You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1740 lines
52 KiB
1740 lines
52 KiB
From 66bf22e129f0b8621903a8b0489b2684e70fad65 Mon Sep 17 00:00:00 2001 |
|
From: Siddhesh Poyarekar <siddhesh@redhat.com> |
|
Date: Fri, 8 Mar 2013 11:38:41 +0530 |
|
Subject: [PATCH 17/42] Consolidate copies of mp code in powerpc |
|
|
|
Retain a single copy of the mp code in power4 instead of the two |
|
identical copies in powerpc32 and powerpc64. |
|
(backported from commit 6d9145d817e570cd986bb088cf2af0bf51ac7dde) |
|
--- |
|
sysdeps/powerpc/power4/fpu/Makefile | 5 + |
|
sysdeps/powerpc/power4/fpu/mpa.c | 548 ++++++++++++++++++++++++++ |
|
sysdeps/powerpc/powerpc32/power4/Implies | 2 + |
|
sysdeps/powerpc/powerpc32/power4/fpu/Makefile | 5 - |
|
sysdeps/powerpc/powerpc32/power4/fpu/mpa.c | 548 -------------------------- |
|
sysdeps/powerpc/powerpc64/power4/Implies | 2 + |
|
sysdeps/powerpc/powerpc64/power4/fpu/Makefile | 5 - |
|
sysdeps/powerpc/powerpc64/power4/fpu/mpa.c | 548 -------------------------- |
|
9 files changed, 568 insertions(+), 1106 deletions(-) |
|
create mode 100644 sysdeps/powerpc/power4/fpu/Makefile |
|
create mode 100644 sysdeps/powerpc/power4/fpu/mpa.c |
|
create mode 100644 sysdeps/powerpc/powerpc32/power4/Implies |
|
delete mode 100644 sysdeps/powerpc/powerpc32/power4/fpu/Makefile |
|
delete mode 100644 sysdeps/powerpc/powerpc32/power4/fpu/mpa.c |
|
create mode 100644 sysdeps/powerpc/powerpc64/power4/Implies |
|
delete mode 100644 sysdeps/powerpc/powerpc64/power4/fpu/Makefile |
|
delete mode 100644 sysdeps/powerpc/powerpc64/power4/fpu/mpa.c |
|
|
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/Makefile glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/Makefile |
|
new file mode 100644 |
|
index 0000000..f487ed6 |
|
--- /dev/null |
|
+++ glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/Makefile |
|
@@ -0,0 +1,5 @@ |
|
+# Makefile fragment for POWER4/5/5+ with FPU. |
|
+ |
|
+ifeq ($(subdir),math) |
|
+CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops |
|
+endif |
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/mpa.c glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/mpa.c |
|
new file mode 100644 |
|
index 0000000..d15680e |
|
--- /dev/null |
|
+++ glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/mpa.c |
|
@@ -0,0 +1,548 @@ |
|
+ |
|
+/* |
|
+ * IBM Accurate Mathematical Library |
|
+ * written by International Business Machines Corp. |
|
+ * Copyright (C) 2001, 2006 Free Software Foundation |
|
+ * |
|
+ * This program is free software; you can redistribute it and/or modify |
|
+ * it under the terms of the GNU Lesser General Public License as published by |
|
+ * the Free Software Foundation; either version 2.1 of the License, or |
|
+ * (at your option) any later version. |
|
+ * |
|
+ * This program is distributed in the hope that it will be useful, |
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
+ * GNU Lesser General Public License for more details. |
|
+ * |
|
+ * You should have received a copy of the GNU Lesser General Public License |
|
+ * along with this program; if not, see <http://www.gnu.org/licenses/>. |
|
+ */ |
|
+/************************************************************************/ |
|
+/* MODULE_NAME: mpa.c */ |
|
+/* */ |
|
+/* FUNCTIONS: */ |
|
+/* mcr */ |
|
+/* acr */ |
|
+/* cr */ |
|
+/* cpy */ |
|
+/* cpymn */ |
|
+/* norm */ |
|
+/* denorm */ |
|
+/* mp_dbl */ |
|
+/* dbl_mp */ |
|
+/* add_magnitudes */ |
|
+/* sub_magnitudes */ |
|
+/* add */ |
|
+/* sub */ |
|
+/* mul */ |
|
+/* inv */ |
|
+/* dvd */ |
|
+/* */ |
|
+/* Arithmetic functions for multiple precision numbers. */ |
|
+/* Relative errors are bounded */ |
|
+/************************************************************************/ |
|
+ |
|
+ |
|
+#include "endian.h" |
|
+#include "mpa.h" |
|
+#include "mpa2.h" |
|
+#include <sys/param.h> /* For MIN() */ |
|
+/* mcr() compares the sizes of the mantissas of two multiple precision */ |
|
+/* numbers. Mantissas are compared regardless of the signs of the */ |
|
+/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */ |
|
+/* disregarded. */ |
|
+static int mcr(const mp_no *x, const mp_no *y, int p) { |
|
+ long i; |
|
+ long p2 = p; |
|
+ for (i=1; i<=p2; i++) { |
|
+ if (X[i] == Y[i]) continue; |
|
+ else if (X[i] > Y[i]) return 1; |
|
+ else return -1; } |
|
+ return 0; |
|
+} |
|
+ |
|
+ |
|
+ |
|
+/* acr() compares the absolute values of two multiple precision numbers */ |
|
+int __acr(const mp_no *x, const mp_no *y, int p) { |
|
+ long i; |
|
+ |
|
+ if (X[0] == ZERO) { |
|
+ if (Y[0] == ZERO) i= 0; |
|
+ else i=-1; |
|
+ } |
|
+ else if (Y[0] == ZERO) i= 1; |
|
+ else { |
|
+ if (EX > EY) i= 1; |
|
+ else if (EX < EY) i=-1; |
|
+ else i= mcr(x,y,p); |
|
+ } |
|
+ |
|
+ return i; |
|
+} |
|
+ |
|
+ |
|
+/* cr90 compares the values of two multiple precision numbers */ |
|
+int __cr(const mp_no *x, const mp_no *y, int p) { |
|
+ int i; |
|
+ |
|
+ if (X[0] > Y[0]) i= 1; |
|
+ else if (X[0] < Y[0]) i=-1; |
|
+ else if (X[0] < ZERO ) i= __acr(y,x,p); |
|
+ else i= __acr(x,y,p); |
|
+ |
|
+ return i; |
|
+} |
|
+ |
|
+ |
|
+/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */ |
|
+void __cpy(const mp_no *x, mp_no *y, int p) { |
|
+ long i; |
|
+ |
|
+ EY = EX; |
|
+ for (i=0; i <= p; i++) Y[i] = X[i]; |
|
+ |
|
+ return; |
|
+} |
|
+ |
|
+ |
|
+/* Copy a multiple precision number x of precision m into a */ |
|
+/* multiple precision number y of precision n. In case n>m, */ |
|
+/* the digits of y beyond the m'th are set to zero. In case */ |
|
+/* n<m, the digits of x beyond the n'th are ignored. */ |
|
+/* x=y is permissible. */ |
|
+ |
|
+void __cpymn(const mp_no *x, int m, mp_no *y, int n) { |
|
+ |
|
+ long i,k; |
|
+ long n2 = n; |
|
+ long m2 = m; |
|
+ |
|
+ EY = EX; k=MIN(m2,n2); |
|
+ for (i=0; i <= k; i++) Y[i] = X[i]; |
|
+ for ( ; i <= n2; i++) Y[i] = ZERO; |
|
+ |
|
+ return; |
|
+} |
|
+ |
|
+/* Convert a multiple precision number *x into a double precision */ |
|
+/* number *y, normalized case (|x| >= 2**(-1022))) */ |
|
+static void norm(const mp_no *x, double *y, int p) |
|
+{ |
|
+ #define R radixi.d |
|
+ long i; |
|
+#if 0 |
|
+ int k; |
|
+#endif |
|
+ double a,c,u,v,z[5]; |
|
+ if (p<5) { |
|
+ if (p==1) c = X[1]; |
|
+ else if (p==2) c = X[1] + R* X[2]; |
|
+ else if (p==3) c = X[1] + R*(X[2] + R* X[3]); |
|
+ else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]); |
|
+ } |
|
+ else { |
|
+ for (a=ONE, z[1]=X[1]; z[1] < TWO23; ) |
|
+ {a *= TWO; z[1] *= TWO; } |
|
+ |
|
+ for (i=2; i<5; i++) { |
|
+ z[i] = X[i]*a; |
|
+ u = (z[i] + CUTTER)-CUTTER; |
|
+ if (u > z[i]) u -= RADIX; |
|
+ z[i] -= u; |
|
+ z[i-1] += u*RADIXI; |
|
+ } |
|
+ |
|
+ u = (z[3] + TWO71) - TWO71; |
|
+ if (u > z[3]) u -= TWO19; |
|
+ v = z[3]-u; |
|
+ |
|
+ if (v == TWO18) { |
|
+ if (z[4] == ZERO) { |
|
+ for (i=5; i <= p; i++) { |
|
+ if (X[i] == ZERO) continue; |
|
+ else {z[3] += ONE; break; } |
|
+ } |
|
+ } |
|
+ else z[3] += ONE; |
|
+ } |
|
+ |
|
+ c = (z[1] + R *(z[2] + R * z[3]))/a; |
|
+ } |
|
+ |
|
+ c *= X[0]; |
|
+ |
|
+ for (i=1; i<EX; i++) c *= RADIX; |
|
+ for (i=1; i>EX; i--) c *= RADIXI; |
|
+ |
|
+ *y = c; |
|
+ return; |
|
+#undef R |
|
+} |
|
+ |
|
+/* Convert a multiple precision number *x into a double precision */ |
|
+/* number *y, denormalized case (|x| < 2**(-1022))) */ |
|
+static void denorm(const mp_no *x, double *y, int p) |
|
+{ |
|
+ long i,k; |
|
+ long p2 = p; |
|
+ double c,u,z[5]; |
|
+#if 0 |
|
+ double a,v; |
|
+#endif |
|
+ |
|
+#define R radixi.d |
|
+ if (EX<-44 || (EX==-44 && X[1]<TWO5)) |
|
+ { *y=ZERO; return; } |
|
+ |
|
+ if (p2==1) { |
|
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;} |
|
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;} |
|
+ else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} |
|
+ } |
|
+ else if (p2==2) { |
|
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;} |
|
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;} |
|
+ else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} |
|
+ } |
|
+ else { |
|
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;} |
|
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;} |
|
+ else {z[1]= TWO10; z[2]=ZERO; k=1;} |
|
+ z[3] = X[k]; |
|
+ } |
|
+ |
|
+ u = (z[3] + TWO57) - TWO57; |
|
+ if (u > z[3]) u -= TWO5; |
|
+ |
|
+ if (u==z[3]) { |
|
+ for (i=k+1; i <= p2; i++) { |
|
+ if (X[i] == ZERO) continue; |
|
+ else {z[3] += ONE; break; } |
|
+ } |
|
+ } |
|
+ |
|
+ c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10); |
|
+ |
|
+ *y = c*TWOM1032; |
|
+ return; |
|
+ |
|
+#undef R |
|
+} |
|
+ |
|
+/* Convert a multiple precision number *x into a double precision number *y. */ |
|
+/* The result is correctly rounded to the nearest/even. *x is left unchanged */ |
|
+ |
|
+void __mp_dbl(const mp_no *x, double *y, int p) { |
|
+#if 0 |
|
+ int i,k; |
|
+ double a,c,u,v,z[5]; |
|
+#endif |
|
+ |
|
+ if (X[0] == ZERO) {*y = ZERO; return; } |
|
+ |
|
+ if (EX> -42) norm(x,y,p); |
|
+ else if (EX==-42 && X[1]>=TWO10) norm(x,y,p); |
|
+ else denorm(x,y,p); |
|
+} |
|
+ |
|
+ |
|
+/* dbl_mp() converts a double precision number x into a multiple precision */ |
|
+/* number *y. If the precision p is too small the result is truncated. x is */ |
|
+/* left unchanged. */ |
|
+ |
|
+void __dbl_mp(double x, mp_no *y, int p) { |
|
+ |
|
+ long i,n; |
|
+ long p2 = p; |
|
+ double u; |
|
+ |
|
+ /* Sign */ |
|
+ if (x == ZERO) {Y[0] = ZERO; return; } |
|
+ else if (x > ZERO) Y[0] = ONE; |
|
+ else {Y[0] = MONE; x=-x; } |
|
+ |
|
+ /* Exponent */ |
|
+ for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI; |
|
+ for ( ; x < ONE; EY -= ONE) x *= RADIX; |
|
+ |
|
+ /* Digits */ |
|
+ n=MIN(p2,4); |
|
+ for (i=1; i<=n; i++) { |
|
+ u = (x + TWO52) - TWO52; |
|
+ if (u>x) u -= ONE; |
|
+ Y[i] = u; x -= u; x *= RADIX; } |
|
+ for ( ; i<=p2; i++) Y[i] = ZERO; |
|
+ return; |
|
+} |
|
+ |
|
+ |
|
+/* add_magnitudes() adds the magnitudes of *x & *y assuming that */ |
|
+/* abs(*x) >= abs(*y) > 0. */ |
|
+/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */ |
|
+/* No guard digit is used. The result equals the exact sum, truncated. */ |
|
+/* *x & *y are left unchanged. */ |
|
+ |
|
+static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
+ |
|
+ long i,j,k; |
|
+ long p2 = p; |
|
+ |
|
+ EZ = EX; |
|
+ |
|
+ i=p2; j=p2+ EY - EX; k=p2+1; |
|
+ |
|
+ if (j<1) |
|
+ {__cpy(x,z,p); return; } |
|
+ else Z[k] = ZERO; |
|
+ |
|
+ for (; j>0; i--,j--) { |
|
+ Z[k] += X[i] + Y[j]; |
|
+ if (Z[k] >= RADIX) { |
|
+ Z[k] -= RADIX; |
|
+ Z[--k] = ONE; } |
|
+ else |
|
+ Z[--k] = ZERO; |
|
+ } |
|
+ |
|
+ for (; i>0; i--) { |
|
+ Z[k] += X[i]; |
|
+ if (Z[k] >= RADIX) { |
|
+ Z[k] -= RADIX; |
|
+ Z[--k] = ONE; } |
|
+ else |
|
+ Z[--k] = ZERO; |
|
+ } |
|
+ |
|
+ if (Z[1] == ZERO) { |
|
+ for (i=1; i<=p2; i++) Z[i] = Z[i+1]; } |
|
+ else EZ += ONE; |
|
+} |
|
+ |
|
+ |
|
+/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */ |
|
+/* abs(*x) > abs(*y) > 0. */ |
|
+/* The sign of the difference *z is undefined. x&y may overlap but not x&z */ |
|
+/* or y&z. One guard digit is used. The error is less than one ulp. */ |
|
+/* *x & *y are left unchanged. */ |
|
+ |
|
+static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
+ |
|
+ long i,j,k; |
|
+ long p2 = p; |
|
+ |
|
+ EZ = EX; |
|
+ |
|
+ if (EX == EY) { |
|
+ i=j=k=p2; |
|
+ Z[k] = Z[k+1] = ZERO; } |
|
+ else { |
|
+ j= EX - EY; |
|
+ if (j > p2) {__cpy(x,z,p); return; } |
|
+ else { |
|
+ i=p2; j=p2+1-j; k=p2; |
|
+ if (Y[j] > ZERO) { |
|
+ Z[k+1] = RADIX - Y[j--]; |
|
+ Z[k] = MONE; } |
|
+ else { |
|
+ Z[k+1] = ZERO; |
|
+ Z[k] = ZERO; j--;} |
|
+ } |
|
+ } |
|
+ |
|
+ for (; j>0; i--,j--) { |
|
+ Z[k] += (X[i] - Y[j]); |
|
+ if (Z[k] < ZERO) { |
|
+ Z[k] += RADIX; |
|
+ Z[--k] = MONE; } |
|
+ else |
|
+ Z[--k] = ZERO; |
|
+ } |
|
+ |
|
+ for (; i>0; i--) { |
|
+ Z[k] += X[i]; |
|
+ if (Z[k] < ZERO) { |
|
+ Z[k] += RADIX; |
|
+ Z[--k] = MONE; } |
|
+ else |
|
+ Z[--k] = ZERO; |
|
+ } |
|
+ |
|
+ for (i=1; Z[i] == ZERO; i++) ; |
|
+ EZ = EZ - i + 1; |
|
+ for (k=1; i <= p2+1; ) |
|
+ Z[k++] = Z[i++]; |
|
+ for (; k <= p2; ) |
|
+ Z[k++] = ZERO; |
|
+ |
|
+ return; |
|
+} |
|
+ |
|
+ |
|
+/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */ |
|
+/* but not x&z or y&z. One guard digit is used. The error is less than */ |
|
+/* one ulp. *x & *y are left unchanged. */ |
|
+ |
|
+void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
+ |
|
+ int n; |
|
+ |
|
+ if (X[0] == ZERO) {__cpy(y,z,p); return; } |
|
+ else if (Y[0] == ZERO) {__cpy(x,z,p); return; } |
|
+ |
|
+ if (X[0] == Y[0]) { |
|
+ if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
+ else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; } |
|
+ } |
|
+ else { |
|
+ if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
+ else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; } |
|
+ else Z[0] = ZERO; |
|
+ } |
|
+ return; |
|
+} |
|
+ |
|
+ |
|
+/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */ |
|
+/* overlap but not x&z or y&z. One guard digit is used. The error is */ |
|
+/* less than one ulp. *x & *y are left unchanged. */ |
|
+ |
|
+void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
+ |
|
+ int n; |
|
+ |
|
+ if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; } |
|
+ else if (Y[0] == ZERO) {__cpy(x,z,p); return; } |
|
+ |
|
+ if (X[0] != Y[0]) { |
|
+ if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
+ else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; } |
|
+ } |
|
+ else { |
|
+ if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
+ else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; } |
|
+ else Z[0] = ZERO; |
|
+ } |
|
+ return; |
|
+} |
|
+ |
|
+ |
|
+/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */ |
|
+/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */ |
|
+/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */ |
|
+/* *x & *y are left unchanged. */ |
|
+ |
|
+void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
+ |
|
+ long i, i1, i2, j, k, k2; |
|
+ long p2 = p; |
|
+ double u, zk, zk2; |
|
+ |
|
+ /* Is z=0? */ |
|
+ if (X[0]*Y[0]==ZERO) |
|
+ { Z[0]=ZERO; return; } |
|
+ |
|
+ /* Multiply, add and carry */ |
|
+ k2 = (p2<3) ? p2+p2 : p2+3; |
|
+ zk = Z[k2]=ZERO; |
|
+ for (k=k2; k>1; ) { |
|
+ if (k > p2) {i1=k-p2; i2=p2+1; } |
|
+ else {i1=1; i2=k; } |
|
+#if 1 |
|
+ /* rearange this inner loop to allow the fmadd instructions to be |
|
+ independent and execute in parallel on processors that have |
|
+ dual symetrical FP pipelines. */ |
|
+ if (i1 < (i2-1)) |
|
+ { |
|
+ /* make sure we have at least 2 iterations */ |
|
+ if (((i2 - i1) & 1L) == 1L) |
|
+ { |
|
+ /* Handle the odd iterations case. */ |
|
+ zk2 = x->d[i2-1]*y->d[i1]; |
|
+ } |
|
+ else |
|
+ zk2 = zero.d; |
|
+ /* Do two multiply/adds per loop iteration, using independent |
|
+ accumulators; zk and zk2. */ |
|
+ for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) |
|
+ { |
|
+ zk += x->d[i]*y->d[j]; |
|
+ zk2 += x->d[i+1]*y->d[j-1]; |
|
+ } |
|
+ zk += zk2; /* final sum. */ |
|
+ } |
|
+ else |
|
+ { |
|
+ /* Special case when iterations is 1. */ |
|
+ zk += x->d[i1]*y->d[i1]; |
|
+ } |
|
+#else |
|
+ /* The orginal code. */ |
|
+ for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j]; |
|
+#endif |
|
+ |
|
+ u = (zk + CUTTER)-CUTTER; |
|
+ if (u > zk) u -= RADIX; |
|
+ Z[k] = zk - u; |
|
+ zk = u*RADIXI; |
|
+ --k; |
|
+ } |
|
+ Z[k] = zk; |
|
+ |
|
+ /* Is there a carry beyond the most significant digit? */ |
|
+ if (Z[1] == ZERO) { |
|
+ for (i=1; i<=p2; i++) Z[i]=Z[i+1]; |
|
+ EZ = EX + EY - 1; } |
|
+ else |
|
+ EZ = EX + EY; |
|
+ |
|
+ Z[0] = X[0] * Y[0]; |
|
+ return; |
|
+} |
|
+ |
|
+ |
|
+/* Invert a multiple precision number. Set *y = 1 / *x. */ |
|
+/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */ |
|
+/* 2.001*r**(1-p) for p>3. */ |
|
+/* *x=0 is not permissible. *x is left unchanged. */ |
|
+ |
|
+void __inv(const mp_no *x, mp_no *y, int p) { |
|
+ long i; |
|
+#if 0 |
|
+ int l; |
|
+#endif |
|
+ double t; |
|
+ mp_no z,w; |
|
+ static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3, |
|
+ 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}; |
|
+ const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}}; |
|
+ |
|
+ __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p); |
|
+ t=ONE/t; __dbl_mp(t,y,p); EY -= EX; |
|
+ |
|
+ for (i=0; i<np1[p]; i++) { |
|
+ __cpy(y,&w,p); |
|
+ __mul(x,&w,y,p); |
|
+ __sub(&mptwo,y,&z,p); |
|
+ __mul(&w,&z,y,p); |
|
+ } |
|
+ return; |
|
+} |
|
+ |
|
+ |
|
+/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */ |
|
+/* are left unchanged. x&y may overlap but not x&z or y&z. */ |
|
+/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */ |
|
+/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */ |
|
+ |
|
+void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
+ |
|
+ mp_no w; |
|
+ |
|
+ if (X[0] == ZERO) Z[0] = ZERO; |
|
+ else {__inv(y,&w,p); __mul(x,&w,z,p);} |
|
+ return; |
|
+} |
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/Implies glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/Implies |
|
new file mode 100644 |
|
index 0000000..a372141 |
|
--- /dev/null |
|
+++ glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/Implies |
|
@@ -0,0 +1,2 @@ |
|
+powerpc/power4/fpu |
|
+powerpc/power4 |
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/Makefile glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/Makefile |
|
deleted file mode 100644 |
|
index f487ed6..0000000 |
|
--- glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/Makefile |
|
+++ /dev/null |
|
@@ -1,5 +0,0 @@ |
|
-# Makefile fragment for POWER4/5/5+ with FPU. |
|
- |
|
-ifeq ($(subdir),math) |
|
-CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops |
|
-endif |
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c |
|
deleted file mode 100644 |
|
index d15680e..0000000 |
|
--- glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c |
|
+++ /dev/null |
|
@@ -1,548 +0,0 @@ |
|
- |
|
-/* |
|
- * IBM Accurate Mathematical Library |
|
- * written by International Business Machines Corp. |
|
- * Copyright (C) 2001, 2006 Free Software Foundation |
|
- * |
|
- * This program is free software; you can redistribute it and/or modify |
|
- * it under the terms of the GNU Lesser General Public License as published by |
|
- * the Free Software Foundation; either version 2.1 of the License, or |
|
- * (at your option) any later version. |
|
- * |
|
- * This program is distributed in the hope that it will be useful, |
|
- * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
- * GNU Lesser General Public License for more details. |
|
- * |
|
- * You should have received a copy of the GNU Lesser General Public License |
|
- * along with this program; if not, see <http://www.gnu.org/licenses/>. |
|
- */ |
|
-/************************************************************************/ |
|
-/* MODULE_NAME: mpa.c */ |
|
-/* */ |
|
-/* FUNCTIONS: */ |
|
-/* mcr */ |
|
-/* acr */ |
|
-/* cr */ |
|
-/* cpy */ |
|
-/* cpymn */ |
|
-/* norm */ |
|
-/* denorm */ |
|
-/* mp_dbl */ |
|
-/* dbl_mp */ |
|
-/* add_magnitudes */ |
|
-/* sub_magnitudes */ |
|
-/* add */ |
|
-/* sub */ |
|
-/* mul */ |
|
-/* inv */ |
|
-/* dvd */ |
|
-/* */ |
|
-/* Arithmetic functions for multiple precision numbers. */ |
|
-/* Relative errors are bounded */ |
|
-/************************************************************************/ |
|
- |
|
- |
|
-#include "endian.h" |
|
-#include "mpa.h" |
|
-#include "mpa2.h" |
|
-#include <sys/param.h> /* For MIN() */ |
|
-/* mcr() compares the sizes of the mantissas of two multiple precision */ |
|
-/* numbers. Mantissas are compared regardless of the signs of the */ |
|
-/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */ |
|
-/* disregarded. */ |
|
-static int mcr(const mp_no *x, const mp_no *y, int p) { |
|
- long i; |
|
- long p2 = p; |
|
- for (i=1; i<=p2; i++) { |
|
- if (X[i] == Y[i]) continue; |
|
- else if (X[i] > Y[i]) return 1; |
|
- else return -1; } |
|
- return 0; |
|
-} |
|
- |
|
- |
|
- |
|
-/* acr() compares the absolute values of two multiple precision numbers */ |
|
-int __acr(const mp_no *x, const mp_no *y, int p) { |
|
- long i; |
|
- |
|
- if (X[0] == ZERO) { |
|
- if (Y[0] == ZERO) i= 0; |
|
- else i=-1; |
|
- } |
|
- else if (Y[0] == ZERO) i= 1; |
|
- else { |
|
- if (EX > EY) i= 1; |
|
- else if (EX < EY) i=-1; |
|
- else i= mcr(x,y,p); |
|
- } |
|
- |
|
- return i; |
|
-} |
|
- |
|
- |
|
-/* cr90 compares the values of two multiple precision numbers */ |
|
-int __cr(const mp_no *x, const mp_no *y, int p) { |
|
- int i; |
|
- |
|
- if (X[0] > Y[0]) i= 1; |
|
- else if (X[0] < Y[0]) i=-1; |
|
- else if (X[0] < ZERO ) i= __acr(y,x,p); |
|
- else i= __acr(x,y,p); |
|
- |
|
- return i; |
|
-} |
|
- |
|
- |
|
-/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */ |
|
-void __cpy(const mp_no *x, mp_no *y, int p) { |
|
- long i; |
|
- |
|
- EY = EX; |
|
- for (i=0; i <= p; i++) Y[i] = X[i]; |
|
- |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Copy a multiple precision number x of precision m into a */ |
|
-/* multiple precision number y of precision n. In case n>m, */ |
|
-/* the digits of y beyond the m'th are set to zero. In case */ |
|
-/* n<m, the digits of x beyond the n'th are ignored. */ |
|
-/* x=y is permissible. */ |
|
- |
|
-void __cpymn(const mp_no *x, int m, mp_no *y, int n) { |
|
- |
|
- long i,k; |
|
- long n2 = n; |
|
- long m2 = m; |
|
- |
|
- EY = EX; k=MIN(m2,n2); |
|
- for (i=0; i <= k; i++) Y[i] = X[i]; |
|
- for ( ; i <= n2; i++) Y[i] = ZERO; |
|
- |
|
- return; |
|
-} |
|
- |
|
-/* Convert a multiple precision number *x into a double precision */ |
|
-/* number *y, normalized case (|x| >= 2**(-1022))) */ |
|
-static void norm(const mp_no *x, double *y, int p) |
|
-{ |
|
- #define R radixi.d |
|
- long i; |
|
-#if 0 |
|
- int k; |
|
-#endif |
|
- double a,c,u,v,z[5]; |
|
- if (p<5) { |
|
- if (p==1) c = X[1]; |
|
- else if (p==2) c = X[1] + R* X[2]; |
|
- else if (p==3) c = X[1] + R*(X[2] + R* X[3]); |
|
- else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]); |
|
- } |
|
- else { |
|
- for (a=ONE, z[1]=X[1]; z[1] < TWO23; ) |
|
- {a *= TWO; z[1] *= TWO; } |
|
- |
|
- for (i=2; i<5; i++) { |
|
- z[i] = X[i]*a; |
|
- u = (z[i] + CUTTER)-CUTTER; |
|
- if (u > z[i]) u -= RADIX; |
|
- z[i] -= u; |
|
- z[i-1] += u*RADIXI; |
|
- } |
|
- |
|
- u = (z[3] + TWO71) - TWO71; |
|
- if (u > z[3]) u -= TWO19; |
|
- v = z[3]-u; |
|
- |
|
- if (v == TWO18) { |
|
- if (z[4] == ZERO) { |
|
- for (i=5; i <= p; i++) { |
|
- if (X[i] == ZERO) continue; |
|
- else {z[3] += ONE; break; } |
|
- } |
|
- } |
|
- else z[3] += ONE; |
|
- } |
|
- |
|
- c = (z[1] + R *(z[2] + R * z[3]))/a; |
|
- } |
|
- |
|
- c *= X[0]; |
|
- |
|
- for (i=1; i<EX; i++) c *= RADIX; |
|
- for (i=1; i>EX; i--) c *= RADIXI; |
|
- |
|
- *y = c; |
|
- return; |
|
-#undef R |
|
-} |
|
- |
|
-/* Convert a multiple precision number *x into a double precision */ |
|
-/* number *y, denormalized case (|x| < 2**(-1022))) */ |
|
-static void denorm(const mp_no *x, double *y, int p) |
|
-{ |
|
- long i,k; |
|
- long p2 = p; |
|
- double c,u,z[5]; |
|
-#if 0 |
|
- double a,v; |
|
-#endif |
|
- |
|
-#define R radixi.d |
|
- if (EX<-44 || (EX==-44 && X[1]<TWO5)) |
|
- { *y=ZERO; return; } |
|
- |
|
- if (p2==1) { |
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;} |
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;} |
|
- else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} |
|
- } |
|
- else if (p2==2) { |
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;} |
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;} |
|
- else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} |
|
- } |
|
- else { |
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;} |
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;} |
|
- else {z[1]= TWO10; z[2]=ZERO; k=1;} |
|
- z[3] = X[k]; |
|
- } |
|
- |
|
- u = (z[3] + TWO57) - TWO57; |
|
- if (u > z[3]) u -= TWO5; |
|
- |
|
- if (u==z[3]) { |
|
- for (i=k+1; i <= p2; i++) { |
|
- if (X[i] == ZERO) continue; |
|
- else {z[3] += ONE; break; } |
|
- } |
|
- } |
|
- |
|
- c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10); |
|
- |
|
- *y = c*TWOM1032; |
|
- return; |
|
- |
|
-#undef R |
|
-} |
|
- |
|
-/* Convert a multiple precision number *x into a double precision number *y. */ |
|
-/* The result is correctly rounded to the nearest/even. *x is left unchanged */ |
|
- |
|
-void __mp_dbl(const mp_no *x, double *y, int p) { |
|
-#if 0 |
|
- int i,k; |
|
- double a,c,u,v,z[5]; |
|
-#endif |
|
- |
|
- if (X[0] == ZERO) {*y = ZERO; return; } |
|
- |
|
- if (EX> -42) norm(x,y,p); |
|
- else if (EX==-42 && X[1]>=TWO10) norm(x,y,p); |
|
- else denorm(x,y,p); |
|
-} |
|
- |
|
- |
|
-/* dbl_mp() converts a double precision number x into a multiple precision */ |
|
-/* number *y. If the precision p is too small the result is truncated. x is */ |
|
-/* left unchanged. */ |
|
- |
|
-void __dbl_mp(double x, mp_no *y, int p) { |
|
- |
|
- long i,n; |
|
- long p2 = p; |
|
- double u; |
|
- |
|
- /* Sign */ |
|
- if (x == ZERO) {Y[0] = ZERO; return; } |
|
- else if (x > ZERO) Y[0] = ONE; |
|
- else {Y[0] = MONE; x=-x; } |
|
- |
|
- /* Exponent */ |
|
- for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI; |
|
- for ( ; x < ONE; EY -= ONE) x *= RADIX; |
|
- |
|
- /* Digits */ |
|
- n=MIN(p2,4); |
|
- for (i=1; i<=n; i++) { |
|
- u = (x + TWO52) - TWO52; |
|
- if (u>x) u -= ONE; |
|
- Y[i] = u; x -= u; x *= RADIX; } |
|
- for ( ; i<=p2; i++) Y[i] = ZERO; |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* add_magnitudes() adds the magnitudes of *x & *y assuming that */ |
|
-/* abs(*x) >= abs(*y) > 0. */ |
|
-/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */ |
|
-/* No guard digit is used. The result equals the exact sum, truncated. */ |
|
-/* *x & *y are left unchanged. */ |
|
- |
|
-static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- long i,j,k; |
|
- long p2 = p; |
|
- |
|
- EZ = EX; |
|
- |
|
- i=p2; j=p2+ EY - EX; k=p2+1; |
|
- |
|
- if (j<1) |
|
- {__cpy(x,z,p); return; } |
|
- else Z[k] = ZERO; |
|
- |
|
- for (; j>0; i--,j--) { |
|
- Z[k] += X[i] + Y[j]; |
|
- if (Z[k] >= RADIX) { |
|
- Z[k] -= RADIX; |
|
- Z[--k] = ONE; } |
|
- else |
|
- Z[--k] = ZERO; |
|
- } |
|
- |
|
- for (; i>0; i--) { |
|
- Z[k] += X[i]; |
|
- if (Z[k] >= RADIX) { |
|
- Z[k] -= RADIX; |
|
- Z[--k] = ONE; } |
|
- else |
|
- Z[--k] = ZERO; |
|
- } |
|
- |
|
- if (Z[1] == ZERO) { |
|
- for (i=1; i<=p2; i++) Z[i] = Z[i+1]; } |
|
- else EZ += ONE; |
|
-} |
|
- |
|
- |
|
-/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */ |
|
-/* abs(*x) > abs(*y) > 0. */ |
|
-/* The sign of the difference *z is undefined. x&y may overlap but not x&z */ |
|
-/* or y&z. One guard digit is used. The error is less than one ulp. */ |
|
-/* *x & *y are left unchanged. */ |
|
- |
|
-static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- long i,j,k; |
|
- long p2 = p; |
|
- |
|
- EZ = EX; |
|
- |
|
- if (EX == EY) { |
|
- i=j=k=p2; |
|
- Z[k] = Z[k+1] = ZERO; } |
|
- else { |
|
- j= EX - EY; |
|
- if (j > p2) {__cpy(x,z,p); return; } |
|
- else { |
|
- i=p2; j=p2+1-j; k=p2; |
|
- if (Y[j] > ZERO) { |
|
- Z[k+1] = RADIX - Y[j--]; |
|
- Z[k] = MONE; } |
|
- else { |
|
- Z[k+1] = ZERO; |
|
- Z[k] = ZERO; j--;} |
|
- } |
|
- } |
|
- |
|
- for (; j>0; i--,j--) { |
|
- Z[k] += (X[i] - Y[j]); |
|
- if (Z[k] < ZERO) { |
|
- Z[k] += RADIX; |
|
- Z[--k] = MONE; } |
|
- else |
|
- Z[--k] = ZERO; |
|
- } |
|
- |
|
- for (; i>0; i--) { |
|
- Z[k] += X[i]; |
|
- if (Z[k] < ZERO) { |
|
- Z[k] += RADIX; |
|
- Z[--k] = MONE; } |
|
- else |
|
- Z[--k] = ZERO; |
|
- } |
|
- |
|
- for (i=1; Z[i] == ZERO; i++) ; |
|
- EZ = EZ - i + 1; |
|
- for (k=1; i <= p2+1; ) |
|
- Z[k++] = Z[i++]; |
|
- for (; k <= p2; ) |
|
- Z[k++] = ZERO; |
|
- |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */ |
|
-/* but not x&z or y&z. One guard digit is used. The error is less than */ |
|
-/* one ulp. *x & *y are left unchanged. */ |
|
- |
|
-void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- int n; |
|
- |
|
- if (X[0] == ZERO) {__cpy(y,z,p); return; } |
|
- else if (Y[0] == ZERO) {__cpy(x,z,p); return; } |
|
- |
|
- if (X[0] == Y[0]) { |
|
- if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
- else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; } |
|
- } |
|
- else { |
|
- if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
- else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; } |
|
- else Z[0] = ZERO; |
|
- } |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */ |
|
-/* overlap but not x&z or y&z. One guard digit is used. The error is */ |
|
-/* less than one ulp. *x & *y are left unchanged. */ |
|
- |
|
-void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- int n; |
|
- |
|
- if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; } |
|
- else if (Y[0] == ZERO) {__cpy(x,z,p); return; } |
|
- |
|
- if (X[0] != Y[0]) { |
|
- if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
- else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; } |
|
- } |
|
- else { |
|
- if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
- else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; } |
|
- else Z[0] = ZERO; |
|
- } |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */ |
|
-/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */ |
|
-/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */ |
|
-/* *x & *y are left unchanged. */ |
|
- |
|
-void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- long i, i1, i2, j, k, k2; |
|
- long p2 = p; |
|
- double u, zk, zk2; |
|
- |
|
- /* Is z=0? */ |
|
- if (X[0]*Y[0]==ZERO) |
|
- { Z[0]=ZERO; return; } |
|
- |
|
- /* Multiply, add and carry */ |
|
- k2 = (p2<3) ? p2+p2 : p2+3; |
|
- zk = Z[k2]=ZERO; |
|
- for (k=k2; k>1; ) { |
|
- if (k > p2) {i1=k-p2; i2=p2+1; } |
|
- else {i1=1; i2=k; } |
|
-#if 1 |
|
- /* rearange this inner loop to allow the fmadd instructions to be |
|
- independent and execute in parallel on processors that have |
|
- dual symetrical FP pipelines. */ |
|
- if (i1 < (i2-1)) |
|
- { |
|
- /* make sure we have at least 2 iterations */ |
|
- if (((i2 - i1) & 1L) == 1L) |
|
- { |
|
- /* Handle the odd iterations case. */ |
|
- zk2 = x->d[i2-1]*y->d[i1]; |
|
- } |
|
- else |
|
- zk2 = zero.d; |
|
- /* Do two multiply/adds per loop iteration, using independent |
|
- accumulators; zk and zk2. */ |
|
- for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) |
|
- { |
|
- zk += x->d[i]*y->d[j]; |
|
- zk2 += x->d[i+1]*y->d[j-1]; |
|
- } |
|
- zk += zk2; /* final sum. */ |
|
- } |
|
- else |
|
- { |
|
- /* Special case when iterations is 1. */ |
|
- zk += x->d[i1]*y->d[i1]; |
|
- } |
|
-#else |
|
- /* The orginal code. */ |
|
- for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j]; |
|
-#endif |
|
- |
|
- u = (zk + CUTTER)-CUTTER; |
|
- if (u > zk) u -= RADIX; |
|
- Z[k] = zk - u; |
|
- zk = u*RADIXI; |
|
- --k; |
|
- } |
|
- Z[k] = zk; |
|
- |
|
- /* Is there a carry beyond the most significant digit? */ |
|
- if (Z[1] == ZERO) { |
|
- for (i=1; i<=p2; i++) Z[i]=Z[i+1]; |
|
- EZ = EX + EY - 1; } |
|
- else |
|
- EZ = EX + EY; |
|
- |
|
- Z[0] = X[0] * Y[0]; |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Invert a multiple precision number. Set *y = 1 / *x. */ |
|
-/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */ |
|
-/* 2.001*r**(1-p) for p>3. */ |
|
-/* *x=0 is not permissible. *x is left unchanged. */ |
|
- |
|
-void __inv(const mp_no *x, mp_no *y, int p) { |
|
- long i; |
|
-#if 0 |
|
- int l; |
|
-#endif |
|
- double t; |
|
- mp_no z,w; |
|
- static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3, |
|
- 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}; |
|
- const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}}; |
|
- |
|
- __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p); |
|
- t=ONE/t; __dbl_mp(t,y,p); EY -= EX; |
|
- |
|
- for (i=0; i<np1[p]; i++) { |
|
- __cpy(y,&w,p); |
|
- __mul(x,&w,y,p); |
|
- __sub(&mptwo,y,&z,p); |
|
- __mul(&w,&z,y,p); |
|
- } |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */ |
|
-/* are left unchanged. x&y may overlap but not x&z or y&z. */ |
|
-/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */ |
|
-/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */ |
|
- |
|
-void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- mp_no w; |
|
- |
|
- if (X[0] == ZERO) Z[0] = ZERO; |
|
- else {__inv(y,&w,p); __mul(x,&w,z,p);} |
|
- return; |
|
-} |
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/Implies glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/Implies |
|
new file mode 100644 |
|
index 0000000..a372141 |
|
--- /dev/null |
|
+++ glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/Implies |
|
@@ -0,0 +1,2 @@ |
|
+powerpc/power4/fpu |
|
+powerpc/power4 |
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/Makefile glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/Makefile |
|
deleted file mode 100644 |
|
index f8bb3ef..0000000 |
|
--- glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/Makefile |
|
+++ /dev/null |
|
@@ -1,5 +0,0 @@ |
|
-# Makefile fragment for POWER4/5/5+ platforms with FPU. |
|
- |
|
-ifeq ($(subdir),math) |
|
-CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops |
|
-endif |
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c |
|
deleted file mode 100644 |
|
index d15680e..0000000 |
|
--- glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c |
|
+++ /dev/null |
|
@@ -1,548 +0,0 @@ |
|
- |
|
-/* |
|
- * IBM Accurate Mathematical Library |
|
- * written by International Business Machines Corp. |
|
- * Copyright (C) 2001, 2006 Free Software Foundation |
|
- * |
|
- * This program is free software; you can redistribute it and/or modify |
|
- * it under the terms of the GNU Lesser General Public License as published by |
|
- * the Free Software Foundation; either version 2.1 of the License, or |
|
- * (at your option) any later version. |
|
- * |
|
- * This program is distributed in the hope that it will be useful, |
|
- * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
- * GNU Lesser General Public License for more details. |
|
- * |
|
- * You should have received a copy of the GNU Lesser General Public License |
|
- * along with this program; if not, see <http://www.gnu.org/licenses/>. |
|
- */ |
|
-/************************************************************************/ |
|
-/* MODULE_NAME: mpa.c */ |
|
-/* */ |
|
-/* FUNCTIONS: */ |
|
-/* mcr */ |
|
-/* acr */ |
|
-/* cr */ |
|
-/* cpy */ |
|
-/* cpymn */ |
|
-/* norm */ |
|
-/* denorm */ |
|
-/* mp_dbl */ |
|
-/* dbl_mp */ |
|
-/* add_magnitudes */ |
|
-/* sub_magnitudes */ |
|
-/* add */ |
|
-/* sub */ |
|
-/* mul */ |
|
-/* inv */ |
|
-/* dvd */ |
|
-/* */ |
|
-/* Arithmetic functions for multiple precision numbers. */ |
|
-/* Relative errors are bounded */ |
|
-/************************************************************************/ |
|
- |
|
- |
|
-#include "endian.h" |
|
-#include "mpa.h" |
|
-#include "mpa2.h" |
|
-#include <sys/param.h> /* For MIN() */ |
|
-/* mcr() compares the sizes of the mantissas of two multiple precision */ |
|
-/* numbers. Mantissas are compared regardless of the signs of the */ |
|
-/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */ |
|
-/* disregarded. */ |
|
-static int mcr(const mp_no *x, const mp_no *y, int p) { |
|
- long i; |
|
- long p2 = p; |
|
- for (i=1; i<=p2; i++) { |
|
- if (X[i] == Y[i]) continue; |
|
- else if (X[i] > Y[i]) return 1; |
|
- else return -1; } |
|
- return 0; |
|
-} |
|
- |
|
- |
|
- |
|
-/* acr() compares the absolute values of two multiple precision numbers */ |
|
-int __acr(const mp_no *x, const mp_no *y, int p) { |
|
- long i; |
|
- |
|
- if (X[0] == ZERO) { |
|
- if (Y[0] == ZERO) i= 0; |
|
- else i=-1; |
|
- } |
|
- else if (Y[0] == ZERO) i= 1; |
|
- else { |
|
- if (EX > EY) i= 1; |
|
- else if (EX < EY) i=-1; |
|
- else i= mcr(x,y,p); |
|
- } |
|
- |
|
- return i; |
|
-} |
|
- |
|
- |
|
-/* cr90 compares the values of two multiple precision numbers */ |
|
-int __cr(const mp_no *x, const mp_no *y, int p) { |
|
- int i; |
|
- |
|
- if (X[0] > Y[0]) i= 1; |
|
- else if (X[0] < Y[0]) i=-1; |
|
- else if (X[0] < ZERO ) i= __acr(y,x,p); |
|
- else i= __acr(x,y,p); |
|
- |
|
- return i; |
|
-} |
|
- |
|
- |
|
-/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */ |
|
-void __cpy(const mp_no *x, mp_no *y, int p) { |
|
- long i; |
|
- |
|
- EY = EX; |
|
- for (i=0; i <= p; i++) Y[i] = X[i]; |
|
- |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Copy a multiple precision number x of precision m into a */ |
|
-/* multiple precision number y of precision n. In case n>m, */ |
|
-/* the digits of y beyond the m'th are set to zero. In case */ |
|
-/* n<m, the digits of x beyond the n'th are ignored. */ |
|
-/* x=y is permissible. */ |
|
- |
|
-void __cpymn(const mp_no *x, int m, mp_no *y, int n) { |
|
- |
|
- long i,k; |
|
- long n2 = n; |
|
- long m2 = m; |
|
- |
|
- EY = EX; k=MIN(m2,n2); |
|
- for (i=0; i <= k; i++) Y[i] = X[i]; |
|
- for ( ; i <= n2; i++) Y[i] = ZERO; |
|
- |
|
- return; |
|
-} |
|
- |
|
-/* Convert a multiple precision number *x into a double precision */ |
|
-/* number *y, normalized case (|x| >= 2**(-1022))) */ |
|
-static void norm(const mp_no *x, double *y, int p) |
|
-{ |
|
- #define R radixi.d |
|
- long i; |
|
-#if 0 |
|
- int k; |
|
-#endif |
|
- double a,c,u,v,z[5]; |
|
- if (p<5) { |
|
- if (p==1) c = X[1]; |
|
- else if (p==2) c = X[1] + R* X[2]; |
|
- else if (p==3) c = X[1] + R*(X[2] + R* X[3]); |
|
- else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]); |
|
- } |
|
- else { |
|
- for (a=ONE, z[1]=X[1]; z[1] < TWO23; ) |
|
- {a *= TWO; z[1] *= TWO; } |
|
- |
|
- for (i=2; i<5; i++) { |
|
- z[i] = X[i]*a; |
|
- u = (z[i] + CUTTER)-CUTTER; |
|
- if (u > z[i]) u -= RADIX; |
|
- z[i] -= u; |
|
- z[i-1] += u*RADIXI; |
|
- } |
|
- |
|
- u = (z[3] + TWO71) - TWO71; |
|
- if (u > z[3]) u -= TWO19; |
|
- v = z[3]-u; |
|
- |
|
- if (v == TWO18) { |
|
- if (z[4] == ZERO) { |
|
- for (i=5; i <= p; i++) { |
|
- if (X[i] == ZERO) continue; |
|
- else {z[3] += ONE; break; } |
|
- } |
|
- } |
|
- else z[3] += ONE; |
|
- } |
|
- |
|
- c = (z[1] + R *(z[2] + R * z[3]))/a; |
|
- } |
|
- |
|
- c *= X[0]; |
|
- |
|
- for (i=1; i<EX; i++) c *= RADIX; |
|
- for (i=1; i>EX; i--) c *= RADIXI; |
|
- |
|
- *y = c; |
|
- return; |
|
-#undef R |
|
-} |
|
- |
|
-/* Convert a multiple precision number *x into a double precision */ |
|
-/* number *y, denormalized case (|x| < 2**(-1022))) */ |
|
-static void denorm(const mp_no *x, double *y, int p) |
|
-{ |
|
- long i,k; |
|
- long p2 = p; |
|
- double c,u,z[5]; |
|
-#if 0 |
|
- double a,v; |
|
-#endif |
|
- |
|
-#define R radixi.d |
|
- if (EX<-44 || (EX==-44 && X[1]<TWO5)) |
|
- { *y=ZERO; return; } |
|
- |
|
- if (p2==1) { |
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;} |
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;} |
|
- else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} |
|
- } |
|
- else if (p2==2) { |
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;} |
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;} |
|
- else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} |
|
- } |
|
- else { |
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;} |
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;} |
|
- else {z[1]= TWO10; z[2]=ZERO; k=1;} |
|
- z[3] = X[k]; |
|
- } |
|
- |
|
- u = (z[3] + TWO57) - TWO57; |
|
- if (u > z[3]) u -= TWO5; |
|
- |
|
- if (u==z[3]) { |
|
- for (i=k+1; i <= p2; i++) { |
|
- if (X[i] == ZERO) continue; |
|
- else {z[3] += ONE; break; } |
|
- } |
|
- } |
|
- |
|
- c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10); |
|
- |
|
- *y = c*TWOM1032; |
|
- return; |
|
- |
|
-#undef R |
|
-} |
|
- |
|
-/* Convert a multiple precision number *x into a double precision number *y. */ |
|
-/* The result is correctly rounded to the nearest/even. *x is left unchanged */ |
|
- |
|
-void __mp_dbl(const mp_no *x, double *y, int p) { |
|
-#if 0 |
|
- int i,k; |
|
- double a,c,u,v,z[5]; |
|
-#endif |
|
- |
|
- if (X[0] == ZERO) {*y = ZERO; return; } |
|
- |
|
- if (EX> -42) norm(x,y,p); |
|
- else if (EX==-42 && X[1]>=TWO10) norm(x,y,p); |
|
- else denorm(x,y,p); |
|
-} |
|
- |
|
- |
|
-/* dbl_mp() converts a double precision number x into a multiple precision */ |
|
-/* number *y. If the precision p is too small the result is truncated. x is */ |
|
-/* left unchanged. */ |
|
- |
|
-void __dbl_mp(double x, mp_no *y, int p) { |
|
- |
|
- long i,n; |
|
- long p2 = p; |
|
- double u; |
|
- |
|
- /* Sign */ |
|
- if (x == ZERO) {Y[0] = ZERO; return; } |
|
- else if (x > ZERO) Y[0] = ONE; |
|
- else {Y[0] = MONE; x=-x; } |
|
- |
|
- /* Exponent */ |
|
- for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI; |
|
- for ( ; x < ONE; EY -= ONE) x *= RADIX; |
|
- |
|
- /* Digits */ |
|
- n=MIN(p2,4); |
|
- for (i=1; i<=n; i++) { |
|
- u = (x + TWO52) - TWO52; |
|
- if (u>x) u -= ONE; |
|
- Y[i] = u; x -= u; x *= RADIX; } |
|
- for ( ; i<=p2; i++) Y[i] = ZERO; |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* add_magnitudes() adds the magnitudes of *x & *y assuming that */ |
|
-/* abs(*x) >= abs(*y) > 0. */ |
|
-/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */ |
|
-/* No guard digit is used. The result equals the exact sum, truncated. */ |
|
-/* *x & *y are left unchanged. */ |
|
- |
|
-static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- long i,j,k; |
|
- long p2 = p; |
|
- |
|
- EZ = EX; |
|
- |
|
- i=p2; j=p2+ EY - EX; k=p2+1; |
|
- |
|
- if (j<1) |
|
- {__cpy(x,z,p); return; } |
|
- else Z[k] = ZERO; |
|
- |
|
- for (; j>0; i--,j--) { |
|
- Z[k] += X[i] + Y[j]; |
|
- if (Z[k] >= RADIX) { |
|
- Z[k] -= RADIX; |
|
- Z[--k] = ONE; } |
|
- else |
|
- Z[--k] = ZERO; |
|
- } |
|
- |
|
- for (; i>0; i--) { |
|
- Z[k] += X[i]; |
|
- if (Z[k] >= RADIX) { |
|
- Z[k] -= RADIX; |
|
- Z[--k] = ONE; } |
|
- else |
|
- Z[--k] = ZERO; |
|
- } |
|
- |
|
- if (Z[1] == ZERO) { |
|
- for (i=1; i<=p2; i++) Z[i] = Z[i+1]; } |
|
- else EZ += ONE; |
|
-} |
|
- |
|
- |
|
-/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */ |
|
-/* abs(*x) > abs(*y) > 0. */ |
|
-/* The sign of the difference *z is undefined. x&y may overlap but not x&z */ |
|
-/* or y&z. One guard digit is used. The error is less than one ulp. */ |
|
-/* *x & *y are left unchanged. */ |
|
- |
|
-static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- long i,j,k; |
|
- long p2 = p; |
|
- |
|
- EZ = EX; |
|
- |
|
- if (EX == EY) { |
|
- i=j=k=p2; |
|
- Z[k] = Z[k+1] = ZERO; } |
|
- else { |
|
- j= EX - EY; |
|
- if (j > p2) {__cpy(x,z,p); return; } |
|
- else { |
|
- i=p2; j=p2+1-j; k=p2; |
|
- if (Y[j] > ZERO) { |
|
- Z[k+1] = RADIX - Y[j--]; |
|
- Z[k] = MONE; } |
|
- else { |
|
- Z[k+1] = ZERO; |
|
- Z[k] = ZERO; j--;} |
|
- } |
|
- } |
|
- |
|
- for (; j>0; i--,j--) { |
|
- Z[k] += (X[i] - Y[j]); |
|
- if (Z[k] < ZERO) { |
|
- Z[k] += RADIX; |
|
- Z[--k] = MONE; } |
|
- else |
|
- Z[--k] = ZERO; |
|
- } |
|
- |
|
- for (; i>0; i--) { |
|
- Z[k] += X[i]; |
|
- if (Z[k] < ZERO) { |
|
- Z[k] += RADIX; |
|
- Z[--k] = MONE; } |
|
- else |
|
- Z[--k] = ZERO; |
|
- } |
|
- |
|
- for (i=1; Z[i] == ZERO; i++) ; |
|
- EZ = EZ - i + 1; |
|
- for (k=1; i <= p2+1; ) |
|
- Z[k++] = Z[i++]; |
|
- for (; k <= p2; ) |
|
- Z[k++] = ZERO; |
|
- |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */ |
|
-/* but not x&z or y&z. One guard digit is used. The error is less than */ |
|
-/* one ulp. *x & *y are left unchanged. */ |
|
- |
|
-void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- int n; |
|
- |
|
- if (X[0] == ZERO) {__cpy(y,z,p); return; } |
|
- else if (Y[0] == ZERO) {__cpy(x,z,p); return; } |
|
- |
|
- if (X[0] == Y[0]) { |
|
- if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
- else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; } |
|
- } |
|
- else { |
|
- if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
- else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; } |
|
- else Z[0] = ZERO; |
|
- } |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */ |
|
-/* overlap but not x&z or y&z. One guard digit is used. The error is */ |
|
-/* less than one ulp. *x & *y are left unchanged. */ |
|
- |
|
-void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- int n; |
|
- |
|
- if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; } |
|
- else if (Y[0] == ZERO) {__cpy(x,z,p); return; } |
|
- |
|
- if (X[0] != Y[0]) { |
|
- if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
- else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; } |
|
- } |
|
- else { |
|
- if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } |
|
- else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; } |
|
- else Z[0] = ZERO; |
|
- } |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */ |
|
-/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */ |
|
-/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */ |
|
-/* *x & *y are left unchanged. */ |
|
- |
|
-void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- long i, i1, i2, j, k, k2; |
|
- long p2 = p; |
|
- double u, zk, zk2; |
|
- |
|
- /* Is z=0? */ |
|
- if (X[0]*Y[0]==ZERO) |
|
- { Z[0]=ZERO; return; } |
|
- |
|
- /* Multiply, add and carry */ |
|
- k2 = (p2<3) ? p2+p2 : p2+3; |
|
- zk = Z[k2]=ZERO; |
|
- for (k=k2; k>1; ) { |
|
- if (k > p2) {i1=k-p2; i2=p2+1; } |
|
- else {i1=1; i2=k; } |
|
-#if 1 |
|
- /* rearange this inner loop to allow the fmadd instructions to be |
|
- independent and execute in parallel on processors that have |
|
- dual symetrical FP pipelines. */ |
|
- if (i1 < (i2-1)) |
|
- { |
|
- /* make sure we have at least 2 iterations */ |
|
- if (((i2 - i1) & 1L) == 1L) |
|
- { |
|
- /* Handle the odd iterations case. */ |
|
- zk2 = x->d[i2-1]*y->d[i1]; |
|
- } |
|
- else |
|
- zk2 = zero.d; |
|
- /* Do two multiply/adds per loop iteration, using independent |
|
- accumulators; zk and zk2. */ |
|
- for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) |
|
- { |
|
- zk += x->d[i]*y->d[j]; |
|
- zk2 += x->d[i+1]*y->d[j-1]; |
|
- } |
|
- zk += zk2; /* final sum. */ |
|
- } |
|
- else |
|
- { |
|
- /* Special case when iterations is 1. */ |
|
- zk += x->d[i1]*y->d[i1]; |
|
- } |
|
-#else |
|
- /* The orginal code. */ |
|
- for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j]; |
|
-#endif |
|
- |
|
- u = (zk + CUTTER)-CUTTER; |
|
- if (u > zk) u -= RADIX; |
|
- Z[k] = zk - u; |
|
- zk = u*RADIXI; |
|
- --k; |
|
- } |
|
- Z[k] = zk; |
|
- |
|
- /* Is there a carry beyond the most significant digit? */ |
|
- if (Z[1] == ZERO) { |
|
- for (i=1; i<=p2; i++) Z[i]=Z[i+1]; |
|
- EZ = EX + EY - 1; } |
|
- else |
|
- EZ = EX + EY; |
|
- |
|
- Z[0] = X[0] * Y[0]; |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Invert a multiple precision number. Set *y = 1 / *x. */ |
|
-/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */ |
|
-/* 2.001*r**(1-p) for p>3. */ |
|
-/* *x=0 is not permissible. *x is left unchanged. */ |
|
- |
|
-void __inv(const mp_no *x, mp_no *y, int p) { |
|
- long i; |
|
-#if 0 |
|
- int l; |
|
-#endif |
|
- double t; |
|
- mp_no z,w; |
|
- static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3, |
|
- 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}; |
|
- const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, |
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}}; |
|
- |
|
- __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p); |
|
- t=ONE/t; __dbl_mp(t,y,p); EY -= EX; |
|
- |
|
- for (i=0; i<np1[p]; i++) { |
|
- __cpy(y,&w,p); |
|
- __mul(x,&w,y,p); |
|
- __sub(&mptwo,y,&z,p); |
|
- __mul(&w,&z,y,p); |
|
- } |
|
- return; |
|
-} |
|
- |
|
- |
|
-/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */ |
|
-/* are left unchanged. x&y may overlap but not x&z or y&z. */ |
|
-/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */ |
|
-/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */ |
|
- |
|
-void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) { |
|
- |
|
- mp_no w; |
|
- |
|
- if (X[0] == ZERO) Z[0] = ZERO; |
|
- else {__inv(y,&w,p); __mul(x,&w,z,p);} |
|
- return; |
|
-} |
|
-- |
|
1.7.11.7
|
|
|