internal)
RETURNS float8
AS 'MODULE_PATHNAME'

2337

GiST Indexes

LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_distance);

Datum
my_distance(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 data_type *query = PG_GETARG_DATA_TYPE_P(1);
 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 /* Oid subtype = PG_GETARG_OID(3); */
 /* bool *recheck = (bool *) PG_GETARG_POINTER(4); */
 data_type *key = DatumGetDataType(entry->key);
 double retval;

 /*
 * determine return value as a function of strategy, key and
 query.
 */

 PG_RETURN_FLOAT8(retval);
}

The arguments to the distance function are identical to the arguments of the consistent
function.

Some approximation is allowed when determining the distance, so long as the result is never greater
than the entry's actual distance. Thus, for example, distance to a bounding box is usually sufficient
in geometric applications. For an internal tree node, the distance returned must not be greater than
the distance to any of the child nodes. If the returned distance is not exact, the function must set
*recheck to true. (This is not necessary for internal tree nodes; for them, the calculation is always
assumed to be inexact.) In this case the executor will calculate the accurate distance after fetching the
tuple from the heap, and reorder the tuples if necessary.

If the distance function returns *recheck = true for any leaf node, the original ordering operator's
return type must be float8 or float4, and the distance function's result values must be comparable
to those of the original ordering operator, since the executor will sort using both distance function
results and recalculated ordering-operator results. Otherwise, the distance function's result values can
be any finite float8 values, so long as the relative order of the result values matches the order
returned by the ordering operator. (Infinity and minus infinity are used internally to handle cases such
as nulls, so it is not recommended that distance functions return these values.)

fetch

Converts the compressed index representation of a data item into the original data type, for index-
only scans. The returned data must be an exact, non-lossy copy of the originally indexed value.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_fetch(internal)
RETURNS internal
AS 'MODULE_PATHNAME'

2338

GiST Indexes

LANGUAGE C STRICT;

The argument is a pointer to a GISTENTRY struct. On entry, its key field contains a non-NULL leaf
datum in compressed form. The return value is another GISTENTRY struct, whose key field contains
the same datum in its original, uncompressed form. If the opclass's compress function does nothing
for leaf entries, the fetch method can return the argument as-is. Or, if the opclass does not have a
compress function, the fetch method can be omitted as well, since it would necessarily be a no-op.

The matching code in the C module could then follow this skeleton:

PG_FUNCTION_INFO_V1(my_fetch);

Datum
my_fetch(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 input_data_type *in = DatumGetP(entry->key);
 fetched_data_type *fetched_data;
 GISTENTRY *retval;

 retval = palloc(sizeof(GISTENTRY));
 fetched_data = palloc(sizeof(fetched_data_type));

 /*
 * Convert 'fetched_data' into the a Datum of the original
 datatype.
 */

 /* fill *retval from fetch_data. */
 gistentryinit(*retval, PointerGetDatum(converted_datum),
 entry->rel, entry->page, entry->offset, FALSE);

 PG_RETURN_POINTER(retval);
}

If the compress method is lossy for leaf entries, the operator class cannot support index-only scans,
and must not define a fetch function.

All the GiST support methods are normally called in short-lived memory contexts; that is,
CurrentMemoryContext will get reset after each tuple is processed. It is therefore not very important
to worry about pfree'ing everything you palloc. However, in some cases it's useful for a support method
to cache data across repeated calls. To do that, allocate the longer-lived data in fcinfo->flinfo-
>fn_mcxt, and keep a pointer to it in fcinfo->flinfo->fn_extra. Such data will survive for
the life of the index operation (e.g., a single GiST index scan, index build, or index tuple insertion). Be
careful to pfree the previous value when replacing a fn_extra value, or the leak will accumulate for
the duration of the operation.

64.4. Implementation

64.4.1. GiST buffering build
Building large GiST indexes by simply inserting all the tuples tends to be slow, because if the index tuples
are scattered across the index and the index is large enough to not fit in cache, the insertions need to

2339

GiST Indexes

perform a lot of random I/O. Beginning in version 9.2, PostgreSQL supports a more efficient method to
build GiST indexes based on buffering, which can dramatically reduce the number of random I/Os needed
for non-ordered data sets. For well-ordered data sets the benefit is smaller or non-existent, because only
a small number of pages receive new tuples at a time, and those pages fit in cache even if the index as
whole does not.

However, buffering index build needs to call the penalty function more often, which consumes some
extra CPU resources. Also, the buffers used in the buffering build need temporary disk space, up to the
size of the resulting index. Buffering can also influence the quality of the resulting index, in both positive
and negative directions. That influence depends on various factors, like the distribution of the input data
and the operator class implementation.

By default, a GiST index build switches to the buffering method when the index size reaches
effective_cache_size. It can be manually turned on or off by the buffering parameter to the CREATE
INDEX command. The default behavior is good for most cases, but turning buffering off might speed up
the build somewhat if the input data is ordered.

64.5. Examples
The PostgreSQL source distribution includes several examples of index methods implemented using GiST.
The core system currently provides text search support (indexing for tsvector and tsquery) as well
as R-Tree equivalent functionality for some of the built-in geometric data types (see src/backend/
access/gist/gistproc.c). The following contrib modules also contain GiST operator classes:

btree_gist

B-tree equivalent functionality for several data types

cube

Indexing for multidimensional cubes

hstore

Module for storing (key, value) pairs

intarray

RD-Tree for one-dimensional array of int4 values

ltree

Indexing for tree-like structures

pg_trgm

Text similarity using trigram matching

seg

Indexing for “float ranges”

2340

Chapter 65. SP-GiST Indexes
65.1. Introduction

SP-GiST is an abbreviation for space-partitioned GiST. SP-GiST supports partitioned search trees, which
facilitate development of a wide range of different non-balanced data structures, such as quad-trees, k-
d trees, and radix trees (tries). The common feature of these structures is that they repeatedly divide the
search space into partitions that need not be of equal size. Searches that are well matched to the partitioning
rule can be very fast.

These popular data structures were originally developed for in-memory usage. In main memory, they are
usually designed as a set of dynamically allocated nodes linked by pointers. This is not suitable for direct
storing on disk, since these chains of pointers can be rather long which would require too many disk
accesses. In contrast, disk-based data structures should have a high fanout to minimize I/O. The challenge
addressed by SP-GiST is to map search tree nodes to disk pages in such a way that a search need access
only a few disk pages, even if it traverses many nodes.

Like GiST, SP-GiST is meant to allow the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from Purdue University's SP-GiST Indexing Project web site1. The
SP-GiST implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg Bartunov,
and there is more information on their web site2.

65.2. Built-in Operator Classes
The core PostgreSQL distribution includes the SP-GiST operator classes shown in Table 65.1.

Table 65.1. Built-in SP-GiST Operator Classes

Name Indexed Data Type Indexable Operators

kd_point_ops point << <@ <^ >> >^ ~=

quad_point_ops point << <@ <^ >> >^ ~=

range_ops any range type && &< &> -|- << <@ = >> @>

box_ops box << &< && &> >> ~= @> <@ &<|
<<| |>> |&>

poly_ops polygon << &< && &> >> ~= @> <@ &<|
<<| |>> |&>

text_ops text < <= = > >= ~<=~ ~<~ ~>=~
~>~ ^@

inet_ops inet, cidr && >> >>= > >= <> << <<= <
<= =

Of the two operator classes for type point, quad_point_ops is the default. kd_point_ops
supports the same operators but uses a different index data structure which may offer better performance
in some applications.

1 https://www.cs.purdue.edu/spgist/
2 http://www.sai.msu.su/~megera/wiki/spgist_dev

2341

https://www.cs.purdue.edu/spgist/
http://www.sai.msu.su/~megera/wiki/spgist_dev
https://www.cs.purdue.edu/spgist/
http://www.sai.msu.su/~megera/wiki/spgist_dev

SP-GiST Indexes

65.3. Extensibility
SP-GiST offers an interface with a high level of abstraction, requiring the access method developer to
implement only methods specific to a given data type. The SP-GiST core is responsible for efficient disk
mapping and searching the tree structure. It also takes care of concurrency and logging considerations.

Leaf tuples of an SP-GiST tree contain values of the same data type as the indexed column. Leaf tuples
at the root level will always contain the original indexed data value, but leaf tuples at lower levels might
contain only a compressed representation, such as a suffix. In that case the operator class support functions
must be able to reconstruct the original value using information accumulated from the inner tuples that
are passed through to reach the leaf level.

Inner tuples are more complex, since they are branching points in the search tree. Each inner tuple contains
a set of one or more nodes, which represent groups of similar leaf values. A node contains a downlink
that leads either to another, lower-level inner tuple, or to a short list of leaf tuples that all lie on the same
index page. Each node normally has a label that describes it; for example, in a radix tree the node label
could be the next character of the string value. (Alternatively, an operator class can omit the node labels,
if it works with a fixed set of nodes for all inner tuples; see Section 65.4.2.) Optionally, an inner tuple
can have a prefix value that describes all its members. In a radix tree this could be the common prefix
of the represented strings. The prefix value is not necessarily really a prefix, but can be any data needed
by the operator class; for example, in a quad-tree it can store the central point that the four quadrants are
measured with respect to. A quad-tree inner tuple would then also contain four nodes corresponding to
the quadrants around this central point.

Some tree algorithms require knowledge of level (or depth) of the current tuple, so the SP-GiST core
provides the possibility for operator classes to manage level counting while descending the tree. There is
also support for incrementally reconstructing the represented value when that is needed, and for passing
down additional data (called traverse values) during a tree descent.

Note

The SP-GiST core code takes care of null entries. Although SP-GiST indexes do store entries for
nulls in indexed columns, this is hidden from the index operator class code: no null index entries
or search conditions will ever be passed to the operator class methods. (It is assumed that SP-GiST
operators are strict and so cannot succeed for null values.) Null values are therefore not discussed
further here.

There are five user-defined methods that an index operator class for SP-GiST must provide, and one is
optional. All five mandatory methods follow the convention of accepting two internal arguments, the
first of which is a pointer to a C struct containing input values for the support method, while the second
argument is a pointer to a C struct where output values must be placed. Four of the mandatory methods
just return void, since all their results appear in the output struct; but leaf_consistent additionally
returns a boolean result. The methods must not modify any fields of their input structs. In all cases,
the output struct is initialized to zeroes before calling the user-defined method. Optional sixth method
compress accepts datum to be indexed as the only argument and returns value suitable for physical
storage in leaf tuple.

The five mandatory user-defined methods are:

config

Returns static information about the index implementation, including the data type OIDs of the prefix
and node label data types.

2342

SP-GiST Indexes

The SQL declaration of the function must look like this:

CREATE FUNCTION my_config(internal, internal) RETURNS void ...

The first argument is a pointer to a spgConfigIn C struct, containing input data for the function.
The second argument is a pointer to a spgConfigOut C struct, which the function must fill with
result data.

typedef struct spgConfigIn
{
 Oid attType; /* Data type to be indexed */
} spgConfigIn;

typedef struct spgConfigOut
{
 Oid prefixType; /* Data type of inner-tuple
 prefixes */
 Oid labelType; /* Data type of inner-tuple node
 labels */
 Oid leafType; /* Data type of leaf-tuple values
 */
 bool canReturnData; /* Opclass can reconstruct original
 data */
 bool longValuesOK; /* Opclass can cope with values > 1
 page */
} spgConfigOut;

attType is passed in order to support polymorphic index operator classes; for ordinary fixed-data-
type operator classes, it will always have the same value and so can be ignored.

For operator classes that do not use prefixes, prefixType can be set to VOIDOID. Likewise, for
operator classes that do not use node labels, labelType can be set to VOIDOID. canReturnData
should be set true if the operator class is capable of reconstructing the originally-supplied index value.
longValuesOK should be set true only when the attType is of variable length and the operator
class is capable of segmenting long values by repeated suffixing (see Section 65.4.1).

leafType is typically the same as attType. For the reasons of backward compatibility, method
config can leave leafType uninitialized; that would give the same effect as setting leafType
equal to attType. When attType and leafType are different, then optional method compress
must be provided. Method compress is responsible for transformation of datums to be indexed from
attType to leafType. Note: both consistent functions will get scankeys unchanged, without
transformation using compress.

choose

Chooses a method for inserting a new value into an inner tuple.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_choose(internal, internal) RETURNS void ...

The first argument is a pointer to a spgChooseIn C struct, containing input data for the function.
The second argument is a pointer to a spgChooseOut C struct, which the function must fill with
result data.

2343

SP-GiST Indexes

typedef struct spgChooseIn
{
 Datum datum; /* original datum to be indexed */
 Datum leafDatum; /* current datum to be stored at
 leaf */
 int level; /* current level (counting from
 zero) */

 /* Data from current inner tuple */
 bool allTheSame; /* tuple is marked all-the-same? */
 bool hasPrefix; /* tuple has a prefix? */
 Datum prefixDatum; /* if so, the prefix value */
 int nNodes; /* number of nodes in the inner
 tuple */
 Datum *nodeLabels; /* node label values (NULL if none)
 */
} spgChooseIn;

typedef enum spgChooseResultType
{
 spgMatchNode = 1, /* descend into existing node */
 spgAddNode, /* add a node to the inner tuple */
 spgSplitTuple /* split inner tuple (change its
 prefix) */
} spgChooseResultType;

typedef struct spgChooseOut
{
 spgChooseResultType resultType; /* action code, see above
 */
 union
 {
 struct /* results for spgMatchNode */
 {
 int nodeN; /* descend to this node (index
 from 0) */
 int levelAdd; /* increment level by this much
 */
 Datum restDatum; /* new leaf datum */
 } matchNode;
 struct /* results for spgAddNode */
 {
 Datum nodeLabel; /* new node's label */
 int nodeN; /* where to insert it (index
 from 0) */
 } addNode;
 struct /* results for spgSplitTuple */
 {
 /* Info to form new upper-level inner tuple with one
 child tuple */
 bool prefixHasPrefix; /* tuple should have a
 prefix? */
 Datum prefixPrefixDatum; /* if so, its value */

2344

SP-GiST Indexes

 int prefixNNodes; /* number of nodes */
 Datum *prefixNodeLabels; /* their labels (or
 NULL for
 * no labels) */
 int childNodeN; /* which node gets
 child tuple */

 /* Info to form new lower-level inner tuple with all
 old nodes */
 bool postfixHasPrefix; /* tuple should have a
 prefix? */
 Datum postfixPrefixDatum; /* if so, its value */
 } splitTuple;
 } result;
} spgChooseOut;

datum is the original datum of spgConfigIn.attType type that was to be inserted into the
index. leafDatum is a value of spgConfigOut.leafType type which is initially an result of
method compress applied to datum when method compress is provided, or same value as datum
otherwise. leafDatum can change at lower levels of the tree if the choose or picksplit methods
change it. When the insertion search reaches a leaf page, the current value of leafDatum is what
will be stored in the newly created leaf tuple. level is the current inner tuple's level, starting at zero
for the root level. allTheSame is true if the current inner tuple is marked as containing multiple
equivalent nodes (see Section 65.4.3). hasPrefix is true if the current inner tuple contains a prefix;
if so, prefixDatum is its value. nNodes is the number of child nodes contained in the inner tuple,
and nodeLabels is an array of their label values, or NULL if there are no labels.

The choose function can determine either that the new value matches one of the existing child nodes,
or that a new child node must be added, or that the new value is inconsistent with the tuple prefix and
so the inner tuple must be split to create a less restrictive prefix.

If the new value matches one of the existing child nodes, set resultType to spgMatchNode. Set
nodeN to the index (from zero) of that node in the node array. Set levelAdd to the increment in
level caused by descending through that node, or leave it as zero if the operator class does not use
levels. Set restDatum to equal leafDatum if the operator class does not modify datums from one
level to the next, or otherwise set it to the modified value to be used as leafDatum at the next level.

If a new child node must be added, set resultType to spgAddNode. Set nodeLabel to the label
to be used for the new node, and set nodeN to the index (from zero) at which to insert the node in
the node array. After the node has been added, the choose function will be called again with the
modified inner tuple; that call should result in an spgMatchNode result.

If the new value is inconsistent with the tuple prefix, set resultType to spgSplitTuple. This
action moves all the existing nodes into a new lower-level inner tuple, and replaces the existing
inner tuple with a tuple having a single downlink pointing to the new lower-level inner tuple. Set
prefixHasPrefix to indicate whether the new upper tuple should have a prefix, and if so set
prefixPrefixDatum to the prefix value. This new prefix value must be sufficiently less restrictive
than the original to accept the new value to be indexed. Set prefixNNodes to the number of nodes
needed in the new tuple, and set prefixNodeLabels to a palloc'd array holding their labels, or to
NULL if node labels are not required. Note that the total size of the new upper tuple must be no more
than the total size of the tuple it is replacing; this constrains the lengths of the new prefix and new
labels. Set childNodeN to the index (from zero) of the node that will downlink to the new lower-
level inner tuple. Set postfixHasPrefix to indicate whether the new lower-level inner tuple
should have a prefix, and if so set postfixPrefixDatum to the prefix value. The combination of
these two prefixes and the downlink node's label (if any) must have the same meaning as the original

2345

SP-GiST Indexes

prefix, because there is no opportunity to alter the node labels that are moved to the new lower-level
tuple, nor to change any child index entries. After the node has been split, the choose function
will be called again with the replacement inner tuple. That call may return an spgAddNode result,
if no suitable node was created by the spgSplitTuple action. Eventually choose must return
spgMatchNode to allow the insertion to descend to the next level.

picksplit

Decides how to create a new inner tuple over a set of leaf tuples.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_picksplit(internal, internal) RETURNS void ...

The first argument is a pointer to a spgPickSplitIn C struct, containing input data for the
function. The second argument is a pointer to a spgPickSplitOut C struct, which the function
must fill with result data.

typedef struct spgPickSplitIn
{
 int nTuples; /* number of leaf tuples */
 Datum *datums; /* their datums (array of length
 nTuples) */
 int level; /* current level (counting from
 zero) */
} spgPickSplitIn;

typedef struct spgPickSplitOut
{
 bool hasPrefix; /* new inner tuple should have a
 prefix? */
 Datum prefixDatum; /* if so, its value */

 int nNodes; /* number of nodes for new inner
 tuple */
 Datum *nodeLabels; /* their labels (or NULL for no
 labels) */

 int *mapTuplesToNodes; /* node index for each leaf
 tuple */
 Datum *leafTupleDatums; /* datum to store in each new
 leaf tuple */
} spgPickSplitOut;

nTuples is the number of leaf tuples provided. datums is an array of their datum values of
spgConfigOut.leafType type. level is the current level that all the leaf tuples share, which
will become the level of the new inner tuple.

Set hasPrefix to indicate whether the new inner tuple should have a prefix, and if so set
prefixDatum to the prefix value. Set nNodes to indicate the number of nodes that the new inner
tuple will contain, and set nodeLabels to an array of their label values, or to NULL if node labels
are not required. Set mapTuplesToNodes to an array that gives the index (from zero) of the node
that each leaf tuple should be assigned to. Set leafTupleDatums to an array of the values to be

2346

SP-GiST Indexes

stored in the new leaf tuples (these will be the same as the input datums if the operator class does
not modify datums from one level to the next). Note that the picksplit function is responsible for
palloc'ing the nodeLabels, mapTuplesToNodes and leafTupleDatums arrays.

If more than one leaf tuple is supplied, it is expected that the picksplit function will classify
them into more than one node; otherwise it is not possible to split the leaf tuples across multiple
pages, which is the ultimate purpose of this operation. Therefore, if the picksplit function ends
up placing all the leaf tuples in the same node, the core SP-GiST code will override that decision and
generate an inner tuple in which the leaf tuples are assigned at random to several identically-labeled
nodes. Such a tuple is marked allTheSame to signify that this has happened. The choose and
inner_consistent functions must take suitable care with such inner tuples. See Section 65.4.3
for more information.

picksplit can be applied to a single leaf tuple only in the case that the config function set
longValuesOK to true and a larger-than-a-page input value has been supplied. In this case the point
of the operation is to strip off a prefix and produce a new, shorter leaf datum value. The call will be
repeated until a leaf datum short enough to fit on a page has been produced. See Section 65.4.1 for
more information.

inner_consistent

Returns set of nodes (branches) to follow during tree search.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_inner_consistent(internal, internal) RETURNS
 void ...

The first argument is a pointer to a spgInnerConsistentIn C struct, containing input data for
the function. The second argument is a pointer to a spgInnerConsistentOut C struct, which
the function must fill with result data.

typedef struct spgInnerConsistentIn
{
 ScanKey scankeys; /* array of operators and
 comparison values */
 int nkeys; /* length of array */

 Datum reconstructedValue; /* value reconstructed at
 parent */
 void *traversalValue; /* opclass-specific traverse value
 */
 MemoryContext traversalMemoryContext; /* put new traverse
 values here */
 int level; /* current level (counting from
 zero) */
 bool returnData; /* original data must be returned?
 */

 /* Data from current inner tuple */
 bool allTheSame; /* tuple is marked all-the-same? */
 bool hasPrefix; /* tuple has a prefix? */
 Datum prefixDatum; /* if so, the prefix value */

2347

SP-GiST Indexes

 int nNodes; /* number of nodes in the inner
 tuple */
 Datum *nodeLabels; /* node label values (NULL if none)
 */
} spgInnerConsistentIn;

typedef struct spgInnerConsistentOut
{
 int nNodes; /* number of child nodes to be
 visited */
 int *nodeNumbers; /* their indexes in the node array
 */
 int *levelAdds; /* increment level by this much for
 each */
 Datum *reconstructedValues; /* associated reconstructed
 values */
 void **traversalValues; /* opclass-specific
 traverse values */
} spgInnerConsistentOut;

The array scankeys, of length nkeys, describes the index search condition(s). These conditions
are combined with AND — only index entries that satisfy all of them are interesting. (Note that
nkeys = 0 implies that all index entries satisfy the query.) Usually the consistent function only cares
about the sk_strategy and sk_argument fields of each array entry, which respectively give
the indexable operator and comparison value. In particular it is not necessary to check sk_flags to
see if the comparison value is NULL, because the SP-GiST core code will filter out such conditions.
reconstructedValue is the value reconstructed for the parent tuple; it is (Datum) 0 at the
root level or if the inner_consistent function did not provide a value at the parent level.
reconstructedValue is always of spgConfigOut.leafType type. traversalValue is
a pointer to any traverse data passed down from the previous call of inner_consistent on the
parent index tuple, or NULL at the root level. traversalMemoryContext is the memory context
in which to store output traverse values (see below). level is the current inner tuple's level, starting
at zero for the root level. returnData is true if reconstructed data is required for this query; this
will only be so if the config function asserted canReturnData. allTheSame is true if the
current inner tuple is marked “all-the-same”; in this case all the nodes have the same label (if any)
and so either all or none of them match the query (see Section 65.4.3). hasPrefix is true if the
current inner tuple contains a prefix; if so, prefixDatum is its value. nNodes is the number of
child nodes contained in the inner tuple, and nodeLabels is an array of their label values, or NULL
if the nodes do not have labels.

nNodes must be set to the number of child nodes that need to be visited by the search, and
nodeNumbers must be set to an array of their indexes. If the operator class keeps track of
levels, set levelAdds to an array of the level increments required when descending to each
node to be visited. (Often these increments will be the same for all the nodes, but that's not
necessarily so, so an array is used.) If value reconstruction is needed, set reconstructedValues
to an array of the values of spgConfigOut.leafType type reconstructed for each child
node to be visited; otherwise, leave reconstructedValues as NULL. If it is desired
to pass down additional out-of-band information (“traverse values”) to lower levels of the
tree search, set traversalValues to an array of the appropriate traverse values, one for
each child node to be visited; otherwise, leave traversalValues as NULL. Note that the
inner_consistent function is responsible for palloc'ing the nodeNumbers, levelAdds,
reconstructedValues, and traversalValues arrays in the current memory context.
However, any output traverse values pointed to by the traversalValues array should be allocated
in traversalMemoryContext. Each traverse value must be a single palloc'd chunk.

2348

SP-GiST Indexes

leaf_consistent

Returns true if a leaf tuple satisfies a query.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_leaf_consistent(internal, internal) RETURNS
 bool ...

The first argument is a pointer to a spgLeafConsistentIn C struct, containing input data for
the function. The second argument is a pointer to a spgLeafConsistentOut C struct, which the
function must fill with result data.

typedef struct spgLeafConsistentIn
{
 ScanKey scankeys; /* array of operators and
 comparison values */
 int nkeys; /* length of array */

 Datum reconstructedValue; /* value reconstructed at
 parent */
 void *traversalValue; /* opclass-specific traverse value
 */
 int level; /* current level (counting from
 zero) */
 bool returnData; /* original data must be returned?
 */

 Datum leafDatum; /* datum in leaf tuple */
} spgLeafConsistentIn;

typedef struct spgLeafConsistentOut
{
 Datum leafValue; /* reconstructed original data, if
 any */
 bool recheck; /* set true if operator must be
 rechecked */
} spgLeafConsistentOut;

The array scankeys, of length nkeys, describes the index search condition(s). These conditions
are combined with AND — only index entries that satisfy all of them satisfy the query. (Note that
nkeys = 0 implies that all index entries satisfy the query.) Usually the consistent function only cares
about the sk_strategy and sk_argument fields of each array entry, which respectively give
the indexable operator and comparison value. In particular it is not necessary to check sk_flags to
see if the comparison value is NULL, because the SP-GiST core code will filter out such conditions.
reconstructedValue is the value reconstructed for the parent tuple; it is (Datum) 0 at the
root level or if the inner_consistent function did not provide a value at the parent level.
reconstructedValue is always of spgConfigOut.leafType type. traversalValue is
a pointer to any traverse data passed down from the previous call of inner_consistent on the
parent index tuple, or NULL at the root level. level is the current leaf tuple's level, starting at zero
for the root level. returnData is true if reconstructed data is required for this query; this will
only be so if the config function asserted canReturnData. leafDatum is the key value of
spgConfigOut.leafType stored in the current leaf tuple.

2349

SP-GiST Indexes

The function must return true if the leaf tuple matches the query, or false if not. In the true case,
if returnData is true then leafValue must be set to the value of spgConfigIn.attType
type originally supplied to be indexed for this leaf tuple. Also, recheck may be set to true if the
match is uncertain and so the operator(s) must be re-applied to the actual heap tuple to verify the match.

The optional user-defined method is:

Datum compress(Datum in)

Converts the data item into a format suitable for physical storage in a leaf tuple of index page. It
accepts spgConfigIn.attType value and return spgConfigOut.leafType value. Output
value should not be toasted.

All the SP-GiST support methods are normally called in a short-lived memory context; that is,
CurrentMemoryContext will be reset after processing of each tuple. It is therefore not very important
to worry about pfree'ing everything you palloc. (The config method is an exception: it should try to
avoid leaking memory. But usually the config method need do nothing but assign constants into the
passed parameter struct.)

If the indexed column is of a collatable data type, the index collation will be passed to all the support
methods, using the standard PG_GET_COLLATION() mechanism.

65.4. Implementation
This section covers implementation details and other tricks that are useful for implementers of SP-GiST
operator classes to know.

65.4.1. SP-GiST Limits
Individual leaf tuples and inner tuples must fit on a single index page (8kB by default). Therefore, when
indexing values of variable-length data types, long values can only be supported by methods such as radix
trees, in which each level of the tree includes a prefix that is short enough to fit on a page, and the final leaf
level includes a suffix also short enough to fit on a page. The operator class should set longValuesOK
to true only if it is prepared to arrange for this to happen. Otherwise, the SP-GiST core will reject any
request to index a value that is too large to fit on an index page.

Likewise, it is the operator class's responsibility that inner tuples do not grow too large to fit on an index
page; this limits the number of child nodes that can be used in one inner tuple, as well as the maximum
size of a prefix value.

Another limitation is that when an inner tuple's node points to a set of leaf tuples, those tuples must all
be in the same index page. (This is a design decision to reduce seeking and save space in the links that
chain such tuples together.) If the set of leaf tuples grows too large for a page, a split is performed and an
intermediate inner tuple is inserted. For this to fix the problem, the new inner tuple must divide the set of
leaf values into more than one node group. If the operator class's picksplit function fails to do that,
the SP-GiST core resorts to extraordinary measures described in Section 65.4.3.

65.4.2. SP-GiST Without Node Labels
Some tree algorithms use a fixed set of nodes for each inner tuple; for example, in a quad-tree there are
always exactly four nodes corresponding to the four quadrants around the inner tuple's centroid point. In
such a case the code typically works with the nodes by number, and there is no need for explicit node labels.
To suppress node labels (and thereby save some space), the picksplit function can return NULL for the
nodeLabels array, and likewise the choose function can return NULL for the prefixNodeLabels

2350

SP-GiST Indexes

array during a spgSplitTuple action. This will in turn result in nodeLabels being NULL during
subsequent calls to choose and inner_consistent. In principle, node labels could be used for some
inner tuples and omitted for others in the same index.

When working with an inner tuple having unlabeled nodes, it is an error for choose to return
spgAddNode, since the set of nodes is supposed to be fixed in such cases.

65.4.3. “All-the-same” Inner Tuples
The SP-GiST core can override the results of the operator class's picksplit function when picksplit
fails to divide the supplied leaf values into at least two node categories. When this happens, the new
inner tuple is created with multiple nodes that each have the same label (if any) that picksplit gave
to the one node it did use, and the leaf values are divided at random among these equivalent nodes. The
allTheSame flag is set on the inner tuple to warn the choose and inner_consistent functions
that the tuple does not have the node set that they might otherwise expect.

When dealing with an allTheSame tuple, a choose result of spgMatchNode is interpreted to mean
that the new value can be assigned to any of the equivalent nodes; the core code will ignore the supplied
nodeN value and descend into one of the nodes at random (so as to keep the tree balanced). It is an
error for choose to return spgAddNode, since that would make the nodes not all equivalent; the
spgSplitTuple action must be used if the value to be inserted doesn't match the existing nodes.

When dealing with an allTheSame tuple, the inner_consistent function should return either all
or none of the nodes as targets for continuing the index search, since they are all equivalent. This may
or may not require any special-case code, depending on how much the inner_consistent function
normally assumes about the meaning of the nodes.

65.5. Examples
The PostgreSQL source distribution includes several examples of index operator classes for SP-GiST, as
described in Table 65.1. Look into src/backend/access/spgist/ and src/backend/utils/
adt/ to see the code.

2351

Chapter 66. GIN Indexes
66.1. Introduction

GIN stands for Generalized Inverted Index. GIN is designed for handling cases where the items to be
indexed are composite values, and the queries to be handled by the index need to search for element values
that appear within the composite items. For example, the items could be documents, and the queries could
be searches for documents containing specific words.

We use the word item to refer to a composite value that is to be indexed, and the word key to refer to an
element value. GIN always stores and searches for keys, not item values per se.

A GIN index stores a set of (key, posting list) pairs, where a posting list is a set of row IDs in which the
key occurs. The same row ID can appear in multiple posting lists, since an item can contain more than
one key. Each key value is stored only once, so a GIN index is very compact for cases where the same
key appears many times.

GIN is generalized in the sense that the GIN access method code does not need to know the specific
operations that it accelerates. Instead, it uses custom strategies defined for particular data types. The
strategy defines how keys are extracted from indexed items and query conditions, and how to determine
whether a row that contains some of the key values in a query actually satisfies the query.

One advantage of GIN is that it allows the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert. This is much the same
advantage as using GiST.

The GIN implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg Bartunov.
There is more information about GIN on their website1.

66.2. Built-in Operator Classes
The core PostgreSQL distribution includes the GIN operator classes shown in Table 66.1. (Some of the
optional modules described in Appendix F provide additional GIN operator classes.)

Table 66.1. Built-in GIN Operator Classes

Name Indexed Data Type Indexable Operators

array_ops anyarray && <@ = @>

jsonb_ops jsonb ? ?& ?| @>

jsonb_path_ops jsonb @>

tsvector_ops tsvector @@ @@@

Of the two operator classes for type jsonb, jsonb_ops is the default. jsonb_path_ops supports
fewer operators but offers better performance for those operators. See Section 8.14.4 for details.

66.3. Extensibility
The GIN interface has a high level of abstraction, requiring the access method implementer only to
implement the semantics of the data type being accessed. The GIN layer itself takes care of concurrency,
logging and searching the tree structure.

1 http://www.sai.msu.su/~megera/wiki/Gin

2352

http://www.sai.msu.su/~megera/wiki/Gin
http://www.sai.msu.su/~megera/wiki/Gin

GIN Indexes

All it takes to get a GIN access method working is to implement a few user-defined methods, which define
the behavior of keys in the tree and the relationships between keys, indexed items, and indexable queries.
In short, GIN combines extensibility with generality, code reuse, and a clean interface.

There are two methods that an operator class for GIN must provide:

Datum *extractValue(Datum itemValue, int32 *nkeys, bool **nullFlags)

Returns a palloc'd array of keys given an item to be indexed. The number of returned keys must be
stored into *nkeys. If any of the keys can be null, also palloc an array of *nkeys bool fields, store
its address at *nullFlags, and set these null flags as needed. *nullFlags can be left NULL (its
initial value) if all keys are non-null. The return value can be NULL if the item contains no keys.

Datum *extractQuery(Datum query, int32 *nkeys, StrategyNumber n, bool
**pmatch, Pointer **extra_data, bool **nullFlags, int32 *searchMode)

Returns a palloc'd array of keys given a value to be queried; that is, query is the value on the right-
hand side of an indexable operator whose left-hand side is the indexed column. n is the strategy
number of the operator within the operator class (see Section 38.15.2). Often, extractQuery will
need to consult n to determine the data type of query and the method it should use to extract key
values. The number of returned keys must be stored into *nkeys. If any of the keys can be null, also
palloc an array of *nkeys bool fields, store its address at *nullFlags, and set these null flags
as needed. *nullFlags can be left NULL (its initial value) if all keys are non-null. The return value
can be NULL if the query contains no keys.

searchMode is an output argument that allows extractQuery to specify details about how the
search will be done. If *searchMode is set to GIN_SEARCH_MODE_DEFAULT (which is the value
it is initialized to before call), only items that match at least one of the returned keys are considered
candidate matches. If *searchMode is set to GIN_SEARCH_MODE_INCLUDE_EMPTY, then in
addition to items containing at least one matching key, items that contain no keys at all are considered
candidate matches. (This mode is useful for implementing is-subset-of operators, for example.)
If *searchMode is set to GIN_SEARCH_MODE_ALL, then all non-null items in the index are
considered candidate matches, whether they match any of the returned keys or not. (This mode is
much slower than the other two choices, since it requires scanning essentially the entire index, but
it may be necessary to implement corner cases correctly. An operator that needs this mode in most
cases is probably not a good candidate for a GIN operator class.) The symbols to use for setting this
mode are defined in access/gin.h.

pmatch is an output argument for use when partial match is supported. To use it, extractQuery
must allocate an array of *nkeys bools and store its address at *pmatch. Each element of the array
should be set to true if the corresponding key requires partial match, false if not. If *pmatch is set
to NULL then GIN assumes partial match is not required. The variable is initialized to NULL before
call, so this argument can simply be ignored by operator classes that do not support partial match.

extra_data is an output argument that allows extractQuery to pass additional data to the
consistent and comparePartial methods. To use it, extractQuery must allocate an array
of *nkeys pointers and store its address at *extra_data, then store whatever it wants to into the
individual pointers. The variable is initialized to NULL before call, so this argument can simply be
ignored by operator classes that do not require extra data. If *extra_data is set, the whole array is
passed to the consistent method, and the appropriate element to the comparePartial method.

An operator class must also provide a function to check if an indexed item matches the query. It
comes in two flavors, a boolean consistent function, and a ternary triConsistent function.
triConsistent covers the functionality of both, so providing triConsistent alone is sufficient.
However, if the boolean variant is significantly cheaper to calculate, it can be advantageous to provide

2353

GIN Indexes

both. If only the boolean variant is provided, some optimizations that depend on refuting index items
before fetching all the keys are disabled.

bool consistent(bool check[], StrategyNumber n, Datum query, int32
nkeys, Pointer extra_data[], bool *recheck, Datum queryKeys[], bool
nullFlags[])

Returns true if an indexed item satisfies the query operator with strategy number n (or might satisfy
it, if the recheck indication is returned). This function does not have direct access to the indexed
item's value, since GIN does not store items explicitly. Rather, what is available is knowledge about
which key values extracted from the query appear in a given indexed item. The check array has
length nkeys, which is the same as the number of keys previously returned by extractQuery
for this query datum. Each element of the check array is true if the indexed item contains the
corresponding query key, i.e., if (check[i] == true) the i-th key of the extractQuery result array is
present in the indexed item. The original query datum is passed in case the consistent method
needs to consult it, and so are the queryKeys[] and nullFlags[] arrays previously returned
by extractQuery. extra_data is the extra-data array returned by extractQuery, or NULL
if none.

When extractQuery returns a null key in queryKeys[], the corresponding check[] element
is true if the indexed item contains a null key; that is, the semantics of check[] are like IS NOT
DISTINCT FROM. The consistent function can examine the corresponding nullFlags[]
element if it needs to tell the difference between a regular value match and a null match.

On success, *recheck should be set to true if the heap tuple needs to be rechecked against the query
operator, or false if the index test is exact. That is, a false return value guarantees that the heap tuple
does not match the query; a true return value with *recheck set to false guarantees that the heap
tuple does match the query; and a true return value with *recheck set to true means that the heap
tuple might match the query, so it needs to be fetched and rechecked by evaluating the query operator
directly against the originally indexed item.

GinTernaryValue triConsistent(GinTernaryValue check[], StrategyNumber
n, Datum query, int32 nkeys, Pointer extra_data[], Datum queryKeys[],
bool nullFlags[])

triConsistent is similar to consistent, but instead of booleans in the check vector, there
are three possible values for each key: GIN_TRUE, GIN_FALSE and GIN_MAYBE. GIN_FALSE
and GIN_TRUE have the same meaning as regular boolean values, while GIN_MAYBE means that
the presence of that key is not known. When GIN_MAYBE values are present, the function should
only return GIN_TRUE if the item certainly matches whether or not the index item contains the
corresponding query keys. Likewise, the function must return GIN_FALSE only if the item certainly
does not match, whether or not it contains the GIN_MAYBE keys. If the result depends on the
GIN_MAYBE entries, i.e., the match cannot be confirmed or refuted based on the known query keys,
the function must return GIN_MAYBE.

When there are no GIN_MAYBE values in the check vector, a GIN_MAYBE return value is the
equivalent of setting the recheck flag in the boolean consistent function.

In addition, GIN must have a way to sort the key values stored in the index. The operator class can define
the sort ordering by specifying a comparison method:

int compare(Datum a, Datum b)

Compares two keys (not indexed items!) and returns an integer less than zero, zero, or greater than
zero, indicating whether the first key is less than, equal to, or greater than the second. Null keys are
never passed to this function.

2354

GIN Indexes

Alternatively, if the operator class does not provide a compare method, GIN will look up the default btree
operator class for the index key data type, and use its comparison function. It is recommended to specify
the comparison function in a GIN operator class that is meant for just one data type, as looking up the btree
operator class costs a few cycles. However, polymorphic GIN operator classes (such as array_ops)
typically cannot specify a single comparison function.

Optionally, an operator class for GIN can supply the following method:

int comparePartial(Datum partial_key, Datum key, StrategyNumber n,
Pointer extra_data)

Compare a partial-match query key to an index key. Returns an integer whose sign indicates the result:
less than zero means the index key does not match the query, but the index scan should continue; zero
means that the index key does match the query; greater than zero indicates that the index scan should
stop because no more matches are possible. The strategy number n of the operator that generated the
partial match query is provided, in case its semantics are needed to determine when to end the scan.
Also, extra_data is the corresponding element of the extra-data array made by extractQuery,
or NULL if none. Null keys are never passed to this function.

To support “partial match” queries, an operator class must provide the comparePartial method, and
its extractQuery method must set the pmatch parameter when a partial-match query is encountered.
See Section 66.4.2 for details.

The actual data types of the various Datum values mentioned above vary depending on the operator class.
The item values passed to extractValue are always of the operator class's input type, and all key values
must be of the class's STORAGE type. The type of the query argument passed to extractQuery,
consistent and triConsistent is whatever is the right-hand input type of the class member
operator identified by the strategy number. This need not be the same as the indexed type, so long as key
values of the correct type can be extracted from it. However, it is recommended that the SQL declarations
of these three support functions use the opclass's indexed data type for the query argument, even though
the actual type might be something else depending on the operator.

66.4. Implementation
Internally, a GIN index contains a B-tree index constructed over keys, where each key is an element of one
or more indexed items (a member of an array, for example) and where each tuple in a leaf page contains
either a pointer to a B-tree of heap pointers (a “posting tree”), or a simple list of heap pointers (a “posting
list”) when the list is small enough to fit into a single index tuple along with the key value.

As of PostgreSQL 9.1, null key values can be included in the index. Also, placeholder nulls are included
in the index for indexed items that are null or contain no keys according to extractValue. This allows
searches that should find empty items to do so.

Multicolumn GIN indexes are implemented by building a single B-tree over composite values (column
number, key value). The key values for different columns can be of different types.

66.4.1. GIN Fast Update Technique
Updating a GIN index tends to be slow because of the intrinsic nature of inverted indexes: inserting
or updating one heap row can cause many inserts into the index (one for each key extracted from the
indexed item). As of PostgreSQL 8.4, GIN is capable of postponing much of this work by inserting new
tuples into a temporary, unsorted list of pending entries. When the table is vacuumed or autoanalyzed,
or when gin_clean_pending_list function is called, or if the pending list becomes larger than
gin_pending_list_limit, the entries are moved to the main GIN data structure using the same bulk insert

2355

GIN Indexes

techniques used during initial index creation. This greatly improves GIN index update speed, even counting
the additional vacuum overhead. Moreover the overhead work can be done by a background process instead
of in foreground query processing.

The main disadvantage of this approach is that searches must scan the list of pending entries in addition to
searching the regular index, and so a large list of pending entries will slow searches significantly. Another
disadvantage is that, while most updates are fast, an update that causes the pending list to become “too
large” will incur an immediate cleanup cycle and thus be much slower than other updates. Proper use of
autovacuum can minimize both of these problems.

If consistent response time is more important than update speed, use of pending entries can be disabled by
turning off the fastupdate storage parameter for a GIN index. See CREATE INDEX for details.

66.4.2. Partial Match Algorithm
GIN can support “partial match” queries, in which the query does not determine an exact match for one
or more keys, but the possible matches fall within a reasonably narrow range of key values (within the
key sorting order determined by the compare support method). The extractQuery method, instead
of returning a key value to be matched exactly, returns a key value that is the lower bound of the range to
be searched, and sets the pmatch flag true. The key range is then scanned using the comparePartial
method. comparePartial must return zero for a matching index key, less than zero for a non-match
that is still within the range to be searched, or greater than zero if the index key is past the range that
could match.

66.5. GIN Tips and Tricks
Create vs. insert

Insertion into a GIN index can be slow due to the likelihood of many keys being inserted for each
item. So, for bulk insertions into a table it is advisable to drop the GIN index and recreate it after
finishing bulk insertion.

As of PostgreSQL 8.4, this advice is less necessary since delayed indexing is used (see Section 66.4.1
for details). But for very large updates it may still be best to drop and recreate the index.

maintenance_work_mem

Build time for a GIN index is very sensitive to the maintenance_work_mem setting; it doesn't
pay to skimp on work memory during index creation.

gin_pending_list_limit

During a series of insertions into an existing GIN index that has fastupdate enabled,
the system will clean up the pending-entry list whenever the list grows larger than
gin_pending_list_limit. To avoid fluctuations in observed response time, it's desirable
to have pending-list cleanup occur in the background (i.e., via autovacuum). Foreground cleanup
operations can be avoided by increasing gin_pending_list_limit or making autovacuum
more aggressive. However, enlarging the threshold of the cleanup operation means that if a foreground
cleanup does occur, it will take even longer.

gin_pending_list_limit can be overridden for individual GIN indexes by changing storage
parameters, and which allows each GIN index to have its own cleanup threshold. For example, it's
possible to increase the threshold only for the GIN index which can be updated heavily, and decrease
it otherwise.

2356

GIN Indexes

gin_fuzzy_search_limit

The primary goal of developing GIN indexes was to create support for highly scalable full-text search
in PostgreSQL, and there are often situations when a full-text search returns a very large set of results.
Moreover, this often happens when the query contains very frequent words, so that the large result set
is not even useful. Since reading many tuples from the disk and sorting them could take a lot of time,
this is unacceptable for production. (Note that the index search itself is very fast.)

To facilitate controlled execution of such queries, GIN has a configurable soft upper limit on the
number of rows returned: the gin_fuzzy_search_limit configuration parameter. It is set to 0
(meaning no limit) by default. If a non-zero limit is set, then the returned set is a subset of the whole
result set, chosen at random.

“Soft” means that the actual number of returned results could differ somewhat from the specified
limit, depending on the query and the quality of the system's random number generator.

From experience, values in the thousands (e.g., 5000 — 20000) work well.

66.6. Limitations
GIN assumes that indexable operators are strict. This means that extractValue will not be called at all
on a null item value (instead, a placeholder index entry is created automatically), and extractQuery
will not be called on a null query value either (instead, the query is presumed to be unsatisfiable). Note
however that null key values contained within a non-null composite item or query value are supported.

66.7. Examples
The core PostgreSQL distribution includes the GIN operator classes previously shown in Table 66.1. The
following contrib modules also contain GIN operator classes:

btree_gin

B-tree equivalent functionality for several data types

hstore

Module for storing (key, value) pairs

intarray

Enhanced support for int[]

pg_trgm

Text similarity using trigram matching

2357

Chapter 67. BRIN Indexes
67.1. Introduction

BRIN stands for Block Range Index. BRIN is designed for handling very large tables in which certain
columns have some natural correlation with their physical location within the table. A block range is a
group of pages that are physically adjacent in the table; for each block range, some summary info is stored
by the index. For example, a table storing a store's sale orders might have a date column on which each
order was placed, and most of the time the entries for earlier orders will appear earlier in the table as well;
a table storing a ZIP code column might have all codes for a city grouped together naturally.

BRIN indexes can satisfy queries via regular bitmap index scans, and will return all tuples in all pages
within each range if the summary info stored by the index is consistent with the query conditions. The
query executor is in charge of rechecking these tuples and discarding those that do not match the query
conditions — in other words, these indexes are lossy. Because a BRIN index is very small, scanning the
index adds little overhead compared to a sequential scan, but may avoid scanning large parts of the table
that are known not to contain matching tuples.

The specific data that a BRIN index will store, as well as the specific queries that the index will be able
to satisfy, depend on the operator class selected for each column of the index. Data types having a linear
sort order can have operator classes that store the minimum and maximum value within each block range,
for instance; geometrical types might store the bounding box for all the objects in the block range.

The size of the block range is determined at index creation time by the pages_per_range storage
parameter. The number of index entries will be equal to the size of the relation in pages divided by the
selected value for pages_per_range. Therefore, the smaller the number, the larger the index becomes
(because of the need to store more index entries), but at the same time the summary data stored can be
more precise and more data blocks can be skipped during an index scan.

67.1.1. Index Maintenance
At the time of creation, all existing heap pages are scanned and a summary index tuple is
created for each range, including the possibly-incomplete range at the end. As new pages are filled
with data, page ranges that are already summarized will cause the summary information to be
updated with data from the new tuples. When a new page is created that does not fall within the
last summarized range, that range does not automatically acquire a summary tuple; those tuples
remain unsummarized until a summarization run is invoked later, creating initial summaries. This
process can be invoked manually using the brin_summarize_range(regclass, bigint) or
brin_summarize_new_values(regclass) functions; automatically when VACUUM processes
the table; or by automatic summarization executed by autovacuum, as insertions occur. (This last trigger is
disabled by default and can be enabled with the autosummarize parameter.) Conversely, a range can
be de-summarized using the brin_desummarize_range(regclass, bigint) function, which
is useful when the index tuple is no longer a very good representation because the existing values have
changed.

When autosummarization is enabled, each time a page range is filled a request is sent to autovacuum for it
to execute a targeted summarization for that range, to be fulfilled at the end of the next worker run on the
same database. If the request queue is full, the request is not recorded and a message is sent to the server log:

LOG: request for BRIN range summarization for index "brin_wi_idx"
 page 128 was not recorded

When this happens, the range will be summarized normally during the next regular vacuum of the table.

2358

BRIN Indexes

67.2. Built-in Operator Classes
The core PostgreSQL distribution includes the BRIN operator classes shown in Table 67.1.

The minmax operator classes store the minimum and the maximum values appearing in the indexed column
within the range. The inclusion operator classes store a value which includes the values in the indexed
column within the range.

Table 67.1. Built-in BRIN Operator Classes

Name Indexed Data Type Indexable Operators

abstime_minmax_ops abstime < <= = >= >

int8_minmax_ops bigint < <= = >= >

bit_minmax_ops bit < <= = >= >

varbit_minmax_ops bit varying < <= = >= >

box_inclusion_ops box << &< && &> >> ~= @> <@ &<|
<<| |>> |&>

bytea_minmax_ops bytea < <= = >= >

bpchar_minmax_ops character < <= = >= >

char_minmax_ops "char" < <= = >= >

date_minmax_ops date < <= = >= >

float8_minmax_ops double precision < <= = >= >

inet_minmax_ops inet < <= = >= >

network_inclusion_ops inet && >>= <<= = >> <<

int4_minmax_ops integer < <= = >= >

interval_minmax_ops interval < <= = >= >

macaddr_minmax_ops macaddr < <= = >= >

macaddr8_minmax_ops macaddr8 < <= = >= >

name_minmax_ops name < <= = >= >

numeric_minmax_ops numeric < <= = >= >

pg_lsn_minmax_ops pg_lsn < <= = >= >

oid_minmax_ops oid < <= = >= >

range_inclusion_ops any range type << &< && &> >> @> <@ -|- = <
<= = > >=

float4_minmax_ops real < <= = >= >

reltime_minmax_ops reltime < <= = >= >

int2_minmax_ops smallint < <= = >= >

text_minmax_ops text < <= = >= >

tid_minmax_ops tid < <= = >= >

timestamp_minmax_ops timestamp without time
zone

< <= = >= >

timestamptz_minmax_ops timestamp with time
zone

< <= = >= >

2359

BRIN Indexes

Name Indexed Data Type Indexable Operators

time_minmax_ops time without time zone < <= = >= >

timetz_minmax_ops time with time zone < <= = >= >

uuid_minmax_ops uuid < <= = >= >

67.3. Extensibility
The BRIN interface has a high level of abstraction, requiring the access method implementer only to
implement the semantics of the data type being accessed. The BRIN layer itself takes care of concurrency,
logging and searching the index structure.

All it takes to get a BRIN access method working is to implement a few user-defined methods, which
define the behavior of summary values stored in the index and the way they interact with scan keys. In
short, BRIN combines extensibility with generality, code reuse, and a clean interface.

There are four methods that an operator class for BRIN must provide:

BrinOpcInfo *opcInfo(Oid type_oid)

Returns internal information about the indexed columns' summary data. The return value must point
to a palloc'd BrinOpcInfo, which has this definition:

typedef struct BrinOpcInfo
{
 /* Number of columns stored in an index column of this opclass
 */
 uint16 oi_nstored;

 /* Opaque pointer for the opclass' private use */
 void *oi_opaque;

 /* Type cache entries of the stored columns */
 TypeCacheEntry *oi_typcache[FLEXIBLE_ARRAY_MEMBER];
} BrinOpcInfo;

BrinOpcInfo.oi_opaque can be used by the operator class routines to pass information between
support functions during an index scan.

bool consistent(BrinDesc *bdesc, BrinValues *column, ScanKey key)

Returns whether the ScanKey is consistent with the given indexed values for a range. The attribute
number to use is passed as part of the scan key.

bool addValue(BrinDesc *bdesc, BrinValues *column, Datum newval, bool
isnull)

Given an index tuple and an indexed value, modifies the indicated attribute of the tuple so that it
additionally represents the new value. If any modification was done to the tuple, true is returned.

bool unionTuples(BrinDesc *bdesc, BrinValues *a, BrinValues *b)

Consolidates two index tuples. Given two index tuples, modifies the indicated attribute of the first of
them so that it represents both tuples. The second tuple is not modified.

2360

BRIN Indexes

The core distribution includes support for two types of operator classes: minmax and inclusion. Operator
class definitions using them are shipped for in-core data types as appropriate. Additional operator classes
can be defined by the user for other data types using equivalent definitions, without having to write
any source code; appropriate catalog entries being declared is enough. Note that assumptions about the
semantics of operator strategies are embedded in the support functions' source code.

Operator classes that implement completely different semantics are also possible, provided
implementations of the four main support functions described above are written. Note that backwards
compatibility across major releases is not guaranteed: for example, additional support functions might be
required in later releases.

To write an operator class for a data type that implements a totally ordered set, it is possible to use the
minmax support functions alongside the corresponding operators, as shown in Table 67.2. All operator
class members (functions and operators) are mandatory.

Table 67.2. Function and Support Numbers for Minmax Operator Classes

Operator class member Object

Support Function 1 internal function brin_minmax_opcinfo()

Support Function 2 internal function brin_minmax_add_value()

Support Function 3 internal function
brin_minmax_consistent()

Support Function 4 internal function brin_minmax_union()

Operator Strategy 1 operator less-than

Operator Strategy 2 operator less-than-or-equal-to

Operator Strategy 3 operator equal-to

Operator Strategy 4 operator greater-than-or-equal-to

Operator Strategy 5 operator greater-than

To write an operator class for a complex data type which has values included within another type,
it's possible to use the inclusion support functions alongside the corresponding operators, as shown in
Table 67.3. It requires only a single additional function, which can be written in any language. More
functions can be defined for additional functionality. All operators are optional. Some operators require
other operators, as shown as dependencies on the table.

Table 67.3. Function and Support Numbers for Inclusion Operator Classes

Operator class member Object Dependency

Support Function 1 internal function
brin_inclusion_opcinfo()

Support Function 2 internal function
brin_inclusion_add_value()

Support Function 3 internal function
brin_inclusion_consistent()

Support Function 4 internal function
brin_inclusion_union()

Support Function 11 function to merge two elements

2361

BRIN Indexes

Operator class member Object Dependency

Support Function 12 optional function to check
whether two elements are
mergeable

Support Function 13 optional function to check if
an element is contained within
another

Support Function 14 optional function to check
whether an element is empty

Operator Strategy 1 operator left-of Operator Strategy 4

Operator Strategy 2 operator does-not-extend-to-the-
right-of

Operator Strategy 5

Operator Strategy 3 operator overlaps

Operator Strategy 4 operator does-not-extend-to-the-
left-of

Operator Strategy 1

Operator Strategy 5 operator right-of Operator Strategy 2

Operator Strategy 6, 18 operator same-as-or-equal-to Operator Strategy 7

Operator Strategy 7, 13, 16, 24, 25 operator contains-or-equal-to

Operator Strategy 8, 14, 26, 27 operator is-contained-by-or-
equal-to

Operator Strategy 3

Operator Strategy 9 operator does-not-extend-above Operator Strategy 11

Operator Strategy 10 operator is-below Operator Strategy 12

Operator Strategy 11 operator is-above Operator Strategy 9

Operator Strategy 12 operator does-not-extend-below Operator Strategy 10

Operator Strategy 20 operator less-than Operator Strategy 5

Operator Strategy 21 operator less-than-or-equal-to Operator Strategy 5

Operator Strategy 22 operator greater-than Operator Strategy 1

Operator Strategy 23 operator greater-than-or-equal-to Operator Strategy 1

Support function numbers 1-10 are reserved for the BRIN internal functions, so the SQL level functions
start with number 11. Support function number 11 is the main function required to build the index. It should
accept two arguments with the same data type as the operator class, and return the union of them. The
inclusion operator class can store union values with different data types if it is defined with the STORAGE
parameter. The return value of the union function should match the STORAGE data type.

Support function numbers 12 and 14 are provided to support irregularities of built-in data types. Function
number 12 is used to support network addresses from different families which are not mergeable. Function
number 14 is used to support empty ranges. Function number 13 is an optional but recommended one,
which allows the new value to be checked before it is passed to the union function. As the BRIN framework
can shortcut some operations when the union is not changed, using this function can improve index
performance.

Both minmax and inclusion operator classes support cross-data-type operators, though with these the
dependencies become more complicated. The minmax operator class requires a full set of operators to be
defined with both arguments having the same data type. It allows additional data types to be supported
by defining extra sets of operators. Inclusion operator class operator strategies are dependent on another
operator strategy as shown in Table 67.3, or the same operator strategy as themselves. They require

2362

BRIN Indexes

the dependency operator to be defined with the STORAGE data type as the left-hand-side argument
and the other supported data type to be the right-hand-side argument of the supported operator. See
float4_minmax_ops as an example of minmax, and box_inclusion_ops as an example of
inclusion.

2363

Chapter 68. Database Physical Storage
This chapter provides an overview of the physical storage format used by PostgreSQL databases.

68.1. Database File Layout
This section describes the storage format at the level of files and directories.

Traditionally, the configuration and data files used by a database cluster are stored together within the
cluster's data directory, commonly referred to as PGDATA (after the name of the environment variable
that can be used to define it). A common location for PGDATA is /var/lib/pgsql/data. Multiple
clusters, managed by different server instances, can exist on the same machine.

The PGDATA directory contains several subdirectories and control files, as shown in Table 68.1. In
addition to these required items, the cluster configuration files postgresql.conf, pg_hba.conf,
and pg_ident.conf are traditionally stored in PGDATA, although it is possible to place them elsewhere.

Table 68.1. Contents of PGDATA

Item Description

PG_VERSION A file containing the major version number of
PostgreSQL

base Subdirectory containing per-database
subdirectories

current_logfiles File recording the log file(s) currently written to by
the logging collector

global Subdirectory containing cluster-wide tables, such as
pg_database

pg_commit_ts Subdirectory containing transaction commit
timestamp data

pg_dynshmem Subdirectory containing files used by the dynamic
shared memory subsystem

pg_logical Subdirectory containing status data for logical
decoding

pg_multixact Subdirectory containing multitransaction status data
(used for shared row locks)

pg_notify Subdirectory containing LISTEN/NOTIFY status
data

pg_replslot Subdirectory containing replication slot data

pg_serial Subdirectory containing information about
committed serializable transactions

pg_snapshots Subdirectory containing exported snapshots

pg_stat Subdirectory containing permanent files for the
statistics subsystem

pg_stat_tmp Subdirectory containing temporary files for the
statistics subsystem

pg_subtrans Subdirectory containing subtransaction status data

2364

Database Physical Storage

Item Description

pg_tblspc Subdirectory containing symbolic links to
tablespaces

pg_twophase Subdirectory containing state files for prepared
transactions

pg_wal Subdirectory containing WAL (Write Ahead Log)
files

pg_xact Subdirectory containing transaction commit status
data

postgresql.auto.conf A file used for storing configuration parameters that
are set by ALTER SYSTEM

postmaster.opts A file recording the command-line options the
server was last started with

postmaster.pid A lock file recording the current postmaster process
ID (PID), cluster data directory path, postmaster
start timestamp, port number, Unix-domain socket
directory path (empty on Windows), first valid
listen_address (IP address or *, or empty if not
listening on TCP), and shared memory segment ID
(this file is not present after server shutdown)

For each database in the cluster there is a subdirectory within PGDATA/base, named after the database's
OID in pg_database. This subdirectory is the default location for the database's files; in particular, its
system catalogs are stored there.

Each table and index is stored in a separate file. For ordinary relations, these files are named after the
table or index's filenode number, which can be found in pg_class.relfilenode. But for temporary
relations, the file name is of the form tBBB_FFF, where BBB is the backend ID of the backend which
created the file, and FFF is the filenode number. In either case, in addition to the main file (a/k/a main
fork), each table and index has a free space map (see Section 68.3), which stores information about free
space available in the relation. The free space map is stored in a file named with the filenode number plus
the suffix _fsm. Tables also have a visibility map, stored in a fork with the suffix _vm, to track which
pages are known to have no dead tuples. The visibility map is described further in Section 68.4. Unlogged
tables and indexes have a third fork, known as the initialization fork, which is stored in a fork with the
suffix _init (see Section 68.5).

Caution

Note that while a table's filenode often matches its OID, this is not necessarily the case; some
operations, like TRUNCATE, REINDEX, CLUSTER and some forms of ALTER TABLE, can
change the filenode while preserving the OID. Avoid assuming that filenode and table OID are the
same. Also, for certain system catalogs including pg_class itself, pg_class.relfilenode
contains zero. The actual filenode number of these catalogs is stored in a lower-level data structure,
and can be obtained using the pg_relation_filenode() function.

When a table or index exceeds 1 GB, it is divided into gigabyte-sized segments. The first segment's
file name is the same as the filenode; subsequent segments are named filenode.1, filenode.2, etc. This
arrangement avoids problems on platforms that have file size limitations. (Actually, 1 GB is just the
default segment size. The segment size can be adjusted using the configuration option --with-segsize

2365

Database Physical Storage

when building PostgreSQL.) In principle, free space map and visibility map forks could require multiple
segments as well, though this is unlikely to happen in practice.

A table that has columns with potentially large entries will have an associated TOAST table, which
is used for out-of-line storage of field values that are too large to keep in the table rows proper.
pg_class.reltoastrelid links from a table to its TOAST table, if any. See Section 68.2 for more
information.

The contents of tables and indexes are discussed further in Section 68.6.

Tablespaces make the scenario more complicated. Each user-defined tablespace has a symbolic link inside
the PGDATA/pg_tblspc directory, which points to the physical tablespace directory (i.e., the location
specified in the tablespace's CREATE TABLESPACE command). This symbolic link is named after the
tablespace's OID. Inside the physical tablespace directory there is a subdirectory with a name that depends
on the PostgreSQL server version, such as PG_9.0_201008051. (The reason for using this subdirectory
is so that successive versions of the database can use the same CREATE TABLESPACE location value
without conflicts.) Within the version-specific subdirectory, there is a subdirectory for each database that
has elements in the tablespace, named after the database's OID. Tables and indexes are stored within
that directory, using the filenode naming scheme. The pg_default tablespace is not accessed through
pg_tblspc, but corresponds to PGDATA/base. Similarly, the pg_global tablespace is not accessed
through pg_tblspc, but corresponds to PGDATA/global.

The pg_relation_filepath() function shows the entire path (relative to PGDATA) of any relation.
It is often useful as a substitute for remembering many of the above rules. But keep in mind that this
function just gives the name of the first segment of the main fork of the relation — you may need to append
a segment number and/or _fsm, _vm, or _init to find all the files associated with the relation.

Temporary files (for operations such as sorting more data than can fit in memory) are created within
PGDATA/base/pgsql_tmp, or within a pgsql_tmp subdirectory of a tablespace directory if a
tablespace other than pg_default is specified for them. The name of a temporary file has the form
pgsql_tmpPPP.NNN, where PPP is the PID of the owning backend and NNN distinguishes different
temporary files of that backend.

68.2. TOAST
This section provides an overview of TOAST (The Oversized-Attribute Storage Technique).

PostgreSQL uses a fixed page size (commonly 8 kB), and does not allow tuples to span multiple pages.
Therefore, it is not possible to store very large field values directly. To overcome this limitation, large
field values are compressed and/or broken up into multiple physical rows. This happens transparently to
the user, with only small impact on most of the backend code. The technique is affectionately known
as TOAST (or “the best thing since sliced bread”). The TOAST infrastructure is also used to improve
handling of large data values in-memory.

Only certain data types support TOAST — there is no need to impose the overhead on data types that
cannot produce large field values. To support TOAST, a data type must have a variable-length (varlena)
representation, in which, ordinarily, the first four-byte word of any stored value contains the total length
of the value in bytes (including itself). TOAST does not constrain the rest of the data type's representation.
The special representations collectively called TOASTed values work by modifying or reinterpreting
this initial length word. Therefore, the C-level functions supporting a TOAST-able data type must be
careful about how they handle potentially TOASTed input values: an input might not actually consist of
a four-byte length word and contents until after it's been detoasted. (This is normally done by invoking
PG_DETOAST_DATUM before doing anything with an input value, but in some cases more efficient
approaches are possible. See Section 38.12.1 for more detail.)

2366

Database Physical Storage

TOAST usurps two bits of the varlena length word (the high-order bits on big-endian machines, the low-
order bits on little-endian machines), thereby limiting the logical size of any value of a TOAST-able data
type to 1 GB (230 - 1 bytes). When both bits are zero, the value is an ordinary un-TOASTed value of the
data type, and the remaining bits of the length word give the total datum size (including length word) in
bytes. When the highest-order or lowest-order bit is set, the value has only a single-byte header instead of
the normal four-byte header, and the remaining bits of that byte give the total datum size (including length
byte) in bytes. This alternative supports space-efficient storage of values shorter than 127 bytes, while still
allowing the data type to grow to 1 GB at need. Values with single-byte headers aren't aligned on any
particular boundary, whereas values with four-byte headers are aligned on at least a four-byte boundary;
this omission of alignment padding provides additional space savings that is significant compared to
short values. As a special case, if the remaining bits of a single-byte header are all zero (which would
be impossible for a self-inclusive length), the value is a pointer to out-of-line data, with several possible
alternatives as described below. The type and size of such a TOAST pointer are determined by a code
stored in the second byte of the datum. Lastly, when the highest-order or lowest-order bit is clear but the
adjacent bit is set, the content of the datum has been compressed and must be decompressed before use. In
this case the remaining bits of the four-byte length word give the total size of the compressed datum, not
the original data. Note that compression is also possible for out-of-line data but the varlena header does
not tell whether it has occurred — the content of the TOAST pointer tells that, instead.

As mentioned, there are multiple types of TOAST pointer datums. The oldest and most common type
is a pointer to out-of-line data stored in a TOAST table that is separate from, but associated with, the
table containing the TOAST pointer datum itself. These on-disk pointer datums are created by the TOAST
management code (in access/heap/tuptoaster.c) when a tuple to be stored on disk is too large to
be stored as-is. Further details appear in Section 68.2.1. Alternatively, a TOAST pointer datum can contain
a pointer to out-of-line data that appears elsewhere in memory. Such datums are necessarily short-lived,
and will never appear on-disk, but they are very useful for avoiding copying and redundant processing of
large data values. Further details appear in Section 68.2.2.

The compression technique used for either in-line or out-of-line compressed data is a fairly simple and
very fast member of the LZ family of compression techniques. See src/common/pg_lzcompress.c
for the details.

68.2.1. Out-of-line, on-disk TOAST storage
If any of the columns of a table are TOAST-able, the table will have an associated TOAST table, whose
OID is stored in the table's pg_class.reltoastrelid entry. On-disk TOASTed values are kept in
the TOAST table, as described in more detail below.

Out-of-line values are divided (after compression if used) into chunks of at most
TOAST_MAX_CHUNK_SIZE bytes (by default this value is chosen so that four chunk rows will fit on a
page, making it about 2000 bytes). Each chunk is stored as a separate row in the TOAST table belonging
to the owning table. Every TOAST table has the columns chunk_id (an OID identifying the particular
TOASTed value), chunk_seq (a sequence number for the chunk within its value), and chunk_data
(the actual data of the chunk). A unique index on chunk_id and chunk_seq provides fast retrieval of
the values. A pointer datum representing an out-of-line on-disk TOASTed value therefore needs to store
the OID of the TOAST table in which to look and the OID of the specific value (its chunk_id). For
convenience, pointer datums also store the logical datum size (original uncompressed data length) and
physical stored size (different if compression was applied). Allowing for the varlena header bytes, the
total size of an on-disk TOAST pointer datum is therefore 18 bytes regardless of the actual size of the
represented value.

The TOAST management code is triggered only when a row value to be stored in a table is wider than
TOAST_TUPLE_THRESHOLD bytes (normally 2 kB). The TOAST code will compress and/or move field
values out-of-line until the row value is shorter than TOAST_TUPLE_TARGET bytes (also normally 2

2367

Database Physical Storage

kB, adjustable) or no more gains can be had. During an UPDATE operation, values of unchanged fields
are normally preserved as-is; so an UPDATE of a row with out-of-line values incurs no TOAST costs if
none of the out-of-line values change.

The TOAST management code recognizes four different strategies for storing TOAST-able columns on
disk:

• PLAIN prevents either compression or out-of-line storage; furthermore it disables use of single-byte
headers for varlena types. This is the only possible strategy for columns of non-TOAST-able data types.

• EXTENDED allows both compression and out-of-line storage. This is the default for most TOAST-able
data types. Compression will be attempted first, then out-of-line storage if the row is still too big.

• EXTERNAL allows out-of-line storage but not compression. Use of EXTERNAL will make substring
operations on wide text and bytea columns faster (at the penalty of increased storage space) because
these operations are optimized to fetch only the required parts of the out-of-line value when it is not
compressed.

• MAIN allows compression but not out-of-line storage. (Actually, out-of-line storage will still be
performed for such columns, but only as a last resort when there is no other way to make the row small
enough to fit on a page.)

Each TOAST-able data type specifies a default strategy for columns of that data type, but the strategy for
a given table column can be altered with ALTER TABLE ... SET STORAGE.

TOAST_TUPLE_TARGET can be adjusted for each table using ALTER TABLE ... SET
(toast_tuple_target = N)

This scheme has a number of advantages compared to a more straightforward approach such as allowing
row values to span pages. Assuming that queries are usually qualified by comparisons against relatively
small key values, most of the work of the executor will be done using the main row entry. The big values
of TOASTed attributes will only be pulled out (if selected at all) at the time the result set is sent to the
client. Thus, the main table is much smaller and more of its rows fit in the shared buffer cache than would
be the case without any out-of-line storage. Sort sets shrink also, and sorts will more often be done entirely
in memory. A little test showed that a table containing typical HTML pages and their URLs was stored
in about half of the raw data size including the TOAST table, and that the main table contained only
about 10% of the entire data (the URLs and some small HTML pages). There was no run time difference
compared to an un-TOASTed comparison table, in which all the HTML pages were cut down to 7 kB to fit.

68.2.2. Out-of-line, in-memory TOAST storage
TOAST pointers can point to data that is not on disk, but is elsewhere in the memory of the current server
process. Such pointers obviously cannot be long-lived, but they are nonetheless useful. There are currently
two sub-cases: pointers to indirect data and pointers to expanded data.

Indirect TOAST pointers simply point at a non-indirect varlena value stored somewhere in memory. This
case was originally created merely as a proof of concept, but it is currently used during logical decoding to
avoid possibly having to create physical tuples exceeding 1 GB (as pulling all out-of-line field values into
the tuple might do). The case is of limited use since the creator of the pointer datum is entirely responsible
that the referenced data survives for as long as the pointer could exist, and there is no infrastructure to
help with this.

Expanded TOAST pointers are useful for complex data types whose on-disk representation is not especially
suited for computational purposes. As an example, the standard varlena representation of a PostgreSQL
array includes dimensionality information, a nulls bitmap if there are any null elements, then the values

2368

Database Physical Storage

of all the elements in order. When the element type itself is variable-length, the only way to find the
N'th element is to scan through all the preceding elements. This representation is appropriate for on-
disk storage because of its compactness, but for computations with the array it's much nicer to have
an “expanded” or “deconstructed” representation in which all the element starting locations have been
identified. The TOAST pointer mechanism supports this need by allowing a pass-by-reference Datum
to point to either a standard varlena value (the on-disk representation) or a TOAST pointer that points
to an expanded representation somewhere in memory. The details of this expanded representation are
up to the data type, though it must have a standard header and meet the other API requirements given
in src/include/utils/expandeddatum.h. C-level functions working with the data type can
choose to handle either representation. Functions that do not know about the expanded representation,
but simply apply PG_DETOAST_DATUM to their inputs, will automatically receive the traditional varlena
representation; so support for an expanded representation can be introduced incrementally, one function
at a time.

TOAST pointers to expanded values are further broken down into read-write and read-only pointers. The
pointed-to representation is the same either way, but a function that receives a read-write pointer is allowed
to modify the referenced value in-place, whereas one that receives a read-only pointer must not; it must
first create a copy if it wants to make a modified version of the value. This distinction and some associated
conventions make it possible to avoid unnecessary copying of expanded values during query execution.

For all types of in-memory TOAST pointer, the TOAST management code ensures that no such pointer
datum can accidentally get stored on disk. In-memory TOAST pointers are automatically expanded to
normal in-line varlena values before storage — and then possibly converted to on-disk TOAST pointers,
if the containing tuple would otherwise be too big.

68.3. Free Space Map
Each heap and index relation, except for hash indexes, has a Free Space Map (FSM) to keep track of
available space in the relation. It's stored alongside the main relation data in a separate relation fork, named
after the filenode number of the relation, plus a _fsm suffix. For example, if the filenode of a relation is
12345, the FSM is stored in a file called 12345_fsm, in the same directory as the main relation file.

The Free Space Map is organized as a tree of FSM pages. The bottom level FSM pages store the free
space available on each heap (or index) page, using one byte to represent each such page. The upper levels
aggregate information from the lower levels.

Within each FSM page is a binary tree, stored in an array with one byte per node. Each leaf node represents
a heap page, or a lower level FSM page. In each non-leaf node, the higher of its children's values is stored.
The maximum value in the leaf nodes is therefore stored at the root.

See src/backend/storage/freespace/README for more details on how the FSM is structured,
and how it's updated and searched. The pg_freespacemap module can be used to examine the information
stored in free space maps.

68.4. Visibility Map
Each heap relation has a Visibility Map (VM) to keep track of which pages contain only tuples that are
known to be visible to all active transactions; it also keeps track of which pages contain only frozen tuples.
It's stored alongside the main relation data in a separate relation fork, named after the filenode number of
the relation, plus a _vm suffix. For example, if the filenode of a relation is 12345, the VM is stored in a
file called 12345_vm, in the same directory as the main relation file. Note that indexes do not have VMs.

The visibility map stores two bits per heap page. The first bit, if set, indicates that the page is all-visible,
or in other words that the page does not contain any tuples that need to be vacuumed. This information

2369

Database Physical Storage

can also be used by index-only scans to answer queries using only the index tuple. The second bit, if set,
means that all tuples on the page have been frozen. That means that even an anti-wraparound vacuum
need not revisit the page.

The map is conservative in the sense that we make sure that whenever a bit is set, we know the condition
is true, but if a bit is not set, it might or might not be true. Visibility map bits are only set by vacuum, but
are cleared by any data-modifying operations on a page.

The pg_visibility module can be used to examine the information stored in the visibility map.

68.5. The Initialization Fork
Each unlogged table, and each index on an unlogged table, has an initialization fork. The initialization
fork is an empty table or index of the appropriate type. When an unlogged table must be reset to empty
due to a crash, the initialization fork is copied over the main fork, and any other forks are erased (they
will be recreated automatically as needed).

68.6. Database Page Layout
This section provides an overview of the page format used within PostgreSQL tables and indexes.1

Sequences and TOAST tables are formatted just like a regular table.

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item refers to an
individual data value that is stored on a page. In a table, an item is a row; in an index, an item is an index
entry.

Every table and index is stored as an array of pages of a fixed size (usually 8 kB, although a different
page size can be selected when compiling the server). In a table, all the pages are logically equivalent, so a
particular item (row) can be stored in any page. In indexes, the first page is generally reserved as a metapage
holding control information, and there can be different types of pages within the index, depending on the
index access method.

Table 68.2 shows the overall layout of a page. There are five parts to each page.

Table 68.2. Overall Page Layout

Item Description

PageHeaderData 24 bytes long. Contains general information about
the page, including free space pointers.

ItemIdData Array of (offset,length) pairs pointing to the actual
items. 4 bytes per item.

Free space The unallocated space. New item pointers are
allocated from the start of this area, new items from
the end.

Items The actual items themselves.

Special space Index access method specific data. Different
methods store different data. Empty in ordinary
tables.

1 Actually, index access methods need not use this page format. All the existing index methods do use this basic format, but the data kept on index
metapages usually doesn't follow the item layout rules.

2370

Database Physical Storage

The first 24 bytes of each page consists of a page header (PageHeaderData). Its format is detailed
in Table 68.3. The first field tracks the most recent WAL entry related to this page. The second field
contains the page checksum if data checksums are enabled. Next is a 2-byte field containing flag bits. This
is followed by three 2-byte integer fields (pd_lower, pd_upper, and pd_special). These contain
byte offsets from the page start to the start of unallocated space, to the end of unallocated space, and to the
start of the special space. The next 2 bytes of the page header, pd_pagesize_version, store both the
page size and a version indicator. Beginning with PostgreSQL 8.3 the version number is 4; PostgreSQL
8.1 and 8.2 used version number 3; PostgreSQL 8.0 used version number 2; PostgreSQL 7.3 and 7.4 used
version number 1; prior releases used version number 0. (The basic page layout and header format has
not changed in most of these versions, but the layout of heap row headers has.) The page size is basically
only present as a cross-check; there is no support for having more than one page size in an installation.
The last field is a hint that shows whether pruning the page is likely to be profitable: it tracks the oldest
un-pruned XMAX on the page.

Table 68.3. PageHeaderData Layout

Field Type Length Description

pd_lsn PageXLogRecPtr 8 bytes LSN: next byte after last
byte of WAL record for
last change to this page

pd_checksum uint16 2 bytes Page checksum

pd_flags uint16 2 bytes Flag bits

pd_lower LocationIndex 2 bytes Offset to start of free
space

pd_upper LocationIndex 2 bytes Offset to end of free
space

pd_special LocationIndex 2 bytes Offset to start of special
space

pd_pagesize_version uint16 2 bytes Page size and
layout version number
information

pd_prune_xid TransactionId 4 bytes Oldest unpruned XMAX
on page, or zero if none

All the details can be found in src/include/storage/bufpage.h.

Following the page header are item identifiers (ItemIdData), each requiring four bytes. An item
identifier contains a byte-offset to the start of an item, its length in bytes, and a few attribute bits which
affect its interpretation. New item identifiers are allocated as needed from the beginning of the unallocated
space. The number of item identifiers present can be determined by looking at pd_lower, which is
increased to allocate a new identifier. Because an item identifier is never moved until it is freed, its index
can be used on a long-term basis to reference an item, even when the item itself is moved around on
the page to compact free space. In fact, every pointer to an item (ItemPointer, also known as CTID)
created by PostgreSQL consists of a page number and the index of an item identifier.

The items themselves are stored in space allocated backwards from the end of unallocated space. The exact
structure varies depending on what the table is to contain. Tables and sequences both use a structure named
HeapTupleHeaderData, described below.

The final section is the “special section” which can contain anything the access method wishes to store.
For example, b-tree indexes store links to the page's left and right siblings, as well as some other data

2371

Database Physical Storage

relevant to the index structure. Ordinary tables do not use a special section at all (indicated by setting
pd_special to equal the page size).

68.6.1. Table Row Layout
All table rows are structured in the same way. There is a fixed-size header (occupying 23 bytes on
most machines), followed by an optional null bitmap, an optional object ID field, and the user data. The
header is detailed in Table 68.4. The actual user data (columns of the row) begins at the offset indicated
by t_hoff, which must always be a multiple of the MAXALIGN distance for the platform. The null
bitmap is only present if the HEAP_HASNULL bit is set in t_infomask. If it is present it begins just
after the fixed header and occupies enough bytes to have one bit per data column (that is, t_natts
bits altogether). In this list of bits, a 1 bit indicates not-null, a 0 bit is a null. When the bitmap is not
present, all columns are assumed not-null. The object ID is only present if the HEAP_HASOID bit is set
in t_infomask. If present, it appears just before the t_hoff boundary. Any padding needed to make
t_hoff a MAXALIGN multiple will appear between the null bitmap and the object ID. (This in turn
ensures that the object ID is suitably aligned.)

Table 68.4. HeapTupleHeaderData Layout

Field Type Length Description

t_xmin TransactionId 4 bytes insert XID stamp

t_xmax TransactionId 4 bytes delete XID stamp

t_cid CommandId 4 bytes insert and/or delete CID
stamp (overlays with
t_xvac)

t_xvac TransactionId 4 bytes XID for VACUUM
operation moving a row
version

t_ctid ItemPointerData 6 bytes current TID of this or
newer row version

t_infomask2 uint16 2 bytes number of attributes, plus
various flag bits

t_infomask uint16 2 bytes various flag bits

t_hoff uint8 1 byte offset to user data

All the details can be found in src/include/access/htup_details.h.

Interpreting the actual data can only be done with information obtained from other tables, mostly
pg_attribute. The key values needed to identify field locations are attlen and attalign. There
is no way to directly get a particular attribute, except when there are only fixed width fields and no null
values. All this trickery is wrapped up in the functions heap_getattr, fastgetattr and heap_getsysattr.

To read the data you need to examine each attribute in turn. First check whether the field is NULL according
to the null bitmap. If it is, go to the next. Then make sure you have the right alignment. If the field is a fixed
width field, then all the bytes are simply placed. If it's a variable length field (attlen = -1) then it's a bit
more complicated. All variable-length data types share the common header structure struct varlena,
which includes the total length of the stored value and some flag bits. Depending on the flags, the data can
be either inline or in a TOAST table; it might be compressed, too (see Section 68.2).

2372

Chapter 69. System Catalog
Declarations and Initial Contents

PostgreSQL uses many different system catalogs to keep track of the existence and properties of database
objects, such as tables and functions. Physically there is no difference between a system catalog and a plain
user table, but the backend C code knows the structure and properties of each catalog, and can manipulate
it directly at a low level. Thus, for example, it is inadvisable to attempt to alter the structure of a catalog
on-the-fly; that would break assumptions built into the C code about how rows of the catalog are laid out.
But the structure of the catalogs can change between major versions.

The structures of the catalogs are declared in specially formatted C header files in the src/include/
catalog/ directory of the source tree. In particular, for each catalog there is a header file named after
the catalog (e.g., pg_class.h for pg_class), which defines the set of columns the catalog has, as well
as some other basic properties such as its OID. Other critical files defining the catalog structure include
indexing.h, which defines the indexes present on all the system catalogs, and toasting.h, which
defines TOAST tables for catalogs that need one.

Many of the catalogs have initial data that must be loaded into them during the “bootstrap” phase of
initdb, to bring the system up to a point where it is capable of executing SQL commands. (For example,
pg_class.h must contain an entry for itself, as well as one for each other system catalog and index.)
This initial data is kept in editable form in data files that are also stored in the src/include/catalog/
directory. For example, pg_proc.dat describes all the initial rows that must be inserted into the
pg_proc catalog.

To create the catalog files and load this initial data into them, a backend running in bootstrap mode reads
a BKI (Backend Interface) file containing commands and initial data. The postgres.bki file used
in this mode is prepared from the aforementioned header and data files, while building a PostgreSQL
distribution, by a Perl script named genbki.pl. Although it's specific to a particular PostgreSQL release,
postgres.bki is platform-independent and is installed in the share subdirectory of the installation
tree.

genbki.pl also produces a derived header file for each catalog, for example pg_class_d.h for the
pg_class catalog. This file contains automatically-generated macro definitions, and may contain other
macros, enum declarations, and so on that can be useful for client C code that reads a particular catalog.

Most Postgres developers don't need to be directly concerned with the BKI file, but almost any nontrivial
feature addition in the backend will require modifying the catalog header files and/or initial data files. The
rest of this chapter gives some information about that, and for completeness describes the BKI file format.

69.1. System Catalog Declaration Rules
The key part of a catalog header file is a C structure definition describing the layout of each row of the
catalog. This begins with a CATALOG macro, which so far as the C compiler is concerned is just shorthand
for typedef struct FormData_catalogname. Each field in the struct gives rise to a catalog
column. Fields can be annotated using the BKI property macros described in genbki.h, for example to
define a default value for a field or mark it as nullable or not nullable. The CATALOG line can also be
annotated, with some other BKI property macros described in genbki.h, to define other properties of
the catalog as a whole, such as whether it has OIDs (by default, it does).

The system catalog cache code (and most catalog-munging code in general) assumes that the fixed-length
portions of all system catalog tuples are in fact present, because it maps this C struct declaration onto

2373

System Catalog Declarations
and Initial Contents

them. Thus, all variable-length fields and nullable fields must be placed at the end, and they cannot be
accessed as struct fields. For example, if you tried to set pg_type.typrelid to be NULL, it would fail
when some piece of code tried to reference typetup->typrelid (or worse, typetup->typelem,
because that follows typrelid). This would result in random errors or even segmentation violations.

As a partial guard against this type of error, variable-length or nullable fields should not be made directly
visible to the C compiler. This is accomplished by wrapping them in #ifdef CATALOG_VARLEN
... #endif (where CATALOG_VARLEN is a symbol that is never defined). This prevents C code from
carelessly trying to access fields that might not be there or might be at some other offset. As an independent
guard against creating incorrect rows, we require all columns that should be non-nullable to be marked so
in pg_attribute. The bootstrap code will automatically mark catalog columns as NOT NULL if they
are fixed-width and are not preceded by any nullable column. Where this rule is inadequate, you can force
correct marking by using BKI_FORCE_NOT_NULL and BKI_FORCE_NULL annotations as needed. But
note that NOT NULL constraints are only enforced in the executor, not against tuples that are generated
by random C code, so care is still needed when manually creating or updating catalog rows.

Frontend code should not include any pg_xxx.h catalog header file, as these files may contain C code that
won't compile outside the backend. (Typically, that happens because these files also contain declarations
for functions in src/backend/catalog/ files.) Instead, frontend code may include the corresponding
generated pg_xxx_d.h header, which will contain OID #defines and any other data that might be of
use on the client side. If you want macros or other code in a catalog header to be visible to frontend code,
write #ifdef EXPOSE_TO_CLIENT_CODE ... #endif around that section to instruct genbki.pl
to copy that section to the pg_xxx_d.h header.

A few of the catalogs are so fundamental that they can't even be created by the BKI create command
that's used for most catalogs, because that command needs to write information into these catalogs to
describe the new catalog. These are called bootstrap catalogs, and defining one takes a lot of extra work:
you have to manually prepare appropriate entries for them in the pre-loaded contents of pg_class and
pg_type, and those entries will need to be updated for subsequent changes to the catalog's structure.
(Bootstrap catalogs also need pre-loaded entries in pg_attribute, but fortunately genbki.pl
handles that chore nowadays.) Avoid making new catalogs be bootstrap catalogs if at all possible.

69.2. System Catalog Initial Data
Each catalog that has any manually-created initial data (some do not) has a corresponding .dat file that
contains its initial data in an editable format.

69.2.1. Data File Format
Each .dat file contains Perl data structure literals that are simply eval'd to produce an in-memory data
structure consisting of an array of hash references, one per catalog row. A slightly modified excerpt from
pg_database.dat will demonstrate the key features:

[

A comment could appear here.
{ oid => '1', oid_symbol => 'TemplateDbOid',
 descr => 'database\'s default template',
 datname => 'template1', datdba => 'PGUID', encoding => 'ENCODING',
 datcollate => 'LC_COLLATE', datctype => 'LC_CTYPE', datistemplate =>
 't',
 datallowconn => 't', datconnlimit => '-1', datlastsysoid => '0',

2374

System Catalog Declarations
and Initial Contents

 datfrozenxid => '0', datminmxid => '1', dattablespace => '1663',
 datacl => '_null_' },

]

Points to note:

• The overall file layout is: open square bracket, one or more sets of curly braces each of which represents
a catalog row, close square bracket. Write a comma after each closing curly brace.

• Within each catalog row, write comma-separated key => value pairs. The allowed keys are the
names of the catalog's columns, plus the metadata keys oid, oid_symbol, and descr. (The use of
oid and oid_symbol is described in Section 69.2.2 below. descr supplies a description string for
the object, which will be inserted into pg_description or pg_shdescription as appropriate.)
While the metadata keys are optional, the catalog's defined columns must all be provided, except when
the catalog's .h file specifies a default value for the column.

• All values must be single-quoted. Escape single quotes used within a value with a backslash. Backslashes
meant as data can, but need not, be doubled; this follows Perl's rules for simple quoted literals. Note that
backslashes appearing as data will be treated as escapes by the bootstrap scanner, according to the same
rules as for escape string constants (see Section 4.1.2.2); for example \t converts to a tab character. If
you actually want a backslash in the final value, you will need to write four of them: Perl strips two,
leaving \\ for the bootstrap scanner to see.

• Null values are represented by _null_. (Note that there is no way to create a value that is just that
string.)

• Comments are preceded by #, and must be on their own lines.

• To aid readability, field values that are OIDs of other catalog entries can be represented by names rather
than numeric OIDs. This is described in Section 69.2.3 below.

• Since hashes are unordered data structures, field order and line layout aren't semantically significant.
However, to maintain a consistent appearance, we set a few rules that are applied by the formatting
script reformat_dat_file.pl:

• Within each pair of curly braces, the metadata fields oid, oid_symbol, and descr (if present)
come first, in that order, then the catalog's own fields appear in their defined order.

• Newlines are inserted between fields as needed to limit line length to 80 characters, if possible. A
newline is also inserted between the metadata fields and the regular fields.

• If the catalog's .h file specifies a default value for a column, and a data entry has that same value,
reformat_dat_file.pl will omit it from the data file. This keeps the data representation
compact.

• reformat_dat_file.pl preserves blank lines and comment lines as-is.
It's recommended to run reformat_dat_file.pl before submitting catalog data patches. For
convenience, you can simply change to src/include/catalog/ and run make reformat-
dat-files.

• If you want to add a new method of making the data representation smaller, you must implement it
in reformat_dat_file.pl and also teach Catalog::ParseData() how to expand the data
back into the full representation.

2375

System Catalog Declarations
and Initial Contents

69.2.2. OID Assignment
A catalog row appearing in the initial data can be given a manually-assigned OID by writing an oid =>
nnnn metadata field. Furthermore, if an OID is assigned, a C macro for that OID can be created by writing
an oid_symbol => name metadata field.

Pre-loaded catalog rows must have preassigned OIDs if there are OID references to them in other pre-
loaded rows. A preassigned OID is also needed if the row's OID must be referenced from C code. If neither
case applies, the oid metadata field can be omitted, in which case the bootstrap code assigns an OID
automatically, or leaves it zero in a catalog that has no OIDs. In practice we usually preassign OIDs for all
or none of the pre-loaded rows in a given catalog, even if only some of them are actually cross-referenced.

Writing the actual numeric value of any OID in C code is considered very bad form; always use a macro,
instead. Direct references to pg_proc OIDs are common enough that there's a special mechanism to
create the necessary macros automatically; see src/backend/utils/Gen_fmgrtab.pl. Similarly
— but, for historical reasons, not done the same way — there's an automatic method for creating macros
for pg_type OIDs. oid_symbol entries are therefore not necessary in those two catalogs. Likewise,
macros for the pg_class OIDs of system catalogs and indexes are set up automatically. For all other
system catalogs, you have to manually specify any macros you need via oid_symbol entries.

To find an available OID for a new pre-loaded row, run the script src/include/catalog/
unused_oids. It prints inclusive ranges of unused OIDs (e.g., the output line “45-900” means OIDs 45
through 900 have not been allocated yet). Currently, OIDs 1-9999 are reserved for manual assignment; the
unused_oids script simply looks through the catalog headers and .dat files to see which ones do not
appear. You can also use the duplicate_oids script to check for mistakes. (genbki.pl will also
detect duplicate OIDs at compile time.)

The OID counter starts at 10000 at the beginning of a bootstrap run. If a catalog row is in a table that
requires OIDs, but no OID was preassigned by an oid field, then it will receive an OID of 10000 or above.

69.2.3. OID Reference Lookup
Cross-references from one initial catalog row to another can be written by just writing the preassigned OID
of the referenced row. But that's error-prone and hard to understand, so for frequently-referenced catalogs,
genbki.pl provides mechanisms to write symbolic references instead. Currently this is possible for
references to access methods, functions, operators, opclasses, opfamilies, and types. The rules are as
follows:

• Use of symbolic references is enabled in a particular catalog column by attaching
BKI_LOOKUP(lookuprule) to the column's definition, where lookuprule is pg_am,
pg_proc, pg_operator, pg_opclass, pg_opfamily, or pg_type. BKI_LOOKUP can be
attached to columns of type Oid, regproc, oidvector, or Oid[]; in the latter two cases it implies
performing a lookup on each element of the array.

• In such a column, all entries must use the symbolic format except when writing 0 for InvalidOid. (If
the column is declared regproc, you can optionally write - instead of 0.) genbki.pl will warn
about unrecognized names.

• Access methods are just represented by their names, as are types. Type names must match the referenced
pg_type entry's typname; you do not get to use any aliases such as integer for int4.

• A function can be represented by its proname, if that is unique among the pg_proc.dat entries (this
works like regproc input). Otherwise, write it as proname(argtypename,argtypename,...),
like regprocedure. The argument type names must be spelled exactly as they are in the pg_proc.dat
entry's proargtypes field. Do not insert any spaces.

2376

System Catalog Declarations
and Initial Contents

• Operators are represented by oprname(lefttype,righttype), writing the type names exactly
as they appear in the pg_operator.dat entry's oprleft and oprright fields. (Write 0 for the
omitted operand of a unary operator.)

• The names of opclasses and opfamilies are only unique within an access method, so they are represented
by access_method_name/object_name.

• In none of these cases is there any provision for schema-qualification; all objects created during
bootstrap are expected to be in the pg_catalog schema.

genbki.pl resolves all symbolic references while it runs, and puts simple numeric OIDs into the emitted
BKI file. There is therefore no need for the bootstrap backend to deal with symbolic references.

69.2.4. Recipes for Editing Data Files
Here are some suggestions about the easiest ways to perform common tasks when updating catalog data
files.

Add a new column with a default to a catalog: Add the column to the header file with a
BKI_DEFAULT(value) annotation. The data file need only be adjusted by adding the field in existing
rows where a non-default value is needed.

Add a default value to an existing column that doesn't have one: Add a BKI_DEFAULT annotation
to the header file, then run make reformat-dat-files to remove now-redundant field entries.

Remove a column, whether it has a default or not: Remove the column from the header, then run
make reformat-dat-files to remove now-useless field entries.

Change or remove an existing default value: You cannot simply change the header file, since that will
cause the current data to be interpreted incorrectly. First run make expand-dat-files to rewrite the
data files with all default values inserted explicitly, then change or remove the BKI_DEFAULT annotation,
then run make reformat-dat-files to remove superfluous fields again.

Ad-hoc bulk editing: reformat_dat_file.pl can be adapted to perform many kinds of bulk
changes. Look for its block comments showing where one-off code can be inserted. In the following
example, we are going to consolidate two boolean fields in pg_proc into a char field:

1. Add the new column, with a default, to pg_proc.h:

+ /* see PROKIND_ categories below */
+ char prokind BKI_DEFAULT(f);

2. Create a new script based on reformat_dat_file.pl to insert appropriate values on-the-fly:

- # At this point we have the full row in memory as a hash
- # and can do any operations we want. As written, it only
- # removes default values, but this script can be adapted
 to
- # do one-off bulk-editing.
+ # One-off change to migrate to prokind
+ # Default has already been filled in by now, so change
 to other
+ # values as appropriate
+ if ($values{proisagg} eq 't')

2377

System Catalog Declarations
and Initial Contents

+ {
+ $values{prokind} = 'a';
+ }
+ elsif ($values{proiswindow} eq 't')
+ {
+ $values{prokind} = 'w';
+ }

3. Run the new script:

$ cd src/include/catalog
$ perl rewrite_dat_with_prokind.pl pg_proc.dat

At this point pg_proc.dat has all three columns, prokind, proisagg, and proiswindow,
though they will appear only in rows where they have non-default values.

4. Remove the old columns from pg_proc.h:

- /* is it an aggregate? */
- bool proisagg BKI_DEFAULT(f);
-
- /* is it a window function? */
- bool proiswindow BKI_DEFAULT(f);

5. Finally, run make reformat-dat-files to remove the useless old entries from pg_proc.dat.

For further examples of scripts used for bulk editing, see convert_oid2name.pl and
remove_pg_type_oid_symbols.pl attached to this message: https://www.postgresql.org/
message-id/CAJVSVGVX8gXnPm+Xa=DxR7kFYprcQ1tNcCT5D0O3ShfnM6jehA@mail.gmail.com

69.3. BKI File Format
This section describes how the PostgreSQL backend interprets BKI files. This description will be easier
to understand if the postgres.bki file is at hand as an example.

BKI input consists of a sequence of commands. Commands are made up of a number of tokens, depending
on the syntax of the command. Tokens are usually separated by whitespace, but need not be if there is no
ambiguity. There is no special command separator; the next token that syntactically cannot belong to the
preceding command starts a new one. (Usually you would put a new command on a new line, for clarity.)
Tokens can be certain key words, special characters (parentheses, commas, etc.), numbers, or double-
quoted strings. Everything is case sensitive.

Lines starting with # are ignored.

69.4. BKI Commands
create tablename tableoid [bootstrap] [shared_relation] [without_oids]
[rowtype_oid oid] (name1 = type1 [FORCE NOT NULL | FORCE NULL] [, name2 = type2
[FORCE NOT NULL | FORCE NULL], ...])

Create a table named tablename, and having the OID tableoid, with the columns given in
parentheses.

2378

https://www.postgresql.org/message-id/CAJVSVGVX8gXnPm+Xa=DxR7kFYprcQ1tNcCT5D0O3ShfnM6jehA@mail.gmail.com
https://www.postgresql.org/message-id/CAJVSVGVX8gXnPm+Xa=DxR7kFYprcQ1tNcCT5D0O3ShfnM6jehA@mail.gmail.com

System Catalog Declarations
and Initial Contents

The following column types are supported directly by bootstrap.c: bool, bytea, char (1
byte), name, int2, int4, regproc, regclass, regtype, text, oid, tid, xid, cid,
int2vector, oidvector, _int4 (array), _text (array), _oid (array), _char (array),
_aclitem (array). Although it is possible to create tables containing columns of other types, this
cannot be done until after pg_type has been created and filled with appropriate entries. (That
effectively means that only these column types can be used in bootstrap catalogs, but non-bootstrap
catalogs can contain any built-in type.)

When bootstrap is specified, the table will only be created on disk; nothing is entered into
pg_class, pg_attribute, etc, for it. Thus the table will not be accessible by ordinary SQL
operations until such entries are made the hard way (with insert commands). This option is used
for creating pg_class etc themselves.

The table is created as shared if shared_relation is specified. It will have OIDs unless
without_oids is specified. The table's row type OID (pg_type OID) can optionally be specified
via the rowtype_oid clause; if not specified, an OID is automatically generated for it. (The
rowtype_oid clause is useless if bootstrap is specified, but it can be provided anyway for
documentation.)

open tablename

Open the table named tablename for insertion of data. Any currently open table is closed.

close tablename

Close the open table. The name of the table must be given as a cross-check.

insert [OID = oid_value] (value1 value2 ...)

Insert a new row into the open table using value1, value2, etc., for its column values and
oid_value for its OID. If oid_value is zero (0) or the clause is omitted, and the table has OIDs,
then the next available OID is assigned.

NULL values can be specified using the special key word _null_. Values that do not look like
identifiers or digit strings must be double quoted.

declare [unique] index indexname indexoid on tablename using amname (opclass1
name1 [, ...])

Create an index named indexname, having OID indexoid, on the table named tablename,
using the amname access method. The fields to index are called name1, name2 etc., and the operator
classes to use are opclass1, opclass2 etc., respectively. The index file is created and appropriate
catalog entries are made for it, but the index contents are not initialized by this command.

declare toast toasttableoid toastindexoid on tablename

Create a TOAST table for the table named tablename. The TOAST table is assigned OID
toasttableoid and its index is assigned OID toastindexoid. As with declare index,
filling of the index is postponed.

build indices

Fill in the indices that have previously been declared.

69.5. Structure of the Bootstrap BKI File
The open command cannot be used until the tables it uses exist and have entries for the table that is to be
opened. (These minimum tables are pg_class, pg_attribute, pg_proc, and pg_type.) To allow

2379

System Catalog Declarations
and Initial Contents

those tables themselves to be filled, create with the bootstrap option implicitly opens the created
table for data insertion.

Also, the declare index and declare toast commands cannot be used until the system catalogs
they need have been created and filled in.

Thus, the structure of the postgres.bki file has to be:

1. create bootstrap one of the critical tables

2. insert data describing at least the critical tables

3. close

4. Repeat for the other critical tables.

5. create (without bootstrap) a noncritical table

6. open

7. insert desired data

8. close

9. Repeat for the other noncritical tables.

10.Define indexes and toast tables.

11.build indices

There are doubtless other, undocumented ordering dependencies.

69.6. BKI Example
The following sequence of commands will create the table test_table with OID 420, having two
columns cola and colb of type int4 and text, respectively, and insert two rows into the table:

create test_table 420 (cola = int4, colb = text)
open test_table
insert OID=421 (1 "value1")
insert OID=422 (2 _null_)
close test_table

2380

Chapter 70. How the Planner Uses
Statistics

This chapter builds on the material covered in Section 14.1 and Section 14.2 to show some additional
details about how the planner uses the system statistics to estimate the number of rows each part of a query
might return. This is a significant part of the planning process, providing much of the raw material for
cost calculation.

The intent of this chapter is not to document the code in detail, but to present an overview of how it works.
This will perhaps ease the learning curve for someone who subsequently wishes to read the code.

70.1. Row Estimation Examples
The examples shown below use tables in the PostgreSQL regression test database. The outputs shown
are taken from version 8.3. The behavior of earlier (or later) versions might vary. Note also that since
ANALYZE uses random sampling while producing statistics, the results will change slightly after any new
ANALYZE.

Let's start with a very simple query:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

How the planner determines the cardinality of tenk1 is covered in Section 14.2, but is repeated here for
completeness. The number of pages and rows is looked up in pg_class:

SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

 relpages | reltuples
----------+-----------
 358 | 10000

These numbers are current as of the last VACUUM or ANALYZE on the table. The planner then fetches the
actual current number of pages in the table (this is a cheap operation, not requiring a table scan). If that
is different from relpages then reltuples is scaled accordingly to arrive at a current number-of-
rows estimate. In the example above, the value of relpages is up-to-date so the rows estimate is the
same as reltuples.

Let's move on to an example with a range condition in its WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=24.06..394.64 rows=1007 width=244)
 Recheck Cond: (unique1 < 1000)

2381

How the Planner Uses Statistics

 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007
 width=0)
 Index Cond: (unique1 < 1000)

The planner examines the WHERE clause condition and looks up the selectivity function for the operator
< in pg_operator. This is held in the column oprrest, and the entry in this case is scalarltsel.
The scalarltsel function retrieves the histogram for unique1 from pg_statistic. For manual
queries it is more convenient to look in the simpler pg_stats view:

SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='unique1';

 histogram_bounds
--
 {0,993,1997,3050,4040,5036,5957,7057,8029,9016,9995}

Next the fraction of the histogram occupied by “< 1000” is worked out. This is the selectivity. The
histogram divides the range into equal frequency buckets, so all we have to do is locate the bucket that our
value is in and count part of it and all of the ones before. The value 1000 is clearly in the second bucket
(993-1997). Assuming a linear distribution of values inside each bucket, we can calculate the selectivity as:

selectivity = (1 + (1000 - bucket[2].min)/(bucket[2].max -
 bucket[2].min))/num_buckets
 = (1 + (1000 - 993)/(1997 - 993))/10
 = 0.100697

that is, one whole bucket plus a linear fraction of the second, divided by the number of buckets. The
estimated number of rows can now be calculated as the product of the selectivity and the cardinality of
tenk1:

rows = rel_cardinality * selectivity
 = 10000 * 0.100697
 = 1007 (rounding off)

Next let's consider an example with an equality condition in its WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'CRAAAA';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=30 width=244)
 Filter: (stringu1 = 'CRAAAA'::name)

Again the planner examines the WHERE clause condition and looks up the selectivity function for =, which
is eqsel. For equality estimation the histogram is not useful; instead the list of most common values
(MCVs) is used to determine the selectivity. Let's have a look at the MCVs, with some additional columns
that will be useful later:

SELECT null_frac, n_distinct, most_common_vals, most_common_freqs FROM
 pg_stats

2382

How the Planner Uses Statistics

WHERE tablename='tenk1' AND attname='stringu1';

null_frac | 0
n_distinct | 676
most_common_vals |
 {EJAAAA,BBAAAA,CRAAAA,FCAAAA,FEAAAA,GSAAAA,JOAAAA,MCAAAA,NAAAAA,WGAAAA}
most_common_freqs |
 {0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003}

Since CRAAAA appears in the list of MCVs, the selectivity is merely the corresponding entry in the list
of most common frequencies (MCFs):

selectivity = mcf[3]
 = 0.003

As before, the estimated number of rows is just the product of this with the cardinality of tenk1:

rows = 10000 * 0.003
 = 30

Now consider the same query, but with a constant that is not in the MCV list:

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'xxx';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=15 width=244)
 Filter: (stringu1 = 'xxx'::name)

This is quite a different problem: how to estimate the selectivity when the value is not in the MCV list. The
approach is to use the fact that the value is not in the list, combined with the knowledge of the frequencies
for all of the MCVs:

selectivity = (1 - sum(mvf))/(num_distinct - num_mcv)
 = (1 - (0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003
 +
 0.003 + 0.003 + 0.003 + 0.003))/(676 - 10)
 = 0.0014559

That is, add up all the frequencies for the MCVs and subtract them from one, then divide by the number
of other distinct values. This amounts to assuming that the fraction of the column that is not any of the
MCVs is evenly distributed among all the other distinct values. Notice that there are no null values so we
don't have to worry about those (otherwise we'd subtract the null fraction from the numerator as well). The
estimated number of rows is then calculated as usual:

rows = 10000 * 0.0014559
 = 15 (rounding off)

The previous example with unique1 < 1000 was an oversimplification of what scalarltsel really
does; now that we have seen an example of the use of MCVs, we can fill in some more detail. The example

2383

How the Planner Uses Statistics

was correct as far as it went, because since unique1 is a unique column it has no MCVs (obviously, no
value is any more common than any other value). For a non-unique column, there will normally be both
a histogram and an MCV list, and the histogram does not include the portion of the column population
represented by the MCVs. We do things this way because it allows more precise estimation. In this situation
scalarltsel directly applies the condition (e.g., “< 1000”) to each value of the MCV list, and adds up
the frequencies of the MCVs for which the condition is true. This gives an exact estimate of the selectivity
within the portion of the table that is MCVs. The histogram is then used in the same way as above to
estimate the selectivity in the portion of the table that is not MCVs, and then the two numbers are combined
to estimate the overall selectivity. For example, consider

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 < 'IAAAAA';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=3077 width=244)
 Filter: (stringu1 < 'IAAAAA'::name)

We already saw the MCV information for stringu1, and here is its histogram:

SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

 histogram_bounds
--
 {AAAAAA,CQAAAA,FRAAAA,IBAAAA,KRAAAA,NFAAAA,PSAAAA,SGAAAA,VAAAAA,XLAAAA,ZZAAAA}

Checking the MCV list, we find that the condition stringu1 < 'IAAAAA' is satisfied by the first six
entries and not the last four, so the selectivity within the MCV part of the population is

selectivity = sum(relevant mvfs)
 = 0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003
 = 0.01833333

Summing all the MCFs also tells us that the total fraction of the population represented by MCVs is
0.03033333, and therefore the fraction represented by the histogram is 0.96966667 (again, there are no
nulls, else we'd have to exclude them here). We can see that the value IAAAAA falls nearly at the end of the
third histogram bucket. Using some rather cheesy assumptions about the frequency of different characters,
the planner arrives at the estimate 0.298387 for the portion of the histogram population that is less than
IAAAAA. We then combine the estimates for the MCV and non-MCV populations:

selectivity = mcv_selectivity + histogram_selectivity *
 histogram_fraction
 = 0.01833333 + 0.298387 * 0.96966667
 = 0.307669

rows = 10000 * 0.307669
 = 3077 (rounding off)

In this particular example, the correction from the MCV list is fairly small, because the column distribution
is actually quite flat (the statistics showing these particular values as being more common than others are
mostly due to sampling error). In a more typical case where some values are significantly more common

2384

How the Planner Uses Statistics

than others, this complicated process gives a useful improvement in accuracy because the selectivity for
the most common values is found exactly.

Now let's consider a case with more than one condition in the WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000 AND stringu1 = 'xxx';

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=23.80..396.91 rows=1 width=244)
 Recheck Cond: (unique1 < 1000)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007
 width=0)
 Index Cond: (unique1 < 1000)

The planner assumes that the two conditions are independent, so that the individual selectivities of the
clauses can be multiplied together:

selectivity = selectivity(unique1 < 1000) * selectivity(stringu1 =
 'xxx')
 = 0.100697 * 0.0014559
 = 0.0001466

rows = 10000 * 0.0001466
 = 1 (rounding off)

Notice that the number of rows estimated to be returned from the bitmap index scan reflects only the
condition used with the index; this is important since it affects the cost estimate for the subsequent heap
fetches.

Finally we will examine a query that involves a join:

EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Nested Loop (cost=4.64..456.23 rows=50 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.64..142.17 rows=50
 width=244)
 Recheck Cond: (unique1 < 50)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.63
 rows=50 width=0)
 Index Cond: (unique1 < 50)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..6.27
 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

The restriction on tenk1, unique1 < 50, is evaluated before the nested-loop join. This is handled
analogously to the previous range example. This time the value 50 falls into the first bucket of the
unique1 histogram:

2385

How the Planner Uses Statistics

selectivity = (0 + (50 - bucket[1].min)/(bucket[1].max -
 bucket[1].min))/num_buckets
 = (0 + (50 - 0)/(993 - 0))/10
 = 0.005035

rows = 10000 * 0.005035
 = 50 (rounding off)

The restriction for the join is t2.unique2 = t1.unique2. The operator is just our familiar =, however
the selectivity function is obtained from the oprjoin column of pg_operator, and is eqjoinsel.
eqjoinsel looks up the statistical information for both tenk2 and tenk1:

SELECT tablename, null_frac,n_distinct, most_common_vals FROM pg_stats
WHERE tablename IN ('tenk1', 'tenk2') AND attname='unique2';

tablename | null_frac | n_distinct | most_common_vals
-----------+-----------+------------+------------------
 tenk1 | 0 | -1 |
 tenk2 | 0 | -1 |

In this case there is no MCV information for unique2 because all the values appear to be unique, so
we use an algorithm that relies only on the number of distinct values for both relations together with their
null fractions:

selectivity = (1 - null_frac1) * (1 - null_frac2) * min(1/
num_distinct1, 1/num_distinct2)
 = (1 - 0) * (1 - 0) / max(10000, 10000)
 = 0.0001

This is, subtract the null fraction from one for each of the relations, and divide by the maximum of the
numbers of distinct values. The number of rows that the join is likely to emit is calculated as the cardinality
of the Cartesian product of the two inputs, multiplied by the selectivity:

rows = (outer_cardinality * inner_cardinality) * selectivity
 = (50 * 10000) * 0.0001
 = 50

Had there been MCV lists for the two columns, eqjoinsel would have used direct comparison of the
MCV lists to determine the join selectivity within the part of the column populations represented by the
MCVs. The estimate for the remainder of the populations follows the same approach shown here.

Notice that we showed inner_cardinality as 10000, that is, the unmodified size of tenk2. It might
appear from inspection of the EXPLAIN output that the estimate of join rows comes from 50 * 1, that
is, the number of outer rows times the estimated number of rows obtained by each inner index scan on
tenk2. But this is not the case: the join relation size is estimated before any particular join plan has been
considered. If everything is working well then the two ways of estimating the join size will produce about
the same answer, but due to round-off error and other factors they sometimes diverge significantly.

For those interested in further details, estimation of the size of a table (before any WHERE clauses) is done
in src/backend/optimizer/util/plancat.c. The generic logic for clause selectivities is in
src/backend/optimizer/path/clausesel.c. The operator-specific selectivity functions are
mostly found in src/backend/utils/adt/selfuncs.c.

2386

How the Planner Uses Statistics

70.2. Multivariate Statistics Examples

70.2.1. Functional Dependencies
Multivariate correlation can be demonstrated with a very simple data set — a table with two columns,
both containing the same values:

CREATE TABLE t (a INT, b INT);
INSERT INTO t SELECT i % 100, i % 100 FROM generate_series(1, 10000)
 s(i);
ANALYZE t;

As explained in Section 14.2, the planner can determine cardinality of t using the number of pages and
rows obtained from pg_class:

SELECT relpages, reltuples FROM pg_class WHERE relname = 't';

 relpages | reltuples
----------+-----------
 45 | 10000

The data distribution is very simple; there are only 100 distinct values in each column, uniformly
distributed.

The following example shows the result of estimating a WHERE condition on the a column:

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..170.00 rows=100 width=8) (actual rows=100
 loops=1)
 Filter: (a = 1)
 Rows Removed by Filter: 9900

The planner examines the condition and determines the selectivity of this clause to be 1%. By comparing
this estimate and the actual number of rows, we see that the estimate is very accurate (in fact exact, as the
table is very small). Changing the WHERE condition to use the b column, an identical plan is generated.
But observe what happens if we apply the same condition on both columns, combining them with AND:

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=100
 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

The planner estimates the selectivity for each condition individually, arriving at the same 1% estimates
as above. Then it assumes that the conditions are independent, and so it multiplies their selectivities,

2387

How the Planner Uses Statistics

producing a final selectivity estimate of just 0.01%. This is a significant underestimate, as the actual
number of rows matching the conditions (100) is two orders of magnitude higher.

This problem can be fixed by creating a statistics object that directs ANALYZE to calculate functional-
dependency multivariate statistics on the two columns:

CREATE STATISTICS stts (dependencies) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100
 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

70.2.2. Multivariate N-Distinct Counts
A similar problem occurs with estimation of the cardinality of sets of multiple columns, such as the number
of groups that would be generated by a GROUP BY clause. When GROUP BY lists a single column, the n-
distinct estimate (which is visible as the estimated number of rows returned by the HashAggregate node)
is very accurate:

EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a;
 QUERY PLAN

 HashAggregate (cost=195.00..196.00 rows=100 width=12) (actual
 rows=100 loops=1)
 Group Key: a
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=4) (actual
 rows=10000 loops=1)

But without multivariate statistics, the estimate for the number of groups in a query with two columns in
GROUP BY, as in the following example, is off by an order of magnitude:

EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
 QUERY PLAN

--
 HashAggregate (cost=220.00..230.00 rows=1000 width=16) (actual
 rows=100 loops=1)
 Group Key: a, b
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual
 rows=10000 loops=1)

By redefining the statistics object to include n-distinct counts for the two columns, the estimate is much
improved:

DROP STATISTICS stts;

2388

How the Planner Uses Statistics

CREATE STATISTICS stts (dependencies, ndistinct) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
 QUERY PLAN

--
 HashAggregate (cost=220.00..221.00 rows=100 width=16) (actual
 rows=100 loops=1)
 Group Key: a, b
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual
 rows=10000 loops=1)

70.3. Planner Statistics and Security
Access to the table pg_statistic is restricted to superusers, so that ordinary users cannot learn about
the contents of the tables of other users from it. Some selectivity estimation functions will use a user-
provided operator (either the operator appearing in the query or a related operator) to analyze the stored
statistics. For example, in order to determine whether a stored most common value is applicable, the
selectivity estimator will have to run the appropriate = operator to compare the constant in the query to
the stored value. Thus the data in pg_statistic is potentially passed to user-defined operators. An
appropriately crafted operator can intentionally leak the passed operands (for example, by logging them
or writing them to a different table), or accidentally leak them by showing their values in error messages,
in either case possibly exposing data from pg_statistic to a user who should not be able to see it.

In order to prevent this, the following applies to all built-in selectivity estimation functions. When planning
a query, in order to be able to use stored statistics, the current user must either have SELECT privilege
on the table or the involved columns, or the operator used must be LEAKPROOF (more accurately, the
function that the operator is based on). If not, then the selectivity estimator will behave as if no statistics
are available, and the planner will proceed with default or fall-back assumptions.

If a user does not have the required privilege on the table or columns, then in many cases the query will
ultimately receive a permission-denied error, in which case this mechanism is invisible in practice. But
if the user is reading from a security-barrier view, then the planner might wish to check the statistics of
an underlying table that is otherwise inaccessible to the user. In that case, the operator should be leak-
proof or the statistics will not be used. There is no direct feedback about that, except that the plan might
be suboptimal. If one suspects that this is the case, one could try running the query as a more privileged
user, to see if a different plan results.

This restriction applies only to cases where the planner would need to execute a user-defined operator
on one or more values from pg_statistic. Thus the planner is permitted to use generic statistical
information, such as the fraction of null values or the number of distinct values in a column, regardless
of access privileges.

Selectivity estimation functions contained in third-party extensions that potentially operate on statistics
with user-defined operators should follow the same security rules. Consult the PostgreSQL source code
for guidance.

2389

Part VIII. Appendixes

Table of Contents
A. PostgreSQL Error Codes ... 2396
B. Date/Time Support ... 2405

B.1. Date/Time Input Interpretation ... 2405
B.2. Handling of Invalid or Ambiguous Timestamps .. 2406
B.3. Date/Time Key Words ... 2407
B.4. Date/Time Configuration Files ... 2408
B.5. History of Units .. 2409

C. SQL Key Words .. 2412
D. SQL Conformance ... 2436

D.1. Supported Features .. 2437
D.2. Unsupported Features .. 2454

E. Release Notes ... 2467
E.1. Release 11.2 ... 2467

E.1.1. Migration to Version 11.2 .. 2467
E.1.2. Changes .. 2467

E.2. Release 11.1 ... 2472
E.2.1. Migration to Version 11.1 .. 2473
E.2.2. Changes .. 2473

E.3. Release 11 ... 2475
E.3.1. Overview ... 2475
E.3.2. Migration to Version 11 ... 2475
E.3.3. Changes .. 2478
E.3.4. Acknowledgments ... 2489

E.4. Prior Releases ... 2495
F. Additional Supplied Modules ... 2496

F.1. adminpack .. 2497
F.2. amcheck ... 2498

F.2.1. Functions ... 2498
F.2.2. Optional heapallindexed verification ... 2499
F.2.3. Using amcheck effectively .. 2500
F.2.4. Repairing corruption .. 2501

F.3. auth_delay .. 2501
F.3.1. Configuration Parameters ... 2501
F.3.2. Author ... 2501

F.4. auto_explain ... 2501
F.4.1. Configuration Parameters ... 2502
F.4.2. Example .. 2503
F.4.3. Author ... 2504

F.5. bloom .. 2504
F.5.1. Parameters ... 2504
F.5.2. Examples ... 2505
F.5.3. Operator Class Interface ... 2507
F.5.4. Limitations ... 2507
F.5.5. Authors ... 2507

F.6. btree_gin .. 2507
F.6.1. Example Usage ... 2508
F.6.2. Authors ... 2508

F.7. btree_gist ... 2508
F.7.1. Example Usage ... 2508
F.7.2. Authors ... 2509

F.8. citext ... 2509

2391

Appendixes

F.8.1. Rationale ... 2509
F.8.2. How to Use It .. 2510
F.8.3. String Comparison Behavior ... 2510
F.8.4. Limitations ... 2511
F.8.5. Author ... 2511

F.9. cube .. 2511
F.9.1. Syntax ... 2511
F.9.2. Precision .. 2512
F.9.3. Usage .. 2512
F.9.4. Defaults ... 2516
F.9.5. Notes .. 2516
F.9.6. Credits .. 2516

F.10. dblink .. 2517
F.11. dict_int ... 2549

F.11.1. Configuration .. 2549
F.11.2. Usage .. 2549

F.12. dict_xsyn .. 2550
F.12.1. Configuration .. 2550
F.12.2. Usage .. 2550

F.13. earthdistance ... 2551
F.13.1. Cube-based Earth Distances .. 2552
F.13.2. Point-based Earth Distances .. 2553

F.14. file_fdw ... 2553
F.15. fuzzystrmatch .. 2555

F.15.1. Soundex ... 2556
F.15.2. Levenshtein .. 2556
F.15.3. Metaphone ... 2557
F.15.4. Double Metaphone .. 2558

F.16. hstore ... 2558
F.16.1. hstore External Representation ... 2558
F.16.2. hstore Operators and Functions .. 2559
F.16.3. Indexes .. 2562
F.16.4. Examples ... 2563
F.16.5. Statistics .. 2564
F.16.6. Compatibility .. 2564
F.16.7. Transforms ... 2565
F.16.8. Authors .. 2565

F.17. intagg .. 2565
F.17.1. Functions ... 2565
F.17.2. Sample Uses ... 2565

F.18. intarray .. 2566
F.18.1. intarray Functions and Operators .. 2567
F.18.2. Index Support ... 2568
F.18.3. Example .. 2568
F.18.4. Benchmark ... 2569
F.18.5. Authors .. 2569

F.19. isn ... 2569
F.19.1. Data Types ... 2569
F.19.2. Casts ... 2570
F.19.3. Functions and Operators ... 2571
F.19.4. Examples ... 2571
F.19.5. Bibliography ... 2572
F.19.6. Author ... 2573

F.20. lo .. 2573

2392

Appendixes

F.20.1. Rationale .. 2573
F.20.2. How to Use It ... 2573
F.20.3. Limitations ... 2574
F.20.4. Author ... 2574

F.21. ltree ... 2574
F.21.1. Definitions ... 2574
F.21.2. Operators and Functions ... 2576
F.21.3. Indexes .. 2578
F.21.4. Example .. 2578
F.21.5. Transforms ... 2581
F.21.6. Authors .. 2581

F.22. pageinspect ... 2581
F.22.1. General Functions .. 2581
F.22.2. B-tree Functions .. 2583
F.22.3. BRIN Functions .. 2585
F.22.4. GIN Functions .. 2586
F.22.5. Hash Functions ... 2587

F.23. passwordcheck .. 2588
F.24. pg_buffercache .. 2589

F.24.1. The pg_buffercache View .. 2589
F.24.2. Sample Output .. 2590
F.24.3. Authors .. 2591

F.25. pgcrypto ... 2591
F.25.1. General Hashing Functions ... 2591
F.25.2. Password Hashing Functions ... 2591
F.25.3. PGP Encryption Functions .. 2594
F.25.4. Raw Encryption Functions .. 2599
F.25.5. Random-Data Functions ... 2600
F.25.6. Notes ... 2600
F.25.7. Author ... 2602

F.26. pg_freespacemap .. 2602
F.26.1. Functions ... 2603
F.26.2. Sample Output .. 2603
F.26.3. Author ... 2604

F.27. pg_prewarm .. 2604
F.27.1. Functions ... 2604
F.27.2. Configuration Parameters .. 2605
F.27.3. Author ... 2605

F.28. pgrowlocks ... 2605
F.28.1. Overview ... 2605
F.28.2. Sample Output .. 2606
F.28.3. Author ... 2606

F.29. pg_stat_statements ... 2606
F.29.1. The pg_stat_statements View .. 2607
F.29.2. Functions ... 2609
F.29.3. Configuration Parameters .. 2610
F.29.4. Sample Output .. 2610
F.29.5. Authors .. 2611

F.30. pgstattuple .. 2611
F.30.1. Functions ... 2612
F.30.2. Authors .. 2616

F.31. pg_trgm ... 2616
F.31.1. Trigram (or Trigraph) Concepts ... 2616
F.31.2. Functions and Operators ... 2616

2393

Appendixes

F.31.3. GUC Parameters ... 2619
F.31.4. Index Support ... 2619
F.31.5. Text Search Integration .. 2621
F.31.6. References .. 2622
F.31.7. Authors .. 2622

F.32. pg_visibility .. 2622
F.32.1. Functions ... 2622
F.32.2. Author ... 2623

F.33. postgres_fdw ... 2623
F.33.1. FDW Options of postgres_fdw ... 2624
F.33.2. Connection Management ... 2627
F.33.3. Transaction Management .. 2627
F.33.4. Remote Query Optimization .. 2627
F.33.5. Remote Query Execution Environment .. 2628
F.33.6. Cross-Version Compatibility .. 2628
F.33.7. Examples ... 2628
F.33.8. Author ... 2629

F.34. seg .. 2629
F.34.1. Rationale .. 2629
F.34.2. Syntax ... 2630
F.34.3. Precision .. 2631
F.34.4. Usage .. 2631
F.34.5. Notes ... 2632
F.34.6. Credits ... 2632

F.35. sepgsql ... 2632
F.35.1. Overview ... 2633
F.35.2. Installation ... 2633
F.35.3. Regression Tests ... 2634
F.35.4. GUC Parameters ... 2635
F.35.5. Features ... 2636
F.35.6. Sepgsql Functions .. 2639
F.35.7. Limitations ... 2640
F.35.8. External Resources .. 2640
F.35.9. Author ... 2640

F.36. spi ... 2640
F.36.1. refint — Functions for Implementing Referential Integrity 2641
F.36.2. timetravel — Functions for Implementing Time Travel 2641
F.36.3. autoinc — Functions for Autoincrementing Fields 2642
F.36.4. insert_username — Functions for Tracking Who Changed a Table 2642
F.36.5. moddatetime — Functions for Tracking Last Modification Time 2643

F.37. sslinfo .. 2643
F.37.1. Functions Provided .. 2643
F.37.2. Author ... 2645

F.38. tablefunc .. 2645
F.38.1. Functions Provided .. 2645
F.38.2. Author ... 2655

F.39. tcn ... 2655
F.40. test_decoding .. 2656
F.41. tsm_system_rows ... 2657

F.41.1. Examples ... 2657
F.42. tsm_system_time ... 2657

F.42.1. Examples ... 2658
F.43. unaccent ... 2658

F.43.1. Configuration .. 2658

2394

Appendixes

F.43.2. Usage .. 2659
F.43.3. Functions ... 2660

F.44. uuid-ossp .. 2660
F.44.1. uuid-ossp Functions .. 2660
F.44.2. Building uuid-ossp .. 2661
F.44.3. Author ... 2662

F.45. xml2 .. 2662
F.45.1. Deprecation Notice .. 2662
F.45.2. Description of Functions ... 2662
F.45.3. xpath_table .. 2663
F.45.4. XSLT Functions .. 2666
F.45.5. Author ... 2666

G. Additional Supplied Programs ... 2667
G.1. Client Applications .. 2667
G.2. Server Applications ... 2674

H. External Projects ... 2679
H.1. Client Interfaces ... 2679
H.2. Administration Tools ... 2679
H.3. Procedural Languages .. 2680
H.4. Extensions ... 2680

I. The Source Code Repository .. 2681
I.1. Getting The Source via Git .. 2681

J. Documentation ... 2682
J.1. DocBook .. 2682
J.2. Tool Sets .. 2682

J.2.1. Installation on Fedora, RHEL, and Derivatives .. 2683
J.2.2. Installation on FreeBSD .. 2683
J.2.3. Debian Packages ... 2683
J.2.4. macOS ... 2684
J.2.5. Detection by configure .. 2684

J.3. Building The Documentation .. 2684
J.3.1. HTML ... 2684
J.3.2. Manpages ... 2685
J.3.3. PDF .. 2685
J.3.4. Plain Text Files ... 2685
J.3.5. Syntax Check .. 2685

J.4. Documentation Authoring .. 2686
J.4.1. Emacs .. 2686

J.5. Style Guide ... 2686
J.5.1. Reference Pages .. 2686

K. Acronyms ... 2689

2395

Appendix A. PostgreSQL Error Codes
All messages emitted by the PostgreSQL server are assigned five-character error codes that follow the SQL
standard's conventions for “SQLSTATE” codes. Applications that need to know which error condition has
occurred should usually test the error code, rather than looking at the textual error message. The error codes
are less likely to change across PostgreSQL releases, and also are not subject to change due to localization
of error messages. Note that some, but not all, of the error codes produced by PostgreSQL are defined
by the SQL standard; some additional error codes for conditions not defined by the standard have been
invented or borrowed from other databases.

According to the standard, the first two characters of an error code denote a class of errors, while the last
three characters indicate a specific condition within that class. Thus, an application that does not recognize
the specific error code might still be able to infer what to do from the error class.

Table A.1 lists all the error codes defined in PostgreSQL 11.2. (Some are not actually used at present,
but are defined by the SQL standard.) The error classes are also shown. For each error class there is a
“standard” error code having the last three characters 000. This code is used only for error conditions that
fall within the class but do not have any more-specific code assigned.

The symbol shown in the column “Condition Name” is the condition name to use in PL/pgSQL. Condition
names can be written in either upper or lower case. (Note that PL/pgSQL does not recognize warning, as
opposed to error, condition names; those are classes 00, 01, and 02.)

For some types of errors, the server reports the name of a database object (a table, table column, data
type, or constraint) associated with the error; for example, the name of the unique constraint that caused
a unique_violation error. Such names are supplied in separate fields of the error report message
so that applications need not try to extract them from the possibly-localized human-readable text of the
message. As of PostgreSQL 9.3, complete coverage for this feature exists only for errors in SQLSTATE
class 23 (integrity constraint violation), but this is likely to be expanded in future.

Table A.1. PostgreSQL Error Codes

Error Code Condition Name

Class 00 — Successful Completion

00000 successful_completion

Class 01 — Warning

01000 warning

0100C dynamic_result_sets_returned

01008 implicit_zero_bit_padding

01003 null_value_eliminated_in_set_function

01007 privilege_not_granted

01006 privilege_not_revoked

01004 string_data_right_truncation

01P01 deprecated_feature

Class 02 — No Data (this is also a warning class per the SQL standard)

02000 no_data

02001 no_additional_dynamic_result_sets_returned

Class 03 — SQL Statement Not Yet Complete

2396

PostgreSQL Error Codes

Error Code Condition Name

03000 sql_statement_not_yet_complete

Class 08 — Connection Exception

08000 connection_exception

08003 connection_does_not_exist

08006 connection_failure

08001 sqlclient_unable_to_establish_sqlconnection

08004 sqlserver_rejected_establishment_of_sqlconnection

08007 transaction_resolution_unknown

08P01 protocol_violation

Class 09 — Triggered Action Exception

09000 triggered_action_exception

Class 0A — Feature Not Supported

0A000 feature_not_supported

Class 0B — Invalid Transaction Initiation

0B000 invalid_transaction_initiation

Class 0F — Locator Exception

0F000 locator_exception

0F001 invalid_locator_specification

Class 0L — Invalid Grantor

0L000 invalid_grantor

0LP01 invalid_grant_operation

Class 0P — Invalid Role Specification

0P000 invalid_role_specification

Class 0Z — Diagnostics Exception

0Z000 diagnostics_exception

0Z002 stacked_diagnostics_accessed_without_active_handler

Class 20 — Case Not Found

20000 case_not_found

Class 21 — Cardinality Violation

21000 cardinality_violation

Class 22 — Data Exception

22000 data_exception

2202E array_subscript_error

22021 character_not_in_repertoire

22008 datetime_field_overflow

22012 division_by_zero

22005 error_in_assignment

2200B escape_character_conflict

2397

PostgreSQL Error Codes

Error Code Condition Name

22022 indicator_overflow

22015 interval_field_overflow

2201E invalid_argument_for_logarithm

22014 invalid_argument_for_ntile_function

22016 invalid_argument_for_nth_value_function

2201F invalid_argument_for_power_function

2201G invalid_argument_for_width_bucket_function

22018 invalid_character_value_for_cast

22007 invalid_datetime_format

22019 invalid_escape_character

2200D invalid_escape_octet

22025 invalid_escape_sequence

22P06 nonstandard_use_of_escape_character

22010 invalid_indicator_parameter_value

22023 invalid_parameter_value

22013 invalid_preceding_or_following_size

2201B invalid_regular_expression

2201W invalid_row_count_in_limit_clause

2201X invalid_row_count_in_result_offset_clause

2202H invalid_tablesample_argument

2202G invalid_tablesample_repeat

22009 invalid_time_zone_displacement_value

2200C invalid_use_of_escape_character

2200G most_specific_type_mismatch

22004 null_value_not_allowed

22002 null_value_no_indicator_parameter

22003 numeric_value_out_of_range

2200H sequence_generator_limit_exceeded

22026 string_data_length_mismatch

22001 string_data_right_truncation

22011 substring_error

22027 trim_error

22024 unterminated_c_string

2200F zero_length_character_string

22P01 floating_point_exception

22P02 invalid_text_representation

22P03 invalid_binary_representation

22P04 bad_copy_file_format

2398

PostgreSQL Error Codes

Error Code Condition Name

22P05 untranslatable_character

2200L not_an_xml_document

2200M invalid_xml_document

2200N invalid_xml_content

2200S invalid_xml_comment

2200T invalid_xml_processing_instruction

Class 23 — Integrity Constraint Violation

23000 integrity_constraint_violation

23001 restrict_violation

23502 not_null_violation

23503 foreign_key_violation

23505 unique_violation

23514 check_violation

23P01 exclusion_violation

Class 24 — Invalid Cursor State

24000 invalid_cursor_state

Class 25 — Invalid Transaction State

25000 invalid_transaction_state

25001 active_sql_transaction

25002 branch_transaction_already_active

25008 held_cursor_requires_same_isolation_level

25003 inappropriate_access_mode_for_branch_transaction

25004 inappropriate_isolation_level_for_branch_transaction

25005 no_active_sql_transaction_for_branch_transaction

25006 read_only_sql_transaction

25007 schema_and_data_statement_mixing_not_supported

25P01 no_active_sql_transaction

25P02 in_failed_sql_transaction

25P03 idle_in_transaction_session_timeout

Class 26 — Invalid SQL Statement Name

26000 invalid_sql_statement_name

Class 27 — Triggered Data Change Violation

27000 triggered_data_change_violation

Class 28 — Invalid Authorization Specification

28000 invalid_authorization_specification

28P01 invalid_password

Class 2B — Dependent Privilege Descriptors Still Exist

2B000 dependent_privilege_descriptors_still_exist

2399

PostgreSQL Error Codes

Error Code Condition Name

2BP01 dependent_objects_still_exist

Class 2D — Invalid Transaction Termination

2D000 invalid_transaction_termination

Class 2F — SQL Routine Exception

2F000 sql_routine_exception

2F005 function_executed_no_return_statement

2F002 modifying_sql_data_not_permitted

2F003 prohibited_sql_statement_attempted

2F004 reading_sql_data_not_permitted

Class 34 — Invalid Cursor Name

34000 invalid_cursor_name

Class 38 — External Routine Exception

38000 external_routine_exception

38001 containing_sql_not_permitted

38002 modifying_sql_data_not_permitted

38003 prohibited_sql_statement_attempted

38004 reading_sql_data_not_permitted

Class 39 — External Routine Invocation Exception

39000 external_routine_invocation_exception

39001 invalid_sqlstate_returned

39004 null_value_not_allowed

39P01 trigger_protocol_violated

39P02 srf_protocol_violated

39P03 event_trigger_protocol_violated

Class 3B — Savepoint Exception

3B000 savepoint_exception

3B001 invalid_savepoint_specification

Class 3D — Invalid Catalog Name

3D000 invalid_catalog_name

Class 3F — Invalid Schema Name

3F000 invalid_schema_name

Class 40 — Transaction Rollback

40000 transaction_rollback

40002 transaction_integrity_constraint_violation

40001 serialization_failure

40003 statement_completion_unknown

40P01 deadlock_detected

Class 42 — Syntax Error or Access Rule Violation

2400

PostgreSQL Error Codes

Error Code Condition Name

42000 syntax_error_or_access_rule_violation

42601 syntax_error

42501 insufficient_privilege

42846 cannot_coerce

42803 grouping_error

42P20 windowing_error

42P19 invalid_recursion

42830 invalid_foreign_key

42602 invalid_name

42622 name_too_long

42939 reserved_name

42804 datatype_mismatch

42P18 indeterminate_datatype

42P21 collation_mismatch

42P22 indeterminate_collation

42809 wrong_object_type

428C9 generated_always

42703 undefined_column

42883 undefined_function

42P01 undefined_table

42P02 undefined_parameter

42704 undefined_object

42701 duplicate_column

42P03 duplicate_cursor

42P04 duplicate_database

42723 duplicate_function

42P05 duplicate_prepared_statement

42P06 duplicate_schema

42P07 duplicate_table

42712 duplicate_alias

42710 duplicate_object

42702 ambiguous_column

42725 ambiguous_function

42P08 ambiguous_parameter

42P09 ambiguous_alias

42P10 invalid_column_reference

42611 invalid_column_definition

42P11 invalid_cursor_definition

2401

PostgreSQL Error Codes

Error Code Condition Name

42P12 invalid_database_definition

42P13 invalid_function_definition

42P14 invalid_prepared_statement_definition

42P15 invalid_schema_definition

42P16 invalid_table_definition

42P17 invalid_object_definition

Class 44 — WITH CHECK OPTION Violation

44000 with_check_option_violation

Class 53 — Insufficient Resources

53000 insufficient_resources

53100 disk_full

53200 out_of_memory

53300 too_many_connections

53400 configuration_limit_exceeded

Class 54 — Program Limit Exceeded

54000 program_limit_exceeded

54001 statement_too_complex

54011 too_many_columns

54023 too_many_arguments

Class 55 — Object Not In Prerequisite State

55000 object_not_in_prerequisite_state

55006 object_in_use

55P02 cant_change_runtime_param

55P03 lock_not_available

Class 57 — Operator Intervention

57000 operator_intervention

57014 query_canceled

57P01 admin_shutdown

57P02 crash_shutdown

57P03 cannot_connect_now

57P04 database_dropped

Class 58 — System Error (errors external to PostgreSQL itself)

58000 system_error

58030 io_error

58P01 undefined_file

58P02 duplicate_file

Class 72 — Snapshot Failure

72000 snapshot_too_old

2402

PostgreSQL Error Codes

Error Code Condition Name

Class F0 — Configuration File Error

F0000 config_file_error

F0001 lock_file_exists

Class HV — Foreign Data Wrapper Error (SQL/MED)

HV000 fdw_error

HV005 fdw_column_name_not_found

HV002 fdw_dynamic_parameter_value_needed

HV010 fdw_function_sequence_error

HV021 fdw_inconsistent_descriptor_information

HV024 fdw_invalid_attribute_value

HV007 fdw_invalid_column_name

HV008 fdw_invalid_column_number

HV004 fdw_invalid_data_type

HV006 fdw_invalid_data_type_descriptors

HV091 fdw_invalid_descriptor_field_identifier

HV00B fdw_invalid_handle

HV00C fdw_invalid_option_index

HV00D fdw_invalid_option_name

HV090 fdw_invalid_string_length_or_buffer_length

HV00A fdw_invalid_string_format

HV009 fdw_invalid_use_of_null_pointer

HV014 fdw_too_many_handles

HV001 fdw_out_of_memory

HV00P fdw_no_schemas

HV00J fdw_option_name_not_found

HV00K fdw_reply_handle

HV00Q fdw_schema_not_found

HV00R fdw_table_not_found

HV00L fdw_unable_to_create_execution

HV00M fdw_unable_to_create_reply

HV00N fdw_unable_to_establish_connection

Class P0 — PL/pgSQL Error

P0000 plpgsql_error

P0001 raise_exception

P0002 no_data_found

P0003 too_many_rows

P0004 assert_failure

Class XX — Internal Error

2403

PostgreSQL Error Codes

Error Code Condition Name

XX000 internal_error

XX001 data_corrupted

XX002 index_corrupted

2404

Appendix B. Date/Time Support
PostgreSQL uses an internal heuristic parser for all date/time input support. Dates and times are input as
strings, and are broken up into distinct fields with a preliminary determination of what kind of information
can be in the field. Each field is interpreted and either assigned a numeric value, ignored, or rejected. The
parser contains internal lookup tables for all textual fields, including months, days of the week, and time
zones.

This appendix includes information on the content of these lookup tables and describes the steps used by
the parser to decode dates and times.

B.1. Date/Time Input Interpretation
Date/time input strings are decoded using the following procedure.

1. Break the input string into tokens and categorize each token as a string, time, time zone, or number.

a. If the numeric token contains a colon (:), this is a time string. Include all subsequent digits and
colons.

b. If the numeric token contains a dash (-), slash (/), or two or more dots (.), this is a date string
which might have a text month. If a date token has already been seen, it is instead interpreted
as a time zone name (e.g., America/New_York).

c. If the token is numeric only, then it is either a single field or an ISO 8601 concatenated date
(e.g., 19990113 for January 13, 1999) or time (e.g., 141516 for 14:15:16).

d. If the token starts with a plus (+) or minus (-), then it is either a numeric time zone or a special
field.

2. If the token is an alphabetic string, match up with possible strings:

a. See if the token matches any known time zone abbreviation. These abbreviations are supplied
by the configuration file described in Section B.4.

b. If not found, search an internal table to match the token as either a special string (e.g., today),
day (e.g., Thursday), month (e.g., January), or noise word (e.g., at, on).

c. If still not found, throw an error.

3. When the token is a number or number field:

a. If there are eight or six digits, and if no other date fields have been previously read, then interpret
as a “concatenated date” (e.g., 19990118 or 990118). The interpretation is YYYYMMDD or
YYMMDD.

b. If the token is three digits and a year has already been read, then interpret as day of year.

c. If four or six digits and a year has already been read, then interpret as a time (HHMM or HHMMSS).

d. If three or more digits and no date fields have yet been found, interpret as a year (this forces yy-
mm-dd ordering of the remaining date fields).

e. Otherwise the date field ordering is assumed to follow the DateStyle setting: mm-dd-yy, dd-
mm-yy, or yy-mm-dd. Throw an error if a month or day field is found to be out of range.

2405

Date/Time Support

4. If BC has been specified, negate the year and add one for internal storage. (There is no year zero in
the Gregorian calendar, so numerically 1 BC becomes year zero.)

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to four
digits. If the field is less than 70, then add 2000, otherwise add 1900.

Tip

Gregorian years AD 1-99 can be entered by using 4 digits with leading zeros (e.g., 0099 is
AD 99).

B.2. Handling of Invalid or Ambiguous
Timestamps

Ordinarily, if a date/time string is syntactically valid but contains out-of-range field values, an error will
be thrown. For example, input specifying the 31st of February will be rejected.

During a daylight-savings-time transition, it is possible for a seemingly valid timestamp string to represent
a nonexistent or ambiguous timestamp. Such cases are not rejected; the ambiguity is resolved by
determining which UTC offset to apply. For example, supposing that the TimeZone parameter is set to
America/New_York, consider

=> SELECT '2018-03-11 02:30'::timestamptz;
 timestamptz

 2018-03-11 03:30:00-04
(1 row)

Because that day was a spring-forward transition date in that time zone, there was no civil time instant
2:30AM; clocks jumped forward from 2AM EST to 3AM EDT. PostgreSQL interprets the given time as
if it were standard time (UTC-5), which then renders as 3:30AM EDT (UTC-4).

Conversely, consider the behavior during a fall-back transition:

=> SELECT '2018-11-04 02:30'::timestamptz;
 timestamptz

 2018-11-04 02:30:00-05
(1 row)

On that date, there were two possible interpretations of 2:30AM; there was 2:30AM EDT, and then an hour
later after the reversion to standard time, there was 2:30AM EST. Again, PostgreSQL interprets the given
time as if it were standard time (UTC-5). We can force the matter by specifying daylight-savings time:

=> SELECT '2018-11-04 02:30 EDT'::timestamptz;
 timestamptz

 2018-11-04 01:30:00-05

2406

Date/Time Support

(1 row)

This timestamp could validly be rendered as either 2:30 UTC-4 or 1:30 UTC-5; the timestamp output code
chooses the latter.

The precise rule that is applied in such cases is that an invalid timestamp that appears to fall within a jump-
forward daylight savings transition is assigned the UTC offset that prevailed in the time zone just before
the transition, while an ambiguous timestamp that could fall on either side of a jump-back transition is
assigned the UTC offset that prevailed just after the transition. In most time zones this is equivalent to
saying that “the standard-time interpretation is preferred when in doubt”.

In all cases, the UTC offset associated with a timestamp can be specified explicitly, using either a numeric
UTC offset or a time zone abbreviation that corresponds to a fixed UTC offset. The rule just given applies
only when it is necessary to infer a UTC offset for a time zone in which the offset varies.

B.3. Date/Time Key Words
Table B.1 shows the tokens that are recognized as names of months.

Table B.1. Month Names

Month Abbreviations

January Jan

February Feb

March Mar

April Apr

May

June Jun

July Jul

August Aug

September Sep, Sept

October Oct

November Nov

December Dec

Table B.2 shows the tokens that are recognized as names of days of the week.

Table B.2. Day of the Week Names

Day Abbreviations

Sunday Sun

Monday Mon

Tuesday Tue, Tues

Wednesday Wed, Weds

Thursday Thu, Thur, Thurs

Friday Fri

2407

Date/Time Support

Day Abbreviations

Saturday Sat

Table B.3 shows the tokens that serve various modifier purposes.

Table B.3. Date/Time Field Modifiers

Identifier Description

AM Time is before 12:00

AT Ignored

JULIAN, JD, J Next field is Julian Date

ON Ignored

PM Time is on or after 12:00

T Next field is time

B.4. Date/Time Configuration Files
Since timezone abbreviations are not well standardized, PostgreSQL provides a means to customize the set
of abbreviations accepted by the server. The timezone_abbreviations run-time parameter determines the
active set of abbreviations. While this parameter can be altered by any database user, the possible values
for it are under the control of the database administrator — they are in fact names of configuration files
stored in .../share/timezonesets/ of the installation directory. By adding or altering files in that
directory, the administrator can set local policy for timezone abbreviations.

timezone_abbreviations can be set to any file name found in .../share/timezonesets/
, if the file's name is entirely alphabetic. (The prohibition against non-alphabetic characters in
timezone_abbreviations prevents reading files outside the intended directory, as well as reading
editor backup files and other extraneous files.)

A timezone abbreviation file can contain blank lines and comments beginning with #. Non-comment lines
must have one of these formats:

zone_abbreviation offset
zone_abbreviation offset D
zone_abbreviation time_zone_name
@INCLUDE file_name
@OVERRIDE

A zone_abbreviation is just the abbreviation being defined. An offset is an integer giving the
equivalent offset in seconds from UTC, positive being east from Greenwich and negative being west. For
example, -18000 would be five hours west of Greenwich, or North American east coast standard time. D
indicates that the zone name represents local daylight-savings time rather than standard time.

Alternatively, a time_zone_name can be given, referencing a zone name defined in the IANA timezone
database. The zone's definition is consulted to see whether the abbreviation is or has been in use in
that zone, and if so, the appropriate meaning is used — that is, the meaning that was currently in use
at the timestamp whose value is being determined, or the meaning in use immediately before that if
it wasn't current at that time, or the oldest meaning if it was used only after that time. This behavior
is essential for dealing with abbreviations whose meaning has historically varied. It is also allowed to
define an abbreviation in terms of a zone name in which that abbreviation does not appear; then using the
abbreviation is just equivalent to writing out the zone name.

2408

Date/Time Support

Tip

Using a simple integer offset is preferred when defining an abbreviation whose offset from
UTC has never changed, as such abbreviations are much cheaper to process than those that require
consulting a time zone definition.

The @INCLUDE syntax allows inclusion of another file in the .../share/timezonesets/ directory.
Inclusion can be nested, to a limited depth.

The @OVERRIDE syntax indicates that subsequent entries in the file can override previous entries
(typically, entries obtained from included files). Without this, conflicting definitions of the same timezone
abbreviation are considered an error.

In an unmodified installation, the file Default contains all the non-conflicting time zone abbreviations
for most of the world. Additional files Australia and India are provided for those regions: these files
first include the Default file and then add or modify abbreviations as needed.

For reference purposes, a standard installation also contains files Africa.txt, America.txt,
etc, containing information about every time zone abbreviation known to be in use according to the
IANA timezone database. The zone name definitions found in these files can be copied and pasted
into a custom configuration file as needed. Note that these files cannot be directly referenced as
timezone_abbreviations settings, because of the dot embedded in their names.

Note

If an error occurs while reading the time zone abbreviation set, no new value is applied and the old
set is kept. If the error occurs while starting the database, startup fails.

Caution

Time zone abbreviations defined in the configuration file override non-timezone meanings built
into PostgreSQL. For example, the Australia configuration file defines SAT (for South
Australian Standard Time). When this file is active, SAT will not be recognized as an abbreviation
for Saturday.

Caution

If you modify files in .../share/timezonesets/, it is up to you to make backups — a
normal database dump will not include this directory.

B.5. History of Units
The SQL standard states that “Within the definition of a ‘datetime literal’, the ‘datetime values’ are
constrained by the natural rules for dates and times according to the Gregorian calendar”. PostgreSQL

2409

Date/Time Support

follows the SQL standard's lead by counting dates exclusively in the Gregorian calendar, even for years
before that calendar was in use. This rule is known as the proleptic Gregorian calendar.

The Julian calendar was introduced by Julius Caesar in 45 BC. It was in common use in the Western world
until the year 1582, when countries started changing to the Gregorian calendar. In the Julian calendar, the
tropical year is approximated as 365 1/4 days = 365.25 days. This gives an error of about 1 day in 128 years.

The accumulating calendar error prompted Pope Gregory XIII to reform the calendar in accordance with
instructions from the Council of Trent. In the Gregorian calendar, the tropical year is approximated as 365
+ 97 / 400 days = 365.2425 days. Thus it takes approximately 3300 years for the tropical year to shift one
day with respect to the Gregorian calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the following
rules:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years. By
contrast, in the older Julian calendar all years divisible by 4 are leap years.

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that 15
October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal, and
Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant to change,
and the Greek Orthodox countries didn't change until the start of the 20th century. The reform was observed
by Great Britain and its dominions (including what is now the USA) in 1752. Thus 2 September 1752
was followed by 14 September 1752. This is why Unix systems that have the cal program produce the
following:

$ cal 9 1752
 September 1752
 S M Tu W Th F S
 1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

But, of course, this calendar is only valid for Great Britain and dominions, not other places. Since it would
be difficult and confusing to try to track the actual calendars that were in use in various places at various
times, PostgreSQL does not try, but rather follows the Gregorian calendar rules for all dates, even though
this method is not historically accurate.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century BC.
Legend has it that the Emperor Huangdi invented that calendar in 2637 BC. The People's Republic of China
uses the Gregorian calendar for civil purposes. The Chinese calendar is used for determining festivals.

The Julian Date system is another type of calendar, unrelated to the Julian calendar though it is confusingly
named similarly to that calendar. The Julian Date system was invented by the French scholar Joseph
Justus Scaliger (1540-1609) and probably takes its name from Scaliger's father, the Italian scholar Julius
Caesar Scaliger (1484-1558). In the Julian Date system, each day has a sequential number, starting from
JD 0 (which is sometimes called the Julian Date). JD 0 corresponds to 1 January 4713 BC in the Julian
calendar, or 24 November 4714 BC in the Gregorian calendar. Julian Date counting is most often used by
astronomers for labeling their nightly observations, and therefore a date runs from noon UTC to the next

2410

Date/Time Support

noon UTC, rather than from midnight to midnight: JD 0 designates the 24 hours from noon UTC on 24
November 4714 BC to noon UTC on 25 November 4714 BC.

Although PostgreSQL supports Julian Date notation for input and output of dates (and also uses Julian
dates for some internal datetime calculations), it does not observe the nicety of having dates run from noon
to noon. PostgreSQL treats a Julian Date as running from midnight to midnight.

2411

Appendix C. SQL Key Words
Table C.1 lists all tokens that are key words in the SQL standard and in PostgreSQL 11.2. Background
information can be found in Section 4.1.1. (For space reasons, only the latest two versions of the SQL
standard, and SQL-92 for historical comparison, are included. The differences between those and the other
intermediate standard versions are small.)

SQL distinguishes between reserved and non-reserved key words. According to the standard, reserved key
words are the only real key words; they are never allowed as identifiers. Non-reserved key words only
have a special meaning in particular contexts and can be used as identifiers in other contexts. Most non-
reserved key words are actually the names of built-in tables and functions specified by SQL. The concept
of non-reserved key words essentially only exists to declare that some predefined meaning is attached to
a word in some contexts.

In the PostgreSQL parser life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special status in
the parser as compared to an ordinary identifier. (The latter is usually the case for functions specified by
SQL.) Even reserved key words are not completely reserved in PostgreSQL, but can be used as column
labels (for example, SELECT 55 AS CHECK, even though CHECK is a reserved key word).

In Table C.1 in the column for PostgreSQL we classify as “non-reserved” those key words that are
explicitly known to the parser but are allowed as column or table names. Some key words that are otherwise
non-reserved cannot be used as function or data type names and are marked accordingly. (Most of these
words represent built-in functions or data types with special syntax. The function or type is still available
but it cannot be redefined by the user.) Labeled “reserved” are those tokens that are not allowed as column
or table names. Some reserved key words are allowable as names for functions or data types; this is also
shown in the table. If not so marked, a reserved key word is only allowed as an “AS” column label name.

As a general rule, if you get spurious parser errors for commands that contain any of the listed key words
as an identifier you should try to quote the identifier to see if the problem goes away.

It is important to understand before studying Table C.1 that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table C.1. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

A non-reserved non-reserved

ABORT non-reserved

ABS reserved reserved

ABSENT non-reserved non-reserved

ABSOLUTE non-reserved non-reserved non-reserved reserved

ACCESS non-reserved

ACCORDING non-reserved non-reserved

ACTION non-reserved non-reserved non-reserved reserved

ADA non-reserved non-reserved non-reserved

ADD non-reserved non-reserved non-reserved reserved

ADMIN non-reserved non-reserved non-reserved

AFTER non-reserved non-reserved non-reserved

2412

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

AGGREGATE non-reserved

ALL reserved reserved reserved reserved

ALLOCATE reserved reserved reserved

ALSO non-reserved

ALTER non-reserved reserved reserved reserved

ALWAYS non-reserved non-reserved non-reserved

ANALYSE reserved

ANALYZE reserved

AND reserved reserved reserved reserved

ANY reserved reserved reserved reserved

ARE reserved reserved reserved

ARRAY reserved reserved reserved

ARRAY_AGG reserved reserved

ARRAY_MAX_CARDINALITY reserved

AS reserved reserved reserved reserved

ASC reserved non-reserved non-reserved reserved

ASENSITIVE reserved reserved

ASSERTION non-reserved non-reserved non-reserved reserved

ASSIGNMENT non-reserved non-reserved non-reserved

ASYMMETRIC reserved reserved reserved

AT non-reserved reserved reserved reserved

ATOMIC reserved reserved

ATTACH non-reserved

ATTRIBUTE non-reserved non-reserved non-reserved

ATTRIBUTES non-reserved non-reserved

AUTHORIZATION reserved (can be
function or type)

reserved reserved reserved

AVG reserved reserved reserved

BACKWARD non-reserved

BASE64 non-reserved non-reserved

BEFORE non-reserved non-reserved non-reserved

BEGIN non-reserved reserved reserved reserved

BEGIN_FRAME reserved

BEGIN_PARTITION reserved

BERNOULLI non-reserved non-reserved

BETWEEN non-reserved
(cannot be function
or type)

reserved reserved reserved

2413

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

BIGINT non-reserved
(cannot be function
or type)

reserved reserved

BINARY reserved (can be
function or type)

reserved reserved

BIT non-reserved
(cannot be function
or type)

reserved

BIT_LENGTH reserved

BLOB reserved reserved

BLOCKED non-reserved non-reserved

BOM non-reserved non-reserved

BOOLEAN non-reserved
(cannot be function
or type)

reserved reserved

BOTH reserved reserved reserved reserved

BREADTH non-reserved non-reserved

BY non-reserved reserved reserved reserved

C non-reserved non-reserved non-reserved

CACHE non-reserved

CALL non-reserved reserved reserved

CALLED non-reserved reserved reserved

CARDINALITY reserved reserved

CASCADE non-reserved non-reserved non-reserved reserved

CASCADED non-reserved reserved reserved reserved

CASE reserved reserved reserved reserved

CAST reserved reserved reserved reserved

CATALOG non-reserved non-reserved non-reserved reserved

CATALOG_NAME non-reserved non-reserved non-reserved

CEIL reserved reserved

CEILING reserved reserved

CHAIN non-reserved non-reserved non-reserved

CHAR non-reserved
(cannot be function
or type)

reserved reserved reserved

CHARACTER non-reserved
(cannot be function
or type)

reserved reserved reserved

CHARACTERISTICSnon-reserved non-reserved non-reserved

CHARACTERS non-reserved non-reserved

CHARACTER_LENGTH reserved reserved reserved

2414

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

CHARACTER_SET_CATALOG non-reserved non-reserved non-reserved

CHARACTER_SET_NAME non-reserved non-reserved non-reserved

CHARACTER_SET_SCHEMA non-reserved non-reserved non-reserved

CHAR_LENGTH reserved reserved reserved

CHECK reserved reserved reserved reserved

CHECKPOINT non-reserved

CLASS non-reserved

CLASS_ORIGIN non-reserved non-reserved non-reserved

CLOB reserved reserved

CLOSE non-reserved reserved reserved reserved

CLUSTER non-reserved

COALESCE non-reserved
(cannot be function
or type)

reserved reserved reserved

COBOL non-reserved non-reserved non-reserved

COLLATE reserved reserved reserved reserved

COLLATION reserved (can be
function or type)

non-reserved non-reserved reserved

COLLATION_CATALOG non-reserved non-reserved non-reserved

COLLATION_NAME non-reserved non-reserved non-reserved

COLLATION_SCHEMA non-reserved non-reserved non-reserved

COLLECT reserved reserved

COLUMN reserved reserved reserved reserved

COLUMNS non-reserved non-reserved non-reserved

COLUMN_NAME non-reserved non-reserved non-reserved

COMMAND_FUNCTION non-reserved non-reserved non-reserved

COMMAND_FUNCTION_CODE non-reserved non-reserved

COMMENT non-reserved

COMMENTS non-reserved

COMMIT non-reserved reserved reserved reserved

COMMITTED non-reserved non-reserved non-reserved non-reserved

CONCURRENTLY reserved (can be
function or type)

CONDITION reserved reserved

CONDITION_NUMBER non-reserved non-reserved non-reserved

CONFIGURATION non-reserved

CONFLICT non-reserved

CONNECT reserved reserved reserved

CONNECTION non-reserved non-reserved non-reserved reserved

2415

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

CONNECTION_NAME non-reserved non-reserved non-reserved

CONSTRAINT reserved reserved reserved reserved

CONSTRAINTS non-reserved non-reserved non-reserved reserved

CONSTRAINT_CATALOG non-reserved non-reserved non-reserved

CONSTRAINT_NAME non-reserved non-reserved non-reserved

CONSTRAINT_SCHEMA non-reserved non-reserved non-reserved

CONSTRUCTOR non-reserved non-reserved

CONTAINS reserved non-reserved

CONTENT non-reserved non-reserved non-reserved

CONTINUE non-reserved non-reserved non-reserved reserved

CONTROL non-reserved non-reserved

CONVERSION non-reserved

CONVERT reserved reserved reserved

COPY non-reserved

CORR reserved reserved

CORRESPONDING reserved reserved reserved

COST non-reserved

COUNT reserved reserved reserved

COVAR_POP reserved reserved

COVAR_SAMP reserved reserved

CREATE reserved reserved reserved reserved

CROSS reserved (can be
function or type)

reserved reserved reserved

CSV non-reserved

CUBE non-reserved reserved reserved

CUME_DIST reserved reserved

CURRENT non-reserved reserved reserved reserved

CURRENT_CATALOGreserved reserved reserved

CURRENT_DATE reserved reserved reserved reserved

CURRENT_DEFAULT_TRANSFORM_GROUPreserved reserved

CURRENT_PATH reserved reserved

CURRENT_ROLE reserved reserved reserved

CURRENT_ROW reserved

CURRENT_SCHEMAreserved (can be
function or type)

reserved reserved

CURRENT_TIME reserved reserved reserved reserved

CURRENT_TIMESTAMPreserved reserved reserved reserved

CURRENT_TRANSFORM_GROUP_FOR_TYPEreserved reserved

2416

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

CURRENT_USER reserved reserved reserved reserved

CURSOR non-reserved reserved reserved reserved

CURSOR_NAME non-reserved non-reserved non-reserved

CYCLE non-reserved reserved reserved

DATA non-reserved non-reserved non-reserved non-reserved

DATABASE non-reserved

DATALINK reserved reserved

DATE reserved reserved reserved

DATETIME_INTERVAL_CODE non-reserved non-reserved non-reserved

DATETIME_INTERVAL_PRECISION non-reserved non-reserved non-reserved

DAY non-reserved reserved reserved reserved

DB non-reserved non-reserved

DEALLOCATE non-reserved reserved reserved reserved

DEC non-reserved
(cannot be function
or type)

reserved reserved reserved

DECIMAL non-reserved
(cannot be function
or type)

reserved reserved reserved

DECLARE non-reserved reserved reserved reserved

DEFAULT reserved reserved reserved reserved

DEFAULTS non-reserved non-reserved non-reserved

DEFERRABLE reserved non-reserved non-reserved reserved

DEFERRED non-reserved non-reserved non-reserved reserved

DEFINED non-reserved non-reserved

DEFINER non-reserved non-reserved non-reserved

DEGREE non-reserved non-reserved

DELETE non-reserved reserved reserved reserved

DELIMITER non-reserved

DELIMITERS non-reserved

DENSE_RANK reserved reserved

DEPENDS non-reserved

DEPTH non-reserved non-reserved

DEREF reserved reserved

DERIVED non-reserved non-reserved

DESC reserved non-reserved non-reserved reserved

DESCRIBE reserved reserved reserved

DESCRIPTOR non-reserved non-reserved reserved

DETACH non-reserved

2417

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

DETERMINISTIC reserved reserved

DIAGNOSTICS non-reserved non-reserved reserved

DICTIONARY non-reserved

DISABLE non-reserved

DISCARD non-reserved

DISCONNECT reserved reserved reserved

DISPATCH non-reserved non-reserved

DISTINCT reserved reserved reserved reserved

DLNEWCOPY reserved reserved

DLPREVIOUSCOPY reserved reserved

DLURLCOMPLETE reserved reserved

DLURLCOMPLETEONLY reserved reserved

DLURLCOMPLETEWRITE reserved reserved

DLURLPATH reserved reserved

DLURLPATHONLY reserved reserved

DLURLPATHWRITE reserved reserved

DLURLSCHEME reserved reserved

DLURLSERVER reserved reserved

DLVALUE reserved reserved

DO reserved

DOCUMENT non-reserved non-reserved non-reserved

DOMAIN non-reserved non-reserved non-reserved reserved

DOUBLE non-reserved reserved reserved reserved

DROP non-reserved reserved reserved reserved

DYNAMIC reserved reserved

DYNAMIC_FUNCTION non-reserved non-reserved non-reserved

DYNAMIC_FUNCTION_CODE non-reserved non-reserved

EACH non-reserved reserved reserved

ELEMENT reserved reserved

ELSE reserved reserved reserved reserved

EMPTY non-reserved non-reserved

ENABLE non-reserved

ENCODING non-reserved non-reserved non-reserved

ENCRYPTED non-reserved

END reserved reserved reserved reserved

END-EXEC reserved reserved reserved

END_FRAME reserved

END_PARTITION reserved

2418

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

ENFORCED non-reserved

ENUM non-reserved

EQUALS reserved non-reserved

ESCAPE non-reserved reserved reserved reserved

EVENT non-reserved

EVERY reserved reserved

EXCEPT reserved reserved reserved reserved

EXCEPTION reserved

EXCLUDE non-reserved non-reserved non-reserved

EXCLUDING non-reserved non-reserved non-reserved

EXCLUSIVE non-reserved

EXEC reserved reserved reserved

EXECUTE non-reserved reserved reserved reserved

EXISTS non-reserved
(cannot be function
or type)

reserved reserved reserved

EXP reserved reserved

EXPLAIN non-reserved

EXPRESSION non-reserved

EXTENSION non-reserved

EXTERNAL non-reserved reserved reserved reserved

EXTRACT non-reserved
(cannot be function
or type)

reserved reserved reserved

FALSE reserved reserved reserved reserved

FAMILY non-reserved

FETCH reserved reserved reserved reserved

FILE non-reserved non-reserved

FILTER non-reserved reserved reserved

FINAL non-reserved non-reserved

FIRST non-reserved non-reserved non-reserved reserved

FIRST_VALUE reserved reserved

FLAG non-reserved non-reserved

FLOAT non-reserved
(cannot be function
or type)

reserved reserved reserved

FLOOR reserved reserved

FOLLOWING non-reserved non-reserved non-reserved

FOR reserved reserved reserved reserved

2419

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

FORCE non-reserved

FOREIGN reserved reserved reserved reserved

FORTRAN non-reserved non-reserved non-reserved

FORWARD non-reserved

FOUND non-reserved non-reserved reserved

FRAME_ROW reserved

FREE reserved reserved

FREEZE reserved (can be
function or type)

FROM reserved reserved reserved reserved

FS non-reserved non-reserved

FULL reserved (can be
function or type)

reserved reserved reserved

FUNCTION non-reserved reserved reserved

FUNCTIONS non-reserved

FUSION reserved reserved

G non-reserved non-reserved

GENERAL non-reserved non-reserved

GENERATED non-reserved non-reserved non-reserved

GET reserved reserved reserved

GLOBAL non-reserved reserved reserved reserved

GO non-reserved non-reserved reserved

GOTO non-reserved non-reserved reserved

GRANT reserved reserved reserved reserved

GRANTED non-reserved non-reserved non-reserved

GREATEST non-reserved
(cannot be function
or type)

GROUP reserved reserved reserved reserved

GROUPING non-reserved
(cannot be function
or type)

reserved reserved

GROUPS non-reserved reserved

HANDLER non-reserved

HAVING reserved reserved reserved reserved

HEADER non-reserved

HEX non-reserved non-reserved

HIERARCHY non-reserved non-reserved

HOLD non-reserved reserved reserved

2420

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

HOUR non-reserved reserved reserved reserved

ID non-reserved non-reserved

IDENTITY non-reserved reserved reserved reserved

IF non-reserved

IGNORE non-reserved non-reserved

ILIKE reserved (can be
function or type)

IMMEDIATE non-reserved non-reserved non-reserved reserved

IMMEDIATELY non-reserved

IMMUTABLE non-reserved

IMPLEMENTATION non-reserved non-reserved

IMPLICIT non-reserved

IMPORT non-reserved reserved reserved

IN reserved reserved reserved reserved

INCLUDE non-reserved

INCLUDING non-reserved non-reserved non-reserved

INCREMENT non-reserved non-reserved non-reserved

INDENT non-reserved non-reserved

INDEX non-reserved

INDEXES non-reserved

INDICATOR reserved reserved reserved

INHERIT non-reserved

INHERITS non-reserved

INITIALLY reserved non-reserved non-reserved reserved

INLINE non-reserved

INNER reserved (can be
function or type)

reserved reserved reserved

INOUT non-reserved
(cannot be function
or type)

reserved reserved

INPUT non-reserved non-reserved non-reserved reserved

INSENSITIVE non-reserved reserved reserved reserved

INSERT non-reserved reserved reserved reserved

INSTANCE non-reserved non-reserved

INSTANTIABLE non-reserved non-reserved

INSTEAD non-reserved non-reserved non-reserved

INT non-reserved
(cannot be function
or type)

reserved reserved reserved

2421

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

INTEGER non-reserved
(cannot be function
or type)

reserved reserved reserved

INTEGRITY non-reserved non-reserved

INTERSECT reserved reserved reserved reserved

INTERSECTION reserved reserved

INTERVAL non-reserved
(cannot be function
or type)

reserved reserved reserved

INTO reserved reserved reserved reserved

INVOKER non-reserved non-reserved non-reserved

IS reserved (can be
function or type)

reserved reserved reserved

ISNULL reserved (can be
function or type)

ISOLATION non-reserved non-reserved non-reserved reserved

JOIN reserved (can be
function or type)

reserved reserved reserved

K non-reserved non-reserved

KEY non-reserved non-reserved non-reserved reserved

KEY_MEMBER non-reserved non-reserved

KEY_TYPE non-reserved non-reserved

LABEL non-reserved

LAG reserved reserved

LANGUAGE non-reserved reserved reserved reserved

LARGE non-reserved reserved reserved

LAST non-reserved non-reserved non-reserved reserved

LAST_VALUE reserved reserved

LATERAL reserved reserved reserved

LEAD reserved reserved

LEADING reserved reserved reserved reserved

LEAKPROOF non-reserved

LEAST non-reserved
(cannot be function
or type)

LEFT reserved (can be
function or type)

reserved reserved reserved

LENGTH non-reserved non-reserved non-reserved

LEVEL non-reserved non-reserved non-reserved reserved

LIBRARY non-reserved non-reserved

2422

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

LIKE reserved (can be
function or type)

reserved reserved reserved

LIKE_REGEX reserved reserved

LIMIT reserved non-reserved non-reserved

LINK non-reserved non-reserved

LISTEN non-reserved

LN reserved reserved

LOAD non-reserved

LOCAL non-reserved reserved reserved reserved

LOCALTIME reserved reserved reserved

LOCALTIMESTAMPreserved reserved reserved

LOCATION non-reserved non-reserved non-reserved

LOCATOR non-reserved non-reserved

LOCK non-reserved

LOCKED non-reserved

LOGGED non-reserved

LOWER reserved reserved reserved

M non-reserved non-reserved

MAP non-reserved non-reserved

MAPPING non-reserved non-reserved non-reserved

MATCH non-reserved reserved reserved reserved

MATCHED non-reserved non-reserved

MATERIALIZED non-reserved

MAX reserved reserved reserved

MAXVALUE non-reserved non-reserved non-reserved

MAX_CARDINALITY reserved

MEMBER reserved reserved

MERGE reserved reserved

MESSAGE_LENGTH non-reserved non-reserved non-reserved

MESSAGE_OCTET_LENGTH non-reserved non-reserved non-reserved

MESSAGE_TEXT non-reserved non-reserved non-reserved

METHOD non-reserved reserved reserved

MIN reserved reserved reserved

MINUTE non-reserved reserved reserved reserved

MINVALUE non-reserved non-reserved non-reserved

MOD reserved reserved

MODE non-reserved

MODIFIES reserved reserved

2423

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

MODULE reserved reserved reserved

MONTH non-reserved reserved reserved reserved

MORE non-reserved non-reserved non-reserved

MOVE non-reserved

MULTISET reserved reserved

MUMPS non-reserved non-reserved non-reserved

NAME non-reserved non-reserved non-reserved non-reserved

NAMES non-reserved non-reserved non-reserved reserved

NAMESPACE non-reserved non-reserved

NATIONAL non-reserved
(cannot be function
or type)

reserved reserved reserved

NATURAL reserved (can be
function or type)

reserved reserved reserved

NCHAR non-reserved
(cannot be function
or type)

reserved reserved reserved

NCLOB reserved reserved

NESTING non-reserved non-reserved

NEW non-reserved reserved reserved

NEXT non-reserved non-reserved non-reserved reserved

NFC non-reserved non-reserved

NFD non-reserved non-reserved

NFKC non-reserved non-reserved

NFKD non-reserved non-reserved

NIL non-reserved non-reserved

NO non-reserved reserved reserved reserved

NONE non-reserved
(cannot be function
or type)

reserved reserved

NORMALIZE reserved reserved

NORMALIZED non-reserved non-reserved

NOT reserved reserved reserved reserved

NOTHING non-reserved

NOTIFY non-reserved

NOTNULL reserved (can be
function or type)

NOWAIT non-reserved

NTH_VALUE reserved reserved

NTILE reserved reserved

2424

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

NULL reserved reserved reserved reserved

NULLABLE non-reserved non-reserved non-reserved

NULLIF non-reserved
(cannot be function
or type)

reserved reserved reserved

NULLS non-reserved non-reserved non-reserved

NUMBER non-reserved non-reserved non-reserved

NUMERIC non-reserved
(cannot be function
or type)

reserved reserved reserved

OBJECT non-reserved non-reserved non-reserved

OCCURRENCES_REGEX reserved reserved

OCTETS non-reserved non-reserved

OCTET_LENGTH reserved reserved reserved

OF non-reserved reserved reserved reserved

OFF non-reserved non-reserved non-reserved

OFFSET reserved reserved reserved

OIDS non-reserved

OLD non-reserved reserved reserved

ON reserved reserved reserved reserved

ONLY reserved reserved reserved reserved

OPEN reserved reserved reserved

OPERATOR non-reserved

OPTION non-reserved non-reserved non-reserved reserved

OPTIONS non-reserved non-reserved non-reserved

OR reserved reserved reserved reserved

ORDER reserved reserved reserved reserved

ORDERING non-reserved non-reserved

ORDINALITY non-reserved non-reserved non-reserved

OTHERS non-reserved non-reserved non-reserved

OUT non-reserved
(cannot be function
or type)

reserved reserved

OUTER reserved (can be
function or type)

reserved reserved reserved

OUTPUT non-reserved non-reserved reserved

OVER non-reserved reserved reserved

OVERLAPS reserved (can be
function or type)

reserved reserved reserved

2425

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

OVERLAY non-reserved
(cannot be function
or type)

reserved reserved

OVERRIDING non-reserved non-reserved non-reserved

OWNED non-reserved

OWNER non-reserved

P non-reserved non-reserved

PAD non-reserved non-reserved reserved

PARALLEL non-reserved

PARAMETER reserved reserved

PARAMETER_MODE non-reserved non-reserved

PARAMETER_NAME non-reserved non-reserved

PARAMETER_ORDINAL_POSITION non-reserved non-reserved

PARAMETER_SPECIFIC_CATALOG non-reserved non-reserved

PARAMETER_SPECIFIC_NAME non-reserved non-reserved

PARAMETER_SPECIFIC_SCHEMA non-reserved non-reserved

PARSER non-reserved

PARTIAL non-reserved non-reserved non-reserved reserved

PARTITION non-reserved reserved reserved

PASCAL non-reserved non-reserved non-reserved

PASSING non-reserved non-reserved non-reserved

PASSTHROUGH non-reserved non-reserved

PASSWORD non-reserved

PATH non-reserved non-reserved

PERCENT reserved

PERCENTILE_CONT reserved reserved

PERCENTILE_DISC reserved reserved

PERCENT_RANK reserved reserved

PERIOD reserved

PERMISSION non-reserved non-reserved

PLACING reserved non-reserved non-reserved

PLANS non-reserved

PLI non-reserved non-reserved non-reserved

POLICY non-reserved

PORTION reserved

POSITION non-reserved
(cannot be function
or type)

reserved reserved reserved

POSITION_REGEX reserved reserved

2426

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

POWER reserved reserved

PRECEDES reserved

PRECEDING non-reserved non-reserved non-reserved

PRECISION non-reserved
(cannot be function
or type)

reserved reserved reserved

PREPARE non-reserved reserved reserved reserved

PREPARED non-reserved

PRESERVE non-reserved non-reserved non-reserved reserved

PRIMARY reserved reserved reserved reserved

PRIOR non-reserved non-reserved non-reserved reserved

PRIVILEGES non-reserved non-reserved non-reserved reserved

PROCEDURAL non-reserved

PROCEDURE non-reserved reserved reserved reserved

PROCEDURES non-reserved

PROGRAM non-reserved

PUBLIC non-reserved non-reserved reserved

PUBLICATION non-reserved

QUOTE non-reserved

RANGE non-reserved reserved reserved

RANK reserved reserved

READ non-reserved non-reserved non-reserved reserved

READS reserved reserved

REAL non-reserved
(cannot be function
or type)

reserved reserved reserved

REASSIGN non-reserved

RECHECK non-reserved

RECOVERY non-reserved non-reserved

RECURSIVE non-reserved reserved reserved

REF non-reserved reserved reserved

REFERENCES reserved reserved reserved reserved

REFERENCING non-reserved reserved reserved

REFRESH non-reserved

REGR_AVGX reserved reserved

REGR_AVGY reserved reserved

REGR_COUNT reserved reserved

REGR_INTERCEPT reserved reserved

REGR_R2 reserved reserved

2427

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

REGR_SLOPE reserved reserved

REGR_SXX reserved reserved

REGR_SXY reserved reserved

REGR_SYY reserved reserved

REINDEX non-reserved

RELATIVE non-reserved non-reserved non-reserved reserved

RELEASE non-reserved reserved reserved

RENAME non-reserved

REPEATABLE non-reserved non-reserved non-reserved non-reserved

REPLACE non-reserved

REPLICA non-reserved

REQUIRING non-reserved non-reserved

RESET non-reserved

RESPECT non-reserved non-reserved

RESTART non-reserved non-reserved non-reserved

RESTORE non-reserved non-reserved

RESTRICT non-reserved non-reserved non-reserved reserved

RESULT reserved reserved

RETURN reserved reserved

RETURNED_CARDINALITY non-reserved non-reserved

RETURNED_LENGTH non-reserved non-reserved non-reserved

RETURNED_OCTET_LENGTH non-reserved non-reserved non-reserved

RETURNED_SQLSTATE non-reserved non-reserved non-reserved

RETURNING reserved non-reserved non-reserved

RETURNS non-reserved reserved reserved

REVOKE non-reserved reserved reserved reserved

RIGHT reserved (can be
function or type)

reserved reserved reserved

ROLE non-reserved non-reserved non-reserved

ROLLBACK non-reserved reserved reserved reserved

ROLLUP non-reserved reserved reserved

ROUTINE non-reserved non-reserved non-reserved

ROUTINES non-reserved

ROUTINE_CATALOG non-reserved non-reserved

ROUTINE_NAME non-reserved non-reserved

ROUTINE_SCHEMA non-reserved non-reserved

ROW non-reserved
(cannot be function
or type)

reserved reserved

2428

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

ROWS non-reserved reserved reserved reserved

ROW_COUNT non-reserved non-reserved non-reserved

ROW_NUMBER reserved reserved

RULE non-reserved

SAVEPOINT non-reserved reserved reserved

SCALE non-reserved non-reserved non-reserved

SCHEMA non-reserved non-reserved non-reserved reserved

SCHEMAS non-reserved

SCHEMA_NAME non-reserved non-reserved non-reserved

SCOPE reserved reserved

SCOPE_CATALOG non-reserved non-reserved

SCOPE_NAME non-reserved non-reserved

SCOPE_SCHEMA non-reserved non-reserved

SCROLL non-reserved reserved reserved reserved

SEARCH non-reserved reserved reserved

SECOND non-reserved reserved reserved reserved

SECTION non-reserved non-reserved reserved

SECURITY non-reserved non-reserved non-reserved

SELECT reserved reserved reserved reserved

SELECTIVE non-reserved non-reserved

SELF non-reserved non-reserved

SENSITIVE reserved reserved

SEQUENCE non-reserved non-reserved non-reserved

SEQUENCES non-reserved

SERIALIZABLE non-reserved non-reserved non-reserved non-reserved

SERVER non-reserved non-reserved non-reserved

SERVER_NAME non-reserved non-reserved non-reserved

SESSION non-reserved non-reserved non-reserved reserved

SESSION_USER reserved reserved reserved reserved

SET non-reserved reserved reserved reserved

SETOF non-reserved
(cannot be function
or type)

SETS non-reserved non-reserved non-reserved

SHARE non-reserved

SHOW non-reserved

SIMILAR reserved (can be
function or type)

reserved reserved

SIMPLE non-reserved non-reserved non-reserved

2429

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

SIZE non-reserved non-reserved reserved

SKIP non-reserved

SMALLINT non-reserved
(cannot be function
or type)

reserved reserved reserved

SNAPSHOT non-reserved

SOME reserved reserved reserved reserved

SOURCE non-reserved non-reserved

SPACE non-reserved non-reserved reserved

SPECIFIC reserved reserved

SPECIFICTYPE reserved reserved

SPECIFIC_NAME non-reserved non-reserved

SQL non-reserved reserved reserved reserved

SQLCODE reserved

SQLERROR reserved

SQLEXCEPTION reserved reserved

SQLSTATE reserved reserved reserved

SQLWARNING reserved reserved

SQRT reserved reserved

STABLE non-reserved

STANDALONE non-reserved non-reserved non-reserved

START non-reserved reserved reserved

STATE non-reserved non-reserved

STATEMENT non-reserved non-reserved non-reserved

STATIC reserved reserved

STATISTICS non-reserved

STDDEV_POP reserved reserved

STDDEV_SAMP reserved reserved

STDIN non-reserved

STDOUT non-reserved

STORAGE non-reserved

STRICT non-reserved

STRIP non-reserved non-reserved non-reserved

STRUCTURE non-reserved non-reserved

STYLE non-reserved non-reserved

SUBCLASS_ORIGIN non-reserved non-reserved non-reserved

SUBMULTISET reserved reserved

SUBSCRIPTION non-reserved

2430

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

SUBSTRING non-reserved
(cannot be function
or type)

reserved reserved reserved

SUBSTRING_REGEX reserved reserved

SUCCEEDS reserved

SUM reserved reserved reserved

SYMMETRIC reserved reserved reserved

SYSID non-reserved

SYSTEM non-reserved reserved reserved

SYSTEM_TIME reserved

SYSTEM_USER reserved reserved reserved

T non-reserved non-reserved

TABLE reserved reserved reserved reserved

TABLES non-reserved

TABLESAMPLE reserved (can be
function or type)

reserved reserved

TABLESPACE non-reserved

TABLE_NAME non-reserved non-reserved non-reserved

TEMP non-reserved

TEMPLATE non-reserved

TEMPORARY non-reserved non-reserved non-reserved reserved

TEXT non-reserved

THEN reserved reserved reserved reserved

TIES non-reserved non-reserved non-reserved

TIME non-reserved
(cannot be function
or type)

reserved reserved reserved

TIMESTAMP non-reserved
(cannot be function
or type)

reserved reserved reserved

TIMEZONE_HOUR reserved reserved reserved

TIMEZONE_MINUTE reserved reserved reserved

TO reserved reserved reserved reserved

TOKEN non-reserved non-reserved

TOP_LEVEL_COUNT non-reserved non-reserved

TRAILING reserved reserved reserved reserved

TRANSACTION non-reserved non-reserved non-reserved reserved

TRANSACTIONS_COMMITTED non-reserved non-reserved

TRANSACTIONS_ROLLED_BACK non-reserved non-reserved

TRANSACTION_ACTIVE non-reserved non-reserved

2431

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

TRANSFORM non-reserved non-reserved non-reserved

TRANSFORMS non-reserved non-reserved

TRANSLATE reserved reserved reserved

TRANSLATE_REGEX reserved reserved

TRANSLATION reserved reserved reserved

TREAT non-reserved
(cannot be function
or type)

reserved reserved

TRIGGER non-reserved reserved reserved

TRIGGER_CATALOG non-reserved non-reserved

TRIGGER_NAME non-reserved non-reserved

TRIGGER_SCHEMA non-reserved non-reserved

TRIM non-reserved
(cannot be function
or type)

reserved reserved reserved

TRIM_ARRAY reserved reserved

TRUE reserved reserved reserved reserved

TRUNCATE non-reserved reserved reserved

TRUSTED non-reserved

TYPE non-reserved non-reserved non-reserved non-reserved

TYPES non-reserved

UESCAPE reserved reserved

UNBOUNDED non-reserved non-reserved non-reserved

UNCOMMITTED non-reserved non-reserved non-reserved non-reserved

UNDER non-reserved non-reserved

UNENCRYPTED non-reserved

UNION reserved reserved reserved reserved

UNIQUE reserved reserved reserved reserved

UNKNOWN non-reserved reserved reserved reserved

UNLINK non-reserved non-reserved

UNLISTEN non-reserved

UNLOGGED non-reserved

UNNAMED non-reserved non-reserved non-reserved

UNNEST reserved reserved

UNTIL non-reserved

UNTYPED non-reserved non-reserved

UPDATE non-reserved reserved reserved reserved

UPPER reserved reserved reserved

URI non-reserved non-reserved

2432

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

USAGE non-reserved non-reserved reserved

USER reserved reserved reserved reserved

USER_DEFINED_TYPE_CATALOG non-reserved non-reserved

USER_DEFINED_TYPE_CODE non-reserved non-reserved

USER_DEFINED_TYPE_NAME non-reserved non-reserved

USER_DEFINED_TYPE_SCHEMA non-reserved non-reserved

USING reserved reserved reserved reserved

VACUUM non-reserved

VALID non-reserved non-reserved non-reserved

VALIDATE non-reserved

VALIDATOR non-reserved

VALUE non-reserved reserved reserved reserved

VALUES non-reserved
(cannot be function
or type)

reserved reserved reserved

VALUE_OF reserved

VARBINARY reserved reserved

VARCHAR non-reserved
(cannot be function
or type)

reserved reserved reserved

VARIADIC reserved

VARYING non-reserved reserved reserved reserved

VAR_POP reserved reserved

VAR_SAMP reserved reserved

VERBOSE reserved (can be
function or type)

VERSION non-reserved non-reserved non-reserved

VERSIONING reserved

VIEW non-reserved non-reserved non-reserved reserved

VIEWS non-reserved

VOLATILE non-reserved

WHEN reserved reserved reserved reserved

WHENEVER reserved reserved reserved

WHERE reserved reserved reserved reserved

WHITESPACE non-reserved non-reserved non-reserved

WIDTH_BUCKET reserved reserved

WINDOW reserved reserved reserved

WITH reserved reserved reserved reserved

WITHIN non-reserved reserved reserved

2433

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

WITHOUT non-reserved reserved reserved

WORK non-reserved non-reserved non-reserved reserved

WRAPPER non-reserved non-reserved non-reserved

WRITE non-reserved non-reserved non-reserved reserved

XML non-reserved reserved reserved

XMLAGG reserved reserved

XMLATTRIBUTES non-reserved
(cannot be function
or type)

reserved reserved

XMLBINARY reserved reserved

XMLCAST reserved reserved

XMLCOMMENT reserved reserved

XMLCONCAT non-reserved
(cannot be function
or type)

reserved reserved

XMLDECLARATION non-reserved non-reserved

XMLDOCUMENT reserved reserved

XMLELEMENT non-reserved
(cannot be function
or type)

reserved reserved

XMLEXISTS non-reserved
(cannot be function
or type)

reserved reserved

XMLFOREST non-reserved
(cannot be function
or type)

reserved reserved

XMLITERATE reserved reserved

XMLNAMESPACES non-reserved
(cannot be function
or type)

reserved reserved

XMLPARSE non-reserved
(cannot be function
or type)

reserved reserved

XMLPI non-reserved
(cannot be function
or type)

reserved reserved

XMLQUERY reserved reserved

XMLROOT non-reserved
(cannot be function
or type)

XMLSCHEMA non-reserved non-reserved

2434

SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92

XMLSERIALIZE non-reserved
(cannot be function
or type)

reserved reserved

XMLTABLE non-reserved
(cannot be function
or type)

reserved reserved

XMLTEXT reserved reserved

XMLVALIDATE reserved reserved

YEAR non-reserved reserved reserved reserved

YES non-reserved non-reserved non-reserved

ZONE non-reserved non-reserved non-reserved reserved

2435

Appendix D. SQL Conformance
This section attempts to outline to what extent PostgreSQL conforms to the current SQL standard. The
following information is not a full statement of conformance, but it presents the main topics in as much
detail as is both reasonable and useful for users.

The formal name of the SQL standard is ISO/IEC 9075 “Database Language SQL”. A revised version of
the standard is released from time to time; the most recent update appearing in 2011. The 2011 version
is referred to as ISO/IEC 9075:2011, or simply as SQL:2011. The versions prior to that were SQL:2008,
SQL:2003, SQL:1999, and SQL-92. Each version replaces the previous one, so claims of conformance
to earlier versions have no official merit. PostgreSQL development aims for conformance with the latest
official version of the standard where such conformance does not contradict traditional features or common
sense. Many of the features required by the SQL standard are supported, though sometimes with slightly
differing syntax or function. Further moves towards conformance can be expected over time.

SQL-92 defined three feature sets for conformance: Entry, Intermediate, and Full. Most database
management systems claiming SQL standard conformance were conforming at only the Entry level, since
the entire set of features in the Intermediate and Full levels was either too voluminous or in conflict with
legacy behaviors.

Starting with SQL:1999, the SQL standard defines a large set of individual features rather than the
ineffectively broad three levels found in SQL-92. A large subset of these features represents the “Core”
features, which every conforming SQL implementation must supply. The rest of the features are purely
optional. Some optional features are grouped together to form “packages”, which SQL implementations
can claim conformance to, thus claiming conformance to particular groups of features.

The standard versions beginning with SQL:2003 are also split into a number of parts. Each is known by a
shorthand name. Note that these parts are not consecutively numbered.

• ISO/IEC 9075-1 Framework (SQL/Framework)

• ISO/IEC 9075-2 Foundation (SQL/Foundation)

• ISO/IEC 9075-3 Call Level Interface (SQL/CLI)

• ISO/IEC 9075-4 Persistent Stored Modules (SQL/PSM)

• ISO/IEC 9075-9 Management of External Data (SQL/MED)

• ISO/IEC 9075-10 Object Language Bindings (SQL/OLB)

• ISO/IEC 9075-11 Information and Definition Schemas (SQL/Schemata)

• ISO/IEC 9075-13 Routines and Types using the Java Language (SQL/JRT)

• ISO/IEC 9075-14 XML-related specifications (SQL/XML)

The PostgreSQL core covers parts 1, 2, 9, 11, and 14. Part 3 is covered by the ODBC driver, and part
13 is covered by the PL/Java plug-in, but exact conformance is currently not being verified for these
components. There are currently no implementations of parts 4 and 10 for PostgreSQL.

2436

SQL Conformance

PostgreSQL supports most of the major features of SQL:2011. Out of 179 mandatory features required for
full Core conformance, PostgreSQL conforms to at least 160. In addition, there is a long list of supported
optional features. It might be worth noting that at the time of writing, no current version of any database
management system claims full conformance to Core SQL:2011.

In the following two sections, we provide a list of those features that PostgreSQL supports, followed
by a list of the features defined in SQL:2011 which are not yet supported in PostgreSQL. Both of these
lists are approximate: There might be minor details that are nonconforming for a feature that is listed as
supported, and large parts of an unsupported feature might in fact be implemented. The main body of the
documentation always contains the most accurate information about what does and does not work.

Note

Feature codes containing a hyphen are subfeatures. Therefore, if a particular subfeature is not
supported, the main feature is listed as unsupported even if some other subfeatures are supported.

D.1. Supported Features
Identifier Package Description Comment

B012 Embedded C

B021 Direct SQL

E011 Core Numeric data types

E011-01 Core INTEGER and
SMALLINT data types

E011-02 Core REAL, DOUBLE
PRECISION, and
FLOAT data types

E011-03 Core DECIMAL and
NUMERIC data types

E011-04 Core Arithmetic operators

E011-05 Core Numeric comparison

E011-06 Core Implicit casting among
the numeric data types

E021 Core Character data types

E021-01 Core CHARACTER data type

E021-02 Core CHARACTER
VARYING data type

E021-03 Core Character literals

E021-04 Core CHARACTER_LENGTH
function

trims trailing spaces from
CHARACTER values
before counting

E021-05 Core OCTET_LENGTH
function

E021-06 Core SUBSTRING function

E021-07 Core Character concatenation

2437

SQL Conformance

Identifier Package Description Comment

E021-08 Core UPPER and LOWER
functions

E021-09 Core TRIM function

E021-10 Core Implicit casting among
the character string types

E021-11 Core POSITION function

E021-12 Core Character comparison

E031 Core Identifiers

E031-01 Core Delimited identifiers

E031-02 Core Lower case identifiers

E031-03 Core Trailing underscore

E051 Core Basic query specification

E051-01 Core SELECT DISTINCT

E051-02 Core GROUP BY clause

E051-04 Core GROUP BY can contain
columns not in <select
list>

E051-05 Core Select list items can be
renamed

E051-06 Core HAVING clause

E051-07 Core Qualified * in select list

E051-08 Core Correlation names in the
FROM clause

E051-09 Core Rename columns in the
FROM clause

E061 Core Basic predicates and
search conditions

E061-01 Core Comparison predicate

E061-02 Core BETWEEN predicate

E061-03 Core IN predicate with list of
values

E061-04 Core LIKE predicate

E061-05 Core LIKE predicate ESCAPE
clause

E061-06 Core NULL predicate

E061-07 Core Quantified comparison
predicate

E061-08 Core EXISTS predicate

E061-09 Core Subqueries in
comparison predicate

2438

SQL Conformance

Identifier Package Description Comment

E061-11 Core Subqueries in IN
predicate

E061-12 Core Subqueries in quantified
comparison predicate

E061-13 Core Correlated subqueries

E061-14 Core Search condition

E071 Core Basic query expressions

E071-01 Core UNION DISTINCT
table operator

E071-02 Core UNION ALL table
operator

E071-03 Core EXCEPT DISTINCT
table operator

E071-05 Core Columns combined via
table operators need not
have exactly the same
data type

E071-06 Core Table operators in
subqueries

E081 Core Basic Privileges

E081-01 Core SELECT privilege

E081-02 Core DELETE privilege

E081-03 Core INSERT privilege at the
table level

E081-04 Core UPDATE privilege at the
table level

E081-05 Core UPDATE privilege at the
column level

E081-06 Core REFERENCES privilege
at the table level

E081-07 Core REFERENCES privilege
at the column level

E081-08 Core WITH GRANT
OPTION

E081-09 Core USAGE privilege

E081-10 Core EXECUTE privilege

E091 Core Set functions

E091-01 Core AVG

E091-02 Core COUNT

E091-03 Core MAX

E091-04 Core MIN

E091-05 Core SUM

2439

SQL Conformance

Identifier Package Description Comment

E091-06 Core ALL quantifier

E091-07 Core DISTINCT quantifier

E101 Core Basic data manipulation

E101-01 Core INSERT statement

E101-03 Core Searched UPDATE
statement

E101-04 Core Searched DELETE
statement

E111 Core Single row SELECT
statement

E121 Core Basic cursor support

E121-01 Core DECLARE CURSOR

E121-02 Core ORDER BY columns
need not be in select list

E121-03 Core Value expressions in
ORDER BY clause

E121-04 Core OPEN statement

E121-06 Core Positioned UPDATE
statement

E121-07 Core Positioned DELETE
statement

E121-08 Core CLOSE statement

E121-10 Core FETCH statement
implicit NEXT

E121-17 Core WITH HOLD cursors

E131 Core Null value support (nulls
in lieu of values)

E141 Core Basic integrity
constraints

E141-01 Core NOT NULL constraints

E141-02 Core UNIQUE constraints of
NOT NULL columns

E141-03 Core PRIMARY KEY
constraints

E141-04 Core Basic FOREIGN KEY
constraint with the NO
ACTION default for both
referential delete action
and referential update
action

E141-06 Core CHECK constraints

E141-07 Core Column defaults

2440

SQL Conformance

Identifier Package Description Comment

E141-08 Core NOT NULL inferred on
PRIMARY KEY

E141-10 Core Names in a foreign key
can be specified in any
order

E151 Core Transaction support

E151-01 Core COMMIT statement

E151-02 Core ROLLBACK statement

E152 Core Basic SET
TRANSACTION
statement

E152-01 Core SET TRANSACTION
statement: ISOLATION
LEVEL
SERIALIZABLE clause

E152-02 Core SET TRANSACTION
statement: READ ONLY
and READ WRITE
clauses

E153 Core Updatable queries with
subqueries

E161 Core SQL comments using
leading double minus

E171 Core SQLSTATE support

F021 Core Basic information
schema

F021-01 Core COLUMNS view

F021-02 Core TABLES view

F021-03 Core VIEWS view

F021-04 Core TABLE_CONSTRAINTS
view

F021-05 Core REFERENTIAL_CONSTRAINTS
view

F021-06 Core CHECK_CONSTRAINTS
view

F031 Core Basic schema
manipulation

F031-01 Core CREATE TABLE
statement to create
persistent base tables

F031-02 Core CREATE VIEW
statement

F031-03 Core GRANT statement

2441

SQL Conformance

Identifier Package Description Comment

F031-04 Core ALTER TABLE
statement: ADD
COLUMN clause

F031-13 Core DROP TABLE
statement: RESTRICT
clause

F031-16 Core DROP VIEW statement:
RESTRICT clause

F031-19 Core REVOKE statement:
RESTRICT clause

F032 CASCADE drop
behavior

F033 ALTER TABLE
statement: DROP
COLUMN clause

F034 Extended REVOKE
statement

F034-01 REVOKE statement
performed by other than
the owner of a schema
object

F034-02 REVOKE statement:
GRANT OPTION FOR
clause

F034-03 REVOKE statement to
revoke a privilege that
the grantee has WITH
GRANT OPTION

F041 Core Basic joined table

F041-01 Core Inner join (but not
necessarily the INNER
keyword)

F041-02 Core INNER keyword

F041-03 Core LEFT OUTER JOIN

F041-04 Core RIGHT OUTER JOIN

F041-05 Core Outer joins can be nested

F041-07 Core The inner table in a left or
right outer join can also
be used in an inner join

F041-08 Core All comparison operators
are supported (rather
than just =)

F051 Core Basic date and time

2442

SQL Conformance

Identifier Package Description Comment

F051-01 Core DATE data type
(including support of
DATE literal)

F051-02 Core TIME data type
(including support of
TIME literal) with
fractional seconds
precision of at least 0

F051-03 Core TIMESTAMP data type
(including support of
TIMESTAMP literal)
with fractional seconds
precision of at least 0 and
6

F051-04 Core Comparison predicate
on DATE, TIME, and
TIMESTAMP data types

F051-05 Core Explicit CAST between
datetime types and
character string types

F051-06 Core CURRENT_DATE

F051-07 Core LOCALTIME

F051-08 Core LOCALTIMESTAMP

F052 Enhanced datetime
facilities

Intervals and datetime
arithmetic

F053 OVERLAPS predicate

F081 Core UNION and EXCEPT in
views

F111 Isolation levels other
than SERIALIZABLE

F111-01 READ
UNCOMMITTED
isolation level

F111-02 READ COMMITTED
isolation level

F111-03 REPEATABLE READ
isolation level

F131 Core Grouped operations

F131-01 Core WHERE, GROUP BY,
and HAVING clauses
supported in queries with
grouped views

F131-02 Core Multiple tables
supported in queries with
grouped views

2443

SQL Conformance

Identifier Package Description Comment

F131-03 Core Set functions supported
in queries with grouped
views

F131-04 Core Subqueries with GROUP
BY and HAVING
clauses and grouped
views

F131-05 Core Single row SELECT
with GROUP BY and
HAVING clauses and
grouped views

F171 Multiple schemas per
user

F191 Enhanced integrity
management

Referential delete actions

F200 TRUNCATE TABLE
statement

F201 Core CAST function

F202 TRUNCATE TABLE:
identity column restart
option

F221 Core Explicit defaults

F222 INSERT statement:
DEFAULT VALUES
clause

F231 Privilege tables

F231-01 TABLE_PRIVILEGES
view

F231-02 COLUMN_PRIVILEGES
view

F231-03 USAGE_PRIVILEGES
view

F251 Domain support

F261 Core CASE expression

F261-01 Core Simple CASE

F261-02 Core Searched CASE

F261-03 Core NULLIF

F261-04 Core COALESCE

F262 Extended CASE
expression

F271 Compound character
literals

F281 LIKE enhancements

2444

SQL Conformance

Identifier Package Description Comment

F302 INTERSECT table
operator

F302-01 INTERSECT
DISTINCT table
operator

F302-02 INTERSECT ALL table
operator

F304 EXCEPT ALL table
operator

F311-01 Core CREATE SCHEMA

F311-02 Core CREATE TABLE for
persistent base tables

F311-03 Core CREATE VIEW

F311-04 Core CREATE VIEW: WITH
CHECK OPTION

F311-05 Core GRANT statement

F321 User authorization

F361 Subprogram support

F381 Extended schema
manipulation

F381-01 ALTER TABLE
statement: ALTER
COLUMN clause

F381-02 ALTER TABLE
statement: ADD
CONSTRAINT clause

F381-03 ALTER TABLE
statement: DROP
CONSTRAINT clause

F382 Alter column data type

F383 Set column not null
clause

F384 Drop identity property
clause

F386 Set identity column
generation clause

F391 Long identifiers

F392 Unicode escapes in
identifiers

F393 Unicode escapes in
literals

F401 Extended joined table

F401-01 NATURAL JOIN

2445

SQL Conformance

Identifier Package Description Comment

F401-02 FULL OUTER JOIN

F401-04 CROSS JOIN

F402 Named column joins
for LOBs, arrays, and
multisets

F411 Enhanced datetime
facilities

Time zone specification differences regarding
literal interpretation

F421 National character

F431 Read-only scrollable
cursors

F431-01 FETCH with explicit
NEXT

F431-02 FETCH FIRST

F431-03 FETCH LAST

F431-04 FETCH PRIOR

F431-05 FETCH ABSOLUTE

F431-06 FETCH RELATIVE

F441 Extended set function
support

F442 Mixed column
references in set
functions

F471 Core Scalar subquery values

F481 Core Expanded NULL
predicate

F491 Enhanced integrity
management

Constraint management

F501 Core Features and
conformance views

F501-01 Core SQL_FEATURES view

F501-02 Core SQL_SIZING view

F501-03 Core SQL_LANGUAGES
view

F502 Enhanced
documentation tables

F502-01 SQL_SIZING_PROFILES
view

F502-02 SQL_IMPLEMENTATION_INFO
view

F502-03 SQL_PACKAGES view

F531 Temporary tables

2446

SQL Conformance

Identifier Package Description Comment

F555 Enhanced datetime
facilities

Enhanced seconds
precision

F561 Full value expressions

F571 Truth value tests

F591 Derived tables

F611 Indicator data types

F641 Row and table
constructors

F651 Catalog name qualifiers

F661 Simple tables

F672 Retrospective check
constraints

F690 Collation support but no character set
support

F692 Extended collation
support

F701 Enhanced integrity
management

Referential update
actions

F711 ALTER domain

F731 INSERT column
privileges

F751 View CHECK
enhancements

F761 Session management

F762 CURRENT_CATALOG

F763 CURRENT_SCHEMA

F771 Connection management

F781 Self-referencing
operations

F791 Insensitive cursors

F801 Full set function

F850 Top-level <order by
clause> in <query
expression>

F851 <order by clause> in
subqueries

F852 Top-level <order by
clause> in views

F855 Nested <order by clause>
in <query expression>

2447

SQL Conformance

Identifier Package Description Comment

F856 Nested <fetch first
clause> in <query
expression>

F857 Top-level <fetch first
clause> in <query
expression>

F858 <fetch first clause> in
subqueries

F859 Top-level <fetch first
clause> in views

F860 <fetch first row count> in
<fetch first clause>

F861 Top-level <result offset
clause> in <query
expression>

F862 <result offset clause> in
subqueries

F863 Nested <result offset
clause> in <query
expression>

F864 Top-level <result offset
clause> in views

F865 <offset row count> in
<result offset clause>

S071 Enhanced object support SQL paths in function
and type name resolution

S092 Arrays of user-defined
types

S095 Array constructors by
query

S096 Optional array bounds

S098 ARRAY_AGG

S111 Enhanced object support ONLY in query
expressions

S201 SQL-invoked routines on
arrays

S201-01 Array parameters

S201-02 Array as result type of
functions

S211 Enhanced object support User-defined cast
functions

S301 Enhanced UNNEST

T031 BOOLEAN data type

T071 BIGINT data type

2448

SQL Conformance

Identifier Package Description Comment

T121 WITH (excluding
RECURSIVE) in query
expression

T122 WITH (excluding
RECURSIVE) in
subquery

T131 Recursive query

T132 Recursive query in
subquery

T141 SIMILAR predicate

T151 DISTINCT predicate

T152 DISTINCT predicate
with negation

T171 LIKE clause in table
definition

T172 AS subquery clause in
table definition

T173 Extended LIKE clause in
table definition

T174 Identity columns

T177 Sequence generator
support: simple restart
option

T178 Identity columns: simple
restart option

T191 Enhanced integrity
management

Referential action
RESTRICT

T201 Enhanced integrity
management

Comparable data types
for referential constraints

T211-01 Active database,
Enhanced integrity
management

Triggers activated on
UPDATE, INSERT, or
DELETE of one base
table

T211-02 Active database,
Enhanced integrity
management

BEFORE triggers

T211-03 Active database,
Enhanced integrity
management

AFTER triggers

T211-04 Active database,
Enhanced integrity
management

FOR EACH ROW
triggers

T211-05 Active database,
Enhanced integrity
management

Ability to specify a
search condition that

2449

SQL Conformance

Identifier Package Description Comment

must be true before the
trigger is invoked

T211-07 Active database,
Enhanced integrity
management

TRIGGER privilege

T212 Enhanced integrity
management

Enhanced trigger
capability

T213 INSTEAD OF triggers

T231 Sensitive cursors

T241 START
TRANSACTION
statement

T271 Savepoints

T281 SELECT privilege with
column granularity

T285 Enhanced derived
column names

T312 OVERLAY function

T321-01 Core User-defined functions
with no overloading

T321-02 Core User-defined stored
procedures with no
overloading

T321-03 Core Function invocation

T321-04 Core CALL statement

T321-06 Core ROUTINES view

T321-07 Core PARAMETERS view

T323 Explicit security for
external routines

T325 Qualified SQL parameter
references

T331 Basic roles

T341 Overloading of SQL-
invoked functions and
procedures

T351 Bracketed SQL
comments (/*...*/
comments)

T431 OLAP Extended grouping
capabilities

T432 Nested and concatenated
GROUPING SETS

2450

SQL Conformance

Identifier Package Description Comment

T433 Multiargument
GROUPING function

T441 ABS and MOD functions

T461 Symmetric BETWEEN
predicate

T491 LATERAL derived table

T501 Enhanced EXISTS
predicate

T521 Named arguments in
CALL statement

T551 Optional key words for
default syntax

T581 Regular expression
substring function

T591 UNIQUE constraints of
possibly null columns

T611 OLAP Elementary OLAP
operations

T613 Sampling

T614 NTILE function

T615 LEAD and LAG
functions

T617 FIRST_VALUE and
LAST_VALUE function

T620 WINDOW clause:
GROUPS option

T621 Enhanced numeric
functions

T631 Core IN predicate with one list
element

T651 SQL-schema statements
in SQL routines

T655 Cyclically dependent
routines

X010 XML type

X011 Arrays of XML type

X014 Attributes of XML type

X016 Persistent XML values

X020 XMLConcat

X031 XMLElement

X032 XMLForest

X034 XMLAgg

2451

SQL Conformance

Identifier Package Description Comment

X035 XMLAgg: ORDER BY
option

X036 XMLComment

X037 XMLPI

X040 Basic table mapping

X041 Basic table mapping:
nulls absent

X042 Basic table mapping: null
as nil

X043 Basic table mapping:
table as forest

X044 Basic table mapping:
table as element

X045 Basic table mapping:
with target namespace

X046 Basic table mapping:
data mapping

X047 Basic table mapping:
metadata mapping

X048 Basic table mapping:
base64 encoding of
binary strings

X049 Basic table mapping:
hex encoding of binary
strings

X050 Advanced table mapping

X051 Advanced table
mapping: nulls absent

X052 Advanced table
mapping: null as nil

X053 Advanced table
mapping: table as forest

X054 Advanced table
mapping: table as
element

X055 Advanced table
mapping: with target
namespace

X056 Advanced table
mapping: data mapping

X057 Advanced table
mapping: metadata
mapping

2452

SQL Conformance

Identifier Package Description Comment

X058 Advanced table
mapping: base64
encoding of binary
strings

X059 Advanced table
mapping: hex encoding
of binary strings

X060 XMLParse: character
string input and
CONTENT option

X061 XMLParse: character
string input and
DOCUMENT option

X070 XMLSerialize: character
string serialization and
CONTENT option

X071 XMLSerialize: character
string serialization and
DOCUMENT option

X072 XMLSerialize: character
string serialization

X090 XML document
predicate

X120 XML parameters in SQL
routines

X121 XML parameters in
external routines

X222 XML passing
mechanism BY REF

X301 XMLTable: derived
column list option

X302 XMLTable: ordinality
column option

X303 XMLTable: column
default option

X304 XMLTable: passing a
context item

X400 Name and identifier
mapping

X410 Alter column data type:
XML type

2453

SQL Conformance

D.2. Unsupported Features
The following features defined in SQL:2011 are not implemented in this release of PostgreSQL. In a few
cases, equivalent functionality is available.

Identifier Package Description Comment

B011 Embedded Ada

B013 Embedded COBOL

B014 Embedded Fortran

B015 Embedded MUMPS

B016 Embedded Pascal

B017 Embedded PL/I

B031 Basic dynamic SQL

B032 Extended dynamic SQL

B032-01 <describe input
statement>

B033 Untyped SQL-invoked
function arguments

B034 Dynamic specification of
cursor attributes

B035 Non-extended descriptor
names

B041 Extensions to embedded
SQL exception
declarations

B051 Enhanced execution
rights

B111 Module language Ada

B112 Module language C

B113 Module language
COBOL

B114 Module language Fortran

B115 Module language
MUMPS

B116 Module language Pascal

B117 Module language PL/I

B121 Routine language Ada

B122 Routine language C

B123 Routine language
COBOL

B124 Routine language
Fortran

2454

SQL Conformance

Identifier Package Description Comment

B125 Routine language
MUMPS

B126 Routine language Pascal

B127 Routine language PL/I

B128 Routine language SQL

B211 Module language Ada:
VARCHAR and
NUMERIC support

B221 Routine language Ada:
VARCHAR and
NUMERIC support

E182 Core Module language

F054 TIMESTAMP in DATE
type precedence list

F121 Basic diagnostics
management

F121-01 GET DIAGNOSTICS
statement

F121-02 SET TRANSACTION
statement:
DIAGNOSTICS SIZE
clause

F122 Enhanced diagnostics
management

F123 All diagnostics

F181 Core Multiple module support

F263 Comma-separated
predicates in simple
CASE expression

F291 UNIQUE predicate

F301 CORRESPONDING in
query expressions

F311 Core Schema definition
statement

F312 MERGE statement consider INSERT ...
ON CONFLICT DO
UPDATE

F313 Enhanced MERGE
statement

F314 MERGE statement with
DELETE branch

F341 Usage tables no
ROUTINE_*_USAGE
tables

2455

SQL Conformance

Identifier Package Description Comment

F385 Drop column generation
expression clause

F394 Optional normal form
specification

F403 Partitioned joined tables

F451 Character set definition

F461 Named character sets

F492 Optional table constraint
enforcement

F521 Enhanced integrity
management

Assertions

F671 Enhanced integrity
management

Subqueries in CHECK intentionally omitted

F693 SQL-session and client
module collations

F695 Translation support

F696 Additional translation
documentation

F721 Deferrable constraints foreign and unique keys
only

F741 Referential MATCH
types

no partial match yet

F812 Core Basic flagging

F813 Extended flagging

F821 Local table references

F831 Full cursor update

F831-01 Updatable scrollable
cursors

F831-02 Updatable ordered
cursors

F841 LIKE_REGEX predicate

F842 OCCURRENCES_REGEX
function

F843 POSITION_REGEX
function

F844 SUBSTRING_REGEX
function

F845 TRANSLATE_REGEX
function

F846 Octet support in regular
expression operators

2456

SQL Conformance

Identifier Package Description Comment

F847 Nonconstant regular
expressions

F866 FETCH FIRST clause:
PERCENT option

F867 FETCH FIRST clause:
WITH TIES option

S011 Core Distinct data types

S011-01 Core USER_DEFINED_TYPES
view

S023 Basic object support Basic structured types

S024 Enhanced object support Enhanced structured
types

S025 Final structured types

S026 Self-referencing
structured types

S027 Create method by
specific method name

S028 Permutable UDT options
list

S041 Basic object support Basic reference types

S043 Enhanced object support Enhanced reference
types

S051 Basic object support Create table of type partially supported

S081 Enhanced object support Subtables

S091 Basic array support partially supported

S091-01 Arrays of built-in data
types

S091-02 Arrays of distinct types

S091-03 Array expressions

S094 Arrays of reference types

S097 Array element
assignment

S151 Basic object support Type predicate

S161 Enhanced object support Subtype treatment

S162 Subtype treatment for
references

S202 SQL-invoked routines on
multisets

S231 Enhanced object support Structured type locators

S232 Array locators

S233 Multiset locators

2457

SQL Conformance

Identifier Package Description Comment

S241 Transform functions

S242 Alter transform
statement

S251 User-defined orderings

S261 Specific type method

S271 Basic multiset support

S272 Multisets of user-defined
types

S274 Multisets of reference
types

S275 Advanced multiset
support

S281 Nested collection types

S291 Unique constraint on
entire row

S401 Distinct types based on
array types

S402 Distinct types based on
distinct types

S403 ARRAY_MAX_CARDINALITY

S404 TRIM_ARRAY

T011 Timestamp in
Information Schema

T021 BINARY and
VARBINARY data
types

T022 Advanced support for
BINARY and
VARBINARY data
types

T023 Compound binary literal

T024 Spaces in binary literals

T041 Basic object support Basic LOB data type
support

T041-01 Basic object support BLOB data type

T041-02 Basic object support CLOB data type

T041-03 Basic object support POSITION, LENGTH,
LOWER, TRIM,
UPPER, and
SUBSTRING functions
for LOB data types

T041-04 Basic object support Concatenation of LOB
data types

2458

SQL Conformance

Identifier Package Description Comment

T041-05 Basic object support LOB locator: non-
holdable

T042 Extended LOB data type
support

T043 Multiplier T

T044 Multiplier P

T051 Row types

T052 MAX and MIN for row
types

T053 Explicit aliases for all-
fields reference

T061 UCS support

T101 Enhanced nullability
determination

T111 Updatable joins, unions,
and columns

T175 Generated columns

T176 Sequence generator
support

T180 System-versioned tables

T181 Application-time period
tables

T211 Active database,
Enhanced integrity
management

Basic trigger capability

T211-06 Active database,
Enhanced integrity
management

Support for run-
time rules for the
interaction of triggers
and constraints

T211-08 Active database,
Enhanced integrity
management

Multiple triggers for the
same event are executed
in the order in which
they were created in the
catalog

intentionally omitted

T251 SET TRANSACTION
statement: LOCAL
option

T261 Chained transactions

T272 Enhanced savepoint
management

T301 Functional dependencies partially supported

T321 Core Basic SQL-invoked
routines

T321-05 Core RETURN statement

2459

SQL Conformance

Identifier Package Description Comment

T322 PSM Declared data type
attributes

T324 Explicit security for SQL
routines

T326 Table functions

T332 Extended roles mostly supported

T434 GROUP BY DISTINCT

T471 Result sets return value

T472 DESCRIBE CURSOR

T495 Combined data change
and retrieval

different syntax

T502 Period predicates

T511 Transaction counts

T522 Default values for IN
parameters of SQL-
invoked procedures

supported except
DEFAULT key word in
invocation

T561 Holdable locators

T571 Array-returning external
SQL-invoked functions

T572 Multiset-returning
external SQL-invoked
functions

T601 Local cursor references

T612 Advanced OLAP
operations

some forms supported

T616 Null treatment option
for LEAD and LAG
functions

T618 NTH_VALUE function function exists, but some
options missing

T619 Nested window
functions

T641 Multiple column
assignment

only some syntax
variants supported

T652 SQL-dynamic
statements in SQL
routines

T653 SQL-schema statements
in external routines

T654 SQL-dynamic
statements in external
routines

M001 Datalinks

2460

SQL Conformance

Identifier Package Description Comment

M002 Datalinks via SQL/CLI

M003 Datalinks via Embedded
SQL

M004 Foreign data support partially supported

M005 Foreign schema support

M006 GetSQLString routine

M007 TransmitRequest

M009 GetOpts and
GetStatistics routines

M010 Foreign data wrapper
support

different API

M011 Datalinks via Ada

M012 Datalinks via C

M013 Datalinks via COBOL

M014 Datalinks via Fortran

M015 Datalinks via M

M016 Datalinks via Pascal

M017 Datalinks via PL/I

M018 Foreign data wrapper
interface routines in Ada

M019 Foreign data wrapper
interface routines in C

different API

M020 Foreign data wrapper
interface routines in
COBOL

M021 Foreign data wrapper
interface routines in
Fortran

M022 Foreign data wrapper
interface routines in
MUMPS

M023 Foreign data wrapper
interface routines in
Pascal

M024 Foreign data wrapper
interface routines in PL/I

M030 SQL-server foreign data
support

M031 Foreign data wrapper
general routines

X012 Multisets of XML type

2461

SQL Conformance

Identifier Package Description Comment

X013 Distinct types of XML
type

X015 Fields of XML type

X025 XMLCast

X030 XMLDocument

X038 XMLText

X065 XMLParse: BLOB input
and CONTENT option

X066 XMLParse: BLOB input
and DOCUMENT option

X068 XMLSerialize: BOM

X069 XMLSerialize: INDENT

X073 XMLSerialize: BLOB
serialization and
CONTENT option

X074 XMLSerialize: BLOB
serialization and
DOCUMENT option

X075 XMLSerialize: BLOB
serialization

X076 XMLSerialize:
VERSION

X077 XMLSerialize: explicit
ENCODING option

X078 XMLSerialize: explicit
XML declaration

X080 Namespaces in XML
publishing

X081 Query-level XML
namespace declarations

X082 XML namespace
declarations in DML

X083 XML namespace
declarations in DDL

X084 XML namespace
declarations in
compound statements

X085 Predefined namespace
prefixes

X086 XML namespace
declarations in
XMLTable

X091 XML content predicate

2462

SQL Conformance

Identifier Package Description Comment

X096 XMLExists XPath only

X100 Host language support
for XML: CONTENT
option

X101 Host language support
for XML: DOCUMENT
option

X110 Host language support
for XML: VARCHAR
mapping

X111 Host language support
for XML: CLOB
mapping

X112 Host language support
for XML: BLOB
mapping

X113 Host language support
for XML: STRIP
WHITESPACE option

X114 Host language support
for XML: PRESERVE
WHITESPACE option

X131 Query-level
XMLBINARY clause

X132 XMLBINARY clause in
DML

X133 XMLBINARY clause in
DDL

X134 XMLBINARY clause in
compound statements

X135 XMLBINARY clause in
subqueries

X141 IS VALID predicate:
data-driven case

X142 IS VALID predicate:
ACCORDING TO
clause

X143 IS VALID predicate:
ELEMENT clause

X144 IS VALID predicate:
schema location

X145 IS VALID predicate
outside check constraints

X151 IS VALID predicate with
DOCUMENT option

2463

SQL Conformance

Identifier Package Description Comment

X152 IS VALID predicate with
CONTENT option

X153 IS VALID predicate with
SEQUENCE option

X155 IS VALID predicate:
NAMESPACE without
ELEMENT clause

X157 IS VALID predicate:
NO NAMESPACE with
ELEMENT clause

X160 Basic Information
Schema for registered
XML Schemas

X161 Advanced Information
Schema for registered
XML Schemas

X170 XML null handling
options

X171 NIL ON NO CONTENT
option

X181 XML(DOCUMENT(UNTYPED))
type

X182 XML(DOCUMENT(ANY))
type

X190 XML(SEQUENCE) type

X191 XML(DOCUMENT(XMLSCHEMA))
type

X192 XML(CONTENT(XMLSCHEMA))
type

X200 XMLQuery

X201 XMLQuery:
RETURNING
CONTENT

X202 XMLQuery:
RETURNING
SEQUENCE

X203 XMLQuery: passing a
context item

X204 XMLQuery: initializing
an XQuery variable

X205 XMLQuery: EMPTY
ON EMPTY option

X206 XMLQuery: NULL ON
EMPTY option

2464

SQL Conformance

Identifier Package Description Comment

X211 XML 1.1 support

X221 XML passing
mechanism BY VALUE

X231 XML(CONTENT(UNTYPED))
type

X232 XML(CONTENT(ANY))
type

X241 RETURNING
CONTENT in XML
publishing

X242 RETURNING
SEQUENCE in XML
publishing

X251 Persistent XML values
of
XML(DOCUMENT(UNTYPED))
type

X252 Persistent XML values
of
XML(DOCUMENT(ANY))
type

X253 Persistent XML values
of
XML(CONTENT(UNTYPED))
type

X254 Persistent XML values
of
XML(CONTENT(ANY))
type

X255 Persistent XML values of
XML(SEQUENCE) type

X256 Persistent XML values
of
XML(DOCUMENT(XMLSCHEMA))
type

X257 Persistent XML values
of
XML(CONTENT(XMLSCHEMA))
type

X260 XML type: ELEMENT
clause

X261 XML type:
NAMESPACE without
ELEMENT clause

2465

SQL Conformance

Identifier Package Description Comment

X263 XML type: NO
NAMESPACE with
ELEMENT clause

X264 XML type: schema
location

X271 XMLValidate: data-
driven case

X272 XMLValidate:
ACCORDING TO
clause

X273 XMLValidate:
ELEMENT clause

X274 XMLValidate: schema
location

X281 XMLValidate with
DOCUMENT option

X282 XMLValidate with
CONTENT option

X283 XMLValidate with
SEQUENCE option

X284 XMLValidate:
NAMESPACE without
ELEMENT clause

X286 XMLValidate: NO
NAMESPACE with
ELEMENT clause

X300 XMLTable XPath only

X305 XMLTable: initializing
an XQuery variable

2466

Appendix E. Release Notes
The release notes contain the significant changes in each PostgreSQL release, with major features and
migration issues listed at the top. The release notes do not contain changes that affect only a few users or
changes that are internal and therefore not user-visible. For example, the optimizer is improved in almost
every release, but the improvements are usually observed by users as simply faster queries.

A complete list of changes for each release can be obtained by viewing the Git logs for each release. The
pgsql-committers email list1 records all source code changes as well. There is also a web interface2

that shows changes to specific files.

The name appearing next to each item represents the major developer for that item. Of course all changes
involve community discussion and patch review, so each item is truly a community effort.

E.1. Release 11.2
Release date: 2019-02-14

This release contains a variety of fixes from 11.1. For information about new features in major release
11, see Section E.3.

E.1.1. Migration to Version 11.2
A dump/restore is not required for those running 11.X.

E.1.2. Changes
• By default, panic instead of retrying after fsync() failure, to avoid possible data corruption (Craig

Ringer, Thomas Munro)

Some popular operating systems discard kernel data buffers when unable to write them out, reporting
this as fsync() failure. If we reissue the fsync() request it will succeed, but in fact the data has
been lost, so continuing risks database corruption. By raising a panic condition instead, we can replay
from WAL, which may contain the only remaining copy of the data in such a situation. While this is
surely ugly and inefficient, there are few alternatives, and fortunately the case happens very rarely.

A new server parameter data_sync_retry has been added to control this; if you are certain that your
kernel does not discard dirty data buffers in such scenarios, you can set data_sync_retry to on
to restore the old behavior.

• Include each major release branch's release notes in the documentation for only that branch, rather than
that branch and all later ones (Tom Lane)

The duplication induced by the previous policy was getting out of hand. Our plan is to provide a full
archive of release notes on the project's web site, but not duplicate it within each release.

• Fix handling of unique indexes with INCLUDE columns on partitioned tables (Álvaro Herrera)

The uniqueness condition was not checked properly in such cases.

1 https://www.postgresql.org/list/pgsql-committers/
2 https://git.postgresql.org/gitweb/?p=postgresql.git;a=summary

2467

https://www.postgresql.org/list/pgsql-committers/
https://git.postgresql.org/gitweb/?p=postgresql.git;a=summary
https://www.postgresql.org/list/pgsql-committers/
https://git.postgresql.org/gitweb/?p=postgresql.git;a=summary

Release Notes

• Ensure that NOT NULL constraints of a partitioned table are honored within its partitions (Álvaro
Herrera, Amit Langote)

• Update catalog state correctly for partition table constraints when detaching their partition (Amit
Langote, Álvaro Herrera)

Previously, the pg_constraint.conislocal field for such a constraint might improperly be left
as false, rendering it undroppable. A dump/restore or pg_upgrade would cure the problem, but if
necessary, the catalog field can be adjusted manually.

• Create or delete foreign key enforcement triggers correctly when attaching or detaching a partition in a
partitioned table that has a foreign-key constraint (Amit Langote, Álvaro Herrera)

• Avoid useless creation of duplicate foreign key constraints in partitioned tables (Álvaro Herrera)

• When an index is created on a partitioned table using ONLY, and there are no partitions yet, mark it
valid immediately (Álvaro Herrera)

Otherwise there is no way to make it become valid.

• Use a safe table lock level when detaching a partition (Álvaro Herrera)

The previous locking level was too weak and might allow concurrent DDL on the table, with bad results.

• Fix problems with applying ON COMMIT DROP and ON COMMIT DELETE ROWS to partitioned
tables and tables with inheritance children (Michael Paquier)

• Disallow COPY FREEZE on partitioned tables (David Rowley)

This should eventually be made to work, but it may require a patch that's too complicated to risk back-
patching.

• Fix possible index corruption when the indexed column has a “fast default” (that is, it was added by
ALTER TABLE ADD COLUMN with a constant non-NULL default value specified, after the table
already contained some rows) (Andres Freund)

• Correctly adjust “fast default” values during ALTER TABLE ... ALTER COLUMN TYPE (Andrew
Dunstan)

• Avoid possible deadlock when acquiring multiple buffer locks (Nishant Fnu)

• Avoid deadlock between GIN vacuuming and concurrent index insertions (Alexander Korotkov, Andrey
Borodin, Peter Geoghegan)

This change partially reverts a performance improvement, introduced in version 10.0, that attempted to
reduce the number of index pages locked during deletion of a GIN posting tree page. That's now been
found to lead to deadlocks, so we've removed it pending closer analysis.

• Avoid deadlock between hot-standby queries and replay of GIN index page deletion (Alexander
Korotkov)

• Fix possible crashes in logical replication when index expressions or predicates are in use (Peter
Eisentraut)

• Avoid useless and expensive logical decoding of TOAST data during a table rewrite (Tomas Vondra)

• Fix logic for stopping a subset of WAL senders when synchronous replication is enabled (Paul Guo,
Michael Paquier)

2468

Release Notes

• Avoid possibly writing an incorrect replica identity field in a tuple deletion WAL record (Stas Kelvich)

• Prevent incorrect use of WAL-skipping optimization during COPY to a view or foreign table (Amit
Langote, Michael Paquier)

• Make the archiver prioritize WAL history files over WAL data files while choosing which file to archive
next (David Steele)

• Fix possible crash in UPDATE with a multiple SET clause using a sub-SELECT as source (Tom Lane)

• Fix crash when zero rows are fed to json[b]_populate_recordset() or
json[b]_to_recordset() (Tom Lane)

• Avoid crash if libxml2 returns a null error message (Sergio Conde Gómez)

• Fix incorrect JIT tuple deforming code for tables with many columns (more than approximately 800)
(Andres Freund)

• Fix performance and memory leakage issues in hash-based grouping (Andres Freund)

• Fix spurious grouping-related parser errors caused by inconsistent handling of collation assignment
(Andrew Gierth)

In some cases, expressions that should be considered to match were not seen as matching, if they
included operations on collatable data types.

• Fix parsing of collation-sensitive expressions in the arguments of a CALL statement (Peter Eisentraut)

• Ensure proper cleanup after detecting an error in the argument list of a CALL statement (Tom Lane)

• Check whether the comparison function underlying LEAST() or GREATEST() is leakproof, rather
than just assuming it is (Tom Lane)

Actual information leaks from btree comparison functions are typically hard to provoke, but in principle
they could happen.

• Fix incorrect planning of queries involving nested loops both above and below a Gather plan node (Tom
Lane)

If both levels of nestloop needed to pass the same variable into their right-hand sides, an incorrect plan
would be generated.

• Fix incorrect planning of queries in which a lateral reference must be evaluated at a foreign table scan
(Tom Lane)

• Fix planner failure when the first column of a row comparison matches an index column, but later
column(s) do not, and the index has included (non-key) columns (Tom Lane)

• Fix corner-case underestimation of the cost of a merge join (Tom Lane)

The planner could prefer a merge join when the outer key range is much smaller than the inner key
range, even if there are so many duplicate keys on the inner side that this is a poor choice.

• Avoid O(N^2) planning time growth when a query contains many thousand indexable clauses (Tom
Lane)

• Improve planning speed for large inheritance or partitioning table groups (Amit Langote, Etsuro Fujita)

2469

Release Notes

• Improve ANALYZE's handling of concurrently-updated rows (Jeff Janes, Tom Lane)

Previously, rows deleted by an in-progress transaction were omitted from ANALYZE's sample, but this
has been found to lead to more inconsistency than including them would do. In effect, the sample now
corresponds to an MVCC snapshot as of ANALYZE's start time.

• Make TRUNCATE ignore inheritance child tables that are temporary tables of other sessions (Amit
Langote, Michael Paquier)

This brings TRUNCATE into line with the behavior of other commands. Previously, such cases usually
ended in failure.

• Fix TRUNCATE to update the statistics counters for the right table (Tom Lane)

If the truncated table had a TOAST table, that table's counters were reset instead.

• Process ALTER TABLE ONLY ADD COLUMN IF NOT EXISTS correctly (Greg Stark)

• Allow UNLISTEN in hot-standby mode (Shay Rojansky)

This is necessarily a no-op, because LISTEN isn't allowed in hot-standby mode; but allowing the
dummy operation simplifies session-state-reset logic in clients.

• Fix missing role dependencies in some schema and data type permissions lists (Tom Lane)

In some cases it was possible to drop a role to which permissions had been granted. This caused no
immediate problem, but a subsequent dump/reload or upgrade would fail, with symptoms involving
attempts to grant privileges to all-numeric role names.

• Prevent use of a session's temporary schema within a two-phase transaction (Michael Paquier)

Accessing a temporary table within such a transaction has been forbidden for a long time, but it was
still possible to cause problems with other operations on temporary objects.

• Ensure relation caches are updated properly after adding or removing foreign key constraints (Álvaro
Herrera)

This oversight could result in existing sessions failing to enforce a newly-created constraint, or
continuing to enforce a dropped one.

• Ensure relation caches are updated properly after renaming constraints (Amit Langote)

• Fix replay of GiST index micro-vacuum operations so that concurrent hot-standby queries do not see
inconsistent state (Alexander Korotkov)

• Prevent empty GIN index pages from being reclaimed too quickly, causing failures of concurrent
searches (Andrey Borodin, Alexander Korotkov)

• Fix edge-case failures in float-to-integer coercions (Andrew Gierth, Tom Lane)

Values very slightly above the maximum valid integer value might not be rejected, and then would
overflow, producing the minimum valid integer instead. Also, values that should round to the minimum
or maximum integer value might be incorrectly rejected.

• Fix parsing of space-separated lists of host names in the ldapserver parameter of LDAP
authentication entries in pg_hba.conf (Thomas Munro)

2470

Release Notes

• When making a PAM authentication request, don't set the PAM_RHOST variable if the connection is
via a Unix socket (Thomas Munro)

Previously that variable would be set to [local], which is at best unhelpful, since it's supposed to
be a host name.

• Disallow setting client_min_messages higher than ERROR (Jonah Harris, Tom Lane)

Previously, it was possible to set this variable to FATAL or PANIC, which had the effect of suppressing
transmission of ordinary error messages to the client. However, that's contrary to guarantees that
are given in the PostgreSQL wire protocol specification, and it caused some clients to become very
confused. In released branches, fix this by silently treating such settings as meaning ERROR instead.
Version 12 and later will reject those alternatives altogether.

• Fix ecpglib to use uselocale() or _configthreadlocale() in preference to setlocale()
(Michael Meskes, Tom Lane)

Since setlocale() is not thread-local, and might not even be thread-safe, the previous coding caused
problems in multi-threaded ecpg applications.

• Fix incorrect results for numeric data passed through an ecpg SQLDA (SQL Descriptor Area) (Daisuke
Higuchi)

Values with leading zeroes were not copied correctly.

• Fix psql's \g target meta-command to work with COPY TO STDOUT (Daniel Vérité)

Previously, the target option was ignored, so that the copy data always went to the current query
output target.

• Make psql's LaTeX output formats render special characters properly (Tom Lane)

Backslash and some other ASCII punctuation characters were not rendered correctly, leading to
document syntax errors or wrong characters in the output.

• Make pgbench's random number generation fully deterministic and platform-independent when --
random-seed=N is specified (Fabien Coelho, Tom Lane)

On any specific platform, the sequence obtained with a particular value of N will probably be different
from what it was before this patch.

• Fix pg_basebackup and pg_verify_checksums to ignore temporary files appropriately (Michael Banck,
Michael Paquier)

• Fix pg_dump's handling of materialized views with indirect dependencies on primary keys (Tom Lane)

This led to mis-labeling of such views' dump archive entries, causing harmless warnings about “archive
items not in correct section order”; less harmlessly, selective-restore options depending on those labels,
such as --section, might misbehave.

• Make pg_dump include ALTER INDEX SET STATISTICS commands (Michael Paquier)

When the ability to attach statistics targets to index expressions was added, we forgot to teach pg_dump
about it, so that such settings were lost in dump/reload.

• Fix pg_dump's dumping of tables that have OIDs (Peter Eisentraut)

The WITH OIDS clause was omitted if it needed to be applied to the first table to be dumped.

2471

Release Notes

• Avoid null-pointer-dereference crash on some platforms when pg_dump or pg_restore tries to report
an error (Tom Lane)

• Prevent false index-corruption reports from contrib/amcheck caused by inline-compressed data
(Peter Geoghegan)

• Properly disregard SIGPIPE errors if COPY FROM PROGRAM stops reading the program's output
early (Tom Lane)

This case isn't actually reachable directly with COPY, but it can happen when using contrib/
file_fdw.

• Fix contrib/hstore to calculate correct hash values for empty hstore values that were created
in version 8.4 or before (Andrew Gierth)

The previous coding did not give the same result as for an empty hstore value created by a newer
version, thus potentially causing wrong results in hash joins or hash aggregation. It is advisable to
reindex any hash indexes built on hstore columns, if the table might contain data that was originally
stored as far back as 8.4 and was never dumped/reloaded since then.

• Avoid crashes and excessive runtime with large inputs to contrib/intarray's gist__int_ops
index support (Andrew Gierth)

• In configure, look for python3 and then python2 if python isn't found (Peter Eisentraut)

This allows PL/Python to be configured without explicitly specifying PYTHON on platforms that no
longer provide an unversioned python executable.

• Include JIT-related headers in the installed set of header files (Donald Dong)

• Support new Makefile variables PG_CFLAGS, PG_CXXFLAGS, and PG_LDFLAGS in pgxs builds
(Christoph Berg)

This simplifies customization of extension build processes.

• Fix Perl-coded build scripts to not assume “.” is in the search path, since recent Perl versions don't
include that (Andrew Dunstan)

• Fix server command-line option parsing problems on OpenBSD (Tom Lane)

• Relocate call of set_rel_pathlist_hook so that extensions can use it to supply partial paths for
parallel queries (KaiGai Kohei)

This is not expected to affect existing use-cases.

• Update time zone data files to tzdata release 2018i for DST law changes in Kazakhstan, Metlakatla,
and Sao Tome and Principe. Kazakhstan's Qyzylorda zone is split in two, creating a new zone Asia/
Qostanay, as some areas did not change UTC offset. Historical corrections for Hong Kong and numerous
Pacific islands.

E.2. Release 11.1
Release date: 2018-11-08

This release contains a variety of fixes from 11.0. For information about new features in major release
11, see Section E.3.

2472

Release Notes

E.2.1. Migration to Version 11.1
A dump/restore is not required for those running 11.X.

However, if you use the pg_stat_statements extension, see the changelog entry below about that.

E.2.2. Changes
• Ensure proper quoting of transition table names when pg_dump emits CREATE TRIGGER ...
REFERENCING commands (Tom Lane)

This oversight could be exploited by an unprivileged user to gain superuser privileges during the next
dump/reload or pg_upgrade run. (CVE-2018-16850)

• Apply the tablespace specified for a partitioned index when creating a child index (Álvaro Herrera)

Previously, child indexes were always created in the default tablespace.

• Fix NULL handling in parallel hashed multi-batch left joins (Andrew Gierth, Thomas Munro)

Outer-relation rows with null values of the hash key were omitted from the join result.

• Fix incorrect processing of an array-type coercion expression appearing within a CASE clause that has
a constant test expression (Tom Lane)

• Fix incorrect expansion of tuples lacking recently-added columns (Andrew Dunstan, Amit Langote)

This is known to lead to crashes in triggers on tables with recently-added columns, and could have other
symptoms as well.

• Fix bugs with named or defaulted arguments in CALL argument lists (Tom Lane, Pavel Stehule)

• Fix strictness check for strict aggregates with ORDER BY columns (Andrew Gierth, Andres Freund)

The strictness logic incorrectly ignored rows for which the ORDER BY value(s) were null.

• Disable recheck_on_update optimization (Tom Lane)

This new-in-v11 feature turns out not to have been ready for prime time. Disable it until something can
be done about it.

• Prevent creation of a partition in a trigger attached to its parent table (Amit Langote)

Ideally we'd allow that, but for the moment it has to be blocked to avoid crashes.

• Fix problems with applying ON COMMIT DELETE ROWS to a partitioned temporary table (Amit
Langote)

• Fix character-class checks to not fail on Windows for Unicode characters above U+FFFF (Tom Lane,
Kenji Uno)

This bug affected full-text-search operations, as well as contrib/ltree and contrib/pg_trgm.

• Ensure that the server will process already-received NOTIFY and SIGTERM interrupts before waiting
for client input (Jeff Janes, Tom Lane)

• Fix memory leak in repeated SP-GiST index scans (Tom Lane)

2473

Release Notes

This is only known to amount to anything significant in cases where an exclusion constraint using SP-
GiST receives many new index entries in a single command.

• Prevent starting the server with wal_level set to too low a value to support an existing replication
slot (Andres Freund)

• Fix psql, as well as documentation examples, to call PQconsumeInput() before each
PQnotifies() call (Tom Lane)

This fixes cases in which psql would not report receipt of a NOTIFY message until after the next
command.

• Fix pg_verify_checksums's determination of which files to check the checksums of (Michael Paquier)

In some cases it complained about files that are not expected to have checksums.

• In contrib/pg_stat_statements, disallow the pg_read_all_stats role from executing
pg_stat_statements_reset() (Haribabu Kommi)

pg_read_all_stats is only meant to grant permission to read statistics, not to change them, so
this grant was incorrect.

To cause this change to take effect, run ALTER EXTENSION pg_stat_statements UPDATE in
each database where pg_stat_statements has been installed. (A database freshly created in 11.0
should not need this, but a database upgraded from a previous release probably still contains the old
version of pg_stat_statements. The UPDATE command is harmless if the module was already
updated.)

• Rename red-black tree support functions to use rbt prefix not rb prefix (Tom Lane)

This avoids name collisions with Ruby functions, which broke PL/Ruby. It's hoped that there are no
other affected extensions.

• Fix build problems on macOS 10.14 (Mojave) (Tom Lane)

Adjust configure to add an -isysroot switch to CPPFLAGS; without this, PL/Perl and PL/Tcl fail
to configure or build on macOS 10.14. The specific sysroot used can be overridden at configure time or
build time by setting the PG_SYSROOT variable in the arguments of configure or make.

It is now recommended that Perl-related extensions write $(perl_includespec) rather than
-I$(perl_archlibexp)/CORE in their compiler flags. The latter continues to work on most
platforms, but not recent macOS.

Also, it should no longer be necessary to specify --with-tclconfig manually to get PL/Tcl to
build on recent macOS releases.

• Fix MSVC build and regression-test scripts to work on recent Perl versions (Andrew Dunstan)

Perl no longer includes the current directory in its search path by default; work around that.

• On Windows, allow the regression tests to be run by an Administrator account (Andrew Dunstan)

To do this safely, pg_regress now gives up any such privileges at startup.

• Update time zone data files to tzdata release 2018g for DST law changes in Chile, Fiji, Morocco, and
Russia (Volgograd), plus historical corrections for China, Hawaii, Japan, Macau, and North Korea.

2474

Release Notes

E.3. Release 11
Release date: 2018-10-18

E.3.1. Overview
Major enhancements in PostgreSQL 11 include:

• Improvements to partitioning functionality, including:

• Add support for partitioning by a hash key

• Add support for PRIMARY KEY, FOREIGN KEY, indexes, and triggers on partitioned tables

• Allow creation of a “default” partition for storing data that does not match any of the remaining
partitions

• UPDATE statements that change a partition key column now cause affected rows to be moved to the
appropriate partitions

• Improve SELECT performance through enhanced partition elimination strategies during query
planning and execution

• Improvements to parallelism, including:

• CREATE INDEX can now use parallel processing while building a B-tree index

• Parallelization is now possible in CREATE TABLE ... AS, CREATE MATERIALIZED VIEW,
and certain queries using UNION

• Parallelized hash joins and parallelized sequential scans now perform better

• SQL stored procedures that support embedded transactions

• Optional Just-in-Time (JIT) compilation for some SQL code, speeding evaluation of expressions

• Window functions now support all framing options shown in the SQL:2011 standard, including RANGE
distance PRECEDING/FOLLOWING, GROUPS mode, and frame exclusion options

• Covering indexes can now be created, using the INCLUDE clause of CREATE INDEX

• Many other useful performance improvements, including the ability to avoid a table rewrite for ALTER
TABLE ... ADD COLUMN with a non-null column default

The above items are explained in more detail in the sections below.

E.3.2. Migration to Version 11
A dump/restore using pg_dumpall, or use of pg_upgrade, is required for those wishing to migrate data
from any previous release.

Version 11 contains a number of changes that may affect compatibility with previous releases. Observe
the following incompatibilities:

• Make pg_dump dump the properties of a database, not just its contents (Haribabu Kommi)

2475

Release Notes

Previously, attributes of the database itself, such as database-level GRANT/REVOKE permissions and
ALTER DATABASE SET variable settings, were only dumped by pg_dumpall. Now pg_dump --
create and pg_restore --create will restore these database properties in addition to the
objects within the database. pg_dumpall -g now only dumps role- and tablespace-related attributes.
pg_dumpall's complete output (without -g) is unchanged.

pg_dump and pg_restore, without --create, no longer dump/restore database-level comments and
security labels; those are now treated as properties of the database.

pg_dumpall's output script will now always create databases with their original locale and encoding,
and hence will fail if the locale or encoding name is unknown to the destination system. Previously,
CREATE DATABASE would be emitted without these specifications if the database locale and encoding
matched the old cluster's defaults.

pg_dumpall --clean now restores the original locale and encoding settings of the postgres
and template1 databases, as well as those of user-created databases.

• Consider syntactic form when disambiguating function versus column references (Tom Lane)

When x is a table name or composite column, PostgreSQL has traditionally considered the syntactic
forms f(x) and x.f to be equivalent, allowing tricks such as writing a function and then using it
as though it were a computed-on-demand column. However, if both interpretations are feasible, the
column interpretation was always chosen, leading to surprising results if the user intended the function
interpretation. Now, if there is ambiguity, the interpretation that matches the syntactic form is chosen.

• Fully enforce uniqueness of table and domain constraint names (Tom Lane)

PostgreSQL expects the names of a table's constraints to be distinct, and likewise for the names of a
domain's constraints. However, there was not rigid enforcement of this, and previously there were corner
cases where duplicate names could be created.

• Make power(numeric, numeric) and power(float8, float8) handle NaN inputs
according to the POSIX standard (Tom Lane, Dang Minh Huong)

POSIX says that NaN ^ 0 = 1 and 1 ^ NaN = 1, but all other cases with NaN input(s) should
return NaN. power(numeric, numeric) just returned NaN in all such cases; now it honors the
two exceptions. power(float8, float8) followed the standard if the C library does; but on some
old Unix platforms the library doesn't, and there were also problems on some versions of Windows.

• Prevent to_number() from consuming characters when the template separator does not match (Oliver
Ford)

Specifically, SELECT to_number('1234', '9,999') used to return 134. It will now return
1234. L and TH now only consume characters that are not digits, positive/negative signs, decimal
points, or commas.

• Fix to_date(), to_number(), and to_timestamp() to skip a character for each template
character (Tom Lane)

Previously, they skipped one byte for each byte of template character, resulting in strange behavior if
either string contained multibyte characters.

• Adjust the handling of backslashes inside double-quotes in template strings for to_char(),
to_number(), and to_timestamp().

Such a backslash now escapes the character after it, particularly a double-quote or another backslash.

2476

Release Notes

• Correctly handle relative path expressions in xmltable(), xpath(), and other XML-handling
functions (Markus Winand)

Per the SQL standard, relative paths start from the document node of the XML input document, not the
root node as these functions previously did.

• In the extended query protocol, make statement_timeout apply to each Execute message
separately, not to all commands before Sync (Tatsuo Ishii, Andres Freund)

• Remove the relhaspkey column from system catalog pg_class (Peter Eisentraut)

Applications needing to check for a primary key should consult pg_index.

• Replace system catalog pg_proc's proisagg and proiswindow columns with prokind (Peter
Eisentraut)

This new column more clearly distinguishes functions, procedures, aggregates, and window functions.

• Correct information schema column tables.table_type to return FOREIGN instead of FOREIGN
TABLE (Peter Eisentraut)

This new output matches the SQL standard.

• Change the ps process display labels for background workers to match the
pg_stat_activity.backend_type labels (Peter Eisentraut)

• Cause large object permission checks to happen during large object open, lo_open(), not when a
read or write is attempted (Tom Lane, Michael Paquier)

If write access is requested and not available, an error will now be thrown even if the large object is
never written to.

• Prevent non-superusers from reindexing shared catalogs (Michael Paquier, Robert Haas)

Previously, database owners were also allowed to do this, but now it is considered outside the bounds
of their privileges.

• Remove deprecated adminpack functions pg_file_read(), pg_file_length(), and
pg_logfile_rotate() (Stephen Frost)

Equivalent functionality is now present in the core backend. Existing adminpack installs will continue
to have access to these functions until they are updated via ALTER EXTENSION ... UPDATE.

• Honor the capitalization of double-quoted command options (Daniel Gustafsson)

Previously, option names in certain SQL commands were forcibly lower-cased even if entered with
double quotes; thus for example "FillFactor" would be accepted as an index storage option, though
properly its name is lower-case. Such cases will now generate an error.

• Remove server parameter replacement_sort_tuples (Peter Geoghegan)

Replacement sorts were determined to be no longer useful.

• Remove WITH clause in CREATE FUNCTION (Michael Paquier)

PostgreSQL has long supported a more standard-compliant syntax for this capability.

• In PL/pgSQL trigger functions, the OLD and NEW variables now read as NULL when not assigned (Tom
Lane)

2477

Release Notes

Previously, references to these variables could be parsed but not executed.

E.3.3. Changes
Below you will find a detailed account of the changes between PostgreSQL 11 and the previous major
release.

E.3.3.1. Server

E.3.3.1.1. Partitioning

• Allow the creation of partitions based on hashing a key column (Amul Sul)

• Support indexes on partitioned tables (Álvaro Herrera, Amit Langote)

An “index” on a partitioned table is not a physical index across the whole partitioned table, but rather a
template for automatically creating similar indexes on each partition of the table.

If the partition key is part of the index's column set, a partitioned index may be declared UNIQUE. It will
represent a valid uniqueness constraint across the whole partitioned table, even though each physical
index only enforces uniqueness within its own partition.

The new command ALTER INDEX ATTACH PARTITION causes an existing index on a partition to
be associated with a matching index template for its partitioned table. This provides flexibility in setting
up a new partitioned index for an existing partitioned table.

• Allow foreign keys on partitioned tables (Álvaro Herrera)

• Allow FOR EACH ROW triggers on partitioned tables (Álvaro Herrera)

Creation of a trigger on a partitioned table automatically creates triggers on all existing and future
partitions. This also allows deferred unique constraints on partitioned tables.

• Allow partitioned tables to have a default partition (Jeevan Ladhe, Beena Emerson, Ashutosh Bapat,
Rahila Syed, Robert Haas)

The default partition will store rows that don't match any of the other defined partitions, and is searched
accordingly.

• UPDATE statements that change a partition key column now cause affected rows to be moved to the
appropriate partitions (Amit Khandekar)

• Allow INSERT, UPDATE, and COPY on partitioned tables to properly route rows to foreign partitions
(Etsuro Fujita, Amit Langote)

This is supported by postgres_fdw foreign tables.

• Allow faster partition elimination during query processing (Amit Langote, David Rowley, Dilip Kumar)

This speeds access to partitioned tables with many partitions.

• Allow partition elimination during query execution (David Rowley, Beena Emerson)

Previously, partition elimination only happened at planning time, meaning many joins and prepared
queries could not use partition elimination.

2478

Release Notes

• In an equality join between partitioned tables, allow matching partitions to be joined directly (Ashutosh
Bapat)

This feature is disabled by default but can be enabled by changing enable_partitionwise_join.

• Allow aggregate functions on partitioned tables to be evaluated separately for each partition,
subsequently merging the results (Jeevan Chalke, Ashutosh Bapat, Robert Haas)

This feature is disabled by default but can be enabled by changing
enable_partitionwise_aggregate.

• Allow postgres_fdw to push down aggregates to foreign tables that are partitions (Jeevan Chalke)

E.3.3.1.2. Parallel Queries

• Allow parallel building of a btree index (Peter Geoghegan, Rushabh Lathia, Heikki Linnakangas)

• Allow hash joins to be performed in parallel using a shared hash table (Thomas Munro)

• Allow UNION to run each SELECT in parallel if the individual SELECTs cannot be parallelized (Amit
Khandekar, Robert Haas, Amul Sul)

• Allow partition scans to more efficiently use parallel workers (Amit Khandekar, Robert Haas, Amul Sul)

• Allow LIMIT to be passed to parallel workers (Robert Haas, Tom Lane)

This allows workers to reduce returned results and use targeted index scans.

• Allow single-evaluation queries, e.g. WHERE clause aggregate queries, and functions in the target list
to be parallelized (Amit Kapila, Robert Haas)

• Add server parameter parallel_leader_participation to control whether the leader also
executes subplans (Thomas Munro)

The default is enabled, meaning the leader will execute subplans.

• Allow parallelization of commands CREATE TABLE ... AS, SELECT INTO, and CREATE
MATERIALIZED VIEW (Haribabu Kommi)

• Improve performance of sequential scans with many parallel workers (David Rowley)

• Add reporting of parallel workers' sort activity in EXPLAIN (Robert Haas, Tom Lane)

E.3.3.1.3. Indexes

• Allow B-tree indexes to include columns that are not part of the search key or unique constraint, but are
available to be read by index-only scans (Anastasia Lubennikova, Alexander Korotkov, Teodor Sigaev)

This is enabled by the new INCLUDE clause of CREATE INDEX. It facilitates building “covering
indexes” that optimize specific types of queries. Columns can be included even if their data types don't
have B-tree support.

• Improve performance of monotonically increasing index additions (Pavan Deolasee, Peter Geoghegan)

• Improve performance of hash index scans (Ashutosh Sharma)

• Add predicate locking for hash, GiST and GIN indexes (Shubham Barai)

2479

Release Notes

This reduces the likelihood of serialization conflicts in serializable-mode transactions.

E.3.3.1.3.1. SP-Gist

• Add prefix-match operator text ^@ text, which is supported by SP-GiST (Ildus Kurbangaliev)

This is similar to using var LIKE 'word%' with a btree index, but it is more efficient.

• Allow polygons to be indexed with SP-GiST (Nikita Glukhov, Alexander Korotkov)

• Allow SP-GiST to use lossy representation of leaf keys (Teodor Sigaev, Heikki Linnakangas, Alexander
Korotkov, Nikita Glukhov)

E.3.3.1.4. Optimizer

• Improve selection of the most common values for statistics (Jeff Janes, Dean Rasheed)

Previously, the most common values (MCVs) were identified based on their frequency compared to all
column values. Now, MCVs are chosen based on their frequency compared to the non-MCV values.
This improves the robustness of the algorithm for both uniform and non-uniform distributions.

• Improve selectivity estimates for >= and <= (Tom Lane)

Previously, such cases used the same selectivity estimates as > and <, respectively, unless the
comparison constants are MCVs. This change is particularly helpful for queries involving BETWEEN
with small ranges.

• Reduce var = var to var IS NOT NULL where equivalent (Tom Lane)

This leads to better selectivity estimates.

• Improve optimizer's row count estimates for EXISTS and NOT EXISTS queries (Tom Lane)

• Make the optimizer account for evaluation costs and selectivity of HAVING clauses (Tom Lane)

E.3.3.1.5. General Performance

• Add Just-in-Time (JIT) compilation of some parts of query plans to improve execution speed (Andres
Freund)

This feature requires LLVM to be available. It is not currently enabled by default, even in builds that
support it.

• Allow bitmap scans to perform index-only scans when possible (Alexander Kuzmenkov)

• Update the free space map during VACUUM (Claudio Freire)

This allows free space to be reused more quickly.

• Allow VACUUM to avoid unnecessary index scans (Masahiko Sawada, Alexander Korotkov)

• Improve performance of committing multiple concurrent transactions (Amit Kapila)

• Reduce memory usage for queries using set-returning functions in their target lists (Andres Freund)

• Improve the speed of aggregate computations (Andres Freund)

2480

Release Notes

• Allow postgres_fdw to push UPDATEs and DELETEs using joins to foreign servers (Etsuro Fujita)

Previously, only non-join UPDATEs and DELETEs were pushed.

• Add support for large pages on Windows (Takayuki Tsunakawa, Thomas Munro)

This is controlled by the huge_pages configuration parameter.

E.3.3.1.6. Monitoring

• Show memory usage in output from log_statement_stats, log_parser_stats,
log_planner_stats, and log_executor_stats (Justin Pryzby, Peter Eisentraut)

• Add column pg_stat_activity.backend_type to show the type of a background worker (Peter
Eisentraut)

The type is also visible in ps output.

• Make log_autovacuum_min_duration log skipped tables that are concurrently being dropped
(Nathan Bossart)

E.3.3.1.6.1. Information Schema

• Add information_schema columns related to table constraints and triggers (Peter Eisentraut)

Specifically, triggers.action_order, triggers.action_reference_old_table, and
triggers.action_reference_new_table are now populated, where before they were always
null. Also, table_constraints.enforced now exists but is not yet usefully populated.

E.3.3.1.7. Authentication

• Allow the server to specify more complex LDAP specifications in search+bind mode (Thomas Munro)

Specifically, ldapsearchfilter allows pattern matching using combinations of LDAP attributes.

• Allow LDAP authentication to use encrypted LDAP (Thomas Munro)

We already supported LDAP over TLS by using ldaptls=1. This new TLS LDAP method for
encrypted LDAP is enabled with ldapscheme=ldaps or ldapurl=ldaps://.

• Improve logging of LDAP errors (Thomas Munro)

E.3.3.1.8. Permissions

• Add default roles that enable file system access (Stephen Frost)

Specifically, the new roles are: pg_read_server_files, pg_write_server_files, and
pg_execute_server_program. These roles now also control who can use server-side COPY and
the file_fdw extension. Previously, only superusers could use these functions, and that is still the
default behavior.

• Allow access to file system functions to be controlled by GRANT/REVOKE permissions, rather than
superuser checks (Stephen Frost)

Specifically, these functions were modified: pg_ls_dir(), pg_read_file(),
pg_read_binary_file(), pg_stat_file().

2481

Release Notes

• Use GRANT/REVOKE to control access to lo_import() and lo_export() (Michael Paquier, Tom
Lane)

Previously, only superusers were granted access to these functions.

The compile-time option ALLOW_DANGEROUS_LO_FUNCTIONS has been removed.

• Use view owner not session owner when preventing non-password access to postgres_fdw tables
(Robert Haas)

PostgreSQL only allows superusers to access postgres_fdw tables without passwords, e.g. via
peer. Previously, the session owner had to be a superuser to allow such access; now the view owner
is checked instead.

• Fix invalid locking permission check in SELECT FOR UPDATE on views (Tom Lane)

E.3.3.1.9. Server Configuration

• Add server setting ssl_passphrase_command to allow supplying of the passphrase for SSL key
files (Peter Eisentraut)

Also add ssl_passphrase_command_supports_reload to specify whether the SSL
configuration should be reloaded and ssl_passphrase_command called during a server
configuration reload.

• Add storage parameter toast_tuple_target to control the minimum tuple length before TOAST
storage will be considered (Simon Riggs)

The default TOAST threshold has not been changed.

• Allow server options related to memory and file sizes to be specified in units of bytes (Beena Emerson)

The new unit suffix is “B”. This is in addition to the existing units “kB”, “MB”, “GB” and “TB”.

E.3.3.1.10. Write-Ahead Log (WAL)

• Allow the WAL file size to be set during initdb (Beena Emerson)

Previously, the 16MB default could only be changed at compile time.

• Retain WAL data for only a single checkpoint (Simon Riggs)

Previously, WAL was retained for two checkpoints.

• Fill the unused portion of force-switched WAL segment files with zeros for improved compressibility
(Chapman Flack)

E.3.3.2. Base Backup and Streaming Replication

• Replicate TRUNCATE activity when using logical replication (Simon Riggs, Marco Nenciarini, Peter
Eisentraut)

• Pass prepared transaction information to logical replication subscribers (Nikhil Sontakke, Stas Kelvich)

• Exclude unlogged tables, temporary tables, and pg_internal.init files from streaming base
backups (David Steele)

2482

Release Notes

There is no need to copy such files.

• Allow checksums of heap pages to be verified during streaming base backup (Michael Banck)

• Allow replication slots to be advanced programmatically, rather than be consumed by subscribers (Petr
Jelinek)

This allows efficient advancement of replication slots when the contents do not need to be consumed.
This is performed by pg_replication_slot_advance().

• Add timeline information to the backup_label file (Michael Paquier)

Also add a check that the WAL timeline matches the backup_label file's timeline.

• Add host and port connection information to the pg_stat_wal_receiver system view (Haribabu
Kommi)

E.3.3.3. Utility Commands

• Allow ALTER TABLE to add a column with a non-null default without doing a table rewrite (Andrew
Dunstan, Serge Rielau)

This is enabled when the default value is a constant.

• Allow views to be locked by locking the underlying tables (Yugo Nagata)

• Allow ALTER INDEX to set statistics-gathering targets for expression indexes (Alexander Korotkov,
Adrien Nayrat)

In psql, \d+ now shows the statistics target for indexes.

• Allow multiple tables to be specified in one VACUUM or ANALYZE command (Nathan Bossart)

Also, if any table mentioned in VACUUM uses a column list, then the ANALYZE keyword must be
supplied; previously, ANALYZE was implied in such cases.

• Add parenthesized options syntax to ANALYZE (Nathan Bossart)

This is similar to the syntax supported by VACUUM.

• Add CREATE AGGREGATE option to specify the behavior of the aggregate's finalization function (Tom
Lane)

This is helpful for allowing user-defined aggregate functions to be optimized and to work as window
functions.

E.3.3.4. Data Types

• Allow the creation of arrays of domains (Tom Lane)

This also allows array_agg() to be used on domains.

• Support domains over composite types (Tom Lane)

Also allow PL/Perl, PL/Python, and PL/Tcl to handle composite-domain function arguments and results.
Also improve PL/Python domain handling.

2483

Release Notes

• Add casts from JSONB scalars to numeric and boolean data types (Anastasia Lubennikova)

E.3.3.5. Functions

• Add all window function framing options specified by SQL:2011 (Oliver Ford, Tom Lane)

Specifically, allow RANGE mode to use PRECEDING and FOLLOWING to select rows having grouping
values within plus or minus the specified offset. Add GROUPS mode to include plus or minus the number
of peer groups. Frame exclusion syntax was also added.

• Add SHA-2 family of hash functions (Peter Eisentraut)

Specifically, sha224(), sha256(), sha384(), sha512() were added.

• Add support for 64-bit non-cryptographic hash functions (Robert Haas, Amul Sul)

• Allow to_char() and to_timestamp() to specify the time zone's offset from UTC in hours and
minutes (Nikita Glukhov, Andrew Dunstan)

This is done with format specifications TZH and TZM.

• Add text search function websearch_to_tsquery() that supports a query syntax similar to that
used by web search engines (Victor Drobny, Dmitry Ivanov)

• Add functions json(b)_to_tsvector() to create a text search query for matching JSON/JSONB
values (Dmitry Dolgov)

E.3.3.6. Server-Side Languages

• Add SQL-level procedures, which can start and commit their own transactions (Peter Eisentraut)

They are created with the new CREATE PROCEDURE command and invoked via CALL.

The new ALTER/DROP ROUTINE commands allow altering/dropping of all routine-like objects,
including procedures, functions, and aggregates.

Also, writing FUNCTION is now preferred over writing PROCEDURE in CREATE OPERATOR and
CREATE TRIGGER, because the referenced object must be a function not a procedure. However, the
old syntax is still accepted for compatibility.

• Add transaction control to PL/pgSQL, PL/Perl, PL/Python, PL/Tcl, and SPI server-side languages (Peter
Eisentraut)

Transaction control is only available within top-transaction-level procedures and nested DO and CALL
blocks that only contain other DO and CALL blocks.

• Add the ability to define PL/pgSQL composite-type variables as not null, constant, or with initial values
(Tom Lane)

• Allow PL/pgSQL to handle changes to composite types (e.g. record, row) that happen between the first
and later function executions in the same session (Tom Lane)

Previously, such circumstances generated errors.

• Add extension jsonb_plpython to transform JSONB to/from PL/Python types (Anthony Bykov)

• Add extension jsonb_plperl to transform JSONB to/from PL/Perl types (Anthony Bykov)

2484

Release Notes

E.3.3.7. Client Interfaces

• Change libpq to disable compression by default (Peter Eisentraut)

Compression is already disabled in modern OpenSSL versions, so that the libpq setting had no effect
with such libraries.

• Add DO CONTINUE option to ecpg's WHENEVER statement (Vinayak Pokale)

This generates a C continue statement, causing a return to the top of the contained loop when the
specified condition occurs.

• Add an ecpg mode to enable Oracle Pro*C-style handling of char arrays.

This mode is enabled with -C.

E.3.3.8. Client Applications

E.3.3.8.1. psql

• Add psql command \gdesc to display the names and types of the columns in a query result (Pavel
Stehule)

• Add psql variables to report query activity and errors (Fabien Coelho)

Specifically, the new variables are ERROR, SQLSTATE, ROW_COUNT, LAST_ERROR_MESSAGE, and
LAST_ERROR_SQLSTATE.

• Allow psql to test for the existence of a variable (Fabien Coelho)

Specifically, the syntax :{?variable_name} allows a variable's existence to be tested in an \if
statement.

• Allow environment variable PSQL_PAGER to control psql's pager (Pavel Stehule)

This allows psql's default pager to be specified as a separate environment variable from the pager for
other applications. PAGER is still honored if PSQL_PAGER is not set.

• Make psql's \d+ command always show the table's partitioning information (Amit Langote, Ashutosh
Bapat)

Previously, partition information would not be displayed for a partitioned table if it had no partitions.
Also indicate which partitions are themselves partitioned.

• Ensure that psql reports the proper user name when prompting for a password (Tom Lane)

Previously, combinations of -U and a user name embedded in a URI caused incorrect reporting. Also
suppress the user name before the password prompt when --password is specified.

• Allow quit and exit to exit psql when given with no prior input (Bruce Momjian)

Also print hints about how to exit when quit and exit are used alone on a line while the input buffer
is not empty. Add a similar hint for help.

• Make psql hint at using control-D when \q is entered alone on a line but ignored (Bruce Momjian)

For example, \q does not exit when supplied in character strings.

2485

Release Notes

• Improve tab completion for ALTER INDEX RESET/SET (Masahiko Sawada)

• Add infrastructure to allow psql to adapt its tab completion queries based on the server version (Tom
Lane)

Previously, tab completion queries could fail against older servers.

E.3.3.8.2. pgbench

• Add pgbench expression support for NULLs, booleans, and some functions and operators (Fabien
Coelho)

• Add \if conditional support to pgbench (Fabien Coelho)

• Allow the use of non-ASCII characters in pgbench variable names (Fabien Coelho)

• Add pgbench option --init-steps to control the initialization steps performed (Masahiko Sawada)

• Add an approximately Zipfian-distributed random generator to pgbench (Alik Khilazhev)

• Allow the random seed to be set in pgbench (Fabien Coelho)

• Allow pgbench to do exponentiation with pow() and power() (Raúl Marín Rodríguez)

• Add hashing functions to pgbench (Ildar Musin)

• Make pgbench statistics more accurate when using --latency-limit and --rate (Fabien Coelho)

E.3.3.9. Server Applications

• Add an option to pg_basebackup that creates a named replication slot (Michael Banck)

The option --create-slot creates the named replication slot (--slot) when the WAL streaming
method (--wal-method=stream) is used.

• Allow initdb to set group read access to the data directory (David Steele)

This is accomplished with the new initdb option --allow-group-access. Administrators can
also set group permissions on the empty data directory before running initdb. Server variable
data_directory_mode allows reading of data directory group permissions.

• Add pg_verify_checksums tool to verify database checksums while offline (Magnus Hagander)

• Allow pg_resetwal to change the WAL segment size via --wal-segsize (Nathan Bossart)

• Add long options to pg_resetwal and pg_controldata (Nathan Bossart, Peter Eisentraut)

• Add pg_receivewal option --no-sync to prevent synchronous WAL writes, for testing (Michael
Paquier)

• Add pg_receivewal option --endpos to specify when WAL receiving should stop (Michael Paquier)

• Allow pg_ctl to send the SIGKILL signal to processes (Andres Freund)

This was previously unsupported due to concerns over possible misuse.

• Reduce the number of files copied by pg_rewind (Michael Paquier)

2486

Release Notes

• Prevent pg_rewind from running as root (Michael Paquier)

E.3.3.9.1. pg_dump, pg_dumpall, pg_restore

• Add pg_dumpall option --encoding to control output encoding (Michael Paquier)

pg_dump already had this option.

• Add pg_dump option --load-via-partition-root to force loading of data into the partition's
root table, rather than the original partition (Rushabh Lathia)

This is useful if the system to be loaded to has different collation definitions or endianness, possibly
requiring rows to be stored in different partitions than previously.

• Add an option to suppress dumping and restoring database object comments (Robins Tharakan)

The new pg_dump, pg_dumpall, and pg_restore option is --no-comments.

E.3.3.10. Source Code

• Add PGXS support for installing include files (Andrew Gierth)

This supports creating extension modules that depend on other modules. Formerly there was no easy
way for the dependent module to find the referenced one's include files. Several existing contrib
modules that define data types have been adjusted to install relevant files. Also, PL/Perl and PL/Python
now install their include files, to support creation of transform modules for those languages.

• Install errcodes.txt to allow extensions to access the list of error codes known to PostgreSQL
(Thomas Munro)

• Convert documentation to DocBook XML (Peter Eisentraut, Alexander Lakhin, Jürgen Purtz)

The file names still use an sgml extension for compatibility with back branches.

• Use stdbool.h to define type bool on platforms where it's suitable, which is most (Peter Eisentraut)

This eliminates a coding hazard for extension modules that need to include stdbool.h.

• Overhaul the way that initial system catalog contents are defined (John Naylor)

The initial data is now represented in Perl data structures, making it much easier to manipulate
mechanically.

• Prevent extensions from creating custom server parameters that take a quoted list of values (Tom Lane)

This cannot be supported at present because knowledge of the parameter's property would be required
even before the extension is loaded.

• Add ability to use channel binding when using SCRAM authentication (Michael Paquier)

Channel binding is intended to prevent man-in-the-middle attacks, but SCRAM cannot prevent them
unless it can be forced to be active. Unfortunately, there is no way to do that in libpq. Support for it is
expected in future versions of libpq and in interfaces not built using libpq, e.g. JDBC.

• Allow background workers to attach to databases that normally disallow connections (Magnus
Hagander)

• Add support for hardware CRC calculations on ARMv8 (Yuqi Gu, Heikki Linnakangas, Thomas Munro)

2487

Release Notes

• Speed up lookups of built-in functions by OID (Andres Freund)

The previous binary search has been replaced by a lookup array.

• Speed up construction of query results (Andres Freund)

• Improve speed of access to system caches (Andres Freund)

• Add a generational memory allocator which is optimized for serial allocation/deallocation (Tomas
Vondra)

This reduces memory usage for logical decoding.

• Make the computation of pg_class.reltuples by VACUUM consistent with its computation by
ANALYZE (Tomas Vondra)

• Update to use perltidy version 20170521 (Tom Lane, Peter Eisentraut)

E.3.3.11. Additional Modules

• Allow extension pg_prewarm to restore the previous shared buffer contents on startup (Mithun Cy,
Robert Haas)

This is accomplished by having pg_prewarm store the shared buffers' relation and block number data
to disk occasionally during server operation, and at shutdown.

• Add pg_trgm function strict_word_similarity() to compute the similarity of whole words
(Alexander Korotkov)

The function word_similarity() already existed for this purpose, but it was designed to find
similar parts of words, while strict_word_similarity() computes the similarity to whole
words.

• Allow creation of indexes that can be used by LIKE comparisons on citext columns (Alexey
Chernyshov)

To do this, the index must be created using the citext_pattern_ops operator class.

• Allow btree_gin to index bool, bpchar, name and uuid data types (Matheus Oliveira)

• Allow cube and seg extensions to perform index-only scans using GiST indexes (Andrey Borodin)

• Allow retrieval of negative cube coordinates using the ~> operator (Alexander Korotkov)

This is useful for KNN-GiST searches when looking for coordinates in descending order.

• Add Vietnamese letter handling to the unaccent extension (Dang Minh Huong, Michael Paquier)

• Enhance amcheck to check that each heap tuple has an index entry (Peter Geoghegan)

• Have adminpack use the new default file system access roles (Stephen Frost)

Previously, only superusers could call adminpack functions; now role permissions are checked.

• Widen pg_stat_statement's query ID to 64 bits (Robert Haas)

This greatly reduces the chance of query ID hash collisions. The query ID can now potentially display
as a negative value.

2488

Release Notes

• Remove the contrib/start-scripts/osx scripts since they are no longer recommended (use
contrib/start-scripts/macos instead) (Tom Lane)

• Remove the chkpass extension (Peter Eisentraut)

This extension is no longer considered to be a usable security tool or example of how to write an
extension.

E.3.4. Acknowledgments
The following individuals (in alphabetical order) have contributed to this release as patch authors,
committers, reviewers, testers, or reporters of issues.

Abhijit Menon-Sen
Adam Bielanski
Adam Brightwell
Adam Brusselback
Aditya Toshniwal
Adrián Escoms
Adrien Nayrat
Akos Vandra
Aleksander Alekseev
Aleksandr Parfenov
Alexander Korotkov
Alexander Kukushkin
Alexander Kuzmenkov
Alexander Lakhin
Alexandre Garcia
Alexey Bashtanov
Alexey Chernyshov
Alexey Kryuchkov
Alik Khilazhev
Álvaro Herrera
Amit Kapila
Amit Khandekar
Amit Langote
Amul Sul
Anastasia Lubennikova
Andreas Joseph Krogh
Andreas Karlsson
Andreas Seltenreich
André Hänsel
Andrei Gorita
Andres Freund
Andrew Dunstan
Andrew Fletcher
Andrew Gierth
Andrew Grossman
Andrew Krasichkov
Andrey Borodin
Andrey Lizenko
Andy Abelisto
Anthony Bykov
Antoine Scemama

2489

Release Notes

Anton Dignös
Antonin Houska
Arseniy Sharoglazov
Arseny Sher
Arthur Zakirov
Ashutosh Bapat
Ashutosh Sharma
Ashwin Agrawal
Asim Praveen
Atsushi Torikoshi
Badrul Chowdhury
Balazs Szilfai
Basil Bourque
Beena Emerson
Ben Chobot
Benjamin Coutu
Bernd Helmle
Blaz Merela
Brad DeJong
Brent Dearth
Brian Cloutier
Bruce Momjian
Catalin Iacob
Chad Trabant
Chapman Flack
Christian Duta
Christian Ullrich
Christoph Berg
Christoph Dreis
Christophe Courtois
Christopher Jones
Claudio Freire
Clayton Salem
Craig Ringer
Dagfinn Ilmari Mannsåker
Dan Vianello
Dan Watson
Dang Minh Huong
Daniel Gustafsson
Daniel Vérité
Daniel Westermann
Daniel Wood
Darafei Praliaskouski
Dave Cramer
Dave Page
David Binderman
David Carlier
David Fetter
David G. Johnston
David Gould
David Hinkle
David Pereiro Lagares
David Rader
David Rowley

2490

Release Notes

David Steele
Davy Machado
Dean Rasheed
Dian Fay
Dilip Kumar
Dmitriy Sarafannikov
Dmitry Dolgov
Dmitry Ivanov
Dmitry Shalashov
Don Seiler
Doug Doole
Doug Rady
Edmund Horner
Eiji Seki
Elvis Pranskevichus
Emre Hasegeli
Erik Rijkers
Erwin Brandstetter
Etsuro Fujita
Euler Taveira
Everaldo Canuto
Fabien Coelho
Fabrízio de Royes Mello
Feike Steenbergen
Frits Jalvingh
Fujii Masao
Gao Zengqi
Gianni Ciolli
Greg Stark
Gunnlaugur Thor Briem
Guo Xiang Tan
Hadi Moshayedi
Hailong Li
Haribabu Kommi
Heath Lord
Heikki Linnakangas
Hugo Mercier
Igor Korot
Igor Neyman
Ildar Musin
Ildus Kurbangaliev
Ioseph Kim
Jacob Champion
Jaime Casanova
Jakob Egger
Jean-Pierre Pelletier
Jeevan Chalke
Jeevan Ladhe
Jeff Davis
Jeff Janes
Jeremy Evans
Jeremy Finzel
Jeremy Schneider
Jesper Pedersen

2491

Release Notes

Jim Nasby
Jimmy Yih
Jing Wang
Jobin Augustine
Joe Conway
John Gorman
John Naylor
Jon Nelson
Jon Wolski
Jonathan Allen
Jonathan S. Katz
Julien Rouhaud
Jürgen Purtz
Justin Pryzby
KaiGai Kohei
Kaiting Chen
Karl Lehenbauer
Keith Fiske
Kevin Bloch
Kha Nguyen
Kim Rose Carlsen
Konstantin Knizhnik
Kuntal Ghosh
Kyle Samson
Kyotaro Horiguchi
Lætitia Avrot
Lars Kanis
Laurenz Albe
Leonardo Cecchi
Liudmila Mantrova
Lixian Zou
Lloyd Albin
Luca Ferrari
Lucas Fairchild
Lukas Eder
Lukas Fittl
Magnus Hagander
Mai Peng
Maksim Milyutin
Maksym Boguk
Mansur Galiev
Marc Dilger
Marco Nenciarini
Marina Polyakova
Mario de Frutos Dieguez
Mark Cave-Ayland
Mark Dilger
Mark Wood
Marko Tiikkaja
Markus Winand
Martín Marqués
Masahiko Sawada
Matheus Oliveira
Matthew Stickney

2492

Release Notes

Metin Doslu
Michael Banck
Michael Meskes
Michael Paquier
Michail Nikolaev
Mike Blackwell
Minh-Quan Tran
Mithun Cy
Morgan Owens
Nathan Bossart
Nathan Wagner
Neil Conway
Nick Barnes
Nicolas Thauvin
Nikhil Sontakke
Nikita Glukhov
Nikolay Shaplov
Noah Misch
Noriyoshi Shinoda
Oleg Bartunov
Oleg Samoilov
Oliver Ford
Pan Bian
Pascal Legrand
Patrick Hemmer
Patrick Krecker
Paul Bonaud
Paul Guo
Paul Ramsey
Pavan Deolasee
Pavan Maddamsetti
Pavel Golub
Pavel Stehule
Peter Eisentraut
Peter Geoghegan
Petr Jelínek
Petru-Florin Mihancea
Phil Florent
Philippe Beaudoin
Pierre Ducroquet
Piotr Stefaniak
Prabhat Sahu
Pu Qun
QL Zhuo
Rafia Sabih
Rahila Syed
Rainer Orth
Rajkumar Raghuwanshi
Raúl Marín Rodríguez
Regina Obe
Richard Yen
Robert Haas
Robins Tharakan
Rod Taylor

2493

Release Notes

Rushabh Lathia
Ryan Murphy
Sahap Asci
Samuel Horwitz
Scott Ure
Sean Johnston
Shao Bret
Shay Rojansky
Shubham Barai
Simon Riggs
Simone Gotti
Sivasubramanian Ramasubramanian
Stas Kelvich
Stefan Kaltenbrunner
Stephen Froehlich
Stephen Frost
Steve Singer
Steven Winfield
Sven Kunze
Taiki Kondo
Takayuki Tsunakawa
Takeshi Ideriha
Tatsuo Ishii
Tatsuro Yamada
Teodor Sigaev
Thom Brown
Thomas Kellerer
Thomas Munro
Thomas Reiss
Tobias Bussmann
Todd A. Cook
Tom Kazimiers
Tom Lane
Tomas Vondra
Tomonari Katsumata
Torsten Grust
Tushar Ahuja
Vaishnavi Prabakaran
Vasundhar Boddapati
Victor Drobny
Victor Wagner
Victor Yegorov
Vik Fearing
Vinayak Pokale
Vincent Lachenal
Vitaliy Garnashevich
Vitaly Burovoy
Vladimir Baranoff
Xin Zhang
Yi Wen Wong
Yorick Peterse
Yugo Nagata
Yuqi Gu
Yura Sokolov

2494

Release Notes

Yves Goergen
Zhou Digoal

E.4. Prior Releases
Release notes for prior release branches can be found on the PostgreSQL3 web site. At the time of release
of version 11, these were the supported prior release branches:

• PostgreSQL 10: https://www.postgresql.org/docs/10/release.html 4

• PostgreSQL 9.6: https://www.postgresql.org/docs/9.6/release.html 5

• PostgreSQL 9.5: https://www.postgresql.org/docs/9.5/release.html 6

• PostgreSQL 9.4: https://www.postgresql.org/docs/9.4/release.html 7

• PostgreSQL 9.3: https://www.postgresql.org/docs/9.3/release.html 8

Release notes for older release branches can be found at https://www.postgresql.org/docs/
manuals/archive/ 9

3 https://www.postgresql.org/
4 https://www.postgresql.org/docs/10/release.html
5 https://www.postgresql.org/docs/9.6/release.html
6 https://www.postgresql.org/docs/9.5/release.html
7 https://www.postgresql.org/docs/9.4/release.html
8 https://www.postgresql.org/docs/9.3/release.html
9 https://www.postgresql.org/docs/manuals/archive/

2495

https://www.postgresql.org/
https://www.postgresql.org/docs/10/release.html
https://www.postgresql.org/docs/9.6/release.html
https://www.postgresql.org/docs/9.5/release.html
https://www.postgresql.org/docs/9.4/release.html
https://www.postgresql.org/docs/9.3/release.html
https://www.postgresql.org/docs/manuals/archive/
https://www.postgresql.org/docs/manuals/archive/
https://www.postgresql.org/
https://www.postgresql.org/docs/10/release.html
https://www.postgresql.org/docs/9.6/release.html
https://www.postgresql.org/docs/9.5/release.html
https://www.postgresql.org/docs/9.4/release.html
https://www.postgresql.org/docs/9.3/release.html
https://www.postgresql.org/docs/manuals/archive/

Appendix F. Additional Supplied
Modules

This appendix and the next one contain information regarding the modules that can be found in the
contrib directory of the PostgreSQL distribution. These include porting tools, analysis utilities, and
plug-in features that are not part of the core PostgreSQL system, mainly because they address a limited
audience or are too experimental to be part of the main source tree. This does not preclude their usefulness.

This appendix covers extensions and other server plug-in modules found in contrib. Appendix G covers
utility programs.

When building from the source distribution, these components are not built automatically, unless you build
the "world" target (see Step 2). You can build and install all of them by running:

make
make install

in the contrib directory of a configured source tree; or to build and install just one selected module, do
the same in that module's subdirectory. Many of the modules have regression tests, which can be executed
by running:

make check

before installation or

make installcheck

once you have a PostgreSQL server running.

If you are using a pre-packaged version of PostgreSQL, these modules are typically made available as a
separate subpackage, such as postgresql-contrib.

Many modules supply new user-defined functions, operators, or types. To make use of one of these
modules, after you have installed the code you need to register the new SQL objects in the database system.
In PostgreSQL 9.1 and later, this is done by executing a CREATE EXTENSION command. In a fresh
database, you can simply do

CREATE EXTENSION module_name;

This command must be run by a database superuser. This registers the new SQL objects in the current
database only, so you need to run this command in each database that you want the module's facilities
to be available in. Alternatively, run it in database template1 so that the extension will be copied into
subsequently-created databases by default.

Many modules allow you to install their objects in a schema of your choice. To do that, add SCHEMA
schema_name to the CREATE EXTENSION command. By default, the objects will be placed in your
current creation target schema, which in turn defaults to public.

If your database was brought forward by dump and reload from a pre-9.1 version of PostgreSQL, and you
had been using the pre-9.1 version of the module in it, you should instead do

2496

Additional Supplied Modules

CREATE EXTENSION module_name FROM unpackaged;

This will update the pre-9.1 objects of the module into a proper extension object. Future updates to the
module will be managed by ALTER EXTENSION. For more information about extension updates, see
Section 38.16.

Note, however, that some of these modules are not “extensions” in this sense, but are loaded into the
server in some other way, for instance by way of shared_preload_libraries. See the documentation of each
module for details.

F.1. adminpack
adminpack provides a number of support functions which pgAdmin and other administration and
management tools can use to provide additional functionality, such as remote management of server log
files. Use of all these functions is only allowed to the superuser by default but may be allowed to other
users by using the GRANT command.

The functions shown in Table F.1 provide write access to files on the machine hosting the server. (See
also the functions in Table 9.88, which provide read-only access.) Only files within the database cluster
directory can be accessed, unless the user is a superuser or given one of the pg_read_server_files, or
pg_write_server_files roles, as appropriate for the function, but either a relative or absolute path is
allowable.

Table F.1. adminpack Functions

Name Return Type Description

pg_catalog.pg_file_write(filename
text, data text, append
boolean)

bigint Write, or append to, a text file

pg_catalog.pg_file_rename(oldname
text, newname text [,
archivename text])

boolean Rename a file

pg_catalog.pg_file_unlink(filename
text)

boolean Remove a file

pg_catalog.pg_logdir_ls()setof record List the log files in the
log_directory directory

pg_file_write writes the specified data into the file named by filename. If append is false, the
file must not already exist. If append is true, the file can already exist, and will be appended to if so.
Returns the number of bytes written.

pg_file_rename renames a file. If archivename is omitted or NULL, it simply renames oldname
to newname (which must not already exist). If archivename is provided, it first renames newname
to archivename (which must not already exist), and then renames oldname to newname. In event of
failure of the second rename step, it will try to rename archivename back to newname before reporting
the error. Returns true on success, false if the source file(s) are not present or not writable; other cases
throw errors.

pg_file_unlink removes the specified file. Returns true on success, false if the specified file is not
present or the unlink() call fails; other cases throw errors.

2497

Additional Supplied Modules

pg_logdir_ls returns the start timestamps and path names of all the log files in the log_directory
directory. The log_filename parameter must have its default setting (postgresql-%Y-%m-%d_%H%M
%S.log) to use this function.

F.2. amcheck
The amcheck module provides functions that allow you to verify the logical consistency of the structure
of relations. If the structure appears to be valid, no error is raised.

The functions verify various invariants in the structure of the representation of particular relations. The
correctness of the access method functions behind index scans and other important operations relies on
these invariants always holding. For example, certain functions verify, among other things, that all B-Tree
pages have items in “logical” order (e.g., for B-Tree indexes on text, index tuples should be in collated
lexical order). If that particular invariant somehow fails to hold, we can expect binary searches on the
affected page to incorrectly guide index scans, resulting in wrong answers to SQL queries.

Verification is performed using the same procedures as those used by index scans themselves, which may
be user-defined operator class code. For example, B-Tree index verification relies on comparisons made
with one or more B-Tree support function 1 routines. See Section 38.15.3 for details of operator class
support functions.

amcheck functions may only be used by superusers.

F.2.1. Functions
bt_index_check(index regclass, heapallindexed boolean) returns void

bt_index_check tests that its target, a B-Tree index, respects a variety of invariants. Example
usage:

test=# SELECT bt_index_check(index => c.oid, heapallindexed =>
 i.indisunique),
 c.relname,
 c.relpages
FROM pg_index i
JOIN pg_opclass op ON i.indclass[0] = op.oid
JOIN pg_am am ON op.opcmethod = am.oid
JOIN pg_class c ON i.indexrelid = c.oid
JOIN pg_namespace n ON c.relnamespace = n.oid
WHERE am.amname = 'btree' AND n.nspname = 'pg_catalog'
-- Don't check temp tables, which may be from another session:
AND c.relpersistence != 't'
-- Function may throw an error when this is omitted:
AND c.relkind = 'i' AND i.indisready AND i.indisvalid
ORDER BY c.relpages DESC LIMIT 10;
 bt_index_check | relname | relpages
----------------+---------------------------------+----------
 | pg_depend_reference_index | 43
 | pg_depend_depender_index | 40
 | pg_proc_proname_args_nsp_index | 31
 | pg_description_o_c_o_index | 21
 | pg_attribute_relid_attnam_index | 14

2498

Additional Supplied Modules

 | pg_proc_oid_index | 10
 | pg_attribute_relid_attnum_index | 9
 | pg_amproc_fam_proc_index | 5
 | pg_amop_opr_fam_index | 5
 | pg_amop_fam_strat_index | 5
(10 rows)

This example shows a session that performs verification of the 10 largest catalog indexes in the
database “test”. Verification of the presence of heap tuples as index tuples is requested for the subset
that are unique indexes. Since no error is raised, all indexes tested appear to be logically consistent.
Naturally, this query could easily be changed to call bt_index_check for every index in the
database where verification is supported.

bt_index_check acquires an AccessShareLock on the target index and the heap relation
it belongs to. This lock mode is the same lock mode acquired on relations by simple SELECT
statements. bt_index_check does not verify invariants that span child/parent relationships, but
will verify the presence of all heap tuples as index tuples within the index when heapallindexed
is true. When a routine, lightweight test for corruption is required in a live production environment,
using bt_index_check often provides the best trade-off between thoroughness of verification and
limiting the impact on application performance and availability.

bt_index_parent_check(index regclass, heapallindexed boolean) returns
void

bt_index_parent_check tests that its target, a B-Tree index, respects a variety of invariants.
Optionally, when the heapallindexed argument is true, the function verifies the presence
of all heap tuples that should be found within the index, and that there are no missing downlinks
in the index structure. The checks that can be performed by bt_index_parent_check are a
superset of the checks that can be performed by bt_index_check. bt_index_parent_check
can be thought of as a more thorough variant of bt_index_check: unlike bt_index_check,
bt_index_parent_check also checks invariants that span parent/child relationships.
bt_index_parent_check follows the general convention of raising an error if it finds a logical
inconsistency or other problem.

A ShareLock is required on the target index by bt_index_parent_check (a ShareLock is
also acquired on the heap relation). These locks prevent concurrent data modification from INSERT,
UPDATE, and DELETE commands. The locks also prevent the underlying relation from being
concurrently processed by VACUUM, as well as all other utility commands. Note that the function holds
locks only while running, not for the entire transaction.

bt_index_parent_check's additional verification is more likely to detect various pathological
cases. These cases may involve an incorrectly implemented B-Tree operator class used by the index
that is checked, or, hypothetically, undiscovered bugs in the underlying B-Tree index access method
code. Note that bt_index_parent_check cannot be used when Hot Standby mode is enabled
(i.e., on read-only physical replicas), unlike bt_index_check.

F.2.2. Optional heapallindexed verification
When the heapallindexed argument to verification functions is true, an additional phase of
verification is performed against the table associated with the target index relation. This consists of a
“dummy” CREATE INDEX operation, which checks for the presence of all hypothetical new index tuples
against a temporary, in-memory summarizing structure (this is built when needed during the basic first
phase of verification). The summarizing structure “fingerprints” every tuple found within the target index.
The high level principle behind heapallindexed verification is that a new index that is equivalent to
the existing, target index must only have entries that can be found in the existing structure.

2499

Additional Supplied Modules

The additional heapallindexed phase adds significant overhead: verification will typically take
several times longer. However, there is no change to the relation-level locks acquired when
heapallindexed verification is performed.

The summarizing structure is bound in size by maintenance_work_mem. In order to ensure that there
is no more than a 2% probability of failure to detect an inconsistency for each heap tuple that should be
represented in the index, approximately 2 bytes of memory are needed per tuple. As less memory is made
available per tuple, the probability of missing an inconsistency slowly increases. This approach limits the
overhead of verification significantly, while only slightly reducing the probability of detecting a problem,
especially for installations where verification is treated as a routine maintenance task. Any single absent
or malformed tuple has a new opportunity to be detected with each new verification attempt.

F.2.3. Using amcheck effectively
amcheck can be effective at detecting various types of failure modes that data page checksums will
always fail to catch. These include:

• Structural inconsistencies caused by incorrect operator class implementations.

This includes issues caused by the comparison rules of operating system collations changing.
Comparisons of datums of a collatable type like text must be immutable (just as all comparisons
used for B-Tree index scans must be immutable), which implies that operating system collation rules
must never change. Though rare, updates to operating system collation rules can cause these issues.
More commonly, an inconsistency in the collation order between a master server and a standby
server is implicated, possibly because the major operating system version in use is inconsistent. Such
inconsistencies will generally only arise on standby servers, and so can generally only be detected on
standby servers.

If a problem like this arises, it may not affect each individual index that is ordered using an affected
collation, simply because indexed values might happen to have the same absolute ordering regardless
of the behavioral inconsistency. See Section 23.1 and Section 23.2 for further details about how
PostgreSQL uses operating system locales and collations.

• Structural inconsistencies between indexes and the heap relations that are indexed (when
heapallindexed verification is performed).

There is no cross-checking of indexes against their heap relation during normal operation. Symptoms
of heap corruption can be subtle.

• Corruption caused by hypothetical undiscovered bugs in the underlying PostgreSQL access method
code, sort code, or transaction management code.

Automatic verification of the structural integrity of indexes plays a role in the general testing of new
or proposed PostgreSQL features that could plausibly allow a logical inconsistency to be introduced.
Verification of table structure and associated visibility and transaction status information plays a similar
role. One obvious testing strategy is to call amcheck functions continuously when running the standard
regression tests. See Section 33.1 for details on running the tests.

• File system or storage subsystem faults where checksums happen to simply not be enabled.

Note that amcheck examines a page as represented in some shared memory buffer at the time of
verification if there is only a shared buffer hit when accessing the block. Consequently, amcheck
does not necessarily examine data read from the file system at the time of verification. Note that when
checksums are enabled, amcheck may raise an error due to a checksum failure when a corrupt block
is read into a buffer.

2500

Additional Supplied Modules

• Corruption caused by faulty RAM, or the broader memory subsystem.

PostgreSQL does not protect against correctable memory errors and it is assumed you will operate using
RAM that uses industry standard Error Correcting Codes (ECC) or better protection. However, ECC
memory is typically only immune to single-bit errors, and should not be assumed to provide absolute
protection against failures that result in memory corruption.

When heapallindexed verification is performed, there is generally a greatly increased chance of
detecting single-bit errors, since strict binary equality is tested, and the indexed attributes within the
heap are tested.

In general, amcheck can only prove the presence of corruption; it cannot prove its absence.

F.2.4. Repairing corruption
No error concerning corruption raised by amcheck should ever be a false positive. amcheck raises errors
in the event of conditions that, by definition, should never happen, and so careful analysis of amcheck
errors is often required.

There is no general method of repairing problems that amcheck detects. An explanation for the root cause
of an invariant violation should be sought. pageinspect may play a useful role in diagnosing corruption
that amcheck detects. A REINDEX may not be effective in repairing corruption.

F.3. auth_delay
auth_delay causes the server to pause briefly before reporting authentication failure, to make brute-
force attacks on database passwords more difficult. Note that it does nothing to prevent denial-of-service
attacks, and may even exacerbate them, since processes that are waiting before reporting authentication
failure will still consume connection slots.

In order to function, this module must be loaded via shared_preload_libraries in postgresql.conf.

F.3.1. Configuration Parameters
auth_delay.milliseconds (int)

The number of milliseconds to wait before reporting an authentication failure. The default is 0.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
shared_preload_libraries = 'auth_delay'

auth_delay.milliseconds = '500'

F.3.2. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

F.4. auto_explain

2501

Additional Supplied Modules

The auto_explain module provides a means for logging execution plans of slow statements
automatically, without having to run EXPLAIN by hand. This is especially helpful for tracking down un-
optimized queries in large applications.

The module provides no SQL-accessible functions. To use it, simply load it into the server. You can load
it into an individual session:

LOAD 'auto_explain';

(You must be superuser to do that.) More typical usage is to preload it into some or all sessions by including
auto_explain in session_preload_libraries or shared_preload_libraries in postgresql.conf.
Then you can track unexpectedly slow queries no matter when they happen. Of course there is a price in
overhead for that.

F.4.1. Configuration Parameters
There are several configuration parameters that control the behavior of auto_explain. Note that the
default behavior is to do nothing, so you must set at least auto_explain.log_min_duration if
you want any results.

auto_explain.log_min_duration (integer)

auto_explain.log_min_duration is the minimum statement execution time, in
milliseconds, that will cause the statement's plan to be logged. Setting this to zero logs all plans. Minus-
one (the default) disables logging of plans. For example, if you set it to 250ms then all statements
that run 250ms or longer will be logged. Only superusers can change this setting.

auto_explain.log_analyze (boolean)

auto_explain.log_analyze causes EXPLAIN ANALYZE output, rather than just EXPLAIN
output, to be printed when an execution plan is logged. This parameter is off by default. Only
superusers can change this setting.

Note

When this parameter is on, per-plan-node timing occurs for all statements executed, whether
or not they run long enough to actually get logged. This can have an extremely negative impact
on performance. Turning off auto_explain.log_timing ameliorates the performance
cost, at the price of obtaining less information.

auto_explain.log_buffers (boolean)

auto_explain.log_buffers controls whether buffer usage statistics are printed when an
execution plan is logged; it's equivalent to the BUFFERS option of EXPLAIN. This parameter has no
effect unless auto_explain.log_analyze is enabled. This parameter is off by default. Only
superusers can change this setting.

auto_explain.log_timing (boolean)

auto_explain.log_timing controls whether per-node timing information is printed when
an execution plan is logged; it's equivalent to the TIMING option of EXPLAIN. The overhead of
repeatedly reading the system clock can slow down queries significantly on some systems, so it may
be useful to set this parameter to off when only actual row counts, and not exact times, are needed.

2502

Additional Supplied Modules

This parameter has no effect unless auto_explain.log_analyze is enabled. This parameter is
on by default. Only superusers can change this setting.

auto_explain.log_triggers (boolean)

auto_explain.log_triggers causes trigger execution statistics to be included when an
execution plan is logged. This parameter has no effect unless auto_explain.log_analyze is
enabled. This parameter is off by default. Only superusers can change this setting.

auto_explain.log_verbose (boolean)

auto_explain.log_verbose controls whether verbose details are printed when an execution
plan is logged; it's equivalent to the VERBOSE option of EXPLAIN. This parameter is off by default.
Only superusers can change this setting.

auto_explain.log_format (enum)

auto_explain.log_format selects the EXPLAIN output format to be used. The allowed values
are text, xml, json, and yaml. The default is text. Only superusers can change this setting.

auto_explain.log_nested_statements (boolean)

auto_explain.log_nested_statements causes nested statements (statements executed
inside a function) to be considered for logging. When it is off, only top-level query plans are logged.
This parameter is off by default. Only superusers can change this setting.

auto_explain.sample_rate (real)

auto_explain.sample_rate causes auto_explain to only explain a fraction of the statements
in each session. The default is 1, meaning explain all the queries. In case of nested statements, either
all will be explained or none. Only superusers can change this setting.

In ordinary usage, these parameters are set in postgresql.conf, although superusers can alter them
on-the-fly within their own sessions. Typical usage might be:

postgresql.conf
session_preload_libraries = 'auto_explain'

auto_explain.log_min_duration = '3s'

F.4.2. Example

postgres=# LOAD 'auto_explain';
postgres=# SET auto_explain.log_min_duration = 0;
postgres=# SET auto_explain.log_analyze = true;
postgres=# SELECT count(*)
 FROM pg_class, pg_index
 WHERE oid = indrelid AND indisunique;

This might produce log output such as:

LOG: duration: 3.651 ms plan:
 Query Text: SELECT count(*)
 FROM pg_class, pg_index

2503

Additional Supplied Modules

 WHERE oid = indrelid AND indisunique;
 Aggregate (cost=16.79..16.80 rows=1 width=0) (actual
 time=3.626..3.627 rows=1 loops=1)
 -> Hash Join (cost=4.17..16.55 rows=92 width=0) (actual
 time=3.349..3.594 rows=92 loops=1)
 Hash Cond: (pg_class.oid = pg_index.indrelid)
 -> Seq Scan on pg_class (cost=0.00..9.55 rows=255 width=4)
 (actual time=0.016..0.140 rows=255 loops=1)
 -> Hash (cost=3.02..3.02 rows=92 width=4) (actual
 time=3.238..3.238 rows=92 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 4kB
 -> Seq Scan on pg_index (cost=0.00..3.02 rows=92
 width=4) (actual time=0.008..3.187 rows=92 loops=1)
 Filter: indisunique

F.4.3. Author
Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>

F.5. bloom
bloom provides an index access method based on Bloom filters1.

A Bloom filter is a space-efficient data structure that is used to test whether an element is a member of a
set. In the case of an index access method, it allows fast exclusion of non-matching tuples via signatures
whose size is determined at index creation.

A signature is a lossy representation of the indexed attribute(s), and as such is prone to reporting false
positives; that is, it may be reported that an element is in the set, when it is not. So index search results
must always be rechecked using the actual attribute values from the heap entry. Larger signatures reduce
the odds of a false positive and thus reduce the number of useless heap visits, but of course also make the
index larger and hence slower to scan.

This type of index is most useful when a table has many attributes and queries test arbitrary combinations
of them. A traditional btree index is faster than a bloom index, but it can require many btree indexes to
support all possible queries where one needs only a single bloom index. Note however that bloom indexes
only support equality queries, whereas btree indexes can also perform inequality and range searches.

F.5.1. Parameters
A bloom index accepts the following parameters in its WITH clause:

length

Length of each signature (index entry) in bits. It is rounded up to the nearest multiple of 16. The
default is 80 bits and the maximum is 4096.

col1 — col32

Number of bits generated for each index column. Each parameter's name refers to the number of
the index column that it controls. The default is 2 bits and maximum is 4095. Parameters for index
columns not actually used are ignored.

1 https://en.wikipedia.org/wiki/Bloom_filter

2504

https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter

Additional Supplied Modules

F.5.2. Examples
This is an example of creating a bloom index:

CREATE INDEX bloomidx ON tbloom USING bloom (i1,i2,i3)
 WITH (length=80, col1=2, col2=2, col3=4);

The index is created with a signature length of 80 bits, with attributes i1 and i2 mapped to 2 bits, and
attribute i3 mapped to 4 bits. We could have omitted the length, col1, and col2 specifications since
those have the default values.

Here is a more complete example of bloom index definition and usage, as well as a comparison with
equivalent btree indexes. The bloom index is considerably smaller than the btree index, and can perform
better.

=# CREATE TABLE tbloom AS
 SELECT
 (random() * 1000000)::int as i1,
 (random() * 1000000)::int as i2,
 (random() * 1000000)::int as i3,
 (random() * 1000000)::int as i4,
 (random() * 1000000)::int as i5,
 (random() * 1000000)::int as i6
 FROM
 generate_series(1,10000000);
SELECT 10000000
=# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5,
 i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('bloomidx'));
 pg_size_pretty

 153 MB
(1 row)
=# CREATE index btreeidx ON tbloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('btreeidx'));
 pg_size_pretty

 387 MB
(1 row)

A sequential scan over this large table takes a long time:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 =
 123451;
 QUERY PLAN
--
 Seq Scan on tbloom (cost=0.00..213694.08 rows=1 width=24) (actual
 time=1445.438..1445.438 rows=0 loops=1)
 Filter: ((i2 = 898732) AND (i5 = 123451))

2505

Additional Supplied Modules

 Rows Removed by Filter: 10000000
 Planning time: 0.177 ms
 Execution time: 1445.473 ms
(5 rows)

So the planner will usually select an index scan if possible. With a btree index, we get results like this:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 =
 123451;
 QUERY PLAN
--
 Index Only Scan using btreeidx on tbloom (cost=0.56..298311.96
 rows=1 width=24) (actual time=445.709..445.709 rows=0 loops=1)
 Index Cond: ((i2 = 898732) AND (i5 = 123451))
 Heap Fetches: 0
 Planning time: 0.193 ms
 Execution time: 445.770 ms
(5 rows)

Bloom is better than btree in handling this type of search:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 =
 123451;
 QUERY PLAN

 Bitmap Heap Scan on tbloom (cost=178435.39..178439.41 rows=1
 width=24) (actual time=76.698..76.698 rows=0 loops=1)
 Recheck Cond: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Index Recheck: 2439
 Heap Blocks: exact=2408
 -> Bitmap Index Scan on bloomidx (cost=0.00..178435.39 rows=1
 width=0) (actual time=72.455..72.455 rows=2439 loops=1)
 Index Cond: ((i2 = 898732) AND (i5 = 123451))
 Planning time: 0.475 ms
 Execution time: 76.778 ms
(8 rows)

Note the relatively large number of false positives: 2439 rows were selected to be visited in the heap, but
none actually matched the query. We could reduce that by specifying a larger signature length. In this
example, creating the index with length=200 reduced the number of false positives to 55; but it doubled
the index size (to 306 MB) and ended up being slower for this query (125 ms overall).

Now, the main problem with the btree search is that btree is inefficient when the search conditions do
not constrain the leading index column(s). A better strategy for btree is to create a separate index on each
column. Then the planner will choose something like this:

=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 =
 123451;
 QUERY PLAN
--
 Bitmap Heap Scan on tbloom (cost=9.29..13.30 rows=1 width=24)
 (actual time=0.148..0.148 rows=0 loops=1)

2506

Additional Supplied Modules

 Recheck Cond: ((i5 = 123451) AND (i2 = 898732))
 -> BitmapAnd (cost=9.29..9.29 rows=1 width=0) (actual
 time=0.145..0.145 rows=0 loops=1)
 -> Bitmap Index Scan on tbloom_i5_idx (cost=0.00..4.52
 rows=11 width=0) (actual time=0.089..0.089 rows=10 loops=1)
 Index Cond: (i5 = 123451)
 -> Bitmap Index Scan on tbloom_i2_idx (cost=0.00..4.52
 rows=11 width=0) (actual time=0.048..0.048 rows=8 loops=1)
 Index Cond: (i2 = 898732)
 Planning time: 2.049 ms
 Execution time: 0.280 ms
(9 rows)

Although this query runs much faster than with either of the single indexes, we pay a large penalty in index
size. Each of the single-column btree indexes occupies 214 MB, so the total space needed is over 1.2GB,
more than 8 times the space used by the bloom index.

F.5.3. Operator Class Interface
An operator class for bloom indexes requires only a hash function for the indexed data type and an equality
operator for searching. This example shows the operator class definition for the text data type:

CREATE OPERATOR CLASS text_ops
DEFAULT FOR TYPE text USING bloom AS
 OPERATOR 1 =(text, text),
 FUNCTION 1 hashtext(text);

F.5.4. Limitations
• Only operator classes for int4 and text are included with the module.

• Only the = operator is supported for search. But it is possible to add support for arrays with union and
intersection operations in the future.

• bloom access method doesn't support UNIQUE indexes.

• bloom access method doesn't support searching for NULL values.

F.5.5. Authors
Teodor Sigaev <teodor@postgrespro.ru>, Postgres Professional, Moscow, Russia

Alexander Korotkov <a.korotkov@postgrespro.ru>, Postgres Professional, Moscow, Russia

Oleg Bartunov <obartunov@postgrespro.ru>, Postgres Professional, Moscow, Russia

F.6. btree_gin
btree_gin provides sample GIN operator classes that implement B-tree equivalent behavior for the
data types int2, int4, int8, float4, float8, timestamp with time zone, timestamp
without time zone, time with time zone, time without time zone, date,
interval, oid, money, "char", varchar, text, bytea, bit, varbit, macaddr, macaddr8,
inet, cidr, uuid, name, bool, bpchar, and all enum types.

2507

Additional Supplied Modules

In general, these operator classes will not outperform the equivalent standard B-tree index methods, and
they lack one major feature of the standard B-tree code: the ability to enforce uniqueness. However, they
are useful for GIN testing and as a base for developing other GIN operator classes. Also, for queries that
test both a GIN-indexable column and a B-tree-indexable column, it might be more efficient to create a
multicolumn GIN index that uses one of these operator classes than to create two separate indexes that
would have to be combined via bitmap ANDing.

F.6.1. Example Usage

CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING GIN (a);
-- query
SELECT * FROM test WHERE a < 10;

F.6.2. Authors
Teodor Sigaev (<teodor@stack.net>) and Oleg Bartunov (<oleg@sai.msu.su>). See http://
www.sai.msu.su/~megera/oddmuse/index.cgi/Gin for additional information.

F.7. btree_gist
btree_gist provides GiST index operator classes that implement B-tree equivalent behavior for the
data types int2, int4, int8, float4, float8, numeric, timestamp with time zone,
timestamp without time zone, time with time zone, time without time
zone, date, interval, oid, money, char, varchar, text, bytea, bit, varbit, macaddr,
macaddr8, inet, cidr, uuid, and all enum types.

In general, these operator classes will not outperform the equivalent standard B-tree index methods, and
they lack one major feature of the standard B-tree code: the ability to enforce uniqueness. However, they
provide some other features that are not available with a B-tree index, as described below. Also, these
operator classes are useful when a multicolumn GiST index is needed, wherein some of the columns are
of data types that are only indexable with GiST but other columns are just simple data types. Lastly, these
operator classes are useful for GiST testing and as a base for developing other GiST operator classes.

In addition to the typical B-tree search operators, btree_gist also provides index support for <> (“not
equals”). This may be useful in combination with an exclusion constraint, as described below.

Also, for data types for which there is a natural distance metric, btree_gist defines a distance
operator <->, and provides GiST index support for nearest-neighbor searches using this operator. Distance
operators are provided for int2, int4, int8, float4, float8, timestamp with time zone,
timestamp without time zone, time without time zone, date, interval, oid,
and money.

F.7.1. Example Usage
Simple example using btree_gist instead of btree:

CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING GIST (a);

2508

http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin
http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin

Additional Supplied Modules

-- query
SELECT * FROM test WHERE a < 10;
-- nearest-neighbor search: find the ten entries closest to "42"
SELECT *, a <-> 42 AS dist FROM test ORDER BY a <-> 42 LIMIT 10;

Use an exclusion constraint to enforce the rule that a cage at a zoo can contain only one kind of animal:

=> CREATE TABLE zoo (
 cage INTEGER,
 animal TEXT,
 EXCLUDE USING GIST (cage WITH =, animal WITH <>)
);

=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'lion');
ERROR: conflicting key value violates exclusion constraint
 "zoo_cage_animal_excl"
DETAIL: Key (cage, animal)=(123, lion) conflicts with existing key
 (cage, animal)=(123, zebra).
=> INSERT INTO zoo VALUES(124, 'lion');
INSERT 0 1

F.7.2. Authors
Teodor Sigaev (<teodor@stack.net>), Oleg Bartunov (<oleg@sai.msu.su>), Janko Richter
(<jankorichter@yahoo.de>), and Paul Jungwirth (<pj@illuminatedcomputing.com>).
See http://www.sai.msu.su/~megera/postgres/gist/ for additional information.

F.8. citext
The citext module provides a case-insensitive character string type, citext. Essentially, it internally
calls lower when comparing values. Otherwise, it behaves almost exactly like text.

F.8.1. Rationale
The standard approach to doing case-insensitive matches in PostgreSQL has been to use the lower
function when comparing values, for example

SELECT * FROM tab WHERE lower(col) = LOWER(?);

This works reasonably well, but has a number of drawbacks:

• It makes your SQL statements verbose, and you always have to remember to use lower on both the
column and the query value.

• It won't use an index, unless you create a functional index using lower.

• If you declare a column as UNIQUE or PRIMARY KEY, the implicitly generated index is case-sensitive.
So it's useless for case-insensitive searches, and it won't enforce uniqueness case-insensitively.

2509

http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Modules

The citext data type allows you to eliminate calls to lower in SQL queries, and allows a primary key
to be case-insensitive. citext is locale-aware, just like text, which means that the matching of upper
case and lower case characters is dependent on the rules of the database's LC_CTYPE setting. Again, this
behavior is identical to the use of lower in queries. But because it's done transparently by the data type,
you don't have to remember to do anything special in your queries.

F.8.2. How to Use It
Here's a simple example of usage:

CREATE TABLE users (
 nick CITEXT PRIMARY KEY,
 pass TEXT NOT NULL
);

INSERT INTO users VALUES ('larry', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Tom', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Damian', sha256(random()::text::bytea));
INSERT INTO users VALUES ('NEAL', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Bjørn', sha256(random()::text::bytea));

SELECT * FROM users WHERE nick = 'Larry';

The SELECT statement will return one tuple, even though the nick column was set to larry and the
query was for Larry.

F.8.3. String Comparison Behavior
citext performs comparisons by converting each string to lower case (as though lower were called)
and then comparing the results normally. Thus, for example, two strings are considered equal if lower
would produce identical results for them.

In order to emulate a case-insensitive collation as closely as possible, there are citext-specific versions
of a number of string-processing operators and functions. So, for example, the regular expression operators
~ and ~* exhibit the same behavior when applied to citext: they both match case-insensitively. The
same is true for !~ and !~*, as well as for the LIKE operators ~~ and ~~*, and !~~ and !~~*. If you'd
like to match case-sensitively, you can cast the operator's arguments to text.

Similarly, all of the following functions perform matching case-insensitively if their arguments are
citext:

• regexp_match()

• regexp_matches()

• regexp_replace()

• regexp_split_to_array()

• regexp_split_to_table()

• replace()

• split_part()

2510

Additional Supplied Modules

• strpos()

• translate()

For the regexp functions, if you want to match case-sensitively, you can specify the “c” flag to force a
case-sensitive match. Otherwise, you must cast to text before using one of these functions if you want
case-sensitive behavior.

F.8.4. Limitations
• citext's case-folding behavior depends on the LC_CTYPE setting of your database. How it compares

values is therefore determined when the database is created. It is not truly case-insensitive in the terms
defined by the Unicode standard. Effectively, what this means is that, as long as you're happy with your
collation, you should be happy with citext's comparisons. But if you have data in different languages
stored in your database, users of one language may find their query results are not as expected if the
collation is for another language.

• As of PostgreSQL 9.1, you can attach a COLLATE specification to citext columns or data values.
Currently, citext operators will honor a non-default COLLATE specification while comparing case-
folded strings, but the initial folding to lower case is always done according to the database's LC_CTYPE
setting (that is, as though COLLATE "default" were given). This may be changed in a future release
so that both steps follow the input COLLATE specification.

• citext is not as efficient as text because the operator functions and the B-tree comparison functions
must make copies of the data and convert it to lower case for comparisons. It is, however, slightly more
efficient than using lower to get case-insensitive matching.

• citext doesn't help much if you need data to compare case-sensitively in some contexts and case-
insensitively in other contexts. The standard answer is to use the text type and manually use the
lower function when you need to compare case-insensitively; this works all right if case-insensitive
comparison is needed only infrequently. If you need case-insensitive behavior most of the time and
case-sensitive infrequently, consider storing the data as citext and explicitly casting the column to
text when you want case-sensitive comparison. In either situation, you will need two indexes if you
want both types of searches to be fast.

• The schema containing the citext operators must be in the current search_path (typically
public); if it is not, the normal case-sensitive text operators will be invoked instead.

F.8.5. Author
David E. Wheeler <david@kineticode.com>

Inspired by the original citext module by Donald Fraser.

F.9. cube
This module implements a data type cube for representing multidimensional cubes.

F.9.1. Syntax
Table F.2 shows the valid external representations for the cube type. x, y, etc. denote floating-point
numbers.

2511

Additional Supplied Modules

Table F.2. Cube External Representations

External Syntax Meaning

x A one-dimensional point (or, zero-length one-
dimensional interval)

(x) Same as above

x1,x2,...,xn A point in n-dimensional space, represented
internally as a zero-volume cube

(x1,x2,...,xn) Same as above

(x),(y) A one-dimensional interval starting at x and ending
at y or vice versa; the order does not matter

[(x),(y)] Same as above

(x1,...,xn),(y1,...,yn) An n-dimensional cube represented by a pair of its
diagonally opposite corners

[(x1,...,xn),(y1,...,yn)] Same as above

It does not matter which order the opposite corners of a cube are entered in. The cube functions
automatically swap values if needed to create a uniform “lower left — upper right” internal representation.
When the corners coincide, cube stores only one corner along with an “is point” flag to avoid wasting
space.

White space is ignored on input, so [(x),(y)] is the same as [(x), (y)].

F.9.2. Precision
Values are stored internally as 64-bit floating point numbers. This means that numbers with more than
about 16 significant digits will be truncated.

F.9.3. Usage
Table F.3 shows the operators provided for type cube.

Table F.3. Cube Operators

Operator Result Description

a = b boolean The cubes a and b are identical.

a && b boolean The cubes a and b overlap.

a @> b boolean The cube a contains the cube b.

a <@ b boolean The cube a is contained in the cube
b.

a < b boolean The cube a is less than the cube b.

a <= b boolean The cube a is less than or equal to
the cube b.

a > b boolean The cube a is greater than the cube
b.

a >= b boolean The cube a is greater than or equal
to the cube b.

2512

Additional Supplied Modules

Operator Result Description

a <> b boolean The cube a is not equal to the cube
b.

a -> n float8 Get n-th coordinate of cube
(counting from 1).

a ~> n float8 Get n-th coordinate of cube in
following way: n = 2 * k - 1 means
lower bound of k-th dimension,
n = 2 * k means upper bound
of k-th dimension. Negative
n denotes the inverse value
of the corresponding positive
coordinate. This operator is
designed for KNN-GiST support.

a <-> b float8 Euclidean distance between a and
b.

a <#> b float8 Taxicab (L-1 metric) distance
between a and b.

a <=> b float8 Chebyshev (L-inf metric) distance
between a and b.

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names are
reversed from the convention formerly followed by the core geometric data types!)

The scalar ordering operators (<, >=, etc) do not make a lot of sense for any practical purpose but sorting.
These operators first compare the first coordinates, and if those are equal, compare the second coordinates,
etc. They exist mainly to support the b-tree index operator class for cube, which can be useful for example
if you would like a UNIQUE constraint on a cube column.

The cube module also provides a GiST index operator class for cube values. A cube GiST index can
be used to search for values using the =, &&, @>, and <@ operators in WHERE clauses.

In addition, a cube GiST index can be used to find nearest neighbors using the metric operators <->,
<#>, and <=> in ORDER BY clauses. For example, the nearest neighbor of the 3-D point (0.5, 0.5, 0.5)
could be found efficiently with:

SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;

The ~> operator can also be used in this way to efficiently retrieve the first few values sorted by a selected
coordinate. For example, to get the first few cubes ordered by the first coordinate (lower left corner)
ascending one could use the following query:

SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;

And to get 2-D cubes ordered by the first coordinate of the upper right corner descending:

SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;

Table F.4 shows the available functions.

2513

Additional Supplied Modules

Table F.4. Cube Functions

Function Result Description Example

cube(float8) cube Makes a one dimensional
cube with both
coordinates the same.

cube(1) == '(1)'

cube(float8,
float8)

cube Makes a one dimensional
cube.

cube(1,2) ==
'(1),(2)'

cube(float8[]) cube Makes a zero-volume
cube using the
coordinates defined by
the array.

cube(ARRAY[1,2])
== '(1,2)'

cube(float8[],
float8[])

cube Makes a cube with upper
right and lower left
coordinates as defined by
the two arrays, which
must be of the same
length.

cube(ARRAY[1,2],
ARRAY[3,4]) ==
'(1,2),(3,4)'

cube(cube,
float8)

cube Makes a new cube by
adding a dimension on
to an existing cube, with
the same values for both
endpoints of the new
coordinate. This is useful
for building cubes piece
by piece from calculated
values.

cube('(1,2),
(3,4)'::cube, 5)
== '(1,2,5),
(3,4,5)'

cube(cube,
float8, float8)

cube Makes a new cube by
adding a dimension on
to an existing cube. This
is useful for building
cubes piece by piece
from calculated values.

cube('(1,2),
(3,4)'::cube, 5,
6) == '(1,2,5),
(3,4,6)'

cube_dim(cube) integer Returns the number of
dimensions of the cube.

cube_dim('(1,2),
(3,4)') == '2'

cube_ll_coord(cube,
integer)

float8 Returns the n-th
coordinate value for the
lower left corner of the
cube.

cube_ll_coord('(1,2),
(3,4)', 2) == '2'

cube_ur_coord(cube,
integer)

float8 Returns the n-th
coordinate value for the
upper right corner of the
cube.

cube_ur_coord('(1,2),
(3,4)', 2) == '4'

cube_is_point(cube)boolean Returns true if the cube
is a point, that is, the two
defining corners are the
same.

cube_distance(cube,
cube)

float8 Returns the distance
between two cubes. If
both cubes are points,

2514

Additional Supplied Modules

Function Result Description Example

this is the normal
distance function.

cube_subset(cube,
integer[])

cube Makes a new cube from
an existing cube, using a
list of dimension indexes
from an array. Can
be used to extract the
endpoints of a single
dimension, or to drop
dimensions, or to reorder
them as desired.

cube_subset(cube('(1,3,5),
(6,7,8)'),
ARRAY[2]) ==
'(3),(7)'
cube_subset(cube('(1,3,5),
(6,7,8)'),
ARRAY[3,2,1,1])
== '(5,3,1,1),
(8,7,6,6)'

cube_union(cube,
cube)

cube Produces the union of
two cubes.

cube_inter(cube,
cube)

cube Produces the intersection
of two cubes.

cube_enlarge(c
cube, r double, n
integer)

cube Increases the size of the
cube by the specified
radius r in at least n
dimensions. If the radius
is negative the cube
is shrunk instead. All
defined dimensions are
changed by the radius r.
Lower-left coordinates
are decreased by r and
upper-right coordinates
are increased by r. If a
lower-left coordinate is
increased to more than
the corresponding upper-
right coordinate (this can
only happen when r <
0) than both coordinates
are set to their average.
If n is greater than
the number of defined
dimensions and the cube
is being enlarged (r >
0), then extra dimensions
are added to make n
altogether; 0 is used
as the initial value for
the extra coordinates.
This function is useful
for creating bounding
boxes around a point
for searching for nearby
points.

cube_enlarge('(1,2),
(3,4)', 0.5, 3)
==
'(0.5,1.5,-0.5),
(3.5,4.5,0.5)'

2515

Additional Supplied Modules

F.9.4. Defaults
I believe this union:

select cube_union('(0,5,2),(2,3,1)', '0');
cube_union

(0, 0, 0),(2, 5, 2)
(1 row)

does not contradict common sense, neither does the intersection

select cube_inter('(0,-1),(1,1)', '(-2),(2)');
cube_inter

(0, 0),(1, 0)
(1 row)

In all binary operations on differently-dimensioned cubes, I assume the lower-dimensional one to be a
Cartesian projection, i. e., having zeroes in place of coordinates omitted in the string representation. The
above examples are equivalent to:

cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)');
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');

The following containment predicate uses the point syntax, while in fact the second argument is internally
represented by a box. This syntax makes it unnecessary to define a separate point type and functions for
(box,point) predicates.

select cube_contains('(0,0),(1,1)', '0.5,0.5');
cube_contains

t
(1 row)

F.9.5. Notes
For examples of usage, see the regression test sql/cube.sql.

To make it harder for people to break things, there is a limit of 100 on the number of dimensions of cubes.
This is set in cubedata.h if you need something bigger.

F.9.6. Credits
Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>, Mathematics and Computer Science
Division, Argonne National Laboratory.

My thanks are primarily to Prof. Joe Hellerstein (http://db.cs.berkeley.edu/jmh/) for elucidating the gist of
the GiST (http://gist.cs.berkeley.edu/), and to his former student Andy Dong for his example written for
Illustra. I am also grateful to all Postgres developers, present and past, for enabling myself to create my

2516

http://db.cs.berkeley.edu/jmh/
http://gist.cs.berkeley.edu/

Additional Supplied Modules

own world and live undisturbed in it. And I would like to acknowledge my gratitude to Argonne Lab and
to the U.S. Department of Energy for the years of faithful support of my database research.

Minor updates to this package were made by Bruno Wolff III <bruno@wolff.to> in August/
September of 2002. These include changing the precision from single precision to double precision and
adding some new functions.

Additional updates were made by Joshua Reich <josh@root.net> in July 2006. These include
cube(float8[], float8[]) and cleaning up the code to use the V1 call protocol instead of the
deprecated V0 protocol.

F.10. dblink
dblink is a module that supports connections to other PostgreSQL databases from within a database
session.

See also postgres_fdw, which provides roughly the same functionality using a more modern and standards-
compliant infrastructure.

2517

Additional Supplied Modules

dblink_connect
dblink_connect — opens a persistent connection to a remote database

Synopsis

dblink_connect(text connstr) returns text
dblink_connect(text connname, text connstr) returns text

Description

dblink_connect() establishes a connection to a remote PostgreSQL database. The server and
database to be contacted are identified through a standard libpq connection string. Optionally, a name can
be assigned to the connection. Multiple named connections can be open at once, but only one unnamed
connection is permitted at a time. The connection will persist until closed or until the database session
is ended.

The connection string may also be the name of an existing foreign server. It is recommended to use the
foreign-data wrapper dblink_fdw when defining the foreign server. See the example below, as well as
CREATE SERVER and CREATE USER MAPPING.

Arguments

connname

The name to use for this connection; if omitted, an unnamed connection is opened, replacing any
existing unnamed connection.

connstr

libpq-style connection info string, for example hostaddr=127.0.0.1 port=5432
dbname=mydb user=postgres password=mypasswd options=-csearch_path=.
For details see Section 34.1.1. Alternatively, the name of a foreign server.

Return Value

Returns status, which is always OK (since any error causes the function to throw an error instead of
returning).

Notes

If untrusted users have access to a database that has not adopted a secure schema usage pattern, begin
each session by removing publicly-writable schemas from search_path. One could, for example, add
options=-csearch_path= to connstr. This consideration is not specific to dblink; it applies
to every interface for executing arbitrary SQL commands.

Only superusers may use dblink_connect to create non-password-authenticated connections. If non-
superusers need this capability, use dblink_connect_u instead.

It is unwise to choose connection names that contain equal signs, as this opens a risk of confusion with
connection info strings in other dblink functions.

2518

Additional Supplied Modules

Examples

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_connect('myconn', 'dbname=postgres options=-
csearch_path=');
 dblink_connect

 OK
(1 row)

-- FOREIGN DATA WRAPPER functionality
-- Note: local connection must require password authentication for
 this to work properly
-- Otherwise, you will receive the following error from
 dblink_connect():
--
 --
-- ERROR: password is required
-- DETAIL: Non-superuser cannot connect if the server does not
 request a password.
-- HINT: Target server's authentication method must be changed.

CREATE SERVER fdtest FOREIGN DATA WRAPPER dblink_fdw OPTIONS (hostaddr
 '127.0.0.1', dbname 'contrib_regression');

CREATE USER regress_dblink_user WITH PASSWORD 'secret';
CREATE USER MAPPING FOR regress_dblink_user SERVER fdtest OPTIONS
 (user 'regress_dblink_user', password 'secret');
GRANT USAGE ON FOREIGN SERVER fdtest TO regress_dblink_user;
GRANT SELECT ON TABLE foo TO regress_dblink_user;

\set ORIGINAL_USER :USER
\c - regress_dblink_user
SELECT dblink_connect('myconn', 'fdtest');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('myconn','SELECT * FROM foo') AS t(a int, b text,
 c text[]);
 a | b | c
----+---+---------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
 3 | d | {a3,b3,c3}

2519

Additional Supplied Modules

 4 | e | {a4,b4,c4}
 5 | f | {a5,b5,c5}
 6 | g | {a6,b6,c6}
 7 | h | {a7,b7,c7}
 8 | i | {a8,b8,c8}
 9 | j | {a9,b9,c9}
 10 | k | {a10,b10,c10}
(11 rows)

\c - :ORIGINAL_USER
REVOKE USAGE ON FOREIGN SERVER fdtest FROM regress_dblink_user;
REVOKE SELECT ON TABLE foo FROM regress_dblink_user;
DROP USER MAPPING FOR regress_dblink_user SERVER fdtest;
DROP USER regress_dblink_user;
DROP SERVER fdtest;

2520

Additional Supplied Modules

dblink_connect_u
dblink_connect_u — opens a persistent connection to a remote database, insecurely

Synopsis

dblink_connect_u(text connstr) returns text
dblink_connect_u(text connname, text connstr) returns text

Description

dblink_connect_u() is identical to dblink_connect(), except that it will allow non-superusers
to connect using any authentication method.

If the remote server selects an authentication method that does not involve a password, then
impersonation and subsequent escalation of privileges can occur, because the session will appear to
have originated from the user as which the local PostgreSQL server runs. Also, even if the remote
server does demand a password, it is possible for the password to be supplied from the server
environment, such as a ~/.pgpass file belonging to the server's user. This opens not only a risk of
impersonation, but the possibility of exposing a password to an untrustworthy remote server. Therefore,
dblink_connect_u() is initially installed with all privileges revoked from PUBLIC, making it un-
callable except by superusers. In some situations it may be appropriate to grant EXECUTE permission for
dblink_connect_u() to specific users who are considered trustworthy, but this should be done with
care. It is also recommended that any ~/.pgpass file belonging to the server's user not contain any
records specifying a wildcard host name.

For further details see dblink_connect().

2521

Additional Supplied Modules

dblink_disconnect
dblink_disconnect — closes a persistent connection to a remote database

Synopsis

dblink_disconnect() returns text
dblink_disconnect(text connname) returns text

Description

dblink_disconnect() closes a connection previously opened by dblink_connect(). The form
with no arguments closes an unnamed connection.

Arguments

connname

The name of a named connection to be closed.

Return Value

Returns status, which is always OK (since any error causes the function to throw an error instead of
returning).

Examples

SELECT dblink_disconnect();
 dblink_disconnect

 OK
(1 row)

SELECT dblink_disconnect('myconn');
 dblink_disconnect

 OK
(1 row)

2522

Additional Supplied Modules

dblink
dblink — executes a query in a remote database

Synopsis

dblink(text connname, text sql [, bool fail_on_error]) returns setof
 record
dblink(text connstr, text sql [, bool fail_on_error]) returns setof
 record
dblink(text sql [, bool fail_on_error]) returns setof record

Description

dblink executes a query (usually a SELECT, but it can be any SQL statement that returns rows) in a
remote database.

When two text arguments are given, the first one is first looked up as a persistent connection's name;
if found, the command is executed on that connection. If not found, the first argument is treated as
a connection info string as for dblink_connect, and the indicated connection is made just for the
duration of this command.

Arguments

connname

Name of the connection to use; omit this parameter to use the unnamed connection.

connstr

A connection info string, as previously described for dblink_connect.

sql

The SQL query that you wish to execute in the remote database, for example select * from foo.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function returns no rows.

Return Value

The function returns the row(s) produced by the query. Since dblink can be used with any query, it is
declared to return record, rather than specifying any particular set of columns. This means that you must
specify the expected set of columns in the calling query — otherwise PostgreSQL would not know what
to expect. Here is an example:

SELECT *
 FROM dblink('dbname=mydb options=-csearch_path=',

2523

Additional Supplied Modules

 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text)
 WHERE proname LIKE 'bytea%';

The “alias” part of the FROM clause must specify the column names and types that the function will
return. (Specifying column names in an alias is actually standard SQL syntax, but specifying column types
is a PostgreSQL extension.) This allows the system to understand what * should expand to, and what
proname in the WHERE clause refers to, in advance of trying to execute the function. At run time, an
error will be thrown if the actual query result from the remote database does not have the same number
of columns shown in the FROM clause. The column names need not match, however, and dblink does
not insist on exact type matches either. It will succeed so long as the returned data strings are valid input
for the column type declared in the FROM clause.

Notes

A convenient way to use dblink with predetermined queries is to create a view. This allows the column
type information to be buried in the view, instead of having to spell it out in every query. For example,

CREATE VIEW myremote_pg_proc AS
 SELECT *
 FROM dblink('dbname=postgres options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text);

SELECT * FROM myremote_pg_proc WHERE proname LIKE 'bytea%';

Examples

SELECT * FROM dblink('dbname=postgres options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteain | byteain
 byteaout | byteaout
(12 rows)

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

2524

Additional Supplied Modules

SELECT * FROM dblink('select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteain | byteain
 byteaout | byteaout
(12 rows)

SELECT dblink_connect('myconn', 'dbname=regression options=-
csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('myconn', 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 bytearecv | bytearecv
 byteasend | byteasend
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteain | byteain
 byteaout | byteaout
(14 rows)

2525

Additional Supplied Modules

dblink_exec
dblink_exec — executes a command in a remote database

Synopsis

dblink_exec(text connname, text sql [, bool fail_on_error]) returns
 text
dblink_exec(text connstr, text sql [, bool fail_on_error]) returns
 text
dblink_exec(text sql [, bool fail_on_error]) returns text

Description

dblink_exec executes a command (that is, any SQL statement that doesn't return rows) in a remote
database.

When two text arguments are given, the first one is first looked up as a persistent connection's name;
if found, the command is executed on that connection. If not found, the first argument is treated as
a connection info string as for dblink_connect, and the indicated connection is made just for the
duration of this command.

Arguments

connname

Name of the connection to use; omit this parameter to use the unnamed connection.

connstr

A connection info string, as previously described for dblink_connect.

sql

The SQL command that you wish to execute in the remote database, for example insert into
foo values(0,'a','{"a0","b0","c0"}').

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value

Returns status, either the command's status string or ERROR.

Examples

SELECT dblink_connect('dbname=dblink_test_standby');
 dblink_connect

2526

Additional Supplied Modules

 OK
(1 row)

SELECT dblink_exec('insert into foo
 values(21,''z'',''{"a0","b0","c0"}'');');
 dblink_exec

 INSERT 943366 1
(1 row)

SELECT dblink_connect('myconn', 'dbname=regression');
 dblink_connect

 OK
(1 row)

SELECT dblink_exec('myconn', 'insert into foo
 values(21,''z'',''{"a0","b0","c0"}'');');
 dblink_exec

 INSERT 6432584 1
(1 row)

SELECT dblink_exec('myconn', 'insert into pg_class values
 (''foo'')',false);
NOTICE: sql error
DETAIL: ERROR: null value in column "relnamespace" violates not-null
 constraint

 dblink_exec

 ERROR
(1 row)

2527

Additional Supplied Modules

dblink_open
dblink_open — opens a cursor in a remote database

Synopsis

dblink_open(text cursorname, text sql [, bool fail_on_error]) returns
 text
dblink_open(text connname, text cursorname, text sql [, bool
 fail_on_error]) returns text

Description

dblink_open() opens a cursor in a remote database. The cursor can subsequently be manipulated with
dblink_fetch() and dblink_close().

Arguments

connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name to assign to this cursor.

sql

The SELECT statement that you wish to execute in the remote database, for example select *
from pg_class.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value

Returns status, either OK or ERROR.

Notes

Since a cursor can only persist within a transaction, dblink_open starts an explicit transaction block
(BEGIN) on the remote side, if the remote side was not already within a transaction. This transaction will
be closed again when the matching dblink_close is executed. Note that if you use dblink_exec
to change data between dblink_open and dblink_close, and then an error occurs or you use
dblink_disconnect before dblink_close, your change will be lost because the transaction will
be aborted.

Examples

2528

Additional Supplied Modules

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open

 OK
(1 row)

2529

Additional Supplied Modules

dblink_fetch
dblink_fetch — returns rows from an open cursor in a remote database

Synopsis

dblink_fetch(text cursorname, int howmany [, bool fail_on_error])
 returns setof record
dblink_fetch(text connname, text cursorname, int howmany [, bool
 fail_on_error]) returns setof record

Description

dblink_fetch fetches rows from a cursor previously established by dblink_open.

Arguments

connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name of the cursor to fetch from.

howmany

The maximum number of rows to retrieve. The next howmany rows are fetched, starting at the current
cursor position, moving forward. Once the cursor has reached its end, no more rows are produced.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function returns no rows.

Return Value

The function returns the row(s) fetched from the cursor. To use this function, you will need to specify the
expected set of columns, as previously discussed for dblink.

Notes

On a mismatch between the number of return columns specified in the FROM clause, and the actual number
of columns returned by the remote cursor, an error will be thrown. In this event, the remote cursor is still
advanced by as many rows as it would have been if the error had not occurred. The same is true for any
other error occurring in the local query after the remote FETCH has been done.

Examples

2530

Additional Supplied Modules

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc where
 proname like ''bytea%''');
 dblink_open

 OK
(1 row)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+----------
 byteacat | byteacat
 byteacmp | byteacmp
 byteaeq | byteaeq
 byteage | byteage
 byteagt | byteagt
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
-----------+-----------
 byteain | byteain
 byteale | byteale
 bytealike | bytealike
 bytealt | bytealt
 byteane | byteane
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
------------+------------
 byteanlike | byteanlike
 byteaout | byteaout
(2 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+--------
(0 rows)

2531

Additional Supplied Modules

dblink_close
dblink_close — closes a cursor in a remote database

Synopsis

dblink_close(text cursorname [, bool fail_on_error]) returns text
dblink_close(text connname, text cursorname [, bool fail_on_error])
 returns text

Description

dblink_close closes a cursor previously opened with dblink_open.

Arguments

connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name of the cursor to close.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value

Returns status, either OK or ERROR.

Notes

If dblink_open started an explicit transaction block, and this is the last remaining open cursor in this
connection, dblink_close will issue the matching COMMIT.

Examples

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open

2532

Additional Supplied Modules

 OK
(1 row)

SELECT dblink_close('foo');
 dblink_close

 OK
(1 row)

2533

Additional Supplied Modules

dblink_get_connections
dblink_get_connections — returns the names of all open named dblink connections

Synopsis

dblink_get_connections() returns text[]

Description

dblink_get_connections returns an array of the names of all open named dblink connections.

Return Value

Returns a text array of connection names, or NULL if none.

Examples

SELECT dblink_get_connections();

2534

Additional Supplied Modules

dblink_error_message
dblink_error_message — gets last error message on the named connection

Synopsis

dblink_error_message(text connname) returns text

Description

dblink_error_message fetches the most recent remote error message for a given connection.

Arguments

connname

Name of the connection to use.

Return Value

Returns last error message, or an empty string if there has been no error in this connection.

Examples

SELECT dblink_error_message('dtest1');

2535

Additional Supplied Modules

dblink_send_query
dblink_send_query — sends an async query to a remote database

Synopsis

dblink_send_query(text connname, text sql) returns int

Description

dblink_send_query sends a query to be executed asynchronously, that is, without immediately
waiting for the result. There must not be an async query already in progress on the connection.

After successfully dispatching an async query, completion status can be checked with
dblink_is_busy, and the results are ultimately collected with dblink_get_result. It is also
possible to attempt to cancel an active async query using dblink_cancel_query.

Arguments

connname

Name of the connection to use.

sql

The SQL statement that you wish to execute in the remote database, for example select * from
pg_class.

Return Value

Returns 1 if the query was successfully dispatched, 0 otherwise.

Examples

SELECT dblink_send_query('dtest1', 'SELECT * FROM foo WHERE f1 < 3');

2536

Additional Supplied Modules

dblink_is_busy
dblink_is_busy — checks if connection is busy with an async query

Synopsis

dblink_is_busy(text connname) returns int

Description

dblink_is_busy tests whether an async query is in progress.

Arguments

connname

Name of the connection to check.

Return Value

Returns 1 if connection is busy, 0 if it is not busy. If this function returns 0, it is guaranteed that
dblink_get_result will not block.

Examples

SELECT dblink_is_busy('dtest1');

2537

Additional Supplied Modules

dblink_get_notify
dblink_get_notify — retrieve async notifications on a connection

Synopsis

dblink_get_notify() returns setof (notify_name text, be_pid int, extra
 text)
dblink_get_notify(text connname) returns setof (notify_name text,
 be_pid int, extra text)

Description

dblink_get_notify retrieves notifications on either the unnamed connection, or on a named
connection if specified. To receive notifications via dblink, LISTEN must first be issued, using
dblink_exec. For details see LISTEN and NOTIFY.

Arguments

connname

The name of a named connection to get notifications on.

Return Value

Returns setof (notify_name text, be_pid int, extra text), or an empty set if none.

Examples

SELECT dblink_exec('LISTEN virtual');
 dblink_exec

 LISTEN
(1 row)

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
(0 rows)

NOTIFY virtual;
NOTIFY

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
 virtual | 1229 |
(1 row)

2538

Additional Supplied Modules

dblink_get_result
dblink_get_result — gets an async query result

Synopsis

dblink_get_result(text connname [, bool fail_on_error]) returns setof
 record

Description

dblink_get_result collects the results of an asynchronous query previously sent with
dblink_send_query. If the query is not already completed, dblink_get_result will wait until
it is.

Arguments

connname

Name of the connection to use.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function returns no rows.

Return Value

For an async query (that is, a SQL statement returning rows), the function returns the row(s) produced
by the query. To use this function, you will need to specify the expected set of columns, as previously
discussed for dblink.

For an async command (that is, a SQL statement not returning rows), the function returns a single row
with a single text column containing the command's status string. It is still necessary to specify that the
result will have a single text column in the calling FROM clause.

Notes

This function must be called if dblink_send_query returned 1. It must be called once for each query
sent, and one additional time to obtain an empty set result, before the connection can be used again.

When using dblink_send_query and dblink_get_result, dblink fetches the entire remote
query result before returning any of it to the local query processor. If the query returns a large number of
rows, this can result in transient memory bloat in the local session. It may be better to open such a query
as a cursor with dblink_open and then fetch a manageable number of rows at a time. Alternatively,
use plain dblink(), which avoids memory bloat by spooling large result sets to disk.

Examples

2539

Additional Supplied Modules

contrib_regression=# SELECT dblink_connect('dtest1',
 'dbname=contrib_regression');
 dblink_connect

 OK
(1 row)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo
 where f1 < 3') AS t1;
 t1

 1
(1 row)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS
 t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS
 t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo
 where f1 < 3; select * from foo where f1 > 6') AS t1;
 t1

 1
(1 row)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS
 t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS
 t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+---------------
 7 | h | {a7,b7,c7}
 8 | i | {a8,b8,c8}
 9 | j | {a9,b9,c9}

2540

Additional Supplied Modules

 10 | k | {a10,b10,c10}
(4 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS
 t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

2541

Additional Supplied Modules

dblink_cancel_query
dblink_cancel_query — cancels any active query on the named connection

Synopsis

dblink_cancel_query(text connname) returns text

Description

dblink_cancel_query attempts to cancel any query that is in progress on the named connection.
Note that this is not certain to succeed (since, for example, the remote query might already have finished).
A cancel request simply improves the odds that the query will fail soon. You must still complete the normal
query protocol, for example by calling dblink_get_result.

Arguments

connname

Name of the connection to use.

Return Value

Returns OK if the cancel request has been sent, or the text of an error message on failure.

Examples

SELECT dblink_cancel_query('dtest1');

2542

Additional Supplied Modules

dblink_get_pkey
dblink_get_pkey — returns the positions and field names of a relation's primary key fields

Synopsis

dblink_get_pkey(text relname) returns setof dblink_pkey_results

Description

dblink_get_pkey provides information about the primary key of a relation in the local database. This
is sometimes useful in generating queries to be sent to remote databases.

Arguments

relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name
is mixed-case or contains special characters, for example "FooBar"; without quotes, the string will
be folded to lower case.

Return Value

Returns one row for each primary key field, or no rows if the relation has no primary key. The result row
type is defined as

CREATE TYPE dblink_pkey_results AS (position int, colname text);

The position column simply runs from 1 to N; it is the number of the field within the primary key, not
the number within the table's columns.

Examples

CREATE TABLE foobar (
 f1 int,
 f2 int,
 f3 int,
 PRIMARY KEY (f1, f2, f3)
);
CREATE TABLE

SELECT * FROM dblink_get_pkey('foobar');
 position | colname
----------+---------
 1 | f1
 2 | f2
 3 | f3
(3 rows)

2543

Additional Supplied Modules

dblink_build_sql_insert
dblink_build_sql_insert — builds an INSERT statement using a local tuple, replacing the primary key
field values with alternative supplied values

Synopsis

dblink_build_sql_insert(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] src_pk_att_vals_array,
 text[] tgt_pk_att_vals_array) returns text

Description

dblink_build_sql_insert can be useful in doing selective replication of a local table to a remote
database. It selects a row from the local table based on primary key, and then builds a SQL INSERT
command that will duplicate that row, but with the primary key values replaced by the values in the last
argument. (To make an exact copy of the row, just specify the same values for the last two arguments.)

Arguments

relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name
is mixed-case or contains special characters, for example "FooBar"; without quotes, the string will
be folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

src_pk_att_vals_array

Values of the primary key fields to be used to look up the local tuple. Each field is represented in text
form. An error is thrown if there is no local row with these primary key values.

tgt_pk_att_vals_array

Values of the primary key fields to be placed in the resulting INSERT command. Each field is
represented in text form.

Return Value

Returns the requested SQL statement as text.

Notes

As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical
column numbers, corresponding to the column's position in SELECT * FROM relname. Previous

2544

Additional Supplied Modules

versions interpreted the numbers as physical column positions. There is a difference if any column(s) to
the left of the indicated column have been dropped during the lifetime of the table.

Examples

SELECT dblink_build_sql_insert('foo', '1 2', 2, '{"1", "a"}', '{"1",
 "b''a"}');
 dblink_build_sql_insert
--
 INSERT INTO foo(f1,f2,f3) VALUES('1','b''a','1')
(1 row)

2545

Additional Supplied Modules

dblink_build_sql_delete
dblink_build_sql_delete — builds a DELETE statement using supplied values for primary key field values

Synopsis

dblink_build_sql_delete(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] tgt_pk_att_vals_array) returns text

Description

dblink_build_sql_delete can be useful in doing selective replication of a local table to a remote
database. It builds a SQL DELETE command that will delete the row with the given primary key values.

Arguments

relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name
is mixed-case or contains special characters, for example "FooBar"; without quotes, the string will
be folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

tgt_pk_att_vals_array

Values of the primary key fields to be used in the resulting DELETE command. Each field is
represented in text form.

Return Value

Returns the requested SQL statement as text.

Notes

As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical
column numbers, corresponding to the column's position in SELECT * FROM relname. Previous
versions interpreted the numbers as physical column positions. There is a difference if any column(s) to
the left of the indicated column have been dropped during the lifetime of the table.

Examples

2546

Additional Supplied Modules

SELECT dblink_build_sql_delete('"MyFoo"', '1 2', 2, '{"1", "b"}');
 dblink_build_sql_delete

 DELETE FROM "MyFoo" WHERE f1='1' AND f2='b'
(1 row)

2547

Additional Supplied Modules

dblink_build_sql_update
dblink_build_sql_update — builds an UPDATE statement using a local tuple, replacing the primary key
field values with alternative supplied values

Synopsis

dblink_build_sql_update(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] src_pk_att_vals_array,
 text[] tgt_pk_att_vals_array) returns text

Description

dblink_build_sql_update can be useful in doing selective replication of a local table to a remote
database. It selects a row from the local table based on primary key, and then builds a SQL UPDATE
command that will duplicate that row, but with the primary key values replaced by the values in the last
argument. (To make an exact copy of the row, just specify the same values for the last two arguments.)
The UPDATE command always assigns all fields of the row — the main difference between this and
dblink_build_sql_insert is that it's assumed that the target row already exists in the remote table.

Arguments

relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name
is mixed-case or contains special characters, for example "FooBar"; without quotes, the string will
be folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

src_pk_att_vals_array

Values of the primary key fields to be used to look up the local tuple. Each field is represented in text
form. An error is thrown if there is no local row with these primary key values.

tgt_pk_att_vals_array

Values of the primary key fields to be placed in the resulting UPDATE command. Each field is
represented in text form.

Return Value

Returns the requested SQL statement as text.

2548

Additional Supplied Modules

Notes

As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical
column numbers, corresponding to the column's position in SELECT * FROM relname. Previous
versions interpreted the numbers as physical column positions. There is a difference if any column(s) to
the left of the indicated column have been dropped during the lifetime of the table.

Examples

SELECT dblink_build_sql_update('foo', '1 2', 2, '{"1", "a"}', '{"1",
 "b"}');
 dblink_build_sql_update

 UPDATE foo SET f1='1',f2='b',f3='1' WHERE f1='1' AND f2='b'
(1 row)

F.11. dict_int
dict_int is an example of an add-on dictionary template for full-text search. The motivation for this
example dictionary is to control the indexing of integers (signed and unsigned), allowing such numbers
to be indexed while preventing excessive growth in the number of unique words, which greatly affects
the performance of searching.

F.11.1. Configuration
The dictionary accepts two options:

• The maxlen parameter specifies the maximum number of digits allowed in an integer word. The default
value is 6.

• The rejectlong parameter specifies whether an overlength integer should be truncated or ignored.
If rejectlong is false (the default), the dictionary returns the first maxlen digits of the integer.
If rejectlong is true, the dictionary treats an overlength integer as a stop word, so that it will not
be indexed. Note that this also means that such an integer cannot be searched for.

F.11.2. Usage
Installing the dict_int extension creates a text search template intdict_template and a dictionary
intdict based on it, with the default parameters. You can alter the parameters, for example

mydb# ALTER TEXT SEARCH DICTIONARY intdict (MAXLEN = 4, REJECTLONG =
 true);
ALTER TEXT SEARCH DICTIONARY

or create new dictionaries based on the template.

To test the dictionary, you can try

mydb# select ts_lexize('intdict', '12345678');
 ts_lexize

2549

Additional Supplied Modules

 {123456}

but real-world usage will involve including it in a text search configuration as described in Chapter 12.
That might look like this:

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR int, uint WITH intdict;

F.12. dict_xsyn
dict_xsyn (Extended Synonym Dictionary) is an example of an add-on dictionary template for full-
text search. This dictionary type replaces words with groups of their synonyms, and so makes it possible
to search for a word using any of its synonyms.

F.12.1. Configuration
A dict_xsyn dictionary accepts the following options:

• matchorig controls whether the original word is accepted by the dictionary. Default is true.

• matchsynonyms controls whether the synonyms are accepted by the dictionary. Default is false.

• keeporig controls whether the original word is included in the dictionary's output. Default is true.

• keepsynonyms controls whether the synonyms are included in the dictionary's output. Default is
true.

• rules is the base name of the file containing the list of synonyms. This file must be stored in
$SHAREDIR/tsearch_data/ (where $SHAREDIR means the PostgreSQL installation's shared-
data directory). Its name must end in .rules (which is not to be included in the rules parameter).

The rules file has the following format:

• Each line represents a group of synonyms for a single word, which is given first on the line. Synonyms
are separated by whitespace, thus:

word syn1 syn2 syn3

• The sharp (#) sign is a comment delimiter. It may appear at any position in a line. The rest of the line
will be skipped.

Look at xsyn_sample.rules, which is installed in $SHAREDIR/tsearch_data/, for an
example.

F.12.2. Usage
Installing the dict_xsyn extension creates a text search template xsyn_template and a dictionary
xsyn based on it, with default parameters. You can alter the parameters, for example

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules',
 KEEPORIG=false);
ALTER TEXT SEARCH DICTIONARY

2550

Additional Supplied Modules

or create new dictionaries based on the template.

To test the dictionary, you can try

mydb=# SELECT ts_lexize('xsyn', 'word');
 ts_lexize

 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules',
 KEEPORIG=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'word');
 ts_lexize

 {word,syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules',
 KEEPORIG=false, MATCHSYNONYMS=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
 ts_lexize

 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules',
 KEEPORIG=true, MATCHORIG=false, KEEPSYNONYMS=false);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
 ts_lexize

 {word}

Real-world usage will involve including it in a text search configuration as described in Chapter 12. That
might look like this:

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR word, asciiword WITH xsyn, english_stem;

F.13. earthdistance
The earthdistance module provides two different approaches to calculating great circle distances on
the surface of the Earth. The one described first depends on the cube module (which must be installed
before earthdistance can be installed). The second one is based on the built-in point data type,
using longitude and latitude for the coordinates.

In this module, the Earth is assumed to be perfectly spherical. (If that's too inaccurate for you, you might
want to look at the PostGIS1 project.)

1 http://postgis.net/

2551

http://postgis.net/
http://postgis.net/

Additional Supplied Modules

F.13.1. Cube-based Earth Distances
Data is stored in cubes that are points (both corners are the same) using 3 coordinates representing the x,
y, and z distance from the center of the Earth. A domain earth over cube is provided, which includes
constraint checks that the value meets these restrictions and is reasonably close to the actual surface of
the Earth.

The radius of the Earth is obtained from the earth() function. It is given in meters. But by changing
this one function you can change the module to use some other units, or to use a different value of the
radius that you feel is more appropriate.

This package has applications to astronomical databases as well. Astronomers will probably want to change
earth() to return a radius of 180/pi() so that distances are in degrees.

Functions are provided to support input in latitude and longitude (in degrees), to support output of latitude
and longitude, to calculate the great circle distance between two points and to easily specify a bounding
box usable for index searches.

The provided functions are shown in Table F.5.

Table F.5. Cube-based Earthdistance Functions

Function Returns Description

earth() float8 Returns the assumed radius of the
Earth.

sec_to_gc(float8) float8 Converts the normal straight line
(secant) distance between two
points on the surface of the
Earth to the great circle distance
between them.

gc_to_sec(float8) float8 Converts the great circle distance
between two points on the surface
of the Earth to the normal straight
line (secant) distance between
them.

ll_to_earth(float8,
float8)

earth Returns the location of a point
on the surface of the Earth given
its latitude (argument 1) and
longitude (argument 2) in degrees.

latitude(earth) float8 Returns the latitude in degrees of
a point on the surface of the Earth.

longitude(earth) float8 Returns the longitude in degrees
of a point on the surface of the
Earth.

earth_distance(earth,
earth)

float8 Returns the great circle distance
between two points on the surface
of the Earth.

earth_box(earth,
float8)

cube Returns a box suitable for an
indexed search using the cube
@> operator for points within
a given great circle distance of

2552

Additional Supplied Modules

Function Returns Description

a location. Some points in this
box are further than the specified
great circle distance from the
location, so a second check using
earth_distance should be
included in the query.

F.13.2. Point-based Earth Distances
The second part of the module relies on representing Earth locations as values of type point, in which the
first component is taken to represent longitude in degrees, and the second component is taken to represent
latitude in degrees. Points are taken as (longitude, latitude) and not vice versa because longitude is closer
to the intuitive idea of x-axis and latitude to y-axis.

A single operator is provided, shown in Table F.6.

Table F.6. Point-based Earthdistance Operators

Operator Returns Description

point <@> point float8 Gives the distance in statute miles
between two points on the Earth's
surface.

Note that unlike the cube-based part of the module, units are hardwired here: changing the earth()
function will not affect the results of this operator.

One disadvantage of the longitude/latitude representation is that you need to be careful about the edge
conditions near the poles and near +/- 180 degrees of longitude. The cube-based representation avoids
these discontinuities.

F.14. file_fdw
The file_fdw module provides the foreign-data wrapper file_fdw, which can be used to access data
files in the server's file system, or to execute programs on the server and read their output. The data file
or program output must be in a format that can be read by COPY FROM; see COPY for details. Access
to data files is currently read-only.

A foreign table created using this wrapper can have the following options:

filename

Specifies the file to be read. Must be an absolute path name. Either filename or program must
be specified, but not both.

program

Specifies the command to be executed. The standard output of this command will be read as though
COPY FROM PROGRAM were used. Either program or filename must be specified, but not both.

format

Specifies the data format, the same as COPY's FORMAT option.

2553

Additional Supplied Modules

header

Specifies whether the data has a header line, the same as COPY's HEADER option.

delimiter

Specifies the data delimiter character, the same as COPY's DELIMITER option.

quote

Specifies the data quote character, the same as COPY's QUOTE option.

escape

Specifies the data escape character, the same as COPY's ESCAPE option.

null

Specifies the data null string, the same as COPY's NULL option.

encoding

Specifies the data encoding, the same as COPY's ENCODING option.

Note that while COPY allows options such as HEADER to be specified without a corresponding value, the
foreign table option syntax requires a value to be present in all cases. To activate COPY options typically
written without a value, you can pass the value TRUE, since all such options are Booleans.

A column of a foreign table created using this wrapper can have the following options:

force_not_null

This is a Boolean option. If true, it specifies that values of the column should not be matched against
the null string (that is, the table-level null option). This has the same effect as listing the column
in COPY's FORCE_NOT_NULL option.

force_null

This is a Boolean option. If true, it specifies that values of the column which match the null string
are returned as NULL even if the value is quoted. Without this option, only unquoted values matching
the null string are returned as NULL. This has the same effect as listing the column in COPY's
FORCE_NULL option.

COPY's OIDS and FORCE_QUOTE options are currently not supported by file_fdw.

These options can only be specified for a foreign table or its columns, not in the options of the file_fdw
foreign-data wrapper, nor in the options of a server or user mapping using the wrapper.

Changing table-level options requires being a superuser or having the privileges of the default role
pg_read_server_files (to use a filename) or the default role pg_execute_server_program
(to use a program), for security reasons: only certain users should be able to control which file is read or
which program is run. In principle regular users could be allowed to change the other options, but that's
not supported at present.

When specifying the program option, keep in mind that the option string is executed by the shell. If you
need to pass any arguments to the command that come from an untrusted source, you must be careful to
strip or escape any characters that might have special meaning to the shell. For security reasons, it is best
to use a fixed command string, or at least avoid passing any user input in it.

2554

Additional Supplied Modules

For a foreign table using file_fdw, EXPLAIN shows the name of the file to be read or program to be
run. For a file, unless COSTS OFF is specified, the file size (in bytes) is shown as well.

Example F.1. Create a Foreign Table for PostgreSQL CSV Logs

One of the obvious uses for file_fdw is to make the PostgreSQL activity log available as a table for
querying. To do this, first you must be logging to a CSV file, which here we will call pglog.csv. First,
install file_fdw as an extension:

CREATE EXTENSION file_fdw;

Then create a foreign server:

CREATE SERVER pglog FOREIGN DATA WRAPPER file_fdw;

Now you are ready to create the foreign data table. Using the CREATE FOREIGN TABLE command,
you will need to define the columns for the table, the CSV file name, and its format:

CREATE FOREIGN TABLE pglog (
 log_time timestamp(3) with time zone,
 user_name text,
 database_name text,
 process_id integer,
 connection_from text,
 session_id text,
 session_line_num bigint,
 command_tag text,
 session_start_time timestamp with time zone,
 virtual_transaction_id text,
 transaction_id bigint,
 error_severity text,
 sql_state_code text,
 message text,
 detail text,
 hint text,
 internal_query text,
 internal_query_pos integer,
 context text,
 query text,
 query_pos integer,
 location text,
 application_name text
) SERVER pglog
OPTIONS (filename '/home/josh/data/log/pglog.csv', format 'csv');

That's it — now you can query your log directly. In production, of course, you would need to define some
way to deal with log rotation.

F.15. fuzzystrmatch
The fuzzystrmatch module provides several functions to determine similarities and distance between
strings.

2555

Additional Supplied Modules

Caution

At present, the soundex, metaphone, dmetaphone, and dmetaphone_alt functions do
not work well with multibyte encodings (such as UTF-8).

F.15.1. Soundex
The Soundex system is a method of matching similar-sounding names by converting them to the same
code. It was initially used by the United States Census in 1880, 1900, and 1910. Note that Soundex is not
very useful for non-English names.

The fuzzystrmatch module provides two functions for working with Soundex codes:

soundex(text) returns text
difference(text, text) returns int

The soundex function converts a string to its Soundex code. The difference function converts two
strings to their Soundex codes and then reports the number of matching code positions. Since Soundex
codes have four characters, the result ranges from zero to four, with zero being no match and four being
an exact match. (Thus, the function is misnamed — similarity would have been a better name.)

Here are some usage examples:

SELECT soundex('hello world!');

SELECT soundex('Anne'), soundex('Ann'), difference('Anne', 'Ann');
SELECT soundex('Anne'), soundex('Andrew'), difference('Anne',
 'Andrew');
SELECT soundex('Anne'), soundex('Margaret'), difference('Anne',
 'Margaret');

CREATE TABLE s (nm text);

INSERT INTO s VALUES ('john');
INSERT INTO s VALUES ('joan');
INSERT INTO s VALUES ('wobbly');
INSERT INTO s VALUES ('jack');

SELECT * FROM s WHERE soundex(nm) = soundex('john');

SELECT * FROM s WHERE difference(s.nm, 'john') > 2;

F.15.2. Levenshtein
This function calculates the Levenshtein distance between two strings:

levenshtein(text source, text target, int ins_cost, int del_cost, int
 sub_cost) returns int
levenshtein(text source, text target) returns int

2556

Additional Supplied Modules

levenshtein_less_equal(text source, text target, int ins_cost, int
 del_cost, int sub_cost, int max_d) returns int
levenshtein_less_equal(text source, text target, int max_d) returns
 int

Both source and target can be any non-null string, with a maximum of 255 characters. The cost
parameters specify how much to charge for a character insertion, deletion, or substitution, respectively.
You can omit the cost parameters, as in the second version of the function; in that case they all default to 1.

levenshtein_less_equal is an accelerated version of the Levenshtein function for use when
only small distances are of interest. If the actual distance is less than or equal to max_d, then
levenshtein_less_equal returns the correct distance; otherwise it returns some value greater than
max_d. If max_d is negative then the behavior is the same as levenshtein.

Examples:

test=# SELECT levenshtein('GUMBO', 'GAMBOL');
 levenshtein

 2
(1 row)

test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2, 1, 1);
 levenshtein

 3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 2);
 levenshtein_less_equal

 3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 4);
 levenshtein_less_equal

 4
(1 row)

F.15.3. Metaphone
Metaphone, like Soundex, is based on the idea of constructing a representative code for an input string.
Two strings are then deemed similar if they have the same codes.

This function calculates the metaphone code of an input string:

metaphone(text source, int max_output_length) returns text

source has to be a non-null string with a maximum of 255 characters. max_output_length sets the
maximum length of the output metaphone code; if longer, the output is truncated to this length.

Example:

2557

Additional Supplied Modules

test=# SELECT metaphone('GUMBO', 4);
 metaphone

 KM
(1 row)

F.15.4. Double Metaphone
The Double Metaphone system computes two “sounds like” strings for a given input string — a “primary”
and an “alternate”. In most cases they are the same, but for non-English names especially they can be a bit
different, depending on pronunciation. These functions compute the primary and alternate codes:

dmetaphone(text source) returns text
dmetaphone_alt(text source) returns text

There is no length limit on the input strings.

Example:

test=# SELECT dmetaphone('gumbo');
 dmetaphone

 KMP
(1 row)

F.16. hstore
This module implements the hstore data type for storing sets of key/value pairs within a single
PostgreSQL value. This can be useful in various scenarios, such as rows with many attributes that are
rarely examined, or semi-structured data. Keys and values are simply text strings.

F.16.1. hstore External Representation
The text representation of an hstore, used for input and output, includes zero or more key => value
pairs separated by commas. Some examples:

k => v
foo => bar, baz => whatever
"1-a" => "anything at all"

The order of the pairs is not significant (and may not be reproduced on output). Whitespace between pairs
or around the => sign is ignored. Double-quote keys and values that include whitespace, commas, =s or
>s. To include a double quote or a backslash in a key or value, escape it with a backslash.

Each key in an hstore is unique. If you declare an hstore with duplicate keys, only one will be stored
in the hstore and there is no guarantee as to which will be kept:

SELECT 'a=>1,a=>2'::hstore;
 hstore

2558

Additional Supplied Modules

 "a"=>"1"

A value (but not a key) can be an SQL NULL. For example:

key => NULL

The NULL keyword is case-insensitive. Double-quote the NULL to treat it as the ordinary string “NULL”.

Note

Keep in mind that the hstore text format, when used for input, applies before any required
quoting or escaping. If you are passing an hstore literal via a parameter, then no additional
processing is needed. But if you're passing it as a quoted literal constant, then any single-
quote characters and (depending on the setting of the standard_conforming_strings
configuration parameter) backslash characters need to be escaped correctly. See Section 4.1.2.1
for more on the handling of string constants.

On output, double quotes always surround keys and values, even when it's not strictly necessary.

F.16.2. hstore Operators and Functions
The operators provided by the hstore module are shown in Table F.7, the functions in Table F.8.

Table F.7. hstore Operators

Operator Description Example Result

hstore -> text get value for key (NULL
if not present)

'a=>x,
b=>y'::hstore ->
'a'

x

hstore -> text[] get values for keys
(NULL if not present)

'a=>x, b=>y,
c=>z'::hstore ->
ARRAY['c','a']

{"z","x"}

hstore || hstore concatenate hstores 'a=>b,
c=>d'::hstore ||
'c=>x,
d=>q'::hstore

"a"=>"b",
"c"=>"x",
"d"=>"q"

hstore ? text does hstore contain
key?

'a=>1'::hstore ?
'a'

t

hstore ?& text[] does hstore contain all
specified keys?

'a=>1,b=>2'::hstore ?
& ARRAY['a','b']

t

hstore ?| text[] does hstore contain
any of the specified
keys?

'a=>1,b=>2'::hstore ?|
ARRAY['b','c']

t

hstore @> hstore does left operand contain
right?

'a=>b, b=>1,
c=>NULL'::hstore
@> 'b=>1'

t

hstore <@ hstore is left operand contained
in right?

'a=>c'::hstore <@
'a=>b, b=>1,
c=>NULL'

f

2559

Additional Supplied Modules

Operator Description Example Result

hstore - text delete key from left
operand

'a=>1, b=>2,
c=>3'::hstore -
'b'::text

"a"=>"1",
"c"=>"3"

hstore - text[] delete keys from left
operand

'a=>1, b=>2,
c=>3'::hstore -
ARRAY['a','b']

"c"=>"3"

hstore - hstore delete matching pairs
from left operand

'a=>1, b=>2,
c=>3'::hstore -
'a=>4,
b=>2'::hstore

"a"=>"1",
"c"=>"3"

record #= hstore replace fields in record
with matching values
from hstore

see Examples section

%% hstore convert hstore to array
of alternating keys and
values

%% 'a=>foo,
b=>bar'::hstore

{a,foo,b,bar}

%# hstore convert hstore to two-
dimensional key/value
array

%# 'a=>foo,
b=>bar'::hstore

{{a,foo},
{b,bar}}

Note

Prior to PostgreSQL 8.2, the containment operators @> and <@ were called @ and ~, respectively.
These names are still available, but are deprecated and will eventually be removed. Notice that the
old names are reversed from the convention formerly followed by the core geometric data types!

Table F.8. hstore Functions

Function Return Type Description Example Result

hstore(record)hstore construct an
hstore from a
record or row

hstore(ROW(1,2))f1=>1,f2=>2

hstore(text[])hstore construct an
hstore from an
array, which may be
either a key/value
array, or a two-
dimensional array

hstore(ARRAY['a','1','b','2'])
||
hstore(ARRAY[['c','3'],
['d','4']])

a=>1, b=>2,
c=>3, d=>4

hstore(text[],
text[])

hstore construct an
hstore from
separate key and
value arrays

hstore(ARRAY['a','b'],
ARRAY['1','2'])

"a"=>"1","b"=>"2"

hstore(text,
text)

hstore make single-item
hstore

hstore('a',
'b')

"a"=>"b"

akeys(hstore) text[] get hstore's keys
as an array

akeys('a=>1,b=>2'){a,b}

2560

Additional Supplied Modules

Function Return Type Description Example Result

skeys(hstore) setof text get hstore's keys
as a set

skeys('a=>1,b=>2')
a
b

avals(hstore) text[] get hstore's
values as an array

avals('a=>1,b=>2'){1,2}

svals(hstore) setof text get hstore's
values as a set

svals('a=>1,b=>2')
1
2

hstore_to_array(hstore)text[] get hstore's keys
and values as an
array of alternating
keys and values

hstore_to_array('a=>1,b=>2'){a,1,b,2}

hstore_to_matrix(hstore)text[] get hstore's keys
and values as a two-
dimensional array

hstore_to_matrix('a=>1,b=>2'){{a,1},{b,2}}

hstore_to_json(hstore)json get hstore as
a json value,
converting all non-
null values to JSON
strings

hstore_to_json('"a
key"=>1,
b=>t,
c=>null,
d=>12345,
e=>012345,
f=>1.234,
g=>2.345e+4')

{"a key":
"1", "b":
"t", "c":
null, "d":
"12345", "e":
"012345",
"f": "1.234",
"g": "2.345e
+4"}

hstore_to_jsonb(hstore)jsonb get hstore as
a jsonb value,
converting all non-
null values to JSON
strings

hstore_to_jsonb('"a
key"=>1,
b=>t,
c=>null,
d=>12345,
e=>012345,
f=>1.234,
g=>2.345e+4')

{"a key":
"1", "b":
"t", "c":
null, "d":
"12345", "e":
"012345",
"f": "1.234",
"g": "2.345e
+4"}

hstore_to_json_loose(hstore)json get hstore as
a json value,
but attempt to
distinguish
numerical and
Boolean values so
they are unquoted in
the JSON

hstore_to_json_loose('"a
key"=>1,
b=>t,
c=>null,
d=>12345,
e=>012345,
f=>1.234,
g=>2.345e+4')

{"a key":
1, "b":
true, "c":
null, "d":
12345, "e":
"012345",
"f": 1.234,
"g": 2.345e
+4}

hstore_to_jsonb_loose(hstore)jsonb get hstore as
a jsonb value,
but attempt to
distinguish
numerical and
Boolean values so

hstore_to_jsonb_loose('"a
key"=>1,
b=>t,
c=>null,
d=>12345,
e=>012345,

{"a key":
1, "b":
true, "c":
null, "d":
12345, "e":
"012345",
"f": 1.234,

2561

Additional Supplied Modules

Function Return Type Description Example Result

they are unquoted in
the JSON

f=>1.234,
g=>2.345e+4')

"g": 2.345e
+4}

slice(hstore,
text[])

hstore extract a subset of
an hstore

slice('a=>1,b=>2,c=>3'::hstore,
ARRAY['b','c','x'])

"b"=>"2",
"c"=>"3"

each(hstore) setof(key
text, value
text)

get hstore's keys
and values as a set

select * from
each('a=>1,b=>2') key | value

-----+-------
 a | 1
 b | 2

exist(hstore,text)boolean does hstore
contain key?

exist('a=>1','a')t

defined(hstore,text)boolean does hstore
contain non-NULL
value for key?

defined('a=>NULL','a')f

delete(hstore,text)hstore delete pair with
matching key

delete('a=>1,b=>2','b')"a"=>"1"

delete(hstore,text[])hstore delete pairs with
matching keys

delete('a=>1,b=>2,c=>3',ARRAY['a','b'])"c"=>"3"

delete(hstore,hstore)hstore delete pairs
matching those
in the second
argument

delete('a=>1,b=>2','a=>4,b=>2'::hstore)"a"=>"1"

populate_record(record,hstore)record replace fields in
record with
matching values
from hstore

see Examples
section

Note

The function hstore_to_json is used when an hstore value is cast to json. Likewise,
hstore_to_jsonb is used when an hstore value is cast to jsonb.

Note

The function populate_record is actually declared with anyelement, not record, as its
first argument, but it will reject non-record types with a run-time error.

F.16.3. Indexes
hstore has GiST and GIN index support for the @>, ?, ?& and ?| operators. For example:

CREATE INDEX hidx ON testhstore USING GIST (h);

CREATE INDEX hidx ON testhstore USING GIN (h);

2562

Additional Supplied Modules

hstore also supports btree or hash indexes for the = operator. This allows hstore columns to be
declared UNIQUE, or to be used in GROUP BY, ORDER BY or DISTINCT expressions. The sort ordering
for hstore values is not particularly useful, but these indexes may be useful for equivalence lookups.
Create indexes for = comparisons as follows:

CREATE INDEX hidx ON testhstore USING BTREE (h);

CREATE INDEX hidx ON testhstore USING HASH (h);

F.16.4. Examples
Add a key, or update an existing key with a new value:

UPDATE tab SET h = h || hstore('c', '3');

Delete a key:

UPDATE tab SET h = delete(h, 'k1');

Convert a record to an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT hstore(t) FROM test AS t;
 hstore

 "col1"=>"123", "col2"=>"foo", "col3"=>"bar"
(1 row)

Convert an hstore to a predefined record type:

CREATE TABLE test (col1 integer, col2 text, col3 text);

SELECT * FROM populate_record(null::test,
 '"col1"=>"456", "col2"=>"zzz"');
 col1 | col2 | col3
------+------+------
 456 | zzz |
(1 row)

Modify an existing record using the values from an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT (r).* FROM (SELECT t #= '"col3"=>"baz"' AS r FROM test t) s;
 col1 | col2 | col3
------+------+------

2563

Additional Supplied Modules

 123 | foo | baz
(1 row)

F.16.5. Statistics
The hstore type, because of its intrinsic liberality, could contain a lot of different keys. Checking for
valid keys is the task of the application. The following examples demonstrate several techniques for
checking keys and obtaining statistics.

Simple example:

SELECT * FROM each('aaa=>bq, b=>NULL, ""=>1');

Using a table:

SELECT (each(h)).key, (each(h)).value INTO stat FROM testhstore;

Online statistics:

SELECT key, count(*) FROM
 (SELECT (each(h)).key FROM testhstore) AS stat
 GROUP BY key
 ORDER BY count DESC, key;
 key | count
-----------+-------
 line | 883
 query | 207
 pos | 203
 node | 202
 space | 197
 status | 195
 public | 194
 title | 190
 org | 189
...................

F.16.6. Compatibility
As of PostgreSQL 9.0, hstore uses a different internal representation than previous versions. This
presents no obstacle for dump/restore upgrades since the text representation (used in the dump) is
unchanged.

In the event of a binary upgrade, upward compatibility is maintained by having the new code recognize
old-format data. This will entail a slight performance penalty when processing data that has not yet been
modified by the new code. It is possible to force an upgrade of all values in a table column by doing an
UPDATE statement as follows:

UPDATE tablename SET hstorecol = hstorecol || '';

Another way to do it is:

2564

Additional Supplied Modules

ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol ||
 '';

The ALTER TABLE method requires an exclusive lock on the table, but does not result in bloating the
table with old row versions.

F.16.7. Transforms
Additional extensions are available that implement transforms for the hstore type for the languages PL/
Perl and PL/Python. The extensions for PL/Perl are called hstore_plperl and hstore_plperlu,
for trusted and untrusted PL/Perl. If you install these transforms and specify them when creating
a function, hstore values are mapped to Perl hashes. The extensions for PL/Python are called
hstore_plpythonu, hstore_plpython2u, and hstore_plpython3u (see Section 46.1 for
the PL/Python naming convention). If you use them, hstore values are mapped to Python dictionaries.

F.16.8. Authors
Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd., Russia

Additional enhancements by Andrew Gierth <andrew@tao11.riddles.org.uk>, United
Kingdom

F.17. intagg
The intagg module provides an integer aggregator and an enumerator. intagg is now obsolete, because
there are built-in functions that provide a superset of its capabilities. However, the module is still provided
as a compatibility wrapper around the built-in functions.

F.17.1. Functions
The aggregator is an aggregate function int_array_aggregate(integer) that produces an integer
array containing exactly the integers it is fed. This is a wrapper around array_agg, which does the same
thing for any array type.

The enumerator is a function int_array_enum(integer[]) that returns setof integer. It is
essentially the reverse operation of the aggregator: given an array of integers, expand it into a set of rows.
This is a wrapper around unnest, which does the same thing for any array type.

F.17.2. Sample Uses
Many database systems have the notion of a one to many table. Such a table usually sits between two
indexed tables, for example:

CREATE TABLE left (id INT PRIMARY KEY, ...);
CREATE TABLE right (id INT PRIMARY KEY, ...);
CREATE TABLE one_to_many(left INT REFERENCES left, right INT
 REFERENCES right);

2565

Additional Supplied Modules

It is typically used like this:

SELECT right.* from right JOIN one_to_many ON (right.id =
 one_to_many.right)
 WHERE one_to_many.left = item;

This will return all the items in the right hand table for an entry in the left hand table. This is a very common
construct in SQL.

Now, this methodology can be cumbersome with a very large number of entries in the one_to_many
table. Often, a join like this would result in an index scan and a fetch for each right hand entry in the table
for a particular left hand entry. If you have a very dynamic system, there is not much you can do. However,
if you have some data which is fairly static, you can create a summary table with the aggregator.

CREATE TABLE summary AS
 SELECT left, int_array_aggregate(right) AS right
 FROM one_to_many
 GROUP BY left;

This will create a table with one row per left item, and an array of right items. Now this is pretty useless
without some way of using the array; that's why there is an array enumerator. You can do

SELECT left, int_array_enum(right) FROM summary WHERE left = item;

The above query using int_array_enum produces the same results as

SELECT left, right FROM one_to_many WHERE left = item;

The difference is that the query against the summary table has to get only one row from the table, whereas
the direct query against one_to_many must index scan and fetch a row for each entry.

On one system, an EXPLAIN showed a query with a cost of 8488 was reduced to a cost of 329. The original
query was a join involving the one_to_many table, which was replaced by:

SELECT right, count(right) FROM
 (SELECT left, int_array_enum(right) AS right
 FROM summary JOIN (SELECT left FROM left_table WHERE left = item)
 AS lefts
 ON (summary.left = lefts.left)
) AS list
 GROUP BY right
 ORDER BY count DESC;

F.18. intarray
The intarray module provides a number of useful functions and operators for manipulating null-free
arrays of integers. There is also support for indexed searches using some of the operators.

All of these operations will throw an error if a supplied array contains any NULL elements.

2566

Additional Supplied Modules

Many of these operations are only sensible for one-dimensional arrays. Although they will accept input
arrays of more dimensions, the data is treated as though it were a linear array in storage order.

F.18.1. intarray Functions and Operators
The functions provided by the intarray module are shown in Table F.9, the operators in Table F.10.

Table F.9. intarray Functions

Function Return Type Description Example Result

icount(int[]) int number of elements
in array

icount('{1,2,3}'::int[])3

sort(int[],
text dir)

int[] sort array — dir
must be asc or
desc

sort('{1,2,3}'::int[],
'desc')

{3,2,1}

sort(int[]) int[] sort in ascending
order

sort(array[11,77,44]){11,44,77}

sort_asc(int[])int[] sort in ascending
order

sort_desc(int[])int[] sort in descending
order

uniq(int[]) int[] remove adjacent
duplicates

uniq(sort('{1,2,3,2,1}'::int[])){1,2,3}

idx(int[],
int item)

int index of first
element matching
item (0 if none)

idx(array[11,22,33,22,11],
22)

2

subarray(int[],
int start,
int len)

int[] portion of array
starting at position
start, len
elements

subarray('{1,2,3,2,1}'::int[],
2, 3)

{2,3,2}

subarray(int[],
int start)

int[] portion of array
starting at position
start

subarray('{1,2,3,2,1}'::int[],
2)

{2,3,2,1}

intset(int) int[] make single-
element array

intset(42) {42}

Table F.10. intarray Operators

Operator Returns Description

int[] && int[] boolean overlap — true if arrays have at
least one common element

int[] @> int[] boolean contains — true if left array
contains right array

int[] <@ int[] boolean contained — true if left array is
contained in right array

int[] int number of elements in array

int[] # int int index (same as idx function)

2567

Additional Supplied Modules

Operator Returns Description

int[] + int int[] push element onto array (add it to
end of array)

int[] + int[] int[] array concatenation (right array
added to the end of left one)

int[] - int int[] remove entries matching right
argument from array

int[] - int[] int[] remove elements of right array
from left

int[] | int int[] union of arguments

int[] | int[] int[] union of arrays

int[] & int[] int[] intersection of arrays

int[] @@ query_int boolean true if array satisfies query (see
below)

query_int ~~ int[] boolean true if array satisfies query
(commutator of @@)

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names are
reversed from the convention formerly followed by the core geometric data types!)

The operators &&, @> and <@ are equivalent to PostgreSQL's built-in operators of the same names, except
that they work only on integer arrays that do not contain nulls, while the built-in operators work for any
array type. This restriction makes them faster than the built-in operators in many cases.

The @@ and ~~ operators test whether an array satisfies a query, which is expressed as a value of a
specialized data type query_int. A query consists of integer values that are checked against the elements
of the array, possibly combined using the operators & (AND), | (OR), and ! (NOT). Parentheses can be
used as needed. For example, the query 1&(2|3) matches arrays that contain 1 and also contain either
2 or 3.

F.18.2. Index Support
intarray provides index support for the &&, @>, <@, and @@ operators, as well as regular array equality.

Two GiST index operator classes are provided: gist__int_ops (used by default) is suitable for small-
to medium-size data sets, while gist__intbig_ops uses a larger signature and is more suitable
for indexing large data sets (i.e., columns containing a large number of distinct array values). The
implementation uses an RD-tree data structure with built-in lossy compression.

There is also a non-default GIN operator class gin__int_ops supporting the same operators.

The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST
and GIN, which are discussed elsewhere.

F.18.3. Example

-- a message can be in one or more “sections”
CREATE TABLE message (mid INT PRIMARY KEY, sections INT[], ...);

-- create specialized index

2568

Additional Supplied Modules

CREATE INDEX message_rdtree_idx ON message USING GIST (sections
 gist__int_ops);

-- select messages in section 1 OR 2 - OVERLAP operator
SELECT message.mid FROM message WHERE message.sections && '{1,2}';

-- select messages in sections 1 AND 2 - CONTAINS operator
SELECT message.mid FROM message WHERE message.sections @> '{1,2}';

-- the same, using QUERY operator
SELECT message.mid FROM message WHERE message.sections @@
 '1&2'::query_int;

F.18.4. Benchmark
The source directory contrib/intarray/bench contains a benchmark test suite, which can be run
against an installed PostgreSQL server. (It also requires DBD::Pg to be installed.) To run:

cd .../contrib/intarray/bench
createdb TEST
psql -c "CREATE EXTENSION intarray" TEST
./create_test.pl | psql TEST
./bench.pl

The bench.pl script has numerous options, which are displayed when it is run without any arguments.

F.18.5. Authors
All work was done by Teodor Sigaev (<teodor@sigaev.ru>) and Oleg Bartunov
(<oleg@sai.msu.su>). See http://www.sai.msu.su/~megera/postgres/gist/ for additional information.
Andrey Oktyabrski did a great work on adding new functions and operations.

F.19. isn
The isn module provides data types for the following international product numbering standards: EAN13,
UPC, ISBN (books), ISMN (music), and ISSN (serials). Numbers are validated on input according to
a hard-coded list of prefixes; this list of prefixes is also used to hyphenate numbers on output. Since
new prefixes are assigned from time to time, the list of prefixes may be out of date. It is hoped that
a future version of this module will obtained the prefix list from one or more tables that can be easily
updated by users as needed; however, at present, the list can only be updated by modifying the source
code and recompiling. Alternatively, prefix validation and hyphenation support may be dropped from a
future version of this module.

F.19.1. Data Types
Table F.11 shows the data types provided by the isn module.

Table F.11. isn Data Types

Data Type Description

EAN13 European Article Numbers, always displayed in the
EAN13 display format

2569

http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Modules

Data Type Description

ISBN13 International Standard Book Numbers to be
displayed in the new EAN13 display format

ISMN13 International Standard Music Numbers to be
displayed in the new EAN13 display format

ISSN13 International Standard Serial Numbers to be
displayed in the new EAN13 display format

ISBN International Standard Book Numbers to be
displayed in the old short display format

ISMN International Standard Music Numbers to be
displayed in the old short display format

ISSN International Standard Serial Numbers to be
displayed in the old short display format

UPC Universal Product Codes

Some notes:

1. ISBN13, ISMN13, ISSN13 numbers are all EAN13 numbers.

2. EAN13 numbers aren't always ISBN13, ISMN13 or ISSN13 (some are).

3. Some ISBN13 numbers can be displayed as ISBN.

4. Some ISMN13 numbers can be displayed as ISMN.

5. Some ISSN13 numbers can be displayed as ISSN.

6. UPC numbers are a subset of the EAN13 numbers (they are basically EAN13 without the first 0 digit).

7. All UPC, ISBN, ISMN and ISSN numbers can be represented as EAN13 numbers.

Internally, all these types use the same representation (a 64-bit integer), and all are interchangeable.
Multiple types are provided to control display formatting and to permit tighter validity checking of input
that is supposed to denote one particular type of number.

The ISBN, ISMN, and ISSN types will display the short version of the number (ISxN 10) whenever it's
possible, and will show ISxN 13 format for numbers that do not fit in the short version. The EAN13,
ISBN13, ISMN13 and ISSN13 types will always display the long version of the ISxN (EAN13).

F.19.2. Casts
The isn module provides the following pairs of type casts:

• ISBN13 <=> EAN13

• ISMN13 <=> EAN13

• ISSN13 <=> EAN13

• ISBN <=> EAN13

• ISMN <=> EAN13

• ISSN <=> EAN13

• UPC <=> EAN13

2570

Additional Supplied Modules

• ISBN <=> ISBN13

• ISMN <=> ISMN13

• ISSN <=> ISSN13

When casting from EAN13 to another type, there is a run-time check that the value is within the domain of
the other type, and an error is thrown if not. The other casts are simply relabelings that will always succeed.

F.19.3. Functions and Operators
The isn module provides the standard comparison operators, plus B-tree and hash indexing support for
all these data types. In addition there are several specialized functions; shown in Table F.12. In this table,
isn means any one of the module's data types.

Table F.12. isn Functions

Function Returns Description

isn_weak(boolean) boolean Sets the weak input mode (returns
new setting)

isn_weak() boolean Gets the current status of the weak
mode

make_valid(isn) isn Validates an invalid number
(clears the invalid flag)

is_valid(isn) boolean Checks for the presence of the
invalid flag

Weak mode is used to be able to insert invalid data into a table. Invalid means the check digit is wrong,
not that there are missing numbers.

Why would you want to use the weak mode? Well, it could be that you have a huge collection of ISBN
numbers, and that there are so many of them that for weird reasons some have the wrong check digit
(perhaps the numbers were scanned from a printed list and the OCR got the numbers wrong, perhaps the
numbers were manually captured... who knows). Anyway, the point is you might want to clean the mess
up, but you still want to be able to have all the numbers in your database and maybe use an external tool
to locate the invalid numbers in the database so you can verify the information and validate it more easily;
so for example you'd want to select all the invalid numbers in the table.

When you insert invalid numbers in a table using the weak mode, the number will be inserted with the
corrected check digit, but it will be displayed with an exclamation mark (!) at the end, for example
0-11-000322-5!. This invalid marker can be checked with the is_valid function and cleared with
the make_valid function.

You can also force the insertion of invalid numbers even when not in the weak mode, by appending the
! character at the end of the number.

Another special feature is that during input, you can write ? in place of the check digit, and the correct
check digit will be inserted automatically.

F.19.4. Examples

--Using the types directly:
SELECT isbn('978-0-393-04002-9');

2571

Additional Supplied Modules

SELECT isbn13('0901690546');
SELECT issn('1436-4522');

--Casting types:
-- note that you can only cast from ean13 to another type when the
-- number would be valid in the realm of the target type;
-- thus, the following will NOT work: select
 isbn(ean13('0220356483481'));
-- but these will:
SELECT upc(ean13('0220356483481'));
SELECT ean13(upc('220356483481'));

--Create a table with a single column to hold ISBN numbers:
CREATE TABLE test (id isbn);
INSERT INTO test VALUES('9780393040029');

--Automatically calculate check digits (observe the '?'):
INSERT INTO test VALUES('220500896?');
INSERT INTO test VALUES('978055215372?');

SELECT issn('3251231?');
SELECT ismn('979047213542?');

--Using the weak mode:
SELECT isn_weak(true);
INSERT INTO test VALUES('978-0-11-000533-4');
INSERT INTO test VALUES('9780141219307');
INSERT INTO test VALUES('2-205-00876-X');
SELECT isn_weak(false);

SELECT id FROM test WHERE NOT is_valid(id);
UPDATE test SET id = make_valid(id) WHERE id = '2-205-00876-X!';

SELECT * FROM test;

SELECT isbn13(id) FROM test;

F.19.5. Bibliography
The information to implement this module was collected from several sites, including:

• https://www.isbn-international.org/

• http://www.issn.org/

• https://www.ismn-international.org/

• https://www.wikipedia.org/

The prefixes used for hyphenation were also compiled from:

• https://www.gs1.org/standards/id-keys

• https://en.wikipedia.org/wiki/List_of_ISBN_identifier_groups

• https://www.isbn-international.org/content/isbn-users-manual

2572

https://www.isbn-international.org/
http://www.issn.org/
https://www.ismn-international.org/
https://www.wikipedia.org/
https://www.gs1.org/standards/id-keys
https://en.wikipedia.org/wiki/List_of_ISBN_identifier_groups
https://www.isbn-international.org/content/isbn-users-manual

Additional Supplied Modules

• https://en.wikipedia.org/wiki/International_Standard_Music_Number

• https://www.ismn-international.org/ranges.html

Care was taken during the creation of the algorithms and they were meticulously verified against the
suggested algorithms in the official ISBN, ISMN, ISSN User Manuals.

F.19.6. Author
Germán Méndez Bravo (Kronuz), 2004 - 2006

This module was inspired by Garrett A. Wollman's isbn_issn code.

F.20. lo
The lo module provides support for managing Large Objects (also called LOs or BLOBs). This includes
a data type lo and a trigger lo_manage.

F.20.1. Rationale
One of the problems with the JDBC driver (and this affects the ODBC driver also), is that the specification
assumes that references to BLOBs (Binary Large OBjects) are stored within a table, and if that entry is
changed, the associated BLOB is deleted from the database.

As PostgreSQL stands, this doesn't occur. Large objects are treated as objects in their own right; a table
entry can reference a large object by OID, but there can be multiple table entries referencing the same large
object OID, so the system doesn't delete the large object just because you change or remove one such entry.

Now this is fine for PostgreSQL-specific applications, but standard code using JDBC or ODBC won't
delete the objects, resulting in orphan objects — objects that are not referenced by anything, and simply
occupy disk space.

The lo module allows fixing this by attaching a trigger to tables that contain LO reference columns. The
trigger essentially just does a lo_unlink whenever you delete or modify a value referencing a large
object. When you use this trigger, you are assuming that there is only one database reference to any large
object that is referenced in a trigger-controlled column!

The module also provides a data type lo, which is really just a domain of the oid type. This is useful for
differentiating database columns that hold large object references from those that are OIDs of other things.
You don't have to use the lo type to use the trigger, but it may be convenient to use it to keep track of
which columns in your database represent large objects that you are managing with the trigger. It is also
rumored that the ODBC driver gets confused if you don't use lo for BLOB columns.

F.20.2. How to Use It
Here's a simple example of usage:

CREATE TABLE image (title text, raster lo);

CREATE TRIGGER t_raster BEFORE UPDATE OR DELETE ON image
 FOR EACH ROW EXECUTE FUNCTION lo_manage(raster);

For each column that will contain unique references to large objects, create a BEFORE UPDATE OR
DELETE trigger, and give the column name as the sole trigger argument. You can also restrict the trigger

2573

https://en.wikipedia.org/wiki/International_Standard_Music_Number
https://www.ismn-international.org/ranges.html

Additional Supplied Modules

to only execute on updates to the column by using BEFORE UPDATE OF column_name. If you need
multiple lo columns in the same table, create a separate trigger for each one, remembering to give a
different name to each trigger on the same table.

F.20.3. Limitations
• Dropping a table will still orphan any objects it contains, as the trigger is not executed. You can avoid

this by preceding the DROP TABLE with DELETE FROM table.

TRUNCATE has the same hazard.

If you already have, or suspect you have, orphaned large objects, see the vacuumlo module to help you
clean them up. It's a good idea to run vacuumlo occasionally as a back-stop to the lo_manage trigger.

• Some frontends may create their own tables, and will not create the associated trigger(s). Also, users
may not remember (or know) to create the triggers.

F.20.4. Author
Peter Mount <peter@retep.org.uk>

F.21. ltree
This module implements a data type ltree for representing labels of data stored in a hierarchical tree-
like structure. Extensive facilities for searching through label trees are provided.

F.21.1. Definitions
A label is a sequence of alphanumeric characters and underscores (for example, in C locale the characters
A-Za-z0-9_ are allowed). Labels must be less than 256 bytes long.

Examples: 42, Personal_Services

A label path is a sequence of zero or more labels separated by dots, for example L1.L2.L3, representing
a path from the root of a hierarchical tree to a particular node. The length of a label path must be less than
65kB, but keeping it under 2kB is preferable.

Example: Top.Countries.Europe.Russia

The ltree module provides several data types:

• ltree stores a label path.

• lquery represents a regular-expression-like pattern for matching ltree values. A simple word
matches that label within a path. A star symbol (*) matches zero or more labels. For example:

foo Match the exact label path foo
.foo. Match any label path containing the label foo
*.foo Match any label path whose last label is foo

Star symbols can also be quantified to restrict how many labels they can match:

2574

Additional Supplied Modules

*{n} Match exactly n labels
*{n,} Match at least n labels
*{n,m} Match at least n but not more than m labels
*{,m} Match at most m labels — same as *{0,m}

There are several modifiers that can be put at the end of a non-star label in lquery to make it match
more than just the exact match:

@ Match case-insensitively, for example a@ matches A
* Match any label with this prefix, for example foo*
 matches foobar
% Match initial underscore-separated words

The behavior of % is a bit complicated. It tries to match words rather than the entire label. For
example foo_bar% matches foo_bar_baz but not foo_barbaz. If combined with *, prefix
matching applies to each word separately, for example foo_bar%* matches foo1_bar2_baz but
not foo1_br2_baz.

Also, you can write several possibly-modified labels separated with | (OR) to match any of those labels,
and you can put ! (NOT) at the start to match any label that doesn't match any of the alternatives.

Here's an annotated example of lquery:

Top.*{0,2}.sport*@.!football|tennis.Russ*|Spain
a. b. c. d. e.

This query will match any label path that:

a. begins with the label Top

b. and next has zero to two labels before

c. a label beginning with the case-insensitive prefix sport

d. then a label not matching football nor tennis

e. and then ends with a label beginning with Russ or exactly matching Spain.

• ltxtquery represents a full-text-search-like pattern for matching ltree values. An ltxtquery
value contains words, possibly with the modifiers @, *, % at the end; the modifiers have the same
meanings as in lquery. Words can be combined with & (AND), | (OR), ! (NOT), and parentheses.
The key difference from lquery is that ltxtquery matches words without regard to their position
in the label path.

Here's an example ltxtquery:

Europe & Russia*@ & !Transportation

This will match paths that contain the label Europe and any label beginning with Russia (case-
insensitive), but not paths containing the label Transportation. The location of these words within
the path is not important. Also, when % is used, the word can be matched to any underscore-separated
word within a label, regardless of position.

Note: ltxtquery allows whitespace between symbols, but ltree and lquery do not.

2575

Additional Supplied Modules

F.21.2. Operators and Functions
Type ltree has the usual comparison operators =, <>, <, >, <=, >=. Comparison sorts in the order of a
tree traversal, with the children of a node sorted by label text. In addition, the specialized operators shown
in Table F.13 are available.

Table F.13. ltree Operators

Operator Returns Description

ltree @> ltree boolean is left argument an ancestor of
right (or equal)?

ltree <@ ltree boolean is left argument a descendant of
right (or equal)?

ltree ~ lquery boolean does ltree match lquery?

lquery ~ ltree boolean does ltree match lquery?

ltree ? lquery[] boolean does ltree match any lquery
in array?

lquery[] ? ltree boolean does ltree match any lquery
in array?

ltree @ ltxtquery boolean does ltree match
ltxtquery?

ltxtquery @ ltree boolean does ltree match
ltxtquery?

ltree || ltree ltree concatenate ltree paths

ltree || text ltree convert text to ltree and
concatenate

text || ltree ltree convert text to ltree and
concatenate

ltree[] @> ltree boolean does array contain an ancestor of
ltree?

ltree <@ ltree[] boolean does array contain an ancestor of
ltree?

ltree[] <@ ltree boolean does array contain a descendant of
ltree?

ltree @> ltree[] boolean does array contain a descendant of
ltree?

ltree[] ~ lquery boolean does array contain any path
matching lquery?

lquery ~ ltree[] boolean does array contain any path
matching lquery?

ltree[] ? lquery[] boolean does ltree array contain any
path matching any lquery?

lquery[] ? ltree[] boolean does ltree array contain any
path matching any lquery?

ltree[] @ ltxtquery boolean does array contain any path
matching ltxtquery?

2576

Additional Supplied Modules

Operator Returns Description

ltxtquery @ ltree[] boolean does array contain any path
matching ltxtquery?

ltree[] ?@> ltree ltree first array entry that is an ancestor
of ltree; NULL if none

ltree[] ?<@ ltree ltree first array entry that is a
descendant of ltree; NULL if
none

ltree[] ?~ lquery ltree first array entry that matches
lquery; NULL if none

ltree[] ?@ ltxtquery ltree first array entry that matches
ltxtquery; NULL if none

The operators <@, @>, @ and ~ have analogues ^<@, ^@>, ^@, ^~, which are the same except they do not
use indexes. These are useful only for testing purposes.

The available functions are shown in Table F.14.

Table F.14. ltree Functions

Function Return Type Description Example Result

subltree(ltree,
int start,
int end)

ltree subpath of ltree
from position
start to position
end-1 (counting
from 0)

subltree('Top.Child1.Child2',1,2)Child1

subpath(ltree,
int offset,
int len)

ltree subpath of ltree
starting at position
offset, length
len. If offset
is negative, subpath
starts that far from
the end of the path.
If len is negative,
leaves that many
labels off the end of
the path.

subpath('Top.Child1.Child2',0,2)Top.Child1

subpath(ltree,
int offset)

ltree subpath of ltree
starting at position
offset,
extending to end of
path. If offset
is negative, subpath
starts that far from
the end of the path.

subpath('Top.Child1.Child2',1)Child1.Child2

nlevel(ltree) integer number of labels in
path

nlevel('Top.Child1.Child2')3

index(ltree
a, ltree b)

integer position of first
occurrence of b in
a; -1 if not found

index('0.1.2.3.5.4.5.6.8.5.6.8','5.6')6

2577

Additional Supplied Modules

Function Return Type Description Example Result

index(ltree
a, ltree b,
int offset)

integer position of first
occurrence of b
in a, searching
starting at offset;
negative offset
means start -
offset labels
from the end of the
path

index('0.1.2.3.5.4.5.6.8.5.6.8','5.6',-4)9

text2ltree(text)ltree cast text to
ltree

ltree2text(ltree)text cast ltree to
text

lca(ltree,
ltree, ...)

ltree longest common
ancestor of paths
(up to 8 arguments
supported)

lca('1.2.3','1.2.3.4.5.6')1.2

lca(ltree[]) ltree longest common
ancestor of paths in
array

lca(array['1.2.3'::ltree,'1.2.3.4'])1.2

F.21.3. Indexes
ltree supports several types of indexes that can speed up the indicated operators:

• B-tree index over ltree: <, <=, =, >=, >

• GiST index over ltree: <, <=, =, >=, >, @>, <@, @, ~, ?

Example of creating such an index:

CREATE INDEX path_gist_idx ON test USING GIST (path);

• GiST index over ltree[]: ltree[] <@ ltree, ltree @> ltree[], @, ~, ?

Example of creating such an index:

CREATE INDEX path_gist_idx ON test USING GIST (array_path);

Note: This index type is lossy.

F.21.4. Example
This example uses the following data (also available in file contrib/ltree/ltreetest.sql in the
source distribution):

CREATE TABLE test (path ltree);
INSERT INTO test VALUES ('Top');

2578

Additional Supplied Modules

INSERT INTO test VALUES ('Top.Science');
INSERT INTO test VALUES ('Top.Science.Astronomy');
INSERT INTO test VALUES ('Top.Science.Astronomy.Astrophysics');
INSERT INTO test VALUES ('Top.Science.Astronomy.Cosmology');
INSERT INTO test VALUES ('Top.Hobbies');
INSERT INTO test VALUES ('Top.Hobbies.Amateurs_Astronomy');
INSERT INTO test VALUES ('Top.Collections');
INSERT INTO test VALUES ('Top.Collections.Pictures');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Stars');
INSERT INTO test VALUES
 ('Top.Collections.Pictures.Astronomy.Galaxies');
INSERT INTO test VALUES
 ('Top.Collections.Pictures.Astronomy.Astronauts');
CREATE INDEX path_gist_idx ON test USING GIST (path);
CREATE INDEX path_idx ON test USING BTREE (path);

Now, we have a table test populated with data describing the hierarchy shown below:

 Top
 / | \
 Science Hobbies Collections
 / | \
 Astronomy Amateurs_Astronomy Pictures
 / \ |
Astrophysics Cosmology Astronomy
 / | \
 Galaxies Stars Astronauts

We can do inheritance:

ltreetest=> SELECT path FROM test WHERE path <@ 'Top.Science';
 path

 Top.Science
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(4 rows)

Here are some examples of path matching:

ltreetest=> SELECT path FROM test WHERE path ~ '*.Astronomy.*';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Collections.Pictures.Astronomy
 Top.Collections.Pictures.Astronomy.Stars
 Top.Collections.Pictures.Astronomy.Galaxies

2579

Additional Supplied Modules

 Top.Collections.Pictures.Astronomy.Astronauts
(7 rows)

ltreetest=> SELECT path FROM test WHERE path ~ '*.!
pictures@.*.Astronomy.*';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)

Here are some examples of full text search:

ltreetest=> SELECT path FROM test WHERE path @ 'Astro*% & !pictures@';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Hobbies.Amateurs_Astronomy
(4 rows)

ltreetest=> SELECT path FROM test WHERE path @ 'Astro* & !pictures@';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)

Path construction using functions:

ltreetest=> SELECT subpath(path,0,2)||'Space'||subpath(path,2) FROM
 test WHERE path <@ 'Top.Science.Astronomy';
 ?column?
--
 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)

We could simplify this by creating a SQL function that inserts a label at a specified position in a path:

CREATE FUNCTION ins_label(ltree, int, text) RETURNS ltree
 AS 'select subpath($1,0,$2) || $3 || subpath($1,$2);'
 LANGUAGE SQL IMMUTABLE;

ltreetest=> SELECT ins_label(path,2,'Space') FROM test WHERE path <@
 'Top.Science.Astronomy';
 ins_label
--

2580

Additional Supplied Modules

 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)

F.21.5. Transforms

Additional extensions are available that implement transforms for the ltree type for PL/Python. The
extensions are called ltree_plpythonu, ltree_plpython2u, and ltree_plpython3u (see
Section 46.1 for the PL/Python naming convention). If you install these transforms and specify them when
creating a function, ltree values are mapped to Python lists. (The reverse is currently not supported,
however.)

F.21.6. Authors

All work was done by Teodor Sigaev (<teodor@stack.net>) and Oleg Bartunov
(<oleg@sai.msu.su>). See http://www.sai.msu.su/~megera/postgres/gist/ for additional information.
Authors would like to thank Eugeny Rodichev for helpful discussions. Comments and bug reports are
welcome.

F.22. pageinspect
The pageinspect module provides functions that allow you to inspect the contents of database pages at
a low level, which is useful for debugging purposes. All of these functions may be used only by superusers.

F.22.1. General Functions

get_raw_page(relname text, fork text, blkno int) returns bytea

get_raw_page reads the specified block of the named relation and returns a copy as a bytea
value. This allows a single time-consistent copy of the block to be obtained. fork should be 'main'
for the main data fork, 'fsm' for the free space map, 'vm' for the visibility map, or 'init' for
the initialization fork.

get_raw_page(relname text, blkno int) returns bytea

A shorthand version of get_raw_page, for reading from the main fork. Equivalent to
get_raw_page(relname, 'main', blkno)

page_header(page bytea) returns record

page_header shows fields that are common to all PostgreSQL heap and index pages.

A page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM page_header(get_raw_page('pg_class', 0));
 lsn | checksum | flags | lower | upper | special | pagesize
 | version | prune_xid
-----------+----------+--------+-------+-------+---------
+----------+---------+-----------

2581

http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Modules

 0/24A1B50 | 0 | 1 | 232 | 368 | 8192 | 8192
 | 4 | 0

The returned columns correspond to the fields in the PageHeaderData struct. See src/
include/storage/bufpage.h for details.

The checksum field is the checksum stored in the page, which might be incorrect if the page is
somehow corrupted. If data checksums are not enabled for this instance, then the value stored is
meaningless.

page_checksum(page bytea, blkno int4) returns smallint

page_checksum computes the checksum for the page, as if it was located at the given block.

A page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT page_checksum(get_raw_page('pg_class', 0), 0);
 page_checksum

 13443

Note that the checksum depends on the block number, so matching block numbers should be passed
(except when doing esoteric debugging).

The checksum computed with this function can be compared with the checksum result field of the
function page_header. If data checksums are enabled for this instance, then the two values should
be equal.

heap_page_items(page bytea) returns setof record

heap_page_items shows all line pointers on a heap page. For those line pointers that are in use,
tuple headers as well as tuple raw data are also shown. All tuples are shown, whether or not the tuples
were visible to an MVCC snapshot at the time the raw page was copied.

A heap page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM heap_page_items(get_raw_page('pg_class', 0));

See src/include/storage/itemid.h and src/include/access/htup_details.h
for explanations of the fields returned.

tuple_data_split(rel_oid, t_data bytea, t_infomask integer, t_infomask2
integer, t_bits text [, do_detoast bool]) returns bytea[]

tuple_data_split splits tuple data into attributes in the same way as backend internals.

test=# SELECT tuple_data_split('pg_class'::regclass,
 t_data, t_infomask, t_infomask2, t_bits) FROM
 heap_page_items(get_raw_page('pg_class', 0));

This function should be called with the same arguments as the return attributes of
heap_page_items.

2582

Additional Supplied Modules

If do_detoast is true, attribute that will be detoasted as needed. Default value is false.

heap_page_item_attrs(rel_oid, t_data bytea, [, do_detoast bool]) returns
bytea[]

heap_page_item_attrs is equivalent to heap_page_items except that it returns tuple raw
data as an array of attributes that can optionally be detoasted by do_detoast which is false by
default.

A heap page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM heap_page_item_attrs(get_raw_page('pg_class',
 0), 'pg_class'::regclass);

fsm_page_contents(page bytea) returns text

fsm_page_contents shows the internal node structure of a FSM page. The output is a multiline
string, with one line per node in the binary tree within the page. Only those nodes that are not zero
are printed. The so-called "next" pointer, which points to the next slot to be returned from the page,
is also printed.

See src/backend/storage/freespace/README for more information on the structure of
an FSM page.

F.22.2. B-tree Functions
bt_metap(relname text) returns record

bt_metap returns information about a B-tree index's metapage. For example:

test=# SELECT * FROM bt_metap('pg_cast_oid_index');
-[RECORD 1]-----------+-------
magic | 340322
version | 3
root | 1
level | 0
fastroot | 1
fastlevel | 0
oldest_xact | 582
last_cleanup_num_tuples | 1000

bt_page_stats(relname text, blkno int) returns record

bt_page_stats returns summary information about single pages of B-tree indexes. For example:

test=# SELECT * FROM bt_page_stats('pg_cast_oid_index', 1);
-[RECORD 1]-+-----
blkno | 1
type | l
live_items | 256
dead_items | 0
avg_item_size | 12

2583

Additional Supplied Modules

page_size | 8192
free_size | 4056
btpo_prev | 0
btpo_next | 0
btpo | 0
btpo_flags | 3

bt_page_items(relname text, blkno int) returns setof record

bt_page_items returns detailed information about all of the items on a B-tree index page. For
example:

test=# SELECT * FROM bt_page_items('pg_cast_oid_index', 1);
 itemoffset | ctid | itemlen | nulls | vars | data
------------+---------+---------+-------+------+-------------
 1 | (0,1) | 12 | f | f | 23 27 00 00
 2 | (0,2) | 12 | f | f | 24 27 00 00
 3 | (0,3) | 12 | f | f | 25 27 00 00
 4 | (0,4) | 12 | f | f | 26 27 00 00
 5 | (0,5) | 12 | f | f | 27 27 00 00
 6 | (0,6) | 12 | f | f | 28 27 00 00
 7 | (0,7) | 12 | f | f | 29 27 00 00
 8 | (0,8) | 12 | f | f | 2a 27 00 00

In a B-tree leaf page, ctid points to a heap tuple. In an internal page, the block number part of ctid
points to another page in the index itself, while the offset part (the second number) is ignored and
is usually 1.

Note that the first item on any non-rightmost page (any page with a non-zero value in the btpo_next
field) is the page's “high key”, meaning its data serves as an upper bound on all items appearing on
the page, while its ctid field is meaningless. Also, on non-leaf pages, the first real data item (the
first item that is not a high key) is a “minus infinity” item, with no actual value in its data field. Such
an item does have a valid downlink in its ctid field, however.

bt_page_items(page bytea) returns setof record

It is also possible to pass a page to bt_page_items as a bytea value. A page image obtained with
get_raw_page should be passed as argument. So the last example could also be rewritten like this:

test=# SELECT * FROM
 bt_page_items(get_raw_page('pg_cast_oid_index', 1));
 itemoffset | ctid | itemlen | nulls | vars | data
------------+---------+---------+-------+------+-------------
 1 | (0,1) | 12 | f | f | 23 27 00 00
 2 | (0,2) | 12 | f | f | 24 27 00 00
 3 | (0,3) | 12 | f | f | 25 27 00 00
 4 | (0,4) | 12 | f | f | 26 27 00 00
 5 | (0,5) | 12 | f | f | 27 27 00 00
 6 | (0,6) | 12 | f | f | 28 27 00 00
 7 | (0,7) | 12 | f | f | 29 27 00 00
 8 | (0,8) | 12 | f | f | 2a 27 00 00

All the other details are the same as explained in the previous item.

2584

Additional Supplied Modules

F.22.3. BRIN Functions
brin_page_type(page bytea) returns text

brin_page_type returns the page type of the given BRIN index page, or throws an error if the
page is not a valid BRIN page. For example:

test=# SELECT brin_page_type(get_raw_page('brinidx', 0));
 brin_page_type

 meta

brin_metapage_info(page bytea) returns record

brin_metapage_info returns assorted information about a BRIN index metapage. For example:

test=# SELECT * FROM brin_metapage_info(get_raw_page('brinidx',
 0));
 magic | version | pagesperrange | lastrevmappage
------------+---------+---------------+----------------
 0xA8109CFA | 1 | 4 | 2

brin_revmap_data(page bytea) returns setof tid

brin_revmap_data returns the list of tuple identifiers in a BRIN index range map page. For
example:

test=# SELECT * FROM brin_revmap_data(get_raw_page('brinidx', 2))
 LIMIT 5;
 pages

 (6,137)
 (6,138)
 (6,139)
 (6,140)
 (6,141)

brin_page_items(page bytea, index oid) returns setof record

brin_page_items returns the data stored in the BRIN data page. For example:

test=# SELECT * FROM brin_page_items(get_raw_page('brinidx', 5),
 'brinidx')
 ORDER BY blknum, attnum LIMIT 6;
 itemoffset | blknum | attnum | allnulls | hasnulls | placeholder |
 value
------------+--------+--------+----------+----------+-------------
+--------------
 137 | 0 | 1 | t | f | f
 |
 137 | 0 | 2 | f | f | f |
 {1 .. 88}

2585

Additional Supplied Modules

 138 | 4 | 1 | t | f | f
 |
 138 | 4 | 2 | f | f | f |
 {89 .. 176}
 139 | 8 | 1 | t | f | f
 |
 139 | 8 | 2 | f | f | f |
 {177 .. 264}

The returned columns correspond to the fields in the BrinMemTuple and BrinValues structs.
See src/include/access/brin_tuple.h for details.

F.22.4. GIN Functions
gin_metapage_info(page bytea) returns record

gin_metapage_info returns information about a GIN index metapage. For example:

test=# SELECT * FROM gin_metapage_info(get_raw_page('gin_index',
 0));
-[RECORD 1]----+-----------
pending_head | 4294967295
pending_tail | 4294967295
tail_free_size | 0
n_pending_pages | 0
n_pending_tuples | 0
n_total_pages | 7
n_entry_pages | 6
n_data_pages | 0
n_entries | 693
version | 2

gin_page_opaque_info(page bytea) returns record

gin_page_opaque_info returns information about a GIN index opaque area, like the page type.
For example:

test=# SELECT * FROM gin_page_opaque_info(get_raw_page('gin_index',
 2));
 rightlink | maxoff | flags
-----------+--------+------------------------
 5 | 0 | {data,leaf,compressed}
(1 row)

gin_leafpage_items(page bytea) returns setof record

gin_leafpage_items returns information about the data stored in a GIN leaf page. For example:

test=# SELECT first_tid, nbytes, tids[0:5] AS some_tids
 FROM gin_leafpage_items(get_raw_page('gin_test_idx', 2));
 first_tid | nbytes | some_tids

2586

Additional Supplied Modules

-----------+--------
+--
 (8,41) | 244 |
 {"(8,41)","(8,43)","(8,44)","(8,45)","(8,46)"}
 (10,45) | 248 |
 {"(10,45)","(10,46)","(10,47)","(10,48)","(10,49)"}
 (12,52) | 248 |
 {"(12,52)","(12,53)","(12,54)","(12,55)","(12,56)"}
 (14,59) | 320 |
 {"(14,59)","(14,60)","(14,61)","(14,62)","(14,63)"}
 (167,16) | 376 |
 {"(167,16)","(167,17)","(167,18)","(167,19)","(167,20)"}
 (170,30) | 376 |
 {"(170,30)","(170,31)","(170,32)","(170,33)","(170,34)"}
 (173,44) | 197 |
 {"(173,44)","(173,45)","(173,46)","(173,47)","(173,48)"}
(7 rows)

F.22.5. Hash Functions
hash_page_type(page bytea) returns text

hash_page_type returns page type of the given HASH index page. For example:

test=# SELECT hash_page_type(get_raw_page('con_hash_index', 0));
 hash_page_type

 metapage

hash_page_stats(page bytea) returns setof record

hash_page_stats returns information about a bucket or overflow page of a HASH index. For
example:

test=# SELECT * FROM hash_page_stats(get_raw_page('con_hash_index',
 1));
-[RECORD 1]---+-----------
live_items | 407
dead_items | 0
page_size | 8192
free_size | 8
hasho_prevblkno | 4096
hasho_nextblkno | 8474
hasho_bucket | 0
hasho_flag | 66
hasho_page_id | 65408

hash_page_items(page bytea) returns setof record

hash_page_items returns information about the data stored in a bucket or overflow page of a
HASH index page. For example:

2587

Additional Supplied Modules

test=# SELECT * FROM hash_page_items(get_raw_page('con_hash_index',
 1)) LIMIT 5;
 itemoffset | ctid | data
------------+-----------+------------
 1 | (899,77) | 1053474816
 2 | (897,29) | 1053474816
 3 | (894,207) | 1053474816
 4 | (892,159) | 1053474816
 5 | (890,111) | 1053474816

hash_bitmap_info(index oid, blkno int) returns record

hash_bitmap_info shows the status of a bit in the bitmap page for a particular overflow page
of HASH index. For example:

test=# SELECT * FROM hash_bitmap_info('con_hash_index', 2052);
 bitmapblkno | bitmapbit | bitstatus
-------------+-----------+-----------
 65 | 3 | t

hash_metapage_info(page bytea) returns record

hash_metapage_info returns information stored in meta page of a HASH index. For example:

test=# SELECT magic, version, ntuples, ffactor, bsize, bmsize,
 bmshift,
test-# maxbucket, highmask, lowmask, ovflpoint, firstfree,
 nmaps, procid,
test-# regexp_replace(spares::text, '(,0)*}', '}') as spares,
test-# regexp_replace(mapp::text, '(,0)*}', '}') as mapp
test-# FROM hash_metapage_info(get_raw_page('con_hash_index', 0));
-[RECORD
 1]---
magic | 105121344
version | 4
ntuples | 500500
ffactor | 40
bsize | 8152
bmsize | 4096
bmshift | 15
maxbucket | 12512
highmask | 16383
lowmask | 8191
ovflpoint | 28
firstfree | 1204
nmaps | 1
procid | 450
spares |
 {0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,4,4,4,45,55,58,59,508,567,628,704,1193,1202,1204}
mapp | {65}

F.23. passwordcheck

2588

Additional Supplied Modules

The passwordcheck module checks users' passwords whenever they are set with CREATE ROLE or
ALTER ROLE. If a password is considered too weak, it will be rejected and the command will terminate
with an error.

To enable this module, add '$libdir/passwordcheck' to shared_preload_libraries in
postgresql.conf, then restart the server.

You can adapt this module to your needs by changing the source code. For example, you can use CrackLib2

to check passwords — this only requires uncommenting two lines in the Makefile and rebuilding the
module. (We cannot include CrackLib by default for license reasons.) Without CrackLib, the module
enforces a few simple rules for password strength, which you can modify or extend as you see fit.

Caution

To prevent unencrypted passwords from being sent across the network, written to the server log or
otherwise stolen by a database administrator, PostgreSQL allows the user to supply pre-encrypted
passwords. Many client programs make use of this functionality and encrypt the password before
sending it to the server.

This limits the usefulness of the passwordcheck module, because in that case it can only try
to guess the password. For this reason, passwordcheck is not recommended if your security
requirements are high. It is more secure to use an external authentication method such as GSSAPI
(see Chapter 20) than to rely on passwords within the database.

Alternatively, you could modify passwordcheck to reject pre-encrypted passwords, but forcing
users to set their passwords in clear text carries its own security risks.

F.24. pg_buffercache
The pg_buffercache module provides a means for examining what's happening in the shared buffer
cache in real time.

The module provides a C function pg_buffercache_pages that returns a set of records, plus a view
pg_buffercache that wraps the function for convenient use.

By default use is restricted to superusers and members of the pg_read_all_stats role. Access may
be granted to others using GRANT.

F.24.1. The pg_buffercache View
The definitions of the columns exposed by the view are shown in Table F.15.

Table F.15. pg_buffercache Columns

Name Type References Description

bufferid integer ID, in the range
1..shared_buffers

relfilenode oid pg_class.relfilenodeFilenode number of the
relation

2 https://sourceforge.net/projects/cracklib/

2589

https://sourceforge.net/projects/cracklib/
https://sourceforge.net/projects/cracklib/

Additional Supplied Modules

Name Type References Description

reltablespace oid pg_tablespace.oid Tablespace OID of the
relation

reldatabase oid pg_database.oid Database OID of the
relation

relforknumber smallint Fork number within the
relation; see include/
common/relpath.h

relblocknumber bigint Page number within the
relation

isdirty boolean Is the page dirty?

usagecount smallint Clock-sweep access
count

pinning_backends integer Number of backends
pinning this buffer

There is one row for each buffer in the shared cache. Unused buffers are shown with all fields null except
bufferid. Shared system catalogs are shown as belonging to database zero.

Because the cache is shared by all the databases, there will normally be pages from relations not belonging
to the current database. This means that there may not be matching join rows in pg_class for some
rows, or that there could even be incorrect joins. If you are trying to join against pg_class, it's a good
idea to restrict the join to rows having reldatabase equal to the current database's OID or zero.

When the pg_buffercache view is accessed, internal buffer manager locks are taken for long enough
to copy all the buffer state data that the view will display. This ensures that the view produces a consistent
set of results, while not blocking normal buffer activity longer than necessary. Nonetheless there could be
some impact on database performance if this view is read often.

F.24.2. Sample Output

regression=# SELECT c.relname, count(*) AS buffers
 FROM pg_buffercache b INNER JOIN pg_class c
 ON b.relfilenode = pg_relation_filenode(c.oid) AND
 b.reldatabase IN (0, (SELECT oid FROM pg_database
 WHERE datname =
 current_database()))
 GROUP BY c.relname
 ORDER BY 2 DESC
 LIMIT 10;

 relname | buffers
---------------------------------+---------
 tenk2 | 345
 tenk1 | 141
 pg_proc | 46
 pg_class | 45
 pg_attribute | 43
 pg_class_relname_nsp_index | 30
 pg_proc_proname_args_nsp_index | 28

2590

Additional Supplied Modules

 pg_attribute_relid_attnam_index | 26
 pg_depend | 22
 pg_depend_reference_index | 20
(10 rows)

F.24.3. Authors
Mark Kirkwood <markir@paradise.net.nz>

Design suggestions: Neil Conway <neilc@samurai.com>

Debugging advice: Tom Lane <tgl@sss.pgh.pa.us>

F.25. pgcrypto
The pgcrypto module provides cryptographic functions for PostgreSQL.

F.25.1. General Hashing Functions

F.25.1.1. digest()

digest(data text, type text) returns bytea
digest(data bytea, type text) returns bytea

Computes a binary hash of the given data. type is the algorithm to use. Standard algorithms are
md5, sha1, sha224, sha256, sha384 and sha512. If pgcrypto was built with OpenSSL, more
algorithms are available, as detailed in Table F.19.

If you want the digest as a hexadecimal string, use encode() on the result. For example:

CREATE OR REPLACE FUNCTION sha1(bytea) returns text AS $$
 SELECT encode(digest($1, 'sha1'), 'hex')
$$ LANGUAGE SQL STRICT IMMUTABLE;

F.25.1.2. hmac()

hmac(data text, key text, type text) returns bytea
hmac(data bytea, key bytea, type text) returns bytea

Calculates hashed MAC for data with key key. type is the same as in digest().

This is similar to digest() but the hash can only be recalculated knowing the key. This prevents the
scenario of someone altering data and also changing the hash to match.

If the key is larger than the hash block size it will first be hashed and the result will be used as key.

F.25.2. Password Hashing Functions
The functions crypt() and gen_salt() are specifically designed for hashing passwords. crypt()
does the hashing and gen_salt() prepares algorithm parameters for it.

2591

Additional Supplied Modules

The algorithms in crypt() differ from the usual MD5 or SHA1 hashing algorithms in the following
respects:

1. They are slow. As the amount of data is so small, this is the only way to make brute-forcing passwords
hard.

2. They use a random value, called the salt, so that users having the same password will have different
encrypted passwords. This is also an additional defense against reversing the algorithm.

3. They include the algorithm type in the result, so passwords hashed with different algorithms can co-
exist.

4. Some of them are adaptive — that means when computers get faster, you can tune the algorithm to be
slower, without introducing incompatibility with existing passwords.

Table F.16 lists the algorithms supported by the crypt() function.

Table F.16. Supported Algorithms for crypt()

Algorithm Max Password
Length

Adaptive? Salt Bits Output Length Description

bf 72 yes 128 60 Blowfish-based,
variant 2a

md5 unlimited no 48 34 MD5-based
crypt

xdes 8 yes 24 20 Extended DES

des 8 no 12 13 Original UNIX
crypt

F.25.2.1. crypt()

crypt(password text, salt text) returns text

Calculates a crypt(3)-style hash of password. When storing a new password, you need to use
gen_salt() to generate a new salt value. To check a password, pass the stored hash value as salt,
and test whether the result matches the stored value.

Example of setting a new password:

UPDATE ... SET pswhash = crypt('new password', gen_salt('md5'));

Example of authentication:

SELECT (pswhash = crypt('entered password', pswhash)) AS pswmatch
 FROM ... ;

This returns true if the entered password is correct.

F.25.2.2. gen_salt()

gen_salt(type text [, iter_count integer]) returns text

2592

Additional Supplied Modules

Generates a new random salt string for use in crypt(). The salt string also tells crypt() which
algorithm to use.

The type parameter specifies the hashing algorithm. The accepted types are: des, xdes, md5 and bf.

The iter_count parameter lets the user specify the iteration count, for algorithms that have one. The
higher the count, the more time it takes to hash the password and therefore the more time to break it.
Although with too high a count the time to calculate a hash may be several years — which is somewhat
impractical. If the iter_count parameter is omitted, the default iteration count is used. Allowed values
for iter_count depend on the algorithm and are shown in Table F.17.

Table F.17. Iteration Counts for crypt()

Algorithm Default Min Max

xdes 725 1 16777215

bf 6 4 31

For xdes there is an additional limitation that the iteration count must be an odd number.

To pick an appropriate iteration count, consider that the original DES crypt was designed to have the speed
of 4 hashes per second on the hardware of that time. Slower than 4 hashes per second would probably
dampen usability. Faster than 100 hashes per second is probably too fast.

Table F.18 gives an overview of the relative slowness of different hashing algorithms. The table shows
how much time it would take to try all combinations of characters in an 8-character password, assuming
that the password contains either only lower case letters, or upper- and lower-case letters and numbers. In
the crypt-bf entries, the number after a slash is the iter_count parameter of gen_salt.

Table F.18. Hash Algorithm Speeds

Algorithm Hashes/sec For [a-z] For [A-Za-
z0-9]

Duration relative
to md5 hash

crypt-bf/8 1792 4 years 3927 years 100k

crypt-bf/7 3648 2 years 1929 years 50k

crypt-bf/6 7168 1 year 982 years 25k

crypt-bf/5 13504 188 days 521 years 12.5k

crypt-md5 171584 15 days 41 years 1k

crypt-des 23221568 157.5 minutes 108 days 7

sha1 37774272 90 minutes 68 days 4

md5 (hash) 150085504 22.5 minutes 17 days 1

Notes:

• The machine used is an Intel Mobile Core i3.

• crypt-des and crypt-md5 algorithm numbers are taken from John the Ripper v1.6.38 -test
output.

• md5 hash numbers are from mdcrack 1.2.

• sha1 numbers are from lcrack-20031130-beta.

2593

Additional Supplied Modules

• crypt-bf numbers are taken using a simple program that loops over 1000 8-character passwords.
That way I can show the speed with different numbers of iterations. For reference: john -test shows
13506 loops/sec for crypt-bf/5. (The very small difference in results is in accordance with the fact
that the crypt-bf implementation in pgcrypto is the same one used in John the Ripper.)

Note that “try all combinations” is not a realistic exercise. Usually password cracking is done with the
help of dictionaries, which contain both regular words and various mutations of them. So, even somewhat
word-like passwords could be cracked much faster than the above numbers suggest, while a 6-character
non-word-like password may escape cracking. Or not.

F.25.3. PGP Encryption Functions
The functions here implement the encryption part of the OpenPGP (RFC 4880) standard. Supported are
both symmetric-key and public-key encryption.

An encrypted PGP message consists of 2 parts, or packets:

• Packet containing a session key — either symmetric-key or public-key encrypted.

• Packet containing data encrypted with the session key.

When encrypting with a symmetric key (i.e., a password):

1. The given password is hashed using a String2Key (S2K) algorithm. This is rather similar to crypt()
algorithms — purposefully slow and with random salt — but it produces a full-length binary key.

2. If a separate session key is requested, a new random key will be generated. Otherwise the S2K key will
be used directly as the session key.

3. If the S2K key is to be used directly, then only S2K settings will be put into the session key packet.
Otherwise the session key will be encrypted with the S2K key and put into the session key packet.

When encrypting with a public key:

1. A new random session key is generated.

2. It is encrypted using the public key and put into the session key packet.

In either case the data to be encrypted is processed as follows:

1. Optional data-manipulation: compression, conversion to UTF-8, and/or conversion of line-endings.

2. The data is prefixed with a block of random bytes. This is equivalent to using a random IV.

3. An SHA1 hash of the random prefix and data is appended.

4. All this is encrypted with the session key and placed in the data packet.

F.25.3.1. pgp_sym_encrypt()

pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_encrypt_bytea(data bytea, psw text [, options text]) returns
 bytea

Encrypt data with a symmetric PGP key psw. The options parameter can contain option settings, as
described below.

2594

Additional Supplied Modules

F.25.3.2. pgp_sym_decrypt()

pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text
pgp_sym_decrypt_bytea(msg bytea, psw text [, options text]) returns
 bytea

Decrypt a symmetric-key-encrypted PGP message.

Decrypting bytea data with pgp_sym_decrypt is disallowed. This is to avoid outputting invalid
character data. Decrypting originally textual data with pgp_sym_decrypt_bytea is fine.

The options parameter can contain option settings, as described below.

F.25.3.3. pgp_pub_encrypt()

pgp_pub_encrypt(data text, key bytea [, options text]) returns bytea
pgp_pub_encrypt_bytea(data bytea, key bytea [, options text]) returns
 bytea

Encrypt data with a public PGP key key. Giving this function a secret key will produce an error.

The options parameter can contain option settings, as described below.

F.25.3.4. pgp_pub_decrypt()

pgp_pub_decrypt(msg bytea, key bytea [, psw text [, options text]])
 returns text
pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw text [, options
 text]]) returns bytea

Decrypt a public-key-encrypted message. key must be the secret key corresponding to the public key that
was used to encrypt. If the secret key is password-protected, you must give the password in psw. If there
is no password, but you want to specify options, you need to give an empty password.

Decrypting bytea data with pgp_pub_decrypt is disallowed. This is to avoid outputting invalid
character data. Decrypting originally textual data with pgp_pub_decrypt_bytea is fine.

The options parameter can contain option settings, as described below.

F.25.3.5. pgp_key_id()

pgp_key_id(bytea) returns text

pgp_key_id extracts the key ID of a PGP public or secret key. Or it gives the key ID that was used for
encrypting the data, if given an encrypted message.

It can return 2 special key IDs:

• SYMKEY

The message is encrypted with a symmetric key.

• ANYKEY

2595

Additional Supplied Modules

The message is public-key encrypted, but the key ID has been removed. That means you will need to try
all your secret keys on it to see which one decrypts it. pgcrypto itself does not produce such messages.

Note that different keys may have the same ID. This is rare but a normal event. The client application
should then try to decrypt with each one, to see which fits — like handling ANYKEY.

F.25.3.6. armor(), dearmor()

armor(data bytea [, keys text[], values text[]]) returns text
dearmor(data text) returns bytea

These functions wrap/unwrap binary data into PGP ASCII-armor format, which is basically Base64 with
CRC and additional formatting.

If the keys and values arrays are specified, an armor header is added to the armored format for each
key/value pair. Both arrays must be single-dimensional, and they must be of the same length. The keys
and values cannot contain any non-ASCII characters.

F.25.3.7. pgp_armor_headers

pgp_armor_headers(data text, key out text, value out text) returns
 setof record

pgp_armor_headers() extracts the armor headers from data. The return value is a set of rows with
two columns, key and value. If the keys or values contain any non-ASCII characters, they are treated as
UTF-8.

F.25.3.8. Options for PGP Functions

Options are named to be similar to GnuPG. An option's value should be given after an equal sign; separate
options from each other with commas. For example:

pgp_sym_encrypt(data, psw, 'compress-algo=1, cipher-algo=aes256')

All of the options except convert-crlf apply only to encrypt functions. Decrypt functions get the
parameters from the PGP data.

The most interesting options are probably compress-algo and unicode-mode. The rest should have
reasonable defaults.

F.25.3.8.1. cipher-algo

Which cipher algorithm to use.

Values: bf, aes128, aes192, aes256 (OpenSSL-only: 3des, cast5)
Default: aes128
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.8.2. compress-algo

Which compression algorithm to use. Only available if PostgreSQL was built with zlib.

2596

Additional Supplied Modules

Values:
 0 - no compression
 1 - ZIP compression
 2 - ZLIB compression (= ZIP plus meta-data and block CRCs)
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.8.3. compress-level

How much to compress. Higher levels compress smaller but are slower. 0 disables compression.

Values: 0, 1-9
Default: 6
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.8.4. convert-crlf

Whether to convert \n into \r\n when encrypting and \r\n to \n when decrypting. RFC 4880 specifies
that text data should be stored using \r\n line-feeds. Use this to get fully RFC-compliant behavior.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt, pgp_sym_decrypt, pgp_pub_decrypt

F.25.3.8.5. disable-mdc

Do not protect data with SHA-1. The only good reason to use this option is to achieve compatibility with
ancient PGP products, predating the addition of SHA-1 protected packets to RFC 4880. Recent gnupg.org
and pgp.com software supports it fine.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.8.6. sess-key

Use separate session key. Public-key encryption always uses a separate session key; this option is for
symmetric-key encryption, which by default uses the S2K key directly.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt

F.25.3.8.7. s2k-mode

Which S2K algorithm to use.

Values:
 0 - Without salt. Dangerous!

2597

Additional Supplied Modules

 1 - With salt but with fixed iteration count.
 3 - Variable iteration count.
Default: 3
Applies to: pgp_sym_encrypt

F.25.3.8.8. s2k-count

The number of iterations of the S2K algorithm to use. It must be a value between 1024 and 65011712,
inclusive.

Default: A random value between 65536 and 253952
Applies to: pgp_sym_encrypt, only with s2k-mode=3

F.25.3.8.9. s2k-digest-algo

Which digest algorithm to use in S2K calculation.

Values: md5, sha1
Default: sha1
Applies to: pgp_sym_encrypt

F.25.3.8.10. s2k-cipher-algo

Which cipher to use for encrypting separate session key.

Values: bf, aes, aes128, aes192, aes256
Default: use cipher-algo
Applies to: pgp_sym_encrypt

F.25.3.8.11. unicode-mode

Whether to convert textual data from database internal encoding to UTF-8 and back. If your database
already is UTF-8, no conversion will be done, but the message will be tagged as UTF-8. Without this
option it will not be.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.9. Generating PGP Keys with GnuPG

To generate a new key:

gpg --gen-key

The preferred key type is “DSA and Elgamal”.

For RSA encryption you must create either DSA or RSA sign-only key as master and then add an RSA
encryption subkey with gpg --edit-key.

To list keys:

2598

Additional Supplied Modules

gpg --list-secret-keys

To export a public key in ASCII-armor format:

gpg -a --export KEYID > public.key

To export a secret key in ASCII-armor format:

gpg -a --export-secret-keys KEYID > secret.key

You need to use dearmor() on these keys before giving them to the PGP functions. Or if you can handle
binary data, you can drop -a from the command.

For more details see man gpg, The GNU Privacy Handbook3 and other documentation on https://
www.gnupg.org/.

F.25.3.10. Limitations of PGP Code

• No support for signing. That also means that it is not checked whether the encryption subkey belongs
to the master key.

• No support for encryption key as master key. As such practice is generally discouraged, this should
not be a problem.

• No support for several subkeys. This may seem like a problem, as this is common practice. On the other
hand, you should not use your regular GPG/PGP keys with pgcrypto, but create new ones, as the
usage scenario is rather different.

F.25.4. Raw Encryption Functions
These functions only run a cipher over data; they don't have any advanced features of PGP encryption.
Therefore they have some major problems:

1. They use user key directly as cipher key.

2. They don't provide any integrity checking, to see if the encrypted data was modified.

3. They expect that users manage all encryption parameters themselves, even IV.

4. They don't handle text.

So, with the introduction of PGP encryption, usage of raw encryption functions is discouraged.

encrypt(data bytea, key bytea, type text) returns bytea
decrypt(data bytea, key bytea, type text) returns bytea

encrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea
decrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea

Encrypt/decrypt data using the cipher method specified by type. The syntax of the type string is:

3 https://www.gnupg.org/gph/en/manual.html

2599

https://www.gnupg.org/gph/en/manual.html
https://www.gnupg.org/
https://www.gnupg.org/
https://www.gnupg.org/gph/en/manual.html

Additional Supplied Modules

algorithm [- mode] [/pad: padding]

where algorithm is one of:

• bf — Blowfish

• aes — AES (Rijndael-128, -192 or -256)

and mode is one of:

• cbc — next block depends on previous (default)

• ecb — each block is encrypted separately (for testing only)

and padding is one of:

• pkcs — data may be any length (default)

• none — data must be multiple of cipher block size

So, for example, these are equivalent:

encrypt(data, 'fooz', 'bf')
encrypt(data, 'fooz', 'bf-cbc/pad:pkcs')

In encrypt_iv and decrypt_iv, the iv parameter is the initial value for the CBC mode; it is ignored
for ECB. It is clipped or padded with zeroes if not exactly block size. It defaults to all zeroes in the functions
without this parameter.

F.25.5. Random-Data Functions

gen_random_bytes(count integer) returns bytea

Returns count cryptographically strong random bytes. At most 1024 bytes can be extracted at a time.
This is to avoid draining the randomness generator pool.

gen_random_uuid() returns uuid

Returns a version 4 (random) UUID.

F.25.6. Notes

F.25.6.1. Configuration

pgcrypto configures itself according to the findings of the main PostgreSQL configure script. The
options that affect it are --with-zlib and --with-openssl.

When compiled with zlib, PGP encryption functions are able to compress data before encrypting.

When compiled with OpenSSL, there will be more algorithms available. Also public-key encryption
functions will be faster as OpenSSL has more optimized BIGNUM functions.

2600

Additional Supplied Modules

Table F.19. Summary of Functionality with and without OpenSSL

Functionality Built-in With OpenSSL

MD5 yes yes

SHA1 yes yes

SHA224/256/384/512 yes yes

Other digest algorithms no yes (Note 1)

Blowfish yes yes

AES yes yes

DES/3DES/CAST5 no yes

Raw encryption yes yes

PGP Symmetric encryption yes yes

PGP Public-Key encryption yes yes

Notes:

1. Any digest algorithm OpenSSL supports is automatically picked up. This is not possible with ciphers,
which need to be supported explicitly.

F.25.6.2. NULL Handling

As is standard in SQL, all functions return NULL, if any of the arguments are NULL. This may create
security risks on careless usage.

F.25.6.3. Security Limitations

All pgcrypto functions run inside the database server. That means that all the data and passwords move
between pgcrypto and client applications in clear text. Thus you must:

1. Connect locally or use SSL connections.

2. Trust both system and database administrator.

If you cannot, then better do crypto inside client application.

The implementation does not resist side-channel attacks4. For example, the time required for a pgcrypto
decryption function to complete varies among ciphertexts of a given size.

F.25.6.4. Useful Reading

• https://www.gnupg.org/gph/en/manual.html

The GNU Privacy Handbook.

• http://www.openwall.com/crypt/

Describes the crypt-blowfish algorithm.

• http://www.iusmentis.com/security/passphrasefaq/

How to choose a good password.

4 https://en.wikipedia.org/wiki/Side-channel_attack

2601

https://en.wikipedia.org/wiki/Side-channel_attack
https://www.gnupg.org/gph/en/manual.html
http://www.openwall.com/crypt/
http://www.iusmentis.com/security/passphrasefaq/
https://en.wikipedia.org/wiki/Side-channel_attack

Additional Supplied Modules

• http://world.std.com/~reinhold/diceware.html

Interesting idea for picking passwords.

• http://www.interhack.net/people/cmcurtin/snake-oil-faq.html

Describes good and bad cryptography.

F.25.6.5. Technical References

• https://tools.ietf.org/html/rfc4880

OpenPGP message format.

• https://tools.ietf.org/html/rfc1321

The MD5 Message-Digest Algorithm.

• https://tools.ietf.org/html/rfc2104

HMAC: Keyed-Hashing for Message Authentication.

• https://www.usenix.org/legacy/events/usenix99/provos.html

Comparison of crypt-des, crypt-md5 and bcrypt algorithms.

• https://en.wikipedia.org/wiki/Fortuna_(PRNG)

Description of Fortuna CSPRNG.

• http://jlcooke.ca/random/

Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.

F.25.7. Author
Marko Kreen <markokr@gmail.com>

pgcrypto uses code from the following sources:

Algorithm Author Source origin

DES crypt David Burren and others FreeBSD libcrypt

MD5 crypt Poul-Henning Kamp FreeBSD libcrypt

Blowfish crypt Solar Designer www.openwall.com

Blowfish cipher Simon Tatham PuTTY

Rijndael cipher Brian Gladman OpenBSD sys/crypto

MD5 hash and SHA1 WIDE Project KAME kame/sys/crypto

SHA256/384/512 Aaron D. Gifford OpenBSD sys/crypto

BIGNUM math Michael J. Fromberger dartmouth.edu/~sting/sw/imath

F.26. pg_freespacemap

2602

http://world.std.com/~reinhold/diceware.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc2104
https://www.usenix.org/legacy/events/usenix99/provos.html
https://en.wikipedia.org/wiki/Fortuna_(PRNG)
http://jlcooke.ca/random/

Additional Supplied Modules

The pg_freespacemap module provides a means for examining the free space map (FSM). It provides
a function called pg_freespace, or two overloaded functions, to be precise. The functions show the
value recorded in the free space map for a given page, or for all pages in the relation.

By default use is restricted to superusers and members of the pg_stat_scan_tables role. Access
may be granted to others using GRANT.

F.26.1. Functions
pg_freespace(rel regclass IN, blkno bigint IN) returns int2

Returns the amount of free space on the page of the relation, specified by blkno, according to the
FSM.

pg_freespace(rel regclass IN, blkno OUT bigint, avail OUT int2)

Displays the amount of free space on each page of the relation, according to the FSM. A set of (blkno
bigint, avail int2) tuples is returned, one tuple for each page in the relation.

The values stored in the free space map are not exact. They're rounded to precision of 1/256th of BLCKSZ
(32 bytes with default BLCKSZ), and they're not kept fully up-to-date as tuples are inserted and updated.

For indexes, what is tracked is entirely-unused pages, rather than free space within pages. Therefore, the
values are not meaningful, just whether a page is full or empty.

Note

The interface was changed in version 8.4, to reflect the new FSM implementation introduced in
the same version.

F.26.2. Sample Output

postgres=# SELECT * FROM pg_freespace('foo');
 blkno | avail
-------+-------
 0 | 0
 1 | 0
 2 | 0
 3 | 32
 4 | 704
 5 | 704
 6 | 704
 7 | 1216
 8 | 704
 9 | 704
 10 | 704
 11 | 704
 12 | 704
 13 | 704
 14 | 704
 15 | 704
 16 | 704

2603

Additional Supplied Modules

 17 | 704
 18 | 704
 19 | 3648
(20 rows)

postgres=# SELECT * FROM pg_freespace('foo', 7);
 pg_freespace

 1216
(1 row)

F.26.3. Author
Original version by Mark Kirkwood <markir@paradise.net.nz>. Rewritten in version 8.4 to suit
new FSM implementation by Heikki Linnakangas <heikki@enterprisedb.com>

F.27. pg_prewarm
The pg_prewarm module provides a convenient way to load relation data into either the operating
system buffer cache or the PostgreSQL buffer cache. Prewarming can be performed manually
using the pg_prewarm function, or can be performed automatically by including pg_prewarm in
shared_preload_libraries. In the latter case, the system will run a background worker which periodically
records the contents of shared buffers in a file called autoprewarm.blocks and will, using 2
background workers, reload those same blocks after a restart.

F.27.1. Functions

pg_prewarm(regclass, mode text default 'buffer', fork text default
 'main',
 first_block int8 default null,
 last_block int8 default null) RETURNS int8

The first argument is the relation to be prewarmed. The second argument is the prewarming method to
be used, as further discussed below; the third is the relation fork to be prewarmed, usually main. The
fourth argument is the first block number to prewarm (NULL is accepted as a synonym for zero). The
fifth argument is the last block number to prewarm (NULL means prewarm through the last block in the
relation). The return value is the number of blocks prewarmed.

There are three available prewarming methods. prefetch issues asynchronous prefetch requests to the
operating system, if this is supported, or throws an error otherwise. read reads the requested range of
blocks; unlike prefetch, this is synchronous and supported on all platforms and builds, but may be
slower. buffer reads the requested range of blocks into the database buffer cache.

Note that with any of these methods, attempting to prewarm more blocks than can be cached — by the OS
when using prefetch or read, or by PostgreSQL when using buffer — will likely result in lower-
numbered blocks being evicted as higher numbered blocks are read in. Prewarmed data also enjoys no
special protection from cache evictions, so it is possible that other system activity may evict the newly
prewarmed blocks shortly after they are read; conversely, prewarming may also evict other data from
cache. For these reasons, prewarming is typically most useful at startup, when caches are largely empty.

autoprewarm_start_worker() RETURNS void

2604

Additional Supplied Modules

Launch the main autoprewarm worker. This will normally happen automatically, but is useful if automatic
prewarm was not configured at server startup time and you wish to start up the worker at a later time.

autoprewarm_dump_now() RETURNS int8

Update autoprewarm.blocks immediately. This may be useful if the autoprewarm worker is not
running but you anticipate running it after the next restart. The return value is the number of records written
to autoprewarm.blocks.

F.27.2. Configuration Parameters
pg_prewarm.autoprewarm (boolean)

Controls whether the server should run the autoprewarm worker. This is on by default. This parameter
can only be set at server start.

pg_prewarm.autoprewarm_interval (int)

This is the interval between updates to autoprewarm.blocks. The default is 300 seconds. If set
to 0, the file will not be dumped at regular intervals, but only when the server is shut down.

F.27.3. Author
Robert Haas <rhaas@postgresql.org>

F.28. pgrowlocks
The pgrowlocks module provides a function to show row locking information for a specified table.

By default use is restricted to superusers, members of the pg_stat_scan_tables role, and users with
SELECT permissions on the table.

F.28.1. Overview

pgrowlocks(text) returns setof record

The parameter is the name of a table. The result is a set of records, with one row for each locked row
within the table. The output columns are shown in Table F.20.

Table F.20. pgrowlocks Output Columns

Name Type Description

locked_row tid Tuple ID (TID) of locked row

locker xid Transaction ID of locker, or
multixact ID if multitransaction

multi boolean True if locker is a multitransaction

xids xid[] Transaction IDs of lockers (more
than one if multitransaction)

modes text[] Lock mode of lockers (more
than one if multitransaction), an

2605

Additional Supplied Modules

Name Type Description

array of Key Share, Share,
For No Key Update, No
Key Update, For Update,
Update.

pids integer[] Process IDs of locking
backends (more than one if
multitransaction)

pgrowlocks takes AccessShareLock for the target table and reads each row one by one to collect
the row locking information. This is not very speedy for a large table. Note that:

1. If the table as a whole is exclusive-locked by someone else, pgrowlocks will be blocked.

2. pgrowlocks is not guaranteed to produce a self-consistent snapshot. It is possible that a new row
lock is taken, or an old lock is freed, during its execution.

pgrowlocks does not show the contents of locked rows. If you want to take a look at the row contents
at the same time, you could do something like this:

SELECT * FROM accounts AS a, pgrowlocks('accounts') AS p
 WHERE p.locked_row = a.ctid;

Be aware however that such a query will be very inefficient.

F.28.2. Sample Output

=# SELECT * FROM pgrowlocks('t1');
 locked_row | locker | multi | xids | modes | pids
------------+--------+-------+-------+----------------+--------
 (0,1) | 609 | f | {609} | {"For Share"} | {3161}
 (0,2) | 609 | f | {609} | {"For Share"} | {3161}
 (0,3) | 607 | f | {607} | {"For Update"} | {3107}
 (0,4) | 607 | f | {607} | {"For Update"} | {3107}
(4 rows)

F.28.3. Author
Tatsuo Ishii

F.29. pg_stat_statements
The pg_stat_statements module provides a means for tracking execution statistics of all SQL
statements executed by a server.

The module must be loaded by adding pg_stat_statements to shared_preload_libraries in
postgresql.conf, because it requires additional shared memory. This means that a server restart is
needed to add or remove the module.

When pg_stat_statements is loaded, it tracks statistics across all databases of the server.
To access and manipulate these statistics, the module provides a view, pg_stat_statements,
and the utility functions pg_stat_statements_reset and pg_stat_statements. These

2606

Additional Supplied Modules

are not available globally but can be enabled for a specific database with CREATE EXTENSION
pg_stat_statements.

F.29.1. The pg_stat_statements View
The statistics gathered by the module are made available via a view named pg_stat_statements.
This view contains one row for each distinct database ID, user ID and query ID (up to the maximum
number of distinct statements that the module can track). The columns of the view are shown in Table F.21.

Table F.21. pg_stat_statements Columns

Name Type References Description

userid oid pg_authid.oid OID of user who
executed the statement

dbid oid pg_database.oid OID of database in
which the statement was
executed

queryid bigint Internal hash code,
computed from the
statement's parse tree

query text Text of a representative
statement

calls bigint Number of times
executed

total_time double precision Total time spent in
the statement, in
milliseconds

min_time double precision Minimum time spent
in the statement, in
milliseconds

max_time double precision Maximum time spent
in the statement, in
milliseconds

mean_time double precision Mean time spent
in the statement, in
milliseconds

stddev_time double precision Population standard
deviation of time spent
in the statement, in
milliseconds

rows bigint Total number of rows
retrieved or affected by
the statement

shared_blks_hit bigint Total number of shared
block cache hits by the
statement

shared_blks_read bigint Total number of shared
blocks read by the
statement

2607

Additional Supplied Modules

Name Type References Description

shared_blks_dirtiedbigint Total number of shared
blocks dirtied by the
statement

shared_blks_writtenbigint Total number of shared
blocks written by the
statement

local_blks_hit bigint Total number of local
block cache hits by the
statement

local_blks_read bigint Total number of local
blocks read by the
statement

local_blks_dirtiedbigint Total number of local
blocks dirtied by the
statement

local_blks_writtenbigint Total number of local
blocks written by the
statement

temp_blks_read bigint Total number of temp
blocks read by the
statement

temp_blks_written bigint Total number of temp
blocks written by the
statement

blk_read_time double precision Total time the
statement spent reading
blocks, in milliseconds
(if track_io_timing is
enabled, otherwise zero)

blk_write_time double precision Total time the
statement spent writing
blocks, in milliseconds
(if track_io_timing is
enabled, otherwise zero)

For security reasons, only superusers and members of the pg_read_all_stats role are allowed to see
the SQL text and queryid of queries executed by other users. Other users can see the statistics, however,
if the view has been installed in their database.

Plannable queries (that is, SELECT, INSERT, UPDATE, and DELETE) are combined into a single
pg_stat_statements entry whenever they have identical query structures according to an internal
hash calculation. Typically, two queries will be considered the same for this purpose if they are
semantically equivalent except for the values of literal constants appearing in the query. Utility commands
(that is, all other commands) are compared strictly on the basis of their textual query strings, however.

When a constant's value has been ignored for purposes of matching the query to other queries, the constant
is replaced by a parameter symbol, such as $1, in the pg_stat_statements display. The rest of
the query text is that of the first query that had the particular queryid hash value associated with the
pg_stat_statements entry.

2608

Additional Supplied Modules

In some cases, queries with visibly different texts might get merged into a single
pg_stat_statements entry. Normally this will happen only for semantically equivalent queries, but
there is a small chance of hash collisions causing unrelated queries to be merged into one entry. (This
cannot happen for queries belonging to different users or databases, however.)

Since the queryid hash value is computed on the post-parse-analysis representation of the queries, the
opposite is also possible: queries with identical texts might appear as separate entries, if they have different
meanings as a result of factors such as different search_path settings.

Consumers of pg_stat_statements may wish to use queryid (perhaps in combination with dbid
and userid) as a more stable and reliable identifier for each entry than its query text. However, it is
important to understand that there are only limited guarantees around the stability of the queryid hash
value. Since the identifier is derived from the post-parse-analysis tree, its value is a function of, among
other things, the internal object identifiers appearing in this representation. This has some counterintuitive
implications. For example, pg_stat_statements will consider two apparently-identical queries to be
distinct, if they reference a table that was dropped and recreated between the executions of the two queries.
The hashing process is also sensitive to differences in machine architecture and other facets of the platform.
Furthermore, it is not safe to assume that queryid will be stable across major versions of PostgreSQL.

As a rule of thumb, queryid values can be assumed to be stable and comparable only so long as the
underlying server version and catalog metadata details stay exactly the same. Two servers participating
in replication based on physical WAL replay can be expected to have identical queryid values for the
same query. However, logical replication schemes do not promise to keep replicas identical in all relevant
details, so queryid will not be a useful identifier for accumulating costs across a set of logical replicas.
If in doubt, direct testing is recommended.

The parameter symbols used to replace constants in representative query texts start from the next number
after the highest $n parameter in the original query text, or $1 if there was none. It's worth noting that in
some cases there may be hidden parameter symbols that affect this numbering. For example, PL/pgSQL
uses hidden parameter symbols to insert values of function local variables into queries, so that a PL/pgSQL
statement like SELECT i + 1 INTO j would have representative text like SELECT i + $2.

The representative query texts are kept in an external disk file, and do not consume shared memory.
Therefore, even very lengthy query texts can be stored successfully. However, if many long query texts
are accumulated, the external file might grow unmanageably large. As a recovery method if that happens,
pg_stat_statements may choose to discard the query texts, whereupon all existing entries in the
pg_stat_statements view will show null query fields, though the statistics associated with each
queryid are preserved. If this happens, consider reducing pg_stat_statements.max to prevent
recurrences.

F.29.2. Functions
pg_stat_statements_reset() returns void

pg_stat_statements_reset discards all statistics gathered so far by
pg_stat_statements. By default, this function can only be executed by superusers.

pg_stat_statements(showtext boolean) returns setof record

The pg_stat_statements view is defined in terms of a function also named
pg_stat_statements. It is possible for clients to call the pg_stat_statements function
directly, and by specifying showtext := false have query text be omitted (that is, the OUT
argument that corresponds to the view's query column will return nulls). This feature is intended
to support external tools that might wish to avoid the overhead of repeatedly retrieving query texts
of indeterminate length. Such tools can instead cache the first query text observed for each entry
themselves, since that is all pg_stat_statements itself does, and then retrieve query texts only

2609

Additional Supplied Modules

as needed. Since the server stores query texts in a file, this approach may reduce physical I/O for
repeated examination of the pg_stat_statements data.

F.29.3. Configuration Parameters
pg_stat_statements.max (integer)

pg_stat_statements.max is the maximum number of statements tracked by the module (i.e.,
the maximum number of rows in the pg_stat_statements view). If more distinct statements
than that are observed, information about the least-executed statements is discarded. The default value
is 5000. This parameter can only be set at server start.

pg_stat_statements.track (enum)

pg_stat_statements.track controls which statements are counted by the module. Specify
top to track top-level statements (those issued directly by clients), all to also track nested statements
(such as statements invoked within functions), or none to disable statement statistics collection. The
default value is top. Only superusers can change this setting.

pg_stat_statements.track_utility (boolean)

pg_stat_statements.track_utility controls whether utility commands are tracked by the
module. Utility commands are all those other than SELECT, INSERT, UPDATE and DELETE. The
default value is on. Only superusers can change this setting.

pg_stat_statements.save (boolean)

pg_stat_statements.save specifies whether to save statement statistics across server
shutdowns. If it is off then statistics are not saved at shutdown nor reloaded at server start. The
default value is on. This parameter can only be set in the postgresql.conf file or on the server
command line.

The module requires additional shared memory proportional to pg_stat_statements.max. Note
that this memory is consumed whenever the module is loaded, even if pg_stat_statements.track
is set to none.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
shared_preload_libraries = 'pg_stat_statements'

pg_stat_statements.max = 10000
pg_stat_statements.track = all

F.29.4. Sample Output

bench=# SELECT pg_stat_statements_reset();

$ pgbench -i bench
$ pgbench -c10 -t300 bench

bench=# \x
bench=# SELECT query, calls, total_time, rows, 100.0 *
 shared_blks_hit /

2610

Additional Supplied Modules

 nullif(shared_blks_hit + shared_blks_read, 0) AS
 hit_percent
 FROM pg_stat_statements ORDER BY total_time DESC LIMIT 5;
-[RECORD
 1]---
query | UPDATE pgbench_branches SET bbalance = bbalance + $1
 WHERE bid = $2;
calls | 3000
total_time | 9609.00100000002
rows | 2836
hit_percent | 99.9778970000200936
-[RECORD
 2]---
query | UPDATE pgbench_tellers SET tbalance = tbalance + $1
 WHERE tid = $2;
calls | 3000
total_time | 8015.156
rows | 2990
hit_percent | 99.9731126579631345
-[RECORD
 3]---
query | copy pgbench_accounts from stdin
calls | 1
total_time | 310.624
rows | 100000
hit_percent | 0.30395136778115501520
-[RECORD
 4]---
query | UPDATE pgbench_accounts SET abalance = abalance + $1
 WHERE aid = $2;
calls | 3000
total_time | 271.741999999997
rows | 3000
hit_percent | 93.7968855088209426
-[RECORD
 5]---
query | alter table pgbench_accounts add primary key (aid)
calls | 1
total_time | 81.42
rows | 0
hit_percent | 34.4947735191637631

F.29.5. Authors
Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>. Query normalization added by Peter
Geoghegan <peter@2ndquadrant.com>.

F.30. pgstattuple
The pgstattuple module provides various functions to obtain tuple-level statistics.

Because these functions return detailed page-level information, access is restricted by default. By default,
only the role pg_stat_scan_tables has EXECUTE privilege. Superusers of course bypass this

2611

Additional Supplied Modules

restriction. After the extension has been installed, users may issue GRANT commands to change the
privileges on the functions to allow others to execute them. However, it might be preferable to add those
users to the pg_stat_scan_tables role instead.

F.30.1. Functions
 pgstattuple(regclass) returns record

pgstattuple returns a relation's physical length, percentage of “dead” tuples, and other info. This
may help users to determine whether vacuum is necessary or not. The argument is the target relation's
name (optionally schema-qualified) or OID. For example:

test=> SELECT * FROM pgstattuple('pg_catalog.pg_proc');
-[RECORD 1]------+-------
table_len | 458752
tuple_count | 1470
tuple_len | 438896
tuple_percent | 95.67
dead_tuple_count | 11
dead_tuple_len | 3157
dead_tuple_percent | 0.69
free_space | 8932
free_percent | 1.95

The output columns are described in Table F.22.

Table F.22. pgstattuple Output Columns

Column Type Description

table_len bigint Physical relation length in bytes

tuple_count bigint Number of live tuples

tuple_len bigint Total length of live tuples in
bytes

tuple_percent float8 Percentage of live tuples

dead_tuple_count bigint Number of dead tuples

dead_tuple_len bigint Total length of dead tuples in
bytes

dead_tuple_percent float8 Percentage of dead tuples

free_space bigint Total free space in bytes

free_percent float8 Percentage of free space

Note

The table_len will always be greater than the sum of the tuple_len,
dead_tuple_len and free_space. The difference is accounted for by fixed page
overhead, the per-page table of pointers to tuples, and padding to ensure that tuples are
correctly aligned.

2612

Additional Supplied Modules

pgstattuple acquires only a read lock on the relation. So the results do not reflect an instantaneous
snapshot; concurrent updates will affect them.

pgstattuple judges a tuple is “dead” if HeapTupleSatisfiesDirty returns false.

pgstattuple(text) returns record

This is the same as pgstattuple(regclass), except that the target relation is specified as
TEXT. This function is kept because of backward-compatibility so far, and will be deprecated in some
future release.

 pgstatindex(regclass) returns record

pgstatindex returns a record showing information about a B-tree index. For example:

test=> SELECT * FROM pgstatindex('pg_cast_oid_index');
-[RECORD 1]------+------
version | 2
tree_level | 0
index_size | 16384
root_block_no | 1
internal_pages | 0
leaf_pages | 1
empty_pages | 0
deleted_pages | 0
avg_leaf_density | 54.27
leaf_fragmentation | 0

The output columns are:

Column Type Description

version integer B-tree version number

tree_level integer Tree level of the root page

index_size bigint Total index size in bytes

root_block_no bigint Location of root page (zero if
none)

internal_pages bigint Number of “internal” (upper-
level) pages

leaf_pages bigint Number of leaf pages

empty_pages bigint Number of empty pages

deleted_pages bigint Number of deleted pages

avg_leaf_density float8 Average density of leaf pages

leaf_fragmentation float8 Leaf page fragmentation

The reported index_size will normally correspond to one more page than is accounted for by
internal_pages + leaf_pages + empty_pages + deleted_pages, because it also
includes the index's metapage.

As with pgstattuple, the results are accumulated page-by-page, and should not be expected to
represent an instantaneous snapshot of the whole index.

2613

Additional Supplied Modules

pgstatindex(text) returns record

This is the same as pgstatindex(regclass), except that the target index is specified as TEXT.
This function is kept because of backward-compatibility so far, and will be deprecated in some future
release.

 pgstatginindex(regclass) returns record

pgstatginindex returns a record showing information about a GIN index. For example:

test=> SELECT * FROM pgstatginindex('test_gin_index');
-[RECORD 1]--+--
version | 1
pending_pages | 0
pending_tuples | 0

The output columns are:

Column Type Description

version integer GIN version number

pending_pages integer Number of pages in the pending
list

pending_tuples bigint Number of tuples in the pending
list

 pgstathashindex(regclass) returns record

pgstathashindex returns a record showing information about a HASH index. For example:

test=> select * from pgstathashindex('con_hash_index');
-[RECORD 1]--+-----------------
version | 4
bucket_pages | 33081
overflow_pages | 0
bitmap_pages | 1
unused_pages | 32455
live_items | 10204006
dead_items | 0
free_percent | 61.8005949100872

The output columns are:

Column Type Description

version integer HASH version number

bucket_pages bigint Number of bucket pages

overflow_pages bigint Number of overflow pages

bitmap_pages bigint Number of bitmap pages

unused_pages bigint Number of unused pages

live_items bigint Number of live tuples

dead_tuples bigint Number of dead tuples

2614

Additional Supplied Modules

Column Type Description

free_percent float Percentage of free space

 pg_relpages(regclass) returns bigint

pg_relpages returns the number of pages in the relation.

pg_relpages(text) returns bigint

This is the same as pg_relpages(regclass), except that the target relation is specified as
TEXT. This function is kept because of backward-compatibility so far, and will be deprecated in some
future release.

 pgstattuple_approx(regclass) returns record

pgstattuple_approx is a faster alternative to pgstattuple that returns approximate results.
The argument is the target relation's name or OID. For example:

test=> SELECT * FROM
 pgstattuple_approx('pg_catalog.pg_proc'::regclass);
-[RECORD 1]--------+-------
table_len | 573440
scanned_percent | 2
approx_tuple_count | 2740
approx_tuple_len | 561210
approx_tuple_percent | 97.87
dead_tuple_count | 0
dead_tuple_len | 0
dead_tuple_percent | 0
approx_free_space | 11996
approx_free_percent | 2.09

The output columns are described in Table F.23.

Whereas pgstattuple always performs a full-table scan and returns an exact count of live and
dead tuples (and their sizes) and free space, pgstattuple_approx tries to avoid the full-table
scan and returns exact dead tuple statistics along with an approximation of the number and size of
live tuples and free space.

It does this by skipping pages that have only visible tuples according to the visibility map (if a page
has the corresponding VM bit set, then it is assumed to contain no dead tuples). For such pages, it
derives the free space value from the free space map, and assumes that the rest of the space on the
page is taken up by live tuples.

For pages that cannot be skipped, it scans each tuple, recording its presence and size in the appropriate
counters, and adding up the free space on the page. At the end, it estimates the total number of live
tuples based on the number of pages and tuples scanned (in the same way that VACUUM estimates
pg_class.reltuples).

Table F.23. pgstattuple_approx Output Columns

Column Type Description

table_len bigint Physical relation length in bytes
(exact)

2615

Additional Supplied Modules

Column Type Description

scanned_percent float8 Percentage of table scanned

approx_tuple_count bigint Number of live tuples
(estimated)

approx_tuple_len bigint Total length of live tuples in
bytes (estimated)

approx_tuple_percent float8 Percentage of live tuples

dead_tuple_count bigint Number of dead tuples (exact)

dead_tuple_len bigint Total length of dead tuples in
bytes (exact)

dead_tuple_percent float8 Percentage of dead tuples

approx_free_space bigint Total free space in bytes
(estimated)

approx_free_percent float8 Percentage of free space

In the above output, the free space figures may not match the pgstattuple output exactly, because
the free space map gives us an exact figure, but is not guaranteed to be accurate to the byte.

F.30.2. Authors

Tatsuo Ishii, Satoshi Nagayasu and Abhijit Menon-Sen

F.31. pg_trgm
The pg_trgm module provides functions and operators for determining the similarity of alphanumeric
text based on trigram matching, as well as index operator classes that support fast searching for similar
strings.

F.31.1. Trigram (or Trigraph) Concepts

A trigram is a group of three consecutive characters taken from a string. We can measure the similarity of
two strings by counting the number of trigrams they share. This simple idea turns out to be very effective
for measuring the similarity of words in many natural languages.

Note

pg_trgm ignores non-word characters (non-alphanumerics) when extracting trigrams from a
string. Each word is considered to have two spaces prefixed and one space suffixed when
determining the set of trigrams contained in the string. For example, the set of trigrams in the string
“cat” is “ c”, “ ca”, “cat”, and “at ”. The set of trigrams in the string “foo|bar” is “ f”,
“ fo”, “foo”, “oo ”, “ b”, “ ba”, “bar”, and “ar ”.

F.31.2. Functions and Operators

The functions provided by the pg_trgm module are shown in Table F.24, the operators in Table F.25.

2616

Additional Supplied Modules

Table F.24. pg_trgm Functions

Function Returns Description

similarity(text, text) real Returns a number that indicates
how similar the two arguments
are. The range of the result is zero
(indicating that the two strings
are completely dissimilar) to one
(indicating that the two strings are
identical).

show_trgm(text) text[] Returns an array of all the trigrams
in the given string. (In practice
this is seldom useful except for
debugging.)

word_similarity(text,
text)

real Returns a number that indicates
the greatest similarity between the
set of trigrams in the first string
and any continuous extent of an
ordered set of trigrams in the
second string. For details, see the
explanation below.

strict_word_similarity(text,
text)

real Same as
word_similarity(text,
text), but forces extent
boundaries to match word
boundaries. Since we don't have
cross-word trigrams, this function
actually returns greatest similarity
between first string and any
continuous extent of words of the
second string.

show_limit() real Returns the current similarity
threshold used by the % operator.
This sets the minimum similarity
between two words for them to
be considered similar enough to
be misspellings of each other, for
example (deprecated).

set_limit(real) real Sets the current similarity
threshold that is used by the %
operator. The threshold must be
between 0 and 1 (default is 0.3).
Returns the same value passed in
(deprecated).

Consider the following example:

SELECT word_similarity('word', 'two words');
 word_similarity

 0.8

2617

Additional Supplied Modules

(1 row)

In the first string, the set of trigrams is {" w"," wo","wor","ord","rd "}. In the
second string, the ordered set of trigrams is {" t"," tw","two","wo "," w","
wo","wor","ord","rds","ds "}. The most similar extent of an ordered set of trigrams in the
second string is {" w"," wo","wor","ord"}, and the similarity is 0.8.

This function returns a value that can be approximately understood as the greatest similarity between the
first string and any substring of the second string. However, this function does not add padding to the
boundaries of the extent. Thus, the number of additional characters present in the second string is not
considered, except for the mismatched word boundaries.

At the same time, strict_word_similarity(text, text) selects an extent of words
in the second string. In the example above, strict_word_similarity(text, text)
would select the extent of a single word 'words', whose set of trigrams is {" w","
wo","wor","ord","rds","ds "}.

SELECT strict_word_similarity('word', 'two words'),
 similarity('word', 'words');
 strict_word_similarity | similarity
------------------------+------------
 0.571429 | 0.571429
(1 row)

Thus, the strict_word_similarity(text, text) function is useful for finding the similarity
to whole words, while word_similarity(text, text) is more suitable for finding the similarity
for parts of words.

Table F.25. pg_trgm Operators

Operator Returns Description

text % text boolean Returns true if its arguments
have a similarity that is
greater than the current
similarity threshold set by
pg_trgm.similarity_threshold.

text <% text boolean Returns true if the similarity
between the trigram set in the
first argument and a continuous
extent of an ordered trigram
set in the second argument
is greater than the current
word similarity threshold set by
pg_trgm.word_similarity_threshold
parameter.

text %> text boolean Commutator of the <% operator.

text <<% text boolean Returns true if its second
argument has a continuous extent
of an ordered trigram set that
matches word boundaries, and
its similarity to the trigram set
of the first argument is greater

2618

Additional Supplied Modules

Operator Returns Description

than the current strict word
similarity threshold set by the
pg_trgm.strict_word_similarity_threshold
parameter.

text %>> text boolean Commutator of the <<% operator.

text <-> text real Returns the “distance” between
the arguments, that is one minus
the similarity() value.

text <<-> text real Returns the “distance” between
the arguments, that is one minus
the word_similarity()
value.

text <->> text real Commutator of the <<->
operator.

text <<<-> text real Returns the “distance”
between the arguments,
that is one minus the
strict_word_similarity()
value.

text <->>> text real Commutator of the <<<->
operator.

F.31.3. GUC Parameters
pg_trgm.similarity_threshold (real)

Sets the current similarity threshold that is used by the % operator. The threshold must be between
0 and 1 (default is 0.3).

pg_trgm.word_similarity_threshold (real)

Sets the current word similarity threshold that is used by <% and %> operators. The threshold must
be between 0 and 1 (default is 0.6).

F.31.4. Index Support
The pg_trgm module provides GiST and GIN index operator classes that allow you to create an index
over a text column for the purpose of very fast similarity searches. These index types support the above-
described similarity operators, and additionally support trigram-based index searches for LIKE, ILIKE,
~ and ~* queries. (These indexes do not support equality nor simple comparison operators, so you may
need a regular B-tree index too.)

Example:

CREATE TABLE test_trgm (t text);
CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops);

or

2619

Additional Supplied Modules

CREATE INDEX trgm_idx ON test_trgm USING GIN (t gin_trgm_ops);

At this point, you will have an index on the t column that you can use for similarity searching. A typical
query is

SELECT t, similarity(t, 'word') AS sml
 FROM test_trgm
 WHERE t % 'word'
 ORDER BY sml DESC, t;

This will return all values in the text column that are sufficiently similar to word, sorted from best match
to worst. The index will be used to make this a fast operation even over very large data sets.

A variant of the above query is

SELECT t, t <-> 'word' AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

This can be implemented quite efficiently by GiST indexes, but not by GIN indexes. It will usually beat
the first formulation when only a small number of the closest matches is wanted.

Also you can use an index on the t column for word similarity or strict word similarity. Typical queries are:

SELECT t, word_similarity('word', t) AS sml
 FROM test_trgm
 WHERE 'word' <% t
 ORDER BY sml DESC, t;

and

SELECT t, strict_word_similarity('word', t) AS sml
 FROM test_trgm
 WHERE 'word' <<% t
 ORDER BY sml DESC, t;

This will return all values in the text column for which there is a continuous extent in the corresponding
ordered trigram set that is sufficiently similar to the trigram set of word, sorted from best match to worst.
The index will be used to make this a fast operation even over very large data sets.

Possible variants of the above queries are:

SELECT t, 'word' <<-> t AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

and

SELECT t, 'word' <<<-> t AS dist
 FROM test_trgm

2620

Additional Supplied Modules

 ORDER BY dist LIMIT 10;

This can be implemented quite efficiently by GiST indexes, but not by GIN indexes.

Beginning in PostgreSQL 9.1, these index types also support index searches for LIKE and ILIKE, for
example

SELECT * FROM test_trgm WHERE t LIKE '%foo%bar';

The index search works by extracting trigrams from the search string and then looking these up in the
index. The more trigrams in the search string, the more effective the index search is. Unlike B-tree based
searches, the search string need not be left-anchored.

Beginning in PostgreSQL 9.3, these index types also support index searches for regular-expression matches
(~ and ~* operators), for example

SELECT * FROM test_trgm WHERE t ~ '(foo|bar)';

The index search works by extracting trigrams from the regular expression and then looking these up in the
index. The more trigrams that can be extracted from the regular expression, the more effective the index
search is. Unlike B-tree based searches, the search string need not be left-anchored.

For both LIKE and regular-expression searches, keep in mind that a pattern with no extractable trigrams
will degenerate to a full-index scan.

The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST
and GIN, which are discussed elsewhere.

F.31.5. Text Search Integration
Trigram matching is a very useful tool when used in conjunction with a full text index. In particular it
can help to recognize misspelled input words that will not be matched directly by the full text search
mechanism.

The first step is to generate an auxiliary table containing all the unique words in the documents:

CREATE TABLE words AS SELECT word FROM
 ts_stat('SELECT to_tsvector(''simple'', bodytext) FROM
 documents');

where documents is a table that has a text field bodytext that we wish to search. The reason for
using the simple configuration with the to_tsvector function, instead of using a language-specific
configuration, is that we want a list of the original (unstemmed) words.

Next, create a trigram index on the word column:

CREATE INDEX words_idx ON words USING GIN (word gin_trgm_ops);

Now, a SELECT query similar to the previous example can be used to suggest spellings for misspelled
words in user search terms. A useful extra test is to require that the selected words are also of similar
length to the misspelled word.

2621

Additional Supplied Modules

Note

Since the words table has been generated as a separate, static table, it will need to be periodically
regenerated so that it remains reasonably up-to-date with the document collection. Keeping it
exactly current is usually unnecessary.

F.31.6. References
GiST Development Site http://www.sai.msu.su/~megera/postgres/gist/

Tsearch2 Development Site http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

F.31.7. Authors
Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd.,Russia

Alexander Korotkov <a.korotkov@postgrespro.ru>, Moscow, Postgres Professional, Russia

Documentation: Christopher Kings-Lynne

This module is sponsored by Delta-Soft Ltd., Moscow, Russia.

F.32. pg_visibility
The pg_visibility module provides a means for examining the visibility map (VM) and page-level
visibility information of a table. It also provides functions to check the integrity of a visibility map and
to force it to be rebuilt.

Three different bits are used to store information about page-level visibility. The all-visible bit in the
visibility map indicates that every tuple in the corresponding page of the relation is visible to every current
and future transaction. The all-frozen bit in the visibility map indicates that every tuple in the page is
frozen; that is, no future vacuum will need to modify the page until such time as a tuple is inserted, updated,
deleted, or locked on that page. The page header's PD_ALL_VISIBLE bit has the same meaning as the
all-visible bit in the visibility map, but is stored within the data page itself rather than in a separate data
structure. These two bits will normally agree, but the page's all-visible bit can sometimes be set while the
visibility map bit is clear after a crash recovery. The reported values can also disagree because of a change
that occurs after pg_visibility examines the visibility map and before it examines the data page.
Any event that causes data corruption can also cause these bits to disagree.

Functions that display information about PD_ALL_VISIBLE bits are much more costly than those that
only consult the visibility map, because they must read the relation's data blocks rather than only the (much
smaller) visibility map. Functions that check the relation's data blocks are similarly expensive.

F.32.1. Functions
pg_visibility_map(relation regclass, blkno bigint, all_visible OUT
boolean, all_frozen OUT boolean) returns record

Returns the all-visible and all-frozen bits in the visibility map for the given block of the given relation.

2622

http://www.sai.msu.su/~megera/postgres/gist/
http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

Additional Supplied Modules

pg_visibility(relation regclass, blkno bigint, all_visible OUT boolean,
all_frozen OUT boolean, pd_all_visible OUT boolean) returns record

Returns the all-visible and all-frozen bits in the visibility map for the given block of the given relation,
plus the PD_ALL_VISIBLE bit of that block.

pg_visibility_map(relation regclass, blkno OUT bigint, all_visible OUT
boolean, all_frozen OUT boolean) returns setof record

Returns the all-visible and all-frozen bits in the visibility map for each block of the given relation.

pg_visibility(relation regclass, blkno OUT bigint, all_visible OUT
boolean, all_frozen OUT boolean, pd_all_visible OUT boolean) returns
setof record

Returns the all-visible and all-frozen bits in the visibility map for each block of the given relation,
plus the PD_ALL_VISIBLE bit of each block.

pg_visibility_map_summary(relation regclass, all_visible OUT bigint,
all_frozen OUT bigint) returns record

Returns the number of all-visible pages and the number of all-frozen pages in the relation according
to the visibility map.

pg_check_frozen(relation regclass, t_ctid OUT tid) returns setof tid

Returns the TIDs of non-frozen tuples stored in pages marked all-frozen in the visibility map. If this
function returns a non-empty set of TIDs, the visibility map is corrupt.

pg_check_visible(relation regclass, t_ctid OUT tid) returns setof tid

Returns the TIDs of non-all-visible tuples stored in pages marked all-visible in the visibility map. If
this function returns a non-empty set of TIDs, the visibility map is corrupt.

pg_truncate_visibility_map(relation regclass) returns void

Truncates the visibility map for the given relation. This function is useful if you believe that the
visibility map for the relation is corrupt and wish to force rebuilding it. The first VACUUM executed
on the given relation after this function is executed will scan every page in the relation and rebuild
the visibility map. (Until that is done, queries will treat the visibility map as containing all zeroes.)

By default, these functions are executable only by superusers and
members of the pg_stat_scan_tables role, with the exception of
pg_truncate_visibility_map(relation regclass) which can only be executed by
superusers.

F.32.2. Author
Robert Haas <rhaas@postgresql.org>

F.33. postgres_fdw
The postgres_fdw module provides the foreign-data wrapper postgres_fdw, which can be used
to access data stored in external PostgreSQL servers.

The functionality provided by this module overlaps substantially with the functionality of the older dblink
module. But postgres_fdw provides more transparent and standards-compliant syntax for accessing
remote tables, and can give better performance in many cases.

2623

Additional Supplied Modules

To prepare for remote access using postgres_fdw:

1. Install the postgres_fdw extension using CREATE EXTENSION.
2. Create a foreign server object, using CREATE SERVER, to represent each remote database you want

to connect to. Specify connection information, except user and password, as options of the server
object.

3. Create a user mapping, using CREATE USER MAPPING, for each database user you want to allow to
access each foreign server. Specify the remote user name and password to use as user and password
options of the user mapping.

4. Create a foreign table, using CREATE FOREIGN TABLE or IMPORT FOREIGN SCHEMA, for each
remote table you want to access. The columns of the foreign table must match the referenced remote
table. You can, however, use table and/or column names different from the remote table's, if you specify
the correct remote names as options of the foreign table object.

Now you need only SELECT from a foreign table to access the data stored in its underlying remote table.
You can also modify the remote table using INSERT, UPDATE, or DELETE. (Of course, the remote user
you have specified in your user mapping must have privileges to do these things.)

Note that postgres_fdw currently lacks support for INSERT statements with an ON CONFLICT DO
UPDATE clause. However, the ON CONFLICT DO NOTHING clause is supported, provided a unique
index inference specification is omitted.

It is generally recommended that the columns of a foreign table be declared with exactly the same
data types, and collations if applicable, as the referenced columns of the remote table. Although
postgres_fdw is currently rather forgiving about performing data type conversions at need, surprising
semantic anomalies may arise when types or collations do not match, due to the remote server interpreting
WHERE clauses slightly differently from the local server.

Note that a foreign table can be declared with fewer columns, or with a different column order, than its
underlying remote table has. Matching of columns to the remote table is by name, not position.

F.33.1. FDW Options of postgres_fdw

F.33.1.1. Connection Options

A foreign server using the postgres_fdw foreign data wrapper can have the same options that libpq
accepts in connection strings, as described in Section 34.1.2, except that these options are not allowed:

• user and password (specify these in a user mapping, instead)
• client_encoding (this is automatically set from the local server encoding)
• fallback_application_name (always set to postgres_fdw)

Only superusers may connect to foreign servers without password authentication, so always specify the
password option for user mappings belonging to non-superusers.

F.33.1.2. Object Name Options

These options can be used to control the names used in SQL statements sent to the remote PostgreSQL
server. These options are needed when a foreign table is created with names different from the underlying
remote table's names.

schema_name

This option, which can be specified for a foreign table, gives the schema name to use for the foreign
table on the remote server. If this option is omitted, the name of the foreign table's schema is used.

2624

Additional Supplied Modules

table_name

This option, which can be specified for a foreign table, gives the table name to use for the foreign
table on the remote server. If this option is omitted, the foreign table's name is used.

column_name

This option, which can be specified for a column of a foreign table, gives the column name to use for
the column on the remote server. If this option is omitted, the column's name is used.

F.33.1.3. Cost Estimation Options

postgres_fdw retrieves remote data by executing queries against remote servers, so ideally the
estimated cost of scanning a foreign table should be whatever it costs to be done on the remote server,
plus some overhead for communication. The most reliable way to get such an estimate is to ask the remote
server and then add something for overhead — but for simple queries, it may not be worth the cost of
an additional remote query to get a cost estimate. So postgres_fdw provides the following options to
control how cost estimation is done:

use_remote_estimate

This option, which can be specified for a foreign table or a foreign server, controls whether
postgres_fdw issues remote EXPLAIN commands to obtain cost estimates. A setting for a foreign
table overrides any setting for its server, but only for that table. The default is false.

fdw_startup_cost

This option, which can be specified for a foreign server, is a numeric value that is added to the
estimated startup cost of any foreign-table scan on that server. This represents the additional overhead
of establishing a connection, parsing and planning the query on the remote side, etc. The default value
is 100.

fdw_tuple_cost

This option, which can be specified for a foreign server, is a numeric value that is used as extra cost
per-tuple for foreign-table scans on that server. This represents the additional overhead of data transfer
between servers. You might increase or decrease this number to reflect higher or lower network delay
to the remote server. The default value is 0.01.

When use_remote_estimate is true, postgres_fdw obtains row count and cost estimates
from the remote server and then adds fdw_startup_cost and fdw_tuple_cost to the cost
estimates. When use_remote_estimate is false, postgres_fdw performs local row count and cost
estimation and then adds fdw_startup_cost and fdw_tuple_cost to the cost estimates. This local
estimation is unlikely to be very accurate unless local copies of the remote table's statistics are available.
Running ANALYZE on the foreign table is the way to update the local statistics; this will perform a scan
of the remote table and then calculate and store statistics just as though the table were local. Keeping local
statistics can be a useful way to reduce per-query planning overhead for a remote table — but if the remote
table is frequently updated, the local statistics will soon be obsolete.

F.33.1.4. Remote Execution Options

By default, only WHERE clauses using built-in operators and functions will be considered for execution
on the remote server. Clauses involving non-built-in functions are checked locally after rows are fetched.
If such functions are available on the remote server and can be relied on to produce the same results as
they do locally, performance can be improved by sending such WHERE clauses for remote execution. This
behavior can be controlled using the following option:

2625

Additional Supplied Modules

extensions

This option is a comma-separated list of names of PostgreSQL extensions that are installed, in
compatible versions, on both the local and remote servers. Functions and operators that are immutable
and belong to a listed extension will be considered shippable to the remote server. This option can
only be specified for foreign servers, not per-table.

When using the extensions option, it is the user's responsibility that the listed extensions exist
and behave identically on both the local and remote servers. Otherwise, remote queries may fail or
behave unexpectedly.

fetch_size

This option specifies the number of rows postgres_fdw should get in each fetch operation. It can
be specified for a foreign table or a foreign server. The option specified on a table overrides an option
specified for the server. The default is 100.

F.33.1.5. Updatability Options

By default all foreign tables using postgres_fdw are assumed to be updatable. This may be overridden
using the following option:

updatable

This option controls whether postgres_fdw allows foreign tables to be modified using INSERT,
UPDATE and DELETE commands. It can be specified for a foreign table or a foreign server. A table-
level option overrides a server-level option. The default is true.

Of course, if the remote table is not in fact updatable, an error would occur anyway. Use of this option
primarily allows the error to be thrown locally without querying the remote server. Note however that
the information_schema views will report a postgres_fdw foreign table to be updatable (or
not) according to the setting of this option, without any check of the remote server.

F.33.1.6. Importing Options

postgres_fdw is able to import foreign table definitions using IMPORT FOREIGN SCHEMA. This
command creates foreign table definitions on the local server that match tables or views present on the
remote server. If the remote tables to be imported have columns of user-defined data types, the local server
must have compatible types of the same names.

Importing behavior can be customized with the following options (given in the IMPORT FOREIGN
SCHEMA command):

import_collate

This option controls whether column COLLATE options are included in the definitions of foreign
tables imported from a foreign server. The default is true. You might need to turn this off if the
remote server has a different set of collation names than the local server does, which is likely to be
the case if it's running on a different operating system.

import_default

This option controls whether column DEFAULT expressions are included in the definitions of foreign
tables imported from a foreign server. The default is false. If you enable this option, be wary of
defaults that might get computed differently on the local server than they would be on the remote

2626

Additional Supplied Modules

server; nextval() is a common source of problems. The IMPORT will fail altogether if an imported
default expression uses a function or operator that does not exist locally.

import_not_null

This option controls whether column NOT NULL constraints are included in the definitions of foreign
tables imported from a foreign server. The default is true.

Note that constraints other than NOT NULL will never be imported from the remote tables. Although
PostgreSQL does support CHECK constraints on foreign tables, there is no provision for importing them
automatically, because of the risk that a constraint expression could evaluate differently on the local and
remote servers. Any such inconsistency in the behavior of a CHECK constraint could lead to hard-to-detect
errors in query optimization. So if you wish to import CHECK constraints, you must do so manually, and
you should verify the semantics of each one carefully. For more detail about the treatment of CHECK
constraints on foreign tables, see CREATE FOREIGN TABLE.

Tables or foreign tables which are partitions of some other table are automatically excluded. Partitioned
tables are imported, unless they are a partition of some other table. Since all data can be accessed through
the partitioned table which is the root of the partitioning hierarchy, this approach should allow access to
all the data without creating extra objects.

F.33.2. Connection Management
postgres_fdw establishes a connection to a foreign server during the first query that uses a foreign
table associated with the foreign server. This connection is kept and re-used for subsequent queries in the
same session. However, if multiple user identities (user mappings) are used to access the foreign server,
a connection is established for each user mapping.

F.33.3. Transaction Management
During a query that references any remote tables on a foreign server, postgres_fdw opens a transaction
on the remote server if one is not already open corresponding to the current local transaction. The remote
transaction is committed or aborted when the local transaction commits or aborts. Savepoints are similarly
managed by creating corresponding remote savepoints.

The remote transaction uses SERIALIZABLE isolation level when the local transaction has
SERIALIZABLE isolation level; otherwise it uses REPEATABLE READ isolation level. This choice
ensures that if a query performs multiple table scans on the remote server, it will get snapshot-consistent
results for all the scans. A consequence is that successive queries within a single transaction will see the
same data from the remote server, even if concurrent updates are occurring on the remote server due to
other activities. That behavior would be expected anyway if the local transaction uses SERIALIZABLE or
REPEATABLE READ isolation level, but it might be surprising for a READ COMMITTED local transaction.
A future PostgreSQL release might modify these rules.

F.33.4. Remote Query Optimization
postgres_fdw attempts to optimize remote queries to reduce the amount of data transferred from
foreign servers. This is done by sending query WHERE clauses to the remote server for execution, and by
not retrieving table columns that are not needed for the current query. To reduce the risk of misexecution
of queries, WHERE clauses are not sent to the remote server unless they use only data types, operators,
and functions that are built-in or belong to an extension that's listed in the foreign server's extensions
option. Operators and functions in such clauses must be IMMUTABLE as well. For an UPDATE or DELETE
query, postgres_fdw attempts to optimize the query execution by sending the whole query to the

2627

Additional Supplied Modules

remote server if there are no query WHERE clauses that cannot be sent to the remote server, no local joins
for the query, no row-level local BEFORE or AFTER triggers on the target table, and no CHECK OPTION
constraints from parent views. In UPDATE, expressions to assign to target columns must use only built-
in data types, IMMUTABLE operators, or IMMUTABLE functions, to reduce the risk of misexecution of
the query.

When postgres_fdw encounters a join between foreign tables on the same foreign server, it sends the
entire join to the foreign server, unless for some reason it believes that it will be more efficient to fetch rows
from each table individually, or unless the table references involved are subject to different user mappings.
While sending the JOIN clauses, it takes the same precautions as mentioned above for the WHERE clauses.

The query that is actually sent to the remote server for execution can be examined using EXPLAIN
VERBOSE.

F.33.5. Remote Query Execution Environment
In the remote sessions opened by postgres_fdw, the search_path parameter is set to just
pg_catalog, so that only built-in objects are visible without schema qualification. This is not an issue
for queries generated by postgres_fdw itself, because it always supplies such qualification. However,
this can pose a hazard for functions that are executed on the remote server via triggers or rules on remote
tables. For example, if a remote table is actually a view, any functions used in that view will be executed
with the restricted search path. It is recommended to schema-qualify all names in such functions, or else
attach SET search_path options (see CREATE FUNCTION) to such functions to establish their
expected search path environment.

postgres_fdw likewise establishes remote session settings for various parameters:

• TimeZone is set to UTC
• DateStyle is set to ISO
• IntervalStyle is set to postgres
• extra_float_digits is set to 3 for remote servers 9.0 and newer and is set to 2 for older versions

These are less likely to be problematic than search_path, but can be handled with function SET options
if the need arises.

It is not recommended that you override this behavior by changing the session-level settings of these
parameters; that is likely to cause postgres_fdw to malfunction.

F.33.6. Cross-Version Compatibility
postgres_fdw can be used with remote servers dating back to PostgreSQL 8.3. Read-only capability
is available back to 8.1. A limitation however is that postgres_fdw generally assumes that immutable
built-in functions and operators are safe to send to the remote server for execution, if they appear in a
WHERE clause for a foreign table. Thus, a built-in function that was added since the remote server's release
might be sent to it for execution, resulting in “function does not exist” or a similar error. This type of failure
can be worked around by rewriting the query, for example by embedding the foreign table reference in a
sub-SELECT with OFFSET 0 as an optimization fence, and placing the problematic function or operator
outside the sub-SELECT.

F.33.7. Examples
Here is an example of creating a foreign table with postgres_fdw. First install the extension:

2628

Additional Supplied Modules

CREATE EXTENSION postgres_fdw;

Then create a foreign server using CREATE SERVER. In this example we wish to connect to a PostgreSQL
server on host 192.83.123.89 listening on port 5432. The database to which the connection is made
is named foreign_db on the remote server:

CREATE SERVER foreign_server
 FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS (host '192.83.123.89', port '5432', dbname
 'foreign_db');

A user mapping, defined with CREATE USER MAPPING, is needed as well to identify the role that will
be used on the remote server:

CREATE USER MAPPING FOR local_user
 SERVER foreign_server
 OPTIONS (user 'foreign_user', password 'password');

Now it is possible to create a foreign table with CREATE FOREIGN TABLE. In this example we wish
to access the table named some_schema.some_table on the remote server. The local name for it
will be foreign_table:

CREATE FOREIGN TABLE foreign_table (
 id integer NOT NULL,
 data text
)
 SERVER foreign_server
 OPTIONS (schema_name 'some_schema', table_name 'some_table');

It's essential that the data types and other properties of the columns declared in CREATE FOREIGN
TABLE match the actual remote table. Column names must match as well, unless you attach
column_name options to the individual columns to show how they are named in the remote table. In
many cases, use of IMPORT FOREIGN SCHEMA is preferable to constructing foreign table definitions
manually.

F.33.8. Author
Shigeru Hanada <shigeru.hanada@gmail.com>

F.34. seg
This module implements a data type seg for representing line segments, or floating point intervals. seg
can represent uncertainty in the interval endpoints, making it especially useful for representing laboratory
measurements.

F.34.1. Rationale
The geometry of measurements is usually more complex than that of a point in a numeric continuum. A
measurement is usually a segment of that continuum with somewhat fuzzy limits. The measurements come
out as intervals because of uncertainty and randomness, as well as because the value being measured may
naturally be an interval indicating some condition, such as the temperature range of stability of a protein.

2629

Additional Supplied Modules

Using just common sense, it appears more convenient to store such data as intervals, rather than pairs of
numbers. In practice, it even turns out more efficient in most applications.

Further along the line of common sense, the fuzziness of the limits suggests that the use of traditional
numeric data types leads to a certain loss of information. Consider this: your instrument reads 6.50, and
you input this reading into the database. What do you get when you fetch it? Watch:

test=> select 6.50 :: float8 as "pH";
 pH

6.5
(1 row)

In the world of measurements, 6.50 is not the same as 6.5. It may sometimes be critically different. The
experimenters usually write down (and publish) the digits they trust. 6.50 is actually a fuzzy interval
contained within a bigger and even fuzzier interval, 6.5, with their center points being (probably) the only
common feature they share. We definitely do not want such different data items to appear the same.

Conclusion? It is nice to have a special data type that can record the limits of an interval with arbitrarily
variable precision. Variable in the sense that each data element records its own precision.

Check this out:

test=> select '6.25 .. 6.50'::seg as "pH";
 pH

6.25 .. 6.50
(1 row)

F.34.2. Syntax
The external representation of an interval is formed using one or two floating-point numbers joined by the
range operator (.. or ...). Alternatively, it can be specified as a center point plus or minus a deviation.
Optional certainty indicators (<, > or ~) can be stored as well. (Certainty indicators are ignored by all the
built-in operators, however.) Table F.26 gives an overview of allowed representations; Table F.27 shows
some examples.

In Table F.26, x, y, and delta denote floating-point numbers. x and y, but not delta, can be preceded
by a certainty indicator.

Table F.26. seg External Representations

x Single value (zero-length interval)

x .. y Interval from x to y

x (+-) delta Interval from x - delta to x + delta

x .. Open interval with lower bound x

.. x Open interval with upper bound x

Table F.27. Examples of Valid seg Input

5.0 Creates a zero-length segment (a point, if you will)

2630

Additional Supplied Modules

~5.0 Creates a zero-length segment and records ~ in
the data. ~ is ignored by seg operations, but is
preserved as a comment.

<5.0 Creates a point at 5.0. < is ignored but is preserved
as a comment.

>5.0 Creates a point at 5.0. > is ignored but is preserved
as a comment.

5(+-)0.3 Creates an interval 4.7 .. 5.3. Note that the
(+-) notation isn't preserved.

50 .. Everything that is greater than or equal to 50

.. 0 Everything that is less than or equal to 0

1.5e-2 .. 2E-2 Creates an interval 0.015 .. 0.02

1 ... 2 The same as 1...2, or 1 .. 2, or 1..2 (spaces
around the range operator are ignored)

Because ... is widely used in data sources, it is allowed as an alternative spelling of ... Unfortunately,
this creates a parsing ambiguity: it is not clear whether the upper bound in 0...23 is meant to be 23 or
0.23. This is resolved by requiring at least one digit before the decimal point in all numbers in seg input.

As a sanity check, seg rejects intervals with the lower bound greater than the upper, for example 5 .. 2.

F.34.3. Precision
seg values are stored internally as pairs of 32-bit floating point numbers. This means that numbers with
more than 7 significant digits will be truncated.

Numbers with 7 or fewer significant digits retain their original precision. That is, if your query returns
0.00, you will be sure that the trailing zeroes are not the artifacts of formatting: they reflect the precision
of the original data. The number of leading zeroes does not affect precision: the value 0.0067 is considered
to have just 2 significant digits.

F.34.4. Usage
The seg module includes a GiST index operator class for seg values. The operators supported by the
GiST operator class are shown in Table F.28.

Table F.28. Seg GiST Operators

Operator Description

[a, b] << [c, d] [a, b] is entirely to the left of [c, d]. That is, [a, b] <<
[c, d] is true if b < c and false otherwise.

[a, b] >> [c, d] [a, b] is entirely to the right of [c, d]. That is, [a, b]
>> [c, d] is true if a > d and false otherwise.

[a, b] &< [c, d] Overlaps or is left of — This might be better read as
“does not extend to right of”. It is true when b <= d.

[a, b] &> [c, d] Overlaps or is right of — This might be better read
as “does not extend to left of”. It is true when a >= c.

[a, b] = [c, d] Same as — The segments [a, b] and [c, d] are
identical, that is, a = c and b = d.

2631

Additional Supplied Modules

Operator Description

[a, b] && [c, d] The segments [a, b] and [c, d] overlap.

[a, b] @> [c, d] The segment [a, b] contains the segment [c, d], that
is, a <= c and b >= d.

[a, b] <@ [c, d] The segment [a, b] is contained in [c, d], that is, a
>= c and b <= d.

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names are
reversed from the convention formerly followed by the core geometric data types!)

The standard B-tree operators are also provided, for example

Operator Description

[a, b] < [c, d] Less than

[a, b] > [c, d] Greater than

These operators do not make a lot of sense for any practical purpose but sorting. These operators first
compare (a) to (c), and if these are equal, compare (b) to (d). That results in reasonably good sorting in
most cases, which is useful if you want to use ORDER BY with this type.

F.34.5. Notes
For examples of usage, see the regression test sql/seg.sql.

The mechanism that converts (+-) to regular ranges isn't completely accurate in determining the number
of significant digits for the boundaries. For example, it adds an extra digit to the lower boundary if the
resulting interval includes a power of ten:

postgres=> select '10(+-)1'::seg as seg;
 seg

9.0 .. 11 -- should be: 9 .. 11

The performance of an R-tree index can largely depend on the initial order of input values. It may be very
helpful to sort the input table on the seg column; see the script sort-segments.pl for an example.

F.34.6. Credits
Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>, Mathematics and Computer Science
Division, Argonne National Laboratory.

My thanks are primarily to Prof. Joe Hellerstein (http://db.cs.berkeley.edu/jmh/) for elucidating the gist
of the GiST (http://gist.cs.berkeley.edu/). I am also grateful to all Postgres developers, present and past,
for enabling myself to create my own world and live undisturbed in it. And I would like to acknowledge
my gratitude to Argonne Lab and to the U.S. Department of Energy for the years of faithful support of
my database research.

F.35. sepgsql
sepgsql is a loadable module that supports label-based mandatory access control (MAC) based on
SELinux security policy.

2632

http://db.cs.berkeley.edu/jmh/
http://gist.cs.berkeley.edu/

Additional Supplied Modules

Warning

The current implementation has significant limitations, and does not enforce mandatory access
control for all actions. See Section F.35.7.

F.35.1. Overview
This module integrates with SELinux to provide an additional layer of security checking above and
beyond what is normally provided by PostgreSQL. From the perspective of SELinux, this module allows
PostgreSQL to function as a user-space object manager. Each table or function access initiated by a DML
query will be checked against the system security policy. This check is in addition to the usual SQL
permissions checking performed by PostgreSQL.

SELinux access control decisions are made using security labels, which are represented by strings such as
system_u:object_r:sepgsql_table_t:s0. Each access control decision involves two labels:
the label of the subject attempting to perform the action, and the label of the object on which the operation
is to be performed. Since these labels can be applied to any sort of object, access control decisions for
objects stored within the database can be (and, with this module, are) subjected to the same general criteria
used for objects of any other type, such as files. This design is intended to allow a centralized security
policy to protect information assets independent of the particulars of how those assets are stored.

The SECURITY LABEL statement allows assignment of a security label to a database object.

F.35.2. Installation
sepgsql can only be used on Linux 2.6.28 or higher with SELinux enabled. It is not available on any
other platform. You will also need libselinux 2.1.10 or higher and selinux-policy 3.9.13 or higher (although
some distributions may backport the necessary rules into older policy versions).

The sestatus command allows you to check the status of SELinux. A typical display is:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted

If SELinux is disabled or not installed, you must set that product up first before installing this module.

To build this module, include the option --with-selinux in your PostgreSQL configure
command. Be sure that the libselinux-devel RPM is installed at build time.

To use this module, you must include sepgsql in the shared_preload_libraries parameter in
postgresql.conf. The module will not function correctly if loaded in any other manner. Once the
module is loaded, you should execute sepgsql.sql in each database. This will install functions needed
for security label management, and assign initial security labels.

Here is an example showing how to initialize a fresh database cluster with sepgsql functions and security
labels installed. Adjust the paths shown as appropriate for your installation:

2633

Additional Supplied Modules

$ export PGDATA=/path/to/data/directory
$ initdb
$ vi $PGDATA/postgresql.conf
 change
 #shared_preload_libraries = '' # (change requires
 restart)
 to
 shared_preload_libraries = 'sepgsql' # (change requires
 restart)
$ for DBNAME in template0 template1 postgres; do
 postgres --single -F -c exit_on_error=true $DBNAME \
 </usr/local/pgsql/share/contrib/sepgsql.sql >/dev/null
 done

Please note that you may see some or all of the following notifications depending on the particular versions
you have of libselinux and selinux-policy:

/etc/selinux/targeted/contexts/sepgsql_contexts: line 33 has invalid
 object type db_blobs
/etc/selinux/targeted/contexts/sepgsql_contexts: line 36 has invalid
 object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 37 has invalid
 object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 38 has invalid
 object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 39 has invalid
 object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 40 has invalid
 object type db_language

These messages are harmless and should be ignored.

If the installation process completes without error, you can now start the server normally.

F.35.3. Regression Tests
Due to the nature of SELinux, running the regression tests for sepgsql requires several extra
configuration steps, some of which must be done as root. The regression tests will not be run by an ordinary
make check or make installcheck command; you must set up the configuration and then invoke
the test script manually. The tests must be run in the contrib/sepgsql directory of a configured
PostgreSQL build tree. Although they require a build tree, the tests are designed to be executed against an
installed server, that is they are comparable to make installcheck not make check.

First, set up sepgsql in a working database according to the instructions in Section F.35.2. Note that
the current operating system user must be able to connect to the database as superuser without password
authentication.

Second, build and install the policy package for the regression test. The sepgsql-regtest policy is a
special purpose policy package which provides a set of rules to be allowed during the regression tests. It
should be built from the policy source file sepgsql-regtest.te, which is done using make with a
Makefile supplied by SELinux. You will need to locate the appropriate Makefile on your system; the path
shown below is only an example. Once built, install this policy package using the semodule command,
which loads supplied policy packages into the kernel. If the package is correctly installed, semodule -
l should list sepgsql-regtest as an available policy package:

2634

Additional Supplied Modules

$ cd .../contrib/sepgsql
$ make -f /usr/share/selinux/devel/Makefile
$ sudo semodule -u sepgsql-regtest.pp
$ sudo semodule -l | grep sepgsql
sepgsql-regtest 1.07

Third, turn on sepgsql_regression_test_mode. For security reasons, the rules in sepgsql-
regtest are not enabled by default; the sepgsql_regression_test_mode parameter enables the
rules needed to launch the regression tests. It can be turned on using the setsebool command:

$ sudo setsebool sepgsql_regression_test_mode on
$ getsebool sepgsql_regression_test_mode
sepgsql_regression_test_mode --> on

Fourth, verify your shell is operating in the unconfined_t domain:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

See Section F.35.8 for details on adjusting your working domain, if necessary.

Finally, run the regression test script:

$./test_sepgsql

This script will attempt to verify that you have done all the configuration steps correctly, and then it will
run the regression tests for the sepgsql module.

After completing the tests, it's recommended you disable the sepgsql_regression_test_mode
parameter:

$ sudo setsebool sepgsql_regression_test_mode off

You might prefer to remove the sepgsql-regtest policy entirely:

$ sudo semodule -r sepgsql-regtest

F.35.4. GUC Parameters
sepgsql.permissive (boolean)

This parameter enables sepgsql to function in permissive mode, regardless of the system setting.
The default is off. This parameter can only be set in the postgresql.conf file or on the server
command line.

When this parameter is on, sepgsql functions in permissive mode, even if SELinux in general is
working in enforcing mode. This parameter is primarily useful for testing purposes.

sepgsql.debug_audit (boolean)

This parameter enables the printing of audit messages regardless of the system policy settings. The
default is off, which means that messages will be printed according to the system settings.

2635

Additional Supplied Modules

The security policy of SELinux also has rules to control whether or not particular accesses are logged.
By default, access violations are logged, but allowed accesses are not.

This parameter forces all possible logging to be turned on, regardless of the system policy.

F.35.5. Features

F.35.5.1. Controlled Object Classes

The security model of SELinux describes all the access control rules as relationships between a subject
entity (typically, a client of the database) and an object entity (such as a database object), each of which
is identified by a security label. If access to an unlabeled object is attempted, the object is treated as if it
were assigned the label unlabeled_t.

Currently, sepgsql allows security labels to be assigned to schemas, tables, columns, sequences, views,
and functions. When sepgsql is in use, security labels are automatically assigned to supported database
objects at creation time. This label is called a default security label, and is decided according to the system
security policy, which takes as input the creator's label, the label assigned to the new object's parent object
and optionally name of the constructed object.

A new database object basically inherits the security label of the parent object, except when the security
policy has special rules known as type-transition rules, in which case a different label may be applied.
For schemas, the parent object is the current database; for tables, sequences, views, and functions, it is the
containing schema; for columns, it is the containing table.

F.35.5.2. DML Permissions

For tables, db_table:select, db_table:insert, db_table:update or
db_table:delete are checked for all the referenced target tables depending on the kind of statement;
in addition, db_table:select is also checked for all the tables that contain columns referenced in the
WHERE or RETURNING clause, as a data source for UPDATE, and so on.

Column-level permissions will also be checked for each referenced column. db_column:select is
checked on not only the columns being read using SELECT, but those being referenced in other DML
statements; db_column:update or db_column:insert will also be checked for columns being
modified by UPDATE or INSERT.

For example, consider:

UPDATE t1 SET x = 2, y = func1(y) WHERE z = 100;

Here, db_column:update will be checked for t1.x, since it is being updated, db_column:
{select update} will be checked for t1.y, since it is both updated and referenced, and
db_column:select will be checked for t1.z, since it is only referenced. db_table:{select
update} will also be checked at the table level.

For sequences, db_sequence:get_value is checked when we reference a sequence object using
SELECT; however, note that we do not currently check permissions on execution of corresponding
functions such as lastval().

For views, db_view:expand will be checked, then any other required permissions will be checked on
the objects being expanded from the view, individually.

For functions, db_procedure:{execute} will be checked when user tries to execute a function
as a part of query, or using fast-path invocation. If this function is a trusted procedure, it also checks

2636

Additional Supplied Modules

db_procedure:{entrypoint} permission to check whether it can perform as entry point of trusted
procedure.

In order to access any schema object, db_schema:search permission is required on the containing
schema. When an object is referenced without schema qualification, schemas on which this permission
is not present will not be searched (just as if the user did not have USAGE privilege on the schema).
If an explicit schema qualification is present, an error will occur if the user does not have the requisite
permission on the named schema.

The client must be allowed to access all referenced tables and columns, even if they originated from views
which were then expanded, so that we apply consistent access control rules independent of the manner in
which the table contents are referenced.

The default database privilege system allows database superusers to modify system catalogs using DML
commands, and reference or modify toast tables. These operations are prohibited when sepgsql is
enabled.

F.35.5.3. DDL Permissions

SELinux defines several permissions to control common operations for each object type; such as creation,
alter, drop and relabel of security label. In addition, several object types have special permissions to control
their characteristic operations; such as addition or deletion of name entries within a particular schema.

Creating a new database object requires create permission. SELinux will grant or deny this permission
based on the client's security label and the proposed security label for the new object. In some cases,
additional privileges are required:

• CREATE DATABASE additionally requires getattr permission for the source or template database.

• Creating a schema object additionally requires add_name permission on the parent schema.

• Creating a table additionally requires permission to create each individual table column, just as if each
table column were a separate top-level object.

• Creating a function marked as LEAKPROOF additionally requires install permission. (This
permission is also checked when LEAKPROOF is set for an existing function.)

When DROP command is executed, drop will be checked on the object being removed. Permissions
will be also checked for objects dropped indirectly via CASCADE. Deletion of objects contained within
a particular schema (tables, views, sequences and procedures) additionally requires remove_name on
the schema.

When ALTER command is executed, setattr will be checked on the object being modified for each
object types, except for subsidiary objects such as the indexes or triggers of a table, where permissions are
instead checked on the parent object. In some cases, additional permissions are required:

• Moving an object to a new schema additionally requires remove_name permission on the old schema
and add_name permission on the new one.

• Setting the LEAKPROOF attribute on a function requires install permission.

• Using SECURITY LABEL on an object additionally requires relabelfrom permission for the object
in conjunction with its old security label and relabelto permission for the object in conjunction
with its new security label. (In cases where multiple label providers are installed and the user tries to
set a security label, but it is not managed by SELinux, only setattr should be checked here. This is
currently not done due to implementation restrictions.)

2637

Additional Supplied Modules

F.35.5.4. Trusted Procedures

Trusted procedures are similar to security definer functions or setuid commands. SELinux provides a
feature to allow trusted code to run using a security label different from that of the client, generally for the
purpose of providing highly controlled access to sensitive data (e.g. rows might be omitted, or the precision
of stored values might be reduced). Whether or not a function acts as a trusted procedure is controlled by
its security label and the operating system security policy. For example:

postgres=# CREATE TABLE customer (
 cid int primary key,
 cname text,
 credit text
);
CREATE TABLE
postgres=# SECURITY LABEL ON COLUMN customer.credit
 IS 'system_u:object_r:sepgsql_secret_table_t:s0';
SECURITY LABEL
postgres=# CREATE FUNCTION show_credit(int) RETURNS text
 AS 'SELECT regexp_replace(credit, ''-[0-9]+$'', ''-
xxxx'', ''g'')
 FROM customer WHERE cid = $1'
 LANGUAGE sql;
CREATE FUNCTION
postgres=# SECURITY LABEL ON FUNCTION show_credit(int)
 IS 'system_u:object_r:sepgsql_trusted_proc_exec_t:s0';
SECURITY LABEL

The above operations should be performed by an administrative user.

postgres=# SELECT * FROM customer;
ERROR: SELinux: security policy violation
postgres=# SELECT cid, cname, show_credit(cid) FROM customer;
 cid | cname | show_credit
-----+--------+---------------------
 1 | taro | 1111-2222-3333-xxxx
 2 | hanako | 5555-6666-7777-xxxx
(2 rows)

In this case, a regular user cannot reference customer.credit directly, but a trusted procedure
show_credit allows the user to print the credit card numbers of customers with some of the digits
masked out.

F.35.5.5. Dynamic Domain Transitions

It is possible to use SELinux's dynamic domain transition feature to switch the security label of the client
process, the client domain, to a new context, if that is allowed by the security policy. The client domain
needs the setcurrent permission and also dyntransition from the old to the new domain.

Dynamic domain transitions should be considered carefully, because they allow users to switch their label,
and therefore their privileges, at their option, rather than (as in the case of a trusted procedure) as mandated
by the system. Thus, the dyntransition permission is only considered safe when used to switch to a
domain with a smaller set of privileges than the original one. For example:

2638

Additional Supplied Modules

regression=# select sepgsql_getcon();
 sepgsql_getcon

 unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
(1 row)

regression=# SELECT
 sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-s0:c1.c4');
 sepgsql_setcon

 t
(1 row)

regression=# SELECT
 sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-
s0:c1.c1023');
ERROR: SELinux: security policy violation

In this example above we were allowed to switch from the larger MCS range c1.c1023 to the smaller
range c1.c4, but switching back was denied.

A combination of dynamic domain transition and trusted procedure enables an interesting use case that fits
the typical process life-cycle of connection pooling software. Even if your connection pooling software is
not allowed to run most of SQL commands, you can allow it to switch the security label of the client using
the sepgsql_setcon() function from within a trusted procedure; that should take some credential
to authorize the request to switch the client label. After that, this session will have the privileges of the
target user, rather than the connection pooler. The connection pooler can later revert the security label
change by again using sepgsql_setcon() with NULL argument, again invoked from within a trusted
procedure with appropriate permissions checks. The point here is that only the trusted procedure actually
has permission to change the effective security label, and only does so when given proper credentials.
Of course, for secure operation, the credential store (table, procedure definition, or whatever) must be
protected from unauthorized access.

F.35.5.6. Miscellaneous

We reject the LOAD command across the board, because any module loaded could easily circumvent
security policy enforcement.

F.35.6. Sepgsql Functions
Table F.29 shows the available functions.

Table F.29. Sepgsql Functions

sepgsql_getcon() returns text Returns the client domain, the current security label
of the client.

sepgsql_setcon(text) returns bool Switches the client domain of the current session to
the new domain, if allowed by the security policy.
It also accepts NULL input as a request to transition
to the client's original domain.

sepgsql_mcstrans_in(text) returns
text

Translates the given qualified MLS/MCS range into
raw format if the mcstrans daemon is running.

2639

Additional Supplied Modules

sepgsql_mcstrans_out(text) returns
text

Translates the given raw MLS/MCS range into
qualified format if the mcstrans daemon is running.

sepgsql_restorecon(text) returns
bool

Sets up initial security labels for all objects within
the current database. The argument may be NULL,
or the name of a specfile to be used as alternative of
the system default.

F.35.7. Limitations
Data Definition Language (DDL) Permissions

Due to implementation restrictions, some DDL operations do not check permissions.

Data Control Language (DCL) Permissions

Due to implementation restrictions, DCL operations do not check permissions.

Row-level access control

PostgreSQL supports row-level access, but sepgsql does not.

Covert channels

sepgsql does not try to hide the existence of a certain object, even if the user is not allowed to
reference it. For example, we can infer the existence of an invisible object as a result of primary key
conflicts, foreign key violations, and so on, even if we cannot obtain the contents of the object. The
existence of a top secret table cannot be hidden; we only hope to conceal its contents.

F.35.8. External Resources
SE-PostgreSQL Introduction5

This wiki page provides a brief overview, security design, architecture, administration and upcoming
features.

SELinux User's and Administrator's Guide6

This document provides a wide spectrum of knowledge to administer SELinux on your systems. It
focuses primarily on Red Hat operating systems, but is not limited to them.

Fedora SELinux FAQ7

This document answers frequently asked questions about SELinux. It focuses primarily on Fedora,
but is not limited to Fedora.

F.35.9. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

F.36. spi
5 https://wiki.postgresql.org/wiki/SEPostgreSQL
6 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/
7 https://fedoraproject.org/wiki/SELinux_FAQ

2640

https://wiki.postgresql.org/wiki/SEPostgreSQL
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/
https://fedoraproject.org/wiki/SELinux_FAQ
https://wiki.postgresql.org/wiki/SEPostgreSQL
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/
https://fedoraproject.org/wiki/SELinux_FAQ

Additional Supplied Modules

The spi module provides several workable examples of using the Server Programming Interface (SPI) and
triggers. While these functions are of some value in their own right, they are even more useful as examples
to modify for your own purposes. The functions are general enough to be used with any table, but you
have to specify table and field names (as described below) while creating a trigger.

Each of the groups of functions described below is provided as a separately-installable extension.

F.36.1. refint — Functions for Implementing Referential
Integrity

check_primary_key() and check_foreign_key() are used to check foreign key constraints.
(This functionality is long since superseded by the built-in foreign key mechanism, of course, but the
module is still useful as an example.)

check_primary_key() checks the referencing table. To use, create a BEFORE INSERT OR
UPDATE trigger using this function on a table referencing another table. Specify as the trigger arguments:
the referencing table's column name(s) which form the foreign key, the referenced table name, and the
column names in the referenced table which form the primary/unique key. To handle multiple foreign
keys, create a trigger for each reference.

check_foreign_key() checks the referenced table. To use, create a BEFORE DELETE OR UPDATE
trigger using this function on a table referenced by other table(s). Specify as the trigger arguments: the
number of referencing tables for which the function has to perform checking, the action if a referencing
key is found (cascade — to delete the referencing row, restrict — to abort transaction if referencing
keys exist, setnull — to set referencing key fields to null), the triggered table's column names which
form the primary/unique key, then the referencing table name and column names (repeated for as many
referencing tables as were specified by first argument). Note that the primary/unique key columns should
be marked NOT NULL and should have a unique index.

There are examples in refint.example.

F.36.2. timetravel — Functions for Implementing Time
Travel

Long ago, PostgreSQL had a built-in time travel feature that kept the insert and delete times for each tuple.
This can be emulated using these functions. To use these functions, you must add to a table two columns
of abstime type to store the date when a tuple was inserted (start_date) and changed/deleted (stop_date):

CREATE TABLE mytab (

 start_date abstime,
 stop_date abstime

);

The columns can be named whatever you like, but in this discussion we'll call them start_date and
stop_date.

When a new row is inserted, start_date should normally be set to current time, and stop_date to infinity.
The trigger will automatically substitute these values if the inserted data contains nulls in these columns.
Generally, inserting explicit non-null data in these columns should only be done when re-loading dumped
data.

2641

Additional Supplied Modules

Tuples with stop_date equal to infinity are “valid now”, and can be modified. Tuples with a finite
stop_date cannot be modified anymore — the trigger will prevent it. (If you need to do that, you can turn
off time travel as shown below.)

For a modifiable row, on update only the stop_date in the tuple being updated will be changed (to current
time) and a new tuple with the modified data will be inserted. Start_date in this new tuple will be set to
current time and stop_date to infinity.

A delete does not actually remove the tuple but only sets its stop_date to current time.

To query for tuples “valid now”, include stop_date = 'infinity' in the query's WHERE condition.
(You might wish to incorporate that in a view.) Similarly, you can query for tuples valid at any past time
with suitable conditions on start_date and stop_date.

timetravel() is the general trigger function that supports this behavior. Create a BEFORE INSERT
OR UPDATE OR DELETE trigger using this function on each time-traveled table. Specify two trigger
arguments: the actual names of the start_date and stop_date columns. Optionally, you can specify one to
three more arguments, which must refer to columns of type text. The trigger will store the name of the
current user into the first of these columns during INSERT, the second column during UPDATE, and the
third during DELETE.

set_timetravel() allows you to turn time-travel on or off for a table.
set_timetravel('mytab', 1) will turn TT ON for table mytab.
set_timetravel('mytab', 0) will turn TT OFF for table mytab. In both cases the old status
is reported. While TT is off, you can modify the start_date and stop_date columns freely. Note that the
on/off status is local to the current database session — fresh sessions will always start out with TT ON
for all tables.

get_timetravel() returns the TT state for a table without changing it.

There is an example in timetravel.example.

F.36.3. autoinc — Functions for Autoincrementing Fields
autoinc() is a trigger that stores the next value of a sequence into an integer field. This has some overlap
with the built-in “serial column” feature, but it is not the same: autoinc() will override attempts to
substitute a different field value during inserts, and optionally it can be used to increment the field during
updates, too.

To use, create a BEFORE INSERT (or optionally BEFORE INSERT OR UPDATE) trigger using this
function. Specify two trigger arguments: the name of the integer column to be modified, and the name of
the sequence object that will supply values. (Actually, you can specify any number of pairs of such names,
if you'd like to update more than one autoincrementing column.)

There is an example in autoinc.example.

F.36.4. insert_username — Functions for Tracking Who
Changed a Table

insert_username() is a trigger that stores the current user's name into a text field. This can be useful
for tracking who last modified a particular row within a table.

To use, create a BEFORE INSERT and/or UPDATE trigger using this function. Specify a single trigger
argument: the name of the text column to be modified.

2642

Additional Supplied Modules

There is an example in insert_username.example.

F.36.5. moddatetime — Functions for Tracking Last
Modification Time

moddatetime() is a trigger that stores the current time into a timestamp field. This can be useful
for tracking the last modification time of a particular row within a table.

To use, create a BEFORE UPDATE trigger using this function. Specify a single trigger argument: the
name of the column to be modified. The column must be of type timestamp or timestamp with
time zone.

There is an example in moddatetime.example.

F.37. sslinfo
The sslinfo module provides information about the SSL certificate that the current client provided
when connecting to PostgreSQL. The module is useless (most functions will return NULL) if the current
connection does not use SSL.

This extension won't build at all unless the installation was configured with --with-openssl.

F.37.1. Functions Provided
ssl_is_used() returns boolean

Returns true if current connection to server uses SSL, and false otherwise.

ssl_version() returns text

Returns the name of the protocol used for the SSL connection (e.g. TLSv1.0 TLSv1.1, or TLSv1.2).

ssl_cipher() returns text

Returns the name of the cipher used for the SSL connection (e.g. DHE-RSA-AES256-SHA).

ssl_client_cert_present() returns boolean

Returns true if current client has presented a valid SSL client certificate to the server, and false
otherwise. (The server might or might not be configured to require a client certificate.)

ssl_client_serial() returns numeric

Returns serial number of current client certificate. The combination of certificate serial number and
certificate issuer is guaranteed to uniquely identify a certificate (but not its owner — the owner ought
to regularly change their keys, and get new certificates from the issuer).

So, if you run your own CA and allow only certificates from this CA to be accepted by the server, the
serial number is the most reliable (albeit not very mnemonic) means to identify a user.

ssl_client_dn() returns text

Returns the full subject of the current client certificate, converting character data into the current
database encoding. It is assumed that if you use non-ASCII characters in the certificate names, your

2643

Additional Supplied Modules

database is able to represent these characters, too. If your database uses the SQL_ASCII encoding,
non-ASCII characters in the name will be represented as UTF-8 sequences.

The result looks like /CN=Somebody /C=Some country/O=Some organization.

ssl_issuer_dn() returns text

Returns the full issuer name of the current client certificate, converting character data into the current
database encoding. Encoding conversions are handled the same as for ssl_client_dn.

The combination of the return value of this function with the certificate serial number uniquely
identifies the certificate.

This function is really useful only if you have more than one trusted CA certificate in your server's
certificate authority file, or if this CA has issued some intermediate certificate authority certificates.

ssl_client_dn_field(fieldname text) returns text

This function returns the value of the specified field in the certificate subject, or NULL if the field is
not present. Field names are string constants that are converted into ASN1 object identifiers using the
OpenSSL object database. The following values are acceptable:

commonName (alias CN)
surname (alias SN)
name
givenName (alias GN)
countryName (alias C)
localityName (alias L)
stateOrProvinceName (alias ST)
organizationName (alias O)
organizationUnitName (alias OU)
title
description
initials
postalCode
streetAddress
generationQualifier
description
dnQualifier
x500UniqueIdentifier
pseudonym
role
emailAddress

All of these fields are optional, except commonName. It depends entirely on your CA's policy which
of them would be included and which wouldn't. The meaning of these fields, however, is strictly
defined by the X.500 and X.509 standards, so you cannot just assign arbitrary meaning to them.

ssl_issuer_field(fieldname text) returns text

Same as ssl_client_dn_field, but for the certificate issuer rather than the certificate subject.

ssl_extension_info() returns setof record

Provide information about extensions of client certificate: extension name, extension value, and if it
is a critical extension.

2644

Additional Supplied Modules

F.37.2. Author
Victor Wagner <vitus@cryptocom.ru>, Cryptocom LTD

Dmitry Voronin <carriingfate92@yandex.ru>

E-Mail of Cryptocom OpenSSL development group: <openssl@cryptocom.ru>

F.38. tablefunc
The tablefunc module includes various functions that return tables (that is, multiple rows). These
functions are useful both in their own right and as examples of how to write C functions that return multiple
rows.

F.38.1. Functions Provided
Table F.30 shows the functions provided by the tablefunc module.

Table F.30. tablefunc Functions

Function Returns Description

normal_rand(int
numvals, float8 mean,
float8 stddev)

setof float8 Produces a set of normally
distributed random values

crosstab(text sql) setof record Produces a “pivot table”
containing row names plus N
value columns, where N is
determined by the row type
specified in the calling query

crosstabN(text sql) setof table_crosstab_N Produces a “pivot table”
containing row names plus N
value columns. crosstab2,
crosstab3, and crosstab4
are predefined, but you can create
additional crosstabN functions
as described below

crosstab(text
source_sql, text
category_sql)

setof record Produces a “pivot table” with
the value columns specified by a
second query

crosstab(text sql, int
N)

setof record Obsolete version of
crosstab(text). The
parameter N is now ignored, since
the number of value columns is
always determined by the calling
query

connectby(text
relname, text
keyid_fld, text
parent_keyid_fld [,
text orderby_fld],

setof record Produces a representation of a
hierarchical tree structure

2645

Additional Supplied Modules

Function Returns Description

text start_with, int
max_depth [, text
branch_delim])

F.38.1.1. normal_rand

normal_rand(int numvals, float8 mean, float8 stddev) returns setof
 float8

normal_rand produces a set of normally distributed random values (Gaussian distribution).

numvals is the number of values to be returned from the function. mean is the mean of the normal
distribution of values and stddev is the standard deviation of the normal distribution of values.

For example, this call requests 1000 values with a mean of 5 and a standard deviation of 3:

test=# SELECT * FROM normal_rand(1000, 5, 3);
 normal_rand

 1.56556322244898
 9.10040991424657
 5.36957140345079
 -0.369151492880995
 0.283600703686639
 .
 .
 .
 4.82992125404908
 9.71308014517282
 2.49639286969028
(1000 rows)

F.38.1.2. crosstab(text)

crosstab(text sql)
crosstab(text sql, int N)

The crosstab function is used to produce “pivot” displays, wherein data is listed across the page rather
than down. For example, we might have data like

row1 val11
row1 val12
row1 val13
...
row2 val21
row2 val22
row2 val23
...

which we wish to display like

2646

Additional Supplied Modules

row1 val11 val12 val13 ...
row2 val21 val22 val23 ...
...

The crosstab function takes a text parameter that is a SQL query producing raw data formatted in the
first way, and produces a table formatted in the second way.

The sql parameter is a SQL statement that produces the source set of data. This statement must return one
row_name column, one category column, and one value column. N is an obsolete parameter, ignored
if supplied (formerly this had to match the number of output value columns, but now that is determined
by the calling query).

For example, the provided query might produce a set something like:

 row_name cat value
----------+-------+-------
 row1 cat1 val1
 row1 cat2 val2
 row1 cat3 val3
 row1 cat4 val4
 row2 cat1 val5
 row2 cat2 val6
 row2 cat3 val7
 row2 cat4 val8

The crosstab function is declared to return setof record, so the actual names and types of the
output columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM crosstab('...') AS ct(row_name text, category_1 text,
 category_2 text);

This example produces a set something like:

 <== value columns ==>
 row_name category_1 category_2
----------+------------+------------
 row1 val1 val2
 row2 val5 val6

The FROM clause must define the output as one row_name column (of the same data type as the first
result column of the SQL query) followed by N value columns (all of the same data type as the third
result column of the SQL query). You can set up as many output value columns as you wish. The names
of the output columns are up to you.

The crosstab function produces one output row for each consecutive group of input rows with the same
row_name value. It fills the output value columns, left to right, with the value fields from these rows.
If there are fewer rows in a group than there are output value columns, the extra output columns are
filled with nulls; if there are more rows, the extra input rows are skipped.

In practice the SQL query should always specify ORDER BY 1,2 to ensure that the input rows are properly
ordered, that is, values with the same row_name are brought together and correctly ordered within the

2647

Additional Supplied Modules

row. Notice that crosstab itself does not pay any attention to the second column of the query result; it's
just there to be ordered by, to control the order in which the third-column values appear across the page.

Here is a complete example:

CREATE TABLE ct(id SERIAL, rowid TEXT, attribute TEXT, value TEXT);
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att1','val1');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att2','val2');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att3','val3');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att4','val4');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att1','val5');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att2','val6');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att3','val7');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att4','val8');

SELECT *
FROM crosstab(
 'select rowid, attribute, value
 from ct
 where attribute = ''att2'' or attribute = ''att3''
 order by 1,2')
AS ct(row_name text, category_1 text, category_2 text, category_3
 text);

 row_name | category_1 | category_2 | category_3
----------+------------+------------+------------
 test1 | val2 | val3 |
 test2 | val6 | val7 |
(2 rows)

You can avoid always having to write out a FROM clause to define the output columns, by setting up a
custom crosstab function that has the desired output row type wired into its definition. This is described
in the next section. Another possibility is to embed the required FROM clause in a view definition.

Note

See also the \crosstabview command in psql, which provides functionality similar to
crosstab().

F.38.1.3. crosstabN(text)

crosstabN(text sql)

The crosstabN functions are examples of how to set up custom wrappers for the general crosstab
function, so that you need not write out column names and types in the calling SELECT query. The
tablefunc module includes crosstab2, crosstab3, and crosstab4, whose output row types
are defined as

CREATE TYPE tablefunc_crosstab_N AS (

2648

Additional Supplied Modules

 row_name TEXT,
 category_1 TEXT,
 category_2 TEXT,
 .
 .
 .
 category_N TEXT
);

Thus, these functions can be used directly when the input query produces row_name and value columns
of type text, and you want 2, 3, or 4 output values columns. In all other ways they behave exactly as
described above for the general crosstab function.

For instance, the example given in the previous section would also work as

SELECT *
FROM crosstab3(
 'select rowid, attribute, value
 from ct
 where attribute = ''att2'' or attribute = ''att3''
 order by 1,2');

These functions are provided mostly for illustration purposes. You can create your own return types and
functions based on the underlying crosstab() function. There are two ways to do it:

• Create a composite type describing the desired output columns, similar to the examples in contrib/
tablefunc/tablefunc--1.0.sql. Then define a unique function name accepting one text
parameter and returning setof your_type_name, but linking to the same underlying crosstab
C function. For example, if your source data produces row names that are text, and values that are
float8, and you want 5 value columns:

CREATE TYPE my_crosstab_float8_5_cols AS (
 my_row_name text,
 my_category_1 float8,
 my_category_2 float8,
 my_category_3 float8,
 my_category_4 float8,
 my_category_5 float8
);

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(text)
 RETURNS setof my_crosstab_float8_5_cols
 AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;

• Use OUT parameters to define the return type implicitly. The same example could also be done this way:

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(
 IN text,
 OUT my_row_name text,
 OUT my_category_1 float8,
 OUT my_category_2 float8,
 OUT my_category_3 float8,

2649

Additional Supplied Modules

 OUT my_category_4 float8,
 OUT my_category_5 float8)
 RETURNS setof record
 AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;

F.38.1.4. crosstab(text, text)

crosstab(text source_sql, text category_sql)

The main limitation of the single-parameter form of crosstab is that it treats all values in a group alike,
inserting each value into the first available column. If you want the value columns to correspond to specific
categories of data, and some groups might not have data for some of the categories, that doesn't work well.
The two-parameter form of crosstab handles this case by providing an explicit list of the categories
corresponding to the output columns.

source_sql is a SQL statement that produces the source set of data. This statement must return one
row_name column, one category column, and one value column. It may also have one or more
“extra” columns. The row_name column must be first. The category and value columns must be the
last two columns, in that order. Any columns between row_name and category are treated as “extra”.
The “extra” columns are expected to be the same for all rows with the same row_name value.

For example, source_sql might produce a set something like:

SELECT row_name, extra_col, cat, value FROM foo ORDER BY 1;

 row_name extra_col cat value
----------+------------+-----+---------
 row1 extra1 cat1 val1
 row1 extra1 cat2 val2
 row1 extra1 cat4 val4
 row2 extra2 cat1 val5
 row2 extra2 cat2 val6
 row2 extra2 cat3 val7
 row2 extra2 cat4 val8

category_sql is a SQL statement that produces the set of categories. This statement must return only
one column. It must produce at least one row, or an error will be generated. Also, it must not produce
duplicate values, or an error will be generated. category_sql might be something like:

SELECT DISTINCT cat FROM foo ORDER BY 1;
 cat

 cat1
 cat2
 cat3
 cat4

The crosstab function is declared to return setof record, so the actual names and types of the
output columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM crosstab('...', '...')

2650

Additional Supplied Modules

 AS ct(row_name text, extra text, cat1 text, cat2 text, cat3 text,
 cat4 text);

This will produce a result something like:

 <== value columns ==>
row_name extra cat1 cat2 cat3 cat4
---------+-------+------+------+------+------
 row1 extra1 val1 val2 val4
 row2 extra2 val5 val6 val7 val8

The FROM clause must define the proper number of output columns of the proper data types. If there are N
columns in the source_sql query's result, the first N-2 of them must match up with the first N-2 output
columns. The remaining output columns must have the type of the last column of the source_sql query's
result, and there must be exactly as many of them as there are rows in the category_sql query's result.

The crosstab function produces one output row for each consecutive group of input rows with the same
row_name value. The output row_name column, plus any “extra” columns, are copied from the first
row of the group. The output value columns are filled with the value fields from rows having matching
category values. If a row's category does not match any output of the category_sql query, its
value is ignored. Output columns whose matching category is not present in any input row of the group
are filled with nulls.

In practice the source_sql query should always specify ORDER BY 1 to ensure that values with
the same row_name are brought together. However, ordering of the categories within a group is not
important. Also, it is essential to be sure that the order of the category_sql query's output matches
the specified output column order.

Here are two complete examples:

create table sales(year int, month int, qty int);
insert into sales values(2007, 1, 1000);
insert into sales values(2007, 2, 1500);
insert into sales values(2007, 7, 500);
insert into sales values(2007, 11, 1500);
insert into sales values(2007, 12, 2000);
insert into sales values(2008, 1, 1000);

select * from crosstab(
 'select year, month, qty from sales order by 1',
 'select m from generate_series(1,12) m'
) as (
 year int,
 "Jan" int,
 "Feb" int,
 "Mar" int,
 "Apr" int,
 "May" int,
 "Jun" int,
 "Jul" int,
 "Aug" int,
 "Sep" int,
 "Oct" int,

2651

Additional Supplied Modules

 "Nov" int,
 "Dec" int
);
 year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct |
 Nov | Dec
------+------+------+-----+-----+-----+-----+-----+-----+-----+-----
+------+------
 2007 | 1000 | 1500 | | | | | 500 | | | |
 1500 | 2000
 2008 | 1000 | | | | | | | | | |
 |
(2 rows)

CREATE TABLE cth(rowid text, rowdt timestamp, attribute text, val
 text);
INSERT INTO cth VALUES('test1','01 March 2003','temperature','42');
INSERT INTO cth VALUES('test1','01 March 2003','test_result','PASS');
INSERT INTO cth VALUES('test1','01 March 2003','volts','2.6987');
INSERT INTO cth VALUES('test2','02 March 2003','temperature','53');
INSERT INTO cth VALUES('test2','02 March 2003','test_result','FAIL');
INSERT INTO cth VALUES('test2','02 March 2003','test_startdate','01
 March 2003');
INSERT INTO cth VALUES('test2','02 March 2003','volts','3.1234');

SELECT * FROM crosstab
(
 'SELECT rowid, rowdt, attribute, val FROM cth ORDER BY 1',
 'SELECT DISTINCT attribute FROM cth ORDER BY 1'
)
AS
(
 rowid text,
 rowdt timestamp,
 temperature int4,
 test_result text,
 test_startdate timestamp,
 volts float8
);
 rowid | rowdt | temperature | test_result |
 test_startdate | volts
-------+--------------------------+-------------+-------------
+--------------------------+--------
 test1 | Sat Mar 01 00:00:00 2003 | 42 | PASS |
 | 2.6987
 test2 | Sun Mar 02 00:00:00 2003 | 53 | FAIL | Sat
 Mar 01 00:00:00 2003 | 3.1234
(2 rows)

You can create predefined functions to avoid having to write out the result column names and types in each
query. See the examples in the previous section. The underlying C function for this form of crosstab
is named crosstab_hash.

F.38.1.5. connectby

2652

Additional Supplied Modules

connectby(text relname, text keyid_fld, text parent_keyid_fld
 [, text orderby_fld], text start_with, int max_depth
 [, text branch_delim])

The connectby function produces a display of hierarchical data that is stored in a table. The table must
have a key field that uniquely identifies rows, and a parent-key field that references the parent (if any) of
each row. connectby can display the sub-tree descending from any row.

Table F.31 explains the parameters.

Table F.31. connectby Parameters

Parameter Description

relname Name of the source relation

keyid_fld Name of the key field

parent_keyid_fld Name of the parent-key field

orderby_fld Name of the field to order siblings by (optional)

start_with Key value of the row to start at

max_depth Maximum depth to descend to, or zero for unlimited
depth

branch_delim String to separate keys with in branch output
(optional)

The key and parent-key fields can be any data type, but they must be the same type. Note that the
start_with value must be entered as a text string, regardless of the type of the key field.

The connectby function is declared to return setof record, so the actual names and types of the
output columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid',
 'pos', 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text, pos
 int);

The first two output columns are used for the current row's key and its parent row's key; they must match
the type of the table's key field. The third output column is the depth in the tree and must be of type
integer. If a branch_delim parameter was given, the next output column is the branch display and
must be of type text. Finally, if an orderby_fld parameter was given, the last output column is a
serial number, and must be of type integer.

The “branch” output column shows the path of keys taken to reach the current row. The keys are separated
by the specified branch_delim string. If no branch display is wanted, omit both the branch_delim
parameter and the branch column in the output column list.

If the ordering of siblings of the same parent is important, include the orderby_fld parameter to specify
which field to order siblings by. This field can be of any sortable data type. The output column list must
include a final integer serial-number column, if and only if orderby_fld is specified.

The parameters representing table and field names are copied as-is into the SQL queries that connectby
generates internally. Therefore, include double quotes if the names are mixed-case or contain special
characters. You may also need to schema-qualify the table name.

2653

Additional Supplied Modules

In large tables, performance will be poor unless there is an index on the parent-key field.

It is important that the branch_delim string not appear in any key values, else connectby may
incorrectly report an infinite-recursion error. Note that if branch_delim is not provided, a default value
of ~ is used for recursion detection purposes.

Here is an example:

CREATE TABLE connectby_tree(keyid text, parent_keyid text, pos int);

INSERT INTO connectby_tree VALUES('row1',NULL, 0);
INSERT INTO connectby_tree VALUES('row2','row1', 0);
INSERT INTO connectby_tree VALUES('row3','row1', 0);
INSERT INTO connectby_tree VALUES('row4','row2', 1);
INSERT INTO connectby_tree VALUES('row5','row2', 0);
INSERT INTO connectby_tree VALUES('row6','row4', 0);
INSERT INTO connectby_tree VALUES('row7','row3', 0);
INSERT INTO connectby_tree VALUES('row8','row6', 0);
INSERT INTO connectby_tree VALUES('row9','row5', 0);

-- with branch, without orderby_fld (order of results is not
 guaranteed)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid',
 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text);
 keyid | parent_keyid | level | branch
-------+--------------+-------+---------------------
 row2 | | 0 | row2
 row4 | row2 | 1 | row2~row4
 row6 | row4 | 2 | row2~row4~row6
 row8 | row6 | 3 | row2~row4~row6~row8
 row5 | row2 | 1 | row2~row5
 row9 | row5 | 2 | row2~row5~row9
(6 rows)

-- without branch, without orderby_fld (order of results is not
 guaranteed)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid',
 'row2', 0)
 AS t(keyid text, parent_keyid text, level int);
 keyid | parent_keyid | level
-------+--------------+-------
 row2 | | 0
 row4 | row2 | 1
 row6 | row4 | 2
 row8 | row6 | 3
 row5 | row2 | 1
 row9 | row5 | 2
(6 rows)

-- with branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid',
 'pos', 'row2', 0, '~')

2654

Additional Supplied Modules

 AS t(keyid text, parent_keyid text, level int, branch text, pos int);
 keyid | parent_keyid | level | branch | pos
-------+--------------+-------+---------------------+-----
 row2 | | 0 | row2 | 1
 row5 | row2 | 1 | row2~row5 | 2
 row9 | row5 | 2 | row2~row5~row9 | 3
 row4 | row2 | 1 | row2~row4 | 4
 row6 | row4 | 2 | row2~row4~row6 | 5
 row8 | row6 | 3 | row2~row4~row6~row8 | 6
(6 rows)

-- without branch, with orderby_fld (notice that row5 comes before
 row4)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid',
 'pos', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int, pos int);
 keyid | parent_keyid | level | pos
-------+--------------+-------+-----
 row2 | | 0 | 1
 row5 | row2 | 1 | 2
 row9 | row5 | 2 | 3
 row4 | row2 | 1 | 4
 row6 | row4 | 2 | 5
 row8 | row6 | 3 | 6
(6 rows)

F.38.2. Author
Joe Conway

F.39. tcn
The tcn module provides a trigger function that notifies listeners of changes to any table on which it is
attached. It must be used as an AFTER trigger FOR EACH ROW.

Only one parameter may be supplied to the function in a CREATE TRIGGER statement, and that is
optional. If supplied it will be used for the channel name for the notifications. If omitted tcn will be used
for the channel name.

The payload of the notifications consists of the table name, a letter to indicate which type of operation was
performed, and column name/value pairs for primary key columns. Each part is separated from the next
by a comma. For ease of parsing using regular expressions, table and column names are always wrapped
in double quotes, and data values are always wrapped in single quotes. Embedded quotes are doubled.

A brief example of using the extension follows.

test=# create table tcndata
test-# (
test(# a int not null,
test(# b date not null,
test(# c text,
test(# primary key (a, b)

2655

Additional Supplied Modules

test(#);
CREATE TABLE
test=# create trigger tcndata_tcn_trigger
test-# after insert or update or delete on tcndata
test-# for each row execute function
 triggered_change_notification();
CREATE TRIGGER
test=# listen tcn;
LISTEN
test=# insert into tcndata values (1, date '2012-12-22', 'one'),
test-# (1, date '2012-12-23', 'another'),
test-# (2, date '2012-12-23', 'two');
INSERT 0 3
Asynchronous notification "tcn" with payload
 ""tcndata",I,"a"='1',"b"='2012-12-22'" received from server process
 with PID 22770.
Asynchronous notification "tcn" with payload
 ""tcndata",I,"a"='1',"b"='2012-12-23'" received from server process
 with PID 22770.
Asynchronous notification "tcn" with payload
 ""tcndata",I,"a"='2',"b"='2012-12-23'" received from server process
 with PID 22770.
test=# update tcndata set c = 'uno' where a = 1;
UPDATE 2
Asynchronous notification "tcn" with payload
 ""tcndata",U,"a"='1',"b"='2012-12-22'" received from server process
 with PID 22770.
Asynchronous notification "tcn" with payload
 ""tcndata",U,"a"='1',"b"='2012-12-23'" received from server process
 with PID 22770.
test=# delete from tcndata where a = 1 and b = date '2012-12-22';
DELETE 1
Asynchronous notification "tcn" with payload
 ""tcndata",D,"a"='1',"b"='2012-12-22'" received from server process
 with PID 22770.

F.40. test_decoding
test_decoding is an example of a logical decoding output plugin. It doesn't do anything especially
useful, but can serve as a starting point for developing your own output plugin.

test_decoding receives WAL through the logical decoding mechanism and decodes it into text
representations of the operations performed.

Typical output from this plugin, used over the SQL logical decoding interface, might be:

postgres=# SELECT * FROM pg_logical_slot_get_changes('test_slot',
 NULL, NULL, 'include-xids', '0');
 lsn | xid | data
-----------+-----+--
 0/16D30F8 | 691 | BEGIN
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:2
 data[text]:'arg'

2656

Additional Supplied Modules

 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:3
 data[text]:'demo'
 0/16D32A0 | 691 | COMMIT
 0/16D32D8 | 692 | BEGIN
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:2
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:3
 0/16D3398 | 692 | COMMIT
(8 rows)

F.41. tsm_system_rows
The tsm_system_rows module provides the table sampling method SYSTEM_ROWS, which can be
used in the TABLESAMPLE clause of a SELECT command.

This table sampling method accepts a single integer argument that is the maximum number of rows to
read. The resulting sample will always contain exactly that many rows, unless the table does not contain
enough rows, in which case the whole table is selected.

Like the built-in SYSTEM sampling method, SYSTEM_ROWS performs block-level sampling, so that the
sample is not completely random but may be subject to clustering effects, especially if only a small number
of rows are requested.

SYSTEM_ROWS does not support the REPEATABLE clause.

F.41.1. Examples
Here is an example of selecting a sample of a table with SYSTEM_ROWS. First install the extension:

CREATE EXTENSION tsm_system_rows;

Then you can use it in a SELECT command, for instance:

SELECT * FROM my_table TABLESAMPLE SYSTEM_ROWS(100);

This command will return a sample of 100 rows from the table my_table (unless the table does not have
100 visible rows, in which case all its rows are returned).

F.42. tsm_system_time
The tsm_system_time module provides the table sampling method SYSTEM_TIME, which can be
used in the TABLESAMPLE clause of a SELECT command.

This table sampling method accepts a single floating-point argument that is the maximum number of
milliseconds to spend reading the table. This gives you direct control over how long the query takes, at the
price that the size of the sample becomes hard to predict. The resulting sample will contain as many rows
as could be read in the specified time, unless the whole table has been read first.

Like the built-in SYSTEM sampling method, SYSTEM_TIME performs block-level sampling, so that the
sample is not completely random but may be subject to clustering effects, especially if only a small number
of rows are selected.

2657

Additional Supplied Modules

SYSTEM_TIME does not support the REPEATABLE clause.

F.42.1. Examples
Here is an example of selecting a sample of a table with SYSTEM_TIME. First install the extension:

CREATE EXTENSION tsm_system_time;

Then you can use it in a SELECT command, for instance:

SELECT * FROM my_table TABLESAMPLE SYSTEM_TIME(1000);

This command will return as large a sample of my_table as it can read in 1 second (1000 milliseconds).
Of course, if the whole table can be read in under 1 second, all its rows will be returned.

F.43. unaccent
unaccent is a text search dictionary that removes accents (diacritic signs) from lexemes. It's a filtering
dictionary, which means its output is always passed to the next dictionary (if any), unlike the normal
behavior of dictionaries. This allows accent-insensitive processing for full text search.

The current implementation of unaccent cannot be used as a normalizing dictionary for the
thesaurus dictionary.

F.43.1. Configuration
An unaccent dictionary accepts the following options:

• RULES is the base name of the file containing the list of translation rules. This file must be stored in
$SHAREDIR/tsearch_data/ (where $SHAREDIR means the PostgreSQL installation's shared-
data directory). Its name must end in .rules (which is not to be included in the RULES parameter).

The rules file has the following format:

• Each line represents one translation rule, consisting of a character with accent followed by a character
without accent. The first is translated into the second. For example,

À A
Á A
Â A
Ã A
Ä A
Å A
Æ AE

The two characters must be separated by whitespace, and any leading or trailing whitespace on a line
is ignored.

• Alternatively, if only one character is given on a line, instances of that character are deleted; this is
useful in languages where accents are represented by separate characters.

2658

Additional Supplied Modules

• Actually, each “character” can be any string not containing whitespace, so unaccent dictionaries
could be used for other sorts of substring substitutions besides diacritic removal.

• As with other PostgreSQL text search configuration files, the rules file must be stored in UTF-8
encoding. The data is automatically translated into the current database's encoding when loaded. Any
lines containing untranslatable characters are silently ignored, so that rules files can contain rules that
are not applicable in the current encoding.

A more complete example, which is directly useful for most European languages, can be found in
unaccent.rules, which is installed in $SHAREDIR/tsearch_data/ when the unaccent
module is installed. This rules file translates characters with accents to the same characters without accents,
and it also expands ligatures into the equivalent series of simple characters (for example, Æ to AE).

F.43.2. Usage
Installing the unaccent extension creates a text search template unaccent and a dictionary
unaccent based on it. The unaccent dictionary has the default parameter setting
RULES='unaccent', which makes it immediately usable with the standard unaccent.rules file.
If you wish, you can alter the parameter, for example

mydb=# ALTER TEXT SEARCH DICTIONARY unaccent (RULES='my_rules');

or create new dictionaries based on the template.

To test the dictionary, you can try:

mydb=# select ts_lexize('unaccent','Hôtel');
 ts_lexize

 {Hotel}
(1 row)

Here is an example showing how to insert the unaccent dictionary into a text search configuration:

mydb=# CREATE TEXT SEARCH CONFIGURATION fr (COPY = french);
mydb=# ALTER TEXT SEARCH CONFIGURATION fr
 ALTER MAPPING FOR hword, hword_part, word
 WITH unaccent, french_stem;
mydb=# select to_tsvector('fr','Hôtels de la Mer');
 to_tsvector

 'hotel':1 'mer':4
(1 row)

mydb=# select to_tsvector('fr','Hôtel de la Mer') @@
 to_tsquery('fr','Hotels');
 ?column?

 t
(1 row)

2659

Additional Supplied Modules

mydb=# select ts_headline('fr','Hôtel de la
 Mer',to_tsquery('fr','Hotels'));
 ts_headline

 Hôtel de la Mer
(1 row)

F.43.3. Functions
The unaccent() function removes accents (diacritic signs) from a given string. Basically, it's a wrapper
around unaccent-type dictionaries, but it can be used outside normal text search contexts.

unaccent([dictionary regdictionary,] string text) returns text

If the dictionary argument is omitted, the text search dictionary named unaccent and appearing in
the same schema as the unaccent() function itself is used.

For example:

SELECT unaccent('unaccent', 'Hôtel');
SELECT unaccent('Hôtel');

F.44. uuid-ossp
The uuid-ossp module provides functions to generate universally unique identifiers (UUIDs) using one
of several standard algorithms. There are also functions to produce certain special UUID constants.

F.44.1. uuid-ossp Functions
Table F.32 shows the functions available to generate UUIDs. The relevant standards ITU-T Rec. X.667,
ISO/IEC 9834-8:2005, and RFC 4122 specify four algorithms for generating UUIDs, identified by the
version numbers 1, 3, 4, and 5. (There is no version 2 algorithm.) Each of these algorithms could be suitable
for a different set of applications.

Table F.32. Functions for UUID Generation

Function Description

uuid_generate_v1() This function generates a version 1 UUID. This
involves the MAC address of the computer and a
time stamp. Note that UUIDs of this kind reveal the
identity of the computer that created the identifier
and the time at which it did so, which might
make it unsuitable for certain security-sensitive
applications.

uuid_generate_v1mc() This function generates a version 1 UUID but uses
a random multicast MAC address instead of the real
MAC address of the computer.

uuid_generate_v3(namespace uuid,
name text)

This function generates a version 3 UUID in
the given namespace using the specified input

2660

Additional Supplied Modules

Function Description

name. The namespace should be one of the
special constants produced by the uuid_ns_*()
functions shown in Table F.33. (It could be any
UUID in theory.) The name is an identifier in the
selected namespace.

For example:

SELECT
 uuid_generate_v3(uuid_ns_url(),
 'http://www.postgresql.org');

The name parameter will be MD5-hashed, so the
cleartext cannot be derived from the generated
UUID. The generation of UUIDs by this method has
no random or environment-dependent element and
is therefore reproducible.

uuid_generate_v4() This function generates a version 4 UUID, which is
derived entirely from random numbers.

uuid_generate_v5(namespace uuid,
name text)

This function generates a version 5 UUID, which
works like a version 3 UUID except that SHA-1
is used as a hashing method. Version 5 should be
preferred over version 3 because SHA-1 is thought
to be more secure than MD5.

Table F.33. Functions Returning UUID Constants

uuid_nil() A “nil” UUID constant, which does not occur as a
real UUID.

uuid_ns_dns() Constant designating the DNS namespace for
UUIDs.

uuid_ns_url() Constant designating the URL namespace for
UUIDs.

uuid_ns_oid() Constant designating the ISO object identifier
(OID) namespace for UUIDs. (This pertains to
ASN.1 OIDs, which are unrelated to the OIDs used
in PostgreSQL.)

uuid_ns_x500() Constant designating the X.500 distinguished name
(DN) namespace for UUIDs.

F.44.2. Building uuid-ossp
Historically this module depended on the OSSP UUID library, which accounts for the module's name.
While the OSSP UUID library can still be found at http://www.ossp.org/pkg/lib/uuid/, it is not well
maintained, and is becoming increasingly difficult to port to newer platforms. uuid-ossp can now be
built without the OSSP library on some platforms. On FreeBSD, NetBSD, and some other BSD-derived
platforms, suitable UUID creation functions are included in the core libc library. On Linux, macOS,
and some other platforms, suitable functions are provided in the libuuid library, which originally came
from the e2fsprogs project (though on modern Linux it is considered part of util-linux-ng).

2661

http://www.ossp.org/pkg/lib/uuid/

Additional Supplied Modules

When invoking configure, specify --with-uuid=bsd to use the BSD functions, or --with-
uuid=e2fs to use e2fsprogs' libuuid, or --with-uuid=ossp to use the OSSP UUID library.
More than one of these libraries might be available on a particular machine, so configure does not
automatically choose one.

Note

If you only need randomly-generated (version 4) UUIDs, consider using the
gen_random_uuid() function from the pgcrypto module instead.

F.44.3. Author
Peter Eisentraut <peter_e@gmx.net>

F.45. xml2
The xml2 module provides XPath querying and XSLT functionality.

F.45.1. Deprecation Notice
From PostgreSQL 8.3 on, there is XML-related functionality based on the SQL/XML standard in the core
server. That functionality covers XML syntax checking and XPath queries, which is what this module does,
and more, but the API is not at all compatible. It is planned that this module will be removed in a future
version of PostgreSQL in favor of the newer standard API, so you are encouraged to try converting your
applications. If you find that some of the functionality of this module is not available in an adequate form
with the newer API, please explain your issue to <pgsql-hackers@lists.postgresql.org> so
that the deficiency can be addressed.

F.45.2. Description of Functions
Table F.34 shows the functions provided by this module. These functions provide straightforward XML
parsing and XPath queries. All arguments are of type text, so for brevity that is not shown.

Table F.34. Functions

Function Returns Description

xml_valid(document) bool This parses the document
text in its parameter
and returns true if the
document is well-formed
XML. (Note: this is an
alias for the standard
PostgreSQL function
xml_is_well_formed().
The name xml_valid()
is technically incorrect since
validity and well-formedness
have different meanings in XML.)

2662

Additional Supplied Modules

Function Returns Description

xpath_string(document,
query)

text

xpath_number(document,
query)

float4

xpath_bool(document,
query)

bool

These functions evaluate the
XPath query on the supplied
document, and cast the result to
the specified type.

xpath_nodeset(document,
query, toptag, itemtag)

text This evaluates query on document
and wraps the result in XML tags.
If the result is multivalued, the
output will look like:

<toptag>
<itemtag>Value 1
 which could be an XML
 fragment</itemtag>
<itemtag>Value 2....</
itemtag>
</toptag>

If either toptag or itemtag is
an empty string, the relevant tag is
omitted.

xpath_nodeset(document,
query)

text Like
xpath_nodeset(document,
query, toptag, itemtag)
but result omits both tags.

xpath_nodeset(document,
query, itemtag)

text Like
xpath_nodeset(document,
query, toptag, itemtag)
but result omits toptag.

xpath_list(document,
query, separator)

text This function returns multiple
values separated by the specified
separator, for example Value
1,Value 2,Value 3 if
separator is ,.

xpath_list(document,
query)

text This is a wrapper for the above
function that uses , as the
separator.

F.45.3. xpath_table

xpath_table(text key, text document, text relation, text xpaths, text
 criteria) returns setof record

xpath_table is a table function that evaluates a set of XPath queries on each of a set of documents
and returns the results as a table. The primary key field from the original document table is returned as the
first column of the result so that the result set can readily be used in joins. The parameters are described
in Table F.35.

2663

Additional Supplied Modules

Table F.35. xpath_table Parameters

Parameter Description

key the name of the “key” field — this is just a field to
be used as the first column of the output table, i.e.,
it identifies the record from which each output row
came (see note below about multiple values)

document the name of the field containing the XML document

relation the name of the table or view containing the
documents

xpaths one or more XPath expressions, separated by |

criteria the contents of the WHERE clause. This cannot be
omitted, so use true or 1=1 if you want to process
all the rows in the relation

These parameters (except the XPath strings) are just substituted into a plain SQL SELECT statement, so
you have some flexibility — the statement is

SELECT <key>, <document> FROM <relation> WHERE <criteria>

so those parameters can be anything valid in those particular locations. The result from this SELECT needs
to return exactly two columns (which it will unless you try to list multiple fields for key or document).
Beware that this simplistic approach requires that you validate any user-supplied values to avoid SQL
injection attacks.

The function has to be used in a FROM expression, with an AS clause to specify the output columns; for
example

SELECT * FROM
xpath_table('article_id',
 'article_xml',
 'articles',
 '/article/author|/article/pages|/article/title',
 'date_entered > ''2003-01-01'' ')
AS t(article_id integer, author text, page_count integer, title text);

The AS clause defines the names and types of the columns in the output table. The first is the “key” field
and the rest correspond to the XPath queries. If there are more XPath queries than result columns, the
extra queries will be ignored. If there are more result columns than XPath queries, the extra columns will
be NULL.

Notice that this example defines the page_count result column as an integer. The function deals
internally with string representations, so when you say you want an integer in the output, it will take the
string representation of the XPath result and use PostgreSQL input functions to transform it into an integer
(or whatever type the AS clause requests). An error will result if it can't do this — for example if the result is
empty — so you may wish to just stick to text as the column type if you think your data has any problems.

The calling SELECT statement doesn't necessarily have to be just SELECT * — it can reference the
output columns by name or join them to other tables. The function produces a virtual table with which you
can perform any operation you wish (e.g. aggregation, joining, sorting etc). So we could also have:

2664

Additional Supplied Modules

SELECT t.title, p.fullname, p.email
FROM xpath_table('article_id', 'article_xml', 'articles',
 '/article/title|/article/author/@id',
 'xpath_string(article_xml,''/article/@date'') >
 ''2003-03-20'' ')
 AS t(article_id integer, title text, author_id integer),
 tblPeopleInfo AS p
WHERE t.author_id = p.person_id;

as a more complicated example. Of course, you could wrap all of this in a view for convenience.

F.45.3.1. Multivalued Results

The xpath_table function assumes that the results of each XPath query might be multivalued, so the
number of rows returned by the function may not be the same as the number of input documents. The first
row returned contains the first result from each query, the second row the second result from each query.
If one of the queries has fewer values than the others, null values will be returned instead.

In some cases, a user will know that a given XPath query will return only a single result (perhaps a unique
document identifier) — if used alongside an XPath query returning multiple results, the single-valued
result will appear only on the first row of the result. The solution to this is to use the key field as part of
a join against a simpler XPath query. As an example:

CREATE TABLE test (
 id int PRIMARY KEY,
 xml text
);

INSERT INTO test VALUES (1, '<doc num="C1">
<line num="L1"><a>12<c>3</c></line>
<line num="L2"><a>1122<c>33</c></line>
</doc>');

INSERT INTO test VALUES (2, '<doc num="C2">
<line num="L1"><a>111222<c>333</c></line>
<line num="L2"><a>111222<c>333</c></line>
</doc>');

SELECT * FROM
 xpath_table('id','xml','test',
 '/doc/@num|/doc/line/@num|/doc/line/a|/doc/line/b|/doc/
line/c',
 'true')
 AS t(id int, doc_num varchar(10), line_num varchar(10), val1 int,
 val2 int, val3 int)
WHERE id = 1 ORDER BY doc_num, line_num

 id | doc_num | line_num | val1 | val2 | val3
----+---------+----------+------+------+------
 1 | C1 | L1 | 1 | 2 | 3
 1 | | L2 | 11 | 22 | 33

To get doc_num on every line, the solution is to use two invocations of xpath_table and join the
results:

2665

Additional Supplied Modules

SELECT t.*,i.doc_num FROM
 xpath_table('id', 'xml', 'test',
 '/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
 'true')
 AS t(id int, line_num varchar(10), val1 int, val2 int, val3 int),
 xpath_table('id', 'xml', 'test', '/doc/@num', 'true')
 AS i(id int, doc_num varchar(10))
WHERE i.id=t.id AND i.id=1
ORDER BY doc_num, line_num;

 id | line_num | val1 | val2 | val3 | doc_num
----+----------+------+------+------+---------
 1 | L1 | 1 | 2 | 3 | C1
 1 | L2 | 11 | 22 | 33 | C1
(2 rows)

F.45.4. XSLT Functions
The following functions are available if libxslt is installed:

F.45.4.1. xslt_process

xslt_process(text document, text stylesheet, text paramlist) returns
 text

This function applies the XSL stylesheet to the document and returns the transformed result. The
paramlist is a list of parameter assignments to be used in the transformation, specified in the form
a=1,b=2. Note that the parameter parsing is very simple-minded: parameter values cannot contain
commas!

There is also a two-parameter version of xslt_process which does not pass any parameters to the
transformation.

F.45.5. Author
John Gray <jgray@azuli.co.uk>

Development of this module was sponsored by Torchbox Ltd. (www.torchbox.com). It has the same BSD
license as PostgreSQL.

2666

Appendix G. Additional Supplied
Programs

This appendix and the previous one contain information regarding the modules that can be found in the
contrib directory of the PostgreSQL distribution. See Appendix F for more information about the
contrib section in general and server extensions and plug-ins found in contrib specifically.

This appendix covers utility programs found in contrib. Once installed, either from source or a
packaging system, they are found in the bin directory of the PostgreSQL installation and can be used
like any other program.

G.1. Client Applications
This section covers PostgreSQL client applications in contrib. They can be run from anywhere,
independent of where the database server resides. See also PostgreSQL Client Applications for information
about client applications that part of the core PostgreSQL distribution.

2667

Additional Supplied Programs

oid2name
oid2name — resolve OIDs and file nodes in a PostgreSQL data directory

Synopsis
oid2name [option...]

Description

oid2name is a utility program that helps administrators to examine the file structure used by PostgreSQL.
To make use of it, you need to be familiar with the database file structure, which is described in Chapter 68.

Note

The name “oid2name” is historical, and is actually rather misleading, since most of the time when
you use it, you will really be concerned with tables' filenode numbers (which are the file names
visible in the database directories). Be sure you understand the difference between table OIDs and
table filenodes!

oid2name connects to a target database and extracts OID, filenode, and/or table name information. You
can also have it show database OIDs or tablespace OIDs.

Options

oid2name accepts the following command-line arguments:

-f filenode

show info for table with filenode filenode

-i

include indexes and sequences in the listing

-o oid

show info for table with OID oid

-q

omit headers (useful for scripting)

-s

show tablespace OIDs

-S

include system objects (those in information_schema, pg_toast and pg_catalog
schemas)

2668

Additional Supplied Programs

-t tablename_pattern

show info for table(s) matching tablename_pattern

-V
--version

Print the oid2name version and exit.

-x

display more information about each object shown: tablespace name, schema name, and OID

-?
--help

Show help about oid2name command line arguments, and exit.

oid2name also accepts the following command-line arguments for connection parameters:

-d database

database to connect to

-H host

database server's host

-p port

database server's port

-U username

user name to connect as

-P password

password (deprecated — putting this on the command line is a security hazard)

To display specific tables, select which tables to show by using -o, -f and/or -t. -o takes an OID, -f
takes a filenode, and -t takes a table name (actually, it's a LIKE pattern, so you can use things like foo
%). You can use as many of these options as you like, and the listing will include all objects matched by
any of the options. But note that these options can only show objects in the database given by -d.

If you don't give any of -o, -f or -t, but do give -d, it will list all tables in the database named by -d.
In this mode, the -S and -i options control what gets listed.

If you don't give -d either, it will show a listing of database OIDs. Alternatively you can give -s to get
a tablespace listing.

Notes

oid2name requires a running database server with non-corrupt system catalogs. It is therefore of only
limited use for recovering from catastrophic database corruption situations.

Examples

2669

Additional Supplied Programs

$ # what's in this database server, anyway?
$ oid2name
All databases:
 Oid Database Name Tablespace

 17228 alvherre pg_default
 17255 regression pg_default
 17227 template0 pg_default
 1 template1 pg_default

$ oid2name -s
All tablespaces:
 Oid Tablespace Name

 1663 pg_default
 1664 pg_global
 155151 fastdisk
 155152 bigdisk

$ # OK, let's look into database alvherre
$ cd $PGDATA/base/17228

$ # get top 10 db objects in the default tablespace, ordered by size
$ ls -lS * | head -10
-rw------- 1 alvherre alvherre 136536064 sep 14 09:51 155173
-rw------- 1 alvherre alvherre 17965056 sep 14 09:51 1155291
-rw------- 1 alvherre alvherre 1204224 sep 14 09:51 16717
-rw------- 1 alvherre alvherre 581632 sep 6 17:51 1255
-rw------- 1 alvherre alvherre 237568 sep 14 09:50 16674
-rw------- 1 alvherre alvherre 212992 sep 14 09:51 1249
-rw------- 1 alvherre alvherre 204800 sep 14 09:51 16684
-rw------- 1 alvherre alvherre 196608 sep 14 09:50 16700
-rw------- 1 alvherre alvherre 163840 sep 14 09:50 16699
-rw------- 1 alvherre alvherre 122880 sep 6 17:51 16751

$ # I wonder what file 155173 is ...
$ oid2name -d alvherre -f 155173
From database "alvherre":
 Filenode Table Name

 155173 accounts

$ # you can ask for more than one object
$ oid2name -d alvherre -f 155173 -f 1155291
From database "alvherre":
 Filenode Table Name

 155173 accounts
 1155291 accounts_pkey

$ # you can mix the options, and get more details with -x
$ oid2name -d alvherre -t accounts -f 1155291 -x
From database "alvherre":
 Filenode Table Name Oid Schema Tablespace

2670

Additional Supplied Programs

--
 155173 accounts 155173 public pg_default
 1155291 accounts_pkey 1155291 public pg_default

$ # show disk space for every db object
$ du [0-9]* |
> while read SIZE FILENODE
> do
> echo "$SIZE `oid2name -q -d alvherre -i -f $FILENODE`"
> done
16 1155287 branches_pkey
16 1155289 tellers_pkey
17561 1155291 accounts_pkey
...

$ # same, but sort by size
$ du [0-9]* | sort -rn | while read SIZE FN
> do
> echo "$SIZE `oid2name -q -d alvherre -f $FN`"
> done
133466 155173 accounts
17561 1155291 accounts_pkey
1177 16717 pg_proc_proname_args_nsp_index
...

$ # If you want to see what's in tablespaces, use the pg_tblspc
 directory
$ cd $PGDATA/pg_tblspc
$ oid2name -s
All tablespaces:
 Oid Tablespace Name

 1663 pg_default
 1664 pg_global
 155151 fastdisk
 155152 bigdisk

$ # what databases have objects in tablespace "fastdisk"?
$ ls -d 155151/*
155151/17228/ 155151/PG_VERSION

$ # Oh, what was database 17228 again?
$ oid2name
All databases:
 Oid Database Name Tablespace

 17228 alvherre pg_default
 17255 regression pg_default
 17227 template0 pg_default
 1 template1 pg_default

$ # Let's see what objects does this database have in the tablespace.
$ cd 155151/17228
$ ls -l

2671

Additional Supplied Programs

total 0
-rw------- 1 postgres postgres 0 sep 13 23:20 155156

$ # OK, this is a pretty small table ... but which one is it?
$ oid2name -d alvherre -f 155156
From database "alvherre":
 Filenode Table Name

 155156 foo

Author

B. Palmer <bpalmer@crimelabs.net>

2672

Additional Supplied Programs

vacuumlo
vacuumlo — remove orphaned large objects from a PostgreSQL database

Synopsis
vacuumlo [option...] dbname...

Description

vacuumlo is a simple utility program that will remove any “orphaned” large objects from a PostgreSQL
database. An orphaned large object (LO) is considered to be any LO whose OID does not appear in any
oid or lo data column of the database.

If you use this, you may also be interested in the lo_manage trigger in the lo module. lo_manage is
useful to try to avoid creating orphaned LOs in the first place.

All databases named on the command line are processed.

Options

vacuumlo accepts the following command-line arguments:

-l limit

Remove no more than limit large objects per transaction (default 1000). Since the server
acquires a lock per LO removed, removing too many LOs in one transaction risks exceeding
max_locks_per_transaction. Set the limit to zero if you want all removals done in a single transaction.

-n

Don't remove anything, just show what would be done.

-v

Write a lot of progress messages.

-V
--version

Print the vacuumlo version and exit.

-?
--help

Show help about vacuumlo command line arguments, and exit.

vacuumlo also accepts the following command-line arguments for connection parameters:

-h hostname

Database server's host.

-p port

Database server's port.

2673

Additional Supplied Programs

-U username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W

Force vacuumlo to prompt for a password before connecting to a database.

This option is never essential, since vacuumlo will automatically prompt for a password if the server
demands password authentication. However, vacuumlo will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Notes

vacuumlo works by the following method: First, vacuumlo builds a temporary table which contains all of
the OIDs of the large objects in the selected database. It then scans through all columns in the database that
are of type oid or lo, and removes matching entries from the temporary table. (Note: Only types with
these names are considered; in particular, domains over them are not considered.) The remaining entries
in the temporary table identify orphaned LOs. These are removed.

Author

Peter Mount <peter@retep.org.uk>

G.2. Server Applications
This section covers PostgreSQL server-related applications in contrib. They are typically run on the
host where the database server resides. See also PostgreSQL Server Applications for information about
server applications that part of the core PostgreSQL distribution.

2674

Additional Supplied Programs

pg_standby
pg_standby — supports the creation of a PostgreSQL warm standby server

Synopsis
pg_standby [option...] archivelocation nextwalfile walfilepath
[restartwalfile]

Description

pg_standby supports creation of a “warm standby” database server. It is designed to be a production-ready
program, as well as a customizable template should you require specific modifications.

pg_standby is designed to be a waiting restore_command, which is needed to turn a standard archive
recovery into a warm standby operation. Other configuration is required as well, all of which is described
in the main server manual (see Section 26.2).

To configure a standby server to use pg_standby, put this into its recovery.conf configuration file:

restore_command = 'pg_standby archiveDir %f %p %r'

where archiveDir is the directory from which WAL segment files should be restored.

If restartwalfile is specified, normally by using the %r macro, then all WAL files logically
preceding this file will be removed from archivelocation. This minimizes the number of files that
need to be retained, while preserving crash-restart capability. Use of this parameter is appropriate if
the archivelocation is a transient staging area for this particular standby server, but not when the
archivelocation is intended as a long-term WAL archive area.

pg_standby assumes that archivelocation is a directory readable by the server-owning user. If
restartwalfile (or -k) is specified, the archivelocation directory must be writable too.

There are two ways to fail over to a “warm standby” database server when the master server fails:

Smart Failover

In smart failover, the server is brought up after applying all WAL files available in the archive. This
results in zero data loss, even if the standby server has fallen behind, but if there is a lot of unapplied
WAL it can be a long time before the standby server becomes ready. To trigger a smart failover, create
a trigger file containing the word smart, or just create it and leave it empty.

Fast Failover

In fast failover, the server is brought up immediately. Any WAL files in the archive that have not
yet been applied will be ignored, and all transactions in those files are lost. To trigger a fast failover,
create a trigger file and write the word fast into it. pg_standby can also be configured to execute a
fast failover automatically if no new WAL file appears within a defined interval.

Options

pg_standby accepts the following command-line arguments:

2675

Additional Supplied Programs

-c

Use cp or copy command to restore WAL files from archive. This is the only supported behavior
so this option is useless.

-d

Print lots of debug logging output on stderr.

-k

Remove files from archivelocation so that no more than this many WAL files before
the current one are kept in the archive. Zero (the default) means not to remove any files from
archivelocation. This parameter will be silently ignored if restartwalfile is specified,
since that specification method is more accurate in determining the correct archive cut-off point.
Use of this parameter is deprecated as of PostgreSQL 8.3; it is safer and more efficient to specify
a restartwalfile parameter. A too small setting could result in removal of files that are still
needed for a restart of the standby server, while a too large setting wastes archive space.

-r maxretries

Set the maximum number of times to retry the copy command if it fails (default 3). After each failure,
we wait for sleeptime * num_retries so that the wait time increases progressively. So by
default, we will wait 5 secs, 10 secs, then 15 secs before reporting the failure back to the standby
server. This will be interpreted as end of recovery and the standby will come up fully as a result.

-s sleeptime

Set the number of seconds (up to 60, default 5) to sleep between tests to see if the WAL file to be
restored is available in the archive yet. The default setting is not necessarily recommended; consult
Section 26.2 for discussion.

-t triggerfile

Specify a trigger file whose presence should cause failover. It is recommended that you use a structured
file name to avoid confusion as to which server is being triggered when multiple servers exist on the
same system; for example /tmp/pgsql.trigger.5432.

-V
--version

Print the pg_standby version and exit.

-w maxwaittime

Set the maximum number of seconds to wait for the next WAL file, after which a fast failover will be
performed. A setting of zero (the default) means wait forever. The default setting is not necessarily
recommended; consult Section 26.2 for discussion.

-?
--help

Show help about pg_standby command line arguments, and exit.

Notes

pg_standby is designed to work with PostgreSQL 8.2 and later.

2676

Additional Supplied Programs

PostgreSQL 8.3 provides the %r macro, which is designed to let pg_standby know the last file it needs to
keep. With PostgreSQL 8.2, the -k option must be used if archive cleanup is required. This option remains
available in 8.3, but its use is deprecated.

PostgreSQL 8.4 provides the recovery_end_command option. Without this option a leftover trigger
file can be hazardous.

pg_standby is written in C and has an easy-to-modify source code, with specifically designated sections
to modify for your own needs

Examples

On Linux or Unix systems, you might use:

archive_command = 'cp %p .../archive/%f'

restore_command = 'pg_standby -d -s 2 -t /tmp/pgsql.trigger.5442 .../
archive %f %p %r 2>>standby.log'

recovery_end_command = 'rm -f /tmp/pgsql.trigger.5442'

where the archive directory is physically located on the standby server, so that the archive_command
is accessing it across NFS, but the files are local to the standby (enabling use of ln). This will:

• produce debugging output in standby.log

• sleep for 2 seconds between checks for next WAL file availability

• stop waiting only when a trigger file called /tmp/pgsql.trigger.5442 appears, and perform
failover according to its content

• remove the trigger file when recovery ends

• remove no-longer-needed files from the archive directory

On Windows, you might use:

archive_command = 'copy %p ...\\archive\\%f'

restore_command = 'pg_standby -d -s 5 -t C:\pgsql.trigger.5442 ...
\archive %f %p %r 2>>standby.log'

recovery_end_command = 'del C:\pgsql.trigger.5442'

Note that backslashes need to be doubled in the archive_command, but not in the
restore_command or recovery_end_command. This will:

• use the copy command to restore WAL files from archive

• produce debugging output in standby.log

• sleep for 5 seconds between checks for next WAL file availability

• stop waiting only when a trigger file called C:\pgsql.trigger.5442 appears, and perform
failover according to its content

2677

Additional Supplied Programs

• remove the trigger file when recovery ends

• remove no-longer-needed files from the archive directory

The copy command on Windows sets the final file size before the file is completely copied, which would
ordinarily confuse pg_standby. Therefore pg_standby waits sleeptime seconds once it sees the proper
file size. GNUWin32's cp sets the file size only after the file copy is complete.

Since the Windows example uses copy at both ends, either or both servers might be accessing the archive
directory across the network.

Author

Simon Riggs <simon@2ndquadrant.com>

See Also
pg_archivecleanup

2678

Appendix H. External Projects
PostgreSQL is a complex software project, and managing the project is difficult. We have found that many
enhancements to PostgreSQL can be more efficiently developed separately from the core project.

H.1. Client Interfaces
There are only two client interfaces included in the base PostgreSQL distribution:

• libpq is included because it is the primary C language interface, and because many other client interfaces
are built on top of it.

• ECPG is included because it depends on the server-side SQL grammar, and is therefore sensitive to
changes in PostgreSQL itself.

All other language interfaces are external projects and are distributed separately. Table H.1 includes a list
of some of these projects. Note that some of these packages might not be released under the same license
as PostgreSQL. For more information on each language interface, including licensing terms, refer to its
website and documentation.

Table H.1. Externally Maintained Client Interfaces

Name Language Comments Website

DBD::Pg Perl Perl DBI driver https://metacpan.org/
release/DBD-Pg

JDBC Java Type 4 JDBC driver https://
jdbc.postgresql.org/

libpqxx C++ C++ interface http://pqxx.org/

node-postgres JavaScript Node.js driver https://node-
postgres.com/

Npgsql .NET .NET data provider http://www.npgsql.org/

pgtcl Tcl https://github.com/
flightaware/Pgtcl

pgtclng Tcl https://sourceforge.net/
projects/pgtclng/

pq Go Pure Go driver for Go's
database/sql

https://github.com/lib/pq

psqlODBC ODBC ODBC driver https://
odbc.postgresql.org/

psycopg Python DB API 2.0-compliant http://initd.org/psycopg/

H.2. Administration Tools
There are several administration tools available for PostgreSQL. The most popular is pgAdmin1, and there
are several commercially available ones as well.

1 https://www.pgadmin.org/

2679

https://metacpan.org/release/DBD-Pg
https://metacpan.org/release/DBD-Pg
https://jdbc.postgresql.org/
https://jdbc.postgresql.org/
http://pqxx.org/
https://node-postgres.com/
https://node-postgres.com/
http://www.npgsql.org/
https://github.com/flightaware/Pgtcl
https://github.com/flightaware/Pgtcl
https://sourceforge.net/projects/pgtclng/
https://sourceforge.net/projects/pgtclng/
https://github.com/lib/pq
https://odbc.postgresql.org/
https://odbc.postgresql.org/
http://initd.org/psycopg/
https://www.pgadmin.org/
https://www.pgadmin.org/

External Projects

H.3. Procedural Languages
PostgreSQL includes several procedural languages with the base distribution: PL/pgSQL, PL/Tcl, PL/Perl,
and PL/Python.

In addition, there are a number of procedural languages that are developed and maintained outside the core
PostgreSQL distribution. Table H.2 lists some of these packages. Note that some of these projects might
not be released under the same license as PostgreSQL. For more information on each procedural language,
including licensing information, refer to its website and documentation.

Table H.2. Externally Maintained Procedural Languages

Name Language Website

PL/Java Java https://tada.github.io/pljava/

PL/Lua Lua https://github.com/pllua/pllua

PL/R R http://www.joeconway.com/
plr.html

PL/sh Unix shell https://github.com/petere/plsh

PL/v8 JavaScript https://github.com/plv8/plv8

H.4. Extensions
PostgreSQL is designed to be easily extensible. For this reason, extensions loaded into the database can
function just like features that are built in. The contrib/ directory shipped with the source code contains
several extensions, which are described in Appendix F. Other extensions are developed independently,
like PostGIS2. Even PostgreSQL replication solutions can be developed externally. For example, Slony-
I3 is a popular master/standby replication solution that is developed independently from the core project.

2 http://postgis.net/
3 http://www.slony.info

2680

https://tada.github.io/pljava/
https://github.com/pllua/pllua
http://www.joeconway.com/plr.html
http://www.joeconway.com/plr.html
https://github.com/petere/plsh
https://github.com/plv8/plv8
http://postgis.net/
http://www.slony.info
http://www.slony.info
http://postgis.net/
http://www.slony.info

Appendix I. The Source Code
Repository

The PostgreSQL source code is stored and managed using the Git version control system. A public mirror
of the master repository is available; it is updated within a minute of any change to the master repository.

Our wiki, https://wiki.postgresql.org/wiki/Working_with_Git, has some discussion on working with Git.

Note that building PostgreSQL from the source repository requires reasonably up-to-date versions of
bison, flex, and Perl. These tools are not needed to build from a distribution tarball, because the files that
these tools are used to build are included in the tarball. Other tool requirements are the same as shown
in Section 16.2.

I.1. Getting The Source via Git
With Git you will make a copy of the entire code repository on your local machine, so you will have access
to all history and branches offline. This is the fastest and most flexible way to develop or test patches.

Git

1. You will need an installed version of Git, which you can get from https://git-scm.com. Many systems
already have a recent version of Git installed by default, or available in their package distribution
system.

2. To begin using the Git repository, make a clone of the official mirror:

git clone https://git.postgresql.org/git/postgresql.git

This will copy the full repository to your local machine, so it may take a while to complete, especially
if you have a slow Internet connection. The files will be placed in a new subdirectory postgresql
of your current directory.

The Git mirror can also be reached via the Git protocol. Just change the URL prefix to git, as in:

git clone git://git.postgresql.org/git/postgresql.git

3. Whenever you want to get the latest updates in the system, cd into the repository, and run:

git fetch

Git can do a lot more things than just fetch the source. For more information, consult the Git man pages,
or see the website at https://git-scm.com.

2681

https://wiki.postgresql.org/wiki/Working_with_Git
https://git-scm.com
https://git-scm.com

Appendix J. Documentation
PostgreSQL has four primary documentation formats:

• Plain text, for pre-installation information

• HTML, for on-line browsing and reference

• PDF, for printing

• man pages, for quick reference.

Additionally, a number of plain-text README files can be found throughout the PostgreSQL source tree,
documenting various implementation issues.

HTML documentation and man pages are part of a standard distribution and are installed by default. PDF
format documentation is available separately for download.

J.1. DocBook
The documentation sources are written in DocBook, which is a markup language defined in XML. In what
follows, the terms DocBook and XML are both used, but technically they are not interchangeable.

DocBook allows an author to specify the structure and content of a technical document without worrying
about presentation details. A document style defines how that content is rendered into one of several
final forms. DocBook is maintained by the OASIS group1. The official DocBook site2 has good
introductory and reference documentation and a complete O'Reilly book for your online reading pleasure.
The NewbieDoc Docbook Guide3 is very helpful for beginners. The FreeBSD Documentation Project4

also uses DocBook and has some good information, including a number of style guidelines that might be
worth considering.

J.2. Tool Sets
The following tools are used to process the documentation. Some might be optional, as noted.

DocBook DTD5

This is the definition of DocBook itself. We currently use version 4.2; you cannot use later or earlier
versions. You need the XML variant of the DocBook DTD, not the SGML variant.

DocBook XSL Stylesheets6

These contain the processing instructions for converting the DocBook sources to other formats, such
as HTML.

The minimum required version is currently 1.77.0, but it is recommended to use the latest available
version for best results.

1 https://www.oasis-open.org
2 https://www.oasis-open.org/docbook/
3 http://newbiedoc.sourceforge.net/metadoc/docbook-guide.html
4 https://www.freebsd.org/docproj/docproj.html
5 https://www.oasis-open.org/docbook/
6 https://github.com/docbook/wiki/wiki/DocBookXslStylesheets

2682

https://www.oasis-open.org
https://www.oasis-open.org/docbook/
http://newbiedoc.sourceforge.net/metadoc/docbook-guide.html
https://www.freebsd.org/docproj/docproj.html
https://www.oasis-open.org/docbook/
https://github.com/docbook/wiki/wiki/DocBookXslStylesheets
https://www.oasis-open.org
https://www.oasis-open.org/docbook/
http://newbiedoc.sourceforge.net/metadoc/docbook-guide.html
https://www.freebsd.org/docproj/docproj.html
https://www.oasis-open.org/docbook/
https://github.com/docbook/wiki/wiki/DocBookXslStylesheets

Documentation

Libxml27 for xmllint

This library and the xmllint tool it contains are used for processing XML. Many developers will
already have Libxml2 installed, because it is also used when building the PostgreSQL code. Note,
however, that xmllint might need to be installed from a separate subpackage.

Libxslt8 for xsltproc

xsltproc is an XSLT processor, that is, a program to convert XML to other formats using XSLT
stylesheets.

FOP9

This is a program for converting, among other things, XML to PDF.

We have documented experience with several installation methods for the various tools that are needed
to process the documentation. These will be described below. There might be some other packaged
distributions for these tools. Please report package status to the documentation mailing list, and we will
include that information here.

You can get away with not installing DocBook XML and the DocBook XSLT stylesheets locally, because
the required files will be downloaded from the Internet and cached locally. This may in fact be the preferred
solution if your operating system packages provide only an old version of especially the stylesheets or
if no packages are available at all. See the --nonet option for xmllint and xsltproc for more
information.

J.2.1. Installation on Fedora, RHEL, and Derivatives
To install the required packages, use:

yum install docbook-dtds docbook-style-xsl fop libxslt

J.2.2. Installation on FreeBSD
To install the required packages with pkg, use:

pkg install docbook-xml docbook-xsl fop libxslt

When building the documentation from the doc directory you'll need to use gmake, because the makefile
provided is not suitable for FreeBSD's make.

J.2.3. Debian Packages
There is a full set of packages of the documentation tools available for Debian GNU/Linux. To install,
simply use:

apt-get install docbook-xml docbook-xsl fop libxml2-utils xsltproc

7 http://xmlsoft.org/
8 http://xmlsoft.org/XSLT/
9 https://xmlgraphics.apache.org/fop/

2683

http://xmlsoft.org/
http://xmlsoft.org/XSLT/
https://xmlgraphics.apache.org/fop/
http://xmlsoft.org/
http://xmlsoft.org/XSLT/
https://xmlgraphics.apache.org/fop/

Documentation

J.2.4. macOS
On macOS, you can build the HTML and man documentation without installing anything extra. If you
want to build PDFs or want to install a local copy of DocBook, you can get those from your preferred
package manager.

If you use MacPorts, the following will get you set up:

sudo port install docbook-xml-4.2 docbook-xsl fop

If you use Homebrew, use this:

brew install docbook docbook-xsl fop

J.2.5. Detection by configure
Before you can build the documentation you need to run the configure script as you would when
building the PostgreSQL programs themselves. Check the output near the end of the run, it should look
something like this:

checking for xmllint... xmllint
checking for DocBook XML V4.2... yes
checking for dbtoepub... dbtoepub
checking for xsltproc... xsltproc
checking for fop... fop

If xmllint was not found then some of the following tests will be skipped.

J.3. Building The Documentation
Once you have everything set up, change to the directory doc/src/sgml and run one of the commands
described in the following subsections to build the documentation. (Remember to use GNU make.)

J.3.1. HTML
To build the HTML version of the documentation:

doc/src/sgml$ make html

This is also the default target. The output appears in the subdirectory html.

To produce HTML documentation with the stylesheet used on postgresql.org10 instead of the default simple
style use:

doc/src/sgml$ make STYLE=website html

10 https://www.postgresql.org/docs/current/

2684

https://www.postgresql.org/docs/current/
https://www.postgresql.org/docs/current/

Documentation

J.3.2. Manpages
We use the DocBook XSL stylesheets to convert DocBook refentry pages to *roff output suitable for
man pages. To create the man pages, use the command:

doc/src/sgml$ make man

J.3.3. PDF
To produce a PDF rendition of the documentation using FOP, you can use one of the following commands,
depending on the preferred paper format:

• For A4 format:

doc/src/sgml$ make postgres-A4.pdf

• For U.S. letter format:

doc/src/sgml$ make postgres-US.pdf

Because the PostgreSQL documentation is fairly big, FOP will require a significant amount of memory.
Because of that, on some systems, the build will fail with a memory-related error message. This can usually
be fixed by configuring Java heap settings in the configuration file ~/.foprc, for example:

FOP binary distribution
FOP_OPTS='-Xmx1500m'
Debian
JAVA_ARGS='-Xmx1500m'
Red Hat
ADDITIONAL_FLAGS='-Xmx1500m'

There is a minimum amount of memory that is required, and to some extent more memory appears to make
things a bit faster. On systems with very little memory (less than 1 GB), the build will either be very slow
due to swapping or will not work at all.

Other XSL-FO processors can also be used manually, but the automated build process only supports FOP.

J.3.4. Plain Text Files
The installation instructions are also distributed as plain text, in case they are needed in a situation where
better reading tools are not available. The INSTALL file corresponds to Chapter 16, with some minor
changes to account for the different context. To recreate the file, change to the directory doc/src/sgml
and enter make INSTALL.

In the past, the release notes and regression testing instructions were also distributed as plain text, but this
practice has been discontinued.

J.3.5. Syntax Check
Building the documentation can take very long. But there is a method to just check the correct syntax of
the documentation files, which only takes a few seconds:

2685

Documentation

doc/src/sgml$ make check

J.4. Documentation Authoring
The documentation sources are most conveniently modified with an editor that has a mode for editing
XML, and even more so if it has some awareness of XML schema languages so that it can know about
DocBook syntax specifically.

Note that for historical reasons the documentation source files are named with an extension .sgml even
though they are now XML files. So you might need to adjust your editor configuration to set the correct
mode.

J.4.1. Emacs
nXML Mode, which ships with Emacs, is the most common mode for editing XML documents with Emacs.
It will allow you to use Emacs to insert tags and check markup consistency, and it supports DocBook out
of the box. Check the nXML manual11 for detailed documentation.

src/tools/editors/emacs.samples contains recommended settings for this mode.

J.5. Style Guide

J.5.1. Reference Pages
Reference pages should follow a standard layout. This allows users to find the desired information more
quickly, and it also encourages writers to document all relevant aspects of a command. Consistency is not
only desired among PostgreSQL reference pages, but also with reference pages provided by the operating
system and other packages. Hence the following guidelines have been developed. They are for the most
part consistent with similar guidelines established by various operating systems.

Reference pages that describe executable commands should contain the following sections, in this order.
Sections that do not apply can be omitted. Additional top-level sections should only be used in special
circumstances; often that information belongs in the “Usage” section.

Name

This section is generated automatically. It contains the command name and a half-sentence summary
of its functionality.

Synopsis

This section contains the syntax diagram of the command. The synopsis should normally not list each
command-line option; that is done below. Instead, list the major components of the command line,
such as where input and output files go.

Description

Several paragraphs explaining what the command does.

Options

A list describing each command-line option. If there are a lot of options, subsections can be used.

11 https://www.gnu.org/software/emacs/manual/html_mono/nxml-mode.html

2686

https://www.gnu.org/software/emacs/manual/html_mono/nxml-mode.html
https://www.gnu.org/software/emacs/manual/html_mono/nxml-mode.html

Documentation

Exit Status

If the program uses 0 for success and non-zero for failure, then you do not need to document it. If
there is a meaning behind the different non-zero exit codes, list them here.

Usage

Describe any sublanguage or run-time interface of the program. If the program is not interactive, this
section can usually be omitted. Otherwise, this section is a catch-all for describing run-time features.
Use subsections if appropriate.

Environment

List all environment variables that the program might use. Try to be complete; even seemingly trivial
variables like SHELL might be of interest to the user.

Files

List any files that the program might access implicitly. That is, do not list input and output files that
were specified on the command line, but list configuration files, etc.

Diagnostics

Explain any unusual output that the program might create. Refrain from listing every possible error
message. This is a lot of work and has little use in practice. But if, say, the error messages have a
standard format that the user can parse, this would be the place to explain it.

Notes

Anything that doesn't fit elsewhere, but in particular bugs, implementation flaws, security
considerations, compatibility issues.

Examples

Examples

History

If there were some major milestones in the history of the program, they might be listed here. Usually,
this section can be omitted.

Author

Author (only used in the contrib section)

See Also

Cross-references, listed in the following order: other PostgreSQL command reference pages,
PostgreSQL SQL command reference pages, citation of PostgreSQL manuals, other reference pages
(e.g., operating system, other packages), other documentation. Items in the same group are listed
alphabetically.

Reference pages describing SQL commands should contain the following sections: Name, Synopsis,
Description, Parameters, Outputs, Notes, Examples, Compatibility, History, See Also. The Parameters
section is like the Options section, but there is more freedom about which clauses of the command can be
listed. The Outputs section is only needed if the command returns something other than a default command-
completion tag. The Compatibility section should explain to what extent this command conforms to

2687

Documentation

the SQL standard(s), or to which other database system it is compatible. The See Also section of SQL
commands should list SQL commands before cross-references to programs.

2688

Appendix K. Acronyms
This is a list of acronyms commonly used in the PostgreSQL documentation and in discussions about
PostgreSQL.

ANSI

American National Standards Institute1

API

Application Programming Interface2

ASCII

American Standard Code for Information Interchange3

BKI

Backend Interface

CA

Certificate Authority4

CIDR

Classless Inter-Domain Routing5

CPAN

Comprehensive Perl Archive Network6

CRL

Certificate Revocation List7

CSV

Comma Separated Values8

CTE

Common Table Expression

CVE

Common Vulnerabilities and Exposures9

1 https://en.wikipedia.org/wiki/American_National_Standards_Institute
2 https://en.wikipedia.org/wiki/API
3 https://en.wikipedia.org/wiki/Ascii
4 https://en.wikipedia.org/wiki/Certificate_authority
5 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
6 https://www.cpan.org/
7 https://en.wikipedia.org/wiki/Certificate_revocation_list
8 https://en.wikipedia.org/wiki/Comma-separated_values
9 http://cve.mitre.org/

2689

https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Ascii
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://www.cpan.org/
https://en.wikipedia.org/wiki/Certificate_revocation_list
https://en.wikipedia.org/wiki/Comma-separated_values
http://cve.mitre.org/
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Ascii
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://www.cpan.org/
https://en.wikipedia.org/wiki/Certificate_revocation_list
https://en.wikipedia.org/wiki/Comma-separated_values
http://cve.mitre.org/

Acronyms

DBA

Database Administrator10

DBI

Database Interface (Perl)11

DBMS

Database Management System12

DDL

Data Definition Language13, SQL commands such as CREATE TABLE, ALTER USER

DML

Data Manipulation Language14, SQL commands such as INSERT, UPDATE, DELETE

DST

Daylight Saving Time15

ECPG

Embedded C for PostgreSQL

ESQL

Embedded SQL16

FAQ

Frequently Asked Questions17

FSM

Free Space Map

GEQO

Genetic Query Optimizer

GIN

Generalized Inverted Index

GiST

Generalized Search Tree

10 https://en.wikipedia.org/wiki/Database_administrator
11 https://dbi.perl.org/
12 https://en.wikipedia.org/wiki/Dbms
13 https://en.wikipedia.org/wiki/Data_Definition_Language
14 https://en.wikipedia.org/wiki/Data_Manipulation_Language
15 https://en.wikipedia.org/wiki/Daylight_saving_time
16 https://en.wikipedia.org/wiki/Embedded_SQL
17 https://en.wikipedia.org/wiki/FAQ

2690

https://en.wikipedia.org/wiki/Database_administrator
https://dbi.perl.org/
https://en.wikipedia.org/wiki/Dbms
https://en.wikipedia.org/wiki/Data_Definition_Language
https://en.wikipedia.org/wiki/Data_Manipulation_Language
https://en.wikipedia.org/wiki/Daylight_saving_time
https://en.wikipedia.org/wiki/Embedded_SQL
https://en.wikipedia.org/wiki/FAQ
https://en.wikipedia.org/wiki/Database_administrator
https://dbi.perl.org/
https://en.wikipedia.org/wiki/Dbms
https://en.wikipedia.org/wiki/Data_Definition_Language
https://en.wikipedia.org/wiki/Data_Manipulation_Language
https://en.wikipedia.org/wiki/Daylight_saving_time
https://en.wikipedia.org/wiki/Embedded_SQL
https://en.wikipedia.org/wiki/FAQ

Acronyms

Git

Git18

GMT

Greenwich Mean Time19

GSSAPI

Generic Security Services Application Programming Interface20

GUC

Grand Unified Configuration, the PostgreSQL subsystem that handles server configuration

HBA

Host-Based Authentication

HOT

Heap-Only Tuples21

IEC

International Electrotechnical Commission22

IEEE

Institute of Electrical and Electronics Engineers23

IPC

Inter-Process Communication24

ISO

International Organization for Standardization25

ISSN

International Standard Serial Number26

JDBC

Java Database Connectivity27

18 https://en.wikipedia.org/wiki/Git_(software)
19 https://en.wikipedia.org/wiki/GMT
20 https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
21 https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/README.HOT;hb=HEAD
22 https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
23 http://standards.ieee.org/
24 https://en.wikipedia.org/wiki/Inter-process_communication
25 https://www.iso.org/home.html
26 https://en.wikipedia.org/wiki/Issn
27 https://en.wikipedia.org/wiki/Java_Database_Connectivity

2691

https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/GMT
https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/README.HOT;hb=HEAD
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://standards.ieee.org/
https://en.wikipedia.org/wiki/Inter-process_communication
https://www.iso.org/home.html
https://en.wikipedia.org/wiki/Issn
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/GMT
https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/README.HOT;hb=HEAD
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://standards.ieee.org/
https://en.wikipedia.org/wiki/Inter-process_communication
https://www.iso.org/home.html
https://en.wikipedia.org/wiki/Issn
https://en.wikipedia.org/wiki/Java_Database_Connectivity

Acronyms

JIT

Just-in-Time compilation28

JSON

JavaScript Object Notation29

LDAP

Lightweight Directory Access Protocol30

LSN

Log Sequence Number, see pg_lsn and WAL Internals.

MSVC

Microsoft Visual C31

MVCC

Multi-Version Concurrency Control

NLS

National Language Support32

ODBC

Open Database Connectivity33

OID

Object Identifier

OLAP

Online Analytical Processing34

OLTP

Online Transaction Processing35

ORDBMS

Object-Relational Database Management System36

PAM

Pluggable Authentication Modules37

28 https://en.wikipedia.org/wiki/Just-in-time_compilation
29 http://json.org
30 https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
31 https://en.wikipedia.org/wiki/Visual_C++
32 https://en.wikipedia.org/wiki/Internationalization_and_localization
33 https://en.wikipedia.org/wiki/Open_Database_Connectivity
34 https://en.wikipedia.org/wiki/Olap
35 https://en.wikipedia.org/wiki/OLTP
36 https://en.wikipedia.org/wiki/ORDBMS
37 https://en.wikipedia.org/wiki/Pluggable_Authentication_Modules

2692

https://en.wikipedia.org/wiki/Just-in-time_compilation
http://json.org
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Visual_C++
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Olap
https://en.wikipedia.org/wiki/OLTP
https://en.wikipedia.org/wiki/ORDBMS
https://en.wikipedia.org/wiki/Pluggable_Authentication_Modules
https://en.wikipedia.org/wiki/Just-in-time_compilation
http://json.org
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Visual_C++
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Olap
https://en.wikipedia.org/wiki/OLTP
https://en.wikipedia.org/wiki/ORDBMS
https://en.wikipedia.org/wiki/Pluggable_Authentication_Modules

Acronyms

PGSQL

PostgreSQL

PGXS

PostgreSQL Extension System

PID

Process Identifier38

PITR

Point-In-Time Recovery (Continuous Archiving)

PL

Procedural Languages (server-side)

POSIX

Portable Operating System Interface39

RDBMS

Relational Database Management System40

RFC

Request For Comments41

SGML

Standard Generalized Markup Language42

SPI

Server Programming Interface

SP-GiST

Space-Partitioned Generalized Search Tree

SQL

Structured Query Language43

SRF

Set-Returning Function

38 https://en.wikipedia.org/wiki/Process_identifier
39 https://en.wikipedia.org/wiki/POSIX
40 https://en.wikipedia.org/wiki/Relational_database_management_system
41 https://en.wikipedia.org/wiki/Request_for_Comments
42 https://en.wikipedia.org/wiki/SGML
43 https://en.wikipedia.org/wiki/SQL

2693

https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/SGML
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/SGML
https://en.wikipedia.org/wiki/SQL

Acronyms

SSH

Secure Shell44

SSL

Secure Sockets Layer45

SSPI

Security Support Provider Interface46

SYSV

Unix System V47

TCP/IP

Transmission Control Protocol (TCP) / Internet Protocol (IP)48

TID

Tuple Identifier

TOAST

The Oversized-Attribute Storage Technique

TPC

Transaction Processing Performance Council49

URL

Uniform Resource Locator50

UTC

Coordinated Universal Time51

UTF

Unicode Transformation Format52

UTF8

Eight-Bit Unicode Transformation Format53

UUID

Universally Unique Identifier

44 https://en.wikipedia.org/wiki/Secure_Shell
45 https://en.wikipedia.org/wiki/Secure_Sockets_Layer
46 https://msdn.microsoft.com/en-us/library/aa380493%28VS.85%29.aspx
47 https://en.wikipedia.org/wiki/System_V
48 https://en.wikipedia.org/wiki/Transmission_Control_Protocol
49 http://www.tpc.org/
50 https://en.wikipedia.org/wiki/URL
51 https://en.wikipedia.org/wiki/Coordinated_Universal_Time
52 http://www.unicode.org/
53 https://en.wikipedia.org/wiki/Utf8

2694

https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://msdn.microsoft.com/en-us/library/aa380493%28VS.85%29.aspx
https://en.wikipedia.org/wiki/System_V
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.tpc.org/
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://www.unicode.org/
https://en.wikipedia.org/wiki/Utf8
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://msdn.microsoft.com/en-us/library/aa380493%28VS.85%29.aspx
https://en.wikipedia.org/wiki/System_V
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.tpc.org/
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://www.unicode.org/
https://en.wikipedia.org/wiki/Utf8

Acronyms

WAL

Write-Ahead Log

XID

Transaction Identifier

XML

Extensible Markup Language54

54 https://en.wikipedia.org/wiki/XML

2695

https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XML

Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are available at the
University of California, Berkeley, Computer Science Department web site1.

SQL Reference Books
[bowman01] The Practical SQL Handbook. Using SQL Variants. Fourth Edition. Judith Bowman, Sandra Emerson,

and Marcy Darnovsky. ISBN 0-201-70309-2. Addison-Wesley Professional. 2001.

[date97] A Guide to the SQL Standard. A user's guide to the standard database language SQL. Fourth Edition. C. J.
Date and Hugh Darwen. ISBN 0-201-96426-0. Addison-Wesley. 1997.

[date04] An Introduction to Database Systems. Eighth Edition. C. J. Date. ISBN 0-321-19784-4. Addison-Wesley.
2003.

[elma04] Fundamentals of Database Systems. Fourth Edition. Ramez Elmasri and Shamkant Navathe. ISBN
0-321-12226-7. Addison-Wesley. 2003.

[melt93] Understanding the New SQL. A complete guide. Jim Melton and Alan R. Simon. ISBN 1-55860-245-3.
Morgan Kaufmann. 1993.

[ull88] Principles of Database and Knowledge. Base Systems. Jeffrey D. Ullman. Volume 1. Computer Science Press.
1988.

PostgreSQL-specific Documentation
[sim98] Enhancement of the ANSI SQL Implementation of PostgreSQL. Stefan Simkovics. Department of Information

Systems, Vienna University of Technology. Vienna, Austria. November 29, 1998.

[yu95] The Postgres95. User Manual. A. Yu and J. Chen. University of California. Berkeley, California. Sept. 5, 1995.

[fong] The design and implementation of the POSTGRES query optimizer2. Zelaine Fong. University of California,
Berkeley, Computer Science Department.

Proceedings and Articles
[olson93] Partial indexing in POSTGRES: research project. Nels Olson. UCB Engin T7.49.1993 O676. University

of California. Berkeley, California. 1993.

[ong90] “A Unified Framework for Version Modeling Using Production Rules in a Database System”. L. Ong and J.
Goh. ERL Technical Memorandum M90/33. University of California. Berkeley, California. April, 1990.

[rowe87] “The POSTGRES data model3”. L. Rowe and M. Stonebraker. VLDB Conference, Sept. 1987.

[seshadri95] “Generalized Partial Indexes4”. P. Seshadri and A. Swami. Eleventh International Conference on
Data Engineering, 6-10 March 1995. Cat. No.95CH35724. IEEE Computer Society Press. Los Alamitos,
California. 1995. 420-7.

1 http://db.cs.berkeley.edu/papers/
2 http://db.cs.berkeley.edu/papers/UCB-MS-zfong.pdf
3 http://db.cs.berkeley.edu/papers/ERL-M87-13.pdf
4 http://citeseer.ist.psu.edu/seshadri95generalized.html

2696

http://db.cs.berkeley.edu/papers/
http://db.cs.berkeley.edu/papers/UCB-MS-zfong.pdf
http://db.cs.berkeley.edu/papers/ERL-M87-13.pdf
http://citeseer.ist.psu.edu/seshadri95generalized.html
http://db.cs.berkeley.edu/papers/
http://db.cs.berkeley.edu/papers/UCB-MS-zfong.pdf
http://db.cs.berkeley.edu/papers/ERL-M87-13.pdf
http://citeseer.ist.psu.edu/seshadri95generalized.html

Bibliography

[ston86] “The design of POSTGRES5”. M. Stonebraker and L. Rowe. ACM-SIGMOD Conference on Management
of Data, May 1986.

[ston87a] “The design of the POSTGRES. rules system”. M. Stonebraker, E. Hanson, and C. H. Hong. IEEE
Conference on Data Engineering, Feb. 1987.

[ston87b] “The design of the POSTGRES storage system6”. M. Stonebraker. VLDB Conference, Sept. 1987.

[ston89] “A commentary on the POSTGRES rules system7”. M. Stonebraker, M. Hearst, and S. Potamianos. SIGMOD
Record 18(3). Sept. 1989.

[ston89b] “The case for partial indexes8”. M. Stonebraker. SIGMOD Record 18(4). Dec. 1989. 4-11.

[ston90a] “The implementation of POSTGRES9”. M. Stonebraker, L. A. Rowe, and M. Hirohama. Transactions on
Knowledge and Data Engineering 2(1). IEEE. March 1990.

[ston90b] “On Rules, Procedures, Caching and Views in Database Systems10”. M. Stonebraker, A. Jhingran, J. Goh,
and S. Potamianos. ACM-SIGMOD Conference on Management of Data, June 1990.

5 http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf
6 http://db.cs.berkeley.edu/papers/ERL-M87-06.pdf
7 http://db.cs.berkeley.edu/papers/ERL-M89-82.pdf
8 http://db.cs.berkeley.edu/papers/ERL-M89-17.pdf
9 http://db.cs.berkeley.edu/papers/ERL-M90-34.pdf
10 http://db.cs.berkeley.edu/papers/ERL-M90-36.pdf

2697

http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf
http://db.cs.berkeley.edu/papers/ERL-M87-06.pdf
http://db.cs.berkeley.edu/papers/ERL-M89-82.pdf
http://db.cs.berkeley.edu/papers/ERL-M89-17.pdf
http://db.cs.berkeley.edu/papers/ERL-M90-34.pdf
http://db.cs.berkeley.edu/papers/ERL-M90-36.pdf
http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf
http://db.cs.berkeley.edu/papers/ERL-M87-06.pdf
http://db.cs.berkeley.edu/papers/ERL-M89-82.pdf
http://db.cs.berkeley.edu/papers/ERL-M89-17.pdf
http://db.cs.berkeley.edu/papers/ERL-M90-34.pdf
http://db.cs.berkeley.edu/papers/ERL-M90-36.pdf

Index
Symbols
$, 46
$libdir, 1104
$libdir/plugins, 612, 1826
*, 128
.pgpass, 872
.pg_service.conf, 872
::, 53
_PG_fini, 1103
_PG_init, 1103
_PG_output_plugin_init, 1407

A
abbrev, 278
ABORT, 1423
abs, 213
acos, 216
acosd, 216
administration tools

externally maintained, 2679
adminpack, 2497
advisory lock, 459
age, 259
aggregate function, 14

built-in, 319
invocation, 48
moving aggregate, 1127
ordered set, 1130
partial aggregation, 1131
polymorphic, 1128
support functions for, 1132
user-defined, 1125
variadic, 1128

AIX
installation on, 515
IPC configuration, 537

akeys, 2560
alias

for table name in query, 14
in the FROM clause, 117
in the select list, 129

ALL, 329, 332
allow_system_table_mods configuration parameter, 619
ALTER AGGREGATE, 1424
ALTER COLLATION, 1426
ALTER CONVERSION, 1428
ALTER DATABASE, 1430
ALTER DEFAULT PRIVILEGES, 1433
ALTER DOMAIN, 1436
ALTER EVENT TRIGGER, 1440

ALTER EXTENSION, 1441
ALTER FOREIGN DATA WRAPPER, 1445
ALTER FOREIGN TABLE, 1447
ALTER FUNCTION, 1452
ALTER GROUP, 1456
ALTER INDEX, 1458
ALTER LANGUAGE, 1461
ALTER LARGE OBJECT, 1462
ALTER MATERIALIZED VIEW, 1463
ALTER OPERATOR, 1465
ALTER OPERATOR CLASS, 1467
ALTER OPERATOR FAMILY, 1469
ALTER POLICY, 1473
ALTER PROCEDURE, 1475
ALTER PUBLICATION, 1478
ALTER ROLE, 646, 1480
ALTER ROUTINE, 1484
ALTER RULE, 1486
ALTER SCHEMA, 1487
ALTER SEQUENCE, 1488
ALTER SERVER, 1491
ALTER STATISTICS, 1493
ALTER SUBSCRIPTION, 1494
ALTER SYSTEM, 1496
ALTER TABLE, 1498
ALTER TABLESPACE, 1515
ALTER TEXT SEARCH CONFIGURATION, 1517
ALTER TEXT SEARCH DICTIONARY, 1519
ALTER TEXT SEARCH PARSER, 1521
ALTER TEXT SEARCH TEMPLATE, 1522
ALTER TRIGGER, 1523
ALTER TYPE, 1525
ALTER USER, 1529
ALTER USER MAPPING, 1530
ALTER VIEW, 1532
amcheck, 2498
ANALYZE, 675, 1534
AND (operator), 209
anonymous code blocks, 1736
any, 207
ANY, 321, 329, 332
anyarray, 207
anyelement, 207
anyenum, 207
anynonarray, 207
anyrange, 207
applicable role, 1018
application_name configuration parameter, 596
arbitrary precision numbers, 141
archive_cleanup_command recovery parameter, 723
archive_command configuration parameter, 578
archive_mode configuration parameter, 578
archive_timeout configuration parameter, 579
area, 274

2698

Index

armor, 2596
array, 182

accessing, 184
constant, 183
constructor, 55
declaration, 182
I/O, 191
modifying, 187
of user-defined type, 1135
searching, 190

ARRAY, 55
determination of result type, 386

array_agg, 320, 2565
array_append, 315
array_cat, 315
array_dims, 315
array_fill, 315
array_length, 315
array_lower, 315
array_ndims, 315
array_nulls configuration parameter, 615
array_position, 315
array_positions, 315
array_prepend, 315
array_remove, 315
array_replace, 315
array_to_json, 303
array_to_string, 315
array_to_tsvector, 280
array_upper, 315
ascii, 218
asin, 216
asind, 216
ASSERT

in PL/pgSQL, 1261
assertions

in PL/pgSQL, 1261
asynchronous commit, 778
AT TIME ZONE, 269
atan, 216
atan2, 216
atan2d, 216
atand, 216
authentication_timeout configuration parameter, 563
auth_delay, 2501
auth_delay.milliseconds configuration parameter, 2501
auto-increment (see serial)
autocommit

bulk-loading data, 481
psql, 2032

autovacuum
configuration parameters, 603
general information, 679

autovacuum configuration parameter, 603

autovacuum_analyze_scale_factor configuration
parameter, 604
autovacuum_analyze_threshold configuration parameter,
603
autovacuum_freeze_max_age configuration parameter,
604
autovacuum_max_workers configuration parameter, 603
autovacuum_multixact_freeze_max_age configuration
parameter, 604
autovacuum_naptime configuration parameter, 603
autovacuum_vacuum_cost_delay configuration
parameter, 604
autovacuum_vacuum_cost_limit configuration
parameter, 604
autovacuum_vacuum_scale_factor configuration
parameter, 604
autovacuum_vacuum_threshold configuration parameter,
603
autovacuum_work_mem configuration parameter, 568
auto_explain, 2501
auto_explain.log_analyze configuration parameter, 2502
auto_explain.log_buffers configuration parameter, 2502
auto_explain.log_format configuration parameter, 2503
auto_explain.log_min_duration configuration parameter,
2502
auto_explain.log_nested_statements configuration
parameter, 2503
auto_explain.log_timing configuration parameter, 2502
auto_explain.log_triggers configuration parameter, 2503
auto_explain.log_verbose configuration parameter, 2503
auto_explain.sample_rate configuration parameter, 2503
avals, 2561
average, 320
avg, 320

B
B-tree (see index)
backend_flush_after configuration parameter, 573
Background workers, 1398
backslash escapes, 37
backslash_quote configuration parameter, 615
backup, 356, 683
base type, 1081
BASE_BACKUP, 2228
BEGIN, 1537
BETWEEN, 210
BETWEEN SYMMETRIC, 211
BGWORKER_BACKEND_DATABASE_CONNECTION,
1399
BGWORKER_SHMEM_ACCESS, 1399
bgwriter_delay configuration parameter, 570
bgwriter_flush_after configuration parameter, 571
bgwriter_lru_maxpages configuration parameter, 571

2699

Index

bgwriter_lru_multiplier configuration parameter, 571
bigint, 41, 141
bigserial, 144
binary data, 148

functions, 231
binary string

concatenation, 231
length, 233

bison, 499
bit string

constant, 40
data type, 168

bit strings
functions, 233

bitmap scan, 394, 584
bit_and, 320
bit_length, 217
bit_or, 320
BLOB (see large object)
block_size configuration parameter, 617
bloom, 2504
bonjour configuration parameter, 562
bonjour_name configuration parameter, 562
Boolean

data type, 160
operators (see operators, logical)

bool_and, 320
bool_or, 320
booting

starting the server during, 532
box, 275
box (data type), 164
BRIN (see index)
brin_desummarize_range, 368
brin_metapage_info, 2585
brin_page_items, 2585
brin_page_type, 2585
brin_revmap_data, 2585
brin_summarize_new_values, 368
brin_summarize_range, 368
broadcast, 278
BSD Authentication, 642
btree_gin, 2507
btree_gist, 2508
btrim, 218, 232
bt_index_check, 2498
bt_index_parent_check, 2499
bt_metap, 2583
bt_page_items, 2584, 2584
bt_page_stats, 2583
bytea, 148
bytea_output configuration parameter, 609

C
C, 808, 905
C++, 1125
CALL, 1539
canceling

SQL command, 850
cardinality, 315
CASCADE

with DROP, 106
foreign key action, 71

Cascading Replication, 700
CASE, 311

determination of result type, 386
case sensitivity

of SQL commands, 36
cast

I/O conversion, 1573
cbrt, 213
ceil, 213
ceiling, 213
center, 274
Certificate, 641
char, 146
character, 146
character set, 610, 619, 665
character string

concatenation, 216
constant, 37
data types, 146
length, 217

character varying, 146
char_length, 217
check constraint, 65
CHECK OPTION, 1721
checkpoint, 780
CHECKPOINT, 1540
checkpoint_completion_target configuration parameter,
577
checkpoint_flush_after configuration parameter, 578
checkpoint_timeout configuration parameter, 577
checkpoint_warning configuration parameter, 578
check_function_bodies configuration parameter, 606
chr, 218
cid, 205
cidr, 166
circle, 165, 275
citext, 2509
client authentication, 624

timeout during, 563
client_encoding configuration parameter, 610
client_min_messages configuration parameter, 605
clock_timestamp, 259
CLOSE, 1541

2700

Index

cluster
of databases (see database cluster)

CLUSTER, 1543
clusterdb, 1918
clustering, 700
cluster_name configuration parameter, 601
cmax, 73
cmin, 73
COALESCE, 313
COLLATE, 54
collation, 659

in PL/pgSQL, 1227
in SQL functions, 1100

collation for, 345
column, 8, 63

adding, 74
removing, 75
renaming, 77
system column, 73

column data type
changing, 76

column reference, 45
col_description, 351
comment

about database objects, 351
in SQL, 43

COMMENT, 1546
COMMIT, 1551
COMMIT PREPARED, 1552
commit_delay configuration parameter, 577
commit_siblings configuration parameter, 577
common table expression (see WITH)
comparison

composite type, 332
operators, 209
row constructor, 332
subquery result row, 329

compiling
libpq applications, 878

composite type, 192, 1081
comparison, 332
constant, 193
constructor, 57

computed field, 197
concat, 218
concat_ws, 219
concurrency, 448
conditional expression, 311
configuration

of recovery
of a standby server, 723

of the server, 556
of the server

functions, 355

configure, 500
config_file configuration parameter, 560
conjunction, 209
connectby, 2646, 2652
connection service file, 872
conninfo, 815
constant, 37
constraint, 65

adding, 75
check, 65
exclusion, 72
foreign key, 70
name, 65
NOT NULL, 67
primary key, 69
removing, 76
unique, 68

constraint exclusion, 104, 589
constraint_exclusion configuration parameter, 589
container type, 1081
CONTINUE

in PL/pgSQL, 1244
continuous archiving, 683

in standby, 712
control file, 1157
convert, 219
convert_from, 219
convert_to, 219
COPY, 10, 1553

with libpq, 853
corr, 322
correlation, 322

in the query planner, 476
cos, 216
cosd, 216
cot, 216
cotd, 216
count, 320
covariance

population, 322
sample, 322

covar_pop, 322
covar_samp, 322
covering index, 398
cpu_index_tuple_cost configuration parameter, 587
cpu_operator_cost configuration parameter, 587
cpu_tuple_cost configuration parameter, 587
CREATE ACCESS METHOD, 1564
CREATE AGGREGATE, 1565
CREATE CAST, 1573
CREATE COLLATION, 1578
CREATE CONVERSION, 1581
CREATE DATABASE, 651, 1583
CREATE DOMAIN, 1587

2701

Index

CREATE EVENT TRIGGER, 1590
CREATE EXTENSION, 1592
CREATE FOREIGN DATA WRAPPER, 1595
CREATE FOREIGN TABLE, 1597
CREATE FUNCTION, 1601
CREATE GROUP, 1609
CREATE INDEX, 1610
CREATE LANGUAGE, 1618
CREATE MATERIALIZED VIEW, 1621
CREATE OPERATOR, 1623
CREATE OPERATOR CLASS, 1626
CREATE OPERATOR FAMILY, 1629
CREATE POLICY, 1630
CREATE PROCEDURE, 1636
CREATE PUBLICATION, 1640
CREATE ROLE, 644, 1642
CREATE RULE, 1647
CREATE SCHEMA, 1650
CREATE SEQUENCE, 1653
CREATE SERVER, 1657
CREATE STATISTICS, 1659
CREATE SUBSCRIPTION, 1661
CREATE TABLE, 9, 1664
CREATE TABLE AS, 1686
CREATE TABLESPACE, 655, 1689
CREATE TEXT SEARCH CONFIGURATION, 1691
CREATE TEXT SEARCH DICTIONARY, 1693
CREATE TEXT SEARCH PARSER, 1695
CREATE TEXT SEARCH TEMPLATE, 1697
CREATE TRANSFORM, 1699
CREATE TRIGGER, 1702
CREATE TYPE, 1709
CREATE USER, 1718
CREATE USER MAPPING, 1719
CREATE VIEW, 1721
createdb, 4, 652, 1921
createuser, 644, 1924
CREATE_REPLICATION_SLOT, 2224
cross compilation, 507
cross join, 113
crosstab, 2646, 2648, 2650
crypt, 2592
cstring, 207
ctid, 73
CTID, 1195
CUBE, 125
cube (extension), 2511
cume_dist, 327

hypothetical, 326
current_catalog, 340
current_database, 340
current_date, 259
current_logfiles

and the log_destination configuration parameter, 591

and the pg_current_logfile function, 340
current_query, 340
current_role, 340
current_schema, 340
current_schemas, 340
current_setting, 355
current_time, 259
current_timestamp, 259
current_user, 340
currval, 309
cursor

CLOSE, 1541
DECLARE, 1727
FETCH, 1802
in PL/pgSQL, 1252
MOVE, 1830
showing the query plan, 1797

cursor_tuple_fraction configuration parameter, 590
custom scan provider

handler for, 2300
Cygwin

installation on, 518

D
data area (see database cluster)
data partitioning, 700
data type, 139

base, 1081
category, 377
composite, 1081
constant, 41
container, 1081
conversion, 376
domain, 205
enumerated (enum), 161
internal organization, 1105
numeric, 140
polymorphic, 1082
type cast, 53
user-defined, 1133

database, 651
creating, 4
privilege to create, 645

database activity
monitoring, 727

database cluster, 8, 529
data_checksums configuration parameter, 618
data_directory configuration parameter, 560
data_directory_mode configuration parameter, 618
data_sync_retry configuration parameter, 617
date, 150, 152

constants, 154
current, 269

2702

Index

output format, 155
(see also formatting)

DateStyle configuration parameter, 610
date_part, 259, 263
date_trunc, 260, 268
dblink, 2517, 2523
dblink_build_sql_delete, 2546
dblink_build_sql_insert, 2544
dblink_build_sql_update, 2548
dblink_cancel_query, 2542
dblink_close, 2532
dblink_connect, 2518
dblink_connect_u, 2521
dblink_disconnect, 2522
dblink_error_message, 2535
dblink_exec, 2526
dblink_fetch, 2530
dblink_get_connections, 2534
dblink_get_notify, 2538
dblink_get_pkey, 2543
dblink_get_result, 2539
dblink_is_busy, 2537
dblink_open, 2528
dblink_send_query, 2536
db_user_namespace configuration parameter, 564
deadlock, 458

timeout during, 614
deadlock_timeout configuration parameter, 614
DEALLOCATE, 1726
dearmor, 2596
debug_assertions configuration parameter, 618
debug_deadlocks configuration parameter, 621
debug_pretty_print configuration parameter, 596
debug_print_parse configuration parameter, 596
debug_print_plan configuration parameter, 596
debug_print_rewritten configuration parameter, 596
decimal (see numeric)
DECLARE, 1727
decode, 219, 232
decode_bytea

in PL/Perl, 1309
decrypt, 2599
decrypt_iv, 2599
default value, 64

changing, 76
default_statistics_target configuration parameter, 589
default_tablespace configuration parameter, 606
default_text_search_config configuration parameter, 611
default_transaction_deferrable configuration parameter,
607
default_transaction_isolation configuration parameter,
607
default_transaction_read_only configuration parameter,
607

default_with_oids configuration parameter, 615
deferrable transaction

setting, 1895
setting default, 607

defined, 2562
degrees, 213
delay, 271
DELETE, 16, 110, 1731

RETURNING, 110
delete, 2562
deleting, 110
dense_rank, 327

hypothetical, 326
diameter, 274
dict_int, 2549
dict_xsyn, 2550
difference, 2556
digest, 2591
dirty read, 448
DISCARD, 1734
disjunction, 209
disk drive, 783
disk space, 674
disk usage, 774
DISTINCT, 12, 129
div, 213
dmetaphone, 2558
dmetaphone_alt, 2558
DO, 1736
document

text search, 406
dollar quoting, 39
domain, 205
double precision, 143
DROP ACCESS METHOD, 1738
DROP AGGREGATE, 1739
DROP CAST, 1741
DROP COLLATION, 1742
DROP CONVERSION, 1743
DROP DATABASE, 654, 1744
DROP DOMAIN, 1745
DROP EVENT TRIGGER, 1746
DROP EXTENSION, 1747
DROP FOREIGN DATA WRAPPER, 1749
DROP FOREIGN TABLE, 1750
DROP FUNCTION, 1751
DROP GROUP, 1753
DROP INDEX, 1754
DROP LANGUAGE, 1756
DROP MATERIALIZED VIEW, 1758
DROP OPERATOR, 1759
DROP OPERATOR CLASS, 1761
DROP OPERATOR FAMILY, 1763
DROP OWNED, 1765

2703

Index

DROP POLICY, 1767
DROP PROCEDURE, 1768
DROP PUBLICATION, 1770
DROP ROLE, 644, 1771
DROP ROUTINE, 1773
DROP RULE, 1774
DROP SCHEMA, 1775
DROP SEQUENCE, 1777
DROP SERVER, 1778
DROP STATISTICS, 1779
DROP SUBSCRIPTION, 1780
DROP TABLE, 9, 1782
DROP TABLESPACE, 1783
DROP TEXT SEARCH CONFIGURATION, 1784
DROP TEXT SEARCH DICTIONARY, 1785
DROP TEXT SEARCH PARSER, 1786
DROP TEXT SEARCH TEMPLATE, 1787
DROP TRANSFORM, 1788
DROP TRIGGER, 1790
DROP TYPE, 1791
DROP USER, 1792
DROP USER MAPPING, 1793
DROP VIEW, 1794
dropdb, 654, 1928
dropuser, 644, 1931
DROP_REPLICATION_SLOT, 2228
DTD, 173
DTrace, 508, 763
duplicate, 12
duplicates, 129
dynamic loading, 613, 1103
dynamic_library_path, 1104
dynamic_library_path configuration parameter, 613
dynamic_shared_memory_type configuration parameter,
568

E
each, 2562
earth, 2552
earthdistance, 2551
earth_box, 2552
earth_distance, 2552
ECPG, 905
ecpg, 1934
effective_cache_size configuration parameter, 587
effective_io_concurrency configuration parameter, 571
elog, 2258

in PL/Perl, 1309
in PL/Python, 1333
in PL/Tcl, 1293

embedded SQL
in C, 905

enabled role, 1040

enable_bitmapscan configuration parameter, 584
enable_gathermerge configuration parameter, 584
enable_hashagg configuration parameter, 584
enable_hashjoin configuration parameter, 584
enable_indexonlyscan configuration parameter, 585
enable_indexscan configuration parameter, 584
enable_material configuration parameter, 585
enable_mergejoin configuration parameter, 585
enable_nestloop configuration parameter, 585
enable_parallel_append configuration parameter, 585
enable_parallel_hash configuration parameter, 585
enable_partitionwise_aggregate configuration parameter,
585
enable_partitionwise_join configuration parameter, 585
enable_partition_pruning configuration parameter, 585
enable_seqscan configuration parameter, 585
enable_sort configuration parameter, 586
enable_tidscan configuration parameter, 586
encode, 220, 232
encode_array_constructor

in PL/Perl, 1310
encode_array_literal

in PL/Perl, 1309
encode_bytea

in PL/Perl, 1309
encode_typed_literal

in PL/Perl, 1310
encrypt, 2599
encryption, 548

for specific columns, 2591
encrypt_iv, 2599
END, 1795
enumerated types, 161
enum_first, 272
enum_last, 272
enum_range, 272
environment variable, 870
ephemeral named relation

registering with SPI, 1370, 1372
unregistering from SPI, 1371

ereport, 2258
error codes

libpq, 834
list of, 2396

error message, 826
escape string syntax, 37
escape_string_warning configuration parameter, 615
escaping strings

in libpq, 842
event log

event log, 554
event trigger, 1177

in C, 1182
in PL/Tcl, 1296

2704

Index

event_source configuration parameter, 594
event_trigger, 207
every, 320
EXCEPT, 130
exceptions

in PL/pgSQL, 1248
in PL/Tcl, 1296

exclusion constraint, 72
EXECUTE, 1796
exist, 2562
EXISTS, 329
EXIT

in PL/pgSQL, 1243
exit_on_error configuration parameter, 617
exp, 213
EXPLAIN, 463, 1797
expression

order of evaluation, 58
syntax, 45

extending SQL, 1081
extension, 1155

externally maintained, 2680
external_pid_file configuration parameter, 560
extract, 260, 263
extra_float_digits configuration parameter, 610

F
failover, 700
false, 160
family, 278
fast path, 851
fdw_handler, 207
FETCH, 1802
field

computed, 197
field selection, 47
file system mount points, 530
file_fdw, 2553
FILTER, 48
first_value, 328
flex, 499
float4 (see real)
float8 (see double precision)
floating point, 143
floating-point

display, 610
floor, 213
force_parallel_mode configuration parameter, 590
foreign data, 105
foreign data wrapper

handler for, 2276
foreign key, 18, 70
foreign table, 105

format, 220, 229
use in PL/pgSQL, 1233

formatting, 250
format_type, 345
Free Space Map, 2369
FreeBSD

IPC configuration, 537
shared library, 1112
start script, 532

from_collapse_limit configuration parameter, 590
FSM (see Free Space Map)
fsm_page_contents, 2583
fsync configuration parameter, 574
full text search, 405

data types, 169
functions and operators, 169

full_page_writes configuration parameter, 576
function, 209

default values for arguments, 1092
in the FROM clause, 119
internal, 1103
invocation, 47
mixed notation, 61
named argument, 1085
named notation, 61
output parameter, 1090
polymorphic, 1082
positional notation, 60
RETURNS TABLE, 1098
type resolution in an invocation, 381
user-defined, 1083

in C, 1103
in SQL, 1084

variadic, 1091
with SETOF, 1094

functional dependency, 124
fuzzystrmatch, 2555

G
gc_to_sec, 2552
generate_series, 335
generate_subscripts, 336
genetic query optimization, 588
gen_random_bytes, 2600
gen_random_uuid, 2600
gen_salt, 2592
GEQO (see genetic query optimization)
geqo configuration parameter, 588
geqo_effort configuration parameter, 588
geqo_generations configuration parameter, 589
geqo_pool_size configuration parameter, 589
geqo_seed configuration parameter, 589
geqo_selection_bias configuration parameter, 589

2705

Index

geqo_threshold configuration parameter, 588
get_bit, 233
get_byte, 233
get_current_ts_config, 280
get_raw_page, 2581
GIN (see index)
gin_clean_pending_list, 368
gin_fuzzy_search_limit configuration parameter, 614
gin_leafpage_items, 2586
gin_metapage_info, 2586
gin_page_opaque_info, 2586
gin_pending_list_limit configuration parameter, 609
GiST (see index)
global data

in PL/Python, 1325
in PL/Tcl, 1291

GRANT, 77, 1806
GREATEST, 314

determination of result type, 386
Gregorian calendar, 2409
GROUP BY, 15, 123
grouping, 123
GROUPING, 326
GROUPING SETS, 125
GSSAPI, 634
GUID, 172

H
hash (see index)
hash_bitmap_info, 2588
hash_metapage_info, 2588
hash_page_items, 2587
hash_page_stats, 2587
hash_page_type, 2587
has_any_column_privilege, 342
has_column_privilege, 342
has_database_privilege, 342
has_foreign_data_wrapper_privilege, 342
has_function_privilege, 342
has_language_privilege, 342
has_schema_privilege, 342
has_sequence_privilege, 342
has_server_privilege, 342
has_tablespace_privilege, 342
has_table_privilege, 342
has_type_privilege, 342
HAVING, 15, 124
hba_file configuration parameter, 560
heap_page_items, 2582
heap_page_item_attrs, 2583
height, 274
hierarchical database, 8
high availability, 700

history
of PostgreSQL, xxxiii

hmac, 2591
host, 278
host name, 817
hostmask, 278
Hot Standby, 700
hot_standby configuration parameter, 582
hot_standby_feedback configuration parameter, 583
HP-UX

installation on, 519
IPC configuration, 538
shared library, 1112

hstore, 2558, 2560
hstore_to_array, 2561
hstore_to_json, 2561
hstore_to_jsonb, 2561
hstore_to_jsonb_loose, 2561
hstore_to_json_loose, 2561
hstore_to_matrix, 2561
huge_pages configuration parameter, 567
hypothetical-set aggregate

built-in, 326

I
icount, 2567
ICU, 504, 661, 1579
ident, 636
identifier

length, 36
syntax of, 35

IDENTIFY_SYSTEM, 2223
ident_file configuration parameter, 560
idle_in_transaction_session_timeout configuration
parameter, 608
idx, 2567
IFNULL, 313
ignore_checksum_failure configuration parameter, 622
ignore_system_indexes configuration parameter, 619
IMMUTABLE, 1101
IMPORT FOREIGN SCHEMA, 1814
IN, 329, 332
INCLUDE

in index definitions, 399
include

in configuration file, 558
include_dir

in configuration file, 559
include_if_exists

in configuration file, 559
index, 389, 2577

and ORDER BY, 393
B-tree, 390

2706

Index

B-Tree, 2326
BRIN, 392, 2358
building concurrently, 1614
combining multiple indexes, 394
covering, 398
examining usage, 403
on expressions, 395
for user-defined data type, 1142
GIN, 391, 2352

text search, 443
GiST, 390, 2329

text search, 443
hash, 390
index-only scans, 398
locks, 462
multicolumn, 392
partial, 396
SP-GiST, 391, 2341
unique, 395

index scan, 584
index-only scan, 398
index_am_handler, 207
inet (data type), 166
inet_client_addr, 340
inet_client_port, 340
inet_merge, 278
inet_same_family, 278
inet_server_addr, 340
inet_server_port, 340
information schema, 1017
inheritance, 24, 89
initcap, 220
initdb, 529, 2053
Initialization Fork, 2370
input function, 1133
INSERT, 9, 108, 1816

RETURNING, 110
inserting, 108
installation, 498

on Windows, 523
instr function, 1284
int2 (see smallint)
int4 (see integer)
int8 (see bigint)
intagg, 2565
intarray, 2566
integer, 41, 141
integer_datetimes configuration parameter, 618
interfaces

externally maintained, 2679
internal, 207
INTERSECT, 130
interval, 150, 157

output format, 160

(see also formatting)
IntervalStyle configuration parameter, 610
intset, 2567
int_array_aggregate, 2565
int_array_enum, 2565
inverse distribution, 324
in_range support functions, 2327
IS DISTINCT FROM, 211, 332
IS DOCUMENT, 291
IS FALSE, 212
IS NOT DISTINCT FROM, 211, 332
IS NOT DOCUMENT, 291
IS NOT FALSE, 212
IS NOT NULL, 211
IS NOT TRUE, 212
IS NOT UNKNOWN, 212
IS NULL, 211, 616
IS TRUE, 212
IS UNKNOWN, 212
isclosed, 274
isempty, 319
isfinite, 260
isn, 2569
ISNULL, 211
isn_weak, 2571
isopen, 274
is_array_ref

in PL/Perl, 1310
is_valid, 2571

J
JIT, 790
jit configuration parameter, 590
jit_above_cost configuration parameter, 588
jit_debugging_support configuration parameter, 622
jit_dump_bitcode configuration parameter, 622
jit_expressions configuration parameter, 622
jit_inline_above_cost configuration parameter, 588
jit_optimize_above_cost configuration parameter, 588
jit_profiling_support configuration parameter, 622
jit_provider configuration parameter, 613
jit_tuple_deforming configuration parameter, 623
join, 12, 113

controlling the order, 479
cross, 113
left, 114
natural, 115
outer, 13, 114
right, 114
self, 14

join_collapse_limit configuration parameter, 590
JSON, 175

functions and operators, 300

2707

Index

JSONB, 175
jsonb

containment, 178
existence, 178
indexes on, 180

jsonb_agg, 321
jsonb_array_elements, 304
jsonb_array_elements_text, 304
jsonb_array_length, 304
jsonb_build_array, 303
jsonb_build_object, 303
jsonb_each, 304
jsonb_each_text, 304
jsonb_extract_path, 304
jsonb_extract_path_text, 304
jsonb_insert, 304
jsonb_object, 303
jsonb_object_agg, 321
jsonb_object_keys, 304
jsonb_populate_record, 304
jsonb_populate_recordset, 304
jsonb_pretty, 304
jsonb_set, 304
jsonb_strip_nulls, 304
jsonb_to_record, 304
jsonb_to_recordset, 304
jsonb_typeof, 304
json_agg, 321
json_array_elements, 304
json_array_elements_text, 304
json_array_length, 304
json_build_array, 303
json_build_object, 303
json_each, 304
json_each_text, 304
json_extract_path, 304
json_extract_path_text, 304
json_object, 303
json_object_agg, 321
json_object_keys, 304
json_populate_record, 304
json_populate_recordset, 304
json_strip_nulls, 304
json_to_record, 304
json_to_recordset, 304
json_typeof, 304
Julian date, 2409
Just-In-Time compilation (see JIT)
justify_days, 260
justify_hours, 260
justify_interval, 260

K
key word

list of, 2412
syntax of, 35

krb_caseins_users configuration parameter, 564
krb_server_keyfile configuration parameter, 564

L
label (see alias)
lag, 328
language_handler, 207
large object, 892
lastval, 309
last_value, 328
LATERAL

in the FROM clause, 120
latitude, 2552
lca, 2578
lc_collate configuration parameter, 618
lc_ctype configuration parameter, 618
lc_messages configuration parameter, 611
lc_monetary configuration parameter, 611
lc_numeric configuration parameter, 611
lc_time configuration parameter, 611
LDAP, 504, 637
LDAP connection parameter lookup, 873
ldconfig, 513
lead, 328
LEAST, 314

determination of result type, 386
left, 220
left join, 114
length, 220, 233, 274, 281

of a binary string (see binary strings, length)
of a character string (see character string, length)

length(tsvector), 420
levenshtein, 2556
levenshtein_less_equal, 2556
lex, 499
libedit, 498
libperl, 499
libpq, 808

single-row mode, 849
libpq-fe.h, 808, 822
libpq-int.h, 822
libpython, 499
library finalization function, 1103
library initialization function, 1103
LIKE, 235

and locales, 659
LIMIT, 131
line, 164
line segment, 164

2708

Index

linear regression, 322
Linux

IPC configuration, 538
shared library, 1112
start script, 532

LISTEN, 1824
listen_addresses configuration parameter, 561
llvm-config, 504
ll_to_earth, 2552
ln, 214
lo, 2573
LOAD, 1826
load balancing, 700
locale, 530, 657
localtime, 260
localtimestamp, 260
local_preload_libraries configuration parameter, 612
lock, 454

advisory, 459
monitoring, 761

LOCK, 454, 1827
lock_timeout configuration parameter, 608
log, 214
log shipping, 700
Logging

current_logfiles file and the pg_current_logfile
function, 340
pg_current_logfile function, 340

logging_collector configuration parameter, 592
Logical Decoding, 1402, 1405
login privilege, 645
log_autovacuum_min_duration configuration parameter,
603
log_btree_build_stats configuration parameter, 621
log_checkpoints configuration parameter, 596
log_connections configuration parameter, 596
log_destination configuration parameter, 591
log_directory configuration parameter, 592
log_disconnections configuration parameter, 597
log_duration configuration parameter, 597
log_error_verbosity configuration parameter, 597
log_executor_stats configuration parameter, 602
log_filename configuration parameter, 592
log_file_mode configuration parameter, 593
log_hostname configuration parameter, 597
log_line_prefix configuration parameter, 597
log_lock_waits configuration parameter, 599
log_min_duration_statement configuration parameter,
595
log_min_error_statement configuration parameter, 595
log_min_messages configuration parameter, 594
log_parser_stats configuration parameter, 602
log_planner_stats configuration parameter, 602
log_replication_commands configuration parameter, 599

log_rotation_age configuration parameter, 593
log_rotation_size configuration parameter, 593
log_statement configuration parameter, 599
log_statement_stats configuration parameter, 602
log_temp_files configuration parameter, 600
log_timezone configuration parameter, 600
log_truncate_on_rotation configuration parameter, 593
longitude, 2552
looks_like_number

in PL/Perl, 1310
loop

in PL/pgSQL, 1243
lower, 217, 319

and locales, 658
lower_inc, 319
lower_inf, 319
lo_close, 896
lo_compat_privileges configuration parameter, 616
lo_creat, 893, 897
lo_create, 893
lo_export, 894, 897
lo_from_bytea, 897
lo_get, 897
lo_import, 893, 897
lo_import_with_oid, 893
lo_lseek, 895
lo_lseek64, 895
lo_open, 894
lo_put, 897
lo_read, 895
lo_tell, 895
lo_tell64, 896
lo_truncate, 896
lo_truncate64, 896
lo_unlink, 897, 897
lo_write, 894
lpad, 221
lseg, 164, 276
LSN, 782
ltree, 2574
ltree2text, 2578
ltrim, 221

M
MAC address (see macaddr)
MAC address (EUI-64 format) (see macaddr)
macaddr (data type), 167
macaddr8 (data type), 168
macaddr8_set7bit, 279
macOS

installation on, 520
IPC configuration, 539
shared library, 1113

2709

Index

magic block, 1103
maintenance, 673
maintenance_work_mem configuration parameter, 568
make, 498
make_date, 261
make_interval, 261
make_time, 261
make_timestamp, 261
make_timestamptz, 261
make_valid, 2571
MANPATH, 514
masklen, 278
materialized view

implementation through rules, 1196
materialized views, 2189
max, 321
max_connections configuration parameter, 561
max_files_per_process configuration parameter, 569
max_function_args configuration parameter, 618
max_identifier_length configuration parameter, 618
max_index_keys configuration parameter, 618
max_locks_per_transaction configuration parameter, 614
max_logical_replication_workers configuration
parameter, 584
max_parallel_maintenance_workers configuration
parameter, 572
max_parallel_workers configuration parameter, 572
max_parallel_workers_per_gather configuration
parameter, 572
max_pred_locks_per_page configuration parameter, 615
max_pred_locks_per_relation configuration parameter,
614
max_pred_locks_per_transaction configuration
parameter, 614
max_prepared_transactions configuration parameter, 567
max_replication_slots configuration parameter, 580
max_stack_depth configuration parameter, 568
max_standby_archive_delay configuration parameter,
582
max_standby_streaming_delay configuration parameter,
582
max_sync_workers_per_subscription configuration
parameter, 584
max_wal_senders configuration parameter, 579
max_wal_size configuration parameter, 578
max_worker_processes configuration parameter, 572
md5, 221, 233
MD5, 633
median, 50

(see also percentile)
memory context

in SPI, 1381
memory overcommit, 542
metaphone, 2557

min, 321
MinGW

installation on, 520
min_parallel_index_scan_size configuration parameter,
587
min_parallel_table_scan_size configuration parameter,
587
min_wal_size configuration parameter, 578
mod, 214
mode

statistical, 324
monitoring

database activity, 727
MOVE, 1830
moving-aggregate mode, 1127
Multiversion Concurrency Control, 448
MultiXactId, 679
MVCC, 448

N
name

qualified, 85
syntax of, 35
unqualified, 86

NaN (see not a number)
natural join, 115
negation, 209
NetBSD

IPC configuration, 537
shared library, 1113
start script, 533

netmask, 278
network, 278

data types, 166
Network Attached Storage (NAS) (see Network File
Systems)
Network File Systems, 531
nextval, 309
NFS (see Network File Systems)
nlevel, 2577
non-durable, 484
nonblocking connection, 810, 845
nonrepeatable read, 448
normal_rand, 2646
NOT (operator), 209
not a number

double precision, 143
numeric (data type), 142

NOT IN, 329, 332
not-null constraint, 67
notation

functions, 59
notice processing

2710

Index

in libpq, 862
notice processor, 862
notice receiver, 862
NOTIFY, 1832

in libpq, 852
NOTNULL, 211
now, 261
npoints, 274
nth_value, 328
ntile, 328
null value

with check constraints, 67
comparing, 211
default value, 64
in DISTINCT, 129
in libpq, 839
in PL/Perl, 1301
in PL/Python, 1321
with unique constraints, 69

NULLIF, 314
number

constant, 40
numeric, 41
numeric (data type), 141
numnode, 281, 421
num_nonnulls, 212
num_nulls, 212
NVL, 313

O
object identifier

data type, 205
object-oriented database, 8
obj_description, 351
octet_length, 217, 231
OFFSET, 131
OID

column, 73
in libpq, 841

oid, 205
oid2name, 2668
old_snapshot_threshold configuration parameter, 573
ON CONFLICT, 1816
ONLY, 113
OOM, 542
opaque, 207
OpenBSD

IPC configuration, 538
shared library, 1113
start script, 532

OpenSSL, 504
(see also SSL)

operator, 209

invocation, 47
logical, 209
precedence, 43
syntax, 42
type resolution in an invocation, 377
user-defined, 1137

operator class, 401, 1142
operator family, 401, 1150
operator_precedence_warning configuration parameter,
616
OR (operator), 209
Oracle

porting from PL/SQL to PL/pgSQL, 1277
ORDER BY, 11, 130

and locales, 658
ordered-set aggregate, 48

built-in, 324
ordering operator, 1153
ordinality, 337
outer join, 114
output function, 1133
OVER clause, 50
overcommit, 542
OVERLAPS, 262
overlay, 217, 231
overloading

functions, 1100
operators, 1137

owner, 77

P
pageinspect, 2581
page_checksum, 2582
page_header, 2581
palloc, 1111
PAM, 504, 642
parallel query, 485
parallel_leader_participation configuration parameter ,
590
parallel_setup_cost configuration parameter, 587
parallel_tuple_cost configuration parameter, 587
parameter

syntax, 46
parenthesis, 45
parse_ident, 221
partition pruning, 103
partitioned table, 93
partitioning, 93
password, 646

authentication, 633
of the superuser, 530

password file, 872
passwordcheck, 2588

2711

Index

password_encryption configuration parameter, 563
path, 276

for schemas, 605
PATH, 514
path (data type), 165
pattern matching, 234
patterns

in psql and pg_dump, 2030
pclose, 274
peer, 637
percentile

continuous, 324
discrete, 325

percent_rank, 327
hypothetical, 326

performance, 463
perl, 500
Perl, 1300
permission (see privilege)
pfree, 1111
PGAPPNAME, 871
pgbench, 1944
PGcancel, 850
PGCLIENTENCODING, 871
PGconn, 808
PGCONNECT_TIMEOUT, 871
pgcrypto, 2591
PGDATA, 529
PGDATABASE, 870
PGDATESTYLE, 871
PGEventProc, 866
PGGEQO, 871
PGGSSLIB, 871
PGHOST, 870
PGHOSTADDR, 870
PGKRBSRVNAME, 871
PGLOCALEDIR, 871
PGOPTIONS, 871
PGPASSFILE, 870
PGPASSWORD, 870
PGPORT, 870
pgp_armor_headers, 2596
pgp_key_id, 2595
pgp_pub_decrypt, 2595
pgp_pub_decrypt_bytea, 2595
pgp_pub_encrypt, 2595
pgp_pub_encrypt_bytea, 2595
pgp_sym_decrypt, 2595
pgp_sym_decrypt_bytea, 2595
pgp_sym_encrypt, 2594
pgp_sym_encrypt_bytea, 2594
PGREQUIREPEER, 871
PGREQUIRESSL, 871
PGresult, 832

pgrowlocks, 2605, 2605
PGSERVICE, 871
PGSERVICEFILE, 871
PGSSLCERT, 871
PGSSLCOMPRESSION, 871
PGSSLCRL, 871
PGSSLKEY, 871
PGSSLMODE, 871
PGSSLROOTCERT, 871
pgstatginindex, 2614
pgstathashindex, 2614
pgstatindex, 2613
pgstattuple, 2611, 2612
pgstattuple_approx, 2615
PGSYSCONFDIR, 871
PGTARGETSESSIONATTRS, 871
PGTZ, 871
PGUSER, 870
pgxs, 1163
pg_advisory_lock, 371
pg_advisory_lock_shared, 371
pg_advisory_unlock, 372
pg_advisory_unlock_all, 372
pg_advisory_unlock_shared, 372
pg_advisory_xact_lock, 372
pg_advisory_xact_lock_shared, 372
pg_aggregate, 2112
pg_am, 2114
pg_amop, 2115
pg_amproc, 2116
pg_archivecleanup, 2058
pg_attrdef, 2116
pg_attribute, 2117
pg_authid, 2120
pg_auth_members, 2122
pg_available_extensions, 2181
pg_available_extension_versions, 2182
pg_backend_pid, 340
pg_backup_start_time, 356
pg_basebackup, 1936
pg_blocking_pids, 340
pg_buffercache, 2589
pg_buffercache_pages, 2589
pg_cancel_backend, 356
pg_cast, 2122
pg_class, 2123
pg_client_encoding, 222
pg_collation, 2127
pg_collation_actual_version, 368
pg_collation_is_visible, 345
pg_column_size, 365
pg_config, 1961, 2182

with ecpg, 967
with libpq, 879

2712

Index

with user-defined C functions, 1111
pg_conf_load_time, 340
pg_constraint, 2128
pg_controldata, 2060
pg_control_checkpoint, 353
pg_control_init, 353
pg_control_recovery, 353
pg_control_system, 353
pg_conversion, 2131
pg_conversion_is_visible, 345
pg_create_logical_replication_slot, 362
pg_create_physical_replication_slot, 361
pg_create_restore_point, 356
pg_ctl, 529, 531, 2061
pg_current_logfile, 340
pg_current_wal_flush_lsn, 356
pg_current_wal_insert_lsn, 356
pg_current_wal_lsn, 356
pg_cursors, 2182
pg_database, 653, 2132
pg_database_size, 365
pg_db_role_setting, 2134
pg_ddl_command, 207
pg_default_acl, 2134
pg_depend, 2135
pg_describe_object, 350
pg_description, 2136
pg_drop_replication_slot, 362
pg_dump, 1964
pg_dumpall, 1977

use during upgrade, 546
pg_enum, 2137
pg_event_trigger, 2138
pg_event_trigger_ddl_commands, 373
pg_event_trigger_dropped_objects, 374
pg_event_trigger_table_rewrite_oid, 375
pg_event_trigger_table_rewrite_reason, 375
pg_export_snapshot, 360
pg_extension, 2138
pg_extension_config_dump, 1159
pg_filenode_relation, 367
pg_file_rename, 2497
pg_file_settings, 2183
pg_file_unlink, 2497
pg_file_write, 2497
pg_foreign_data_wrapper, 2139
pg_foreign_server, 2140
pg_foreign_table, 2140
pg_freespace, 2603
pg_freespacemap, 2602
pg_function_is_visible, 345
pg_get_constraintdef, 345
pg_get_expr, 345
pg_get_functiondef, 345

pg_get_function_arguments, 345
pg_get_function_identity_arguments, 345
pg_get_function_result, 345
pg_get_indexdef, 345
pg_get_keywords, 345
pg_get_object_address, 350
pg_get_ruledef, 345
pg_get_serial_sequence, 345
pg_get_statisticsobjdef, 345
pg_get_triggerdef, 345
pg_get_userbyid, 345
pg_get_viewdef, 345
pg_group, 2184
pg_has_role, 342
pg_hba.conf, 624
pg_hba_file_rules, 2184
pg_ident.conf, 631
pg_identify_object, 350
pg_identify_object_as_address, 350
pg_import_system_collations, 368
pg_index, 2141
pg_indexam_has_property, 345
pg_indexes, 2185
pg_indexes_size, 365
pg_index_column_has_property, 345
pg_index_has_property, 345
pg_inherits, 2144
pg_init_privs, 2144
pg_isready, 1984
pg_is_in_backup, 356
pg_is_in_recovery, 359
pg_is_other_temp_schema, 341
pg_is_wal_replay_paused, 360
pg_language, 2145
pg_largeobject, 2146
pg_largeobject_metadata, 2147
pg_last_committed_xact, 353
pg_last_wal_receive_lsn, 359
pg_last_wal_replay_lsn, 359
pg_last_xact_replay_timestamp, 359
pg_listening_channels, 341
pg_locks, 2186
pg_logdir_ls, 2498
pg_logical_emit_message, 364
pg_logical_slot_get_binary_changes, 363
pg_logical_slot_get_changes, 362
pg_logical_slot_peek_binary_changes, 363
pg_logical_slot_peek_changes, 363
pg_lsn, 207
pg_ls_dir, 370
pg_ls_logdir, 370
pg_ls_waldir, 370
pg_matviews, 2189
pg_my_temp_schema, 341

2713

Index

pg_namespace, 2147
pg_notification_queue_usage, 341
pg_notify, 1833
pg_opclass, 2147
pg_opclass_is_visible, 345
pg_operator, 2148
pg_operator_is_visible, 345
pg_opfamily, 2149
pg_opfamily_is_visible, 345
pg_options_to_table, 345
pg_partitioned_table, 2150
pg_pltemplate, 2151
pg_policies, 2189
pg_policy, 2152
pg_postmaster_start_time, 341
pg_prepared_statements, 2190
pg_prepared_xacts, 2191
pg_prewarm, 2604
pg_prewarm.autoprewarm configuration parameter, 2605
pg_prewarm.autoprewarm_interval configuration
parameter, 2605
pg_proc, 2153
pg_publication, 2157
pg_publication_rel, 2158
pg_publication_tables, 2192
pg_range, 2158
pg_read_binary_file, 370
pg_read_file, 370
pg_receivewal, 1986
pg_recvlogical, 1990
pg_relation_filenode, 367
pg_relation_filepath, 367
pg_relation_size, 365
pg_reload_conf, 356
pg_relpages, 2615
pg_replication_origin, 2158
pg_replication_origin_advance, 364
pg_replication_origin_create, 363
pg_replication_origin_drop, 363
pg_replication_origin_oid, 363
pg_replication_origin_progress, 364
pg_replication_origin_session_is_setup, 364
pg_replication_origin_session_progress, 364
pg_replication_origin_session_reset, 364
pg_replication_origin_session_setup, 363
pg_replication_origin_status, 2192
pg_replication_origin_xact_reset, 364
pg_replication_origin_xact_setup, 364
pg_replication_slots, 2192
pg_replication_slot_advance, 363
pg_resetwal, 2067
pg_restore, 1994
pg_rewind, 2071
pg_rewrite, 2159

pg_roles, 2194
pg_rotate_logfile, 356
pg_rules, 2195
pg_safe_snapshot_blocking_pids, 341
pg_seclabel, 2160
pg_seclabels, 2195
pg_sequence, 2160
pg_sequences, 2196
pg_service.conf, 872
pg_settings, 2197
pg_shadow, 2199
pg_shdepend, 2161
pg_shdescription, 2162
pg_shseclabel, 2163
pg_size_bytes, 365
pg_size_pretty, 365
pg_sleep, 271
pg_sleep_for, 271
pg_sleep_until, 271
pg_standby, 2675
pg_start_backup, 356
pg_statio_all_indexes, 731
pg_statio_all_sequences, 731
pg_statio_all_tables, 731
pg_statio_sys_indexes, 731
pg_statio_sys_sequences, 731
pg_statio_sys_tables, 731
pg_statio_user_indexes, 731
pg_statio_user_sequences, 731
pg_statio_user_tables, 731
pg_statistic, 475, 2163
pg_statistics_obj_is_visible, 345
pg_statistic_ext, 476, 2165
pg_stats, 475, 2200
pg_stat_activity, 729
pg_stat_all_indexes, 731
pg_stat_all_tables, 730
pg_stat_archiver, 730
pg_stat_bgwriter, 730
pg_stat_clear_snapshot, 759
pg_stat_database, 730
pg_stat_database_conflicts, 730
pg_stat_file, 370
pg_stat_get_activity, 759
pg_stat_get_snapshot_timestamp, 759
pg_stat_progress_vacuum, 730
pg_stat_replication, 730
pg_stat_reset, 760
pg_stat_reset_shared, 760
pg_stat_reset_single_function_counters, 760
pg_stat_reset_single_table_counters, 760
pg_stat_ssl, 730
pg_stat_statements, 2606

function, 2609

2714

Index

pg_stat_statements_reset, 2609
pg_stat_subscription, 730
pg_stat_sys_indexes, 731
pg_stat_sys_tables, 730
pg_stat_user_functions, 731
pg_stat_user_indexes, 731
pg_stat_user_tables, 730
pg_stat_wal_receiver, 730
pg_stat_xact_all_tables, 730
pg_stat_xact_sys_tables, 731
pg_stat_xact_user_functions, 731
pg_stat_xact_user_tables, 731
pg_stop_backup, 356
pg_subscription, 2166
pg_subscription_rel, 2167
pg_switch_wal, 356
pg_tables, 2203
pg_tablespace, 2167
pg_tablespace_databases, 345
pg_tablespace_location, 345
pg_tablespace_size, 365
pg_table_is_visible, 345
pg_table_size, 365
pg_temp, 605

securing functions, 1607
pg_terminate_backend, 356
pg_test_fsync, 2074
pg_test_timing, 2075
pg_timezone_abbrevs, 2203
pg_timezone_names, 2204
pg_total_relation_size, 365
pg_transform, 2168
pg_trgm, 2616
pg_trgm.similarity_threshold configuration parameter,
2619
pg_trgm.word_similarity_threshold configuration
parameter , 2619
pg_trigger, 2169
pg_try_advisory_lock, 372
pg_try_advisory_lock_shared, 372
pg_try_advisory_xact_lock, 372
pg_try_advisory_xact_lock_shared, 372
pg_ts_config, 2170
pg_ts_config_is_visible, 345
pg_ts_config_map, 2171
pg_ts_dict, 2171
pg_ts_dict_is_visible, 345
pg_ts_parser, 2172
pg_ts_parser_is_visible, 345
pg_ts_template, 2172
pg_ts_template_is_visible, 345
pg_type, 2173
pg_typeof, 345
pg_type_is_visible, 345

pg_upgrade, 2079
pg_user, 2204
pg_user_mapping, 2180
pg_user_mappings, 2205
pg_verify_checksums, 2087
pg_views, 2205
pg_visibility, 2622
pg_waldump, 2088
pg_walfile_name, 356
pg_walfile_name_offset, 356
pg_wal_lsn_diff, 356
pg_wal_replay_pause, 360
pg_wal_replay_resume, 360
pg_xact_commit_timestamp, 353
phantom read, 449
phraseto_tsquery, 281, 414
pi, 214
PIC, 1112
PID

determining PID of server process
in libpq, 826

PITR, 683
PITR standby, 700
pkg-config, 504

with ecpg, 967
with libpq, 879

PL/Perl, 1300
PL/PerlU, 1311
PL/pgSQL, 1219
PL/Python, 1317
PL/SQL (Oracle)

porting to PL/pgSQL, 1277
PL/Tcl, 1288
plainto_tsquery, 281, 414
plperl.on_init configuration parameter, 1314
plperl.on_plperlu_init configuration parameter, 1315
plperl.on_plperl_init configuration parameter, 1315
plperl.use_strict configuration parameter, 1315
plpgsql.check_asserts configuration parameter, 1261
plpgsql.variable_conflict configuration parameter, 1272
pltcl.start_proc configuration parameter, 1299
pltclu.start_proc configuration parameter, 1299
point, 164, 276
point-in-time recovery, 683
policy, 78
polygon, 165, 276
polymorphic function, 1082
polymorphic type, 1082
popen, 274
populate_record, 2562
port, 818
port configuration parameter, 561
position, 217, 232
POSTGRES, xxxiii

2715

Index

postgres, 3, 531, 652, 2090
postgres user, 529
Postgres95, xxxiii
postgresql.auto.conf, 557
postgresql.conf, 556
postgres_fdw, 2623
postmaster, 2098
post_auth_delay configuration parameter, 620
power, 214
PQbackendPID, 826
PQbinaryTuples, 839

with COPY, 853
PQcancel, 850
PQclear, 836
PQclientEncoding, 857
PQcmdStatus, 841
PQcmdTuples, 841
PQconndefaults, 812
PQconnectdb, 809
PQconnectdbParams, 809
PQconnectionNeedsPassword, 826
PQconnectionUsedPassword, 826
PQconnectPoll, 810
PQconnectStart, 810
PQconnectStartParams, 810
PQconninfo, 813
PQconninfoFree, 859
PQconninfoParse, 813
PQconsumeInput, 847
PQcopyResult, 861
PQdb, 822
PQdescribePortal, 832
PQdescribePrepared, 831
PQencryptPassword, 860
PQencryptPasswordConn, 859
PQendcopy, 857
PQerrorMessage, 826
PQescapeBytea, 844
PQescapeByteaConn, 843
PQescapeIdentifier, 842
PQescapeLiteral, 842
PQescapeString, 843
PQescapeStringConn, 843
PQexec, 828
PQexecParams, 829
PQexecPrepared, 831
PQfformat, 838

with COPY, 853
PQfinish, 814
PQfireResultCreateEvents, 860
PQflush, 849
PQfmod, 838
PQfn, 851
PQfname, 837

PQfnumber, 837
PQfreeCancel, 850
PQfreemem, 859
PQfsize, 839
PQftable, 838
PQftablecol, 838
PQftype, 838
PQgetCancel, 850
PQgetCopyData, 854
PQgetisnull, 839
PQgetlength, 840
PQgetline, 855
PQgetlineAsync, 855
PQgetResult, 847
PQgetssl, 828
PQgetvalue, 839
PQhost, 823
PQinitOpenSSL, 877
PQinitSSL, 877
PQinstanceData, 867
PQisBusy, 848
PQisnonblocking, 848
PQisthreadsafe, 878
PQlibVersion, 862

(see also PQserverVersion)
PQmakeEmptyPGresult, 860
PQnfields, 837

with COPY, 853
PQnotifies, 852
PQnparams, 840
PQntuples, 837
PQoidStatus, 841
PQoidValue, 841
PQoptions, 824
PQparameterStatus, 824
PQparamtype, 840
PQpass, 823
PQping, 815
PQpingParams, 814
PQport, 823
PQprepare, 830
PQprint, 840
PQprotocolVersion, 825
PQputCopyData, 854
PQputCopyEnd, 854
PQputline, 856
PQputnbytes, 856
PQregisterEventProc, 866
PQrequestCancel, 850
PQreset, 814
PQresetPoll, 814
PQresetStart, 814
PQresStatus, 833
PQresultAlloc, 861

2716

Index

PQresultErrorField, 834
PQresultErrorMessage, 833
PQresultInstanceData, 867
PQresultSetInstanceData, 867
PQresultStatus, 832
PQresultVerboseErrorMessage, 834
PQsendDescribePortal, 846
PQsendDescribePrepared, 846
PQsendPrepare, 846
PQsendQuery, 845
PQsendQueryParams, 845
PQsendQueryPrepared, 846
PQserverVersion, 825
PQsetClientEncoding, 857
PQsetdb, 810
PQsetdbLogin, 810
PQsetErrorContextVisibility, 858
PQsetErrorVerbosity, 858
PQsetInstanceData, 867
PQsetnonblocking, 848
PQsetNoticeProcessor, 862
PQsetNoticeReceiver, 862
PQsetResultAttrs, 861
PQsetSingleRowMode, 849
PQsetvalue, 861
PQsocket, 826
PQsslAttribute, 827
PQsslAttributeNames, 827
PQsslInUse, 827
PQsslStruct, 827
PQstatus, 824
PQtrace, 858
PQtransactionStatus, 824
PQtty, 823
PQunescapeBytea, 844
PQuntrace, 859
PQuser, 822
predicate locking, 452
PREPARE, 1835
PREPARE TRANSACTION, 1838
prepared statements

creating, 1835
executing, 1796
removing, 1726
showing the query plan, 1797

preparing a query
in PL/pgSQL, 1273
in PL/Python, 1328
in PL/Tcl, 1292

pre_auth_delay configuration parameter, 620
primary key, 69
primary_conninfo recovery parameter, 725
primary_slot_name recovery parameter, 726
privilege, 77

querying, 341
with rules, 1210
for schemas, 87
with views, 1210

procedural language, 1216
externally maintained, 2680
handler for, 2273

procedure
user-defined, 1083

protocol
frontend-backend, 2207

ps
to monitor activity, 727

psql, 5, 2003
Python, 1317

Q
qualified name, 85
query, 10, 112
query plan, 463
query tree, 1187
querytree, 281, 421
quotation marks

and identifiers, 36
escaping, 37

quote_all_identifiers configuration parameter, 616
quote_ident, 222

in PL/Perl, 1309
use in PL/pgSQL, 1233

quote_literal, 222
in PL/Perl, 1309
use in PL/pgSQL, 1233

quote_nullable, 222
in PL/Perl, 1309
use in PL/pgSQL, 1233

R
radians, 214
radius, 274
RADIUS, 640
RAISE

in PL/pgSQL, 1259
random, 215
random_page_cost configuration parameter, 586
range table, 1187
range type, 199

exclude, 204
indexes on, 203

rank, 327
hypothetical, 326

read committed, 449
read-only transaction

setting, 1895

2717

Index

setting default, 607
readline, 498
real, 143
REASSIGN OWNED, 1840
record, 207
recovery.conf, 723
recovery_end_command recovery parameter, 724
recovery_min_apply_delay recovery parameter, 726
recovery_target recovery parameter, 724
recovery_target_action recovery parameter, 725
recovery_target_inclusive recovery parameter, 725
recovery_target_lsn recovery parameter, 724
recovery_target_name recovery parameter, 724
recovery_target_time recovery parameter, 724
recovery_target_timeline recovery parameter, 725
recovery_target_xid recovery parameter, 724
rectangle, 165
RECURSIVE

in common table expressions, 134
in views, 1721

referential integrity, 18, 70
REFRESH MATERIALIZED VIEW, 1841
regclass, 205
regconfig, 205
regdictionary, 205
regexp_match, 223, 237
regexp_matches, 223, 237
regexp_replace, 223, 237
regexp_split_to_array, 223, 237
regexp_split_to_table, 224, 237
regoper, 205
regoperator, 205
regproc, 205
regprocedure, 205
regression intercept, 323
regression slope, 323
regression test, 511
regression tests, 794
regr_avgx, 322
regr_avgy, 323
regr_count, 323
regr_intercept, 323
regr_r2, 323
regr_slope, 323
regr_sxx, 323
regr_sxy, 323
regr_syy, 323
regtype, 205
regular expression, 236, 237

(see also pattern matching)
regular expressions

and locales, 659
reindex, 681
REINDEX, 1843

reindexdb, 2045
relation, 8
relational database, 8
RELEASE SAVEPOINT, 1846
repeat, 224
repeatable read, 451
replace, 224
replication, 700
Replication Origins, 1412
Replication Progress Tracking, 1412
replication slot

logical replication, 1405
streaming replication, 708

reporting errors
in PL/pgSQL, 1259

RESET, 1848
restartpoint, 781
restart_after_crash configuration parameter, 617
restore_command recovery parameter, 723
RESTRICT

with DROP, 106
foreign key action, 71

RETURN NEXT
in PL/pgSQL, 1237

RETURN QUERY
in PL/pgSQL, 1237

RETURNING, 110
RETURNING INTO

in PL/pgSQL, 1230
reverse, 224
REVOKE, 77, 1849
right, 224
right join, 114
role, 644, 649

applicable, 1018
enabled, 1040
membership in, 646
privilege to create, 645
privilege to initiate replication, 645

ROLLBACK, 1853
rollback

psql, 2034
ROLLBACK PREPARED, 1854
ROLLBACK TO SAVEPOINT, 1855
ROLLUP, 125
round, 214
routine, 1083
routine maintenance, 673
row, 8, 63
ROW, 57
row estimation

multivariate, 2387
planner, 2381

row type, 192

2718

Index

constructor, 57
row-level security, 78
row-wise comparison, 332
row_number, 327
row_security configuration parameter, 606
row_security_active, 342
row_to_json, 303
rpad, 224
rtrim, 224
rule, 1187

and materialized views, 1196
and views, 1189
for DELETE, 1199
for INSERT, 1199
for SELECT, 1189
compared with triggers, 1213
for UPDATE, 1199

S
SAVEPOINT, 1857
savepoints

defining, 1857
releasing, 1846
rolling back, 1855

scalar (see expression)
scale, 214
schema, 84, 651

creating, 85
current, 86, 340
public, 86
removing, 85

SCRAM, 633
search path, 86

current, 340
object visibility, 344

search_path configuration parameter, 86, 605
use in securing functions, 1607

SECURITY LABEL, 1859
sec_to_gc, 2552
seg, 2629
segment_size configuration parameter, 618
SELECT, 10, 112, 1862

determination of result type, 388
select list, 128

SELECT INTO, 1884
in PL/pgSQL, 1230

semaphores, 535
sepgsql, 2632
sepgsql.debug_audit configuration parameter, 2635
sepgsql.permissive configuration parameter, 2635
sequence, 309

and serial type, 144
sequential scan, 585

seq_page_cost configuration parameter, 586
serial, 144
serial2, 144
serial4, 144
serial8, 144
serializable, 452
Serializable Snapshot Isolation, 448
serialization anomaly, 449, 452
server log, 591

log file maintenance, 681
server spoofing, 548
server_encoding configuration parameter, 619
server_version configuration parameter, 619
server_version_num configuration parameter, 619
session_preload_libraries configuration parameter, 612
session_replication_role configuration parameter, 607
session_user, 340
SET, 355, 1886
SET CONSTRAINTS, 1889
set difference, 130
set intersection, 130
set operation, 130
set returning functions

functions, 335
SET ROLE, 1891
SET SESSION AUTHORIZATION, 1893
SET TRANSACTION, 1895
set union, 130
SET XML OPTION, 609
setseed, 215
setval, 309
setweight, 281, 419

setweight for specific lexeme(s), 281
set_bit, 233
set_byte, 233
set_config, 355
set_limit, 2617
set_masklen, 278
sha224, 233
sha256, 233
sha384, 233
sha512, 233
shared library, 513, 1111
shared memory, 535
shared_buffers configuration parameter, 566
shared_preload_libraries, 1124
shared_preload_libraries configuration parameter, 612
shobj_description, 351
SHOW, 355, 1898, 2223
show_limit, 2617
show_trgm, 2617
shutdown, 544
SIGHUP, 557, 629, 632
SIGINT, 544

2719

Index

sign, 214
signal

backend processes, 356
significant digits, 610
SIGQUIT, 545
SIGTERM, 544
SIMILAR TO, 236
similarity, 2617
sin, 216
sind, 216
single-user mode, 2094
skeys, 2561
sleep, 271
slice, 2562
sliced bread (see TOAST)
smallint, 141
smallserial, 144
Solaris

installation on, 521
IPC configuration, 539
shared library, 1113
start script, 533

SOME, 321, 329, 332
sort, 2567
sorting, 130
sort_asc, 2567
sort_desc, 2567
soundex, 2556
SP-GiST (see index)
SPI, 1336

examples, 2640
spi_commit

in PL/Perl, 1308
SPI_commit, 1392
SPI_connect, 1337
SPI_connect_ext, 1337
SPI_copytuple, 1385
spi_cursor_close

in PL/Perl, 1306
SPI_cursor_close, 1367
SPI_cursor_fetch, 1363
SPI_cursor_find, 1362
SPI_cursor_move, 1364
SPI_cursor_open, 1357
SPI_cursor_open_with_args, 1359
SPI_cursor_open_with_paramlist, 1361
SPI_exec, 1343
SPI_execp, 1356
SPI_execute, 1339
SPI_execute_plan, 1353
SPI_execute_plan_with_paramlist, 1355
SPI_execute_with_args, 1344
spi_exec_prepared

in PL/Perl, 1307

spi_exec_query
in PL/Perl, 1305

spi_fetchrow
in PL/Perl, 1306

SPI_finish, 1338
SPI_fname, 1373
SPI_fnumber, 1374
spi_freeplan

in PL/Perl, 1307
SPI_freeplan, 1391
SPI_freetuple, 1389
SPI_freetuptable, 1390
SPI_getargcount, 1350
SPI_getargtypeid, 1351
SPI_getbinval, 1376
SPI_getnspname, 1380
SPI_getrelname, 1379
SPI_gettype, 1377
SPI_gettypeid, 1378
SPI_getvalue, 1375
SPI_is_cursor_plan, 1352
SPI_keepplan, 1368
spi_lastoid

in PL/Tcl, 1293
SPI_modifytuple, 1387
SPI_palloc, 1382
SPI_pfree, 1384
spi_prepare

in PL/Perl, 1307
SPI_prepare, 1346
SPI_prepare_cursor, 1348
SPI_prepare_params, 1349
spi_query

in PL/Perl, 1306
spi_query_prepared

in PL/Perl, 1307
SPI_register_relation, 1370
SPI_register_trigger_data, 1372
SPI_repalloc, 1383
SPI_result_code_string, 1381
SPI_returntuple, 1386
spi_rollback

in PL/Perl, 1308
SPI_rollback, 1393
SPI_saveplan, 1369
SPI_scroll_cursor_fetch, 1365
SPI_scroll_cursor_move, 1366
SPI_start_transaction, 1394
SPI_unregister_relation, 1371
split_part, 224
SQL/CLI, 2436
SQL/Foundation, 2436
SQL/Framework, 2436
SQL/JRT, 2436

2720

Index

SQL/MED, 2436
SQL/OLB, 2436
SQL/PSM, 2436
SQL/Schemata, 2436
SQL/XML, 2436
sqrt, 214
ssh, 553
SSI, 448
SSL, 549, 874

in libpq, 828
with libpq, 820

ssl configuration parameter, 564
sslinfo, 2643
ssl_ca_file configuration parameter, 564
ssl_cert_file configuration parameter, 564
ssl_cipher, 2643
ssl_ciphers configuration parameter, 565
ssl_client_cert_present, 2643
ssl_client_dn, 2643
ssl_client_dn_field, 2644
ssl_client_serial, 2643
ssl_crl_file configuration parameter, 565
ssl_dh_params_file configuration parameter, 566
ssl_ecdh_curve configuration parameter, 565
ssl_extension_info, 2644
ssl_issuer_dn, 2644
ssl_issuer_field, 2644
ssl_is_used, 2643
ssl_key_file configuration parameter, 565
ssl_passphrase_command configuration parameter, 566
ssl_passphrase_command_supports_reload configuration
parameter, 566
ssl_prefer_server_ciphers configuration parameter, 565
ssl_version, 2643
SSPI, 635
STABLE, 1101
standard deviation, 323

population, 323
sample, 324

standard_conforming_strings configuration parameter,
616
standby server, 700
standby_mode recovery parameter, 725
START TRANSACTION, 1900
starts_with, 225
START_REPLICATION, 2225
statement_timeout configuration parameter, 607
statement_timestamp, 262
statistics, 322, 728

of the planner, 475, 476, 675
stats_temp_directory configuration parameter, 602
stddev, 323
stddev_pop, 323
stddev_samp, 324

STONITH, 700
storage parameters, 1675
Streaming Replication, 700
strict_word_similarity, 2617
string (see character string)
strings

backslash quotes, 615
escape warning, 615
standard conforming, 616

string_agg, 321
string_to_array, 315
strip, 281, 420
strpos, 224
subarray, 2567
subltree, 2577
subpath, 2577
subquery, 15, 55, 118, 329
subscript, 46
substr, 225
substring, 217, 232, 236, 237
subtransactions

in PL/Tcl, 1297
sum, 321
superuser, 6, 645
superuser_reserved_connections configuration
parameter, 561
support functions

in_range, 2327
suppress_redundant_updates_trigger, 372
svals, 2561
synchronize_seqscans configuration parameter, 616
synchronous commit, 778
Synchronous Replication, 700
synchronous_commit configuration parameter, 574
synchronous_standby_names configuration parameter,
580
syntax

SQL, 35
syslog_facility configuration parameter, 594
syslog_ident configuration parameter, 594
syslog_sequence_numbers configuration parameter, 594
syslog_split_messages configuration parameter, 594
system catalog

schema, 88
systemd, 504, 532

RemoveIPC, 540

T
table, 8, 63

creating, 63
inheritance, 89
modifying, 74
partitioning, 93

2721

Index

removing, 64
renaming, 77

TABLE command, 1862
table expression, 112
table function, 119

XMLTABLE, 294
table sampling method, 2296
tablefunc, 2645
tableoid, 73
TABLESAMPLE method, 2296
tablespace, 654

default, 606
temporary, 606

tan, 216
tand, 216
target list, 1188
Tcl, 1288
tcn, 2655
tcp_keepalives_count configuration parameter, 563
tcp_keepalives_idle configuration parameter, 562
tcp_keepalives_interval configuration parameter, 563
template0, 652
template1, 652, 652
temp_buffers configuration parameter, 567
temp_file_limit configuration parameter, 569
temp_tablespaces configuration parameter, 606
test, 794
test_decoding, 2656
text, 146, 278
text search, 405

data types, 169
functions and operators, 169
indexes, 443

text2ltree, 2578
threads

with libpq, 878
tid, 205
time, 150, 152

constants, 154
current, 269
output format, 155

(see also formatting)
time span, 150
time with time zone, 150, 152
time without time zone, 150, 152
time zone, 156, 610

conversion, 268
input abbreviations, 2408

time zone data, 507
time zone names, 610
timelines, 683
TIMELINE_HISTORY, 2224
timeofday, 262
timeout

client authentication, 563
deadlock, 614

timestamp, 150, 153
timestamp with time zone, 150, 153
timestamp without time zone, 150, 153
timestamptz, 150
TimeZone configuration parameter, 610
timezone_abbreviations configuration parameter, 610
TOAST, 2366

and user-defined types, 1136
per-column storage settings, 1502
versus large objects, 892

token, 35
to_ascii, 225
to_char, 250

and locales, 659
to_date, 251
to_hex, 225
to_json, 303
to_jsonb, 303
to_number, 251
to_regclass, 345
to_regnamespace, 345
to_regoper, 345
to_regoperator, 345
to_regproc, 345
to_regprocedure, 345
to_regrole, 345
to_regtype, 345
to_timestamp, 251, 262
to_tsquery, 281, 413
to_tsvector, 281, 412
trace_locks configuration parameter, 620
trace_lock_oidmin configuration parameter, 621
trace_lock_table configuration parameter, 621
trace_lwlocks configuration parameter, 621
trace_notify configuration parameter, 620
trace_recovery_messages configuration parameter, 620
trace_sort configuration parameter, 620
trace_userlocks configuration parameter, 621
track_activities configuration parameter, 602
track_activity_query_size configuration parameter, 602
track_commit_timestamp configuration parameter, 580
track_counts configuration parameter, 602
track_functions configuration parameter, 602
track_io_timing configuration parameter, 602
transaction, 19
transaction ID

wraparound, 676
transaction isolation, 448
transaction isolation level, 449

read committed, 449
repeatable read, 451
serializable, 452

2722

Index

setting, 1895
setting default, 607

transaction log (see WAL)
transaction_timestamp, 262
transform_null_equals configuration parameter, 616
transition tables, 1702

(see also ephemeral named relation)
implementation in PLs, 1372
referencing from C trigger, 1170

translate, 225
transparent huge pages, 567
trigger, 207, 1167

arguments for trigger functions, 1169
for updating a derived tsvector column, 423
in C, 1170
in PL/pgSQL, 1261
in PL/Python, 1326
in PL/Tcl, 1294
compared with rules, 1213

triggered_change_notification, 2655
trigger_file recovery parameter, 726
trim, 217, 232
true, 160
trunc, 214, 279, 279
TRUNCATE, 1901
trusted

PL/Perl, 1311
tsm_handler, 207
tsm_system_rows, 2657
tsm_system_time, 2657
tsquery (data type), 171
tsquery_phrase, 284, 420
tsvector (data type), 169
tsvector concatenation, 419
tsvector_to_array, 284
tsvector_update_trigger, 284
tsvector_update_trigger_column, 284
ts_debug, 285, 438
ts_delete, 282
ts_filter, 283
ts_headline, 283, 418
ts_lexize, 285, 442
ts_parse, 285, 441
ts_rank, 283, 416
ts_rank_cd, 283, 416
ts_rewrite, 284, 421
ts_stat, 286, 424
ts_token_type, 285, 441
tuple_data_split, 2582
txid_current, 351
txid_current_if_assigned, 352
txid_current_snapshot, 352
txid_snapshot_xip, 352
txid_snapshot_xmax, 352

txid_snapshot_xmin, 352
txid_status, 352
txid_visible_in_snapshot, 352
type (see data type)
type cast, 41, 53

U
UESCAPE, 36, 39
unaccent, 2658, 2660
Unicode escape

in identifiers, 36
in string constants, 39

UNION, 130
determination of result type, 386

uniq, 2567
unique constraint, 68
Unix domain socket, 817
unix_socket_directories configuration parameter, 561
unix_socket_group configuration parameter, 562
unix_socket_permissions configuration parameter, 562
unknown, 207
UNLISTEN, 1904
unnest, 315

for tsvector, 284
unqualified name, 86
updatable views, 1723
UPDATE, 16, 109, 1906

RETURNING, 110
update_process_title configuration parameter, 601
updating, 109
upgrading, 545
upper, 218, 319

and locales, 658
upper_inc, 319
upper_inf, 319
UPSERT, 1816
URI, 815
user, 340, 644

current, 340
user mapping, 105
User name maps, 631
UUID, 172, 505
uuid-ossp, 2660
uuid_generate_v1, 2660
uuid_generate_v1mc, 2660
uuid_generate_v3, 2660

V
vacuum, 673
VACUUM, 1911
vacuumdb, 2048
vacuumlo, 2673

2723

Index

vacuum_cleanup_index_scale_factor configuration
parameter, 609
vacuum_cost_delay configuration parameter, 569
vacuum_cost_limit configuration parameter, 570
vacuum_cost_page_dirty configuration parameter, 570
vacuum_cost_page_hit configuration parameter, 570
vacuum_cost_page_miss configuration parameter, 570
vacuum_defer_cleanup_age configuration parameter,
582
vacuum_freeze_min_age configuration parameter, 608
vacuum_freeze_table_age configuration parameter, 608
vacuum_multixact_freeze_min_age configuration
parameter, 608
vacuum_multixact_freeze_table_age configuration
parameter, 608
value expression, 45
VALUES, 132, 1914

determination of result type, 386
varchar, 146
variadic function, 1091
variance, 324

population, 324
sample, 324

var_pop, 324
var_samp, 324
version, 6, 341

compatibility, 545
view, 18

implementation through rules, 1189
materialized, 1196
updating, 1204

Visibility Map, 2369
VM (see Visibility Map)
void, 207
VOLATILE, 1101
volatility

functions, 1101
VPATH, 500, 1165

W
WAL, 776
wal_block_size configuration parameter, 619
wal_buffers configuration parameter, 576
wal_compression configuration parameter, 576
wal_consistency_checking configuration parameter, 621
wal_debug configuration parameter, 622
wal_keep_segments configuration parameter, 580
wal_level configuration parameter, 573
wal_log_hints configuration parameter, 576
wal_receiver_status_interval configuration parameter,
583
wal_receiver_timeout configuration parameter, 583
wal_retrieve_retry_interval configuration parameter, 583

wal_segment_size configuration parameter, 619
wal_sender_timeout configuration parameter, 580
wal_sync_method configuration parameter, 575
wal_writer_delay configuration parameter, 577
wal_writer_flush_after configuration parameter, 577
warm standby, 700
websearch_to_tsquery, 281
WHERE, 121
where to log, 591
WHILE

in PL/pgSQL, 1244
width, 274
width_bucket, 214
window function, 21

built-in, 327
invocation, 50
order of execution, 127

WITH
in SELECT, 133, 1862

WITH CHECK OPTION, 1721
WITHIN GROUP, 48
witness server, 700
word_similarity, 2617
work_mem configuration parameter, 568
wraparound

of multixact IDs, 679
of transaction IDs, 676

X
xid, 205
xmax, 73
xmin, 73
XML, 173
XML export, 297
XML option, 174, 609
xml2, 2662
xmlagg, 290, 321
xmlbinary configuration parameter, 609
xmlcomment, 286
xmlconcat, 287
xmlelement, 287
XMLEXISTS, 291
xmlforest, 289
xmloption configuration parameter, 609
xmlparse, 173
xmlpi, 289
xmlroot, 290
xmlserialize, 173
xmltable, 294
xml_is_well_formed, 291
xml_is_well_formed_content, 291
xml_is_well_formed_document, 291
XPath, 293

2724

Index

xpath_exists, 293
xpath_table, 2663
xslt_process, 2666

Y
yacc, 499

Z
zero_damaged_pages configuration parameter, 622
zlib, 499, 507

2725

	PostgreSQL 11.2 Documentation
	Table of Contents
	Preface
	1. What is PostgreSQL?
	2. A Brief History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. Conventions
	4. Further Information
	5. Bug Reporting Guidelines
	5.1. Identifying Bugs
	5.2. What to Report
	5.3. Where to Report Bugs

	Part I. Tutorial
	Chapter 1. Getting Started
	1.1. Installation
	1.2. Architectural Fundamentals
	1.3. Creating a Database
	1.4. Accessing a Database

	Chapter 2. The SQL Language
	2.1. Introduction
	2.2. Concepts
	2.3. Creating a New Table
	2.4. Populating a Table With Rows
	2.5. Querying a Table
	2.6. Joins Between Tables
	2.7. Aggregate Functions
	2.8. Updates
	2.9. Deletions

	Chapter 3. Advanced Features
	3.1. Introduction
	3.2. Views
	3.3. Foreign Keys
	3.4. Transactions
	3.5. Window Functions
	3.6. Inheritance
	3.7. Conclusion

	Part II. The SQL Language
	Chapter 4. SQL Syntax
	4.1. Lexical Structure
	4.1.1. Identifiers and Key Words
	4.1.2. Constants
	4.1.2.1. String Constants
	4.1.2.2. String Constants with C-style Escapes
	4.1.2.3. String Constants with Unicode Escapes
	4.1.2.4. Dollar-quoted String Constants
	4.1.2.5. Bit-string Constants
	4.1.2.6. Numeric Constants
	4.1.2.7. Constants of Other Types

	4.1.3. Operators
	4.1.4. Special Characters
	4.1.5. Comments
	4.1.6. Operator Precedence

	4.2. Value Expressions
	4.2.1. Column References
	4.2.2. Positional Parameters
	4.2.3. Subscripts
	4.2.4. Field Selection
	4.2.5. Operator Invocations
	4.2.6. Function Calls
	4.2.7. Aggregate Expressions
	4.2.8. Window Function Calls
	4.2.9. Type Casts
	4.2.10. Collation Expressions
	4.2.11. Scalar Subqueries
	4.2.12. Array Constructors
	4.2.13. Row Constructors
	4.2.14. Expression Evaluation Rules

	4.3. Calling Functions
	4.3.1. Using Positional Notation
	4.3.2. Using Named Notation
	4.3.3. Using Mixed Notation

	Chapter 5. Data Definition
	5.1. Table Basics
	5.2. Default Values
	5.3. Constraints
	5.3.1. Check Constraints
	5.3.2. Not-Null Constraints
	5.3.3. Unique Constraints
	5.3.4. Primary Keys
	5.3.5. Foreign Keys
	5.3.6. Exclusion Constraints

	5.4. System Columns
	5.5. Modifying Tables
	5.5.1. Adding a Column
	5.5.2. Removing a Column
	5.5.3. Adding a Constraint
	5.5.4. Removing a Constraint
	5.5.5. Changing a Column's Default Value
	5.5.6. Changing a Column's Data Type
	5.5.7. Renaming a Column
	5.5.8. Renaming a Table

	5.6. Privileges
	5.7. Row Security Policies
	5.8. Schemas
	5.8.1. Creating a Schema
	5.8.2. The Public Schema
	5.8.3. The Schema Search Path
	5.8.4. Schemas and Privileges
	5.8.5. The System Catalog Schema
	5.8.6. Usage Patterns
	5.8.7. Portability

	5.9. Inheritance
	5.9.1. Caveats

	5.10. Table Partitioning
	5.10.1. Overview
	5.10.2. Declarative Partitioning
	5.10.2.1. Example
	5.10.2.2. Partition Maintenance
	5.10.2.3. Limitations

	5.10.3. Implementation Using Inheritance
	5.10.3.1. Example
	5.10.3.2. Maintenance for Inheritance Partitioning
	5.10.3.3. Caveats

	5.10.4. Partition Pruning
	5.10.5. Partitioning and Constraint Exclusion

	5.11. Foreign Data
	5.12. Other Database Objects
	5.13. Dependency Tracking

	Chapter 6. Data Manipulation
	6.1. Inserting Data
	6.2. Updating Data
	6.3. Deleting Data
	6.4. Returning Data From Modified Rows

	Chapter 7. Queries
	7.1. Overview
	7.2. Table Expressions
	7.2.1. The FROM Clause
	7.2.1.1. Joined Tables
	7.2.1.2. Table and Column Aliases
	7.2.1.3. Subqueries
	7.2.1.4. Table Functions
	7.2.1.5. LATERAL Subqueries

	7.2.2. The WHERE Clause
	7.2.3. The GROUP BY and HAVING Clauses
	7.2.4. GROUPING SETS, CUBE, and ROLLUP
	7.2.5. Window Function Processing

	7.3. Select Lists
	7.3.1. Select-List Items
	7.3.2. Column Labels
	7.3.3. DISTINCT

	7.4. Combining Queries
	7.5. Sorting Rows
	7.6. LIMIT and OFFSET
	7.7. VALUES Lists
	7.8. WITH Queries (Common Table Expressions)
	7.8.1. SELECT in WITH
	7.8.2. Data-Modifying Statements in WITH

	Chapter 8. Data Types
	8.1. Numeric Types
	8.1.1. Integer Types
	8.1.2. Arbitrary Precision Numbers
	8.1.3. Floating-Point Types
	8.1.4. Serial Types

	8.2. Monetary Types
	8.3. Character Types
	8.4. Binary Data Types
	8.4.1. bytea Hex Format
	8.4.2. bytea Escape Format

	8.5. Date/Time Types
	8.5.1. Date/Time Input
	8.5.1.1. Dates
	8.5.1.2. Times
	8.5.1.3. Time Stamps
	8.5.1.4. Special Values

	8.5.2. Date/Time Output
	8.5.3. Time Zones
	8.5.4. Interval Input
	8.5.5. Interval Output

	8.6. Boolean Type
	8.7. Enumerated Types
	8.7.1. Declaration of Enumerated Types
	8.7.2. Ordering
	8.7.3. Type Safety
	8.7.4. Implementation Details

	8.8. Geometric Types
	8.8.1. Points
	8.8.2. Lines
	8.8.3. Line Segments
	8.8.4. Boxes
	8.8.5. Paths
	8.8.6. Polygons
	8.8.7. Circles

	8.9. Network Address Types
	8.9.1. inet
	8.9.2. cidr
	8.9.3. inet vs. cidr
	8.9.4. macaddr
	8.9.5. macaddr8

	8.10. Bit String Types
	8.11. Text Search Types
	8.11.1. tsvector
	8.11.2. tsquery

	8.12. UUID Type
	8.13. XML Type
	8.13.1. Creating XML Values
	8.13.2. Encoding Handling
	8.13.3. Accessing XML Values

	8.14. JSON Types
	8.14.1. JSON Input and Output Syntax
	8.14.2. Designing JSON documents effectively
	8.14.3. jsonb Containment and Existence
	8.14.4. jsonb Indexing
	8.14.5. Transforms

	8.15. Arrays
	8.15.1. Declaration of Array Types
	8.15.2. Array Value Input
	8.15.3. Accessing Arrays
	8.15.4. Modifying Arrays
	8.15.5. Searching in Arrays
	8.15.6. Array Input and Output Syntax

	8.16. Composite Types
	8.16.1. Declaration of Composite Types
	8.16.2. Constructing Composite Values
	8.16.3. Accessing Composite Types
	8.16.4. Modifying Composite Types
	8.16.5. Using Composite Types in Queries
	8.16.6. Composite Type Input and Output Syntax

	8.17. Range Types
	8.17.1. Built-in Range Types
	8.17.2. Examples
	8.17.3. Inclusive and Exclusive Bounds
	8.17.4. Infinite (Unbounded) Ranges
	8.17.5. Range Input/Output
	8.17.6. Constructing Ranges
	8.17.7. Discrete Range Types
	8.17.8. Defining New Range Types
	8.17.9. Indexing
	8.17.10. Constraints on Ranges

	8.18. Domain Types
	8.19. Object Identifier Types
	8.20. pg_lsn Type
	8.21. Pseudo-Types

	Chapter 9. Functions and Operators
	9.1. Logical Operators
	9.2. Comparison Functions and Operators
	9.3. Mathematical Functions and Operators
	9.4. String Functions and Operators
	9.4.1. format

	9.5. Binary String Functions and Operators
	9.6. Bit String Functions and Operators
	9.7. Pattern Matching
	9.7.1. LIKE
	9.7.2. SIMILAR TO Regular Expressions
	9.7.3. POSIX Regular Expressions
	9.7.3.1. Regular Expression Details
	9.7.3.2. Bracket Expressions
	9.7.3.3. Regular Expression Escapes
	9.7.3.4. Regular Expression Metasyntax
	9.7.3.5. Regular Expression Matching Rules
	9.7.3.6. Limits and Compatibility
	9.7.3.7. Basic Regular Expressions

	9.8. Data Type Formatting Functions
	9.9. Date/Time Functions and Operators
	9.9.1. EXTRACT, date_part
	9.9.2. date_trunc
	9.9.3. AT TIME ZONE
	9.9.4. Current Date/Time
	9.9.5. Delaying Execution

	9.10. Enum Support Functions
	9.11. Geometric Functions and Operators
	9.12. Network Address Functions and Operators
	9.13. Text Search Functions and Operators
	9.14. XML Functions
	9.14.1. Producing XML Content
	9.14.1.1. xmlcomment
	9.14.1.2. xmlconcat
	9.14.1.3. xmlelement
	9.14.1.4. xmlforest
	9.14.1.5. xmlpi
	9.14.1.6. xmlroot
	9.14.1.7. xmlagg

	9.14.2. XML Predicates
	9.14.2.1. IS DOCUMENT
	9.14.2.2. IS NOT DOCUMENT
	9.14.2.3. XMLEXISTS
	9.14.2.4. xml_is_well_formed

	9.14.3. Processing XML
	9.14.3.1. xpath
	9.14.3.2. xpath_exists
	9.14.3.3. xmltable

	9.14.4. Mapping Tables to XML

	9.15. JSON Functions and Operators
	9.16. Sequence Manipulation Functions
	9.17. Conditional Expressions
	9.17.1. CASE
	9.17.2. COALESCE
	9.17.3. NULLIF
	9.17.4. GREATEST and LEAST

	9.18. Array Functions and Operators
	9.19. Range Functions and Operators
	9.20. Aggregate Functions
	9.21. Window Functions
	9.22. Subquery Expressions
	9.22.1. EXISTS
	9.22.2. IN
	9.22.3. NOT IN
	9.22.4. ANY/SOME
	9.22.5. ALL
	9.22.6. Single-row Comparison

	9.23. Row and Array Comparisons
	9.23.1. IN
	9.23.2. NOT IN
	9.23.3. ANY/SOME (array)
	9.23.4. ALL (array)
	9.23.5. Row Constructor Comparison
	9.23.6. Composite Type Comparison

	9.24. Set Returning Functions
	9.25. System Information Functions
	9.26. System Administration Functions
	9.26.1. Configuration Settings Functions
	9.26.2. Server Signaling Functions
	9.26.3. Backup Control Functions
	9.26.4. Recovery Control Functions
	9.26.5. Snapshot Synchronization Functions
	9.26.6. Replication Functions
	9.26.7. Database Object Management Functions
	9.26.8. Index Maintenance Functions
	9.26.9. Generic File Access Functions
	9.26.10. Advisory Lock Functions

	9.27. Trigger Functions
	9.28. Event Trigger Functions
	9.28.1. Capturing Changes at Command End
	9.28.2. Processing Objects Dropped by a DDL Command
	9.28.3. Handling a Table Rewrite Event

	Chapter 10. Type Conversion
	10.1. Overview
	10.2. Operators
	10.3. Functions
	10.4. Value Storage
	10.5. UNION, CASE, and Related Constructs
	10.6. SELECT Output Columns

	Chapter 11. Indexes
	11.1. Introduction
	11.2. Index Types
	11.3. Multicolumn Indexes
	11.4. Indexes and ORDER BY
	11.5. Combining Multiple Indexes
	11.6. Unique Indexes
	11.7. Indexes on Expressions
	11.8. Partial Indexes
	11.9. Index-Only Scans and Covering Indexes
	11.10. Operator Classes and Operator Families
	11.11. Indexes and Collations
	11.12. Examining Index Usage

	Chapter 12. Full Text Search
	12.1. Introduction
	12.1.1. What Is a Document?
	12.1.2. Basic Text Matching
	12.1.3. Configurations

	12.2. Tables and Indexes
	12.2.1. Searching a Table
	12.2.2. Creating Indexes

	12.3. Controlling Text Search
	12.3.1. Parsing Documents
	12.3.2. Parsing Queries
	12.3.3. Ranking Search Results
	12.3.4. Highlighting Results

	12.4. Additional Features
	12.4.1. Manipulating Documents
	12.4.2. Manipulating Queries
	12.4.2.1. Query Rewriting

	12.4.3. Triggers for Automatic Updates
	12.4.4. Gathering Document Statistics

	12.5. Parsers
	12.6. Dictionaries
	12.6.1. Stop Words
	12.6.2. Simple Dictionary
	12.6.3. Synonym Dictionary
	12.6.4. Thesaurus Dictionary
	12.6.4.1. Thesaurus Configuration
	12.6.4.2. Thesaurus Example

	12.6.5. Ispell Dictionary
	12.6.6. Snowball Dictionary

	12.7. Configuration Example
	12.8. Testing and Debugging Text Search
	12.8.1. Configuration Testing
	12.8.2. Parser Testing
	12.8.3. Dictionary Testing

	12.9. GIN and GiST Index Types
	12.10. psql Support
	12.11. Limitations

	Chapter 13. Concurrency Control
	13.1. Introduction
	13.2. Transaction Isolation
	13.2.1. Read Committed Isolation Level
	13.2.2. Repeatable Read Isolation Level
	13.2.3. Serializable Isolation Level

	13.3. Explicit Locking
	13.3.1. Table-level Locks
	13.3.2. Row-level Locks
	13.3.3. Page-level Locks
	13.3.4. Deadlocks
	13.3.5. Advisory Locks

	13.4. Data Consistency Checks at the Application Level
	13.4.1. Enforcing Consistency With Serializable Transactions
	13.4.2. Enforcing Consistency With Explicit Blocking Locks

	13.5. Caveats
	13.6. Locking and Indexes

	Chapter 14. Performance Tips
	14.1. Using EXPLAIN
	14.1.1. EXPLAIN Basics
	14.1.2. EXPLAIN ANALYZE
	14.1.3. Caveats

	14.2. Statistics Used by the Planner
	14.2.1. Single-Column Statistics
	14.2.2. Extended Statistics
	14.2.2.1. Functional Dependencies
	14.2.2.1.1. Limitations of Functional Dependencies

	14.2.2.2. Multivariate N-Distinct Counts

	14.3. Controlling the Planner with Explicit JOIN Clauses
	14.4. Populating a Database
	14.4.1. Disable Autocommit
	14.4.2. Use COPY
	14.4.3. Remove Indexes
	14.4.4. Remove Foreign Key Constraints
	14.4.5. Increase maintenance_work_mem
	14.4.6. Increase max_wal_size
	14.4.7. Disable WAL Archival and Streaming Replication
	14.4.8. Run ANALYZE Afterwards
	14.4.9. Some Notes About pg_dump

	14.5. Non-Durable Settings

	Chapter 15. Parallel Query
	15.1. How Parallel Query Works
	15.2. When Can Parallel Query Be Used?
	15.3. Parallel Plans
	15.3.1. Parallel Scans
	15.3.2. Parallel Joins
	15.3.3. Parallel Aggregation
	15.3.4. Parallel Append
	15.3.5. Parallel Plan Tips

	15.4. Parallel Safety
	15.4.1. Parallel Labeling for Functions and Aggregates

	Part III. Server Administration
	Chapter 16. Installation from Source Code
	16.1. Short Version
	16.2. Requirements
	16.3. Getting The Source
	16.4. Installation Procedure
	16.5. Post-Installation Setup
	16.5.1. Shared Libraries
	16.5.2. Environment Variables

	16.6. Supported Platforms
	16.7. Platform-specific Notes
	16.7.1. AIX
	16.7.1.1. GCC Issues
	16.7.1.2. Unix-Domain Sockets Broken
	16.7.1.3. Internet Address Issues
	16.7.1.4. Memory Management
	References and Resources

	16.7.2. Cygwin
	16.7.3. HP-UX
	16.7.4. macOS
	16.7.5. MinGW/Native Windows
	16.7.5.1. Collecting Crash Dumps on Windows

	16.7.6. Solaris
	16.7.6.1. Required Tools
	16.7.6.2. configure Complains About a Failed Test Program
	16.7.6.3. 64-bit Build Sometimes Crashes
	16.7.6.4. Compiling for Optimal Performance
	16.7.6.5. Using DTrace for Tracing PostgreSQL

	Chapter 17. Installation from Source Code on Windows
	17.1. Building with Visual C++ or the Microsoft Windows SDK
	17.1.1. Requirements
	17.1.2. Special Considerations for 64-bit Windows
	17.1.3. Building
	17.1.4. Cleaning and Installing
	17.1.5. Running the Regression Tests
	17.1.6. Building the Documentation

	Chapter 18. Server Setup and Operation
	18.1. The PostgreSQL User Account
	18.2. Creating a Database Cluster
	18.2.1. Use of Secondary File Systems
	18.2.2. Use of Network File Systems

	18.3. Starting the Database Server
	18.3.1. Server Start-up Failures
	18.3.2. Client Connection Problems

	18.4. Managing Kernel Resources
	18.4.1. Shared Memory and Semaphores
	18.4.2. systemd RemoveIPC
	18.4.3. Resource Limits
	18.4.4. Linux Memory Overcommit
	18.4.5. Linux Huge Pages

	18.5. Shutting Down the Server
	18.6. Upgrading a PostgreSQL Cluster
	18.6.1. Upgrading Data via pg_dumpall
	18.6.2. Upgrading Data via pg_upgrade
	18.6.3. Upgrading Data via Replication

	18.7. Preventing Server Spoofing
	18.8. Encryption Options
	18.9. Secure TCP/IP Connections with SSL
	18.9.1. Basic Setup
	18.9.2. OpenSSL Configuration
	18.9.3. Using Client Certificates
	18.9.4. SSL Server File Usage
	18.9.5. Creating Certificates

	18.10. Secure TCP/IP Connections with SSH Tunnels
	18.11. Registering Event Log on Windows

	Chapter 19. Server Configuration
	19.1. Setting Parameters
	19.1.1. Parameter Names and Values
	19.1.2. Parameter Interaction via the Configuration File
	19.1.3. Parameter Interaction via SQL
	19.1.4. Parameter Interaction via the Shell
	19.1.5. Managing Configuration File Contents

	19.2. File Locations
	19.3. Connections and Authentication
	19.3.1. Connection Settings
	19.3.2. Authentication
	19.3.3. SSL

	19.4. Resource Consumption
	19.4.1. Memory
	19.4.2. Disk
	19.4.3. Kernel Resource Usage
	19.4.4. Cost-based Vacuum Delay
	19.4.5. Background Writer
	19.4.6. Asynchronous Behavior

	19.5. Write Ahead Log
	19.5.1. Settings
	19.5.2. Checkpoints
	19.5.3. Archiving

	19.6. Replication
	19.6.1. Sending Servers
	19.6.2. Master Server
	19.6.3. Standby Servers
	19.6.4. Subscribers

	19.7. Query Planning
	19.7.1. Planner Method Configuration
	19.7.2. Planner Cost Constants
	19.7.3. Genetic Query Optimizer
	19.7.4. Other Planner Options

	19.8. Error Reporting and Logging
	19.8.1. Where To Log
	19.8.2. When To Log
	19.8.3. What To Log
	19.8.4. Using CSV-Format Log Output
	19.8.5. Process Title

	19.9. Run-time Statistics
	19.9.1. Query and Index Statistics Collector
	19.9.2. Statistics Monitoring

	19.10. Automatic Vacuuming
	19.11. Client Connection Defaults
	19.11.1. Statement Behavior
	19.11.2. Locale and Formatting
	19.11.3. Shared Library Preloading
	19.11.4. Other Defaults

	19.12. Lock Management
	19.13. Version and Platform Compatibility
	19.13.1. Previous PostgreSQL Versions
	19.13.2. Platform and Client Compatibility

	19.14. Error Handling
	19.15. Preset Options
	19.16. Customized Options
	19.17. Developer Options
	19.18. Short Options

	Chapter 20. Client Authentication
	20.1. The pg_hba.conf File
	20.2. User Name Maps
	20.3. Authentication Methods
	20.4. Trust Authentication
	20.5. Password Authentication
	20.6. GSSAPI Authentication
	20.7. SSPI Authentication
	20.8. Ident Authentication
	20.9. Peer Authentication
	20.10. LDAP Authentication
	20.11. RADIUS Authentication
	20.12. Certificate Authentication
	20.13. PAM Authentication
	20.14. BSD Authentication
	20.15. Authentication Problems

	Chapter 21. Database Roles
	21.1. Database Roles
	21.2. Role Attributes
	21.3. Role Membership
	21.4. Dropping Roles
	21.5. Default Roles
	21.6. Function Security

	Chapter 22. Managing Databases
	22.1. Overview
	22.2. Creating a Database
	22.3. Template Databases
	22.4. Database Configuration
	22.5. Destroying a Database
	22.6. Tablespaces

	Chapter 23. Localization
	23.1. Locale Support
	23.1.1. Overview
	23.1.2. Behavior
	23.1.3. Problems

	23.2. Collation Support
	23.2.1. Concepts
	23.2.2. Managing Collations
	23.2.2.1. Standard Collations
	23.2.2.2. Predefined Collations
	23.2.2.2.1. libc collations
	23.2.2.2.2. ICU collations

	23.2.2.3. Creating New Collation Objects
	23.2.2.3.1. libc collations
	23.2.2.3.2. ICU collations
	23.2.2.3.3. Copying Collations

	23.3. Character Set Support
	23.3.1. Supported Character Sets
	23.3.2. Setting the Character Set
	23.3.3. Automatic Character Set Conversion Between Server and Client
	23.3.4. Further Reading

	Chapter 24. Routine Database Maintenance Tasks
	24.1. Routine Vacuuming
	24.1.1. Vacuuming Basics
	24.1.2. Recovering Disk Space
	24.1.3. Updating Planner Statistics
	24.1.4. Updating The Visibility Map
	24.1.5. Preventing Transaction ID Wraparound Failures
	24.1.5.1. Multixacts and Wraparound

	24.1.6. The Autovacuum Daemon

	24.2. Routine Reindexing
	24.3. Log File Maintenance

	Chapter 25. Backup and Restore
	25.1. SQL Dump
	25.1.1. Restoring the Dump
	25.1.2. Using pg_dumpall
	25.1.3. Handling Large Databases

	25.2. File System Level Backup
	25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
	25.3.1. Setting Up WAL Archiving
	25.3.2. Making a Base Backup
	25.3.3. Making a Base Backup Using the Low Level API
	25.3.3.1. Making a non-exclusive low level backup
	25.3.3.2. Making an exclusive low level backup
	25.3.3.3. Backing up the data directory

	25.3.4. Recovering Using a Continuous Archive Backup
	25.3.5. Timelines
	25.3.6. Tips and Examples
	25.3.6.1. Standalone Hot Backups
	25.3.6.2. Compressed Archive Logs
	25.3.6.3. archive_command Scripts

	25.3.7. Caveats

	Chapter 26. High Availability, Load Balancing, and Replication
	26.1. Comparison of Different Solutions
	26.2. Log-Shipping Standby Servers
	26.2.1. Planning
	26.2.2. Standby Server Operation
	26.2.3. Preparing the Master for Standby Servers
	26.2.4. Setting Up a Standby Server
	26.2.5. Streaming Replication
	26.2.5.1. Authentication
	26.2.5.2. Monitoring

	26.2.6. Replication Slots
	26.2.6.1. Querying and manipulating replication slots
	26.2.6.2. Configuration Example

	26.2.7. Cascading Replication
	26.2.8. Synchronous Replication
	26.2.8.1. Basic Configuration
	26.2.8.2. Multiple Synchronous Standbys
	26.2.8.3. Planning for Performance
	26.2.8.4. Planning for High Availability

	26.2.9. Continuous archiving in standby

	26.3. Failover
	26.4. Alternative Method for Log Shipping
	26.4.1. Implementation
	26.4.2. Record-based Log Shipping

	26.5. Hot Standby
	26.5.1. User's Overview
	26.5.2. Handling Query Conflicts
	26.5.3. Administrator's Overview
	26.5.4. Hot Standby Parameter Reference
	26.5.5. Caveats

	Chapter 27. Recovery Configuration
	27.1. Archive Recovery Settings
	27.2. Recovery Target Settings
	27.3. Standby Server Settings

	Chapter 28. Monitoring Database Activity
	28.1. Standard Unix Tools
	28.2. The Statistics Collector
	28.2.1. Statistics Collection Configuration
	28.2.2. Viewing Statistics
	28.2.3. Statistics Functions

	28.3. Viewing Locks
	28.4. Progress Reporting
	28.4.1. VACUUM Progress Reporting

	28.5. Dynamic Tracing
	28.5.1. Compiling for Dynamic Tracing
	28.5.2. Built-in Probes
	28.5.3. Using Probes
	28.5.4. Defining New Probes

	Chapter 29. Monitoring Disk Usage
	29.1. Determining Disk Usage
	29.2. Disk Full Failure

	Chapter 30. Reliability and the Write-Ahead Log
	30.1. Reliability
	30.2. Write-Ahead Logging (WAL)
	30.3. Asynchronous Commit
	30.4. WAL Configuration
	30.5. WAL Internals

	Chapter 31. Logical Replication
	31.1. Publication
	31.2. Subscription
	31.2.1. Replication Slot Management

	31.3. Conflicts
	31.4. Restrictions
	31.5. Architecture
	31.5.1. Initial Snapshot

	31.6. Monitoring
	31.7. Security
	31.8. Configuration Settings
	31.9. Quick Setup

	Chapter 32. Just-in-Time Compilation (JIT)
	32.1. What is JIT compilation?
	32.1.1. JIT Accelerated Operations
	32.1.2. Inlining
	32.1.3. Optimization

	32.2. When to JIT?
	32.3. Configuration
	32.4. Extensibility
	32.4.1. Inlining Support for Extensions
	32.4.2. Pluggable JIT Providers
	32.4.2.1. JIT Provider Interface

	Chapter 33. Regression Tests
	33.1. Running the Tests
	33.1.1. Running the Tests Against a Temporary Installation
	33.1.2. Running the Tests Against an Existing Installation
	33.1.3. Additional Test Suites
	33.1.4. Locale and Encoding
	33.1.5. Extra Tests
	33.1.6. Testing Hot Standby

	33.2. Test Evaluation
	33.2.1. Error Message Differences
	33.2.2. Locale Differences
	33.2.3. Date and Time Differences
	33.2.4. Floating-Point Differences
	33.2.5. Row Ordering Differences
	33.2.6. Insufficient Stack Depth
	33.2.7. The “random” Test
	33.2.8. Configuration Parameters

	33.3. Variant Comparison Files
	33.4. TAP Tests
	33.5. Test Coverage Examination

	Part IV. Client Interfaces
	Chapter 34. libpq - C Library
	34.1. Database Connection Control Functions
	34.1.1. Connection Strings
	34.1.1.1. Keyword/Value Connection Strings
	34.1.1.2. Connection URIs
	34.1.1.3. Specifying Multiple Hosts

	34.1.2. Parameter Key Words

	34.2. Connection Status Functions
	34.3. Command Execution Functions
	34.3.1. Main Functions
	34.3.2. Retrieving Query Result Information
	34.3.3. Retrieving Other Result Information
	34.3.4. Escaping Strings for Inclusion in SQL Commands

	34.4. Asynchronous Command Processing
	34.5. Retrieving Query Results Row-By-Row
	34.6. Canceling Queries in Progress
	34.7. The Fast-Path Interface
	34.8. Asynchronous Notification
	34.9. Functions Associated with the COPY Command
	34.9.1. Functions for Sending COPY Data
	34.9.2. Functions for Receiving COPY Data
	34.9.3. Obsolete Functions for COPY

	34.10. Control Functions
	34.11. Miscellaneous Functions
	34.12. Notice Processing
	34.13. Event System
	34.13.1. Event Types
	34.13.2. Event Callback Procedure
	34.13.3. Event Support Functions
	34.13.4. Event Example

	34.14. Environment Variables
	34.15. The Password File
	34.16. The Connection Service File
	34.17. LDAP Lookup of Connection Parameters
	34.18. SSL Support
	34.18.1. Client Verification of Server Certificates
	34.18.2. Client Certificates
	34.18.3. Protection Provided in Different Modes
	34.18.4. SSL Client File Usage
	34.18.5. SSL Library Initialization

	34.19. Behavior in Threaded Programs
	34.20. Building libpq Programs
	34.21. Example Programs

	Chapter 35. Large Objects
	35.1. Introduction
	35.2. Implementation Features
	35.3. Client Interfaces
	35.3.1. Creating a Large Object
	35.3.2. Importing a Large Object
	35.3.3. Exporting a Large Object
	35.3.4. Opening an Existing Large Object
	35.3.5. Writing Data to a Large Object
	35.3.6. Reading Data from a Large Object
	35.3.7. Seeking in a Large Object
	35.3.8. Obtaining the Seek Position of a Large Object
	35.3.9. Truncating a Large Object
	35.3.10. Closing a Large Object Descriptor
	35.3.11. Removing a Large Object

	35.4. Server-side Functions
	35.5. Example Program

	Chapter 36. ECPG - Embedded SQL in C
	36.1. The Concept
	36.2. Managing Database Connections
	36.2.1. Connecting to the Database Server
	36.2.2. Choosing a Connection
	36.2.3. Closing a Connection

	36.3. Running SQL Commands
	36.3.1. Executing SQL Statements
	36.3.2. Using Cursors
	36.3.3. Managing Transactions
	36.3.4. Prepared Statements

	36.4. Using Host Variables
	36.4.1. Overview
	36.4.2. Declare Sections
	36.4.3. Retrieving Query Results
	36.4.4. Type Mapping
	36.4.4.1. Handling Character Strings
	36.4.4.2. Accessing Special Data Types
	36.4.4.2.1. timestamp, date
	36.4.4.2.2. interval
	36.4.4.2.3. numeric, decimal

	36.4.4.3. Host Variables with Nonprimitive Types
	36.4.4.3.1. Arrays
	36.4.4.3.2. Structures
	36.4.4.3.3. Typedefs
	36.4.4.3.4. Pointers

	36.4.5. Handling Nonprimitive SQL Data Types
	36.4.5.1. Arrays
	36.4.5.2. Composite Types
	36.4.5.3. User-defined Base Types

	36.4.6. Indicators

	36.5. Dynamic SQL
	36.5.1. Executing Statements without a Result Set
	36.5.2. Executing a Statement with Input Parameters
	36.5.3. Executing a Statement with a Result Set

	36.6. pgtypes Library
	36.6.1. Character Strings
	36.6.2. The numeric Type
	36.6.3. The date Type
	36.6.4. The timestamp Type
	36.6.5. The interval Type
	36.6.6. The decimal Type
	36.6.7. errno Values of pgtypeslib
	36.6.8. Special Constants of pgtypeslib

	36.7. Using Descriptor Areas
	36.7.1. Named SQL Descriptor Areas
	36.7.2. SQLDA Descriptor Areas
	36.7.2.1. SQLDA Data Structure
	36.7.2.1.1. sqlda_t Structure
	36.7.2.1.2. sqlvar_t Structure
	36.7.2.1.3. struct sqlname Structure

	36.7.2.2. Retrieving a Result Set Using an SQLDA
	36.7.2.3. Passing Query Parameters Using an SQLDA
	36.7.2.4. A Sample Application Using SQLDA

	36.8. Error Handling
	36.8.1. Setting Callbacks
	36.8.2. sqlca
	36.8.3. SQLSTATE vs. SQLCODE

	36.9. Preprocessor Directives
	36.9.1. Including Files
	36.9.2. The define and undef Directives
	36.9.3. ifdef, ifndef, else, elif, and endif Directives

	36.10. Processing Embedded SQL Programs
	36.11. Library Functions
	36.12. Large Objects
	36.13. C++ Applications
	36.13.1. Scope for Host Variables
	36.13.2. C++ Application Development with External C Module

	36.14. Embedded SQL Commands
	ALLOCATE DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CONNECT
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DEALLOCATE DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DECLARE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DESCRIBE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DISCONNECT
	Description
	Parameters
	Examples
	Compatibility
	See Also

	EXECUTE IMMEDIATE
	Description
	Parameters
	Examples
	Compatibility

	GET DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	OPEN
	Description
	Parameters
	Examples
	Compatibility
	See Also

	PREPARE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SET AUTOCOMMIT
	Description
	Compatibility

	SET CONNECTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SET DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	TYPE
	Description
	Parameters
	Examples
	Compatibility

	VAR
	Description
	Parameters
	Examples
	Compatibility

	WHENEVER
	Description
	Parameters
	Examples
	Compatibility

	36.15. Informix Compatibility Mode
	36.15.1. Additional Types
	36.15.2. Additional/Missing Embedded SQL Statements
	36.15.3. Informix-compatible SQLDA Descriptor Areas
	36.15.4. Additional Functions
	36.15.5. Additional Constants

	36.16. Internals

	Chapter 37. The Information Schema
	37.1. The Schema
	37.2. Data Types
	37.3. information_schema_catalog_name
	37.4. administrable_role_authorizations
	37.5. applicable_roles
	37.6. attributes
	37.7. character_sets
	37.8. check_constraint_routine_usage
	37.9. check_constraints
	37.10. collations
	37.11. collation_character_set_applicability
	37.12. column_domain_usage
	37.13. column_options
	37.14. column_privileges
	37.15. column_udt_usage
	37.16. columns
	37.17. constraint_column_usage
	37.18. constraint_table_usage
	37.19. data_type_privileges
	37.20. domain_constraints
	37.21. domain_udt_usage
	37.22. domains
	37.23. element_types
	37.24. enabled_roles
	37.25. foreign_data_wrapper_options
	37.26. foreign_data_wrappers
	37.27. foreign_server_options
	37.28. foreign_servers
	37.29. foreign_table_options
	37.30. foreign_tables
	37.31. key_column_usage
	37.32. parameters
	37.33. referential_constraints
	37.34. role_column_grants
	37.35. role_routine_grants
	37.36. role_table_grants
	37.37. role_udt_grants
	37.38. role_usage_grants
	37.39. routine_privileges
	37.40. routines
	37.41. schemata
	37.42. sequences
	37.43. sql_features
	37.44. sql_implementation_info
	37.45. sql_languages
	37.46. sql_packages
	37.47. sql_parts
	37.48. sql_sizing
	37.49. sql_sizing_profiles
	37.50. table_constraints
	37.51. table_privileges
	37.52. tables
	37.53. transforms
	37.54. triggered_update_columns
	37.55. triggers
	37.56. udt_privileges
	37.57. usage_privileges
	37.58. user_defined_types
	37.59. user_mapping_options
	37.60. user_mappings
	37.61. view_column_usage
	37.62. view_routine_usage
	37.63. view_table_usage
	37.64. views

	Part V. Server Programming
	Chapter 38. Extending SQL
	38.1. How Extensibility Works
	38.2. The PostgreSQL Type System
	38.2.1. Base Types
	38.2.2. Container Types
	38.2.3. Domains
	38.2.4. Pseudo-Types
	38.2.5. Polymorphic Types

	38.3. User-defined Functions
	38.4. User-defined Procedures
	38.5. Query Language (SQL) Functions
	38.5.1. Arguments for SQL Functions
	38.5.2. SQL Functions on Base Types
	38.5.3. SQL Functions on Composite Types
	38.5.4. SQL Functions with Output Parameters
	38.5.5. SQL Functions with Variable Numbers of Arguments
	38.5.6. SQL Functions with Default Values for Arguments
	38.5.7. SQL Functions as Table Sources
	38.5.8. SQL Functions Returning Sets
	38.5.9. SQL Functions Returning TABLE
	38.5.10. Polymorphic SQL Functions
	38.5.11. SQL Functions with Collations

	38.6. Function Overloading
	38.7. Function Volatility Categories
	38.8. Procedural Language Functions
	38.9. Internal Functions
	38.10. C-Language Functions
	38.10.1. Dynamic Loading
	38.10.2. Base Types in C-Language Functions
	38.10.3. Version 1 Calling Conventions
	38.10.4. Writing Code
	38.10.5. Compiling and Linking Dynamically-loaded Functions
	38.10.6. Composite-type Arguments
	38.10.7. Returning Rows (Composite Types)
	38.10.8. Returning Sets
	38.10.9. Polymorphic Arguments and Return Types
	38.10.10. Transform Functions
	38.10.11. Shared Memory and LWLocks
	38.10.12. Using C++ for Extensibility

	38.11. User-defined Aggregates
	38.11.1. Moving-Aggregate Mode
	38.11.2. Polymorphic and Variadic Aggregates
	38.11.3. Ordered-Set Aggregates
	38.11.4. Partial Aggregation
	38.11.5. Support Functions for Aggregates

	38.12. User-defined Types
	38.12.1. TOAST Considerations

	38.13. User-defined Operators
	38.14. Operator Optimization Information
	38.14.1. COMMUTATOR
	38.14.2. NEGATOR
	38.14.3. RESTRICT
	38.14.4. JOIN
	38.14.5. HASHES
	38.14.6. MERGES

	38.15. Interfacing Extensions To Indexes
	38.15.1. Index Methods and Operator Classes
	38.15.2. Index Method Strategies
	38.15.3. Index Method Support Routines
	38.15.4. An Example
	38.15.5. Operator Classes and Operator Families
	38.15.6. System Dependencies on Operator Classes
	38.15.7. Ordering Operators
	38.15.8. Special Features of Operator Classes

	38.16. Packaging Related Objects into an Extension
	38.16.1. Defining Extension Objects
	38.16.2. Extension Files
	38.16.3. Extension Relocatability
	38.16.4. Extension Configuration Tables
	38.16.5. Extension Updates
	38.16.6. Installing Extensions using Update Scripts
	38.16.7. Extension Example

	38.17. Extension Building Infrastructure

	Chapter 39. Triggers
	39.1. Overview of Trigger Behavior
	39.2. Visibility of Data Changes
	39.3. Writing Trigger Functions in C
	39.4. A Complete Trigger Example

	Chapter 40. Event Triggers
	40.1. Overview of Event Trigger Behavior
	40.2. Event Trigger Firing Matrix
	40.3. Writing Event Trigger Functions in C
	40.4. A Complete Event Trigger Example
	40.5. A Table Rewrite Event Trigger Example

	Chapter 41. The Rule System
	41.1. The Query Tree
	41.2. Views and the Rule System
	41.2.1. How SELECT Rules Work
	41.2.2. View Rules in Non-SELECT Statements
	41.2.3. The Power of Views in PostgreSQL
	41.2.4. Updating a View

	41.3. Materialized Views
	41.4. Rules on INSERT, UPDATE, and DELETE
	41.4.1. How Update Rules Work
	41.4.1.1. A First Rule Step by Step

	41.4.2. Cooperation with Views

	41.5. Rules and Privileges
	41.6. Rules and Command Status
	41.7. Rules Versus Triggers

	Chapter 42. Procedural Languages
	42.1. Installing Procedural Languages

	Chapter 43. PL/pgSQL - SQL Procedural Language
	43.1. Overview
	43.1.1. Advantages of Using PL/pgSQL
	43.1.2. Supported Argument and Result Data Types

	43.2. Structure of PL/pgSQL
	43.3. Declarations
	43.3.1. Declaring Function Parameters
	43.3.2. ALIAS
	43.3.3. Copying Types
	43.3.4. Row Types
	43.3.5. Record Types
	43.3.6. Collation of PL/pgSQL Variables

	43.4. Expressions
	43.5. Basic Statements
	43.5.1. Assignment
	43.5.2. Executing a Command With No Result
	43.5.3. Executing a Query with a Single-row Result
	43.5.4. Executing Dynamic Commands
	43.5.5. Obtaining the Result Status
	43.5.6. Doing Nothing At All

	43.6. Control Structures
	43.6.1. Returning From a Function
	43.6.1.1. RETURN
	43.6.1.2. RETURN NEXT and RETURN QUERY

	43.6.2. Returning From a Procedure
	43.6.3. Calling a Procedure
	43.6.4. Conditionals
	43.6.4.1. IF-THEN
	43.6.4.2. IF-THEN-ELSE
	43.6.4.3. IF-THEN-ELSIF
	43.6.4.4. Simple CASE
	43.6.4.5. Searched CASE

	43.6.5. Simple Loops
	43.6.5.1. LOOP
	43.6.5.2. EXIT
	43.6.5.3. CONTINUE
	43.6.5.4. WHILE
	43.6.5.5. FOR (Integer Variant)

	43.6.6. Looping Through Query Results
	43.6.7. Looping Through Arrays
	43.6.8. Trapping Errors
	43.6.8.1. Obtaining Information About an Error

	43.6.9. Obtaining Execution Location Information

	43.7. Cursors
	43.7.1. Declaring Cursor Variables
	43.7.2. Opening Cursors
	43.7.2.1. OPEN FOR query
	43.7.2.2. OPEN FOR EXECUTE
	43.7.2.3. Opening a Bound Cursor

	43.7.3. Using Cursors
	43.7.3.1. FETCH
	43.7.3.2. MOVE
	43.7.3.3. UPDATE/DELETE WHERE CURRENT OF
	43.7.3.4. CLOSE
	43.7.3.5. Returning Cursors

	43.7.4. Looping Through a Cursor's Result

	43.8. Transaction Management
	43.9. Errors and Messages
	43.9.1. Reporting Errors and Messages
	43.9.2. Checking Assertions

	43.10. Trigger Functions
	43.10.1. Triggers on Data Changes
	43.10.2. Triggers on Events

	43.11. PL/pgSQL Under the Hood
	43.11.1. Variable Substitution
	43.11.2. Plan Caching

	43.12. Tips for Developing in PL/pgSQL
	43.12.1. Handling of Quotation Marks
	43.12.2. Additional Compile-time Checks

	43.13. Porting from Oracle PL/SQL
	43.13.1. Porting Examples
	43.13.2. Other Things to Watch For
	43.13.2.1. Implicit Rollback after Exceptions
	43.13.2.2. EXECUTE
	43.13.2.3. Optimizing PL/pgSQL Functions

	43.13.3. Appendix

	Chapter 44. PL/Tcl - Tcl Procedural Language
	44.1. Overview
	44.2. PL/Tcl Functions and Arguments
	44.3. Data Values in PL/Tcl
	44.4. Global Data in PL/Tcl
	44.5. Database Access from PL/Tcl
	44.6. Trigger Functions in PL/Tcl
	44.7. Event Trigger Functions in PL/Tcl
	44.8. Error Handling in PL/Tcl
	44.9. Explicit Subtransactions in PL/Tcl
	44.10. Transaction Management
	44.11. PL/Tcl Configuration
	44.12. Tcl Procedure Names

	Chapter 45. PL/Perl - Perl Procedural Language
	45.1. PL/Perl Functions and Arguments
	45.2. Data Values in PL/Perl
	45.3. Built-in Functions
	45.3.1. Database Access from PL/Perl
	45.3.2. Utility Functions in PL/Perl

	45.4. Global Values in PL/Perl
	45.5. Trusted and Untrusted PL/Perl
	45.6. PL/Perl Triggers
	45.7. PL/Perl Event Triggers
	45.8. PL/Perl Under the Hood
	45.8.1. Configuration
	45.8.2. Limitations and Missing Features

	Chapter 46. PL/Python - Python Procedural Language
	46.1. Python 2 vs. Python 3
	46.2. PL/Python Functions
	46.3. Data Values
	46.3.1. Data Type Mapping
	46.3.2. Null, None
	46.3.3. Arrays, Lists
	46.3.4. Composite Types
	46.3.5. Set-returning Functions

	46.4. Sharing Data
	46.5. Anonymous Code Blocks
	46.6. Trigger Functions
	46.7. Database Access
	46.7.1. Database Access Functions
	46.7.2. Trapping Errors

	46.8. Explicit Subtransactions
	46.8.1. Subtransaction Context Managers
	46.8.2. Older Python Versions

	46.9. Transaction Management
	46.10. Utility Functions
	46.11. Environment Variables

	Chapter 47. Server Programming Interface
	47.1. Interface Functions
	SPI_connect
	Description
	Return Value

	SPI_finish
	Description
	Return Value

	SPI_execute
	Description
	Arguments
	Return Value
	Notes

	SPI_exec
	Description
	Arguments
	Return Value

	SPI_execute_with_args
	Description
	Arguments
	Return Value

	SPI_prepare
	Description
	Arguments
	Return Value
	Notes

	SPI_prepare_cursor
	Description
	Arguments
	Return Value
	Notes

	SPI_prepare_params
	Description
	Arguments
	Return Value

	SPI_getargcount
	Description
	Arguments
	Return Value

	SPI_getargtypeid
	Description
	Arguments
	Return Value

	SPI_is_cursor_plan
	Description
	Arguments
	Return Value

	SPI_execute_plan
	Description
	Arguments
	Return Value

	SPI_execute_plan_with_paramlist
	Description
	Arguments
	Return Value

	SPI_execp
	Description
	Arguments
	Return Value

	SPI_cursor_open
	Description
	Arguments
	Return Value

	SPI_cursor_open_with_args
	Description
	Arguments
	Return Value

	SPI_cursor_open_with_paramlist
	Description
	Arguments
	Return Value

	SPI_cursor_find
	Description
	Arguments
	Return Value

	SPI_cursor_fetch
	Description
	Arguments
	Return Value
	Notes

	SPI_cursor_move
	Description
	Arguments
	Notes

	SPI_scroll_cursor_fetch
	Description
	Arguments
	Return Value
	Notes

	SPI_scroll_cursor_move
	Description
	Arguments
	Return Value
	Notes

	SPI_cursor_close
	Description
	Arguments

	SPI_keepplan
	Description
	Arguments
	Return Value
	Notes

	SPI_saveplan
	Description
	Arguments
	Return Value
	Notes

	SPI_register_relation
	Description
	Arguments
	Return Value

	SPI_unregister_relation
	Description
	Arguments
	Return Value

	SPI_register_trigger_data
	Description
	Arguments
	Return Value

	47.2. Interface Support Functions
	SPI_fname
	Description
	Arguments
	Return Value

	SPI_fnumber
	Description
	Arguments
	Return Value

	SPI_getvalue
	Description
	Arguments
	Return Value

	SPI_getbinval
	Description
	Arguments
	Return Value

	SPI_gettype
	Description
	Arguments
	Return Value

	SPI_gettypeid
	Description
	Arguments
	Return Value

	SPI_getrelname
	Description
	Arguments
	Return Value

	SPI_getnspname
	Description
	Arguments
	Return Value

	SPI_result_code_string
	Description
	Arguments
	Return Value

	47.3. Memory Management
	SPI_palloc
	Description
	Arguments
	Return Value

	SPI_repalloc
	Description
	Arguments
	Return Value

	SPI_pfree
	Description
	Arguments

	SPI_copytuple
	Description
	Arguments
	Return Value

	SPI_returntuple
	Description
	Arguments
	Return Value

	SPI_modifytuple
	Description
	Arguments
	Return Value

	SPI_freetuple
	Description
	Arguments

	SPI_freetuptable
	Description
	Arguments

	SPI_freeplan
	Description
	Arguments
	Return Value

	47.4. Transaction Management
	SPI_commit
	Description

	SPI_rollback
	Description

	SPI_start_transaction
	Description

	47.5. Visibility of Data Changes
	47.6. Examples

	Chapter 48. Background Worker Processes
	Chapter 49. Logical Decoding
	49.1. Logical Decoding Examples
	49.2. Logical Decoding Concepts
	49.2.1. Logical Decoding
	49.2.2. Replication Slots
	49.2.3. Output Plugins
	49.2.4. Exported Snapshots

	49.3. Streaming Replication Protocol Interface
	49.4. Logical Decoding SQL Interface
	49.5. System Catalogs Related to Logical Decoding
	49.6. Logical Decoding Output Plugins
	49.6.1. Initialization Function
	49.6.2. Capabilities
	49.6.3. Output Modes
	49.6.4. Output Plugin Callbacks
	49.6.4.1. Startup Callback
	49.6.4.2. Shutdown Callback
	49.6.4.3. Transaction Begin Callback
	49.6.4.4. Transaction End Callback
	49.6.4.5. Change Callback
	49.6.4.6. Truncate Callback
	49.6.4.7. Origin Filter Callback
	49.6.4.8. Generic Message Callback

	49.6.5. Functions for Producing Output

	49.7. Logical Decoding Output Writers
	49.8. Synchronous Replication Support for Logical Decoding

	Chapter 50. Replication Progress Tracking

	Part VI. Reference
	SQL Commands
	ABORT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER COLLATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER CONVERSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER DATABASE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER DEFAULT PRIVILEGES
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	ALTER DOMAIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER EVENT TRIGGER
	Description
	Parameters
	Compatibility
	See Also

	ALTER EXTENSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER FOREIGN DATA WRAPPER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER FOREIGN TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER FUNCTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER GROUP
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER INDEX
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER LANGUAGE
	Description
	Parameters
	Compatibility
	See Also

	ALTER LARGE OBJECT
	Description
	Parameters
	Compatibility
	See Also

	ALTER MATERIALIZED VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER OPERATOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER OPERATOR CLASS
	Description
	Parameters
	Compatibility
	See Also

	ALTER OPERATOR FAMILY
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER POLICY
	Description
	Parameters
	Compatibility
	See Also

	ALTER PROCEDURE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER PUBLICATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER ROUTINE
	Description
	Examples
	Compatibility
	See Also

	ALTER RULE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER SCHEMA
	Description
	Parameters
	Compatibility
	See Also

	ALTER SEQUENCE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER SERVER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER STATISTICS
	Description
	Parameters
	Compatibility
	See Also

	ALTER SUBSCRIPTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER SYSTEM
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TABLESPACE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH PARSER
	Description
	Parameters
	Compatibility
	See Also

	ALTER TEXT SEARCH TEMPLATE
	Description
	Parameters
	Compatibility
	See Also

	ALTER TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TYPE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER USER
	Description
	Compatibility
	See Also

	ALTER USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER VIEW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ANALYZE
	Description
	Parameters
	Outputs
	Notes
	Compatibility
	See Also

	BEGIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CALL
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CHECKPOINT
	Description
	Compatibility

	CLOSE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CLUSTER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COMMENT
	Description
	Parameters
	Notes
	Examples
	Compatibility

	COMMIT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COMMIT PREPARED
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COPY
	Description
	Parameters
	Outputs
	Notes
	File Formats
	Text Format
	CSV Format
	Binary Format
	File Header
	Tuples
	File Trailer

	Examples
	Compatibility

	CREATE ACCESS METHOD
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE CAST
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE COLLATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE CONVERSION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE DATABASE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE DOMAIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE EVENT TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE EXTENSION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FOREIGN DATA WRAPPER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FOREIGN TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FUNCTION
	Description
	Parameters
	Overloading
	Notes
	Examples
	Writing SECURITY DEFINER Functions Safely
	Compatibility
	See Also

	CREATE GROUP
	Description
	Compatibility
	See Also

	CREATE INDEX
	Description
	Parameters
	Index Storage Parameters
	Building Indexes Concurrently

	Notes
	Examples
	Compatibility
	See Also

	CREATE LANGUAGE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE MATERIALIZED VIEW
	Description
	Parameters
	Compatibility
	See Also

	CREATE OPERATOR
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR CLASS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR FAMILY
	Description
	Parameters
	Compatibility
	See Also

	CREATE POLICY
	Description
	Parameters
	Per-Command Policies
	Application of Multiple Policies

	Notes
	Compatibility
	See Also

	CREATE PROCEDURE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE PUBLICATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE RULE
	Description
	Parameters
	Notes
	Compatibility
	See Also

	CREATE SCHEMA
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SEQUENCE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SERVER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE STATISTICS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SUBSCRIPTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TABLE
	Description
	Parameters
	Storage Parameters

	Notes
	Examples
	Compatibility
	Temporary Tables
	Non-deferred Uniqueness Constraints
	Column Check Constraints
	EXCLUDE Constraint
	NULL “Constraint”
	Constraint Naming
	Inheritance
	Zero-column Tables
	Multiple Identity Columns
	LIKE Clause
	WITH Clause
	Tablespaces
	Typed Tables
	PARTITION BY Clause
	PARTITION OF Clause

	See Also

	CREATE TABLE AS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TABLESPACE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Notes
	Compatibility
	See Also

	CREATE TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE TEXT SEARCH PARSER
	Description
	Parameters
	Compatibility
	See Also

	CREATE TEXT SEARCH TEMPLATE
	Description
	Parameters
	Compatibility
	See Also

	CREATE TRANSFORM
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TYPE
	Description
	Composite Types
	Enumerated Types
	Range Types
	Base Types
	Array Types

	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE USER
	Description
	Compatibility
	See Also

	CREATE USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE VIEW
	Description
	Parameters
	Notes
	Updatable Views

	Examples
	Compatibility
	See Also

	DEALLOCATE
	Description
	Parameters
	Compatibility
	See Also

	DECLARE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DELETE
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	DISCARD
	Description
	Parameters
	Notes
	Compatibility

	DO
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP ACCESS METHOD
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP CAST
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP COLLATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP CONVERSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP DATABASE
	Description
	Parameters
	Notes
	Compatibility
	See Also

	DROP DOMAIN
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP EVENT TRIGGER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP EXTENSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FOREIGN DATA WRAPPER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FOREIGN TABLE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FUNCTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP GROUP
	Description
	Compatibility
	See Also

	DROP INDEX
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP LANGUAGE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP MATERIALIZED VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OPERATOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OPERATOR CLASS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP OPERATOR FAMILY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OWNED
	Description
	Parameters
	Notes
	Compatibility
	See Also

	DROP POLICY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP PROCEDURE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP PUBLICATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP ROUTINE
	Description
	Examples
	Compatibility
	See Also

	DROP RULE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SCHEMA
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP SEQUENCE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SERVER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP STATISTICS
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SUBSCRIPTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP TABLE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TABLESPACE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH PARSER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH TEMPLATE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TRANSFORM
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TRIGGER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TYPE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP USER
	Description
	Compatibility
	See Also

	DROP USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	END
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	EXECUTE
	Description
	Parameters
	Outputs
	Examples
	Compatibility
	See Also

	EXPLAIN
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	FETCH
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	GRANT
	Description
	GRANT on Database Objects
	GRANT on Roles

	Notes
	Examples
	Compatibility
	See Also

	IMPORT FOREIGN SCHEMA
	Description
	Parameters
	Examples
	Compatibility
	See Also

	INSERT
	Description
	Parameters
	Inserting
	ON CONFLICT Clause

	Outputs
	Notes
	Examples
	Compatibility

	LISTEN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	LOAD
	Description
	Compatibility
	See Also

	LOCK
	Description
	Parameters
	Notes
	Examples
	Compatibility

	MOVE
	Description
	Outputs
	Examples
	Compatibility
	See Also

	NOTIFY
	Description
	Parameters
	Notes
	pg_notify

	Examples
	Compatibility
	See Also

	PREPARE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	PREPARE TRANSACTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	REASSIGN OWNED
	Description
	Parameters
	Notes
	Compatibility
	See Also

	REFRESH MATERIALIZED VIEW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	REINDEX
	Description
	Parameters
	Notes
	Examples
	Compatibility

	RELEASE SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	RESET
	Description
	Parameters
	Examples
	Compatibility
	See Also

	REVOKE
	Description
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK PREPARED
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK TO SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SECURITY LABEL
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SELECT
	Description
	Parameters
	WITH Clause
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	WINDOW Clause
	SELECT List
	DISTINCT Clause
	UNION Clause
	INTERSECT Clause
	EXCEPT Clause
	ORDER BY Clause
	LIMIT Clause
	The Locking Clause
	TABLE Command

	Examples
	Compatibility
	Omitted FROM Clauses
	Empty SELECT Lists
	Omitting the AS Key Word
	ONLY and Inheritance
	TABLESAMPLE Clause Restrictions
	Function Calls in FROM
	Namespace Available to GROUP BY and ORDER BY
	Functional Dependencies
	LIMIT and OFFSET
	FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, FOR KEY SHARE
	Data-Modifying Statements in WITH
	Nonstandard Clauses

	SELECT INTO
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET CONSTRAINTS
	Description
	Notes
	Compatibility

	SET ROLE
	Description
	Notes
	Examples
	Compatibility
	See Also

	SET SESSION AUTHORIZATION
	Description
	Notes
	Examples
	Compatibility
	See Also

	SET TRANSACTION
	Description
	Notes
	Examples
	Compatibility

	SHOW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	START TRANSACTION
	Description
	Parameters
	Compatibility
	See Also

	TRUNCATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	UNLISTEN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	UPDATE
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility

	VACUUM
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	VALUES
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	PostgreSQL Client Applications
	clusterdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	createdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	createuser
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	dropdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	dropuser
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	ecpg
	Description
	Options
	Notes
	Examples

	pg_basebackup
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pgbench
	Description
	Options
	Initialization Options
	Benchmarking Options
	Common Options

	Notes
	What is the “Transaction” Actually Performed in pgbench?
	Custom Scripts
	Built-In Operators
	Built-In Functions
	Per-Transaction Logging
	Aggregated Logging
	Per-Statement Latencies
	Good Practices
	Security

	pg_config
	Description
	Options
	Notes
	Example

	pg_dump
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	pg_dumpall
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pg_isready
	Description
	Options
	Exit Status
	Environment
	Notes
	Examples

	pg_receivewal
	Description
	Options
	Exit Status
	Environment
	Notes
	Examples
	See Also

	pg_recvlogical
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pg_restore
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	psql
	Description
	Options
	Exit Status
	Usage
	Connecting to a Database
	Entering SQL Commands
	Meta-Commands
	Patterns

	Advanced Features
	Variables
	SQL Interpolation
	Prompting
	Command-Line Editing

	Environment
	Files
	Notes
	Notes for Windows Users
	Examples

	reindexdb
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	vacuumdb
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	PostgreSQL Server Applications
	initdb
	Description
	Options
	Environment
	Notes
	See Also

	pg_archivecleanup
	Description
	Options
	Notes
	Examples
	See Also

	pg_controldata
	Description
	Environment

	pg_ctl
	Description
	Options
	Options for Windows

	Environment
	Files
	Examples
	Starting the Server
	Stopping the Server
	Restarting the Server
	Showing the Server Status

	See Also

	pg_resetwal
	Description
	Options
	Notes
	See Also

	pg_rewind
	Description
	Options
	Environment
	Notes
	How it works

	pg_test_fsync
	Description
	Options
	See Also

	pg_test_timing
	Description
	Options
	Usage
	Interpreting results
	Measuring executor timing overhead
	Changing time sources
	Clock hardware and timing accuracy

	See Also

	pg_upgrade
	Description
	Options
	Usage
	Notes
	See Also

	pg_verify_checksums
	Description
	Options
	Environment

	pg_waldump
	Description
	Options
	Notes
	See Also

	postgres
	Description
	Options
	General Purpose
	Semi-internal Options
	Options for Single-User Mode

	Environment
	Diagnostics
	Notes
	Bugs
	Single-User Mode
	Examples
	See Also

	postmaster
	Description
	See Also

	Part VII. Internals
	Chapter 51. Overview of PostgreSQL Internals
	51.1. The Path of a Query
	51.2. How Connections are Established
	51.3. The Parser Stage
	51.3.1. Parser
	51.3.2. Transformation Process

	51.4. The PostgreSQL Rule System
	51.5. Planner/Optimizer
	51.5.1. Generating Possible Plans

	51.6. Executor

	Chapter 52. System Catalogs
	52.1. Overview
	52.2. pg_aggregate
	52.3. pg_am
	52.4. pg_amop
	52.5. pg_amproc
	52.6. pg_attrdef
	52.7. pg_attribute
	52.8. pg_authid
	52.9. pg_auth_members
	52.10. pg_cast
	52.11. pg_class
	52.12. pg_collation
	52.13. pg_constraint
	52.14. pg_conversion
	52.15. pg_database
	52.16. pg_db_role_setting
	52.17. pg_default_acl
	52.18. pg_depend
	52.19. pg_description
	52.20. pg_enum
	52.21. pg_event_trigger
	52.22. pg_extension
	52.23. pg_foreign_data_wrapper
	52.24. pg_foreign_server
	52.25. pg_foreign_table
	52.26. pg_index
	52.27. pg_inherits
	52.28. pg_init_privs
	52.29. pg_language
	52.30. pg_largeobject
	52.31. pg_largeobject_metadata
	52.32. pg_namespace
	52.33. pg_opclass
	52.34. pg_operator
	52.35. pg_opfamily
	52.36. pg_partitioned_table
	52.37. pg_pltemplate
	52.38. pg_policy
	52.39. pg_proc
	52.40. pg_publication
	52.41. pg_publication_rel
	52.42. pg_range
	52.43. pg_replication_origin
	52.44. pg_rewrite
	52.45. pg_seclabel
	52.46. pg_sequence
	52.47. pg_shdepend
	52.48. pg_shdescription
	52.49. pg_shseclabel
	52.50. pg_statistic
	52.51. pg_statistic_ext
	52.52. pg_subscription
	52.53. pg_subscription_rel
	52.54. pg_tablespace
	52.55. pg_transform
	52.56. pg_trigger
	52.57. pg_ts_config
	52.58. pg_ts_config_map
	52.59. pg_ts_dict
	52.60. pg_ts_parser
	52.61. pg_ts_template
	52.62. pg_type
	52.63. pg_user_mapping
	52.64. System Views
	52.65. pg_available_extensions
	52.66. pg_available_extension_versions
	52.67. pg_config
	52.68. pg_cursors
	52.69. pg_file_settings
	52.70. pg_group
	52.71. pg_hba_file_rules
	52.72. pg_indexes
	52.73. pg_locks
	52.74. pg_matviews
	52.75. pg_policies
	52.76. pg_prepared_statements
	52.77. pg_prepared_xacts
	52.78. pg_publication_tables
	52.79. pg_replication_origin_status
	52.80. pg_replication_slots
	52.81. pg_roles
	52.82. pg_rules
	52.83. pg_seclabels
	52.84. pg_sequences
	52.85. pg_settings
	52.86. pg_shadow
	52.87. pg_stats
	52.88. pg_tables
	52.89. pg_timezone_abbrevs
	52.90. pg_timezone_names
	52.91. pg_user
	52.92. pg_user_mappings
	52.93. pg_views

	Chapter 53. Frontend/Backend Protocol
	53.1. Overview
	53.1.1. Messaging Overview
	53.1.2. Extended Query Overview
	53.1.3. Formats and Format Codes

	53.2. Message Flow
	53.2.1. Start-up
	53.2.2. Simple Query
	53.2.2.1. Multiple Statements in a Simple Query

	53.2.3. Extended Query
	53.2.4. Function Call
	53.2.5. COPY Operations
	53.2.6. Asynchronous Operations
	53.2.7. Canceling Requests in Progress
	53.2.8. Termination
	53.2.9. SSL Session Encryption

	53.3. SASL Authentication
	53.3.1. SCRAM-SHA-256 authentication

	53.4. Streaming Replication Protocol
	53.5. Logical Streaming Replication Protocol
	53.5.1. Logical Streaming Replication Parameters
	53.5.2. Logical Replication Protocol Messages
	53.5.3. Logical Replication Protocol Message Flow

	53.6. Message Data Types
	53.7. Message Formats
	53.8. Error and Notice Message Fields
	53.9. Logical Replication Message Formats
	53.10. Summary of Changes since Protocol 2.0

	Chapter 54. PostgreSQL Coding Conventions
	54.1. Formatting
	54.2. Reporting Errors Within the Server
	54.3. Error Message Style Guide
	54.4. Miscellaneous Coding Conventions

	Chapter 55. Native Language Support
	55.1. For the Translator
	55.1.1. Requirements
	55.1.2. Concepts
	55.1.3. Creating and Maintaining Message Catalogs
	55.1.4. Editing the PO Files

	55.2. For the Programmer
	55.2.1. Mechanics
	55.2.2. Message-writing Guidelines

	Chapter 56. Writing A Procedural Language Handler
	Chapter 57. Writing A Foreign Data Wrapper
	57.1. Foreign Data Wrapper Functions
	57.2. Foreign Data Wrapper Callback Routines
	57.2.1. FDW Routines For Scanning Foreign Tables
	57.2.2. FDW Routines For Scanning Foreign Joins
	57.2.3. FDW Routines For Planning Post-Scan/Join Processing
	57.2.4. FDW Routines For Updating Foreign Tables
	57.2.5. FDW Routines For Row Locking
	57.2.6. FDW Routines for EXPLAIN
	57.2.7. FDW Routines for ANALYZE
	57.2.8. FDW Routines For IMPORT FOREIGN SCHEMA
	57.2.9. FDW Routines for Parallel Execution
	57.2.10. FDW Routines For reparameterization of paths

	57.3. Foreign Data Wrapper Helper Functions
	57.4. Foreign Data Wrapper Query Planning
	57.5. Row Locking in Foreign Data Wrappers

	Chapter 58. Writing A Table Sampling Method
	58.1. Sampling Method Support Functions

	Chapter 59. Writing A Custom Scan Provider
	59.1. Creating Custom Scan Paths
	59.1.1. Custom Scan Path Callbacks

	59.2. Creating Custom Scan Plans
	59.2.1. Custom Scan Plan Callbacks

	59.3. Executing Custom Scans
	59.3.1. Custom Scan Execution Callbacks

	Chapter 60. Genetic Query Optimizer
	60.1. Query Handling as a Complex Optimization Problem
	60.2. Genetic Algorithms
	60.3. Genetic Query Optimization (GEQO) in PostgreSQL
	60.3.1. Generating Possible Plans with GEQO
	60.3.2. Future Implementation Tasks for PostgreSQL GEQO

	60.4. Further Reading

	Chapter 61. Index Access Method Interface Definition
	61.1. Basic API Structure for Indexes
	61.2. Index Access Method Functions
	61.3. Index Scanning
	61.4. Index Locking Considerations
	61.5. Index Uniqueness Checks
	61.6. Index Cost Estimation Functions

	Chapter 62. Generic WAL Records
	Chapter 63. B-Tree Indexes
	63.1. Introduction
	63.2. Behavior of B-Tree Operator Classes
	63.3. B-Tree Support Functions
	63.4. Implementation

	Chapter 64. GiST Indexes
	64.1. Introduction
	64.2. Built-in Operator Classes
	64.3. Extensibility
	64.4. Implementation
	64.4.1. GiST buffering build

	64.5. Examples

	Chapter 65. SP-GiST Indexes
	65.1. Introduction
	65.2. Built-in Operator Classes
	65.3. Extensibility
	65.4. Implementation
	65.4.1. SP-GiST Limits
	65.4.2. SP-GiST Without Node Labels
	65.4.3. “All-the-same” Inner Tuples

	65.5. Examples

	Chapter 66. GIN Indexes
	66.1. Introduction
	66.2. Built-in Operator Classes
	66.3. Extensibility
	66.4. Implementation
	66.4.1. GIN Fast Update Technique
	66.4.2. Partial Match Algorithm

	66.5. GIN Tips and Tricks
	66.6. Limitations
	66.7. Examples

	Chapter 67. BRIN Indexes
	67.1. Introduction
	67.1.1. Index Maintenance

	67.2. Built-in Operator Classes
	67.3. Extensibility

	Chapter 68. Database Physical Storage
	68.1. Database File Layout
	68.2. TOAST
	68.2.1. Out-of-line, on-disk TOAST storage
	68.2.2. Out-of-line, in-memory TOAST storage

	68.3. Free Space Map
	68.4. Visibility Map
	68.5. The Initialization Fork
	68.6. Database Page Layout
	68.6.1. Table Row Layout

	Chapter 69. System Catalog Declarations and Initial Contents
	69.1. System Catalog Declaration Rules
	69.2. System Catalog Initial Data
	69.2.1. Data File Format
	69.2.2. OID Assignment
	69.2.3. OID Reference Lookup
	69.2.4. Recipes for Editing Data Files

	69.3. BKI File Format
	69.4. BKI Commands
	69.5. Structure of the Bootstrap BKI File
	69.6. BKI Example

	Chapter 70. How the Planner Uses Statistics
	70.1. Row Estimation Examples
	70.2. Multivariate Statistics Examples
	70.2.1. Functional Dependencies
	70.2.2. Multivariate N-Distinct Counts

	70.3. Planner Statistics and Security

	Part VIII. Appendixes
	Appendix A. PostgreSQL Error Codes
	Appendix B. Date/Time Support
	B.1. Date/Time Input Interpretation
	B.2. Handling of Invalid or Ambiguous Timestamps
	B.3. Date/Time Key Words
	B.4. Date/Time Configuration Files
	B.5. History of Units

	Appendix C. SQL Key Words
	Appendix D. SQL Conformance
	D.1. Supported Features
	D.2. Unsupported Features

	Appendix E. Release Notes
	E.1. Release 11.2
	E.1.1. Migration to Version 11.2
	E.1.2. Changes

	E.2. Release 11.1
	E.2.1. Migration to Version 11.1
	E.2.2. Changes

	E.3. Release 11
	E.3.1. Overview
	E.3.2. Migration to Version 11
	E.3.3. Changes
	E.3.3.1. Server
	E.3.3.1.1. Partitioning
	E.3.3.1.2. Parallel Queries
	E.3.3.1.3. Indexes
	E.3.3.1.3.1. SP-Gist

	E.3.3.1.4. Optimizer
	E.3.3.1.5. General Performance
	E.3.3.1.6. Monitoring
	E.3.3.1.6.1. Information Schema

	E.3.3.1.7. Authentication
	E.3.3.1.8. Permissions
	E.3.3.1.9. Server Configuration
	E.3.3.1.10. Write-Ahead Log (WAL)

	E.3.3.2. Base Backup and Streaming Replication
	E.3.3.3. Utility Commands
	E.3.3.4. Data Types
	E.3.3.5. Functions
	E.3.3.6. Server-Side Languages
	E.3.3.7. Client Interfaces
	E.3.3.8. Client Applications
	E.3.3.8.1. psql
	E.3.3.8.2. pgbench

	E.3.3.9. Server Applications
	E.3.3.9.1. pg_dump, pg_dumpall, pg_restore

	E.3.3.10. Source Code
	E.3.3.11. Additional Modules

	E.3.4. Acknowledgments

	E.4. Prior Releases

	Appendix F. Additional Supplied Modules
	F.1. adminpack
	F.2. amcheck
	F.2.1. Functions
	F.2.2. Optional heapallindexed verification
	F.2.3. Using amcheck effectively
	F.2.4. Repairing corruption

	F.3. auth_delay
	F.3.1. Configuration Parameters
	F.3.2. Author

	F.4. auto_explain
	F.4.1. Configuration Parameters
	F.4.2. Example
	F.4.3. Author

	F.5. bloom
	F.5.1. Parameters
	F.5.2. Examples
	F.5.3. Operator Class Interface
	F.5.4. Limitations
	F.5.5. Authors

	F.6. btree_gin
	F.6.1. Example Usage
	F.6.2. Authors

	F.7. btree_gist
	F.7.1. Example Usage
	F.7.2. Authors

	F.8. citext
	F.8.1. Rationale
	F.8.2. How to Use It
	F.8.3. String Comparison Behavior
	F.8.4. Limitations
	F.8.5. Author

	F.9. cube
	F.9.1. Syntax
	F.9.2. Precision
	F.9.3. Usage
	F.9.4. Defaults
	F.9.5. Notes
	F.9.6. Credits

	F.10. dblink
	dblink_connect
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_connect_u
	Description

	dblink_disconnect
	Description
	Arguments
	Return Value
	Examples

	dblink
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_exec
	Description
	Arguments
	Return Value
	Examples

	dblink_open
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_fetch
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_close
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_get_connections
	Description
	Return Value
	Examples

	dblink_error_message
	Description
	Arguments
	Return Value
	Examples

	dblink_send_query
	Description
	Arguments
	Return Value
	Examples

	dblink_is_busy
	Description
	Arguments
	Return Value
	Examples

	dblink_get_notify
	Description
	Arguments
	Return Value
	Examples

	dblink_get_result
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_cancel_query
	Description
	Arguments
	Return Value
	Examples

	dblink_get_pkey
	Description
	Arguments
	Return Value
	Examples

	dblink_build_sql_insert
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_build_sql_delete
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_build_sql_update
	Description
	Arguments
	Return Value
	Notes
	Examples

	F.11. dict_int
	F.11.1. Configuration
	F.11.2. Usage

	F.12. dict_xsyn
	F.12.1. Configuration
	F.12.2. Usage

	F.13. earthdistance
	F.13.1. Cube-based Earth Distances
	F.13.2. Point-based Earth Distances

	F.14. file_fdw
	F.15. fuzzystrmatch
	F.15.1. Soundex
	F.15.2. Levenshtein
	F.15.3. Metaphone
	F.15.4. Double Metaphone

	F.16. hstore
	F.16.1. hstore External Representation
	F.16.2. hstore Operators and Functions
	F.16.3. Indexes
	F.16.4. Examples
	F.16.5. Statistics
	F.16.6. Compatibility
	F.16.7. Transforms
	F.16.8. Authors

	F.17. intagg
	F.17.1. Functions
	F.17.2. Sample Uses

	F.18. intarray
	F.18.1. intarray Functions and Operators
	F.18.2. Index Support
	F.18.3. Example
	F.18.4. Benchmark
	F.18.5. Authors

	F.19. isn
	F.19.1. Data Types
	F.19.2. Casts
	F.19.3. Functions and Operators
	F.19.4. Examples
	F.19.5. Bibliography
	F.19.6. Author

	F.20. lo
	F.20.1. Rationale
	F.20.2. How to Use It
	F.20.3. Limitations
	F.20.4. Author

	F.21. ltree
	F.21.1. Definitions
	F.21.2. Operators and Functions
	F.21.3. Indexes
	F.21.4. Example
	F.21.5. Transforms
	F.21.6. Authors

	F.22. pageinspect
	F.22.1. General Functions
	F.22.2. B-tree Functions
	F.22.3. BRIN Functions
	F.22.4. GIN Functions
	F.22.5. Hash Functions

	F.23. passwordcheck
	F.24. pg_buffercache
	F.24.1. The pg_buffercache View
	F.24.2. Sample Output
	F.24.3. Authors

	F.25. pgcrypto
	F.25.1. General Hashing Functions
	F.25.1.1. digest()
	F.25.1.2. hmac()

	F.25.2. Password Hashing Functions
	F.25.2.1. crypt()
	F.25.2.2. gen_salt()

	F.25.3. PGP Encryption Functions
	F.25.3.1. pgp_sym_encrypt()
	F.25.3.2. pgp_sym_decrypt()
	F.25.3.3. pgp_pub_encrypt()
	F.25.3.4. pgp_pub_decrypt()
	F.25.3.5. pgp_key_id()
	F.25.3.6. armor(), dearmor()
	F.25.3.7. pgp_armor_headers
	F.25.3.8. Options for PGP Functions
	F.25.3.8.1. cipher-algo
	F.25.3.8.2. compress-algo
	F.25.3.8.3. compress-level
	F.25.3.8.4. convert-crlf
	F.25.3.8.5. disable-mdc
	F.25.3.8.6. sess-key
	F.25.3.8.7. s2k-mode
	F.25.3.8.8. s2k-count
	F.25.3.8.9. s2k-digest-algo
	F.25.3.8.10. s2k-cipher-algo
	F.25.3.8.11. unicode-mode

	F.25.3.9. Generating PGP Keys with GnuPG
	F.25.3.10. Limitations of PGP Code

	F.25.4. Raw Encryption Functions
	F.25.5. Random-Data Functions
	F.25.6. Notes
	F.25.6.1. Configuration
	F.25.6.2. NULL Handling
	F.25.6.3. Security Limitations
	F.25.6.4. Useful Reading
	F.25.6.5. Technical References

	F.25.7. Author

	F.26. pg_freespacemap
	F.26.1. Functions
	F.26.2. Sample Output
	F.26.3. Author

	F.27. pg_prewarm
	F.27.1. Functions
	F.27.2. Configuration Parameters
	F.27.3. Author

	F.28. pgrowlocks
	F.28.1. Overview
	F.28.2. Sample Output
	F.28.3. Author

	F.29. pg_stat_statements
	F.29.1. The pg_stat_statements View
	F.29.2. Functions
	F.29.3. Configuration Parameters
	F.29.4. Sample Output
	F.29.5. Authors

	F.30. pgstattuple
	F.30.1. Functions
	F.30.2. Authors

	F.31. pg_trgm
	F.31.1. Trigram (or Trigraph) Concepts
	F.31.2. Functions and Operators
	F.31.3. GUC Parameters
	F.31.4. Index Support
	F.31.5. Text Search Integration
	F.31.6. References
	F.31.7. Authors

	F.32. pg_visibility
	F.32.1. Functions
	F.32.2. Author

	F.33. postgres_fdw
	F.33.1. FDW Options of postgres_fdw
	F.33.1.1. Connection Options
	F.33.1.2. Object Name Options
	F.33.1.3. Cost Estimation Options
	F.33.1.4. Remote Execution Options
	F.33.1.5. Updatability Options
	F.33.1.6. Importing Options

	F.33.2. Connection Management
	F.33.3. Transaction Management
	F.33.4. Remote Query Optimization
	F.33.5. Remote Query Execution Environment
	F.33.6. Cross-Version Compatibility
	F.33.7. Examples
	F.33.8. Author

	F.34. seg
	F.34.1. Rationale
	F.34.2. Syntax
	F.34.3. Precision
	F.34.4. Usage
	F.34.5. Notes
	F.34.6. Credits

	F.35. sepgsql
	F.35.1. Overview
	F.35.2. Installation
	F.35.3. Regression Tests
	F.35.4. GUC Parameters
	F.35.5. Features
	F.35.5.1. Controlled Object Classes
	F.35.5.2. DML Permissions
	F.35.5.3. DDL Permissions
	F.35.5.4. Trusted Procedures
	F.35.5.5. Dynamic Domain Transitions
	F.35.5.6. Miscellaneous

	F.35.6. Sepgsql Functions
	F.35.7. Limitations
	F.35.8. External Resources
	F.35.9. Author

	F.36. spi
	F.36.1. refint — Functions for Implementing Referential Integrity
	F.36.2. timetravel — Functions for Implementing Time Travel
	F.36.3. autoinc — Functions for Autoincrementing Fields
	F.36.4. insert_username — Functions for Tracking Who Changed a Table
	F.36.5. moddatetime — Functions for Tracking Last Modification Time

	F.37. sslinfo
	F.37.1. Functions Provided
	F.37.2. Author

	F.38. tablefunc
	F.38.1. Functions Provided
	F.38.1.1. normal_rand
	F.38.1.2. crosstab(text)
	F.38.1.3. crosstabN(text)
	F.38.1.4. crosstab(text, text)
	F.38.1.5. connectby

	F.38.2. Author

	F.39. tcn
	F.40. test_decoding
	F.41. tsm_system_rows
	F.41.1. Examples

	F.42. tsm_system_time
	F.42.1. Examples

	F.43. unaccent
	F.43.1. Configuration
	F.43.2. Usage
	F.43.3. Functions

	F.44. uuid-ossp
	F.44.1. uuid-ossp Functions
	F.44.2. Building uuid-ossp
	F.44.3. Author

	F.45. xml2
	F.45.1. Deprecation Notice
	F.45.2. Description of Functions
	F.45.3. xpath_table
	F.45.3.1. Multivalued Results

	F.45.4. XSLT Functions
	F.45.4.1. xslt_process

	F.45.5. Author

	Appendix G. Additional Supplied Programs
	G.1. Client Applications
	oid2name
	Description
	Options
	Notes
	Examples
	Author

	vacuumlo
	Description
	Options
	Notes
	Author

	G.2. Server Applications
	pg_standby
	Description
	Options
	Notes
	Examples
	Author
	See Also

	Appendix H. External Projects
	H.1. Client Interfaces
	H.2. Administration Tools
	H.3. Procedural Languages
	H.4. Extensions

	Appendix I. The Source Code Repository
	I.1. Getting The Source via Git

	Appendix J. Documentation
	J.1. DocBook
	J.2. Tool Sets
	J.2.1. Installation on Fedora, RHEL, and Derivatives
	J.2.2. Installation on FreeBSD
	J.2.3. Debian Packages
	J.2.4. macOS
	J.2.5. Detection by configure

	J.3. Building The Documentation
	J.3.1. HTML
	J.3.2. Manpages
	J.3.3. PDF
	J.3.4. Plain Text Files
	J.3.5. Syntax Check

	J.4. Documentation Authoring
	J.4.1. Emacs

	J.5. Style Guide
	J.5.1. Reference Pages

	Appendix K. Acronyms

	Bibliography
	Index

