You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
305 lines
10 KiB
305 lines
10 KiB
diff -up openssl-1.0.2k/crypto/bn/bn_lib.c.ecc-ladder openssl-1.0.2k/crypto/bn/bn_lib.c |
|
--- openssl-1.0.2k/crypto/bn/bn_lib.c.ecc-ladder 2019-02-06 12:58:50.575844123 +0100 |
|
+++ openssl-1.0.2k/crypto/bn/bn_lib.c 2019-02-08 10:48:53.529291777 +0100 |
|
@@ -877,6 +877,38 @@ void BN_consttime_swap(BN_ULONG conditio |
|
a->top ^= t; |
|
b->top ^= t; |
|
|
|
+ t = (a->neg ^ b->neg) & condition; |
|
+ a->neg ^= t; |
|
+ b->neg ^= t; |
|
+ |
|
+ /*- |
|
+ * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention |
|
+ * is actually to treat it as it's read-only data, and some (if not most) |
|
+ * of it does reside in read-only segment. In other words observation of |
|
+ * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal |
|
+ * condition. It would either cause SEGV or effectively cause data |
|
+ * corruption. |
|
+ * |
|
+ * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be |
|
+ * preserved. |
|
+ * |
|
+ * BN_FLG_SECURE: must be preserved, because it determines how x->d was |
|
+ * allocated and hence how to free it. |
|
+ * |
|
+ * BN_FLG_CONSTTIME: sufficient to mask and swap |
|
+ * |
|
+ * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on |
|
+ * the data, so the d array may be padded with additional 0 values (i.e. |
|
+ * top could be greater than the minimal value that it could be). We should |
|
+ * be swapping it |
|
+ */ |
|
+ |
|
+#define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP) |
|
+ |
|
+ t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition; |
|
+ a->flags ^= t; |
|
+ b->flags ^= t; |
|
+ |
|
#define BN_CONSTTIME_SWAP(ind) \ |
|
do { \ |
|
t = (a->d[ind] ^ b->d[ind]) & condition; \ |
|
diff -up openssl-1.0.2k/crypto/ec/ec_mult.c.ecc-ladder openssl-1.0.2k/crypto/ec/ec_mult.c |
|
--- openssl-1.0.2k/crypto/ec/ec_mult.c.ecc-ladder 2017-01-26 14:22:03.000000000 +0100 |
|
+++ openssl-1.0.2k/crypto/ec/ec_mult.c 2019-02-08 10:48:53.531291744 +0100 |
|
@@ -306,6 +306,224 @@ static signed char *compute_wNAF(const B |
|
return r; |
|
} |
|
|
|
+#define EC_POINT_BN_set_flags(P, flags) do { \ |
|
+ BN_set_flags(&(P)->X, (flags)); \ |
|
+ BN_set_flags(&(P)->Y, (flags)); \ |
|
+ BN_set_flags(&(P)->Z, (flags)); \ |
|
+} while(0) |
|
+ |
|
+/*- |
|
+ * This functions computes (in constant time) a point multiplication over the |
|
+ * EC group. |
|
+ * |
|
+ * At a high level, it is Montgomery ladder with conditional swaps. |
|
+ * |
|
+ * It performs either a fixed scalar point multiplication |
|
+ * (scalar * generator) |
|
+ * when point is NULL, or a generic scalar point multiplication |
|
+ * (scalar * point) |
|
+ * when point is not NULL. |
|
+ * |
|
+ * scalar should be in the range [0,n) otherwise all constant time bets are off. |
|
+ * |
|
+ * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, |
|
+ * which of course are not constant time themselves. |
|
+ * |
|
+ * The product is stored in r. |
|
+ * |
|
+ * Returns 1 on success, 0 otherwise. |
|
+ */ |
|
+static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, |
|
+ const BIGNUM *scalar, const EC_POINT *point, |
|
+ BN_CTX *ctx) |
|
+{ |
|
+ int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; |
|
+ EC_POINT *s = NULL; |
|
+ BIGNUM *k = NULL; |
|
+ BIGNUM *lambda = NULL; |
|
+ BIGNUM *cardinality = NULL; |
|
+ BN_CTX *new_ctx = NULL; |
|
+ int ret = 0; |
|
+ |
|
+ if (ctx == NULL && (ctx = new_ctx = BN_CTX_new()) == NULL) |
|
+ return 0; |
|
+ |
|
+ BN_CTX_start(ctx); |
|
+ |
|
+ s = EC_POINT_new(group); |
|
+ if (s == NULL) |
|
+ goto err; |
|
+ |
|
+ if (point == NULL) { |
|
+ if (!EC_POINT_copy(s, group->generator)) |
|
+ goto err; |
|
+ } else { |
|
+ if (!EC_POINT_copy(s, point)) |
|
+ goto err; |
|
+ } |
|
+ |
|
+ EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); |
|
+ |
|
+ cardinality = BN_CTX_get(ctx); |
|
+ lambda = BN_CTX_get(ctx); |
|
+ k = BN_CTX_get(ctx); |
|
+ if (k == NULL || !BN_mul(cardinality, &group->order, &group->cofactor, ctx)) |
|
+ goto err; |
|
+ |
|
+ /* |
|
+ * Group cardinalities are often on a word boundary. |
|
+ * So when we pad the scalar, some timing diff might |
|
+ * pop if it needs to be expanded due to carries. |
|
+ * So expand ahead of time. |
|
+ */ |
|
+ cardinality_bits = BN_num_bits(cardinality); |
|
+ group_top = cardinality->top; |
|
+ if ((bn_wexpand(k, group_top + 2) == NULL) |
|
+ || (bn_wexpand(lambda, group_top + 2) == NULL)) |
|
+ goto err; |
|
+ |
|
+ if (!BN_copy(k, scalar)) |
|
+ goto err; |
|
+ |
|
+ BN_set_flags(k, BN_FLG_CONSTTIME); |
|
+ |
|
+ if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) { |
|
+ /*- |
|
+ * this is an unusual input, and we don't guarantee |
|
+ * constant-timeness |
|
+ */ |
|
+ if (!BN_nnmod(k, k, cardinality, ctx)) |
|
+ goto err; |
|
+ } |
|
+ |
|
+ if (!BN_add(lambda, k, cardinality)) |
|
+ goto err; |
|
+ BN_set_flags(lambda, BN_FLG_CONSTTIME); |
|
+ if (!BN_add(k, lambda, cardinality)) |
|
+ goto err; |
|
+ /* |
|
+ * lambda := scalar + cardinality |
|
+ * k := scalar + 2*cardinality |
|
+ */ |
|
+ kbit = BN_is_bit_set(lambda, cardinality_bits); |
|
+ BN_consttime_swap(kbit, k, lambda, group_top + 2); |
|
+ |
|
+ group_top = group->field.top; |
|
+ if ((bn_wexpand(&s->X, group_top) == NULL) |
|
+ || (bn_wexpand(&s->Y, group_top) == NULL) |
|
+ || (bn_wexpand(&s->Z, group_top) == NULL) |
|
+ || (bn_wexpand(&r->X, group_top) == NULL) |
|
+ || (bn_wexpand(&r->Y, group_top) == NULL) |
|
+ || (bn_wexpand(&r->Z, group_top) == NULL)) |
|
+ goto err; |
|
+ |
|
+ /* top bit is a 1, in a fixed pos */ |
|
+ if (!EC_POINT_copy(r, s)) |
|
+ goto err; |
|
+ |
|
+ EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); |
|
+ |
|
+ if (!EC_POINT_dbl(group, s, s, ctx)) |
|
+ goto err; |
|
+ |
|
+ pbit = 0; |
|
+ |
|
+#define EC_POINT_CSWAP(c, a, b, w, t) do { \ |
|
+ BN_consttime_swap(c, &(a)->X, &(b)->X, w); \ |
|
+ BN_consttime_swap(c, &(a)->Y, &(b)->Y, w); \ |
|
+ BN_consttime_swap(c, &(a)->Z, &(b)->Z, w); \ |
|
+ t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ |
|
+ (a)->Z_is_one ^= (t); \ |
|
+ (b)->Z_is_one ^= (t); \ |
|
+} while(0) |
|
+ |
|
+ /*- |
|
+ * The ladder step, with branches, is |
|
+ * |
|
+ * k[i] == 0: S = add(R, S), R = dbl(R) |
|
+ * k[i] == 1: R = add(S, R), S = dbl(S) |
|
+ * |
|
+ * Swapping R, S conditionally on k[i] leaves you with state |
|
+ * |
|
+ * k[i] == 0: T, U = R, S |
|
+ * k[i] == 1: T, U = S, R |
|
+ * |
|
+ * Then perform the ECC ops. |
|
+ * |
|
+ * U = add(T, U) |
|
+ * T = dbl(T) |
|
+ * |
|
+ * Which leaves you with state |
|
+ * |
|
+ * k[i] == 0: U = add(R, S), T = dbl(R) |
|
+ * k[i] == 1: U = add(S, R), T = dbl(S) |
|
+ * |
|
+ * Swapping T, U conditionally on k[i] leaves you with state |
|
+ * |
|
+ * k[i] == 0: R, S = T, U |
|
+ * k[i] == 1: R, S = U, T |
|
+ * |
|
+ * Which leaves you with state |
|
+ * |
|
+ * k[i] == 0: S = add(R, S), R = dbl(R) |
|
+ * k[i] == 1: R = add(S, R), S = dbl(S) |
|
+ * |
|
+ * So we get the same logic, but instead of a branch it's a |
|
+ * conditional swap, followed by ECC ops, then another conditional swap. |
|
+ * |
|
+ * Optimization: The end of iteration i and start of i-1 looks like |
|
+ * |
|
+ * ... |
|
+ * CSWAP(k[i], R, S) |
|
+ * ECC |
|
+ * CSWAP(k[i], R, S) |
|
+ * (next iteration) |
|
+ * CSWAP(k[i-1], R, S) |
|
+ * ECC |
|
+ * CSWAP(k[i-1], R, S) |
|
+ * ... |
|
+ * |
|
+ * So instead of two contiguous swaps, you can merge the condition |
|
+ * bits and do a single swap. |
|
+ * |
|
+ * k[i] k[i-1] Outcome |
|
+ * 0 0 No Swap |
|
+ * 0 1 Swap |
|
+ * 1 0 Swap |
|
+ * 1 1 No Swap |
|
+ * |
|
+ * This is XOR. pbit tracks the previous bit of k. |
|
+ */ |
|
+ |
|
+ for (i = cardinality_bits - 1; i >= 0; i--) { |
|
+ kbit = BN_is_bit_set(k, i) ^ pbit; |
|
+ EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); |
|
+ if (!EC_POINT_add(group, s, r, s, ctx)) |
|
+ goto err; |
|
+ if (!EC_POINT_dbl(group, r, r, ctx)) |
|
+ goto err; |
|
+ /* |
|
+ * pbit logic merges this cswap with that of the |
|
+ * next iteration |
|
+ */ |
|
+ pbit ^= kbit; |
|
+ } |
|
+ /* one final cswap to move the right value into r */ |
|
+ EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); |
|
+#undef EC_POINT_CSWAP |
|
+ |
|
+ ret = 1; |
|
+ |
|
+ err: |
|
+ EC_POINT_free(s); |
|
+ BN_CTX_end(ctx); |
|
+ BN_CTX_free(new_ctx); |
|
+ |
|
+ return ret; |
|
+} |
|
+ |
|
+#undef EC_POINT_BN_set_flags |
|
+ |
|
/* |
|
* TODO: table should be optimised for the wNAF-based implementation, |
|
* sometimes smaller windows will give better performance (thus the |
|
@@ -365,6 +583,34 @@ int ec_wNAF_mul(const EC_GROUP *group, E |
|
return EC_POINT_set_to_infinity(group, r); |
|
} |
|
|
|
+ if (!BN_is_zero(&group->order) && !BN_is_zero(&group->cofactor)) { |
|
+ /*- |
|
+ * Handle the common cases where the scalar is secret, enforcing a constant |
|
+ * time scalar multiplication algorithm. |
|
+ */ |
|
+ if ((scalar != NULL) && (num == 0)) { |
|
+ /*- |
|
+ * In this case we want to compute scalar * GeneratorPoint: this |
|
+ * codepath is reached most prominently by (ephemeral) key generation |
|
+ * of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH |
|
+ * keygen/first half), where the scalar is always secret. This is why |
|
+ * we ignore if BN_FLG_CONSTTIME is actually set and we always call the |
|
+ * constant time version. |
|
+ */ |
|
+ return ec_mul_consttime(group, r, scalar, NULL, ctx); |
|
+ } |
|
+ if ((scalar == NULL) && (num == 1)) { |
|
+ /*- |
|
+ * In this case we want to compute scalar * GenericPoint: this codepath |
|
+ * is reached most prominently by the second half of ECDH, where the |
|
+ * secret scalar is multiplied by the peer's public point. To protect |
|
+ * the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and |
|
+ * we always call the constant time version. |
|
+ */ |
|
+ return ec_mul_consttime(group, r, scalars[0], points[0], ctx); |
|
+ } |
|
+ } |
|
+ |
|
for (i = 0; i < num; i++) { |
|
if (group->meth != points[i]->meth) { |
|
ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
|
|
|