You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
9854 lines
270 KiB
9854 lines
270 KiB
/* |
|
* Disk Array driver for HP Smart Array SAS controllers |
|
* Copyright 2016 Microsemi Corporation |
|
* Copyright 2014-2015 PMC-Sierra, Inc. |
|
* Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. |
|
* |
|
* This program is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; version 2 of the License. |
|
* |
|
* This program is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
|
* NON INFRINGEMENT. See the GNU General Public License for more details. |
|
* |
|
* Questions/Comments/Bugfixes to esc.storagedev@microsemi.com |
|
* |
|
*/ |
|
|
|
#include <linux/module.h> |
|
#include <linux/interrupt.h> |
|
#include <linux/types.h> |
|
#include <linux/pci.h> |
|
#include <linux/pci-aspm.h> |
|
#include <linux/kernel.h> |
|
#include <linux/slab.h> |
|
#include <linux/delay.h> |
|
#include <linux/fs.h> |
|
#include <linux/timer.h> |
|
#include <linux/init.h> |
|
#include <linux/spinlock.h> |
|
#include <linux/compat.h> |
|
#include <linux/blktrace_api.h> |
|
#include <linux/uaccess.h> |
|
#include <linux/io.h> |
|
#include <linux/dma-mapping.h> |
|
#include <linux/completion.h> |
|
#include <linux/moduleparam.h> |
|
#include <scsi/scsi.h> |
|
#include <scsi/scsi_cmnd.h> |
|
#include <scsi/scsi_device.h> |
|
#include <scsi/scsi_host.h> |
|
#include <scsi/scsi_tcq.h> |
|
#include <scsi/scsi_eh.h> |
|
#include <scsi/scsi_transport_sas.h> |
|
#include <scsi/scsi_dbg.h> |
|
#include <linux/cciss_ioctl.h> |
|
#include <linux/string.h> |
|
#include <linux/bitmap.h> |
|
#include <linux/atomic.h> |
|
#include <linux/jiffies.h> |
|
#include <linux/percpu-defs.h> |
|
#include <linux/percpu.h> |
|
#include <asm/unaligned.h> |
|
#include <asm/div64.h> |
|
#include "hpsa_cmd.h" |
|
#include "hpsa.h" |
|
|
|
/* |
|
* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' |
|
* with an optional trailing '-' followed by a byte value (0-255). |
|
*/ |
|
#define HPSA_DRIVER_VERSION "3.4.20-125" |
|
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" |
|
#define HPSA "hpsa" |
|
|
|
/* How long to wait for CISS doorbell communication */ |
|
#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ |
|
#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ |
|
#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ |
|
#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ |
|
#define MAX_IOCTL_CONFIG_WAIT 1000 |
|
|
|
/*define how many times we will try a command because of bus resets */ |
|
#define MAX_CMD_RETRIES 3 |
|
|
|
/* Embedded module documentation macros - see modules.h */ |
|
MODULE_AUTHOR("Hewlett-Packard Company"); |
|
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ |
|
HPSA_DRIVER_VERSION); |
|
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); |
|
MODULE_VERSION(HPSA_DRIVER_VERSION); |
|
MODULE_LICENSE("GPL"); |
|
MODULE_ALIAS("cciss"); |
|
|
|
static int hpsa_simple_mode; |
|
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); |
|
MODULE_PARM_DESC(hpsa_simple_mode, |
|
"Use 'simple mode' rather than 'performant mode'"); |
|
|
|
/* define the PCI info for the cards we can control */ |
|
static const struct pci_device_id hpsa_pci_device_id[] = { |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, |
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, |
|
{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, |
|
{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, |
|
{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, |
|
{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, |
|
{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, |
|
{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, |
|
{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, |
|
{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, |
|
{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, |
|
{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, |
|
{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, |
|
{PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, |
|
PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, |
|
{PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, |
|
PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, |
|
{0,} |
|
}; |
|
|
|
MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); |
|
|
|
/* board_id = Subsystem Device ID & Vendor ID |
|
* product = Marketing Name for the board |
|
* access = Address of the struct of function pointers |
|
*/ |
|
static struct board_type products[] = { |
|
{0x40700E11, "Smart Array 5300", &SA5A_access}, |
|
{0x40800E11, "Smart Array 5i", &SA5B_access}, |
|
{0x40820E11, "Smart Array 532", &SA5B_access}, |
|
{0x40830E11, "Smart Array 5312", &SA5B_access}, |
|
{0x409A0E11, "Smart Array 641", &SA5A_access}, |
|
{0x409B0E11, "Smart Array 642", &SA5A_access}, |
|
{0x409C0E11, "Smart Array 6400", &SA5A_access}, |
|
{0x409D0E11, "Smart Array 6400 EM", &SA5A_access}, |
|
{0x40910E11, "Smart Array 6i", &SA5A_access}, |
|
{0x3225103C, "Smart Array P600", &SA5A_access}, |
|
{0x3223103C, "Smart Array P800", &SA5A_access}, |
|
{0x3234103C, "Smart Array P400", &SA5A_access}, |
|
{0x3235103C, "Smart Array P400i", &SA5A_access}, |
|
{0x3211103C, "Smart Array E200i", &SA5A_access}, |
|
{0x3212103C, "Smart Array E200", &SA5A_access}, |
|
{0x3213103C, "Smart Array E200i", &SA5A_access}, |
|
{0x3214103C, "Smart Array E200i", &SA5A_access}, |
|
{0x3215103C, "Smart Array E200i", &SA5A_access}, |
|
{0x3237103C, "Smart Array E500", &SA5A_access}, |
|
{0x323D103C, "Smart Array P700m", &SA5A_access}, |
|
{0x3241103C, "Smart Array P212", &SA5_access}, |
|
{0x3243103C, "Smart Array P410", &SA5_access}, |
|
{0x3245103C, "Smart Array P410i", &SA5_access}, |
|
{0x3247103C, "Smart Array P411", &SA5_access}, |
|
{0x3249103C, "Smart Array P812", &SA5_access}, |
|
{0x324A103C, "Smart Array P712m", &SA5_access}, |
|
{0x324B103C, "Smart Array P711m", &SA5_access}, |
|
{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ |
|
{0x3350103C, "Smart Array P222", &SA5_access}, |
|
{0x3351103C, "Smart Array P420", &SA5_access}, |
|
{0x3352103C, "Smart Array P421", &SA5_access}, |
|
{0x3353103C, "Smart Array P822", &SA5_access}, |
|
{0x3354103C, "Smart Array P420i", &SA5_access}, |
|
{0x3355103C, "Smart Array P220i", &SA5_access}, |
|
{0x3356103C, "Smart Array P721m", &SA5_access}, |
|
{0x1920103C, "Smart Array P430i", &SA5_access}, |
|
{0x1921103C, "Smart Array P830i", &SA5_access}, |
|
{0x1922103C, "Smart Array P430", &SA5_access}, |
|
{0x1923103C, "Smart Array P431", &SA5_access}, |
|
{0x1924103C, "Smart Array P830", &SA5_access}, |
|
{0x1925103C, "Smart Array P831", &SA5_access}, |
|
{0x1926103C, "Smart Array P731m", &SA5_access}, |
|
{0x1928103C, "Smart Array P230i", &SA5_access}, |
|
{0x1929103C, "Smart Array P530", &SA5_access}, |
|
{0x21BD103C, "Smart Array P244br", &SA5_access}, |
|
{0x21BE103C, "Smart Array P741m", &SA5_access}, |
|
{0x21BF103C, "Smart HBA H240ar", &SA5_access}, |
|
{0x21C0103C, "Smart Array P440ar", &SA5_access}, |
|
{0x21C1103C, "Smart Array P840ar", &SA5_access}, |
|
{0x21C2103C, "Smart Array P440", &SA5_access}, |
|
{0x21C3103C, "Smart Array P441", &SA5_access}, |
|
{0x21C4103C, "Smart Array", &SA5_access}, |
|
{0x21C5103C, "Smart Array P841", &SA5_access}, |
|
{0x21C6103C, "Smart HBA H244br", &SA5_access}, |
|
{0x21C7103C, "Smart HBA H240", &SA5_access}, |
|
{0x21C8103C, "Smart HBA H241", &SA5_access}, |
|
{0x21C9103C, "Smart Array", &SA5_access}, |
|
{0x21CA103C, "Smart Array P246br", &SA5_access}, |
|
{0x21CB103C, "Smart Array P840", &SA5_access}, |
|
{0x21CC103C, "Smart Array", &SA5_access}, |
|
{0x21CD103C, "Smart Array", &SA5_access}, |
|
{0x21CE103C, "Smart HBA", &SA5_access}, |
|
{0x05809005, "SmartHBA-SA", &SA5_access}, |
|
{0x05819005, "SmartHBA-SA 8i", &SA5_access}, |
|
{0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, |
|
{0x05839005, "SmartHBA-SA 8e", &SA5_access}, |
|
{0x05849005, "SmartHBA-SA 16i", &SA5_access}, |
|
{0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, |
|
{0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, |
|
{0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, |
|
{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, |
|
{0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, |
|
{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, |
|
{0xFFFF103C, "Unknown Smart Array", &SA5_access}, |
|
}; |
|
|
|
static struct scsi_transport_template *hpsa_sas_transport_template; |
|
static int hpsa_add_sas_host(struct ctlr_info *h); |
|
static void hpsa_delete_sas_host(struct ctlr_info *h); |
|
static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, |
|
struct hpsa_scsi_dev_t *device); |
|
static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); |
|
static struct hpsa_scsi_dev_t |
|
*hpsa_find_device_by_sas_rphy(struct ctlr_info *h, |
|
struct sas_rphy *rphy); |
|
|
|
#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) |
|
static const struct scsi_cmnd hpsa_cmd_busy; |
|
#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) |
|
static const struct scsi_cmnd hpsa_cmd_idle; |
|
static int number_of_controllers; |
|
|
|
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); |
|
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); |
|
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); |
|
|
|
#ifdef CONFIG_COMPAT |
|
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, |
|
void __user *arg); |
|
#endif |
|
|
|
static void cmd_free(struct ctlr_info *h, struct CommandList *c); |
|
static struct CommandList *cmd_alloc(struct ctlr_info *h); |
|
static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); |
|
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, |
|
struct scsi_cmnd *scmd); |
|
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, |
|
void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, |
|
int cmd_type); |
|
static void hpsa_free_cmd_pool(struct ctlr_info *h); |
|
#define VPD_PAGE (1 << 8) |
|
#define HPSA_SIMPLE_ERROR_BITS 0x03 |
|
|
|
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); |
|
static void hpsa_scan_start(struct Scsi_Host *); |
|
static int hpsa_scan_finished(struct Scsi_Host *sh, |
|
unsigned long elapsed_time); |
|
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); |
|
|
|
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); |
|
static int hpsa_slave_alloc(struct scsi_device *sdev); |
|
static int hpsa_slave_configure(struct scsi_device *sdev); |
|
static void hpsa_slave_destroy(struct scsi_device *sdev); |
|
|
|
static void hpsa_update_scsi_devices(struct ctlr_info *h); |
|
static int check_for_unit_attention(struct ctlr_info *h, |
|
struct CommandList *c); |
|
static void check_ioctl_unit_attention(struct ctlr_info *h, |
|
struct CommandList *c); |
|
/* performant mode helper functions */ |
|
static void calc_bucket_map(int *bucket, int num_buckets, |
|
int nsgs, int min_blocks, u32 *bucket_map); |
|
static void hpsa_free_performant_mode(struct ctlr_info *h); |
|
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); |
|
static inline u32 next_command(struct ctlr_info *h, u8 q); |
|
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, |
|
u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
|
u64 *cfg_offset); |
|
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, |
|
unsigned long *memory_bar); |
|
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, |
|
bool *legacy_board); |
|
static int wait_for_device_to_become_ready(struct ctlr_info *h, |
|
unsigned char lunaddr[], |
|
int reply_queue); |
|
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, |
|
int wait_for_ready); |
|
static inline void finish_cmd(struct CommandList *c); |
|
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); |
|
#define BOARD_NOT_READY 0 |
|
#define BOARD_READY 1 |
|
static void hpsa_drain_accel_commands(struct ctlr_info *h); |
|
static void hpsa_flush_cache(struct ctlr_info *h); |
|
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, |
|
struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
|
u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); |
|
static void hpsa_command_resubmit_worker(struct work_struct *work); |
|
static u32 lockup_detected(struct ctlr_info *h); |
|
static int detect_controller_lockup(struct ctlr_info *h); |
|
static void hpsa_disable_rld_caching(struct ctlr_info *h); |
|
static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, |
|
struct ReportExtendedLUNdata *buf, int bufsize); |
|
static bool hpsa_vpd_page_supported(struct ctlr_info *h, |
|
unsigned char scsi3addr[], u8 page); |
|
static int hpsa_luns_changed(struct ctlr_info *h); |
|
static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, |
|
struct hpsa_scsi_dev_t *dev, |
|
unsigned char *scsi3addr); |
|
|
|
static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) |
|
{ |
|
unsigned long *priv = shost_priv(sdev->host); |
|
return (struct ctlr_info *) *priv; |
|
} |
|
|
|
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) |
|
{ |
|
unsigned long *priv = shost_priv(sh); |
|
return (struct ctlr_info *) *priv; |
|
} |
|
|
|
static inline bool hpsa_is_cmd_idle(struct CommandList *c) |
|
{ |
|
return c->scsi_cmd == SCSI_CMD_IDLE; |
|
} |
|
|
|
static inline bool hpsa_is_pending_event(struct CommandList *c) |
|
{ |
|
return c->reset_pending; |
|
} |
|
|
|
/* extract sense key, asc, and ascq from sense data. -1 means invalid. */ |
|
static void decode_sense_data(const u8 *sense_data, int sense_data_len, |
|
u8 *sense_key, u8 *asc, u8 *ascq) |
|
{ |
|
struct scsi_sense_hdr sshdr; |
|
bool rc; |
|
|
|
*sense_key = -1; |
|
*asc = -1; |
|
*ascq = -1; |
|
|
|
if (sense_data_len < 1) |
|
return; |
|
|
|
rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); |
|
if (rc) { |
|
*sense_key = sshdr.sense_key; |
|
*asc = sshdr.asc; |
|
*ascq = sshdr.ascq; |
|
} |
|
} |
|
|
|
static int check_for_unit_attention(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
u8 sense_key, asc, ascq; |
|
int sense_len; |
|
|
|
if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) |
|
sense_len = sizeof(c->err_info->SenseInfo); |
|
else |
|
sense_len = c->err_info->SenseLen; |
|
|
|
decode_sense_data(c->err_info->SenseInfo, sense_len, |
|
&sense_key, &asc, &ascq); |
|
if (sense_key != UNIT_ATTENTION || asc == 0xff) |
|
return 0; |
|
|
|
switch (asc) { |
|
case STATE_CHANGED: |
|
dev_warn(&h->pdev->dev, |
|
"%s: a state change detected, command retried\n", |
|
h->devname); |
|
break; |
|
case LUN_FAILED: |
|
dev_warn(&h->pdev->dev, |
|
"%s: LUN failure detected\n", h->devname); |
|
break; |
|
case REPORT_LUNS_CHANGED: |
|
dev_warn(&h->pdev->dev, |
|
"%s: report LUN data changed\n", h->devname); |
|
/* |
|
* Note: this REPORT_LUNS_CHANGED condition only occurs on the external |
|
* target (array) devices. |
|
*/ |
|
break; |
|
case POWER_OR_RESET: |
|
dev_warn(&h->pdev->dev, |
|
"%s: a power on or device reset detected\n", |
|
h->devname); |
|
break; |
|
case UNIT_ATTENTION_CLEARED: |
|
dev_warn(&h->pdev->dev, |
|
"%s: unit attention cleared by another initiator\n", |
|
h->devname); |
|
break; |
|
default: |
|
dev_warn(&h->pdev->dev, |
|
"%s: unknown unit attention detected\n", |
|
h->devname); |
|
break; |
|
} |
|
return 1; |
|
} |
|
|
|
static int check_for_busy(struct ctlr_info *h, struct CommandList *c) |
|
{ |
|
if (c->err_info->CommandStatus != CMD_TARGET_STATUS || |
|
(c->err_info->ScsiStatus != SAM_STAT_BUSY && |
|
c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) |
|
return 0; |
|
dev_warn(&h->pdev->dev, HPSA "device busy"); |
|
return 1; |
|
} |
|
|
|
static u32 lockup_detected(struct ctlr_info *h); |
|
static ssize_t host_show_lockup_detected(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
int ld; |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
|
|
h = shost_to_hba(shost); |
|
ld = lockup_detected(h); |
|
|
|
return sprintf(buf, "ld=%d\n", ld); |
|
} |
|
|
|
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, |
|
struct device_attribute *attr, |
|
const char *buf, size_t count) |
|
{ |
|
int status, len; |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
char tmpbuf[10]; |
|
|
|
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) |
|
return -EACCES; |
|
len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; |
|
strncpy(tmpbuf, buf, len); |
|
tmpbuf[len] = '\0'; |
|
if (sscanf(tmpbuf, "%d", &status) != 1) |
|
return -EINVAL; |
|
h = shost_to_hba(shost); |
|
h->acciopath_status = !!status; |
|
dev_warn(&h->pdev->dev, |
|
"hpsa: HP SSD Smart Path %s via sysfs update.\n", |
|
h->acciopath_status ? "enabled" : "disabled"); |
|
return count; |
|
} |
|
|
|
static ssize_t host_store_raid_offload_debug(struct device *dev, |
|
struct device_attribute *attr, |
|
const char *buf, size_t count) |
|
{ |
|
int debug_level, len; |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
char tmpbuf[10]; |
|
|
|
if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) |
|
return -EACCES; |
|
len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; |
|
strncpy(tmpbuf, buf, len); |
|
tmpbuf[len] = '\0'; |
|
if (sscanf(tmpbuf, "%d", &debug_level) != 1) |
|
return -EINVAL; |
|
if (debug_level < 0) |
|
debug_level = 0; |
|
h = shost_to_hba(shost); |
|
h->raid_offload_debug = debug_level; |
|
dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", |
|
h->raid_offload_debug); |
|
return count; |
|
} |
|
|
|
static ssize_t host_store_rescan(struct device *dev, |
|
struct device_attribute *attr, |
|
const char *buf, size_t count) |
|
{ |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
h = shost_to_hba(shost); |
|
hpsa_scan_start(h->scsi_host); |
|
return count; |
|
} |
|
|
|
static ssize_t host_show_firmware_revision(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
unsigned char *fwrev; |
|
|
|
h = shost_to_hba(shost); |
|
if (!h->hba_inquiry_data) |
|
return 0; |
|
fwrev = &h->hba_inquiry_data[32]; |
|
return snprintf(buf, 20, "%c%c%c%c\n", |
|
fwrev[0], fwrev[1], fwrev[2], fwrev[3]); |
|
} |
|
|
|
static ssize_t host_show_commands_outstanding(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
struct ctlr_info *h = shost_to_hba(shost); |
|
|
|
return snprintf(buf, 20, "%d\n", |
|
atomic_read(&h->commands_outstanding)); |
|
} |
|
|
|
static ssize_t host_show_transport_mode(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
|
|
h = shost_to_hba(shost); |
|
return snprintf(buf, 20, "%s\n", |
|
h->transMethod & CFGTBL_Trans_Performant ? |
|
"performant" : "simple"); |
|
} |
|
|
|
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
|
|
h = shost_to_hba(shost); |
|
return snprintf(buf, 30, "HP SSD Smart Path %s\n", |
|
(h->acciopath_status == 1) ? "enabled" : "disabled"); |
|
} |
|
|
|
/* List of controllers which cannot be hard reset on kexec with reset_devices */ |
|
static u32 unresettable_controller[] = { |
|
0x324a103C, /* Smart Array P712m */ |
|
0x324b103C, /* Smart Array P711m */ |
|
0x3223103C, /* Smart Array P800 */ |
|
0x3234103C, /* Smart Array P400 */ |
|
0x3235103C, /* Smart Array P400i */ |
|
0x3211103C, /* Smart Array E200i */ |
|
0x3212103C, /* Smart Array E200 */ |
|
0x3213103C, /* Smart Array E200i */ |
|
0x3214103C, /* Smart Array E200i */ |
|
0x3215103C, /* Smart Array E200i */ |
|
0x3237103C, /* Smart Array E500 */ |
|
0x323D103C, /* Smart Array P700m */ |
|
0x40800E11, /* Smart Array 5i */ |
|
0x409C0E11, /* Smart Array 6400 */ |
|
0x409D0E11, /* Smart Array 6400 EM */ |
|
0x40700E11, /* Smart Array 5300 */ |
|
0x40820E11, /* Smart Array 532 */ |
|
0x40830E11, /* Smart Array 5312 */ |
|
0x409A0E11, /* Smart Array 641 */ |
|
0x409B0E11, /* Smart Array 642 */ |
|
0x40910E11, /* Smart Array 6i */ |
|
}; |
|
|
|
/* List of controllers which cannot even be soft reset */ |
|
static u32 soft_unresettable_controller[] = { |
|
0x40800E11, /* Smart Array 5i */ |
|
0x40700E11, /* Smart Array 5300 */ |
|
0x40820E11, /* Smart Array 532 */ |
|
0x40830E11, /* Smart Array 5312 */ |
|
0x409A0E11, /* Smart Array 641 */ |
|
0x409B0E11, /* Smart Array 642 */ |
|
0x40910E11, /* Smart Array 6i */ |
|
/* Exclude 640x boards. These are two pci devices in one slot |
|
* which share a battery backed cache module. One controls the |
|
* cache, the other accesses the cache through the one that controls |
|
* it. If we reset the one controlling the cache, the other will |
|
* likely not be happy. Just forbid resetting this conjoined mess. |
|
* The 640x isn't really supported by hpsa anyway. |
|
*/ |
|
0x409C0E11, /* Smart Array 6400 */ |
|
0x409D0E11, /* Smart Array 6400 EM */ |
|
}; |
|
|
|
static int board_id_in_array(u32 a[], int nelems, u32 board_id) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < nelems; i++) |
|
if (a[i] == board_id) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
static int ctlr_is_hard_resettable(u32 board_id) |
|
{ |
|
return !board_id_in_array(unresettable_controller, |
|
ARRAY_SIZE(unresettable_controller), board_id); |
|
} |
|
|
|
static int ctlr_is_soft_resettable(u32 board_id) |
|
{ |
|
return !board_id_in_array(soft_unresettable_controller, |
|
ARRAY_SIZE(soft_unresettable_controller), board_id); |
|
} |
|
|
|
static int ctlr_is_resettable(u32 board_id) |
|
{ |
|
return ctlr_is_hard_resettable(board_id) || |
|
ctlr_is_soft_resettable(board_id); |
|
} |
|
|
|
static ssize_t host_show_resettable(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
|
|
h = shost_to_hba(shost); |
|
return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); |
|
} |
|
|
|
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) |
|
{ |
|
return (scsi3addr[3] & 0xC0) == 0x40; |
|
} |
|
|
|
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", |
|
"1(+0)ADM", "UNKNOWN", "PHYS DRV" |
|
}; |
|
#define HPSA_RAID_0 0 |
|
#define HPSA_RAID_4 1 |
|
#define HPSA_RAID_1 2 /* also used for RAID 10 */ |
|
#define HPSA_RAID_5 3 /* also used for RAID 50 */ |
|
#define HPSA_RAID_51 4 |
|
#define HPSA_RAID_6 5 /* also used for RAID 60 */ |
|
#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ |
|
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) |
|
#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) |
|
|
|
static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) |
|
{ |
|
return !device->physical_device; |
|
} |
|
|
|
static ssize_t raid_level_show(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
ssize_t l = 0; |
|
unsigned char rlevel; |
|
struct ctlr_info *h; |
|
struct scsi_device *sdev; |
|
struct hpsa_scsi_dev_t *hdev; |
|
unsigned long flags; |
|
|
|
sdev = to_scsi_device(dev); |
|
h = sdev_to_hba(sdev); |
|
spin_lock_irqsave(&h->lock, flags); |
|
hdev = sdev->hostdata; |
|
if (!hdev) { |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return -ENODEV; |
|
} |
|
|
|
/* Is this even a logical drive? */ |
|
if (!is_logical_device(hdev)) { |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
l = snprintf(buf, PAGE_SIZE, "N/A\n"); |
|
return l; |
|
} |
|
|
|
rlevel = hdev->raid_level; |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
if (rlevel > RAID_UNKNOWN) |
|
rlevel = RAID_UNKNOWN; |
|
l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); |
|
return l; |
|
} |
|
|
|
static ssize_t lunid_show(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct scsi_device *sdev; |
|
struct hpsa_scsi_dev_t *hdev; |
|
unsigned long flags; |
|
unsigned char lunid[8]; |
|
|
|
sdev = to_scsi_device(dev); |
|
h = sdev_to_hba(sdev); |
|
spin_lock_irqsave(&h->lock, flags); |
|
hdev = sdev->hostdata; |
|
if (!hdev) { |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return -ENODEV; |
|
} |
|
memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return snprintf(buf, 20, "0x%8phN\n", lunid); |
|
} |
|
|
|
static ssize_t unique_id_show(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct scsi_device *sdev; |
|
struct hpsa_scsi_dev_t *hdev; |
|
unsigned long flags; |
|
unsigned char sn[16]; |
|
|
|
sdev = to_scsi_device(dev); |
|
h = sdev_to_hba(sdev); |
|
spin_lock_irqsave(&h->lock, flags); |
|
hdev = sdev->hostdata; |
|
if (!hdev) { |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return -ENODEV; |
|
} |
|
memcpy(sn, hdev->device_id, sizeof(sn)); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return snprintf(buf, 16 * 2 + 2, |
|
"%02X%02X%02X%02X%02X%02X%02X%02X" |
|
"%02X%02X%02X%02X%02X%02X%02X%02X\n", |
|
sn[0], sn[1], sn[2], sn[3], |
|
sn[4], sn[5], sn[6], sn[7], |
|
sn[8], sn[9], sn[10], sn[11], |
|
sn[12], sn[13], sn[14], sn[15]); |
|
} |
|
|
|
static ssize_t sas_address_show(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct scsi_device *sdev; |
|
struct hpsa_scsi_dev_t *hdev; |
|
unsigned long flags; |
|
u64 sas_address; |
|
|
|
sdev = to_scsi_device(dev); |
|
h = sdev_to_hba(sdev); |
|
spin_lock_irqsave(&h->lock, flags); |
|
hdev = sdev->hostdata; |
|
if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return -ENODEV; |
|
} |
|
sas_address = hdev->sas_address; |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
|
|
return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); |
|
} |
|
|
|
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct scsi_device *sdev; |
|
struct hpsa_scsi_dev_t *hdev; |
|
unsigned long flags; |
|
int offload_enabled; |
|
|
|
sdev = to_scsi_device(dev); |
|
h = sdev_to_hba(sdev); |
|
spin_lock_irqsave(&h->lock, flags); |
|
hdev = sdev->hostdata; |
|
if (!hdev) { |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return -ENODEV; |
|
} |
|
offload_enabled = hdev->offload_enabled; |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
|
|
if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) |
|
return snprintf(buf, 20, "%d\n", offload_enabled); |
|
else |
|
return snprintf(buf, 40, "%s\n", |
|
"Not applicable for a controller"); |
|
} |
|
|
|
#define MAX_PATHS 8 |
|
static ssize_t path_info_show(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct scsi_device *sdev; |
|
struct hpsa_scsi_dev_t *hdev; |
|
unsigned long flags; |
|
int i; |
|
int output_len = 0; |
|
u8 box; |
|
u8 bay; |
|
u8 path_map_index = 0; |
|
char *active; |
|
unsigned char phys_connector[2]; |
|
|
|
sdev = to_scsi_device(dev); |
|
h = sdev_to_hba(sdev); |
|
spin_lock_irqsave(&h->devlock, flags); |
|
hdev = sdev->hostdata; |
|
if (!hdev) { |
|
spin_unlock_irqrestore(&h->devlock, flags); |
|
return -ENODEV; |
|
} |
|
|
|
bay = hdev->bay; |
|
for (i = 0; i < MAX_PATHS; i++) { |
|
path_map_index = 1<<i; |
|
if (i == hdev->active_path_index) |
|
active = "Active"; |
|
else if (hdev->path_map & path_map_index) |
|
active = "Inactive"; |
|
else |
|
continue; |
|
|
|
output_len += scnprintf(buf + output_len, |
|
PAGE_SIZE - output_len, |
|
"[%d:%d:%d:%d] %20.20s ", |
|
h->scsi_host->host_no, |
|
hdev->bus, hdev->target, hdev->lun, |
|
scsi_device_type(hdev->devtype)); |
|
|
|
if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { |
|
output_len += scnprintf(buf + output_len, |
|
PAGE_SIZE - output_len, |
|
"%s\n", active); |
|
continue; |
|
} |
|
|
|
box = hdev->box[i]; |
|
memcpy(&phys_connector, &hdev->phys_connector[i], |
|
sizeof(phys_connector)); |
|
if (phys_connector[0] < '0') |
|
phys_connector[0] = '0'; |
|
if (phys_connector[1] < '0') |
|
phys_connector[1] = '0'; |
|
output_len += scnprintf(buf + output_len, |
|
PAGE_SIZE - output_len, |
|
"PORT: %.2s ", |
|
phys_connector); |
|
if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && |
|
hdev->expose_device) { |
|
if (box == 0 || box == 0xFF) { |
|
output_len += scnprintf(buf + output_len, |
|
PAGE_SIZE - output_len, |
|
"BAY: %hhu %s\n", |
|
bay, active); |
|
} else { |
|
output_len += scnprintf(buf + output_len, |
|
PAGE_SIZE - output_len, |
|
"BOX: %hhu BAY: %hhu %s\n", |
|
box, bay, active); |
|
} |
|
} else if (box != 0 && box != 0xFF) { |
|
output_len += scnprintf(buf + output_len, |
|
PAGE_SIZE - output_len, "BOX: %hhu %s\n", |
|
box, active); |
|
} else |
|
output_len += scnprintf(buf + output_len, |
|
PAGE_SIZE - output_len, "%s\n", active); |
|
} |
|
|
|
spin_unlock_irqrestore(&h->devlock, flags); |
|
return output_len; |
|
} |
|
|
|
static ssize_t host_show_ctlr_num(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
|
|
h = shost_to_hba(shost); |
|
return snprintf(buf, 20, "%d\n", h->ctlr); |
|
} |
|
|
|
static ssize_t host_show_legacy_board(struct device *dev, |
|
struct device_attribute *attr, char *buf) |
|
{ |
|
struct ctlr_info *h; |
|
struct Scsi_Host *shost = class_to_shost(dev); |
|
|
|
h = shost_to_hba(shost); |
|
return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0); |
|
} |
|
|
|
static DEVICE_ATTR_RO(raid_level); |
|
static DEVICE_ATTR_RO(lunid); |
|
static DEVICE_ATTR_RO(unique_id); |
|
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); |
|
static DEVICE_ATTR_RO(sas_address); |
|
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, |
|
host_show_hp_ssd_smart_path_enabled, NULL); |
|
static DEVICE_ATTR_RO(path_info); |
|
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, |
|
host_show_hp_ssd_smart_path_status, |
|
host_store_hp_ssd_smart_path_status); |
|
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, |
|
host_store_raid_offload_debug); |
|
static DEVICE_ATTR(firmware_revision, S_IRUGO, |
|
host_show_firmware_revision, NULL); |
|
static DEVICE_ATTR(commands_outstanding, S_IRUGO, |
|
host_show_commands_outstanding, NULL); |
|
static DEVICE_ATTR(transport_mode, S_IRUGO, |
|
host_show_transport_mode, NULL); |
|
static DEVICE_ATTR(resettable, S_IRUGO, |
|
host_show_resettable, NULL); |
|
static DEVICE_ATTR(lockup_detected, S_IRUGO, |
|
host_show_lockup_detected, NULL); |
|
static DEVICE_ATTR(ctlr_num, S_IRUGO, |
|
host_show_ctlr_num, NULL); |
|
static DEVICE_ATTR(legacy_board, S_IRUGO, |
|
host_show_legacy_board, NULL); |
|
|
|
static struct device_attribute *hpsa_sdev_attrs[] = { |
|
&dev_attr_raid_level, |
|
&dev_attr_lunid, |
|
&dev_attr_unique_id, |
|
&dev_attr_hp_ssd_smart_path_enabled, |
|
&dev_attr_path_info, |
|
&dev_attr_sas_address, |
|
NULL, |
|
}; |
|
|
|
static struct device_attribute *hpsa_shost_attrs[] = { |
|
&dev_attr_rescan, |
|
&dev_attr_firmware_revision, |
|
&dev_attr_commands_outstanding, |
|
&dev_attr_transport_mode, |
|
&dev_attr_resettable, |
|
&dev_attr_hp_ssd_smart_path_status, |
|
&dev_attr_raid_offload_debug, |
|
&dev_attr_lockup_detected, |
|
&dev_attr_ctlr_num, |
|
&dev_attr_legacy_board, |
|
NULL, |
|
}; |
|
|
|
#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\ |
|
HPSA_MAX_CONCURRENT_PASSTHRUS) |
|
|
|
static struct scsi_host_template hpsa_driver_template = { |
|
.module = THIS_MODULE, |
|
.name = HPSA, |
|
.proc_name = HPSA, |
|
.queuecommand = hpsa_scsi_queue_command, |
|
.scan_start = hpsa_scan_start, |
|
.scan_finished = hpsa_scan_finished, |
|
.change_queue_depth = hpsa_change_queue_depth, |
|
.this_id = -1, |
|
.use_clustering = ENABLE_CLUSTERING, |
|
.eh_device_reset_handler = hpsa_eh_device_reset_handler, |
|
.ioctl = hpsa_ioctl, |
|
.slave_alloc = hpsa_slave_alloc, |
|
.slave_configure = hpsa_slave_configure, |
|
.slave_destroy = hpsa_slave_destroy, |
|
#ifdef CONFIG_COMPAT |
|
.compat_ioctl = hpsa_compat_ioctl, |
|
#endif |
|
.sdev_attrs = hpsa_sdev_attrs, |
|
.shost_attrs = hpsa_shost_attrs, |
|
.max_sectors = 1024, |
|
.no_write_same = 1, |
|
}; |
|
|
|
static inline u32 next_command(struct ctlr_info *h, u8 q) |
|
{ |
|
u32 a; |
|
struct reply_queue_buffer *rq = &h->reply_queue[q]; |
|
|
|
if (h->transMethod & CFGTBL_Trans_io_accel1) |
|
return h->access.command_completed(h, q); |
|
|
|
if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) |
|
return h->access.command_completed(h, q); |
|
|
|
if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { |
|
a = rq->head[rq->current_entry]; |
|
rq->current_entry++; |
|
atomic_dec(&h->commands_outstanding); |
|
} else { |
|
a = FIFO_EMPTY; |
|
} |
|
/* Check for wraparound */ |
|
if (rq->current_entry == h->max_commands) { |
|
rq->current_entry = 0; |
|
rq->wraparound ^= 1; |
|
} |
|
return a; |
|
} |
|
|
|
/* |
|
* There are some special bits in the bus address of the |
|
* command that we have to set for the controller to know |
|
* how to process the command: |
|
* |
|
* Normal performant mode: |
|
* bit 0: 1 means performant mode, 0 means simple mode. |
|
* bits 1-3 = block fetch table entry |
|
* bits 4-6 = command type (== 0) |
|
* |
|
* ioaccel1 mode: |
|
* bit 0 = "performant mode" bit. |
|
* bits 1-3 = block fetch table entry |
|
* bits 4-6 = command type (== 110) |
|
* (command type is needed because ioaccel1 mode |
|
* commands are submitted through the same register as normal |
|
* mode commands, so this is how the controller knows whether |
|
* the command is normal mode or ioaccel1 mode.) |
|
* |
|
* ioaccel2 mode: |
|
* bit 0 = "performant mode" bit. |
|
* bits 1-4 = block fetch table entry (note extra bit) |
|
* bits 4-6 = not needed, because ioaccel2 mode has |
|
* a separate special register for submitting commands. |
|
*/ |
|
|
|
/* |
|
* set_performant_mode: Modify the tag for cciss performant |
|
* set bit 0 for pull model, bits 3-1 for block fetch |
|
* register number |
|
*/ |
|
#define DEFAULT_REPLY_QUEUE (-1) |
|
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, |
|
int reply_queue) |
|
{ |
|
if (likely(h->transMethod & CFGTBL_Trans_Performant)) { |
|
c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); |
|
if (unlikely(!h->msix_vectors)) |
|
return; |
|
c->Header.ReplyQueue = reply_queue; |
|
} |
|
} |
|
|
|
static void set_ioaccel1_performant_mode(struct ctlr_info *h, |
|
struct CommandList *c, |
|
int reply_queue) |
|
{ |
|
struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; |
|
|
|
/* |
|
* Tell the controller to post the reply to the queue for this |
|
* processor. This seems to give the best I/O throughput. |
|
*/ |
|
cp->ReplyQueue = reply_queue; |
|
/* |
|
* Set the bits in the address sent down to include: |
|
* - performant mode bit (bit 0) |
|
* - pull count (bits 1-3) |
|
* - command type (bits 4-6) |
|
*/ |
|
c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | |
|
IOACCEL1_BUSADDR_CMDTYPE; |
|
} |
|
|
|
static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, |
|
struct CommandList *c, |
|
int reply_queue) |
|
{ |
|
struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) |
|
&h->ioaccel2_cmd_pool[c->cmdindex]; |
|
|
|
/* Tell the controller to post the reply to the queue for this |
|
* processor. This seems to give the best I/O throughput. |
|
*/ |
|
cp->reply_queue = reply_queue; |
|
/* Set the bits in the address sent down to include: |
|
* - performant mode bit not used in ioaccel mode 2 |
|
* - pull count (bits 0-3) |
|
* - command type isn't needed for ioaccel2 |
|
*/ |
|
c->busaddr |= h->ioaccel2_blockFetchTable[0]; |
|
} |
|
|
|
static void set_ioaccel2_performant_mode(struct ctlr_info *h, |
|
struct CommandList *c, |
|
int reply_queue) |
|
{ |
|
struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; |
|
|
|
/* |
|
* Tell the controller to post the reply to the queue for this |
|
* processor. This seems to give the best I/O throughput. |
|
*/ |
|
cp->reply_queue = reply_queue; |
|
/* |
|
* Set the bits in the address sent down to include: |
|
* - performant mode bit not used in ioaccel mode 2 |
|
* - pull count (bits 0-3) |
|
* - command type isn't needed for ioaccel2 |
|
*/ |
|
c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); |
|
} |
|
|
|
static int is_firmware_flash_cmd(u8 *cdb) |
|
{ |
|
return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; |
|
} |
|
|
|
/* |
|
* During firmware flash, the heartbeat register may not update as frequently |
|
* as it should. So we dial down lockup detection during firmware flash. and |
|
* dial it back up when firmware flash completes. |
|
*/ |
|
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) |
|
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) |
|
#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ) |
|
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
if (!is_firmware_flash_cmd(c->Request.CDB)) |
|
return; |
|
atomic_inc(&h->firmware_flash_in_progress); |
|
h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; |
|
} |
|
|
|
static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
if (is_firmware_flash_cmd(c->Request.CDB) && |
|
atomic_dec_and_test(&h->firmware_flash_in_progress)) |
|
h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; |
|
} |
|
|
|
static void __enqueue_cmd_and_start_io(struct ctlr_info *h, |
|
struct CommandList *c, int reply_queue) |
|
{ |
|
dial_down_lockup_detection_during_fw_flash(h, c); |
|
atomic_inc(&h->commands_outstanding); |
|
|
|
reply_queue = h->reply_map[raw_smp_processor_id()]; |
|
switch (c->cmd_type) { |
|
case CMD_IOACCEL1: |
|
set_ioaccel1_performant_mode(h, c, reply_queue); |
|
writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); |
|
break; |
|
case CMD_IOACCEL2: |
|
set_ioaccel2_performant_mode(h, c, reply_queue); |
|
writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); |
|
break; |
|
case IOACCEL2_TMF: |
|
set_ioaccel2_tmf_performant_mode(h, c, reply_queue); |
|
writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); |
|
break; |
|
default: |
|
set_performant_mode(h, c, reply_queue); |
|
h->access.submit_command(h, c); |
|
} |
|
} |
|
|
|
static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) |
|
{ |
|
if (unlikely(hpsa_is_pending_event(c))) |
|
return finish_cmd(c); |
|
|
|
__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); |
|
} |
|
|
|
static inline int is_hba_lunid(unsigned char scsi3addr[]) |
|
{ |
|
return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; |
|
} |
|
|
|
static inline int is_scsi_rev_5(struct ctlr_info *h) |
|
{ |
|
if (!h->hba_inquiry_data) |
|
return 0; |
|
if ((h->hba_inquiry_data[2] & 0x07) == 5) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
static int hpsa_find_target_lun(struct ctlr_info *h, |
|
unsigned char scsi3addr[], int bus, int *target, int *lun) |
|
{ |
|
/* finds an unused bus, target, lun for a new physical device |
|
* assumes h->devlock is held |
|
*/ |
|
int i, found = 0; |
|
DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); |
|
|
|
bitmap_zero(lun_taken, HPSA_MAX_DEVICES); |
|
|
|
for (i = 0; i < h->ndevices; i++) { |
|
if (h->dev[i]->bus == bus && h->dev[i]->target != -1) |
|
__set_bit(h->dev[i]->target, lun_taken); |
|
} |
|
|
|
i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); |
|
if (i < HPSA_MAX_DEVICES) { |
|
/* *bus = 1; */ |
|
*target = i; |
|
*lun = 0; |
|
found = 1; |
|
} |
|
return !found; |
|
} |
|
|
|
static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *dev, char *description) |
|
{ |
|
#define LABEL_SIZE 25 |
|
char label[LABEL_SIZE]; |
|
|
|
if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) |
|
return; |
|
|
|
switch (dev->devtype) { |
|
case TYPE_RAID: |
|
snprintf(label, LABEL_SIZE, "controller"); |
|
break; |
|
case TYPE_ENCLOSURE: |
|
snprintf(label, LABEL_SIZE, "enclosure"); |
|
break; |
|
case TYPE_DISK: |
|
case TYPE_ZBC: |
|
if (dev->external) |
|
snprintf(label, LABEL_SIZE, "external"); |
|
else if (!is_logical_dev_addr_mode(dev->scsi3addr)) |
|
snprintf(label, LABEL_SIZE, "%s", |
|
raid_label[PHYSICAL_DRIVE]); |
|
else |
|
snprintf(label, LABEL_SIZE, "RAID-%s", |
|
dev->raid_level > RAID_UNKNOWN ? "?" : |
|
raid_label[dev->raid_level]); |
|
break; |
|
case TYPE_ROM: |
|
snprintf(label, LABEL_SIZE, "rom"); |
|
break; |
|
case TYPE_TAPE: |
|
snprintf(label, LABEL_SIZE, "tape"); |
|
break; |
|
case TYPE_MEDIUM_CHANGER: |
|
snprintf(label, LABEL_SIZE, "changer"); |
|
break; |
|
default: |
|
snprintf(label, LABEL_SIZE, "UNKNOWN"); |
|
break; |
|
} |
|
|
|
dev_printk(level, &h->pdev->dev, |
|
"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", |
|
h->scsi_host->host_no, dev->bus, dev->target, dev->lun, |
|
description, |
|
scsi_device_type(dev->devtype), |
|
dev->vendor, |
|
dev->model, |
|
label, |
|
dev->offload_config ? '+' : '-', |
|
dev->offload_to_be_enabled ? '+' : '-', |
|
dev->expose_device); |
|
} |
|
|
|
/* Add an entry into h->dev[] array. */ |
|
static int hpsa_scsi_add_entry(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *device, |
|
struct hpsa_scsi_dev_t *added[], int *nadded) |
|
{ |
|
/* assumes h->devlock is held */ |
|
int n = h->ndevices; |
|
int i; |
|
unsigned char addr1[8], addr2[8]; |
|
struct hpsa_scsi_dev_t *sd; |
|
|
|
if (n >= HPSA_MAX_DEVICES) { |
|
dev_err(&h->pdev->dev, "too many devices, some will be " |
|
"inaccessible.\n"); |
|
return -1; |
|
} |
|
|
|
/* physical devices do not have lun or target assigned until now. */ |
|
if (device->lun != -1) |
|
/* Logical device, lun is already assigned. */ |
|
goto lun_assigned; |
|
|
|
/* If this device a non-zero lun of a multi-lun device |
|
* byte 4 of the 8-byte LUN addr will contain the logical |
|
* unit no, zero otherwise. |
|
*/ |
|
if (device->scsi3addr[4] == 0) { |
|
/* This is not a non-zero lun of a multi-lun device */ |
|
if (hpsa_find_target_lun(h, device->scsi3addr, |
|
device->bus, &device->target, &device->lun) != 0) |
|
return -1; |
|
goto lun_assigned; |
|
} |
|
|
|
/* This is a non-zero lun of a multi-lun device. |
|
* Search through our list and find the device which |
|
* has the same 8 byte LUN address, excepting byte 4 and 5. |
|
* Assign the same bus and target for this new LUN. |
|
* Use the logical unit number from the firmware. |
|
*/ |
|
memcpy(addr1, device->scsi3addr, 8); |
|
addr1[4] = 0; |
|
addr1[5] = 0; |
|
for (i = 0; i < n; i++) { |
|
sd = h->dev[i]; |
|
memcpy(addr2, sd->scsi3addr, 8); |
|
addr2[4] = 0; |
|
addr2[5] = 0; |
|
/* differ only in byte 4 and 5? */ |
|
if (memcmp(addr1, addr2, 8) == 0) { |
|
device->bus = sd->bus; |
|
device->target = sd->target; |
|
device->lun = device->scsi3addr[4]; |
|
break; |
|
} |
|
} |
|
if (device->lun == -1) { |
|
dev_warn(&h->pdev->dev, "physical device with no LUN=0," |
|
" suspect firmware bug or unsupported hardware " |
|
"configuration.\n"); |
|
return -1; |
|
} |
|
|
|
lun_assigned: |
|
|
|
h->dev[n] = device; |
|
h->ndevices++; |
|
added[*nadded] = device; |
|
(*nadded)++; |
|
hpsa_show_dev_msg(KERN_INFO, h, device, |
|
device->expose_device ? "added" : "masked"); |
|
return 0; |
|
} |
|
|
|
/* |
|
* Called during a scan operation. |
|
* |
|
* Update an entry in h->dev[] array. |
|
*/ |
|
static void hpsa_scsi_update_entry(struct ctlr_info *h, |
|
int entry, struct hpsa_scsi_dev_t *new_entry) |
|
{ |
|
/* assumes h->devlock is held */ |
|
BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
|
|
|
/* Raid level changed. */ |
|
h->dev[entry]->raid_level = new_entry->raid_level; |
|
|
|
/* |
|
* ioacccel_handle may have changed for a dual domain disk |
|
*/ |
|
h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; |
|
|
|
/* Raid offload parameters changed. Careful about the ordering. */ |
|
if (new_entry->offload_config && new_entry->offload_to_be_enabled) { |
|
/* |
|
* if drive is newly offload_enabled, we want to copy the |
|
* raid map data first. If previously offload_enabled and |
|
* offload_config were set, raid map data had better be |
|
* the same as it was before. If raid map data has changed |
|
* then it had better be the case that |
|
* h->dev[entry]->offload_enabled is currently 0. |
|
*/ |
|
h->dev[entry]->raid_map = new_entry->raid_map; |
|
h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; |
|
} |
|
if (new_entry->offload_to_be_enabled) { |
|
h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; |
|
wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ |
|
} |
|
h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; |
|
h->dev[entry]->offload_config = new_entry->offload_config; |
|
h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; |
|
h->dev[entry]->queue_depth = new_entry->queue_depth; |
|
|
|
/* |
|
* We can turn off ioaccel offload now, but need to delay turning |
|
* ioaccel on until we can update h->dev[entry]->phys_disk[], but we |
|
* can't do that until all the devices are updated. |
|
*/ |
|
h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled; |
|
|
|
/* |
|
* turn ioaccel off immediately if told to do so. |
|
*/ |
|
if (!new_entry->offload_to_be_enabled) |
|
h->dev[entry]->offload_enabled = 0; |
|
|
|
hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); |
|
} |
|
|
|
/* Replace an entry from h->dev[] array. */ |
|
static void hpsa_scsi_replace_entry(struct ctlr_info *h, |
|
int entry, struct hpsa_scsi_dev_t *new_entry, |
|
struct hpsa_scsi_dev_t *added[], int *nadded, |
|
struct hpsa_scsi_dev_t *removed[], int *nremoved) |
|
{ |
|
/* assumes h->devlock is held */ |
|
BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
|
removed[*nremoved] = h->dev[entry]; |
|
(*nremoved)++; |
|
|
|
/* |
|
* New physical devices won't have target/lun assigned yet |
|
* so we need to preserve the values in the slot we are replacing. |
|
*/ |
|
if (new_entry->target == -1) { |
|
new_entry->target = h->dev[entry]->target; |
|
new_entry->lun = h->dev[entry]->lun; |
|
} |
|
|
|
h->dev[entry] = new_entry; |
|
added[*nadded] = new_entry; |
|
(*nadded)++; |
|
|
|
hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); |
|
} |
|
|
|
/* Remove an entry from h->dev[] array. */ |
|
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, |
|
struct hpsa_scsi_dev_t *removed[], int *nremoved) |
|
{ |
|
/* assumes h->devlock is held */ |
|
int i; |
|
struct hpsa_scsi_dev_t *sd; |
|
|
|
BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
|
|
|
sd = h->dev[entry]; |
|
removed[*nremoved] = h->dev[entry]; |
|
(*nremoved)++; |
|
|
|
for (i = entry; i < h->ndevices-1; i++) |
|
h->dev[i] = h->dev[i+1]; |
|
h->ndevices--; |
|
hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); |
|
} |
|
|
|
#define SCSI3ADDR_EQ(a, b) ( \ |
|
(a)[7] == (b)[7] && \ |
|
(a)[6] == (b)[6] && \ |
|
(a)[5] == (b)[5] && \ |
|
(a)[4] == (b)[4] && \ |
|
(a)[3] == (b)[3] && \ |
|
(a)[2] == (b)[2] && \ |
|
(a)[1] == (b)[1] && \ |
|
(a)[0] == (b)[0]) |
|
|
|
static void fixup_botched_add(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *added) |
|
{ |
|
/* called when scsi_add_device fails in order to re-adjust |
|
* h->dev[] to match the mid layer's view. |
|
*/ |
|
unsigned long flags; |
|
int i, j; |
|
|
|
spin_lock_irqsave(&h->lock, flags); |
|
for (i = 0; i < h->ndevices; i++) { |
|
if (h->dev[i] == added) { |
|
for (j = i; j < h->ndevices-1; j++) |
|
h->dev[j] = h->dev[j+1]; |
|
h->ndevices--; |
|
break; |
|
} |
|
} |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
kfree(added); |
|
} |
|
|
|
static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, |
|
struct hpsa_scsi_dev_t *dev2) |
|
{ |
|
/* we compare everything except lun and target as these |
|
* are not yet assigned. Compare parts likely |
|
* to differ first |
|
*/ |
|
if (memcmp(dev1->scsi3addr, dev2->scsi3addr, |
|
sizeof(dev1->scsi3addr)) != 0) |
|
return 0; |
|
if (memcmp(dev1->device_id, dev2->device_id, |
|
sizeof(dev1->device_id)) != 0) |
|
return 0; |
|
if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) |
|
return 0; |
|
if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) |
|
return 0; |
|
if (dev1->devtype != dev2->devtype) |
|
return 0; |
|
if (dev1->bus != dev2->bus) |
|
return 0; |
|
return 1; |
|
} |
|
|
|
static inline int device_updated(struct hpsa_scsi_dev_t *dev1, |
|
struct hpsa_scsi_dev_t *dev2) |
|
{ |
|
/* Device attributes that can change, but don't mean |
|
* that the device is a different device, nor that the OS |
|
* needs to be told anything about the change. |
|
*/ |
|
if (dev1->raid_level != dev2->raid_level) |
|
return 1; |
|
if (dev1->offload_config != dev2->offload_config) |
|
return 1; |
|
if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled) |
|
return 1; |
|
if (!is_logical_dev_addr_mode(dev1->scsi3addr)) |
|
if (dev1->queue_depth != dev2->queue_depth) |
|
return 1; |
|
/* |
|
* This can happen for dual domain devices. An active |
|
* path change causes the ioaccel handle to change |
|
* |
|
* for example note the handle differences between p0 and p1 |
|
* Device WWN ,WWN hash,Handle |
|
* D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003 |
|
* p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004 |
|
*/ |
|
if (dev1->ioaccel_handle != dev2->ioaccel_handle) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
/* Find needle in haystack. If exact match found, return DEVICE_SAME, |
|
* and return needle location in *index. If scsi3addr matches, but not |
|
* vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle |
|
* location in *index. |
|
* In the case of a minor device attribute change, such as RAID level, just |
|
* return DEVICE_UPDATED, along with the updated device's location in index. |
|
* If needle not found, return DEVICE_NOT_FOUND. |
|
*/ |
|
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, |
|
struct hpsa_scsi_dev_t *haystack[], int haystack_size, |
|
int *index) |
|
{ |
|
int i; |
|
#define DEVICE_NOT_FOUND 0 |
|
#define DEVICE_CHANGED 1 |
|
#define DEVICE_SAME 2 |
|
#define DEVICE_UPDATED 3 |
|
if (needle == NULL) |
|
return DEVICE_NOT_FOUND; |
|
|
|
for (i = 0; i < haystack_size; i++) { |
|
if (haystack[i] == NULL) /* previously removed. */ |
|
continue; |
|
if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { |
|
*index = i; |
|
if (device_is_the_same(needle, haystack[i])) { |
|
if (device_updated(needle, haystack[i])) |
|
return DEVICE_UPDATED; |
|
return DEVICE_SAME; |
|
} else { |
|
/* Keep offline devices offline */ |
|
if (needle->volume_offline) |
|
return DEVICE_NOT_FOUND; |
|
return DEVICE_CHANGED; |
|
} |
|
} |
|
} |
|
*index = -1; |
|
return DEVICE_NOT_FOUND; |
|
} |
|
|
|
static void hpsa_monitor_offline_device(struct ctlr_info *h, |
|
unsigned char scsi3addr[]) |
|
{ |
|
struct offline_device_entry *device; |
|
unsigned long flags; |
|
|
|
/* Check to see if device is already on the list */ |
|
spin_lock_irqsave(&h->offline_device_lock, flags); |
|
list_for_each_entry(device, &h->offline_device_list, offline_list) { |
|
if (memcmp(device->scsi3addr, scsi3addr, |
|
sizeof(device->scsi3addr)) == 0) { |
|
spin_unlock_irqrestore(&h->offline_device_lock, flags); |
|
return; |
|
} |
|
} |
|
spin_unlock_irqrestore(&h->offline_device_lock, flags); |
|
|
|
/* Device is not on the list, add it. */ |
|
device = kmalloc(sizeof(*device), GFP_KERNEL); |
|
if (!device) |
|
return; |
|
|
|
memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); |
|
spin_lock_irqsave(&h->offline_device_lock, flags); |
|
list_add_tail(&device->offline_list, &h->offline_device_list); |
|
spin_unlock_irqrestore(&h->offline_device_lock, flags); |
|
} |
|
|
|
/* Print a message explaining various offline volume states */ |
|
static void hpsa_show_volume_status(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *sd) |
|
{ |
|
if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
switch (sd->volume_offline) { |
|
case HPSA_LV_OK: |
|
break; |
|
case HPSA_LV_UNDERGOING_ERASE: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_NOT_AVAILABLE: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_UNDERGOING_RPI: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_PENDING_RPI: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_ENCRYPTED_NO_KEY: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_UNDERGOING_ENCRYPTION: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_PENDING_ENCRYPTION: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
case HPSA_LV_PENDING_ENCRYPTION_REKEYING: |
|
dev_info(&h->pdev->dev, |
|
"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", |
|
h->scsi_host->host_no, |
|
sd->bus, sd->target, sd->lun); |
|
break; |
|
} |
|
} |
|
|
|
/* |
|
* Figure the list of physical drive pointers for a logical drive with |
|
* raid offload configured. |
|
*/ |
|
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *dev[], int ndevices, |
|
struct hpsa_scsi_dev_t *logical_drive) |
|
{ |
|
struct raid_map_data *map = &logical_drive->raid_map; |
|
struct raid_map_disk_data *dd = &map->data[0]; |
|
int i, j; |
|
int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + |
|
le16_to_cpu(map->metadata_disks_per_row); |
|
int nraid_map_entries = le16_to_cpu(map->row_cnt) * |
|
le16_to_cpu(map->layout_map_count) * |
|
total_disks_per_row; |
|
int nphys_disk = le16_to_cpu(map->layout_map_count) * |
|
total_disks_per_row; |
|
int qdepth; |
|
|
|
if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) |
|
nraid_map_entries = RAID_MAP_MAX_ENTRIES; |
|
|
|
logical_drive->nphysical_disks = nraid_map_entries; |
|
|
|
qdepth = 0; |
|
for (i = 0; i < nraid_map_entries; i++) { |
|
logical_drive->phys_disk[i] = NULL; |
|
if (!logical_drive->offload_config) |
|
continue; |
|
for (j = 0; j < ndevices; j++) { |
|
if (dev[j] == NULL) |
|
continue; |
|
if (dev[j]->devtype != TYPE_DISK && |
|
dev[j]->devtype != TYPE_ZBC) |
|
continue; |
|
if (is_logical_device(dev[j])) |
|
continue; |
|
if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) |
|
continue; |
|
|
|
logical_drive->phys_disk[i] = dev[j]; |
|
if (i < nphys_disk) |
|
qdepth = min(h->nr_cmds, qdepth + |
|
logical_drive->phys_disk[i]->queue_depth); |
|
break; |
|
} |
|
|
|
/* |
|
* This can happen if a physical drive is removed and |
|
* the logical drive is degraded. In that case, the RAID |
|
* map data will refer to a physical disk which isn't actually |
|
* present. And in that case offload_enabled should already |
|
* be 0, but we'll turn it off here just in case |
|
*/ |
|
if (!logical_drive->phys_disk[i]) { |
|
dev_warn(&h->pdev->dev, |
|
"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n", |
|
__func__, |
|
h->scsi_host->host_no, logical_drive->bus, |
|
logical_drive->target, logical_drive->lun); |
|
logical_drive->offload_enabled = 0; |
|
logical_drive->offload_to_be_enabled = 0; |
|
logical_drive->queue_depth = 8; |
|
} |
|
} |
|
if (nraid_map_entries) |
|
/* |
|
* This is correct for reads, too high for full stripe writes, |
|
* way too high for partial stripe writes |
|
*/ |
|
logical_drive->queue_depth = qdepth; |
|
else { |
|
if (logical_drive->external) |
|
logical_drive->queue_depth = EXTERNAL_QD; |
|
else |
|
logical_drive->queue_depth = h->nr_cmds; |
|
} |
|
} |
|
|
|
static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *dev[], int ndevices) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < ndevices; i++) { |
|
if (dev[i] == NULL) |
|
continue; |
|
if (dev[i]->devtype != TYPE_DISK && |
|
dev[i]->devtype != TYPE_ZBC) |
|
continue; |
|
if (!is_logical_device(dev[i])) |
|
continue; |
|
|
|
/* |
|
* If offload is currently enabled, the RAID map and |
|
* phys_disk[] assignment *better* not be changing |
|
* because we would be changing ioaccel phsy_disk[] pointers |
|
* on a ioaccel volume processing I/O requests. |
|
* |
|
* If an ioaccel volume status changed, initially because it was |
|
* re-configured and thus underwent a transformation, or |
|
* a drive failed, we would have received a state change |
|
* request and ioaccel should have been turned off. When the |
|
* transformation completes, we get another state change |
|
* request to turn ioaccel back on. In this case, we need |
|
* to update the ioaccel information. |
|
* |
|
* Thus: If it is not currently enabled, but will be after |
|
* the scan completes, make sure the ioaccel pointers |
|
* are up to date. |
|
*/ |
|
|
|
if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled) |
|
hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); |
|
} |
|
} |
|
|
|
static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) |
|
{ |
|
int rc = 0; |
|
|
|
if (!h->scsi_host) |
|
return 1; |
|
|
|
if (is_logical_device(device)) /* RAID */ |
|
rc = scsi_add_device(h->scsi_host, device->bus, |
|
device->target, device->lun); |
|
else /* HBA */ |
|
rc = hpsa_add_sas_device(h->sas_host, device); |
|
|
|
return rc; |
|
} |
|
|
|
static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *dev) |
|
{ |
|
int i; |
|
int count = 0; |
|
|
|
for (i = 0; i < h->nr_cmds; i++) { |
|
struct CommandList *c = h->cmd_pool + i; |
|
int refcount = atomic_inc_return(&c->refcount); |
|
|
|
if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, |
|
dev->scsi3addr)) { |
|
unsigned long flags; |
|
|
|
spin_lock_irqsave(&h->lock, flags); /* Implied MB */ |
|
if (!hpsa_is_cmd_idle(c)) |
|
++count; |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
} |
|
|
|
cmd_free(h, c); |
|
} |
|
|
|
return count; |
|
} |
|
|
|
static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *device) |
|
{ |
|
int cmds = 0; |
|
int waits = 0; |
|
|
|
while (1) { |
|
cmds = hpsa_find_outstanding_commands_for_dev(h, device); |
|
if (cmds == 0) |
|
break; |
|
if (++waits > 20) |
|
break; |
|
msleep(1000); |
|
} |
|
|
|
if (waits > 20) |
|
dev_warn(&h->pdev->dev, |
|
"%s: removing device with %d outstanding commands!\n", |
|
__func__, cmds); |
|
} |
|
|
|
static void hpsa_remove_device(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *device) |
|
{ |
|
struct scsi_device *sdev = NULL; |
|
|
|
if (!h->scsi_host) |
|
return; |
|
|
|
/* |
|
* Allow for commands to drain |
|
*/ |
|
device->removed = 1; |
|
hpsa_wait_for_outstanding_commands_for_dev(h, device); |
|
|
|
if (is_logical_device(device)) { /* RAID */ |
|
sdev = scsi_device_lookup(h->scsi_host, device->bus, |
|
device->target, device->lun); |
|
if (sdev) { |
|
scsi_remove_device(sdev); |
|
scsi_device_put(sdev); |
|
} else { |
|
/* |
|
* We don't expect to get here. Future commands |
|
* to this device will get a selection timeout as |
|
* if the device were gone. |
|
*/ |
|
hpsa_show_dev_msg(KERN_WARNING, h, device, |
|
"didn't find device for removal."); |
|
} |
|
} else { /* HBA */ |
|
|
|
hpsa_remove_sas_device(device); |
|
} |
|
} |
|
|
|
static void adjust_hpsa_scsi_table(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *sd[], int nsds) |
|
{ |
|
/* sd contains scsi3 addresses and devtypes, and inquiry |
|
* data. This function takes what's in sd to be the current |
|
* reality and updates h->dev[] to reflect that reality. |
|
*/ |
|
int i, entry, device_change, changes = 0; |
|
struct hpsa_scsi_dev_t *csd; |
|
unsigned long flags; |
|
struct hpsa_scsi_dev_t **added, **removed; |
|
int nadded, nremoved; |
|
|
|
/* |
|
* A reset can cause a device status to change |
|
* re-schedule the scan to see what happened. |
|
*/ |
|
spin_lock_irqsave(&h->reset_lock, flags); |
|
if (h->reset_in_progress) { |
|
h->drv_req_rescan = 1; |
|
spin_unlock_irqrestore(&h->reset_lock, flags); |
|
return; |
|
} |
|
spin_unlock_irqrestore(&h->reset_lock, flags); |
|
|
|
added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); |
|
removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); |
|
|
|
if (!added || !removed) { |
|
dev_warn(&h->pdev->dev, "out of memory in " |
|
"adjust_hpsa_scsi_table\n"); |
|
goto free_and_out; |
|
} |
|
|
|
spin_lock_irqsave(&h->devlock, flags); |
|
|
|
/* find any devices in h->dev[] that are not in |
|
* sd[] and remove them from h->dev[], and for any |
|
* devices which have changed, remove the old device |
|
* info and add the new device info. |
|
* If minor device attributes change, just update |
|
* the existing device structure. |
|
*/ |
|
i = 0; |
|
nremoved = 0; |
|
nadded = 0; |
|
while (i < h->ndevices) { |
|
csd = h->dev[i]; |
|
device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); |
|
if (device_change == DEVICE_NOT_FOUND) { |
|
changes++; |
|
hpsa_scsi_remove_entry(h, i, removed, &nremoved); |
|
continue; /* remove ^^^, hence i not incremented */ |
|
} else if (device_change == DEVICE_CHANGED) { |
|
changes++; |
|
hpsa_scsi_replace_entry(h, i, sd[entry], |
|
added, &nadded, removed, &nremoved); |
|
/* Set it to NULL to prevent it from being freed |
|
* at the bottom of hpsa_update_scsi_devices() |
|
*/ |
|
sd[entry] = NULL; |
|
} else if (device_change == DEVICE_UPDATED) { |
|
hpsa_scsi_update_entry(h, i, sd[entry]); |
|
} |
|
i++; |
|
} |
|
|
|
/* Now, make sure every device listed in sd[] is also |
|
* listed in h->dev[], adding them if they aren't found |
|
*/ |
|
|
|
for (i = 0; i < nsds; i++) { |
|
if (!sd[i]) /* if already added above. */ |
|
continue; |
|
|
|
/* Don't add devices which are NOT READY, FORMAT IN PROGRESS |
|
* as the SCSI mid-layer does not handle such devices well. |
|
* It relentlessly loops sending TUR at 3Hz, then READ(10) |
|
* at 160Hz, and prevents the system from coming up. |
|
*/ |
|
if (sd[i]->volume_offline) { |
|
hpsa_show_volume_status(h, sd[i]); |
|
hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); |
|
continue; |
|
} |
|
|
|
device_change = hpsa_scsi_find_entry(sd[i], h->dev, |
|
h->ndevices, &entry); |
|
if (device_change == DEVICE_NOT_FOUND) { |
|
changes++; |
|
if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) |
|
break; |
|
sd[i] = NULL; /* prevent from being freed later. */ |
|
} else if (device_change == DEVICE_CHANGED) { |
|
/* should never happen... */ |
|
changes++; |
|
dev_warn(&h->pdev->dev, |
|
"device unexpectedly changed.\n"); |
|
/* but if it does happen, we just ignore that device */ |
|
} |
|
} |
|
hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); |
|
|
|
/* |
|
* Now that h->dev[]->phys_disk[] is coherent, we can enable |
|
* any logical drives that need it enabled. |
|
* |
|
* The raid map should be current by now. |
|
* |
|
* We are updating the device list used for I/O requests. |
|
*/ |
|
for (i = 0; i < h->ndevices; i++) { |
|
if (h->dev[i] == NULL) |
|
continue; |
|
h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; |
|
} |
|
|
|
spin_unlock_irqrestore(&h->devlock, flags); |
|
|
|
/* Monitor devices which are in one of several NOT READY states to be |
|
* brought online later. This must be done without holding h->devlock, |
|
* so don't touch h->dev[] |
|
*/ |
|
for (i = 0; i < nsds; i++) { |
|
if (!sd[i]) /* if already added above. */ |
|
continue; |
|
if (sd[i]->volume_offline) |
|
hpsa_monitor_offline_device(h, sd[i]->scsi3addr); |
|
} |
|
|
|
/* Don't notify scsi mid layer of any changes the first time through |
|
* (or if there are no changes) scsi_scan_host will do it later the |
|
* first time through. |
|
*/ |
|
if (!changes) |
|
goto free_and_out; |
|
|
|
/* Notify scsi mid layer of any removed devices */ |
|
for (i = 0; i < nremoved; i++) { |
|
if (removed[i] == NULL) |
|
continue; |
|
if (removed[i]->expose_device) |
|
hpsa_remove_device(h, removed[i]); |
|
kfree(removed[i]); |
|
removed[i] = NULL; |
|
} |
|
|
|
/* Notify scsi mid layer of any added devices */ |
|
for (i = 0; i < nadded; i++) { |
|
int rc = 0; |
|
|
|
if (added[i] == NULL) |
|
continue; |
|
if (!(added[i]->expose_device)) |
|
continue; |
|
rc = hpsa_add_device(h, added[i]); |
|
if (!rc) |
|
continue; |
|
dev_warn(&h->pdev->dev, |
|
"addition failed %d, device not added.", rc); |
|
/* now we have to remove it from h->dev, |
|
* since it didn't get added to scsi mid layer |
|
*/ |
|
fixup_botched_add(h, added[i]); |
|
h->drv_req_rescan = 1; |
|
} |
|
|
|
free_and_out: |
|
kfree(added); |
|
kfree(removed); |
|
} |
|
|
|
/* |
|
* Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * |
|
* Assume's h->devlock is held. |
|
*/ |
|
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, |
|
int bus, int target, int lun) |
|
{ |
|
int i; |
|
struct hpsa_scsi_dev_t *sd; |
|
|
|
for (i = 0; i < h->ndevices; i++) { |
|
sd = h->dev[i]; |
|
if (sd->bus == bus && sd->target == target && sd->lun == lun) |
|
return sd; |
|
} |
|
return NULL; |
|
} |
|
|
|
static int hpsa_slave_alloc(struct scsi_device *sdev) |
|
{ |
|
struct hpsa_scsi_dev_t *sd = NULL; |
|
unsigned long flags; |
|
struct ctlr_info *h; |
|
|
|
h = sdev_to_hba(sdev); |
|
spin_lock_irqsave(&h->devlock, flags); |
|
if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { |
|
struct scsi_target *starget; |
|
struct sas_rphy *rphy; |
|
|
|
starget = scsi_target(sdev); |
|
rphy = target_to_rphy(starget); |
|
sd = hpsa_find_device_by_sas_rphy(h, rphy); |
|
if (sd) { |
|
sd->target = sdev_id(sdev); |
|
sd->lun = sdev->lun; |
|
} |
|
} |
|
if (!sd) |
|
sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), |
|
sdev_id(sdev), sdev->lun); |
|
|
|
if (sd && sd->expose_device) { |
|
atomic_set(&sd->ioaccel_cmds_out, 0); |
|
sdev->hostdata = sd; |
|
} else |
|
sdev->hostdata = NULL; |
|
spin_unlock_irqrestore(&h->devlock, flags); |
|
return 0; |
|
} |
|
|
|
/* configure scsi device based on internal per-device structure */ |
|
static int hpsa_slave_configure(struct scsi_device *sdev) |
|
{ |
|
struct hpsa_scsi_dev_t *sd; |
|
int queue_depth; |
|
|
|
sd = sdev->hostdata; |
|
sdev->no_uld_attach = !sd || !sd->expose_device; |
|
|
|
if (sd) { |
|
if (sd->external) |
|
queue_depth = EXTERNAL_QD; |
|
else |
|
queue_depth = sd->queue_depth != 0 ? |
|
sd->queue_depth : sdev->host->can_queue; |
|
} else |
|
queue_depth = sdev->host->can_queue; |
|
|
|
scsi_change_queue_depth(sdev, queue_depth); |
|
|
|
return 0; |
|
} |
|
|
|
static void hpsa_slave_destroy(struct scsi_device *sdev) |
|
{ |
|
/* nothing to do. */ |
|
} |
|
|
|
static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) |
|
{ |
|
int i; |
|
|
|
if (!h->ioaccel2_cmd_sg_list) |
|
return; |
|
for (i = 0; i < h->nr_cmds; i++) { |
|
kfree(h->ioaccel2_cmd_sg_list[i]); |
|
h->ioaccel2_cmd_sg_list[i] = NULL; |
|
} |
|
kfree(h->ioaccel2_cmd_sg_list); |
|
h->ioaccel2_cmd_sg_list = NULL; |
|
} |
|
|
|
static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) |
|
{ |
|
int i; |
|
|
|
if (h->chainsize <= 0) |
|
return 0; |
|
|
|
h->ioaccel2_cmd_sg_list = |
|
kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds, |
|
GFP_KERNEL); |
|
if (!h->ioaccel2_cmd_sg_list) |
|
return -ENOMEM; |
|
for (i = 0; i < h->nr_cmds; i++) { |
|
h->ioaccel2_cmd_sg_list[i] = |
|
kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) * |
|
h->maxsgentries, GFP_KERNEL); |
|
if (!h->ioaccel2_cmd_sg_list[i]) |
|
goto clean; |
|
} |
|
return 0; |
|
|
|
clean: |
|
hpsa_free_ioaccel2_sg_chain_blocks(h); |
|
return -ENOMEM; |
|
} |
|
|
|
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) |
|
{ |
|
int i; |
|
|
|
if (!h->cmd_sg_list) |
|
return; |
|
for (i = 0; i < h->nr_cmds; i++) { |
|
kfree(h->cmd_sg_list[i]); |
|
h->cmd_sg_list[i] = NULL; |
|
} |
|
kfree(h->cmd_sg_list); |
|
h->cmd_sg_list = NULL; |
|
} |
|
|
|
static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) |
|
{ |
|
int i; |
|
|
|
if (h->chainsize <= 0) |
|
return 0; |
|
|
|
h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, |
|
GFP_KERNEL); |
|
if (!h->cmd_sg_list) |
|
return -ENOMEM; |
|
|
|
for (i = 0; i < h->nr_cmds; i++) { |
|
h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * |
|
h->chainsize, GFP_KERNEL); |
|
if (!h->cmd_sg_list[i]) |
|
goto clean; |
|
|
|
} |
|
return 0; |
|
|
|
clean: |
|
hpsa_free_sg_chain_blocks(h); |
|
return -ENOMEM; |
|
} |
|
|
|
static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, |
|
struct io_accel2_cmd *cp, struct CommandList *c) |
|
{ |
|
struct ioaccel2_sg_element *chain_block; |
|
u64 temp64; |
|
u32 chain_size; |
|
|
|
chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; |
|
chain_size = le32_to_cpu(cp->sg[0].length); |
|
temp64 = pci_map_single(h->pdev, chain_block, chain_size, |
|
PCI_DMA_TODEVICE); |
|
if (dma_mapping_error(&h->pdev->dev, temp64)) { |
|
/* prevent subsequent unmapping */ |
|
cp->sg->address = 0; |
|
return -1; |
|
} |
|
cp->sg->address = cpu_to_le64(temp64); |
|
return 0; |
|
} |
|
|
|
static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, |
|
struct io_accel2_cmd *cp) |
|
{ |
|
struct ioaccel2_sg_element *chain_sg; |
|
u64 temp64; |
|
u32 chain_size; |
|
|
|
chain_sg = cp->sg; |
|
temp64 = le64_to_cpu(chain_sg->address); |
|
chain_size = le32_to_cpu(cp->sg[0].length); |
|
pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE); |
|
} |
|
|
|
static int hpsa_map_sg_chain_block(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
struct SGDescriptor *chain_sg, *chain_block; |
|
u64 temp64; |
|
u32 chain_len; |
|
|
|
chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; |
|
chain_block = h->cmd_sg_list[c->cmdindex]; |
|
chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); |
|
chain_len = sizeof(*chain_sg) * |
|
(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); |
|
chain_sg->Len = cpu_to_le32(chain_len); |
|
temp64 = pci_map_single(h->pdev, chain_block, chain_len, |
|
PCI_DMA_TODEVICE); |
|
if (dma_mapping_error(&h->pdev->dev, temp64)) { |
|
/* prevent subsequent unmapping */ |
|
chain_sg->Addr = cpu_to_le64(0); |
|
return -1; |
|
} |
|
chain_sg->Addr = cpu_to_le64(temp64); |
|
return 0; |
|
} |
|
|
|
static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
struct SGDescriptor *chain_sg; |
|
|
|
if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) |
|
return; |
|
|
|
chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; |
|
pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), |
|
le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); |
|
} |
|
|
|
|
|
/* Decode the various types of errors on ioaccel2 path. |
|
* Return 1 for any error that should generate a RAID path retry. |
|
* Return 0 for errors that don't require a RAID path retry. |
|
*/ |
|
static int handle_ioaccel_mode2_error(struct ctlr_info *h, |
|
struct CommandList *c, |
|
struct scsi_cmnd *cmd, |
|
struct io_accel2_cmd *c2, |
|
struct hpsa_scsi_dev_t *dev) |
|
{ |
|
int data_len; |
|
int retry = 0; |
|
u32 ioaccel2_resid = 0; |
|
|
|
switch (c2->error_data.serv_response) { |
|
case IOACCEL2_SERV_RESPONSE_COMPLETE: |
|
switch (c2->error_data.status) { |
|
case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: |
|
break; |
|
case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: |
|
cmd->result |= SAM_STAT_CHECK_CONDITION; |
|
if (c2->error_data.data_present != |
|
IOACCEL2_SENSE_DATA_PRESENT) { |
|
memset(cmd->sense_buffer, 0, |
|
SCSI_SENSE_BUFFERSIZE); |
|
break; |
|
} |
|
/* copy the sense data */ |
|
data_len = c2->error_data.sense_data_len; |
|
if (data_len > SCSI_SENSE_BUFFERSIZE) |
|
data_len = SCSI_SENSE_BUFFERSIZE; |
|
if (data_len > sizeof(c2->error_data.sense_data_buff)) |
|
data_len = |
|
sizeof(c2->error_data.sense_data_buff); |
|
memcpy(cmd->sense_buffer, |
|
c2->error_data.sense_data_buff, data_len); |
|
retry = 1; |
|
break; |
|
case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: |
|
retry = 1; |
|
break; |
|
case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: |
|
retry = 1; |
|
break; |
|
case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: |
|
retry = 1; |
|
break; |
|
case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: |
|
retry = 1; |
|
break; |
|
default: |
|
retry = 1; |
|
break; |
|
} |
|
break; |
|
case IOACCEL2_SERV_RESPONSE_FAILURE: |
|
switch (c2->error_data.status) { |
|
case IOACCEL2_STATUS_SR_IO_ERROR: |
|
case IOACCEL2_STATUS_SR_IO_ABORTED: |
|
case IOACCEL2_STATUS_SR_OVERRUN: |
|
retry = 1; |
|
break; |
|
case IOACCEL2_STATUS_SR_UNDERRUN: |
|
cmd->result = (DID_OK << 16); /* host byte */ |
|
cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ |
|
ioaccel2_resid = get_unaligned_le32( |
|
&c2->error_data.resid_cnt[0]); |
|
scsi_set_resid(cmd, ioaccel2_resid); |
|
break; |
|
case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: |
|
case IOACCEL2_STATUS_SR_INVALID_DEVICE: |
|
case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: |
|
/* |
|
* Did an HBA disk disappear? We will eventually |
|
* get a state change event from the controller but |
|
* in the meantime, we need to tell the OS that the |
|
* HBA disk is no longer there and stop I/O |
|
* from going down. This allows the potential re-insert |
|
* of the disk to get the same device node. |
|
*/ |
|
if (dev->physical_device && dev->expose_device) { |
|
cmd->result = DID_NO_CONNECT << 16; |
|
dev->removed = 1; |
|
h->drv_req_rescan = 1; |
|
dev_warn(&h->pdev->dev, |
|
"%s: device is gone!\n", __func__); |
|
} else |
|
/* |
|
* Retry by sending down the RAID path. |
|
* We will get an event from ctlr to |
|
* trigger rescan regardless. |
|
*/ |
|
retry = 1; |
|
break; |
|
default: |
|
retry = 1; |
|
} |
|
break; |
|
case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: |
|
break; |
|
case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: |
|
break; |
|
case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: |
|
retry = 1; |
|
break; |
|
case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: |
|
break; |
|
default: |
|
retry = 1; |
|
break; |
|
} |
|
|
|
return retry; /* retry on raid path? */ |
|
} |
|
|
|
static void hpsa_cmd_resolve_events(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
bool do_wake = false; |
|
|
|
/* |
|
* Reset c->scsi_cmd here so that the reset handler will know |
|
* this command has completed. Then, check to see if the handler is |
|
* waiting for this command, and, if so, wake it. |
|
*/ |
|
c->scsi_cmd = SCSI_CMD_IDLE; |
|
mb(); /* Declare command idle before checking for pending events. */ |
|
if (c->reset_pending) { |
|
unsigned long flags; |
|
struct hpsa_scsi_dev_t *dev; |
|
|
|
/* |
|
* There appears to be a reset pending; lock the lock and |
|
* reconfirm. If so, then decrement the count of outstanding |
|
* commands and wake the reset command if this is the last one. |
|
*/ |
|
spin_lock_irqsave(&h->lock, flags); |
|
dev = c->reset_pending; /* Re-fetch under the lock. */ |
|
if (dev && atomic_dec_and_test(&dev->reset_cmds_out)) |
|
do_wake = true; |
|
c->reset_pending = NULL; |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
} |
|
|
|
if (do_wake) |
|
wake_up_all(&h->event_sync_wait_queue); |
|
} |
|
|
|
static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
hpsa_cmd_resolve_events(h, c); |
|
cmd_tagged_free(h, c); |
|
} |
|
|
|
static void hpsa_cmd_free_and_done(struct ctlr_info *h, |
|
struct CommandList *c, struct scsi_cmnd *cmd) |
|
{ |
|
hpsa_cmd_resolve_and_free(h, c); |
|
if (cmd && cmd->scsi_done) |
|
cmd->scsi_done(cmd); |
|
} |
|
|
|
static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) |
|
{ |
|
INIT_WORK(&c->work, hpsa_command_resubmit_worker); |
|
queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); |
|
} |
|
|
|
static void process_ioaccel2_completion(struct ctlr_info *h, |
|
struct CommandList *c, struct scsi_cmnd *cmd, |
|
struct hpsa_scsi_dev_t *dev) |
|
{ |
|
struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; |
|
|
|
/* check for good status */ |
|
if (likely(c2->error_data.serv_response == 0 && |
|
c2->error_data.status == 0)) |
|
return hpsa_cmd_free_and_done(h, c, cmd); |
|
|
|
/* |
|
* Any RAID offload error results in retry which will use |
|
* the normal I/O path so the controller can handle whatever is |
|
* wrong. |
|
*/ |
|
if (is_logical_device(dev) && |
|
c2->error_data.serv_response == |
|
IOACCEL2_SERV_RESPONSE_FAILURE) { |
|
if (c2->error_data.status == |
|
IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { |
|
dev->offload_enabled = 0; |
|
dev->offload_to_be_enabled = 0; |
|
} |
|
|
|
return hpsa_retry_cmd(h, c); |
|
} |
|
|
|
if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) |
|
return hpsa_retry_cmd(h, c); |
|
|
|
return hpsa_cmd_free_and_done(h, c, cmd); |
|
} |
|
|
|
/* Returns 0 on success, < 0 otherwise. */ |
|
static int hpsa_evaluate_tmf_status(struct ctlr_info *h, |
|
struct CommandList *cp) |
|
{ |
|
u8 tmf_status = cp->err_info->ScsiStatus; |
|
|
|
switch (tmf_status) { |
|
case CISS_TMF_COMPLETE: |
|
/* |
|
* CISS_TMF_COMPLETE never happens, instead, |
|
* ei->CommandStatus == 0 for this case. |
|
*/ |
|
case CISS_TMF_SUCCESS: |
|
return 0; |
|
case CISS_TMF_INVALID_FRAME: |
|
case CISS_TMF_NOT_SUPPORTED: |
|
case CISS_TMF_FAILED: |
|
case CISS_TMF_WRONG_LUN: |
|
case CISS_TMF_OVERLAPPED_TAG: |
|
break; |
|
default: |
|
dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", |
|
tmf_status); |
|
break; |
|
} |
|
return -tmf_status; |
|
} |
|
|
|
static void complete_scsi_command(struct CommandList *cp) |
|
{ |
|
struct scsi_cmnd *cmd; |
|
struct ctlr_info *h; |
|
struct ErrorInfo *ei; |
|
struct hpsa_scsi_dev_t *dev; |
|
struct io_accel2_cmd *c2; |
|
|
|
u8 sense_key; |
|
u8 asc; /* additional sense code */ |
|
u8 ascq; /* additional sense code qualifier */ |
|
unsigned long sense_data_size; |
|
|
|
ei = cp->err_info; |
|
cmd = cp->scsi_cmd; |
|
h = cp->h; |
|
|
|
if (!cmd->device) { |
|
cmd->result = DID_NO_CONNECT << 16; |
|
return hpsa_cmd_free_and_done(h, cp, cmd); |
|
} |
|
|
|
dev = cmd->device->hostdata; |
|
if (!dev) { |
|
cmd->result = DID_NO_CONNECT << 16; |
|
return hpsa_cmd_free_and_done(h, cp, cmd); |
|
} |
|
c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; |
|
|
|
scsi_dma_unmap(cmd); /* undo the DMA mappings */ |
|
if ((cp->cmd_type == CMD_SCSI) && |
|
(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) |
|
hpsa_unmap_sg_chain_block(h, cp); |
|
|
|
if ((cp->cmd_type == CMD_IOACCEL2) && |
|
(c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) |
|
hpsa_unmap_ioaccel2_sg_chain_block(h, c2); |
|
|
|
cmd->result = (DID_OK << 16); /* host byte */ |
|
cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ |
|
|
|
if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { |
|
if (dev->physical_device && dev->expose_device && |
|
dev->removed) { |
|
cmd->result = DID_NO_CONNECT << 16; |
|
return hpsa_cmd_free_and_done(h, cp, cmd); |
|
} |
|
if (likely(cp->phys_disk != NULL)) |
|
atomic_dec(&cp->phys_disk->ioaccel_cmds_out); |
|
} |
|
|
|
/* |
|
* We check for lockup status here as it may be set for |
|
* CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by |
|
* fail_all_oustanding_cmds() |
|
*/ |
|
if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { |
|
/* DID_NO_CONNECT will prevent a retry */ |
|
cmd->result = DID_NO_CONNECT << 16; |
|
return hpsa_cmd_free_and_done(h, cp, cmd); |
|
} |
|
|
|
if ((unlikely(hpsa_is_pending_event(cp)))) |
|
if (cp->reset_pending) |
|
return hpsa_cmd_free_and_done(h, cp, cmd); |
|
|
|
if (cp->cmd_type == CMD_IOACCEL2) |
|
return process_ioaccel2_completion(h, cp, cmd, dev); |
|
|
|
scsi_set_resid(cmd, ei->ResidualCnt); |
|
if (ei->CommandStatus == 0) |
|
return hpsa_cmd_free_and_done(h, cp, cmd); |
|
|
|
/* For I/O accelerator commands, copy over some fields to the normal |
|
* CISS header used below for error handling. |
|
*/ |
|
if (cp->cmd_type == CMD_IOACCEL1) { |
|
struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; |
|
cp->Header.SGList = scsi_sg_count(cmd); |
|
cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); |
|
cp->Request.CDBLen = le16_to_cpu(c->io_flags) & |
|
IOACCEL1_IOFLAGS_CDBLEN_MASK; |
|
cp->Header.tag = c->tag; |
|
memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); |
|
memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); |
|
|
|
/* Any RAID offload error results in retry which will use |
|
* the normal I/O path so the controller can handle whatever's |
|
* wrong. |
|
*/ |
|
if (is_logical_device(dev)) { |
|
if (ei->CommandStatus == CMD_IOACCEL_DISABLED) |
|
dev->offload_enabled = 0; |
|
return hpsa_retry_cmd(h, cp); |
|
} |
|
} |
|
|
|
/* an error has occurred */ |
|
switch (ei->CommandStatus) { |
|
|
|
case CMD_TARGET_STATUS: |
|
cmd->result |= ei->ScsiStatus; |
|
/* copy the sense data */ |
|
if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) |
|
sense_data_size = SCSI_SENSE_BUFFERSIZE; |
|
else |
|
sense_data_size = sizeof(ei->SenseInfo); |
|
if (ei->SenseLen < sense_data_size) |
|
sense_data_size = ei->SenseLen; |
|
memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); |
|
if (ei->ScsiStatus) |
|
decode_sense_data(ei->SenseInfo, sense_data_size, |
|
&sense_key, &asc, &ascq); |
|
if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { |
|
if (sense_key == ABORTED_COMMAND) { |
|
cmd->result |= DID_SOFT_ERROR << 16; |
|
break; |
|
} |
|
break; |
|
} |
|
/* Problem was not a check condition |
|
* Pass it up to the upper layers... |
|
*/ |
|
if (ei->ScsiStatus) { |
|
dev_warn(&h->pdev->dev, "cp %p has status 0x%x " |
|
"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " |
|
"Returning result: 0x%x\n", |
|
cp, ei->ScsiStatus, |
|
sense_key, asc, ascq, |
|
cmd->result); |
|
} else { /* scsi status is zero??? How??? */ |
|
dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " |
|
"Returning no connection.\n", cp), |
|
|
|
/* Ordinarily, this case should never happen, |
|
* but there is a bug in some released firmware |
|
* revisions that allows it to happen if, for |
|
* example, a 4100 backplane loses power and |
|
* the tape drive is in it. We assume that |
|
* it's a fatal error of some kind because we |
|
* can't show that it wasn't. We will make it |
|
* look like selection timeout since that is |
|
* the most common reason for this to occur, |
|
* and it's severe enough. |
|
*/ |
|
|
|
cmd->result = DID_NO_CONNECT << 16; |
|
} |
|
break; |
|
|
|
case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ |
|
break; |
|
case CMD_DATA_OVERRUN: |
|
dev_warn(&h->pdev->dev, |
|
"CDB %16phN data overrun\n", cp->Request.CDB); |
|
break; |
|
case CMD_INVALID: { |
|
/* print_bytes(cp, sizeof(*cp), 1, 0); |
|
print_cmd(cp); */ |
|
/* We get CMD_INVALID if you address a non-existent device |
|
* instead of a selection timeout (no response). You will |
|
* see this if you yank out a drive, then try to access it. |
|
* This is kind of a shame because it means that any other |
|
* CMD_INVALID (e.g. driver bug) will get interpreted as a |
|
* missing target. */ |
|
cmd->result = DID_NO_CONNECT << 16; |
|
} |
|
break; |
|
case CMD_PROTOCOL_ERR: |
|
cmd->result = DID_ERROR << 16; |
|
dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", |
|
cp->Request.CDB); |
|
break; |
|
case CMD_HARDWARE_ERR: |
|
cmd->result = DID_ERROR << 16; |
|
dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", |
|
cp->Request.CDB); |
|
break; |
|
case CMD_CONNECTION_LOST: |
|
cmd->result = DID_ERROR << 16; |
|
dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", |
|
cp->Request.CDB); |
|
break; |
|
case CMD_ABORTED: |
|
cmd->result = DID_ABORT << 16; |
|
break; |
|
case CMD_ABORT_FAILED: |
|
cmd->result = DID_ERROR << 16; |
|
dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", |
|
cp->Request.CDB); |
|
break; |
|
case CMD_UNSOLICITED_ABORT: |
|
cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ |
|
dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", |
|
cp->Request.CDB); |
|
break; |
|
case CMD_TIMEOUT: |
|
cmd->result = DID_TIME_OUT << 16; |
|
dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", |
|
cp->Request.CDB); |
|
break; |
|
case CMD_UNABORTABLE: |
|
cmd->result = DID_ERROR << 16; |
|
dev_warn(&h->pdev->dev, "Command unabortable\n"); |
|
break; |
|
case CMD_TMF_STATUS: |
|
if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ |
|
cmd->result = DID_ERROR << 16; |
|
break; |
|
case CMD_IOACCEL_DISABLED: |
|
/* This only handles the direct pass-through case since RAID |
|
* offload is handled above. Just attempt a retry. |
|
*/ |
|
cmd->result = DID_SOFT_ERROR << 16; |
|
dev_warn(&h->pdev->dev, |
|
"cp %p had HP SSD Smart Path error\n", cp); |
|
break; |
|
default: |
|
cmd->result = DID_ERROR << 16; |
|
dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", |
|
cp, ei->CommandStatus); |
|
} |
|
|
|
return hpsa_cmd_free_and_done(h, cp, cmd); |
|
} |
|
|
|
static void hpsa_pci_unmap(struct pci_dev *pdev, |
|
struct CommandList *c, int sg_used, int data_direction) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < sg_used; i++) |
|
pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), |
|
le32_to_cpu(c->SG[i].Len), |
|
data_direction); |
|
} |
|
|
|
static int hpsa_map_one(struct pci_dev *pdev, |
|
struct CommandList *cp, |
|
unsigned char *buf, |
|
size_t buflen, |
|
int data_direction) |
|
{ |
|
u64 addr64; |
|
|
|
if (buflen == 0 || data_direction == PCI_DMA_NONE) { |
|
cp->Header.SGList = 0; |
|
cp->Header.SGTotal = cpu_to_le16(0); |
|
return 0; |
|
} |
|
|
|
addr64 = pci_map_single(pdev, buf, buflen, data_direction); |
|
if (dma_mapping_error(&pdev->dev, addr64)) { |
|
/* Prevent subsequent unmap of something never mapped */ |
|
cp->Header.SGList = 0; |
|
cp->Header.SGTotal = cpu_to_le16(0); |
|
return -1; |
|
} |
|
cp->SG[0].Addr = cpu_to_le64(addr64); |
|
cp->SG[0].Len = cpu_to_le32(buflen); |
|
cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ |
|
cp->Header.SGList = 1; /* no. SGs contig in this cmd */ |
|
cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ |
|
return 0; |
|
} |
|
|
|
#define NO_TIMEOUT ((unsigned long) -1) |
|
#define DEFAULT_TIMEOUT 30000 /* milliseconds */ |
|
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, |
|
struct CommandList *c, int reply_queue, unsigned long timeout_msecs) |
|
{ |
|
DECLARE_COMPLETION_ONSTACK(wait); |
|
|
|
c->waiting = &wait; |
|
__enqueue_cmd_and_start_io(h, c, reply_queue); |
|
if (timeout_msecs == NO_TIMEOUT) { |
|
/* TODO: get rid of this no-timeout thing */ |
|
wait_for_completion_io(&wait); |
|
return IO_OK; |
|
} |
|
if (!wait_for_completion_io_timeout(&wait, |
|
msecs_to_jiffies(timeout_msecs))) { |
|
dev_warn(&h->pdev->dev, "Command timed out.\n"); |
|
return -ETIMEDOUT; |
|
} |
|
return IO_OK; |
|
} |
|
|
|
static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, |
|
int reply_queue, unsigned long timeout_msecs) |
|
{ |
|
if (unlikely(lockup_detected(h))) { |
|
c->err_info->CommandStatus = CMD_CTLR_LOCKUP; |
|
return IO_OK; |
|
} |
|
return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); |
|
} |
|
|
|
static u32 lockup_detected(struct ctlr_info *h) |
|
{ |
|
int cpu; |
|
u32 rc, *lockup_detected; |
|
|
|
cpu = get_cpu(); |
|
lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); |
|
rc = *lockup_detected; |
|
put_cpu(); |
|
return rc; |
|
} |
|
|
|
#define MAX_DRIVER_CMD_RETRIES 25 |
|
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, |
|
struct CommandList *c, int data_direction, unsigned long timeout_msecs) |
|
{ |
|
int backoff_time = 10, retry_count = 0; |
|
int rc; |
|
|
|
do { |
|
memset(c->err_info, 0, sizeof(*c->err_info)); |
|
rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, |
|
timeout_msecs); |
|
if (rc) |
|
break; |
|
retry_count++; |
|
if (retry_count > 3) { |
|
msleep(backoff_time); |
|
if (backoff_time < 1000) |
|
backoff_time *= 2; |
|
} |
|
} while ((check_for_unit_attention(h, c) || |
|
check_for_busy(h, c)) && |
|
retry_count <= MAX_DRIVER_CMD_RETRIES); |
|
hpsa_pci_unmap(h->pdev, c, 1, data_direction); |
|
if (retry_count > MAX_DRIVER_CMD_RETRIES) |
|
rc = -EIO; |
|
return rc; |
|
} |
|
|
|
static void hpsa_print_cmd(struct ctlr_info *h, char *txt, |
|
struct CommandList *c) |
|
{ |
|
const u8 *cdb = c->Request.CDB; |
|
const u8 *lun = c->Header.LUN.LunAddrBytes; |
|
|
|
dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n", |
|
txt, lun, cdb); |
|
} |
|
|
|
static void hpsa_scsi_interpret_error(struct ctlr_info *h, |
|
struct CommandList *cp) |
|
{ |
|
const struct ErrorInfo *ei = cp->err_info; |
|
struct device *d = &cp->h->pdev->dev; |
|
u8 sense_key, asc, ascq; |
|
int sense_len; |
|
|
|
switch (ei->CommandStatus) { |
|
case CMD_TARGET_STATUS: |
|
if (ei->SenseLen > sizeof(ei->SenseInfo)) |
|
sense_len = sizeof(ei->SenseInfo); |
|
else |
|
sense_len = ei->SenseLen; |
|
decode_sense_data(ei->SenseInfo, sense_len, |
|
&sense_key, &asc, &ascq); |
|
hpsa_print_cmd(h, "SCSI status", cp); |
|
if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) |
|
dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", |
|
sense_key, asc, ascq); |
|
else |
|
dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); |
|
if (ei->ScsiStatus == 0) |
|
dev_warn(d, "SCSI status is abnormally zero. " |
|
"(probably indicates selection timeout " |
|
"reported incorrectly due to a known " |
|
"firmware bug, circa July, 2001.)\n"); |
|
break; |
|
case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ |
|
break; |
|
case CMD_DATA_OVERRUN: |
|
hpsa_print_cmd(h, "overrun condition", cp); |
|
break; |
|
case CMD_INVALID: { |
|
/* controller unfortunately reports SCSI passthru's |
|
* to non-existent targets as invalid commands. |
|
*/ |
|
hpsa_print_cmd(h, "invalid command", cp); |
|
dev_warn(d, "probably means device no longer present\n"); |
|
} |
|
break; |
|
case CMD_PROTOCOL_ERR: |
|
hpsa_print_cmd(h, "protocol error", cp); |
|
break; |
|
case CMD_HARDWARE_ERR: |
|
hpsa_print_cmd(h, "hardware error", cp); |
|
break; |
|
case CMD_CONNECTION_LOST: |
|
hpsa_print_cmd(h, "connection lost", cp); |
|
break; |
|
case CMD_ABORTED: |
|
hpsa_print_cmd(h, "aborted", cp); |
|
break; |
|
case CMD_ABORT_FAILED: |
|
hpsa_print_cmd(h, "abort failed", cp); |
|
break; |
|
case CMD_UNSOLICITED_ABORT: |
|
hpsa_print_cmd(h, "unsolicited abort", cp); |
|
break; |
|
case CMD_TIMEOUT: |
|
hpsa_print_cmd(h, "timed out", cp); |
|
break; |
|
case CMD_UNABORTABLE: |
|
hpsa_print_cmd(h, "unabortable", cp); |
|
break; |
|
case CMD_CTLR_LOCKUP: |
|
hpsa_print_cmd(h, "controller lockup detected", cp); |
|
break; |
|
default: |
|
hpsa_print_cmd(h, "unknown status", cp); |
|
dev_warn(d, "Unknown command status %x\n", |
|
ei->CommandStatus); |
|
} |
|
} |
|
|
|
static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr, |
|
u8 page, u8 *buf, size_t bufsize) |
|
{ |
|
int rc = IO_OK; |
|
struct CommandList *c; |
|
struct ErrorInfo *ei; |
|
|
|
c = cmd_alloc(h); |
|
if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize, |
|
page, scsi3addr, TYPE_CMD)) { |
|
rc = -1; |
|
goto out; |
|
} |
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
|
if (rc) |
|
goto out; |
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
|
hpsa_scsi_interpret_error(h, c); |
|
rc = -1; |
|
} |
|
out: |
|
cmd_free(h, c); |
|
return rc; |
|
} |
|
|
|
static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h, |
|
u8 *scsi3addr) |
|
{ |
|
u8 *buf; |
|
u64 sa = 0; |
|
int rc = 0; |
|
|
|
buf = kzalloc(1024, GFP_KERNEL); |
|
if (!buf) |
|
return 0; |
|
|
|
rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC, |
|
buf, 1024); |
|
|
|
if (rc) |
|
goto out; |
|
|
|
sa = get_unaligned_be64(buf+12); |
|
|
|
out: |
|
kfree(buf); |
|
return sa; |
|
} |
|
|
|
static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, |
|
u16 page, unsigned char *buf, |
|
unsigned char bufsize) |
|
{ |
|
int rc = IO_OK; |
|
struct CommandList *c; |
|
struct ErrorInfo *ei; |
|
|
|
c = cmd_alloc(h); |
|
|
|
if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, |
|
page, scsi3addr, TYPE_CMD)) { |
|
rc = -1; |
|
goto out; |
|
} |
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
|
if (rc) |
|
goto out; |
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
|
hpsa_scsi_interpret_error(h, c); |
|
rc = -1; |
|
} |
|
out: |
|
cmd_free(h, c); |
|
return rc; |
|
} |
|
|
|
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, |
|
u8 reset_type, int reply_queue) |
|
{ |
|
int rc = IO_OK; |
|
struct CommandList *c; |
|
struct ErrorInfo *ei; |
|
|
|
c = cmd_alloc(h); |
|
|
|
|
|
/* fill_cmd can't fail here, no data buffer to map. */ |
|
(void) fill_cmd(c, reset_type, h, NULL, 0, 0, |
|
scsi3addr, TYPE_MSG); |
|
rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); |
|
if (rc) { |
|
dev_warn(&h->pdev->dev, "Failed to send reset command\n"); |
|
goto out; |
|
} |
|
/* no unmap needed here because no data xfer. */ |
|
|
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0) { |
|
hpsa_scsi_interpret_error(h, c); |
|
rc = -1; |
|
} |
|
out: |
|
cmd_free(h, c); |
|
return rc; |
|
} |
|
|
|
static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, |
|
struct hpsa_scsi_dev_t *dev, |
|
unsigned char *scsi3addr) |
|
{ |
|
int i; |
|
bool match = false; |
|
struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; |
|
struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; |
|
|
|
if (hpsa_is_cmd_idle(c)) |
|
return false; |
|
|
|
switch (c->cmd_type) { |
|
case CMD_SCSI: |
|
case CMD_IOCTL_PEND: |
|
match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, |
|
sizeof(c->Header.LUN.LunAddrBytes)); |
|
break; |
|
|
|
case CMD_IOACCEL1: |
|
case CMD_IOACCEL2: |
|
if (c->phys_disk == dev) { |
|
/* HBA mode match */ |
|
match = true; |
|
} else { |
|
/* Possible RAID mode -- check each phys dev. */ |
|
/* FIXME: Do we need to take out a lock here? If |
|
* so, we could just call hpsa_get_pdisk_of_ioaccel2() |
|
* instead. */ |
|
for (i = 0; i < dev->nphysical_disks && !match; i++) { |
|
/* FIXME: an alternate test might be |
|
* |
|
* match = dev->phys_disk[i]->ioaccel_handle |
|
* == c2->scsi_nexus; */ |
|
match = dev->phys_disk[i] == c->phys_disk; |
|
} |
|
} |
|
break; |
|
|
|
case IOACCEL2_TMF: |
|
for (i = 0; i < dev->nphysical_disks && !match; i++) { |
|
match = dev->phys_disk[i]->ioaccel_handle == |
|
le32_to_cpu(ac->it_nexus); |
|
} |
|
break; |
|
|
|
case 0: /* The command is in the middle of being initialized. */ |
|
match = false; |
|
break; |
|
|
|
default: |
|
dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", |
|
c->cmd_type); |
|
BUG(); |
|
} |
|
|
|
return match; |
|
} |
|
|
|
static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, |
|
unsigned char *scsi3addr, u8 reset_type, int reply_queue) |
|
{ |
|
int i; |
|
int rc = 0; |
|
|
|
/* We can really only handle one reset at a time */ |
|
if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { |
|
dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); |
|
return -EINTR; |
|
} |
|
|
|
BUG_ON(atomic_read(&dev->reset_cmds_out) != 0); |
|
|
|
for (i = 0; i < h->nr_cmds; i++) { |
|
struct CommandList *c = h->cmd_pool + i; |
|
int refcount = atomic_inc_return(&c->refcount); |
|
|
|
if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) { |
|
unsigned long flags; |
|
|
|
/* |
|
* Mark the target command as having a reset pending, |
|
* then lock a lock so that the command cannot complete |
|
* while we're considering it. If the command is not |
|
* idle then count it; otherwise revoke the event. |
|
*/ |
|
c->reset_pending = dev; |
|
spin_lock_irqsave(&h->lock, flags); /* Implied MB */ |
|
if (!hpsa_is_cmd_idle(c)) |
|
atomic_inc(&dev->reset_cmds_out); |
|
else |
|
c->reset_pending = NULL; |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
} |
|
|
|
cmd_free(h, c); |
|
} |
|
|
|
rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue); |
|
if (!rc) |
|
wait_event(h->event_sync_wait_queue, |
|
atomic_read(&dev->reset_cmds_out) == 0 || |
|
lockup_detected(h)); |
|
|
|
if (unlikely(lockup_detected(h))) { |
|
dev_warn(&h->pdev->dev, |
|
"Controller lockup detected during reset wait\n"); |
|
rc = -ENODEV; |
|
} |
|
|
|
if (unlikely(rc)) |
|
atomic_set(&dev->reset_cmds_out, 0); |
|
else |
|
rc = wait_for_device_to_become_ready(h, scsi3addr, 0); |
|
|
|
mutex_unlock(&h->reset_mutex); |
|
return rc; |
|
} |
|
|
|
static void hpsa_get_raid_level(struct ctlr_info *h, |
|
unsigned char *scsi3addr, unsigned char *raid_level) |
|
{ |
|
int rc; |
|
unsigned char *buf; |
|
|
|
*raid_level = RAID_UNKNOWN; |
|
buf = kzalloc(64, GFP_KERNEL); |
|
if (!buf) |
|
return; |
|
|
|
if (!hpsa_vpd_page_supported(h, scsi3addr, |
|
HPSA_VPD_LV_DEVICE_GEOMETRY)) |
|
goto exit; |
|
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | |
|
HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); |
|
|
|
if (rc == 0) |
|
*raid_level = buf[8]; |
|
if (*raid_level > RAID_UNKNOWN) |
|
*raid_level = RAID_UNKNOWN; |
|
exit: |
|
kfree(buf); |
|
return; |
|
} |
|
|
|
#define HPSA_MAP_DEBUG |
|
#ifdef HPSA_MAP_DEBUG |
|
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, |
|
struct raid_map_data *map_buff) |
|
{ |
|
struct raid_map_disk_data *dd = &map_buff->data[0]; |
|
int map, row, col; |
|
u16 map_cnt, row_cnt, disks_per_row; |
|
|
|
if (rc != 0) |
|
return; |
|
|
|
/* Show details only if debugging has been activated. */ |
|
if (h->raid_offload_debug < 2) |
|
return; |
|
|
|
dev_info(&h->pdev->dev, "structure_size = %u\n", |
|
le32_to_cpu(map_buff->structure_size)); |
|
dev_info(&h->pdev->dev, "volume_blk_size = %u\n", |
|
le32_to_cpu(map_buff->volume_blk_size)); |
|
dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", |
|
le64_to_cpu(map_buff->volume_blk_cnt)); |
|
dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", |
|
map_buff->phys_blk_shift); |
|
dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", |
|
map_buff->parity_rotation_shift); |
|
dev_info(&h->pdev->dev, "strip_size = %u\n", |
|
le16_to_cpu(map_buff->strip_size)); |
|
dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", |
|
le64_to_cpu(map_buff->disk_starting_blk)); |
|
dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", |
|
le64_to_cpu(map_buff->disk_blk_cnt)); |
|
dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", |
|
le16_to_cpu(map_buff->data_disks_per_row)); |
|
dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", |
|
le16_to_cpu(map_buff->metadata_disks_per_row)); |
|
dev_info(&h->pdev->dev, "row_cnt = %u\n", |
|
le16_to_cpu(map_buff->row_cnt)); |
|
dev_info(&h->pdev->dev, "layout_map_count = %u\n", |
|
le16_to_cpu(map_buff->layout_map_count)); |
|
dev_info(&h->pdev->dev, "flags = 0x%x\n", |
|
le16_to_cpu(map_buff->flags)); |
|
dev_info(&h->pdev->dev, "encryption = %s\n", |
|
le16_to_cpu(map_buff->flags) & |
|
RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); |
|
dev_info(&h->pdev->dev, "dekindex = %u\n", |
|
le16_to_cpu(map_buff->dekindex)); |
|
map_cnt = le16_to_cpu(map_buff->layout_map_count); |
|
for (map = 0; map < map_cnt; map++) { |
|
dev_info(&h->pdev->dev, "Map%u:\n", map); |
|
row_cnt = le16_to_cpu(map_buff->row_cnt); |
|
for (row = 0; row < row_cnt; row++) { |
|
dev_info(&h->pdev->dev, " Row%u:\n", row); |
|
disks_per_row = |
|
le16_to_cpu(map_buff->data_disks_per_row); |
|
for (col = 0; col < disks_per_row; col++, dd++) |
|
dev_info(&h->pdev->dev, |
|
" D%02u: h=0x%04x xor=%u,%u\n", |
|
col, dd->ioaccel_handle, |
|
dd->xor_mult[0], dd->xor_mult[1]); |
|
disks_per_row = |
|
le16_to_cpu(map_buff->metadata_disks_per_row); |
|
for (col = 0; col < disks_per_row; col++, dd++) |
|
dev_info(&h->pdev->dev, |
|
" M%02u: h=0x%04x xor=%u,%u\n", |
|
col, dd->ioaccel_handle, |
|
dd->xor_mult[0], dd->xor_mult[1]); |
|
} |
|
} |
|
} |
|
#else |
|
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, |
|
__attribute__((unused)) int rc, |
|
__attribute__((unused)) struct raid_map_data *map_buff) |
|
{ |
|
} |
|
#endif |
|
|
|
static int hpsa_get_raid_map(struct ctlr_info *h, |
|
unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) |
|
{ |
|
int rc = 0; |
|
struct CommandList *c; |
|
struct ErrorInfo *ei; |
|
|
|
c = cmd_alloc(h); |
|
|
|
if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, |
|
sizeof(this_device->raid_map), 0, |
|
scsi3addr, TYPE_CMD)) { |
|
dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); |
|
cmd_free(h, c); |
|
return -1; |
|
} |
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
|
if (rc) |
|
goto out; |
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
|
hpsa_scsi_interpret_error(h, c); |
|
rc = -1; |
|
goto out; |
|
} |
|
cmd_free(h, c); |
|
|
|
/* @todo in the future, dynamically allocate RAID map memory */ |
|
if (le32_to_cpu(this_device->raid_map.structure_size) > |
|
sizeof(this_device->raid_map)) { |
|
dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); |
|
rc = -1; |
|
} |
|
hpsa_debug_map_buff(h, rc, &this_device->raid_map); |
|
return rc; |
|
out: |
|
cmd_free(h, c); |
|
return rc; |
|
} |
|
|
|
static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, |
|
unsigned char scsi3addr[], u16 bmic_device_index, |
|
struct bmic_sense_subsystem_info *buf, size_t bufsize) |
|
{ |
|
int rc = IO_OK; |
|
struct CommandList *c; |
|
struct ErrorInfo *ei; |
|
|
|
c = cmd_alloc(h); |
|
|
|
rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, |
|
0, RAID_CTLR_LUNID, TYPE_CMD); |
|
if (rc) |
|
goto out; |
|
|
|
c->Request.CDB[2] = bmic_device_index & 0xff; |
|
c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; |
|
|
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
|
if (rc) |
|
goto out; |
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
|
hpsa_scsi_interpret_error(h, c); |
|
rc = -1; |
|
} |
|
out: |
|
cmd_free(h, c); |
|
return rc; |
|
} |
|
|
|
static int hpsa_bmic_id_controller(struct ctlr_info *h, |
|
struct bmic_identify_controller *buf, size_t bufsize) |
|
{ |
|
int rc = IO_OK; |
|
struct CommandList *c; |
|
struct ErrorInfo *ei; |
|
|
|
c = cmd_alloc(h); |
|
|
|
rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, |
|
0, RAID_CTLR_LUNID, TYPE_CMD); |
|
if (rc) |
|
goto out; |
|
|
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
|
if (rc) |
|
goto out; |
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
|
hpsa_scsi_interpret_error(h, c); |
|
rc = -1; |
|
} |
|
out: |
|
cmd_free(h, c); |
|
return rc; |
|
} |
|
|
|
static int hpsa_bmic_id_physical_device(struct ctlr_info *h, |
|
unsigned char scsi3addr[], u16 bmic_device_index, |
|
struct bmic_identify_physical_device *buf, size_t bufsize) |
|
{ |
|
int rc = IO_OK; |
|
struct CommandList *c; |
|
struct ErrorInfo *ei; |
|
|
|
c = cmd_alloc(h); |
|
rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, |
|
0, RAID_CTLR_LUNID, TYPE_CMD); |
|
if (rc) |
|
goto out; |
|
|
|
c->Request.CDB[2] = bmic_device_index & 0xff; |
|
c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; |
|
|
|
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, |
|
NO_TIMEOUT); |
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
|
hpsa_scsi_interpret_error(h, c); |
|
rc = -1; |
|
} |
|
out: |
|
cmd_free(h, c); |
|
|
|
return rc; |
|
} |
|
|
|
/* |
|
* get enclosure information |
|
* struct ReportExtendedLUNdata *rlep - Used for BMIC drive number |
|
* struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure |
|
* Uses id_physical_device to determine the box_index. |
|
*/ |
|
static void hpsa_get_enclosure_info(struct ctlr_info *h, |
|
unsigned char *scsi3addr, |
|
struct ReportExtendedLUNdata *rlep, int rle_index, |
|
struct hpsa_scsi_dev_t *encl_dev) |
|
{ |
|
int rc = -1; |
|
struct CommandList *c = NULL; |
|
struct ErrorInfo *ei = NULL; |
|
struct bmic_sense_storage_box_params *bssbp = NULL; |
|
struct bmic_identify_physical_device *id_phys = NULL; |
|
struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; |
|
u16 bmic_device_index = 0; |
|
|
|
bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); |
|
|
|
encl_dev->sas_address = |
|
hpsa_get_enclosure_logical_identifier(h, scsi3addr); |
|
|
|
if (encl_dev->target == -1 || encl_dev->lun == -1) { |
|
rc = IO_OK; |
|
goto out; |
|
} |
|
|
|
if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { |
|
rc = IO_OK; |
|
goto out; |
|
} |
|
|
|
bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); |
|
if (!bssbp) |
|
goto out; |
|
|
|
id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); |
|
if (!id_phys) |
|
goto out; |
|
|
|
rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, |
|
id_phys, sizeof(*id_phys)); |
|
if (rc) { |
|
dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", |
|
__func__, encl_dev->external, bmic_device_index); |
|
goto out; |
|
} |
|
|
|
c = cmd_alloc(h); |
|
|
|
rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, |
|
sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); |
|
|
|
if (rc) |
|
goto out; |
|
|
|
if (id_phys->phys_connector[1] == 'E') |
|
c->Request.CDB[5] = id_phys->box_index; |
|
else |
|
c->Request.CDB[5] = 0; |
|
|
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, |
|
NO_TIMEOUT); |
|
if (rc) |
|
goto out; |
|
|
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
|
rc = -1; |
|
goto out; |
|
} |
|
|
|
encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; |
|
memcpy(&encl_dev->phys_connector[id_phys->active_path_number], |
|
bssbp->phys_connector, sizeof(bssbp->phys_connector)); |
|
|
|
rc = IO_OK; |
|
out: |
|
kfree(bssbp); |
|
kfree(id_phys); |
|
|
|
if (c) |
|
cmd_free(h, c); |
|
|
|
if (rc != IO_OK) |
|
hpsa_show_dev_msg(KERN_INFO, h, encl_dev, |
|
"Error, could not get enclosure information"); |
|
} |
|
|
|
static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, |
|
unsigned char *scsi3addr) |
|
{ |
|
struct ReportExtendedLUNdata *physdev; |
|
u32 nphysicals; |
|
u64 sa = 0; |
|
int i; |
|
|
|
physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); |
|
if (!physdev) |
|
return 0; |
|
|
|
if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { |
|
dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); |
|
kfree(physdev); |
|
return 0; |
|
} |
|
nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; |
|
|
|
for (i = 0; i < nphysicals; i++) |
|
if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { |
|
sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); |
|
break; |
|
} |
|
|
|
kfree(physdev); |
|
|
|
return sa; |
|
} |
|
|
|
static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, |
|
struct hpsa_scsi_dev_t *dev) |
|
{ |
|
int rc; |
|
u64 sa = 0; |
|
|
|
if (is_hba_lunid(scsi3addr)) { |
|
struct bmic_sense_subsystem_info *ssi; |
|
|
|
ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); |
|
if (!ssi) |
|
return; |
|
|
|
rc = hpsa_bmic_sense_subsystem_information(h, |
|
scsi3addr, 0, ssi, sizeof(*ssi)); |
|
if (rc == 0) { |
|
sa = get_unaligned_be64(ssi->primary_world_wide_id); |
|
h->sas_address = sa; |
|
} |
|
|
|
kfree(ssi); |
|
} else |
|
sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); |
|
|
|
dev->sas_address = sa; |
|
} |
|
|
|
static void hpsa_ext_ctrl_present(struct ctlr_info *h, |
|
struct ReportExtendedLUNdata *physdev) |
|
{ |
|
u32 nphysicals; |
|
int i; |
|
|
|
if (h->discovery_polling) |
|
return; |
|
|
|
nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1; |
|
|
|
for (i = 0; i < nphysicals; i++) { |
|
if (physdev->LUN[i].device_type == |
|
BMIC_DEVICE_TYPE_CONTROLLER |
|
&& !is_hba_lunid(physdev->LUN[i].lunid)) { |
|
dev_info(&h->pdev->dev, |
|
"External controller present, activate discovery polling and disable rld caching\n"); |
|
hpsa_disable_rld_caching(h); |
|
h->discovery_polling = 1; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
/* Get a device id from inquiry page 0x83 */ |
|
static bool hpsa_vpd_page_supported(struct ctlr_info *h, |
|
unsigned char scsi3addr[], u8 page) |
|
{ |
|
int rc; |
|
int i; |
|
int pages; |
|
unsigned char *buf, bufsize; |
|
|
|
buf = kzalloc(256, GFP_KERNEL); |
|
if (!buf) |
|
return false; |
|
|
|
/* Get the size of the page list first */ |
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, |
|
VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, |
|
buf, HPSA_VPD_HEADER_SZ); |
|
if (rc != 0) |
|
goto exit_unsupported; |
|
pages = buf[3]; |
|
if ((pages + HPSA_VPD_HEADER_SZ) <= 255) |
|
bufsize = pages + HPSA_VPD_HEADER_SZ; |
|
else |
|
bufsize = 255; |
|
|
|
/* Get the whole VPD page list */ |
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, |
|
VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, |
|
buf, bufsize); |
|
if (rc != 0) |
|
goto exit_unsupported; |
|
|
|
pages = buf[3]; |
|
for (i = 1; i <= pages; i++) |
|
if (buf[3 + i] == page) |
|
goto exit_supported; |
|
exit_unsupported: |
|
kfree(buf); |
|
return false; |
|
exit_supported: |
|
kfree(buf); |
|
return true; |
|
} |
|
|
|
/* |
|
* Called during a scan operation. |
|
* Sets ioaccel status on the new device list, not the existing device list |
|
* |
|
* The device list used during I/O will be updated later in |
|
* adjust_hpsa_scsi_table. |
|
*/ |
|
static void hpsa_get_ioaccel_status(struct ctlr_info *h, |
|
unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) |
|
{ |
|
int rc; |
|
unsigned char *buf; |
|
u8 ioaccel_status; |
|
|
|
this_device->offload_config = 0; |
|
this_device->offload_enabled = 0; |
|
this_device->offload_to_be_enabled = 0; |
|
|
|
buf = kzalloc(64, GFP_KERNEL); |
|
if (!buf) |
|
return; |
|
if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) |
|
goto out; |
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, |
|
VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); |
|
if (rc != 0) |
|
goto out; |
|
|
|
#define IOACCEL_STATUS_BYTE 4 |
|
#define OFFLOAD_CONFIGURED_BIT 0x01 |
|
#define OFFLOAD_ENABLED_BIT 0x02 |
|
ioaccel_status = buf[IOACCEL_STATUS_BYTE]; |
|
this_device->offload_config = |
|
!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); |
|
if (this_device->offload_config) { |
|
this_device->offload_to_be_enabled = |
|
!!(ioaccel_status & OFFLOAD_ENABLED_BIT); |
|
if (hpsa_get_raid_map(h, scsi3addr, this_device)) |
|
this_device->offload_to_be_enabled = 0; |
|
} |
|
|
|
out: |
|
kfree(buf); |
|
return; |
|
} |
|
|
|
/* Get the device id from inquiry page 0x83 */ |
|
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, |
|
unsigned char *device_id, int index, int buflen) |
|
{ |
|
int rc; |
|
unsigned char *buf; |
|
|
|
/* Does controller have VPD for device id? */ |
|
if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) |
|
return 1; /* not supported */ |
|
|
|
buf = kzalloc(64, GFP_KERNEL); |
|
if (!buf) |
|
return -ENOMEM; |
|
|
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | |
|
HPSA_VPD_LV_DEVICE_ID, buf, 64); |
|
if (rc == 0) { |
|
if (buflen > 16) |
|
buflen = 16; |
|
memcpy(device_id, &buf[8], buflen); |
|
} |
|
|
|
kfree(buf); |
|
|
|
return rc; /*0 - got id, otherwise, didn't */ |
|
} |
|
|
|
static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, |
|
void *buf, int bufsize, |
|
int extended_response) |
|
{ |
|
int rc = IO_OK; |
|
struct CommandList *c; |
|
unsigned char scsi3addr[8]; |
|
struct ErrorInfo *ei; |
|
|
|
c = cmd_alloc(h); |
|
|
|
/* address the controller */ |
|
memset(scsi3addr, 0, sizeof(scsi3addr)); |
|
if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, |
|
buf, bufsize, 0, scsi3addr, TYPE_CMD)) { |
|
rc = -EAGAIN; |
|
goto out; |
|
} |
|
if (extended_response) |
|
c->Request.CDB[1] = extended_response; |
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
|
if (rc) |
|
goto out; |
|
ei = c->err_info; |
|
if (ei->CommandStatus != 0 && |
|
ei->CommandStatus != CMD_DATA_UNDERRUN) { |
|
hpsa_scsi_interpret_error(h, c); |
|
rc = -EIO; |
|
} else { |
|
struct ReportLUNdata *rld = buf; |
|
|
|
if (rld->extended_response_flag != extended_response) { |
|
if (!h->legacy_board) { |
|
dev_err(&h->pdev->dev, |
|
"report luns requested format %u, got %u\n", |
|
extended_response, |
|
rld->extended_response_flag); |
|
rc = -EINVAL; |
|
} else |
|
rc = -EOPNOTSUPP; |
|
} |
|
} |
|
out: |
|
cmd_free(h, c); |
|
return rc; |
|
} |
|
|
|
static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, |
|
struct ReportExtendedLUNdata *buf, int bufsize) |
|
{ |
|
int rc; |
|
struct ReportLUNdata *lbuf; |
|
|
|
rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize, |
|
HPSA_REPORT_PHYS_EXTENDED); |
|
if (!rc || rc != -EOPNOTSUPP) |
|
return rc; |
|
|
|
/* REPORT PHYS EXTENDED is not supported */ |
|
lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL); |
|
if (!lbuf) |
|
return -ENOMEM; |
|
|
|
rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0); |
|
if (!rc) { |
|
int i; |
|
u32 nphys; |
|
|
|
/* Copy ReportLUNdata header */ |
|
memcpy(buf, lbuf, 8); |
|
nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8; |
|
for (i = 0; i < nphys; i++) |
|
memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8); |
|
} |
|
kfree(lbuf); |
|
return rc; |
|
} |
|
|
|
static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, |
|
struct ReportLUNdata *buf, int bufsize) |
|
{ |
|
return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); |
|
} |
|
|
|
static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, |
|
int bus, int target, int lun) |
|
{ |
|
device->bus = bus; |
|
device->target = target; |
|
device->lun = lun; |
|
} |
|
|
|
/* Use VPD inquiry to get details of volume status */ |
|
static int hpsa_get_volume_status(struct ctlr_info *h, |
|
unsigned char scsi3addr[]) |
|
{ |
|
int rc; |
|
int status; |
|
int size; |
|
unsigned char *buf; |
|
|
|
buf = kzalloc(64, GFP_KERNEL); |
|
if (!buf) |
|
return HPSA_VPD_LV_STATUS_UNSUPPORTED; |
|
|
|
/* Does controller have VPD for logical volume status? */ |
|
if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) |
|
goto exit_failed; |
|
|
|
/* Get the size of the VPD return buffer */ |
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, |
|
buf, HPSA_VPD_HEADER_SZ); |
|
if (rc != 0) |
|
goto exit_failed; |
|
size = buf[3]; |
|
|
|
/* Now get the whole VPD buffer */ |
|
rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, |
|
buf, size + HPSA_VPD_HEADER_SZ); |
|
if (rc != 0) |
|
goto exit_failed; |
|
status = buf[4]; /* status byte */ |
|
|
|
kfree(buf); |
|
return status; |
|
exit_failed: |
|
kfree(buf); |
|
return HPSA_VPD_LV_STATUS_UNSUPPORTED; |
|
} |
|
|
|
/* Determine offline status of a volume. |
|
* Return either: |
|
* 0 (not offline) |
|
* 0xff (offline for unknown reasons) |
|
* # (integer code indicating one of several NOT READY states |
|
* describing why a volume is to be kept offline) |
|
*/ |
|
static unsigned char hpsa_volume_offline(struct ctlr_info *h, |
|
unsigned char scsi3addr[]) |
|
{ |
|
struct CommandList *c; |
|
unsigned char *sense; |
|
u8 sense_key, asc, ascq; |
|
int sense_len; |
|
int rc, ldstat = 0; |
|
u16 cmd_status; |
|
u8 scsi_status; |
|
#define ASC_LUN_NOT_READY 0x04 |
|
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 |
|
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 |
|
|
|
c = cmd_alloc(h); |
|
|
|
(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); |
|
rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, |
|
NO_TIMEOUT); |
|
if (rc) { |
|
cmd_free(h, c); |
|
return HPSA_VPD_LV_STATUS_UNSUPPORTED; |
|
} |
|
sense = c->err_info->SenseInfo; |
|
if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) |
|
sense_len = sizeof(c->err_info->SenseInfo); |
|
else |
|
sense_len = c->err_info->SenseLen; |
|
decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); |
|
cmd_status = c->err_info->CommandStatus; |
|
scsi_status = c->err_info->ScsiStatus; |
|
cmd_free(h, c); |
|
|
|
/* Determine the reason for not ready state */ |
|
ldstat = hpsa_get_volume_status(h, scsi3addr); |
|
|
|
/* Keep volume offline in certain cases: */ |
|
switch (ldstat) { |
|
case HPSA_LV_FAILED: |
|
case HPSA_LV_UNDERGOING_ERASE: |
|
case HPSA_LV_NOT_AVAILABLE: |
|
case HPSA_LV_UNDERGOING_RPI: |
|
case HPSA_LV_PENDING_RPI: |
|
case HPSA_LV_ENCRYPTED_NO_KEY: |
|
case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: |
|
case HPSA_LV_UNDERGOING_ENCRYPTION: |
|
case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: |
|
case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: |
|
return ldstat; |
|
case HPSA_VPD_LV_STATUS_UNSUPPORTED: |
|
/* If VPD status page isn't available, |
|
* use ASC/ASCQ to determine state |
|
*/ |
|
if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || |
|
(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) |
|
return ldstat; |
|
break; |
|
default: |
|
break; |
|
} |
|
return HPSA_LV_OK; |
|
} |
|
|
|
static int hpsa_update_device_info(struct ctlr_info *h, |
|
unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, |
|
unsigned char *is_OBDR_device) |
|
{ |
|
|
|
#define OBDR_SIG_OFFSET 43 |
|
#define OBDR_TAPE_SIG "$DR-10" |
|
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) |
|
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) |
|
|
|
unsigned char *inq_buff; |
|
unsigned char *obdr_sig; |
|
int rc = 0; |
|
|
|
inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); |
|
if (!inq_buff) { |
|
rc = -ENOMEM; |
|
goto bail_out; |
|
} |
|
|
|
/* Do an inquiry to the device to see what it is. */ |
|
if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, |
|
(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { |
|
dev_err(&h->pdev->dev, |
|
"%s: inquiry failed, device will be skipped.\n", |
|
__func__); |
|
rc = HPSA_INQUIRY_FAILED; |
|
goto bail_out; |
|
} |
|
|
|
scsi_sanitize_inquiry_string(&inq_buff[8], 8); |
|
scsi_sanitize_inquiry_string(&inq_buff[16], 16); |
|
|
|
this_device->devtype = (inq_buff[0] & 0x1f); |
|
memcpy(this_device->scsi3addr, scsi3addr, 8); |
|
memcpy(this_device->vendor, &inq_buff[8], |
|
sizeof(this_device->vendor)); |
|
memcpy(this_device->model, &inq_buff[16], |
|
sizeof(this_device->model)); |
|
this_device->rev = inq_buff[2]; |
|
memset(this_device->device_id, 0, |
|
sizeof(this_device->device_id)); |
|
if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, |
|
sizeof(this_device->device_id)) < 0) |
|
dev_err(&h->pdev->dev, |
|
"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n", |
|
h->ctlr, __func__, |
|
h->scsi_host->host_no, |
|
this_device->target, this_device->lun, |
|
scsi_device_type(this_device->devtype), |
|
this_device->model); |
|
|
|
if ((this_device->devtype == TYPE_DISK || |
|
this_device->devtype == TYPE_ZBC) && |
|
is_logical_dev_addr_mode(scsi3addr)) { |
|
unsigned char volume_offline; |
|
|
|
hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); |
|
if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) |
|
hpsa_get_ioaccel_status(h, scsi3addr, this_device); |
|
volume_offline = hpsa_volume_offline(h, scsi3addr); |
|
if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED && |
|
h->legacy_board) { |
|
/* |
|
* Legacy boards might not support volume status |
|
*/ |
|
dev_info(&h->pdev->dev, |
|
"C0:T%d:L%d Volume status not available, assuming online.\n", |
|
this_device->target, this_device->lun); |
|
volume_offline = 0; |
|
} |
|
this_device->volume_offline = volume_offline; |
|
if (volume_offline == HPSA_LV_FAILED) { |
|
rc = HPSA_LV_FAILED; |
|
dev_err(&h->pdev->dev, |
|
"%s: LV failed, device will be skipped.\n", |
|
__func__); |
|
goto bail_out; |
|
} |
|
} else { |
|
this_device->raid_level = RAID_UNKNOWN; |
|
this_device->offload_config = 0; |
|
this_device->offload_enabled = 0; |
|
this_device->offload_to_be_enabled = 0; |
|
this_device->hba_ioaccel_enabled = 0; |
|
this_device->volume_offline = 0; |
|
this_device->queue_depth = h->nr_cmds; |
|
} |
|
|
|
if (this_device->external) |
|
this_device->queue_depth = EXTERNAL_QD; |
|
|
|
if (is_OBDR_device) { |
|
/* See if this is a One-Button-Disaster-Recovery device |
|
* by looking for "$DR-10" at offset 43 in inquiry data. |
|
*/ |
|
obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; |
|
*is_OBDR_device = (this_device->devtype == TYPE_ROM && |
|
strncmp(obdr_sig, OBDR_TAPE_SIG, |
|
OBDR_SIG_LEN) == 0); |
|
} |
|
kfree(inq_buff); |
|
return 0; |
|
|
|
bail_out: |
|
kfree(inq_buff); |
|
return rc; |
|
} |
|
|
|
/* |
|
* Helper function to assign bus, target, lun mapping of devices. |
|
* Logical drive target and lun are assigned at this time, but |
|
* physical device lun and target assignment are deferred (assigned |
|
* in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) |
|
*/ |
|
static void figure_bus_target_lun(struct ctlr_info *h, |
|
u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) |
|
{ |
|
u32 lunid = get_unaligned_le32(lunaddrbytes); |
|
|
|
if (!is_logical_dev_addr_mode(lunaddrbytes)) { |
|
/* physical device, target and lun filled in later */ |
|
if (is_hba_lunid(lunaddrbytes)) { |
|
int bus = HPSA_HBA_BUS; |
|
|
|
if (!device->rev) |
|
bus = HPSA_LEGACY_HBA_BUS; |
|
hpsa_set_bus_target_lun(device, |
|
bus, 0, lunid & 0x3fff); |
|
} else |
|
/* defer target, lun assignment for physical devices */ |
|
hpsa_set_bus_target_lun(device, |
|
HPSA_PHYSICAL_DEVICE_BUS, -1, -1); |
|
return; |
|
} |
|
/* It's a logical device */ |
|
if (device->external) { |
|
hpsa_set_bus_target_lun(device, |
|
HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, |
|
lunid & 0x00ff); |
|
return; |
|
} |
|
hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, |
|
0, lunid & 0x3fff); |
|
} |
|
|
|
static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, |
|
int i, int nphysicals, int nlocal_logicals) |
|
{ |
|
/* In report logicals, local logicals are listed first, |
|
* then any externals. |
|
*/ |
|
int logicals_start = nphysicals + (raid_ctlr_position == 0); |
|
|
|
if (i == raid_ctlr_position) |
|
return 0; |
|
|
|
if (i < logicals_start) |
|
return 0; |
|
|
|
/* i is in logicals range, but still within local logicals */ |
|
if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) |
|
return 0; |
|
|
|
return 1; /* it's an external lun */ |
|
} |
|
|
|
/* |
|
* Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, |
|
* logdev. The number of luns in physdev and logdev are returned in |
|
* *nphysicals and *nlogicals, respectively. |
|
* Returns 0 on success, -1 otherwise. |
|
*/ |
|
static int hpsa_gather_lun_info(struct ctlr_info *h, |
|
struct ReportExtendedLUNdata *physdev, u32 *nphysicals, |
|
struct ReportLUNdata *logdev, u32 *nlogicals) |
|
{ |
|
if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { |
|
dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); |
|
return -1; |
|
} |
|
*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; |
|
if (*nphysicals > HPSA_MAX_PHYS_LUN) { |
|
dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", |
|
HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); |
|
*nphysicals = HPSA_MAX_PHYS_LUN; |
|
} |
|
if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { |
|
dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); |
|
return -1; |
|
} |
|
*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; |
|
/* Reject Logicals in excess of our max capability. */ |
|
if (*nlogicals > HPSA_MAX_LUN) { |
|
dev_warn(&h->pdev->dev, |
|
"maximum logical LUNs (%d) exceeded. " |
|
"%d LUNs ignored.\n", HPSA_MAX_LUN, |
|
*nlogicals - HPSA_MAX_LUN); |
|
*nlogicals = HPSA_MAX_LUN; |
|
} |
|
if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { |
|
dev_warn(&h->pdev->dev, |
|
"maximum logical + physical LUNs (%d) exceeded. " |
|
"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, |
|
*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); |
|
*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; |
|
} |
|
return 0; |
|
} |
|
|
|
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, |
|
int i, int nphysicals, int nlogicals, |
|
struct ReportExtendedLUNdata *physdev_list, |
|
struct ReportLUNdata *logdev_list) |
|
{ |
|
/* Helper function, figure out where the LUN ID info is coming from |
|
* given index i, lists of physical and logical devices, where in |
|
* the list the raid controller is supposed to appear (first or last) |
|
*/ |
|
|
|
int logicals_start = nphysicals + (raid_ctlr_position == 0); |
|
int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); |
|
|
|
if (i == raid_ctlr_position) |
|
return RAID_CTLR_LUNID; |
|
|
|
if (i < logicals_start) |
|
return &physdev_list->LUN[i - |
|
(raid_ctlr_position == 0)].lunid[0]; |
|
|
|
if (i < last_device) |
|
return &logdev_list->LUN[i - nphysicals - |
|
(raid_ctlr_position == 0)][0]; |
|
BUG(); |
|
return NULL; |
|
} |
|
|
|
/* get physical drive ioaccel handle and queue depth */ |
|
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, |
|
struct hpsa_scsi_dev_t *dev, |
|
struct ReportExtendedLUNdata *rlep, int rle_index, |
|
struct bmic_identify_physical_device *id_phys) |
|
{ |
|
int rc; |
|
struct ext_report_lun_entry *rle; |
|
|
|
rle = &rlep->LUN[rle_index]; |
|
|
|
dev->ioaccel_handle = rle->ioaccel_handle; |
|
if ((rle->device_flags & 0x08) && dev->ioaccel_handle) |
|
dev->hba_ioaccel_enabled = 1; |
|
memset(id_phys, 0, sizeof(*id_phys)); |
|
rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], |
|
GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, |
|
sizeof(*id_phys)); |
|
if (!rc) |
|
/* Reserve space for FW operations */ |
|
#define DRIVE_CMDS_RESERVED_FOR_FW 2 |
|
#define DRIVE_QUEUE_DEPTH 7 |
|
dev->queue_depth = |
|
le16_to_cpu(id_phys->current_queue_depth_limit) - |
|
DRIVE_CMDS_RESERVED_FOR_FW; |
|
else |
|
dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ |
|
} |
|
|
|
static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, |
|
struct ReportExtendedLUNdata *rlep, int rle_index, |
|
struct bmic_identify_physical_device *id_phys) |
|
{ |
|
struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; |
|
|
|
if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) |
|
this_device->hba_ioaccel_enabled = 1; |
|
|
|
memcpy(&this_device->active_path_index, |
|
&id_phys->active_path_number, |
|
sizeof(this_device->active_path_index)); |
|
memcpy(&this_device->path_map, |
|
&id_phys->redundant_path_present_map, |
|
sizeof(this_device->path_map)); |
|
memcpy(&this_device->box, |
|
&id_phys->alternate_paths_phys_box_on_port, |
|
sizeof(this_device->box)); |
|
memcpy(&this_device->phys_connector, |
|
&id_phys->alternate_paths_phys_connector, |
|
sizeof(this_device->phys_connector)); |
|
memcpy(&this_device->bay, |
|
&id_phys->phys_bay_in_box, |
|
sizeof(this_device->bay)); |
|
} |
|
|
|
/* get number of local logical disks. */ |
|
static int hpsa_set_local_logical_count(struct ctlr_info *h, |
|
struct bmic_identify_controller *id_ctlr, |
|
u32 *nlocals) |
|
{ |
|
int rc; |
|
|
|
if (!id_ctlr) { |
|
dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", |
|
__func__); |
|
return -ENOMEM; |
|
} |
|
memset(id_ctlr, 0, sizeof(*id_ctlr)); |
|
rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); |
|
if (!rc) |
|
if (id_ctlr->configured_logical_drive_count < 255) |
|
*nlocals = id_ctlr->configured_logical_drive_count; |
|
else |
|
*nlocals = le16_to_cpu( |
|
id_ctlr->extended_logical_unit_count); |
|
else |
|
*nlocals = -1; |
|
return rc; |
|
} |
|
|
|
static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) |
|
{ |
|
struct bmic_identify_physical_device *id_phys; |
|
bool is_spare = false; |
|
int rc; |
|
|
|
id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); |
|
if (!id_phys) |
|
return false; |
|
|
|
rc = hpsa_bmic_id_physical_device(h, |
|
lunaddrbytes, |
|
GET_BMIC_DRIVE_NUMBER(lunaddrbytes), |
|
id_phys, sizeof(*id_phys)); |
|
if (rc == 0) |
|
is_spare = (id_phys->more_flags >> 6) & 0x01; |
|
|
|
kfree(id_phys); |
|
return is_spare; |
|
} |
|
|
|
#define RPL_DEV_FLAG_NON_DISK 0x1 |
|
#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2 |
|
#define RPL_DEV_FLAG_UNCONFIG_DISK 0x4 |
|
|
|
#define BMIC_DEVICE_TYPE_ENCLOSURE 6 |
|
|
|
static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, |
|
struct ext_report_lun_entry *rle) |
|
{ |
|
u8 device_flags; |
|
u8 device_type; |
|
|
|
if (!MASKED_DEVICE(lunaddrbytes)) |
|
return false; |
|
|
|
device_flags = rle->device_flags; |
|
device_type = rle->device_type; |
|
|
|
if (device_flags & RPL_DEV_FLAG_NON_DISK) { |
|
if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) |
|
return false; |
|
return true; |
|
} |
|
|
|
if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) |
|
return false; |
|
|
|
if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) |
|
return false; |
|
|
|
/* |
|
* Spares may be spun down, we do not want to |
|
* do an Inquiry to a RAID set spare drive as |
|
* that would have them spun up, that is a |
|
* performance hit because I/O to the RAID device |
|
* stops while the spin up occurs which can take |
|
* over 50 seconds. |
|
*/ |
|
if (hpsa_is_disk_spare(h, lunaddrbytes)) |
|
return true; |
|
|
|
return false; |
|
} |
|
|
|
static void hpsa_update_scsi_devices(struct ctlr_info *h) |
|
{ |
|
/* the idea here is we could get notified |
|
* that some devices have changed, so we do a report |
|
* physical luns and report logical luns cmd, and adjust |
|
* our list of devices accordingly. |
|
* |
|
* The scsi3addr's of devices won't change so long as the |
|
* adapter is not reset. That means we can rescan and |
|
* tell which devices we already know about, vs. new |
|
* devices, vs. disappearing devices. |
|
*/ |
|
struct ReportExtendedLUNdata *physdev_list = NULL; |
|
struct ReportLUNdata *logdev_list = NULL; |
|
struct bmic_identify_physical_device *id_phys = NULL; |
|
struct bmic_identify_controller *id_ctlr = NULL; |
|
u32 nphysicals = 0; |
|
u32 nlogicals = 0; |
|
u32 nlocal_logicals = 0; |
|
u32 ndev_allocated = 0; |
|
struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; |
|
int ncurrent = 0; |
|
int i, n_ext_target_devs, ndevs_to_allocate; |
|
int raid_ctlr_position; |
|
bool physical_device; |
|
DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); |
|
|
|
currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); |
|
physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); |
|
logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); |
|
tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); |
|
id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); |
|
id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); |
|
|
|
if (!currentsd || !physdev_list || !logdev_list || |
|
!tmpdevice || !id_phys || !id_ctlr) { |
|
dev_err(&h->pdev->dev, "out of memory\n"); |
|
goto out; |
|
} |
|
memset(lunzerobits, 0, sizeof(lunzerobits)); |
|
|
|
h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ |
|
|
|
if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, |
|
logdev_list, &nlogicals)) { |
|
h->drv_req_rescan = 1; |
|
goto out; |
|
} |
|
|
|
/* Set number of local logicals (non PTRAID) */ |
|
if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { |
|
dev_warn(&h->pdev->dev, |
|
"%s: Can't determine number of local logical devices.\n", |
|
__func__); |
|
} |
|
|
|
/* We might see up to the maximum number of logical and physical disks |
|
* plus external target devices, and a device for the local RAID |
|
* controller. |
|
*/ |
|
ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; |
|
|
|
hpsa_ext_ctrl_present(h, physdev_list); |
|
|
|
/* Allocate the per device structures */ |
|
for (i = 0; i < ndevs_to_allocate; i++) { |
|
if (i >= HPSA_MAX_DEVICES) { |
|
dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." |
|
" %d devices ignored.\n", HPSA_MAX_DEVICES, |
|
ndevs_to_allocate - HPSA_MAX_DEVICES); |
|
break; |
|
} |
|
|
|
currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); |
|
if (!currentsd[i]) { |
|
h->drv_req_rescan = 1; |
|
goto out; |
|
} |
|
ndev_allocated++; |
|
} |
|
|
|
if (is_scsi_rev_5(h)) |
|
raid_ctlr_position = 0; |
|
else |
|
raid_ctlr_position = nphysicals + nlogicals; |
|
|
|
/* adjust our table of devices */ |
|
n_ext_target_devs = 0; |
|
for (i = 0; i < nphysicals + nlogicals + 1; i++) { |
|
u8 *lunaddrbytes, is_OBDR = 0; |
|
int rc = 0; |
|
int phys_dev_index = i - (raid_ctlr_position == 0); |
|
bool skip_device = false; |
|
|
|
memset(tmpdevice, 0, sizeof(*tmpdevice)); |
|
|
|
physical_device = i < nphysicals + (raid_ctlr_position == 0); |
|
|
|
/* Figure out where the LUN ID info is coming from */ |
|
lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, |
|
i, nphysicals, nlogicals, physdev_list, logdev_list); |
|
|
|
/* Determine if this is a lun from an external target array */ |
|
tmpdevice->external = |
|
figure_external_status(h, raid_ctlr_position, i, |
|
nphysicals, nlocal_logicals); |
|
|
|
/* |
|
* Skip over some devices such as a spare. |
|
*/ |
|
if (!tmpdevice->external && physical_device) { |
|
skip_device = hpsa_skip_device(h, lunaddrbytes, |
|
&physdev_list->LUN[phys_dev_index]); |
|
if (skip_device) |
|
continue; |
|
} |
|
|
|
/* Get device type, vendor, model, device id, raid_map */ |
|
rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, |
|
&is_OBDR); |
|
if (rc == -ENOMEM) { |
|
dev_warn(&h->pdev->dev, |
|
"Out of memory, rescan deferred.\n"); |
|
h->drv_req_rescan = 1; |
|
goto out; |
|
} |
|
if (rc) { |
|
h->drv_req_rescan = 1; |
|
continue; |
|
} |
|
|
|
figure_bus_target_lun(h, lunaddrbytes, tmpdevice); |
|
this_device = currentsd[ncurrent]; |
|
|
|
*this_device = *tmpdevice; |
|
this_device->physical_device = physical_device; |
|
|
|
/* |
|
* Expose all devices except for physical devices that |
|
* are masked. |
|
*/ |
|
if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) |
|
this_device->expose_device = 0; |
|
else |
|
this_device->expose_device = 1; |
|
|
|
|
|
/* |
|
* Get the SAS address for physical devices that are exposed. |
|
*/ |
|
if (this_device->physical_device && this_device->expose_device) |
|
hpsa_get_sas_address(h, lunaddrbytes, this_device); |
|
|
|
switch (this_device->devtype) { |
|
case TYPE_ROM: |
|
/* We don't *really* support actual CD-ROM devices, |
|
* just "One Button Disaster Recovery" tape drive |
|
* which temporarily pretends to be a CD-ROM drive. |
|
* So we check that the device is really an OBDR tape |
|
* device by checking for "$DR-10" in bytes 43-48 of |
|
* the inquiry data. |
|
*/ |
|
if (is_OBDR) |
|
ncurrent++; |
|
break; |
|
case TYPE_DISK: |
|
case TYPE_ZBC: |
|
if (this_device->physical_device) { |
|
/* The disk is in HBA mode. */ |
|
/* Never use RAID mapper in HBA mode. */ |
|
this_device->offload_enabled = 0; |
|
hpsa_get_ioaccel_drive_info(h, this_device, |
|
physdev_list, phys_dev_index, id_phys); |
|
hpsa_get_path_info(this_device, |
|
physdev_list, phys_dev_index, id_phys); |
|
} |
|
ncurrent++; |
|
break; |
|
case TYPE_TAPE: |
|
case TYPE_MEDIUM_CHANGER: |
|
ncurrent++; |
|
break; |
|
case TYPE_ENCLOSURE: |
|
if (!this_device->external) |
|
hpsa_get_enclosure_info(h, lunaddrbytes, |
|
physdev_list, phys_dev_index, |
|
this_device); |
|
ncurrent++; |
|
break; |
|
case TYPE_RAID: |
|
/* Only present the Smartarray HBA as a RAID controller. |
|
* If it's a RAID controller other than the HBA itself |
|
* (an external RAID controller, MSA500 or similar) |
|
* don't present it. |
|
*/ |
|
if (!is_hba_lunid(lunaddrbytes)) |
|
break; |
|
ncurrent++; |
|
break; |
|
default: |
|
break; |
|
} |
|
if (ncurrent >= HPSA_MAX_DEVICES) |
|
break; |
|
} |
|
|
|
if (h->sas_host == NULL) { |
|
int rc = 0; |
|
|
|
rc = hpsa_add_sas_host(h); |
|
if (rc) { |
|
dev_warn(&h->pdev->dev, |
|
"Could not add sas host %d\n", rc); |
|
goto out; |
|
} |
|
} |
|
|
|
adjust_hpsa_scsi_table(h, currentsd, ncurrent); |
|
out: |
|
kfree(tmpdevice); |
|
for (i = 0; i < ndev_allocated; i++) |
|
kfree(currentsd[i]); |
|
kfree(currentsd); |
|
kfree(physdev_list); |
|
kfree(logdev_list); |
|
kfree(id_ctlr); |
|
kfree(id_phys); |
|
} |
|
|
|
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, |
|
struct scatterlist *sg) |
|
{ |
|
u64 addr64 = (u64) sg_dma_address(sg); |
|
unsigned int len = sg_dma_len(sg); |
|
|
|
desc->Addr = cpu_to_le64(addr64); |
|
desc->Len = cpu_to_le32(len); |
|
desc->Ext = 0; |
|
} |
|
|
|
/* |
|
* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci |
|
* dma mapping and fills in the scatter gather entries of the |
|
* hpsa command, cp. |
|
*/ |
|
static int hpsa_scatter_gather(struct ctlr_info *h, |
|
struct CommandList *cp, |
|
struct scsi_cmnd *cmd) |
|
{ |
|
struct scatterlist *sg; |
|
int use_sg, i, sg_limit, chained, last_sg; |
|
struct SGDescriptor *curr_sg; |
|
|
|
BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); |
|
|
|
use_sg = scsi_dma_map(cmd); |
|
if (use_sg < 0) |
|
return use_sg; |
|
|
|
if (!use_sg) |
|
goto sglist_finished; |
|
|
|
/* |
|
* If the number of entries is greater than the max for a single list, |
|
* then we have a chained list; we will set up all but one entry in the |
|
* first list (the last entry is saved for link information); |
|
* otherwise, we don't have a chained list and we'll set up at each of |
|
* the entries in the one list. |
|
*/ |
|
curr_sg = cp->SG; |
|
chained = use_sg > h->max_cmd_sg_entries; |
|
sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; |
|
last_sg = scsi_sg_count(cmd) - 1; |
|
scsi_for_each_sg(cmd, sg, sg_limit, i) { |
|
hpsa_set_sg_descriptor(curr_sg, sg); |
|
curr_sg++; |
|
} |
|
|
|
if (chained) { |
|
/* |
|
* Continue with the chained list. Set curr_sg to the chained |
|
* list. Modify the limit to the total count less the entries |
|
* we've already set up. Resume the scan at the list entry |
|
* where the previous loop left off. |
|
*/ |
|
curr_sg = h->cmd_sg_list[cp->cmdindex]; |
|
sg_limit = use_sg - sg_limit; |
|
for_each_sg(sg, sg, sg_limit, i) { |
|
hpsa_set_sg_descriptor(curr_sg, sg); |
|
curr_sg++; |
|
} |
|
} |
|
|
|
/* Back the pointer up to the last entry and mark it as "last". */ |
|
(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); |
|
|
|
if (use_sg + chained > h->maxSG) |
|
h->maxSG = use_sg + chained; |
|
|
|
if (chained) { |
|
cp->Header.SGList = h->max_cmd_sg_entries; |
|
cp->Header.SGTotal = cpu_to_le16(use_sg + 1); |
|
if (hpsa_map_sg_chain_block(h, cp)) { |
|
scsi_dma_unmap(cmd); |
|
return -1; |
|
} |
|
return 0; |
|
} |
|
|
|
sglist_finished: |
|
|
|
cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ |
|
cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ |
|
return 0; |
|
} |
|
|
|
static inline void warn_zero_length_transfer(struct ctlr_info *h, |
|
u8 *cdb, int cdb_len, |
|
const char *func) |
|
{ |
|
dev_warn(&h->pdev->dev, |
|
"%s: Blocking zero-length request: CDB:%*phN\n", |
|
func, cdb_len, cdb); |
|
} |
|
|
|
#define IO_ACCEL_INELIGIBLE 1 |
|
/* zero-length transfers trigger hardware errors. */ |
|
static bool is_zero_length_transfer(u8 *cdb) |
|
{ |
|
u32 block_cnt; |
|
|
|
/* Block zero-length transfer sizes on certain commands. */ |
|
switch (cdb[0]) { |
|
case READ_10: |
|
case WRITE_10: |
|
case VERIFY: /* 0x2F */ |
|
case WRITE_VERIFY: /* 0x2E */ |
|
block_cnt = get_unaligned_be16(&cdb[7]); |
|
break; |
|
case READ_12: |
|
case WRITE_12: |
|
case VERIFY_12: /* 0xAF */ |
|
case WRITE_VERIFY_12: /* 0xAE */ |
|
block_cnt = get_unaligned_be32(&cdb[6]); |
|
break; |
|
case READ_16: |
|
case WRITE_16: |
|
case VERIFY_16: /* 0x8F */ |
|
block_cnt = get_unaligned_be32(&cdb[10]); |
|
break; |
|
default: |
|
return false; |
|
} |
|
|
|
return block_cnt == 0; |
|
} |
|
|
|
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) |
|
{ |
|
int is_write = 0; |
|
u32 block; |
|
u32 block_cnt; |
|
|
|
/* Perform some CDB fixups if needed using 10 byte reads/writes only */ |
|
switch (cdb[0]) { |
|
case WRITE_6: |
|
case WRITE_12: |
|
is_write = 1; |
|
case READ_6: |
|
case READ_12: |
|
if (*cdb_len == 6) { |
|
block = (((cdb[1] & 0x1F) << 16) | |
|
(cdb[2] << 8) | |
|
cdb[3]); |
|
block_cnt = cdb[4]; |
|
if (block_cnt == 0) |
|
block_cnt = 256; |
|
} else { |
|
BUG_ON(*cdb_len != 12); |
|
block = get_unaligned_be32(&cdb[2]); |
|
block_cnt = get_unaligned_be32(&cdb[6]); |
|
} |
|
if (block_cnt > 0xffff) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
cdb[0] = is_write ? WRITE_10 : READ_10; |
|
cdb[1] = 0; |
|
cdb[2] = (u8) (block >> 24); |
|
cdb[3] = (u8) (block >> 16); |
|
cdb[4] = (u8) (block >> 8); |
|
cdb[5] = (u8) (block); |
|
cdb[6] = 0; |
|
cdb[7] = (u8) (block_cnt >> 8); |
|
cdb[8] = (u8) (block_cnt); |
|
cdb[9] = 0; |
|
*cdb_len = 10; |
|
break; |
|
} |
|
return 0; |
|
} |
|
|
|
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, |
|
struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
|
u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) |
|
{ |
|
struct scsi_cmnd *cmd = c->scsi_cmd; |
|
struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; |
|
unsigned int len; |
|
unsigned int total_len = 0; |
|
struct scatterlist *sg; |
|
u64 addr64; |
|
int use_sg, i; |
|
struct SGDescriptor *curr_sg; |
|
u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; |
|
|
|
/* TODO: implement chaining support */ |
|
if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
return IO_ACCEL_INELIGIBLE; |
|
} |
|
|
|
BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); |
|
|
|
if (is_zero_length_transfer(cdb)) { |
|
warn_zero_length_transfer(h, cdb, cdb_len, __func__); |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
return IO_ACCEL_INELIGIBLE; |
|
} |
|
|
|
if (fixup_ioaccel_cdb(cdb, &cdb_len)) { |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
return IO_ACCEL_INELIGIBLE; |
|
} |
|
|
|
c->cmd_type = CMD_IOACCEL1; |
|
|
|
/* Adjust the DMA address to point to the accelerated command buffer */ |
|
c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + |
|
(c->cmdindex * sizeof(*cp)); |
|
BUG_ON(c->busaddr & 0x0000007F); |
|
|
|
use_sg = scsi_dma_map(cmd); |
|
if (use_sg < 0) { |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
return use_sg; |
|
} |
|
|
|
if (use_sg) { |
|
curr_sg = cp->SG; |
|
scsi_for_each_sg(cmd, sg, use_sg, i) { |
|
addr64 = (u64) sg_dma_address(sg); |
|
len = sg_dma_len(sg); |
|
total_len += len; |
|
curr_sg->Addr = cpu_to_le64(addr64); |
|
curr_sg->Len = cpu_to_le32(len); |
|
curr_sg->Ext = cpu_to_le32(0); |
|
curr_sg++; |
|
} |
|
(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); |
|
|
|
switch (cmd->sc_data_direction) { |
|
case DMA_TO_DEVICE: |
|
control |= IOACCEL1_CONTROL_DATA_OUT; |
|
break; |
|
case DMA_FROM_DEVICE: |
|
control |= IOACCEL1_CONTROL_DATA_IN; |
|
break; |
|
case DMA_NONE: |
|
control |= IOACCEL1_CONTROL_NODATAXFER; |
|
break; |
|
default: |
|
dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
|
cmd->sc_data_direction); |
|
BUG(); |
|
break; |
|
} |
|
} else { |
|
control |= IOACCEL1_CONTROL_NODATAXFER; |
|
} |
|
|
|
c->Header.SGList = use_sg; |
|
/* Fill out the command structure to submit */ |
|
cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); |
|
cp->transfer_len = cpu_to_le32(total_len); |
|
cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | |
|
(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); |
|
cp->control = cpu_to_le32(control); |
|
memcpy(cp->CDB, cdb, cdb_len); |
|
memcpy(cp->CISS_LUN, scsi3addr, 8); |
|
/* Tag was already set at init time. */ |
|
enqueue_cmd_and_start_io(h, c); |
|
return 0; |
|
} |
|
|
|
/* |
|
* Queue a command directly to a device behind the controller using the |
|
* I/O accelerator path. |
|
*/ |
|
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
struct scsi_cmnd *cmd = c->scsi_cmd; |
|
struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
|
|
|
if (!dev) |
|
return -1; |
|
|
|
c->phys_disk = dev; |
|
|
|
return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, |
|
cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); |
|
} |
|
|
|
/* |
|
* Set encryption parameters for the ioaccel2 request |
|
*/ |
|
static void set_encrypt_ioaccel2(struct ctlr_info *h, |
|
struct CommandList *c, struct io_accel2_cmd *cp) |
|
{ |
|
struct scsi_cmnd *cmd = c->scsi_cmd; |
|
struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
|
struct raid_map_data *map = &dev->raid_map; |
|
u64 first_block; |
|
|
|
/* Are we doing encryption on this device */ |
|
if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) |
|
return; |
|
/* Set the data encryption key index. */ |
|
cp->dekindex = map->dekindex; |
|
|
|
/* Set the encryption enable flag, encoded into direction field. */ |
|
cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; |
|
|
|
/* Set encryption tweak values based on logical block address |
|
* If block size is 512, tweak value is LBA. |
|
* For other block sizes, tweak is (LBA * block size)/ 512) |
|
*/ |
|
switch (cmd->cmnd[0]) { |
|
/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ |
|
case READ_6: |
|
case WRITE_6: |
|
first_block = (((cmd->cmnd[1] & 0x1F) << 16) | |
|
(cmd->cmnd[2] << 8) | |
|
cmd->cmnd[3]); |
|
break; |
|
case WRITE_10: |
|
case READ_10: |
|
/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ |
|
case WRITE_12: |
|
case READ_12: |
|
first_block = get_unaligned_be32(&cmd->cmnd[2]); |
|
break; |
|
case WRITE_16: |
|
case READ_16: |
|
first_block = get_unaligned_be64(&cmd->cmnd[2]); |
|
break; |
|
default: |
|
dev_err(&h->pdev->dev, |
|
"ERROR: %s: size (0x%x) not supported for encryption\n", |
|
__func__, cmd->cmnd[0]); |
|
BUG(); |
|
break; |
|
} |
|
|
|
if (le32_to_cpu(map->volume_blk_size) != 512) |
|
first_block = first_block * |
|
le32_to_cpu(map->volume_blk_size)/512; |
|
|
|
cp->tweak_lower = cpu_to_le32(first_block); |
|
cp->tweak_upper = cpu_to_le32(first_block >> 32); |
|
} |
|
|
|
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, |
|
struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
|
u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) |
|
{ |
|
struct scsi_cmnd *cmd = c->scsi_cmd; |
|
struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; |
|
struct ioaccel2_sg_element *curr_sg; |
|
int use_sg, i; |
|
struct scatterlist *sg; |
|
u64 addr64; |
|
u32 len; |
|
u32 total_len = 0; |
|
|
|
if (!cmd->device) |
|
return -1; |
|
|
|
if (!cmd->device->hostdata) |
|
return -1; |
|
|
|
BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); |
|
|
|
if (is_zero_length_transfer(cdb)) { |
|
warn_zero_length_transfer(h, cdb, cdb_len, __func__); |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
return IO_ACCEL_INELIGIBLE; |
|
} |
|
|
|
if (fixup_ioaccel_cdb(cdb, &cdb_len)) { |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
return IO_ACCEL_INELIGIBLE; |
|
} |
|
|
|
c->cmd_type = CMD_IOACCEL2; |
|
/* Adjust the DMA address to point to the accelerated command buffer */ |
|
c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + |
|
(c->cmdindex * sizeof(*cp)); |
|
BUG_ON(c->busaddr & 0x0000007F); |
|
|
|
memset(cp, 0, sizeof(*cp)); |
|
cp->IU_type = IOACCEL2_IU_TYPE; |
|
|
|
use_sg = scsi_dma_map(cmd); |
|
if (use_sg < 0) { |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
return use_sg; |
|
} |
|
|
|
if (use_sg) { |
|
curr_sg = cp->sg; |
|
if (use_sg > h->ioaccel_maxsg) { |
|
addr64 = le64_to_cpu( |
|
h->ioaccel2_cmd_sg_list[c->cmdindex]->address); |
|
curr_sg->address = cpu_to_le64(addr64); |
|
curr_sg->length = 0; |
|
curr_sg->reserved[0] = 0; |
|
curr_sg->reserved[1] = 0; |
|
curr_sg->reserved[2] = 0; |
|
curr_sg->chain_indicator = 0x80; |
|
|
|
curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; |
|
} |
|
scsi_for_each_sg(cmd, sg, use_sg, i) { |
|
addr64 = (u64) sg_dma_address(sg); |
|
len = sg_dma_len(sg); |
|
total_len += len; |
|
curr_sg->address = cpu_to_le64(addr64); |
|
curr_sg->length = cpu_to_le32(len); |
|
curr_sg->reserved[0] = 0; |
|
curr_sg->reserved[1] = 0; |
|
curr_sg->reserved[2] = 0; |
|
curr_sg->chain_indicator = 0; |
|
curr_sg++; |
|
} |
|
|
|
switch (cmd->sc_data_direction) { |
|
case DMA_TO_DEVICE: |
|
cp->direction &= ~IOACCEL2_DIRECTION_MASK; |
|
cp->direction |= IOACCEL2_DIR_DATA_OUT; |
|
break; |
|
case DMA_FROM_DEVICE: |
|
cp->direction &= ~IOACCEL2_DIRECTION_MASK; |
|
cp->direction |= IOACCEL2_DIR_DATA_IN; |
|
break; |
|
case DMA_NONE: |
|
cp->direction &= ~IOACCEL2_DIRECTION_MASK; |
|
cp->direction |= IOACCEL2_DIR_NO_DATA; |
|
break; |
|
default: |
|
dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
|
cmd->sc_data_direction); |
|
BUG(); |
|
break; |
|
} |
|
} else { |
|
cp->direction &= ~IOACCEL2_DIRECTION_MASK; |
|
cp->direction |= IOACCEL2_DIR_NO_DATA; |
|
} |
|
|
|
/* Set encryption parameters, if necessary */ |
|
set_encrypt_ioaccel2(h, c, cp); |
|
|
|
cp->scsi_nexus = cpu_to_le32(ioaccel_handle); |
|
cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); |
|
memcpy(cp->cdb, cdb, sizeof(cp->cdb)); |
|
|
|
cp->data_len = cpu_to_le32(total_len); |
|
cp->err_ptr = cpu_to_le64(c->busaddr + |
|
offsetof(struct io_accel2_cmd, error_data)); |
|
cp->err_len = cpu_to_le32(sizeof(cp->error_data)); |
|
|
|
/* fill in sg elements */ |
|
if (use_sg > h->ioaccel_maxsg) { |
|
cp->sg_count = 1; |
|
cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); |
|
if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
scsi_dma_unmap(cmd); |
|
return -1; |
|
} |
|
} else |
|
cp->sg_count = (u8) use_sg; |
|
|
|
enqueue_cmd_and_start_io(h, c); |
|
return 0; |
|
} |
|
|
|
/* |
|
* Queue a command to the correct I/O accelerator path. |
|
*/ |
|
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, |
|
struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, |
|
u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) |
|
{ |
|
if (!c->scsi_cmd->device) |
|
return -1; |
|
|
|
if (!c->scsi_cmd->device->hostdata) |
|
return -1; |
|
|
|
/* Try to honor the device's queue depth */ |
|
if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > |
|
phys_disk->queue_depth) { |
|
atomic_dec(&phys_disk->ioaccel_cmds_out); |
|
return IO_ACCEL_INELIGIBLE; |
|
} |
|
if (h->transMethod & CFGTBL_Trans_io_accel1) |
|
return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, |
|
cdb, cdb_len, scsi3addr, |
|
phys_disk); |
|
else |
|
return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, |
|
cdb, cdb_len, scsi3addr, |
|
phys_disk); |
|
} |
|
|
|
static void raid_map_helper(struct raid_map_data *map, |
|
int offload_to_mirror, u32 *map_index, u32 *current_group) |
|
{ |
|
if (offload_to_mirror == 0) { |
|
/* use physical disk in the first mirrored group. */ |
|
*map_index %= le16_to_cpu(map->data_disks_per_row); |
|
return; |
|
} |
|
do { |
|
/* determine mirror group that *map_index indicates */ |
|
*current_group = *map_index / |
|
le16_to_cpu(map->data_disks_per_row); |
|
if (offload_to_mirror == *current_group) |
|
continue; |
|
if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { |
|
/* select map index from next group */ |
|
*map_index += le16_to_cpu(map->data_disks_per_row); |
|
(*current_group)++; |
|
} else { |
|
/* select map index from first group */ |
|
*map_index %= le16_to_cpu(map->data_disks_per_row); |
|
*current_group = 0; |
|
} |
|
} while (offload_to_mirror != *current_group); |
|
} |
|
|
|
/* |
|
* Attempt to perform offload RAID mapping for a logical volume I/O. |
|
*/ |
|
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
struct scsi_cmnd *cmd = c->scsi_cmd; |
|
struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
|
struct raid_map_data *map = &dev->raid_map; |
|
struct raid_map_disk_data *dd = &map->data[0]; |
|
int is_write = 0; |
|
u32 map_index; |
|
u64 first_block, last_block; |
|
u32 block_cnt; |
|
u32 blocks_per_row; |
|
u64 first_row, last_row; |
|
u32 first_row_offset, last_row_offset; |
|
u32 first_column, last_column; |
|
u64 r0_first_row, r0_last_row; |
|
u32 r5or6_blocks_per_row; |
|
u64 r5or6_first_row, r5or6_last_row; |
|
u32 r5or6_first_row_offset, r5or6_last_row_offset; |
|
u32 r5or6_first_column, r5or6_last_column; |
|
u32 total_disks_per_row; |
|
u32 stripesize; |
|
u32 first_group, last_group, current_group; |
|
u32 map_row; |
|
u32 disk_handle; |
|
u64 disk_block; |
|
u32 disk_block_cnt; |
|
u8 cdb[16]; |
|
u8 cdb_len; |
|
u16 strip_size; |
|
#if BITS_PER_LONG == 32 |
|
u64 tmpdiv; |
|
#endif |
|
int offload_to_mirror; |
|
|
|
if (!dev) |
|
return -1; |
|
|
|
/* check for valid opcode, get LBA and block count */ |
|
switch (cmd->cmnd[0]) { |
|
case WRITE_6: |
|
is_write = 1; |
|
case READ_6: |
|
first_block = (((cmd->cmnd[1] & 0x1F) << 16) | |
|
(cmd->cmnd[2] << 8) | |
|
cmd->cmnd[3]); |
|
block_cnt = cmd->cmnd[4]; |
|
if (block_cnt == 0) |
|
block_cnt = 256; |
|
break; |
|
case WRITE_10: |
|
is_write = 1; |
|
case READ_10: |
|
first_block = |
|
(((u64) cmd->cmnd[2]) << 24) | |
|
(((u64) cmd->cmnd[3]) << 16) | |
|
(((u64) cmd->cmnd[4]) << 8) | |
|
cmd->cmnd[5]; |
|
block_cnt = |
|
(((u32) cmd->cmnd[7]) << 8) | |
|
cmd->cmnd[8]; |
|
break; |
|
case WRITE_12: |
|
is_write = 1; |
|
case READ_12: |
|
first_block = |
|
(((u64) cmd->cmnd[2]) << 24) | |
|
(((u64) cmd->cmnd[3]) << 16) | |
|
(((u64) cmd->cmnd[4]) << 8) | |
|
cmd->cmnd[5]; |
|
block_cnt = |
|
(((u32) cmd->cmnd[6]) << 24) | |
|
(((u32) cmd->cmnd[7]) << 16) | |
|
(((u32) cmd->cmnd[8]) << 8) | |
|
cmd->cmnd[9]; |
|
break; |
|
case WRITE_16: |
|
is_write = 1; |
|
case READ_16: |
|
first_block = |
|
(((u64) cmd->cmnd[2]) << 56) | |
|
(((u64) cmd->cmnd[3]) << 48) | |
|
(((u64) cmd->cmnd[4]) << 40) | |
|
(((u64) cmd->cmnd[5]) << 32) | |
|
(((u64) cmd->cmnd[6]) << 24) | |
|
(((u64) cmd->cmnd[7]) << 16) | |
|
(((u64) cmd->cmnd[8]) << 8) | |
|
cmd->cmnd[9]; |
|
block_cnt = |
|
(((u32) cmd->cmnd[10]) << 24) | |
|
(((u32) cmd->cmnd[11]) << 16) | |
|
(((u32) cmd->cmnd[12]) << 8) | |
|
cmd->cmnd[13]; |
|
break; |
|
default: |
|
return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ |
|
} |
|
last_block = first_block + block_cnt - 1; |
|
|
|
/* check for write to non-RAID-0 */ |
|
if (is_write && dev->raid_level != 0) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
/* check for invalid block or wraparound */ |
|
if (last_block >= le64_to_cpu(map->volume_blk_cnt) || |
|
last_block < first_block) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
/* calculate stripe information for the request */ |
|
blocks_per_row = le16_to_cpu(map->data_disks_per_row) * |
|
le16_to_cpu(map->strip_size); |
|
strip_size = le16_to_cpu(map->strip_size); |
|
#if BITS_PER_LONG == 32 |
|
tmpdiv = first_block; |
|
(void) do_div(tmpdiv, blocks_per_row); |
|
first_row = tmpdiv; |
|
tmpdiv = last_block; |
|
(void) do_div(tmpdiv, blocks_per_row); |
|
last_row = tmpdiv; |
|
first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); |
|
last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); |
|
tmpdiv = first_row_offset; |
|
(void) do_div(tmpdiv, strip_size); |
|
first_column = tmpdiv; |
|
tmpdiv = last_row_offset; |
|
(void) do_div(tmpdiv, strip_size); |
|
last_column = tmpdiv; |
|
#else |
|
first_row = first_block / blocks_per_row; |
|
last_row = last_block / blocks_per_row; |
|
first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); |
|
last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); |
|
first_column = first_row_offset / strip_size; |
|
last_column = last_row_offset / strip_size; |
|
#endif |
|
|
|
/* if this isn't a single row/column then give to the controller */ |
|
if ((first_row != last_row) || (first_column != last_column)) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
/* proceeding with driver mapping */ |
|
total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + |
|
le16_to_cpu(map->metadata_disks_per_row); |
|
map_row = ((u32)(first_row >> map->parity_rotation_shift)) % |
|
le16_to_cpu(map->row_cnt); |
|
map_index = (map_row * total_disks_per_row) + first_column; |
|
|
|
switch (dev->raid_level) { |
|
case HPSA_RAID_0: |
|
break; /* nothing special to do */ |
|
case HPSA_RAID_1: |
|
/* Handles load balance across RAID 1 members. |
|
* (2-drive R1 and R10 with even # of drives.) |
|
* Appropriate for SSDs, not optimal for HDDs |
|
*/ |
|
BUG_ON(le16_to_cpu(map->layout_map_count) != 2); |
|
if (dev->offload_to_mirror) |
|
map_index += le16_to_cpu(map->data_disks_per_row); |
|
dev->offload_to_mirror = !dev->offload_to_mirror; |
|
break; |
|
case HPSA_RAID_ADM: |
|
/* Handles N-way mirrors (R1-ADM) |
|
* and R10 with # of drives divisible by 3.) |
|
*/ |
|
BUG_ON(le16_to_cpu(map->layout_map_count) != 3); |
|
|
|
offload_to_mirror = dev->offload_to_mirror; |
|
raid_map_helper(map, offload_to_mirror, |
|
&map_index, ¤t_group); |
|
/* set mirror group to use next time */ |
|
offload_to_mirror = |
|
(offload_to_mirror >= |
|
le16_to_cpu(map->layout_map_count) - 1) |
|
? 0 : offload_to_mirror + 1; |
|
dev->offload_to_mirror = offload_to_mirror; |
|
/* Avoid direct use of dev->offload_to_mirror within this |
|
* function since multiple threads might simultaneously |
|
* increment it beyond the range of dev->layout_map_count -1. |
|
*/ |
|
break; |
|
case HPSA_RAID_5: |
|
case HPSA_RAID_6: |
|
if (le16_to_cpu(map->layout_map_count) <= 1) |
|
break; |
|
|
|
/* Verify first and last block are in same RAID group */ |
|
r5or6_blocks_per_row = |
|
le16_to_cpu(map->strip_size) * |
|
le16_to_cpu(map->data_disks_per_row); |
|
BUG_ON(r5or6_blocks_per_row == 0); |
|
stripesize = r5or6_blocks_per_row * |
|
le16_to_cpu(map->layout_map_count); |
|
#if BITS_PER_LONG == 32 |
|
tmpdiv = first_block; |
|
first_group = do_div(tmpdiv, stripesize); |
|
tmpdiv = first_group; |
|
(void) do_div(tmpdiv, r5or6_blocks_per_row); |
|
first_group = tmpdiv; |
|
tmpdiv = last_block; |
|
last_group = do_div(tmpdiv, stripesize); |
|
tmpdiv = last_group; |
|
(void) do_div(tmpdiv, r5or6_blocks_per_row); |
|
last_group = tmpdiv; |
|
#else |
|
first_group = (first_block % stripesize) / r5or6_blocks_per_row; |
|
last_group = (last_block % stripesize) / r5or6_blocks_per_row; |
|
#endif |
|
if (first_group != last_group) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
/* Verify request is in a single row of RAID 5/6 */ |
|
#if BITS_PER_LONG == 32 |
|
tmpdiv = first_block; |
|
(void) do_div(tmpdiv, stripesize); |
|
first_row = r5or6_first_row = r0_first_row = tmpdiv; |
|
tmpdiv = last_block; |
|
(void) do_div(tmpdiv, stripesize); |
|
r5or6_last_row = r0_last_row = tmpdiv; |
|
#else |
|
first_row = r5or6_first_row = r0_first_row = |
|
first_block / stripesize; |
|
r5or6_last_row = r0_last_row = last_block / stripesize; |
|
#endif |
|
if (r5or6_first_row != r5or6_last_row) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
|
|
/* Verify request is in a single column */ |
|
#if BITS_PER_LONG == 32 |
|
tmpdiv = first_block; |
|
first_row_offset = do_div(tmpdiv, stripesize); |
|
tmpdiv = first_row_offset; |
|
first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); |
|
r5or6_first_row_offset = first_row_offset; |
|
tmpdiv = last_block; |
|
r5or6_last_row_offset = do_div(tmpdiv, stripesize); |
|
tmpdiv = r5or6_last_row_offset; |
|
r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); |
|
tmpdiv = r5or6_first_row_offset; |
|
(void) do_div(tmpdiv, map->strip_size); |
|
first_column = r5or6_first_column = tmpdiv; |
|
tmpdiv = r5or6_last_row_offset; |
|
(void) do_div(tmpdiv, map->strip_size); |
|
r5or6_last_column = tmpdiv; |
|
#else |
|
first_row_offset = r5or6_first_row_offset = |
|
(u32)((first_block % stripesize) % |
|
r5or6_blocks_per_row); |
|
|
|
r5or6_last_row_offset = |
|
(u32)((last_block % stripesize) % |
|
r5or6_blocks_per_row); |
|
|
|
first_column = r5or6_first_column = |
|
r5or6_first_row_offset / le16_to_cpu(map->strip_size); |
|
r5or6_last_column = |
|
r5or6_last_row_offset / le16_to_cpu(map->strip_size); |
|
#endif |
|
if (r5or6_first_column != r5or6_last_column) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
/* Request is eligible */ |
|
map_row = ((u32)(first_row >> map->parity_rotation_shift)) % |
|
le16_to_cpu(map->row_cnt); |
|
|
|
map_index = (first_group * |
|
(le16_to_cpu(map->row_cnt) * total_disks_per_row)) + |
|
(map_row * total_disks_per_row) + first_column; |
|
break; |
|
default: |
|
return IO_ACCEL_INELIGIBLE; |
|
} |
|
|
|
if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
c->phys_disk = dev->phys_disk[map_index]; |
|
if (!c->phys_disk) |
|
return IO_ACCEL_INELIGIBLE; |
|
|
|
disk_handle = dd[map_index].ioaccel_handle; |
|
disk_block = le64_to_cpu(map->disk_starting_blk) + |
|
first_row * le16_to_cpu(map->strip_size) + |
|
(first_row_offset - first_column * |
|
le16_to_cpu(map->strip_size)); |
|
disk_block_cnt = block_cnt; |
|
|
|
/* handle differing logical/physical block sizes */ |
|
if (map->phys_blk_shift) { |
|
disk_block <<= map->phys_blk_shift; |
|
disk_block_cnt <<= map->phys_blk_shift; |
|
} |
|
BUG_ON(disk_block_cnt > 0xffff); |
|
|
|
/* build the new CDB for the physical disk I/O */ |
|
if (disk_block > 0xffffffff) { |
|
cdb[0] = is_write ? WRITE_16 : READ_16; |
|
cdb[1] = 0; |
|
cdb[2] = (u8) (disk_block >> 56); |
|
cdb[3] = (u8) (disk_block >> 48); |
|
cdb[4] = (u8) (disk_block >> 40); |
|
cdb[5] = (u8) (disk_block >> 32); |
|
cdb[6] = (u8) (disk_block >> 24); |
|
cdb[7] = (u8) (disk_block >> 16); |
|
cdb[8] = (u8) (disk_block >> 8); |
|
cdb[9] = (u8) (disk_block); |
|
cdb[10] = (u8) (disk_block_cnt >> 24); |
|
cdb[11] = (u8) (disk_block_cnt >> 16); |
|
cdb[12] = (u8) (disk_block_cnt >> 8); |
|
cdb[13] = (u8) (disk_block_cnt); |
|
cdb[14] = 0; |
|
cdb[15] = 0; |
|
cdb_len = 16; |
|
} else { |
|
cdb[0] = is_write ? WRITE_10 : READ_10; |
|
cdb[1] = 0; |
|
cdb[2] = (u8) (disk_block >> 24); |
|
cdb[3] = (u8) (disk_block >> 16); |
|
cdb[4] = (u8) (disk_block >> 8); |
|
cdb[5] = (u8) (disk_block); |
|
cdb[6] = 0; |
|
cdb[7] = (u8) (disk_block_cnt >> 8); |
|
cdb[8] = (u8) (disk_block_cnt); |
|
cdb[9] = 0; |
|
cdb_len = 10; |
|
} |
|
return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, |
|
dev->scsi3addr, |
|
dev->phys_disk[map_index]); |
|
} |
|
|
|
/* |
|
* Submit commands down the "normal" RAID stack path |
|
* All callers to hpsa_ciss_submit must check lockup_detected |
|
* beforehand, before (opt.) and after calling cmd_alloc |
|
*/ |
|
static int hpsa_ciss_submit(struct ctlr_info *h, |
|
struct CommandList *c, struct scsi_cmnd *cmd, |
|
unsigned char scsi3addr[]) |
|
{ |
|
cmd->host_scribble = (unsigned char *) c; |
|
c->cmd_type = CMD_SCSI; |
|
c->scsi_cmd = cmd; |
|
c->Header.ReplyQueue = 0; /* unused in simple mode */ |
|
memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); |
|
c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); |
|
|
|
/* Fill in the request block... */ |
|
|
|
c->Request.Timeout = 0; |
|
BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); |
|
c->Request.CDBLen = cmd->cmd_len; |
|
memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); |
|
switch (cmd->sc_data_direction) { |
|
case DMA_TO_DEVICE: |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); |
|
break; |
|
case DMA_FROM_DEVICE: |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); |
|
break; |
|
case DMA_NONE: |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); |
|
break; |
|
case DMA_BIDIRECTIONAL: |
|
/* This can happen if a buggy application does a scsi passthru |
|
* and sets both inlen and outlen to non-zero. ( see |
|
* ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) |
|
*/ |
|
|
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); |
|
/* This is technically wrong, and hpsa controllers should |
|
* reject it with CMD_INVALID, which is the most correct |
|
* response, but non-fibre backends appear to let it |
|
* slide by, and give the same results as if this field |
|
* were set correctly. Either way is acceptable for |
|
* our purposes here. |
|
*/ |
|
|
|
break; |
|
|
|
default: |
|
dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
|
cmd->sc_data_direction); |
|
BUG(); |
|
break; |
|
} |
|
|
|
if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ |
|
hpsa_cmd_resolve_and_free(h, c); |
|
return SCSI_MLQUEUE_HOST_BUSY; |
|
} |
|
enqueue_cmd_and_start_io(h, c); |
|
/* the cmd'll come back via intr handler in complete_scsi_command() */ |
|
return 0; |
|
} |
|
|
|
static void hpsa_cmd_init(struct ctlr_info *h, int index, |
|
struct CommandList *c) |
|
{ |
|
dma_addr_t cmd_dma_handle, err_dma_handle; |
|
|
|
/* Zero out all of commandlist except the last field, refcount */ |
|
memset(c, 0, offsetof(struct CommandList, refcount)); |
|
c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); |
|
cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); |
|
c->err_info = h->errinfo_pool + index; |
|
memset(c->err_info, 0, sizeof(*c->err_info)); |
|
err_dma_handle = h->errinfo_pool_dhandle |
|
+ index * sizeof(*c->err_info); |
|
c->cmdindex = index; |
|
c->busaddr = (u32) cmd_dma_handle; |
|
c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); |
|
c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); |
|
c->h = h; |
|
c->scsi_cmd = SCSI_CMD_IDLE; |
|
} |
|
|
|
static void hpsa_preinitialize_commands(struct ctlr_info *h) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < h->nr_cmds; i++) { |
|
struct CommandList *c = h->cmd_pool + i; |
|
|
|
hpsa_cmd_init(h, i, c); |
|
atomic_set(&c->refcount, 0); |
|
} |
|
} |
|
|
|
static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, |
|
struct CommandList *c) |
|
{ |
|
dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); |
|
|
|
BUG_ON(c->cmdindex != index); |
|
|
|
memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); |
|
memset(c->err_info, 0, sizeof(*c->err_info)); |
|
c->busaddr = (u32) cmd_dma_handle; |
|
} |
|
|
|
static int hpsa_ioaccel_submit(struct ctlr_info *h, |
|
struct CommandList *c, struct scsi_cmnd *cmd, |
|
unsigned char *scsi3addr) |
|
{ |
|
struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; |
|
int rc = IO_ACCEL_INELIGIBLE; |
|
|
|
if (!dev) |
|
return SCSI_MLQUEUE_HOST_BUSY; |
|
|
|
cmd->host_scribble = (unsigned char *) c; |
|
|
|
if (dev->offload_enabled) { |
|
hpsa_cmd_init(h, c->cmdindex, c); |
|
c->cmd_type = CMD_SCSI; |
|
c->scsi_cmd = cmd; |
|
rc = hpsa_scsi_ioaccel_raid_map(h, c); |
|
if (rc < 0) /* scsi_dma_map failed. */ |
|
rc = SCSI_MLQUEUE_HOST_BUSY; |
|
} else if (dev->hba_ioaccel_enabled) { |
|
hpsa_cmd_init(h, c->cmdindex, c); |
|
c->cmd_type = CMD_SCSI; |
|
c->scsi_cmd = cmd; |
|
rc = hpsa_scsi_ioaccel_direct_map(h, c); |
|
if (rc < 0) /* scsi_dma_map failed. */ |
|
rc = SCSI_MLQUEUE_HOST_BUSY; |
|
} |
|
return rc; |
|
} |
|
|
|
static void hpsa_command_resubmit_worker(struct work_struct *work) |
|
{ |
|
struct scsi_cmnd *cmd; |
|
struct hpsa_scsi_dev_t *dev; |
|
struct CommandList *c = container_of(work, struct CommandList, work); |
|
|
|
cmd = c->scsi_cmd; |
|
dev = cmd->device->hostdata; |
|
if (!dev) { |
|
cmd->result = DID_NO_CONNECT << 16; |
|
return hpsa_cmd_free_and_done(c->h, c, cmd); |
|
} |
|
if (c->reset_pending) |
|
return hpsa_cmd_free_and_done(c->h, c, cmd); |
|
if (c->cmd_type == CMD_IOACCEL2) { |
|
struct ctlr_info *h = c->h; |
|
struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; |
|
int rc; |
|
|
|
if (c2->error_data.serv_response == |
|
IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { |
|
rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr); |
|
if (rc == 0) |
|
return; |
|
if (rc == SCSI_MLQUEUE_HOST_BUSY) { |
|
/* |
|
* If we get here, it means dma mapping failed. |
|
* Try again via scsi mid layer, which will |
|
* then get SCSI_MLQUEUE_HOST_BUSY. |
|
*/ |
|
cmd->result = DID_IMM_RETRY << 16; |
|
return hpsa_cmd_free_and_done(h, c, cmd); |
|
} |
|
/* else, fall thru and resubmit down CISS path */ |
|
} |
|
} |
|
hpsa_cmd_partial_init(c->h, c->cmdindex, c); |
|
if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) { |
|
/* |
|
* If we get here, it means dma mapping failed. Try |
|
* again via scsi mid layer, which will then get |
|
* SCSI_MLQUEUE_HOST_BUSY. |
|
* |
|
* hpsa_ciss_submit will have already freed c |
|
* if it encountered a dma mapping failure. |
|
*/ |
|
cmd->result = DID_IMM_RETRY << 16; |
|
cmd->scsi_done(cmd); |
|
} |
|
} |
|
|
|
/* Running in struct Scsi_Host->host_lock less mode */ |
|
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) |
|
{ |
|
struct ctlr_info *h; |
|
struct hpsa_scsi_dev_t *dev; |
|
unsigned char scsi3addr[8]; |
|
struct CommandList *c; |
|
int rc = 0; |
|
|
|
/* Get the ptr to our adapter structure out of cmd->host. */ |
|
h = sdev_to_hba(cmd->device); |
|
|
|
BUG_ON(cmd->request->tag < 0); |
|
|
|
dev = cmd->device->hostdata; |
|
if (!dev) { |
|
cmd->result = DID_NO_CONNECT << 16; |
|
cmd->scsi_done(cmd); |
|
return 0; |
|
} |
|
|
|
if (dev->removed) { |
|
cmd->result = DID_NO_CONNECT << 16; |
|
cmd->scsi_done(cmd); |
|
return 0; |
|
} |
|
|
|
memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); |
|
|
|
if (unlikely(lockup_detected(h))) { |
|
cmd->result = DID_NO_CONNECT << 16; |
|
cmd->scsi_done(cmd); |
|
return 0; |
|
} |
|
c = cmd_tagged_alloc(h, cmd); |
|
|
|
/* |
|
* Call alternate submit routine for I/O accelerated commands. |
|
* Retries always go down the normal I/O path. |
|
*/ |
|
if (likely(cmd->retries == 0 && |
|
!blk_rq_is_passthrough(cmd->request) && |
|
h->acciopath_status)) { |
|
rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr); |
|
if (rc == 0) |
|
return 0; |
|
if (rc == SCSI_MLQUEUE_HOST_BUSY) { |
|
hpsa_cmd_resolve_and_free(h, c); |
|
return SCSI_MLQUEUE_HOST_BUSY; |
|
} |
|
} |
|
return hpsa_ciss_submit(h, c, cmd, scsi3addr); |
|
} |
|
|
|
static void hpsa_scan_complete(struct ctlr_info *h) |
|
{ |
|
unsigned long flags; |
|
|
|
spin_lock_irqsave(&h->scan_lock, flags); |
|
h->scan_finished = 1; |
|
wake_up(&h->scan_wait_queue); |
|
spin_unlock_irqrestore(&h->scan_lock, flags); |
|
} |
|
|
|
static void hpsa_scan_start(struct Scsi_Host *sh) |
|
{ |
|
struct ctlr_info *h = shost_to_hba(sh); |
|
unsigned long flags; |
|
|
|
/* |
|
* Don't let rescans be initiated on a controller known to be locked |
|
* up. If the controller locks up *during* a rescan, that thread is |
|
* probably hosed, but at least we can prevent new rescan threads from |
|
* piling up on a locked up controller. |
|
*/ |
|
if (unlikely(lockup_detected(h))) |
|
return hpsa_scan_complete(h); |
|
|
|
/* |
|
* If a scan is already waiting to run, no need to add another |
|
*/ |
|
spin_lock_irqsave(&h->scan_lock, flags); |
|
if (h->scan_waiting) { |
|
spin_unlock_irqrestore(&h->scan_lock, flags); |
|
return; |
|
} |
|
|
|
spin_unlock_irqrestore(&h->scan_lock, flags); |
|
|
|
/* wait until any scan already in progress is finished. */ |
|
while (1) { |
|
spin_lock_irqsave(&h->scan_lock, flags); |
|
if (h->scan_finished) |
|
break; |
|
h->scan_waiting = 1; |
|
spin_unlock_irqrestore(&h->scan_lock, flags); |
|
wait_event(h->scan_wait_queue, h->scan_finished); |
|
/* Note: We don't need to worry about a race between this |
|
* thread and driver unload because the midlayer will |
|
* have incremented the reference count, so unload won't |
|
* happen if we're in here. |
|
*/ |
|
} |
|
h->scan_finished = 0; /* mark scan as in progress */ |
|
h->scan_waiting = 0; |
|
spin_unlock_irqrestore(&h->scan_lock, flags); |
|
|
|
if (unlikely(lockup_detected(h))) |
|
return hpsa_scan_complete(h); |
|
|
|
/* |
|
* Do the scan after a reset completion |
|
*/ |
|
spin_lock_irqsave(&h->reset_lock, flags); |
|
if (h->reset_in_progress) { |
|
h->drv_req_rescan = 1; |
|
spin_unlock_irqrestore(&h->reset_lock, flags); |
|
hpsa_scan_complete(h); |
|
return; |
|
} |
|
spin_unlock_irqrestore(&h->reset_lock, flags); |
|
|
|
hpsa_update_scsi_devices(h); |
|
|
|
hpsa_scan_complete(h); |
|
} |
|
|
|
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) |
|
{ |
|
struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; |
|
|
|
if (!logical_drive) |
|
return -ENODEV; |
|
|
|
if (qdepth < 1) |
|
qdepth = 1; |
|
else if (qdepth > logical_drive->queue_depth) |
|
qdepth = logical_drive->queue_depth; |
|
|
|
return scsi_change_queue_depth(sdev, qdepth); |
|
} |
|
|
|
static int hpsa_scan_finished(struct Scsi_Host *sh, |
|
unsigned long elapsed_time) |
|
{ |
|
struct ctlr_info *h = shost_to_hba(sh); |
|
unsigned long flags; |
|
int finished; |
|
|
|
spin_lock_irqsave(&h->scan_lock, flags); |
|
finished = h->scan_finished; |
|
spin_unlock_irqrestore(&h->scan_lock, flags); |
|
return finished; |
|
} |
|
|
|
static int hpsa_scsi_host_alloc(struct ctlr_info *h) |
|
{ |
|
struct Scsi_Host *sh; |
|
|
|
sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); |
|
if (sh == NULL) { |
|
dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); |
|
return -ENOMEM; |
|
} |
|
|
|
sh->io_port = 0; |
|
sh->n_io_port = 0; |
|
sh->this_id = -1; |
|
sh->max_channel = 3; |
|
sh->max_cmd_len = MAX_COMMAND_SIZE; |
|
sh->max_lun = HPSA_MAX_LUN; |
|
sh->max_id = HPSA_MAX_LUN; |
|
sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; |
|
sh->cmd_per_lun = sh->can_queue; |
|
sh->sg_tablesize = h->maxsgentries; |
|
sh->transportt = hpsa_sas_transport_template; |
|
sh->hostdata[0] = (unsigned long) h; |
|
sh->irq = pci_irq_vector(h->pdev, 0); |
|
sh->unique_id = sh->irq; |
|
|
|
h->scsi_host = sh; |
|
return 0; |
|
} |
|
|
|
static int hpsa_scsi_add_host(struct ctlr_info *h) |
|
{ |
|
int rv; |
|
|
|
rv = scsi_add_host(h->scsi_host, &h->pdev->dev); |
|
if (rv) { |
|
dev_err(&h->pdev->dev, "scsi_add_host failed\n"); |
|
return rv; |
|
} |
|
scsi_scan_host(h->scsi_host); |
|
return 0; |
|
} |
|
|
|
/* |
|
* The block layer has already gone to the trouble of picking out a unique, |
|
* small-integer tag for this request. We use an offset from that value as |
|
* an index to select our command block. (The offset allows us to reserve the |
|
* low-numbered entries for our own uses.) |
|
*/ |
|
static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) |
|
{ |
|
int idx = scmd->request->tag; |
|
|
|
if (idx < 0) |
|
return idx; |
|
|
|
/* Offset to leave space for internal cmds. */ |
|
return idx += HPSA_NRESERVED_CMDS; |
|
} |
|
|
|
/* |
|
* Send a TEST_UNIT_READY command to the specified LUN using the specified |
|
* reply queue; returns zero if the unit is ready, and non-zero otherwise. |
|
*/ |
|
static int hpsa_send_test_unit_ready(struct ctlr_info *h, |
|
struct CommandList *c, unsigned char lunaddr[], |
|
int reply_queue) |
|
{ |
|
int rc; |
|
|
|
/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ |
|
(void) fill_cmd(c, TEST_UNIT_READY, h, |
|
NULL, 0, 0, lunaddr, TYPE_CMD); |
|
rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); |
|
if (rc) |
|
return rc; |
|
/* no unmap needed here because no data xfer. */ |
|
|
|
/* Check if the unit is already ready. */ |
|
if (c->err_info->CommandStatus == CMD_SUCCESS) |
|
return 0; |
|
|
|
/* |
|
* The first command sent after reset will receive "unit attention" to |
|
* indicate that the LUN has been reset...this is actually what we're |
|
* looking for (but, success is good too). |
|
*/ |
|
if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
|
c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && |
|
(c->err_info->SenseInfo[2] == NO_SENSE || |
|
c->err_info->SenseInfo[2] == UNIT_ATTENTION)) |
|
return 0; |
|
|
|
return 1; |
|
} |
|
|
|
/* |
|
* Wait for a TEST_UNIT_READY command to complete, retrying as necessary; |
|
* returns zero when the unit is ready, and non-zero when giving up. |
|
*/ |
|
static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, |
|
struct CommandList *c, |
|
unsigned char lunaddr[], int reply_queue) |
|
{ |
|
int rc; |
|
int count = 0; |
|
int waittime = 1; /* seconds */ |
|
|
|
/* Send test unit ready until device ready, or give up. */ |
|
for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { |
|
|
|
/* |
|
* Wait for a bit. do this first, because if we send |
|
* the TUR right away, the reset will just abort it. |
|
*/ |
|
msleep(1000 * waittime); |
|
|
|
rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); |
|
if (!rc) |
|
break; |
|
|
|
/* Increase wait time with each try, up to a point. */ |
|
if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) |
|
waittime *= 2; |
|
|
|
dev_warn(&h->pdev->dev, |
|
"waiting %d secs for device to become ready.\n", |
|
waittime); |
|
} |
|
|
|
return rc; |
|
} |
|
|
|
static int wait_for_device_to_become_ready(struct ctlr_info *h, |
|
unsigned char lunaddr[], |
|
int reply_queue) |
|
{ |
|
int first_queue; |
|
int last_queue; |
|
int rq; |
|
int rc = 0; |
|
struct CommandList *c; |
|
|
|
c = cmd_alloc(h); |
|
|
|
/* |
|
* If no specific reply queue was requested, then send the TUR |
|
* repeatedly, requesting a reply on each reply queue; otherwise execute |
|
* the loop exactly once using only the specified queue. |
|
*/ |
|
if (reply_queue == DEFAULT_REPLY_QUEUE) { |
|
first_queue = 0; |
|
last_queue = h->nreply_queues - 1; |
|
} else { |
|
first_queue = reply_queue; |
|
last_queue = reply_queue; |
|
} |
|
|
|
for (rq = first_queue; rq <= last_queue; rq++) { |
|
rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); |
|
if (rc) |
|
break; |
|
} |
|
|
|
if (rc) |
|
dev_warn(&h->pdev->dev, "giving up on device.\n"); |
|
else |
|
dev_warn(&h->pdev->dev, "device is ready.\n"); |
|
|
|
cmd_free(h, c); |
|
return rc; |
|
} |
|
|
|
/* Need at least one of these error handlers to keep ../scsi/hosts.c from |
|
* complaining. Doing a host- or bus-reset can't do anything good here. |
|
*/ |
|
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) |
|
{ |
|
int rc = SUCCESS; |
|
struct ctlr_info *h; |
|
struct hpsa_scsi_dev_t *dev; |
|
u8 reset_type; |
|
char msg[48]; |
|
unsigned long flags; |
|
|
|
/* find the controller to which the command to be aborted was sent */ |
|
h = sdev_to_hba(scsicmd->device); |
|
if (h == NULL) /* paranoia */ |
|
return FAILED; |
|
|
|
spin_lock_irqsave(&h->reset_lock, flags); |
|
h->reset_in_progress = 1; |
|
spin_unlock_irqrestore(&h->reset_lock, flags); |
|
|
|
if (lockup_detected(h)) { |
|
rc = FAILED; |
|
goto return_reset_status; |
|
} |
|
|
|
dev = scsicmd->device->hostdata; |
|
if (!dev) { |
|
dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); |
|
rc = FAILED; |
|
goto return_reset_status; |
|
} |
|
|
|
if (dev->devtype == TYPE_ENCLOSURE) { |
|
rc = SUCCESS; |
|
goto return_reset_status; |
|
} |
|
|
|
/* if controller locked up, we can guarantee command won't complete */ |
|
if (lockup_detected(h)) { |
|
snprintf(msg, sizeof(msg), |
|
"cmd %d RESET FAILED, lockup detected", |
|
hpsa_get_cmd_index(scsicmd)); |
|
hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); |
|
rc = FAILED; |
|
goto return_reset_status; |
|
} |
|
|
|
/* this reset request might be the result of a lockup; check */ |
|
if (detect_controller_lockup(h)) { |
|
snprintf(msg, sizeof(msg), |
|
"cmd %d RESET FAILED, new lockup detected", |
|
hpsa_get_cmd_index(scsicmd)); |
|
hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); |
|
rc = FAILED; |
|
goto return_reset_status; |
|
} |
|
|
|
/* Do not attempt on controller */ |
|
if (is_hba_lunid(dev->scsi3addr)) { |
|
rc = SUCCESS; |
|
goto return_reset_status; |
|
} |
|
|
|
if (is_logical_dev_addr_mode(dev->scsi3addr)) |
|
reset_type = HPSA_DEVICE_RESET_MSG; |
|
else |
|
reset_type = HPSA_PHYS_TARGET_RESET; |
|
|
|
sprintf(msg, "resetting %s", |
|
reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); |
|
hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); |
|
|
|
/* send a reset to the SCSI LUN which the command was sent to */ |
|
rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type, |
|
DEFAULT_REPLY_QUEUE); |
|
if (rc == 0) |
|
rc = SUCCESS; |
|
else |
|
rc = FAILED; |
|
|
|
sprintf(msg, "reset %s %s", |
|
reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", |
|
rc == SUCCESS ? "completed successfully" : "failed"); |
|
hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); |
|
|
|
return_reset_status: |
|
spin_lock_irqsave(&h->reset_lock, flags); |
|
h->reset_in_progress = 0; |
|
spin_unlock_irqrestore(&h->reset_lock, flags); |
|
return rc; |
|
} |
|
|
|
/* |
|
* For operations with an associated SCSI command, a command block is allocated |
|
* at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the |
|
* block request tag as an index into a table of entries. cmd_tagged_free() is |
|
* the complement, although cmd_free() may be called instead. |
|
*/ |
|
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, |
|
struct scsi_cmnd *scmd) |
|
{ |
|
int idx = hpsa_get_cmd_index(scmd); |
|
struct CommandList *c = h->cmd_pool + idx; |
|
|
|
if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { |
|
dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", |
|
idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); |
|
/* The index value comes from the block layer, so if it's out of |
|
* bounds, it's probably not our bug. |
|
*/ |
|
BUG(); |
|
} |
|
|
|
atomic_inc(&c->refcount); |
|
if (unlikely(!hpsa_is_cmd_idle(c))) { |
|
/* |
|
* We expect that the SCSI layer will hand us a unique tag |
|
* value. Thus, there should never be a collision here between |
|
* two requests...because if the selected command isn't idle |
|
* then someone is going to be very disappointed. |
|
*/ |
|
dev_err(&h->pdev->dev, |
|
"tag collision (tag=%d) in cmd_tagged_alloc().\n", |
|
idx); |
|
if (c->scsi_cmd != NULL) |
|
scsi_print_command(c->scsi_cmd); |
|
scsi_print_command(scmd); |
|
} |
|
|
|
hpsa_cmd_partial_init(h, idx, c); |
|
return c; |
|
} |
|
|
|
static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) |
|
{ |
|
/* |
|
* Release our reference to the block. We don't need to do anything |
|
* else to free it, because it is accessed by index. |
|
*/ |
|
(void)atomic_dec(&c->refcount); |
|
} |
|
|
|
/* |
|
* For operations that cannot sleep, a command block is allocated at init, |
|
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track |
|
* which ones are free or in use. Lock must be held when calling this. |
|
* cmd_free() is the complement. |
|
* This function never gives up and returns NULL. If it hangs, |
|
* another thread must call cmd_free() to free some tags. |
|
*/ |
|
|
|
static struct CommandList *cmd_alloc(struct ctlr_info *h) |
|
{ |
|
struct CommandList *c; |
|
int refcount, i; |
|
int offset = 0; |
|
|
|
/* |
|
* There is some *extremely* small but non-zero chance that that |
|
* multiple threads could get in here, and one thread could |
|
* be scanning through the list of bits looking for a free |
|
* one, but the free ones are always behind him, and other |
|
* threads sneak in behind him and eat them before he can |
|
* get to them, so that while there is always a free one, a |
|
* very unlucky thread might be starved anyway, never able to |
|
* beat the other threads. In reality, this happens so |
|
* infrequently as to be indistinguishable from never. |
|
* |
|
* Note that we start allocating commands before the SCSI host structure |
|
* is initialized. Since the search starts at bit zero, this |
|
* all works, since we have at least one command structure available; |
|
* however, it means that the structures with the low indexes have to be |
|
* reserved for driver-initiated requests, while requests from the block |
|
* layer will use the higher indexes. |
|
*/ |
|
|
|
for (;;) { |
|
i = find_next_zero_bit(h->cmd_pool_bits, |
|
HPSA_NRESERVED_CMDS, |
|
offset); |
|
if (unlikely(i >= HPSA_NRESERVED_CMDS)) { |
|
offset = 0; |
|
continue; |
|
} |
|
c = h->cmd_pool + i; |
|
refcount = atomic_inc_return(&c->refcount); |
|
if (unlikely(refcount > 1)) { |
|
cmd_free(h, c); /* already in use */ |
|
offset = (i + 1) % HPSA_NRESERVED_CMDS; |
|
continue; |
|
} |
|
set_bit(i & (BITS_PER_LONG - 1), |
|
h->cmd_pool_bits + (i / BITS_PER_LONG)); |
|
break; /* it's ours now. */ |
|
} |
|
hpsa_cmd_partial_init(h, i, c); |
|
return c; |
|
} |
|
|
|
/* |
|
* This is the complementary operation to cmd_alloc(). Note, however, in some |
|
* corner cases it may also be used to free blocks allocated by |
|
* cmd_tagged_alloc() in which case the ref-count decrement does the trick and |
|
* the clear-bit is harmless. |
|
*/ |
|
static void cmd_free(struct ctlr_info *h, struct CommandList *c) |
|
{ |
|
if (atomic_dec_and_test(&c->refcount)) { |
|
int i; |
|
|
|
i = c - h->cmd_pool; |
|
clear_bit(i & (BITS_PER_LONG - 1), |
|
h->cmd_pool_bits + (i / BITS_PER_LONG)); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_COMPAT |
|
|
|
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, |
|
void __user *arg) |
|
{ |
|
IOCTL32_Command_struct __user *arg32 = |
|
(IOCTL32_Command_struct __user *) arg; |
|
IOCTL_Command_struct arg64; |
|
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); |
|
int err; |
|
u32 cp; |
|
|
|
memset(&arg64, 0, sizeof(arg64)); |
|
err = 0; |
|
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
|
sizeof(arg64.LUN_info)); |
|
err |= copy_from_user(&arg64.Request, &arg32->Request, |
|
sizeof(arg64.Request)); |
|
err |= copy_from_user(&arg64.error_info, &arg32->error_info, |
|
sizeof(arg64.error_info)); |
|
err |= get_user(arg64.buf_size, &arg32->buf_size); |
|
err |= get_user(cp, &arg32->buf); |
|
arg64.buf = compat_ptr(cp); |
|
err |= copy_to_user(p, &arg64, sizeof(arg64)); |
|
|
|
if (err) |
|
return -EFAULT; |
|
|
|
err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); |
|
if (err) |
|
return err; |
|
err |= copy_in_user(&arg32->error_info, &p->error_info, |
|
sizeof(arg32->error_info)); |
|
if (err) |
|
return -EFAULT; |
|
return err; |
|
} |
|
|
|
static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, |
|
int cmd, void __user *arg) |
|
{ |
|
BIG_IOCTL32_Command_struct __user *arg32 = |
|
(BIG_IOCTL32_Command_struct __user *) arg; |
|
BIG_IOCTL_Command_struct arg64; |
|
BIG_IOCTL_Command_struct __user *p = |
|
compat_alloc_user_space(sizeof(arg64)); |
|
int err; |
|
u32 cp; |
|
|
|
memset(&arg64, 0, sizeof(arg64)); |
|
err = 0; |
|
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
|
sizeof(arg64.LUN_info)); |
|
err |= copy_from_user(&arg64.Request, &arg32->Request, |
|
sizeof(arg64.Request)); |
|
err |= copy_from_user(&arg64.error_info, &arg32->error_info, |
|
sizeof(arg64.error_info)); |
|
err |= get_user(arg64.buf_size, &arg32->buf_size); |
|
err |= get_user(arg64.malloc_size, &arg32->malloc_size); |
|
err |= get_user(cp, &arg32->buf); |
|
arg64.buf = compat_ptr(cp); |
|
err |= copy_to_user(p, &arg64, sizeof(arg64)); |
|
|
|
if (err) |
|
return -EFAULT; |
|
|
|
err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); |
|
if (err) |
|
return err; |
|
err |= copy_in_user(&arg32->error_info, &p->error_info, |
|
sizeof(arg32->error_info)); |
|
if (err) |
|
return -EFAULT; |
|
return err; |
|
} |
|
|
|
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) |
|
{ |
|
switch (cmd) { |
|
case CCISS_GETPCIINFO: |
|
case CCISS_GETINTINFO: |
|
case CCISS_SETINTINFO: |
|
case CCISS_GETNODENAME: |
|
case CCISS_SETNODENAME: |
|
case CCISS_GETHEARTBEAT: |
|
case CCISS_GETBUSTYPES: |
|
case CCISS_GETFIRMVER: |
|
case CCISS_GETDRIVVER: |
|
case CCISS_REVALIDVOLS: |
|
case CCISS_DEREGDISK: |
|
case CCISS_REGNEWDISK: |
|
case CCISS_REGNEWD: |
|
case CCISS_RESCANDISK: |
|
case CCISS_GETLUNINFO: |
|
return hpsa_ioctl(dev, cmd, arg); |
|
|
|
case CCISS_PASSTHRU32: |
|
return hpsa_ioctl32_passthru(dev, cmd, arg); |
|
case CCISS_BIG_PASSTHRU32: |
|
return hpsa_ioctl32_big_passthru(dev, cmd, arg); |
|
|
|
default: |
|
return -ENOIOCTLCMD; |
|
} |
|
} |
|
#endif |
|
|
|
static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) |
|
{ |
|
struct hpsa_pci_info pciinfo; |
|
|
|
if (!argp) |
|
return -EINVAL; |
|
pciinfo.domain = pci_domain_nr(h->pdev->bus); |
|
pciinfo.bus = h->pdev->bus->number; |
|
pciinfo.dev_fn = h->pdev->devfn; |
|
pciinfo.board_id = h->board_id; |
|
if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) |
|
return -EFAULT; |
|
return 0; |
|
} |
|
|
|
static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) |
|
{ |
|
DriverVer_type DriverVer; |
|
unsigned char vmaj, vmin, vsubmin; |
|
int rc; |
|
|
|
rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", |
|
&vmaj, &vmin, &vsubmin); |
|
if (rc != 3) { |
|
dev_info(&h->pdev->dev, "driver version string '%s' " |
|
"unrecognized.", HPSA_DRIVER_VERSION); |
|
vmaj = 0; |
|
vmin = 0; |
|
vsubmin = 0; |
|
} |
|
DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; |
|
if (!argp) |
|
return -EINVAL; |
|
if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) |
|
return -EFAULT; |
|
return 0; |
|
} |
|
|
|
static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) |
|
{ |
|
IOCTL_Command_struct iocommand; |
|
struct CommandList *c; |
|
char *buff = NULL; |
|
u64 temp64; |
|
int rc = 0; |
|
|
|
if (!argp) |
|
return -EINVAL; |
|
if (!capable(CAP_SYS_RAWIO)) |
|
return -EPERM; |
|
if (copy_from_user(&iocommand, argp, sizeof(iocommand))) |
|
return -EFAULT; |
|
if ((iocommand.buf_size < 1) && |
|
(iocommand.Request.Type.Direction != XFER_NONE)) { |
|
return -EINVAL; |
|
} |
|
if (iocommand.buf_size > 0) { |
|
buff = kmalloc(iocommand.buf_size, GFP_KERNEL); |
|
if (buff == NULL) |
|
return -ENOMEM; |
|
if (iocommand.Request.Type.Direction & XFER_WRITE) { |
|
/* Copy the data into the buffer we created */ |
|
if (copy_from_user(buff, iocommand.buf, |
|
iocommand.buf_size)) { |
|
rc = -EFAULT; |
|
goto out_kfree; |
|
} |
|
} else { |
|
memset(buff, 0, iocommand.buf_size); |
|
} |
|
} |
|
c = cmd_alloc(h); |
|
|
|
/* Fill in the command type */ |
|
c->cmd_type = CMD_IOCTL_PEND; |
|
c->scsi_cmd = SCSI_CMD_BUSY; |
|
/* Fill in Command Header */ |
|
c->Header.ReplyQueue = 0; /* unused in simple mode */ |
|
if (iocommand.buf_size > 0) { /* buffer to fill */ |
|
c->Header.SGList = 1; |
|
c->Header.SGTotal = cpu_to_le16(1); |
|
} else { /* no buffers to fill */ |
|
c->Header.SGList = 0; |
|
c->Header.SGTotal = cpu_to_le16(0); |
|
} |
|
memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); |
|
|
|
/* Fill in Request block */ |
|
memcpy(&c->Request, &iocommand.Request, |
|
sizeof(c->Request)); |
|
|
|
/* Fill in the scatter gather information */ |
|
if (iocommand.buf_size > 0) { |
|
temp64 = pci_map_single(h->pdev, buff, |
|
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); |
|
if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { |
|
c->SG[0].Addr = cpu_to_le64(0); |
|
c->SG[0].Len = cpu_to_le32(0); |
|
rc = -ENOMEM; |
|
goto out; |
|
} |
|
c->SG[0].Addr = cpu_to_le64(temp64); |
|
c->SG[0].Len = cpu_to_le32(iocommand.buf_size); |
|
c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ |
|
} |
|
rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, |
|
NO_TIMEOUT); |
|
if (iocommand.buf_size > 0) |
|
hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); |
|
check_ioctl_unit_attention(h, c); |
|
if (rc) { |
|
rc = -EIO; |
|
goto out; |
|
} |
|
|
|
/* Copy the error information out */ |
|
memcpy(&iocommand.error_info, c->err_info, |
|
sizeof(iocommand.error_info)); |
|
if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { |
|
rc = -EFAULT; |
|
goto out; |
|
} |
|
if ((iocommand.Request.Type.Direction & XFER_READ) && |
|
iocommand.buf_size > 0) { |
|
/* Copy the data out of the buffer we created */ |
|
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { |
|
rc = -EFAULT; |
|
goto out; |
|
} |
|
} |
|
out: |
|
cmd_free(h, c); |
|
out_kfree: |
|
kfree(buff); |
|
return rc; |
|
} |
|
|
|
static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) |
|
{ |
|
BIG_IOCTL_Command_struct *ioc; |
|
struct CommandList *c; |
|
unsigned char **buff = NULL; |
|
int *buff_size = NULL; |
|
u64 temp64; |
|
BYTE sg_used = 0; |
|
int status = 0; |
|
u32 left; |
|
u32 sz; |
|
BYTE __user *data_ptr; |
|
|
|
if (!argp) |
|
return -EINVAL; |
|
if (!capable(CAP_SYS_RAWIO)) |
|
return -EPERM; |
|
ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); |
|
if (!ioc) { |
|
status = -ENOMEM; |
|
goto cleanup1; |
|
} |
|
if (copy_from_user(ioc, argp, sizeof(*ioc))) { |
|
status = -EFAULT; |
|
goto cleanup1; |
|
} |
|
if ((ioc->buf_size < 1) && |
|
(ioc->Request.Type.Direction != XFER_NONE)) { |
|
status = -EINVAL; |
|
goto cleanup1; |
|
} |
|
/* Check kmalloc limits using all SGs */ |
|
if (ioc->malloc_size > MAX_KMALLOC_SIZE) { |
|
status = -EINVAL; |
|
goto cleanup1; |
|
} |
|
if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { |
|
status = -EINVAL; |
|
goto cleanup1; |
|
} |
|
buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); |
|
if (!buff) { |
|
status = -ENOMEM; |
|
goto cleanup1; |
|
} |
|
buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); |
|
if (!buff_size) { |
|
status = -ENOMEM; |
|
goto cleanup1; |
|
} |
|
left = ioc->buf_size; |
|
data_ptr = ioc->buf; |
|
while (left) { |
|
sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; |
|
buff_size[sg_used] = sz; |
|
buff[sg_used] = kmalloc(sz, GFP_KERNEL); |
|
if (buff[sg_used] == NULL) { |
|
status = -ENOMEM; |
|
goto cleanup1; |
|
} |
|
if (ioc->Request.Type.Direction & XFER_WRITE) { |
|
if (copy_from_user(buff[sg_used], data_ptr, sz)) { |
|
status = -EFAULT; |
|
goto cleanup1; |
|
} |
|
} else |
|
memset(buff[sg_used], 0, sz); |
|
left -= sz; |
|
data_ptr += sz; |
|
sg_used++; |
|
} |
|
c = cmd_alloc(h); |
|
|
|
c->cmd_type = CMD_IOCTL_PEND; |
|
c->scsi_cmd = SCSI_CMD_BUSY; |
|
c->Header.ReplyQueue = 0; |
|
c->Header.SGList = (u8) sg_used; |
|
c->Header.SGTotal = cpu_to_le16(sg_used); |
|
memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); |
|
memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); |
|
if (ioc->buf_size > 0) { |
|
int i; |
|
for (i = 0; i < sg_used; i++) { |
|
temp64 = pci_map_single(h->pdev, buff[i], |
|
buff_size[i], PCI_DMA_BIDIRECTIONAL); |
|
if (dma_mapping_error(&h->pdev->dev, |
|
(dma_addr_t) temp64)) { |
|
c->SG[i].Addr = cpu_to_le64(0); |
|
c->SG[i].Len = cpu_to_le32(0); |
|
hpsa_pci_unmap(h->pdev, c, i, |
|
PCI_DMA_BIDIRECTIONAL); |
|
status = -ENOMEM; |
|
goto cleanup0; |
|
} |
|
c->SG[i].Addr = cpu_to_le64(temp64); |
|
c->SG[i].Len = cpu_to_le32(buff_size[i]); |
|
c->SG[i].Ext = cpu_to_le32(0); |
|
} |
|
c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); |
|
} |
|
status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, |
|
NO_TIMEOUT); |
|
if (sg_used) |
|
hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); |
|
check_ioctl_unit_attention(h, c); |
|
if (status) { |
|
status = -EIO; |
|
goto cleanup0; |
|
} |
|
|
|
/* Copy the error information out */ |
|
memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); |
|
if (copy_to_user(argp, ioc, sizeof(*ioc))) { |
|
status = -EFAULT; |
|
goto cleanup0; |
|
} |
|
if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { |
|
int i; |
|
|
|
/* Copy the data out of the buffer we created */ |
|
BYTE __user *ptr = ioc->buf; |
|
for (i = 0; i < sg_used; i++) { |
|
if (copy_to_user(ptr, buff[i], buff_size[i])) { |
|
status = -EFAULT; |
|
goto cleanup0; |
|
} |
|
ptr += buff_size[i]; |
|
} |
|
} |
|
status = 0; |
|
cleanup0: |
|
cmd_free(h, c); |
|
cleanup1: |
|
if (buff) { |
|
int i; |
|
|
|
for (i = 0; i < sg_used; i++) |
|
kfree(buff[i]); |
|
kfree(buff); |
|
} |
|
kfree(buff_size); |
|
kfree(ioc); |
|
return status; |
|
} |
|
|
|
static void check_ioctl_unit_attention(struct ctlr_info *h, |
|
struct CommandList *c) |
|
{ |
|
if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
|
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) |
|
(void) check_for_unit_attention(h, c); |
|
} |
|
|
|
/* |
|
* ioctl |
|
*/ |
|
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) |
|
{ |
|
struct ctlr_info *h; |
|
void __user *argp = (void __user *)arg; |
|
int rc; |
|
|
|
h = sdev_to_hba(dev); |
|
|
|
switch (cmd) { |
|
case CCISS_DEREGDISK: |
|
case CCISS_REGNEWDISK: |
|
case CCISS_REGNEWD: |
|
hpsa_scan_start(h->scsi_host); |
|
return 0; |
|
case CCISS_GETPCIINFO: |
|
return hpsa_getpciinfo_ioctl(h, argp); |
|
case CCISS_GETDRIVVER: |
|
return hpsa_getdrivver_ioctl(h, argp); |
|
case CCISS_PASSTHRU: |
|
if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) |
|
return -EAGAIN; |
|
rc = hpsa_passthru_ioctl(h, argp); |
|
atomic_inc(&h->passthru_cmds_avail); |
|
return rc; |
|
case CCISS_BIG_PASSTHRU: |
|
if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) |
|
return -EAGAIN; |
|
rc = hpsa_big_passthru_ioctl(h, argp); |
|
atomic_inc(&h->passthru_cmds_avail); |
|
return rc; |
|
default: |
|
return -ENOTTY; |
|
} |
|
} |
|
|
|
static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, |
|
u8 reset_type) |
|
{ |
|
struct CommandList *c; |
|
|
|
c = cmd_alloc(h); |
|
|
|
/* fill_cmd can't fail here, no data buffer to map */ |
|
(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, |
|
RAID_CTLR_LUNID, TYPE_MSG); |
|
c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ |
|
c->waiting = NULL; |
|
enqueue_cmd_and_start_io(h, c); |
|
/* Don't wait for completion, the reset won't complete. Don't free |
|
* the command either. This is the last command we will send before |
|
* re-initializing everything, so it doesn't matter and won't leak. |
|
*/ |
|
return; |
|
} |
|
|
|
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, |
|
void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, |
|
int cmd_type) |
|
{ |
|
int pci_dir = XFER_NONE; |
|
|
|
c->cmd_type = CMD_IOCTL_PEND; |
|
c->scsi_cmd = SCSI_CMD_BUSY; |
|
c->Header.ReplyQueue = 0; |
|
if (buff != NULL && size > 0) { |
|
c->Header.SGList = 1; |
|
c->Header.SGTotal = cpu_to_le16(1); |
|
} else { |
|
c->Header.SGList = 0; |
|
c->Header.SGTotal = cpu_to_le16(0); |
|
} |
|
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); |
|
|
|
if (cmd_type == TYPE_CMD) { |
|
switch (cmd) { |
|
case HPSA_INQUIRY: |
|
/* are we trying to read a vital product page */ |
|
if (page_code & VPD_PAGE) { |
|
c->Request.CDB[1] = 0x01; |
|
c->Request.CDB[2] = (page_code & 0xff); |
|
} |
|
c->Request.CDBLen = 6; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = HPSA_INQUIRY; |
|
c->Request.CDB[4] = size & 0xFF; |
|
break; |
|
case RECEIVE_DIAGNOSTIC: |
|
c->Request.CDBLen = 6; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = cmd; |
|
c->Request.CDB[1] = 1; |
|
c->Request.CDB[2] = 1; |
|
c->Request.CDB[3] = (size >> 8) & 0xFF; |
|
c->Request.CDB[4] = size & 0xFF; |
|
break; |
|
case HPSA_REPORT_LOG: |
|
case HPSA_REPORT_PHYS: |
|
/* Talking to controller so It's a physical command |
|
mode = 00 target = 0. Nothing to write. |
|
*/ |
|
c->Request.CDBLen = 12; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = cmd; |
|
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
|
c->Request.CDB[7] = (size >> 16) & 0xFF; |
|
c->Request.CDB[8] = (size >> 8) & 0xFF; |
|
c->Request.CDB[9] = size & 0xFF; |
|
break; |
|
case BMIC_SENSE_DIAG_OPTIONS: |
|
c->Request.CDBLen = 16; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
/* Spec says this should be BMIC_WRITE */ |
|
c->Request.CDB[0] = BMIC_READ; |
|
c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; |
|
break; |
|
case BMIC_SET_DIAG_OPTIONS: |
|
c->Request.CDBLen = 16; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, |
|
ATTR_SIMPLE, XFER_WRITE); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = BMIC_WRITE; |
|
c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; |
|
break; |
|
case HPSA_CACHE_FLUSH: |
|
c->Request.CDBLen = 12; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, |
|
ATTR_SIMPLE, XFER_WRITE); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = BMIC_WRITE; |
|
c->Request.CDB[6] = BMIC_CACHE_FLUSH; |
|
c->Request.CDB[7] = (size >> 8) & 0xFF; |
|
c->Request.CDB[8] = size & 0xFF; |
|
break; |
|
case TEST_UNIT_READY: |
|
c->Request.CDBLen = 6; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); |
|
c->Request.Timeout = 0; |
|
break; |
|
case HPSA_GET_RAID_MAP: |
|
c->Request.CDBLen = 12; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = HPSA_CISS_READ; |
|
c->Request.CDB[1] = cmd; |
|
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
|
c->Request.CDB[7] = (size >> 16) & 0xFF; |
|
c->Request.CDB[8] = (size >> 8) & 0xFF; |
|
c->Request.CDB[9] = size & 0xFF; |
|
break; |
|
case BMIC_SENSE_CONTROLLER_PARAMETERS: |
|
c->Request.CDBLen = 10; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = BMIC_READ; |
|
c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; |
|
c->Request.CDB[7] = (size >> 16) & 0xFF; |
|
c->Request.CDB[8] = (size >> 8) & 0xFF; |
|
break; |
|
case BMIC_IDENTIFY_PHYSICAL_DEVICE: |
|
c->Request.CDBLen = 10; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = BMIC_READ; |
|
c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; |
|
c->Request.CDB[7] = (size >> 16) & 0xFF; |
|
c->Request.CDB[8] = (size >> 8) & 0XFF; |
|
break; |
|
case BMIC_SENSE_SUBSYSTEM_INFORMATION: |
|
c->Request.CDBLen = 10; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = BMIC_READ; |
|
c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; |
|
c->Request.CDB[7] = (size >> 16) & 0xFF; |
|
c->Request.CDB[8] = (size >> 8) & 0XFF; |
|
break; |
|
case BMIC_SENSE_STORAGE_BOX_PARAMS: |
|
c->Request.CDBLen = 10; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = BMIC_READ; |
|
c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; |
|
c->Request.CDB[7] = (size >> 16) & 0xFF; |
|
c->Request.CDB[8] = (size >> 8) & 0XFF; |
|
break; |
|
case BMIC_IDENTIFY_CONTROLLER: |
|
c->Request.CDBLen = 10; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); |
|
c->Request.Timeout = 0; |
|
c->Request.CDB[0] = BMIC_READ; |
|
c->Request.CDB[1] = 0; |
|
c->Request.CDB[2] = 0; |
|
c->Request.CDB[3] = 0; |
|
c->Request.CDB[4] = 0; |
|
c->Request.CDB[5] = 0; |
|
c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; |
|
c->Request.CDB[7] = (size >> 16) & 0xFF; |
|
c->Request.CDB[8] = (size >> 8) & 0XFF; |
|
c->Request.CDB[9] = 0; |
|
break; |
|
default: |
|
dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); |
|
BUG(); |
|
} |
|
} else if (cmd_type == TYPE_MSG) { |
|
switch (cmd) { |
|
|
|
case HPSA_PHYS_TARGET_RESET: |
|
c->Request.CDBLen = 16; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); |
|
c->Request.Timeout = 0; /* Don't time out */ |
|
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
|
c->Request.CDB[0] = HPSA_RESET; |
|
c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; |
|
/* Physical target reset needs no control bytes 4-7*/ |
|
c->Request.CDB[4] = 0x00; |
|
c->Request.CDB[5] = 0x00; |
|
c->Request.CDB[6] = 0x00; |
|
c->Request.CDB[7] = 0x00; |
|
break; |
|
case HPSA_DEVICE_RESET_MSG: |
|
c->Request.CDBLen = 16; |
|
c->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); |
|
c->Request.Timeout = 0; /* Don't time out */ |
|
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
|
c->Request.CDB[0] = cmd; |
|
c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; |
|
/* If bytes 4-7 are zero, it means reset the */ |
|
/* LunID device */ |
|
c->Request.CDB[4] = 0x00; |
|
c->Request.CDB[5] = 0x00; |
|
c->Request.CDB[6] = 0x00; |
|
c->Request.CDB[7] = 0x00; |
|
break; |
|
default: |
|
dev_warn(&h->pdev->dev, "unknown message type %d\n", |
|
cmd); |
|
BUG(); |
|
} |
|
} else { |
|
dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); |
|
BUG(); |
|
} |
|
|
|
switch (GET_DIR(c->Request.type_attr_dir)) { |
|
case XFER_READ: |
|
pci_dir = PCI_DMA_FROMDEVICE; |
|
break; |
|
case XFER_WRITE: |
|
pci_dir = PCI_DMA_TODEVICE; |
|
break; |
|
case XFER_NONE: |
|
pci_dir = PCI_DMA_NONE; |
|
break; |
|
default: |
|
pci_dir = PCI_DMA_BIDIRECTIONAL; |
|
} |
|
if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) |
|
return -1; |
|
return 0; |
|
} |
|
|
|
/* |
|
* Map (physical) PCI mem into (virtual) kernel space |
|
*/ |
|
static void __iomem *remap_pci_mem(ulong base, ulong size) |
|
{ |
|
ulong page_base = ((ulong) base) & PAGE_MASK; |
|
ulong page_offs = ((ulong) base) - page_base; |
|
void __iomem *page_remapped = ioremap_nocache(page_base, |
|
page_offs + size); |
|
|
|
return page_remapped ? (page_remapped + page_offs) : NULL; |
|
} |
|
|
|
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) |
|
{ |
|
return h->access.command_completed(h, q); |
|
} |
|
|
|
static inline bool interrupt_pending(struct ctlr_info *h) |
|
{ |
|
return h->access.intr_pending(h); |
|
} |
|
|
|
static inline long interrupt_not_for_us(struct ctlr_info *h) |
|
{ |
|
return (h->access.intr_pending(h) == 0) || |
|
(h->interrupts_enabled == 0); |
|
} |
|
|
|
static inline int bad_tag(struct ctlr_info *h, u32 tag_index, |
|
u32 raw_tag) |
|
{ |
|
if (unlikely(tag_index >= h->nr_cmds)) { |
|
dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
static inline void finish_cmd(struct CommandList *c) |
|
{ |
|
dial_up_lockup_detection_on_fw_flash_complete(c->h, c); |
|
if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI |
|
|| c->cmd_type == CMD_IOACCEL2)) |
|
complete_scsi_command(c); |
|
else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) |
|
complete(c->waiting); |
|
} |
|
|
|
/* process completion of an indexed ("direct lookup") command */ |
|
static inline void process_indexed_cmd(struct ctlr_info *h, |
|
u32 raw_tag) |
|
{ |
|
u32 tag_index; |
|
struct CommandList *c; |
|
|
|
tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; |
|
if (!bad_tag(h, tag_index, raw_tag)) { |
|
c = h->cmd_pool + tag_index; |
|
finish_cmd(c); |
|
} |
|
} |
|
|
|
/* Some controllers, like p400, will give us one interrupt |
|
* after a soft reset, even if we turned interrupts off. |
|
* Only need to check for this in the hpsa_xxx_discard_completions |
|
* functions. |
|
*/ |
|
static int ignore_bogus_interrupt(struct ctlr_info *h) |
|
{ |
|
if (likely(!reset_devices)) |
|
return 0; |
|
|
|
if (likely(h->interrupts_enabled)) |
|
return 0; |
|
|
|
dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " |
|
"(known firmware bug.) Ignoring.\n"); |
|
|
|
return 1; |
|
} |
|
|
|
/* |
|
* Convert &h->q[x] (passed to interrupt handlers) back to h. |
|
* Relies on (h-q[x] == x) being true for x such that |
|
* 0 <= x < MAX_REPLY_QUEUES. |
|
*/ |
|
static struct ctlr_info *queue_to_hba(u8 *queue) |
|
{ |
|
return container_of((queue - *queue), struct ctlr_info, q[0]); |
|
} |
|
|
|
static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) |
|
{ |
|
struct ctlr_info *h = queue_to_hba(queue); |
|
u8 q = *(u8 *) queue; |
|
u32 raw_tag; |
|
|
|
if (ignore_bogus_interrupt(h)) |
|
return IRQ_NONE; |
|
|
|
if (interrupt_not_for_us(h)) |
|
return IRQ_NONE; |
|
h->last_intr_timestamp = get_jiffies_64(); |
|
while (interrupt_pending(h)) { |
|
raw_tag = get_next_completion(h, q); |
|
while (raw_tag != FIFO_EMPTY) |
|
raw_tag = next_command(h, q); |
|
} |
|
return IRQ_HANDLED; |
|
} |
|
|
|
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) |
|
{ |
|
struct ctlr_info *h = queue_to_hba(queue); |
|
u32 raw_tag; |
|
u8 q = *(u8 *) queue; |
|
|
|
if (ignore_bogus_interrupt(h)) |
|
return IRQ_NONE; |
|
|
|
h->last_intr_timestamp = get_jiffies_64(); |
|
raw_tag = get_next_completion(h, q); |
|
while (raw_tag != FIFO_EMPTY) |
|
raw_tag = next_command(h, q); |
|
return IRQ_HANDLED; |
|
} |
|
|
|
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) |
|
{ |
|
struct ctlr_info *h = queue_to_hba((u8 *) queue); |
|
u32 raw_tag; |
|
u8 q = *(u8 *) queue; |
|
|
|
if (interrupt_not_for_us(h)) |
|
return IRQ_NONE; |
|
h->last_intr_timestamp = get_jiffies_64(); |
|
while (interrupt_pending(h)) { |
|
raw_tag = get_next_completion(h, q); |
|
while (raw_tag != FIFO_EMPTY) { |
|
process_indexed_cmd(h, raw_tag); |
|
raw_tag = next_command(h, q); |
|
} |
|
} |
|
return IRQ_HANDLED; |
|
} |
|
|
|
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) |
|
{ |
|
struct ctlr_info *h = queue_to_hba(queue); |
|
u32 raw_tag; |
|
u8 q = *(u8 *) queue; |
|
|
|
h->last_intr_timestamp = get_jiffies_64(); |
|
raw_tag = get_next_completion(h, q); |
|
while (raw_tag != FIFO_EMPTY) { |
|
process_indexed_cmd(h, raw_tag); |
|
raw_tag = next_command(h, q); |
|
} |
|
return IRQ_HANDLED; |
|
} |
|
|
|
/* Send a message CDB to the firmware. Careful, this only works |
|
* in simple mode, not performant mode due to the tag lookup. |
|
* We only ever use this immediately after a controller reset. |
|
*/ |
|
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, |
|
unsigned char type) |
|
{ |
|
struct Command { |
|
struct CommandListHeader CommandHeader; |
|
struct RequestBlock Request; |
|
struct ErrDescriptor ErrorDescriptor; |
|
}; |
|
struct Command *cmd; |
|
static const size_t cmd_sz = sizeof(*cmd) + |
|
sizeof(cmd->ErrorDescriptor); |
|
dma_addr_t paddr64; |
|
__le32 paddr32; |
|
u32 tag; |
|
void __iomem *vaddr; |
|
int i, err; |
|
|
|
vaddr = pci_ioremap_bar(pdev, 0); |
|
if (vaddr == NULL) |
|
return -ENOMEM; |
|
|
|
/* The Inbound Post Queue only accepts 32-bit physical addresses for the |
|
* CCISS commands, so they must be allocated from the lower 4GiB of |
|
* memory. |
|
*/ |
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
|
if (err) { |
|
iounmap(vaddr); |
|
return err; |
|
} |
|
|
|
cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); |
|
if (cmd == NULL) { |
|
iounmap(vaddr); |
|
return -ENOMEM; |
|
} |
|
|
|
/* This must fit, because of the 32-bit consistent DMA mask. Also, |
|
* although there's no guarantee, we assume that the address is at |
|
* least 4-byte aligned (most likely, it's page-aligned). |
|
*/ |
|
paddr32 = cpu_to_le32(paddr64); |
|
|
|
cmd->CommandHeader.ReplyQueue = 0; |
|
cmd->CommandHeader.SGList = 0; |
|
cmd->CommandHeader.SGTotal = cpu_to_le16(0); |
|
cmd->CommandHeader.tag = cpu_to_le64(paddr64); |
|
memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); |
|
|
|
cmd->Request.CDBLen = 16; |
|
cmd->Request.type_attr_dir = |
|
TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); |
|
cmd->Request.Timeout = 0; /* Don't time out */ |
|
cmd->Request.CDB[0] = opcode; |
|
cmd->Request.CDB[1] = type; |
|
memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ |
|
cmd->ErrorDescriptor.Addr = |
|
cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); |
|
cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); |
|
|
|
writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); |
|
|
|
for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { |
|
tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); |
|
if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) |
|
break; |
|
msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); |
|
} |
|
|
|
iounmap(vaddr); |
|
|
|
/* we leak the DMA buffer here ... no choice since the controller could |
|
* still complete the command. |
|
*/ |
|
if (i == HPSA_MSG_SEND_RETRY_LIMIT) { |
|
dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", |
|
opcode, type); |
|
return -ETIMEDOUT; |
|
} |
|
|
|
pci_free_consistent(pdev, cmd_sz, cmd, paddr64); |
|
|
|
if (tag & HPSA_ERROR_BIT) { |
|
dev_err(&pdev->dev, "controller message %02x:%02x failed\n", |
|
opcode, type); |
|
return -EIO; |
|
} |
|
|
|
dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", |
|
opcode, type); |
|
return 0; |
|
} |
|
|
|
#define hpsa_noop(p) hpsa_message(p, 3, 0) |
|
|
|
static int hpsa_controller_hard_reset(struct pci_dev *pdev, |
|
void __iomem *vaddr, u32 use_doorbell) |
|
{ |
|
|
|
if (use_doorbell) { |
|
/* For everything after the P600, the PCI power state method |
|
* of resetting the controller doesn't work, so we have this |
|
* other way using the doorbell register. |
|
*/ |
|
dev_info(&pdev->dev, "using doorbell to reset controller\n"); |
|
writel(use_doorbell, vaddr + SA5_DOORBELL); |
|
|
|
/* PMC hardware guys tell us we need a 10 second delay after |
|
* doorbell reset and before any attempt to talk to the board |
|
* at all to ensure that this actually works and doesn't fall |
|
* over in some weird corner cases. |
|
*/ |
|
msleep(10000); |
|
} else { /* Try to do it the PCI power state way */ |
|
|
|
/* Quoting from the Open CISS Specification: "The Power |
|
* Management Control/Status Register (CSR) controls the power |
|
* state of the device. The normal operating state is D0, |
|
* CSR=00h. The software off state is D3, CSR=03h. To reset |
|
* the controller, place the interface device in D3 then to D0, |
|
* this causes a secondary PCI reset which will reset the |
|
* controller." */ |
|
|
|
int rc = 0; |
|
|
|
dev_info(&pdev->dev, "using PCI PM to reset controller\n"); |
|
|
|
/* enter the D3hot power management state */ |
|
rc = pci_set_power_state(pdev, PCI_D3hot); |
|
if (rc) |
|
return rc; |
|
|
|
msleep(500); |
|
|
|
/* enter the D0 power management state */ |
|
rc = pci_set_power_state(pdev, PCI_D0); |
|
if (rc) |
|
return rc; |
|
|
|
/* |
|
* The P600 requires a small delay when changing states. |
|
* Otherwise we may think the board did not reset and we bail. |
|
* This for kdump only and is particular to the P600. |
|
*/ |
|
msleep(500); |
|
} |
|
return 0; |
|
} |
|
|
|
static void init_driver_version(char *driver_version, int len) |
|
{ |
|
memset(driver_version, 0, len); |
|
strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); |
|
} |
|
|
|
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) |
|
{ |
|
char *driver_version; |
|
int i, size = sizeof(cfgtable->driver_version); |
|
|
|
driver_version = kmalloc(size, GFP_KERNEL); |
|
if (!driver_version) |
|
return -ENOMEM; |
|
|
|
init_driver_version(driver_version, size); |
|
for (i = 0; i < size; i++) |
|
writeb(driver_version[i], &cfgtable->driver_version[i]); |
|
kfree(driver_version); |
|
return 0; |
|
} |
|
|
|
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, |
|
unsigned char *driver_ver) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < sizeof(cfgtable->driver_version); i++) |
|
driver_ver[i] = readb(&cfgtable->driver_version[i]); |
|
} |
|
|
|
static int controller_reset_failed(struct CfgTable __iomem *cfgtable) |
|
{ |
|
|
|
char *driver_ver, *old_driver_ver; |
|
int rc, size = sizeof(cfgtable->driver_version); |
|
|
|
old_driver_ver = kmalloc(2 * size, GFP_KERNEL); |
|
if (!old_driver_ver) |
|
return -ENOMEM; |
|
driver_ver = old_driver_ver + size; |
|
|
|
/* After a reset, the 32 bytes of "driver version" in the cfgtable |
|
* should have been changed, otherwise we know the reset failed. |
|
*/ |
|
init_driver_version(old_driver_ver, size); |
|
read_driver_ver_from_cfgtable(cfgtable, driver_ver); |
|
rc = !memcmp(driver_ver, old_driver_ver, size); |
|
kfree(old_driver_ver); |
|
return rc; |
|
} |
|
/* This does a hard reset of the controller using PCI power management |
|
* states or the using the doorbell register. |
|
*/ |
|
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) |
|
{ |
|
u64 cfg_offset; |
|
u32 cfg_base_addr; |
|
u64 cfg_base_addr_index; |
|
void __iomem *vaddr; |
|
unsigned long paddr; |
|
u32 misc_fw_support; |
|
int rc; |
|
struct CfgTable __iomem *cfgtable; |
|
u32 use_doorbell; |
|
u16 command_register; |
|
|
|
/* For controllers as old as the P600, this is very nearly |
|
* the same thing as |
|
* |
|
* pci_save_state(pci_dev); |
|
* pci_set_power_state(pci_dev, PCI_D3hot); |
|
* pci_set_power_state(pci_dev, PCI_D0); |
|
* pci_restore_state(pci_dev); |
|
* |
|
* For controllers newer than the P600, the pci power state |
|
* method of resetting doesn't work so we have another way |
|
* using the doorbell register. |
|
*/ |
|
|
|
if (!ctlr_is_resettable(board_id)) { |
|
dev_warn(&pdev->dev, "Controller not resettable\n"); |
|
return -ENODEV; |
|
} |
|
|
|
/* if controller is soft- but not hard resettable... */ |
|
if (!ctlr_is_hard_resettable(board_id)) |
|
return -ENOTSUPP; /* try soft reset later. */ |
|
|
|
/* Save the PCI command register */ |
|
pci_read_config_word(pdev, 4, &command_register); |
|
pci_save_state(pdev); |
|
|
|
/* find the first memory BAR, so we can find the cfg table */ |
|
rc = hpsa_pci_find_memory_BAR(pdev, &paddr); |
|
if (rc) |
|
return rc; |
|
vaddr = remap_pci_mem(paddr, 0x250); |
|
if (!vaddr) |
|
return -ENOMEM; |
|
|
|
/* find cfgtable in order to check if reset via doorbell is supported */ |
|
rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, |
|
&cfg_base_addr_index, &cfg_offset); |
|
if (rc) |
|
goto unmap_vaddr; |
|
cfgtable = remap_pci_mem(pci_resource_start(pdev, |
|
cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); |
|
if (!cfgtable) { |
|
rc = -ENOMEM; |
|
goto unmap_vaddr; |
|
} |
|
rc = write_driver_ver_to_cfgtable(cfgtable); |
|
if (rc) |
|
goto unmap_cfgtable; |
|
|
|
/* If reset via doorbell register is supported, use that. |
|
* There are two such methods. Favor the newest method. |
|
*/ |
|
misc_fw_support = readl(&cfgtable->misc_fw_support); |
|
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; |
|
if (use_doorbell) { |
|
use_doorbell = DOORBELL_CTLR_RESET2; |
|
} else { |
|
use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; |
|
if (use_doorbell) { |
|
dev_warn(&pdev->dev, |
|
"Soft reset not supported. Firmware update is required.\n"); |
|
rc = -ENOTSUPP; /* try soft reset */ |
|
goto unmap_cfgtable; |
|
} |
|
} |
|
|
|
rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); |
|
if (rc) |
|
goto unmap_cfgtable; |
|
|
|
pci_restore_state(pdev); |
|
pci_write_config_word(pdev, 4, command_register); |
|
|
|
/* Some devices (notably the HP Smart Array 5i Controller) |
|
need a little pause here */ |
|
msleep(HPSA_POST_RESET_PAUSE_MSECS); |
|
|
|
rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); |
|
if (rc) { |
|
dev_warn(&pdev->dev, |
|
"Failed waiting for board to become ready after hard reset\n"); |
|
goto unmap_cfgtable; |
|
} |
|
|
|
rc = controller_reset_failed(vaddr); |
|
if (rc < 0) |
|
goto unmap_cfgtable; |
|
if (rc) { |
|
dev_warn(&pdev->dev, "Unable to successfully reset " |
|
"controller. Will try soft reset.\n"); |
|
rc = -ENOTSUPP; |
|
} else { |
|
dev_info(&pdev->dev, "board ready after hard reset.\n"); |
|
} |
|
|
|
unmap_cfgtable: |
|
iounmap(cfgtable); |
|
|
|
unmap_vaddr: |
|
iounmap(vaddr); |
|
return rc; |
|
} |
|
|
|
/* |
|
* We cannot read the structure directly, for portability we must use |
|
* the io functions. |
|
* This is for debug only. |
|
*/ |
|
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) |
|
{ |
|
#ifdef HPSA_DEBUG |
|
int i; |
|
char temp_name[17]; |
|
|
|
dev_info(dev, "Controller Configuration information\n"); |
|
dev_info(dev, "------------------------------------\n"); |
|
for (i = 0; i < 4; i++) |
|
temp_name[i] = readb(&(tb->Signature[i])); |
|
temp_name[4] = '\0'; |
|
dev_info(dev, " Signature = %s\n", temp_name); |
|
dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); |
|
dev_info(dev, " Transport methods supported = 0x%x\n", |
|
readl(&(tb->TransportSupport))); |
|
dev_info(dev, " Transport methods active = 0x%x\n", |
|
readl(&(tb->TransportActive))); |
|
dev_info(dev, " Requested transport Method = 0x%x\n", |
|
readl(&(tb->HostWrite.TransportRequest))); |
|
dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", |
|
readl(&(tb->HostWrite.CoalIntDelay))); |
|
dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", |
|
readl(&(tb->HostWrite.CoalIntCount))); |
|
dev_info(dev, " Max outstanding commands = %d\n", |
|
readl(&(tb->CmdsOutMax))); |
|
dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); |
|
for (i = 0; i < 16; i++) |
|
temp_name[i] = readb(&(tb->ServerName[i])); |
|
temp_name[16] = '\0'; |
|
dev_info(dev, " Server Name = %s\n", temp_name); |
|
dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", |
|
readl(&(tb->HeartBeat))); |
|
#endif /* HPSA_DEBUG */ |
|
} |
|
|
|
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) |
|
{ |
|
int i, offset, mem_type, bar_type; |
|
|
|
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ |
|
return 0; |
|
offset = 0; |
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
|
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; |
|
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) |
|
offset += 4; |
|
else { |
|
mem_type = pci_resource_flags(pdev, i) & |
|
PCI_BASE_ADDRESS_MEM_TYPE_MASK; |
|
switch (mem_type) { |
|
case PCI_BASE_ADDRESS_MEM_TYPE_32: |
|
case PCI_BASE_ADDRESS_MEM_TYPE_1M: |
|
offset += 4; /* 32 bit */ |
|
break; |
|
case PCI_BASE_ADDRESS_MEM_TYPE_64: |
|
offset += 8; |
|
break; |
|
default: /* reserved in PCI 2.2 */ |
|
dev_warn(&pdev->dev, |
|
"base address is invalid\n"); |
|
return -1; |
|
break; |
|
} |
|
} |
|
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) |
|
return i + 1; |
|
} |
|
return -1; |
|
} |
|
|
|
static void hpsa_disable_interrupt_mode(struct ctlr_info *h) |
|
{ |
|
pci_free_irq_vectors(h->pdev); |
|
h->msix_vectors = 0; |
|
} |
|
|
|
static void hpsa_setup_reply_map(struct ctlr_info *h) |
|
{ |
|
const struct cpumask *mask; |
|
unsigned int queue, cpu; |
|
|
|
for (queue = 0; queue < h->msix_vectors; queue++) { |
|
mask = pci_irq_get_affinity(h->pdev, queue); |
|
if (!mask) |
|
goto fallback; |
|
|
|
for_each_cpu(cpu, mask) |
|
h->reply_map[cpu] = queue; |
|
} |
|
return; |
|
|
|
fallback: |
|
for_each_possible_cpu(cpu) |
|
h->reply_map[cpu] = 0; |
|
} |
|
|
|
/* If MSI/MSI-X is supported by the kernel we will try to enable it on |
|
* controllers that are capable. If not, we use legacy INTx mode. |
|
*/ |
|
static int hpsa_interrupt_mode(struct ctlr_info *h) |
|
{ |
|
unsigned int flags = PCI_IRQ_LEGACY; |
|
int ret; |
|
|
|
/* Some boards advertise MSI but don't really support it */ |
|
switch (h->board_id) { |
|
case 0x40700E11: |
|
case 0x40800E11: |
|
case 0x40820E11: |
|
case 0x40830E11: |
|
break; |
|
default: |
|
ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES, |
|
PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); |
|
if (ret > 0) { |
|
h->msix_vectors = ret; |
|
return 0; |
|
} |
|
|
|
flags |= PCI_IRQ_MSI; |
|
break; |
|
} |
|
|
|
ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags); |
|
if (ret < 0) |
|
return ret; |
|
return 0; |
|
} |
|
|
|
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, |
|
bool *legacy_board) |
|
{ |
|
int i; |
|
u32 subsystem_vendor_id, subsystem_device_id; |
|
|
|
subsystem_vendor_id = pdev->subsystem_vendor; |
|
subsystem_device_id = pdev->subsystem_device; |
|
*board_id = ((subsystem_device_id << 16) & 0xffff0000) | |
|
subsystem_vendor_id; |
|
|
|
if (legacy_board) |
|
*legacy_board = false; |
|
for (i = 0; i < ARRAY_SIZE(products); i++) |
|
if (*board_id == products[i].board_id) { |
|
if (products[i].access != &SA5A_access && |
|
products[i].access != &SA5B_access) |
|
return i; |
|
dev_warn(&pdev->dev, |
|
"legacy board ID: 0x%08x\n", |
|
*board_id); |
|
if (legacy_board) |
|
*legacy_board = true; |
|
return i; |
|
} |
|
|
|
dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id); |
|
if (legacy_board) |
|
*legacy_board = true; |
|
return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ |
|
} |
|
|
|
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, |
|
unsigned long *memory_bar) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) |
|
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { |
|
/* addressing mode bits already removed */ |
|
*memory_bar = pci_resource_start(pdev, i); |
|
dev_dbg(&pdev->dev, "memory BAR = %lx\n", |
|
*memory_bar); |
|
return 0; |
|
} |
|
dev_warn(&pdev->dev, "no memory BAR found\n"); |
|
return -ENODEV; |
|
} |
|
|
|
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, |
|
int wait_for_ready) |
|
{ |
|
int i, iterations; |
|
u32 scratchpad; |
|
if (wait_for_ready) |
|
iterations = HPSA_BOARD_READY_ITERATIONS; |
|
else |
|
iterations = HPSA_BOARD_NOT_READY_ITERATIONS; |
|
|
|
for (i = 0; i < iterations; i++) { |
|
scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); |
|
if (wait_for_ready) { |
|
if (scratchpad == HPSA_FIRMWARE_READY) |
|
return 0; |
|
} else { |
|
if (scratchpad != HPSA_FIRMWARE_READY) |
|
return 0; |
|
} |
|
msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); |
|
} |
|
dev_warn(&pdev->dev, "board not ready, timed out.\n"); |
|
return -ENODEV; |
|
} |
|
|
|
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, |
|
u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
|
u64 *cfg_offset) |
|
{ |
|
*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); |
|
*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); |
|
*cfg_base_addr &= (u32) 0x0000ffff; |
|
*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); |
|
if (*cfg_base_addr_index == -1) { |
|
dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); |
|
return -ENODEV; |
|
} |
|
return 0; |
|
} |
|
|
|
static void hpsa_free_cfgtables(struct ctlr_info *h) |
|
{ |
|
if (h->transtable) { |
|
iounmap(h->transtable); |
|
h->transtable = NULL; |
|
} |
|
if (h->cfgtable) { |
|
iounmap(h->cfgtable); |
|
h->cfgtable = NULL; |
|
} |
|
} |
|
|
|
/* Find and map CISS config table and transfer table |
|
+ * several items must be unmapped (freed) later |
|
+ * */ |
|
static int hpsa_find_cfgtables(struct ctlr_info *h) |
|
{ |
|
u64 cfg_offset; |
|
u32 cfg_base_addr; |
|
u64 cfg_base_addr_index; |
|
u32 trans_offset; |
|
int rc; |
|
|
|
rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, |
|
&cfg_base_addr_index, &cfg_offset); |
|
if (rc) |
|
return rc; |
|
h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, |
|
cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); |
|
if (!h->cfgtable) { |
|
dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); |
|
return -ENOMEM; |
|
} |
|
rc = write_driver_ver_to_cfgtable(h->cfgtable); |
|
if (rc) |
|
return rc; |
|
/* Find performant mode table. */ |
|
trans_offset = readl(&h->cfgtable->TransMethodOffset); |
|
h->transtable = remap_pci_mem(pci_resource_start(h->pdev, |
|
cfg_base_addr_index)+cfg_offset+trans_offset, |
|
sizeof(*h->transtable)); |
|
if (!h->transtable) { |
|
dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); |
|
hpsa_free_cfgtables(h); |
|
return -ENOMEM; |
|
} |
|
return 0; |
|
} |
|
|
|
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) |
|
{ |
|
#define MIN_MAX_COMMANDS 16 |
|
BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); |
|
|
|
h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); |
|
|
|
/* Limit commands in memory limited kdump scenario. */ |
|
if (reset_devices && h->max_commands > 32) |
|
h->max_commands = 32; |
|
|
|
if (h->max_commands < MIN_MAX_COMMANDS) { |
|
dev_warn(&h->pdev->dev, |
|
"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", |
|
h->max_commands, |
|
MIN_MAX_COMMANDS); |
|
h->max_commands = MIN_MAX_COMMANDS; |
|
} |
|
} |
|
|
|
/* If the controller reports that the total max sg entries is greater than 512, |
|
* then we know that chained SG blocks work. (Original smart arrays did not |
|
* support chained SG blocks and would return zero for max sg entries.) |
|
*/ |
|
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) |
|
{ |
|
return h->maxsgentries > 512; |
|
} |
|
|
|
/* Interrogate the hardware for some limits: |
|
* max commands, max SG elements without chaining, and with chaining, |
|
* SG chain block size, etc. |
|
*/ |
|
static void hpsa_find_board_params(struct ctlr_info *h) |
|
{ |
|
hpsa_get_max_perf_mode_cmds(h); |
|
h->nr_cmds = h->max_commands; |
|
h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); |
|
h->fw_support = readl(&(h->cfgtable->misc_fw_support)); |
|
if (hpsa_supports_chained_sg_blocks(h)) { |
|
/* Limit in-command s/g elements to 32 save dma'able memory. */ |
|
h->max_cmd_sg_entries = 32; |
|
h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; |
|
h->maxsgentries--; /* save one for chain pointer */ |
|
} else { |
|
/* |
|
* Original smart arrays supported at most 31 s/g entries |
|
* embedded inline in the command (trying to use more |
|
* would lock up the controller) |
|
*/ |
|
h->max_cmd_sg_entries = 31; |
|
h->maxsgentries = 31; /* default to traditional values */ |
|
h->chainsize = 0; |
|
} |
|
|
|
/* Find out what task management functions are supported and cache */ |
|
h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); |
|
if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) |
|
dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); |
|
if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) |
|
dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); |
|
if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) |
|
dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); |
|
} |
|
|
|
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) |
|
{ |
|
if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { |
|
dev_err(&h->pdev->dev, "not a valid CISS config table\n"); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) |
|
{ |
|
u32 driver_support; |
|
|
|
driver_support = readl(&(h->cfgtable->driver_support)); |
|
/* Need to enable prefetch in the SCSI core for 6400 in x86 */ |
|
#ifdef CONFIG_X86 |
|
driver_support |= ENABLE_SCSI_PREFETCH; |
|
#endif |
|
driver_support |= ENABLE_UNIT_ATTN; |
|
writel(driver_support, &(h->cfgtable->driver_support)); |
|
} |
|
|
|
/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result |
|
* in a prefetch beyond physical memory. |
|
*/ |
|
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) |
|
{ |
|
u32 dma_prefetch; |
|
|
|
if (h->board_id != 0x3225103C) |
|
return; |
|
dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); |
|
dma_prefetch |= 0x8000; |
|
writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); |
|
} |
|
|
|
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) |
|
{ |
|
int i; |
|
u32 doorbell_value; |
|
unsigned long flags; |
|
/* wait until the clear_event_notify bit 6 is cleared by controller. */ |
|
for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { |
|
spin_lock_irqsave(&h->lock, flags); |
|
doorbell_value = readl(h->vaddr + SA5_DOORBELL); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) |
|
goto done; |
|
/* delay and try again */ |
|
msleep(CLEAR_EVENT_WAIT_INTERVAL); |
|
} |
|
return -ENODEV; |
|
done: |
|
return 0; |
|
} |
|
|
|
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) |
|
{ |
|
int i; |
|
u32 doorbell_value; |
|
unsigned long flags; |
|
|
|
/* under certain very rare conditions, this can take awhile. |
|
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right |
|
* as we enter this code.) |
|
*/ |
|
for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { |
|
if (h->remove_in_progress) |
|
goto done; |
|
spin_lock_irqsave(&h->lock, flags); |
|
doorbell_value = readl(h->vaddr + SA5_DOORBELL); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
if (!(doorbell_value & CFGTBL_ChangeReq)) |
|
goto done; |
|
/* delay and try again */ |
|
msleep(MODE_CHANGE_WAIT_INTERVAL); |
|
} |
|
return -ENODEV; |
|
done: |
|
return 0; |
|
} |
|
|
|
/* return -ENODEV or other reason on error, 0 on success */ |
|
static int hpsa_enter_simple_mode(struct ctlr_info *h) |
|
{ |
|
u32 trans_support; |
|
|
|
trans_support = readl(&(h->cfgtable->TransportSupport)); |
|
if (!(trans_support & SIMPLE_MODE)) |
|
return -ENOTSUPP; |
|
|
|
h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); |
|
|
|
/* Update the field, and then ring the doorbell */ |
|
writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); |
|
writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); |
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
|
if (hpsa_wait_for_mode_change_ack(h)) |
|
goto error; |
|
print_cfg_table(&h->pdev->dev, h->cfgtable); |
|
if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) |
|
goto error; |
|
h->transMethod = CFGTBL_Trans_Simple; |
|
return 0; |
|
error: |
|
dev_err(&h->pdev->dev, "failed to enter simple mode\n"); |
|
return -ENODEV; |
|
} |
|
|
|
/* free items allocated or mapped by hpsa_pci_init */ |
|
static void hpsa_free_pci_init(struct ctlr_info *h) |
|
{ |
|
hpsa_free_cfgtables(h); /* pci_init 4 */ |
|
iounmap(h->vaddr); /* pci_init 3 */ |
|
h->vaddr = NULL; |
|
hpsa_disable_interrupt_mode(h); /* pci_init 2 */ |
|
/* |
|
* call pci_disable_device before pci_release_regions per |
|
* Documentation/PCI/pci.txt |
|
*/ |
|
pci_disable_device(h->pdev); /* pci_init 1 */ |
|
pci_release_regions(h->pdev); /* pci_init 2 */ |
|
} |
|
|
|
/* several items must be freed later */ |
|
static int hpsa_pci_init(struct ctlr_info *h) |
|
{ |
|
int prod_index, err; |
|
bool legacy_board; |
|
|
|
prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board); |
|
if (prod_index < 0) |
|
return prod_index; |
|
h->product_name = products[prod_index].product_name; |
|
h->access = *(products[prod_index].access); |
|
h->legacy_board = legacy_board; |
|
pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | |
|
PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); |
|
|
|
err = pci_enable_device(h->pdev); |
|
if (err) { |
|
dev_err(&h->pdev->dev, "failed to enable PCI device\n"); |
|
pci_disable_device(h->pdev); |
|
return err; |
|
} |
|
|
|
err = pci_request_regions(h->pdev, HPSA); |
|
if (err) { |
|
dev_err(&h->pdev->dev, |
|
"failed to obtain PCI resources\n"); |
|
pci_disable_device(h->pdev); |
|
return err; |
|
} |
|
|
|
pci_set_master(h->pdev); |
|
|
|
err = hpsa_interrupt_mode(h); |
|
if (err) |
|
goto clean1; |
|
|
|
/* setup mapping between CPU and reply queue */ |
|
hpsa_setup_reply_map(h); |
|
|
|
err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); |
|
if (err) |
|
goto clean2; /* intmode+region, pci */ |
|
h->vaddr = remap_pci_mem(h->paddr, 0x250); |
|
if (!h->vaddr) { |
|
dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); |
|
err = -ENOMEM; |
|
goto clean2; /* intmode+region, pci */ |
|
} |
|
err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); |
|
if (err) |
|
goto clean3; /* vaddr, intmode+region, pci */ |
|
err = hpsa_find_cfgtables(h); |
|
if (err) |
|
goto clean3; /* vaddr, intmode+region, pci */ |
|
hpsa_find_board_params(h); |
|
|
|
if (!hpsa_CISS_signature_present(h)) { |
|
err = -ENODEV; |
|
goto clean4; /* cfgtables, vaddr, intmode+region, pci */ |
|
} |
|
hpsa_set_driver_support_bits(h); |
|
hpsa_p600_dma_prefetch_quirk(h); |
|
err = hpsa_enter_simple_mode(h); |
|
if (err) |
|
goto clean4; /* cfgtables, vaddr, intmode+region, pci */ |
|
return 0; |
|
|
|
clean4: /* cfgtables, vaddr, intmode+region, pci */ |
|
hpsa_free_cfgtables(h); |
|
clean3: /* vaddr, intmode+region, pci */ |
|
iounmap(h->vaddr); |
|
h->vaddr = NULL; |
|
clean2: /* intmode+region, pci */ |
|
hpsa_disable_interrupt_mode(h); |
|
clean1: |
|
/* |
|
* call pci_disable_device before pci_release_regions per |
|
* Documentation/PCI/pci.txt |
|
*/ |
|
pci_disable_device(h->pdev); |
|
pci_release_regions(h->pdev); |
|
return err; |
|
} |
|
|
|
static void hpsa_hba_inquiry(struct ctlr_info *h) |
|
{ |
|
int rc; |
|
|
|
#define HBA_INQUIRY_BYTE_COUNT 64 |
|
h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); |
|
if (!h->hba_inquiry_data) |
|
return; |
|
rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, |
|
h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); |
|
if (rc != 0) { |
|
kfree(h->hba_inquiry_data); |
|
h->hba_inquiry_data = NULL; |
|
} |
|
} |
|
|
|
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) |
|
{ |
|
int rc, i; |
|
void __iomem *vaddr; |
|
|
|
if (!reset_devices) |
|
return 0; |
|
|
|
/* kdump kernel is loading, we don't know in which state is |
|
* the pci interface. The dev->enable_cnt is equal zero |
|
* so we call enable+disable, wait a while and switch it on. |
|
*/ |
|
rc = pci_enable_device(pdev); |
|
if (rc) { |
|
dev_warn(&pdev->dev, "Failed to enable PCI device\n"); |
|
return -ENODEV; |
|
} |
|
pci_disable_device(pdev); |
|
msleep(260); /* a randomly chosen number */ |
|
rc = pci_enable_device(pdev); |
|
if (rc) { |
|
dev_warn(&pdev->dev, "failed to enable device.\n"); |
|
return -ENODEV; |
|
} |
|
|
|
pci_set_master(pdev); |
|
|
|
vaddr = pci_ioremap_bar(pdev, 0); |
|
if (vaddr == NULL) { |
|
rc = -ENOMEM; |
|
goto out_disable; |
|
} |
|
writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); |
|
iounmap(vaddr); |
|
|
|
/* Reset the controller with a PCI power-cycle or via doorbell */ |
|
rc = hpsa_kdump_hard_reset_controller(pdev, board_id); |
|
|
|
/* -ENOTSUPP here means we cannot reset the controller |
|
* but it's already (and still) up and running in |
|
* "performant mode". Or, it might be 640x, which can't reset |
|
* due to concerns about shared bbwc between 6402/6404 pair. |
|
*/ |
|
if (rc) |
|
goto out_disable; |
|
|
|
/* Now try to get the controller to respond to a no-op */ |
|
dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); |
|
for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { |
|
if (hpsa_noop(pdev) == 0) |
|
break; |
|
else |
|
dev_warn(&pdev->dev, "no-op failed%s\n", |
|
(i < 11 ? "; re-trying" : "")); |
|
} |
|
|
|
out_disable: |
|
|
|
pci_disable_device(pdev); |
|
return rc; |
|
} |
|
|
|
static void hpsa_free_cmd_pool(struct ctlr_info *h) |
|
{ |
|
kfree(h->cmd_pool_bits); |
|
h->cmd_pool_bits = NULL; |
|
if (h->cmd_pool) { |
|
pci_free_consistent(h->pdev, |
|
h->nr_cmds * sizeof(struct CommandList), |
|
h->cmd_pool, |
|
h->cmd_pool_dhandle); |
|
h->cmd_pool = NULL; |
|
h->cmd_pool_dhandle = 0; |
|
} |
|
if (h->errinfo_pool) { |
|
pci_free_consistent(h->pdev, |
|
h->nr_cmds * sizeof(struct ErrorInfo), |
|
h->errinfo_pool, |
|
h->errinfo_pool_dhandle); |
|
h->errinfo_pool = NULL; |
|
h->errinfo_pool_dhandle = 0; |
|
} |
|
} |
|
|
|
static int hpsa_alloc_cmd_pool(struct ctlr_info *h) |
|
{ |
|
h->cmd_pool_bits = kzalloc( |
|
DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * |
|
sizeof(unsigned long), GFP_KERNEL); |
|
h->cmd_pool = pci_alloc_consistent(h->pdev, |
|
h->nr_cmds * sizeof(*h->cmd_pool), |
|
&(h->cmd_pool_dhandle)); |
|
h->errinfo_pool = pci_alloc_consistent(h->pdev, |
|
h->nr_cmds * sizeof(*h->errinfo_pool), |
|
&(h->errinfo_pool_dhandle)); |
|
if ((h->cmd_pool_bits == NULL) |
|
|| (h->cmd_pool == NULL) |
|
|| (h->errinfo_pool == NULL)) { |
|
dev_err(&h->pdev->dev, "out of memory in %s", __func__); |
|
goto clean_up; |
|
} |
|
hpsa_preinitialize_commands(h); |
|
return 0; |
|
clean_up: |
|
hpsa_free_cmd_pool(h); |
|
return -ENOMEM; |
|
} |
|
|
|
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ |
|
static void hpsa_free_irqs(struct ctlr_info *h) |
|
{ |
|
int i; |
|
|
|
if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) { |
|
/* Single reply queue, only one irq to free */ |
|
free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]); |
|
h->q[h->intr_mode] = 0; |
|
return; |
|
} |
|
|
|
for (i = 0; i < h->msix_vectors; i++) { |
|
free_irq(pci_irq_vector(h->pdev, i), &h->q[i]); |
|
h->q[i] = 0; |
|
} |
|
for (; i < MAX_REPLY_QUEUES; i++) |
|
h->q[i] = 0; |
|
} |
|
|
|
/* returns 0 on success; cleans up and returns -Enn on error */ |
|
static int hpsa_request_irqs(struct ctlr_info *h, |
|
irqreturn_t (*msixhandler)(int, void *), |
|
irqreturn_t (*intxhandler)(int, void *)) |
|
{ |
|
int rc, i; |
|
|
|
/* |
|
* initialize h->q[x] = x so that interrupt handlers know which |
|
* queue to process. |
|
*/ |
|
for (i = 0; i < MAX_REPLY_QUEUES; i++) |
|
h->q[i] = (u8) i; |
|
|
|
if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) { |
|
/* If performant mode and MSI-X, use multiple reply queues */ |
|
for (i = 0; i < h->msix_vectors; i++) { |
|
sprintf(h->intrname[i], "%s-msix%d", h->devname, i); |
|
rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler, |
|
0, h->intrname[i], |
|
&h->q[i]); |
|
if (rc) { |
|
int j; |
|
|
|
dev_err(&h->pdev->dev, |
|
"failed to get irq %d for %s\n", |
|
pci_irq_vector(h->pdev, i), h->devname); |
|
for (j = 0; j < i; j++) { |
|
free_irq(pci_irq_vector(h->pdev, j), &h->q[j]); |
|
h->q[j] = 0; |
|
} |
|
for (; j < MAX_REPLY_QUEUES; j++) |
|
h->q[j] = 0; |
|
return rc; |
|
} |
|
} |
|
} else { |
|
/* Use single reply pool */ |
|
if (h->msix_vectors > 0 || h->pdev->msi_enabled) { |
|
sprintf(h->intrname[0], "%s-msi%s", h->devname, |
|
h->msix_vectors ? "x" : ""); |
|
rc = request_irq(pci_irq_vector(h->pdev, 0), |
|
msixhandler, 0, |
|
h->intrname[0], |
|
&h->q[h->intr_mode]); |
|
} else { |
|
sprintf(h->intrname[h->intr_mode], |
|
"%s-intx", h->devname); |
|
rc = request_irq(pci_irq_vector(h->pdev, 0), |
|
intxhandler, IRQF_SHARED, |
|
h->intrname[0], |
|
&h->q[h->intr_mode]); |
|
} |
|
} |
|
if (rc) { |
|
dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", |
|
pci_irq_vector(h->pdev, 0), h->devname); |
|
hpsa_free_irqs(h); |
|
return -ENODEV; |
|
} |
|
return 0; |
|
} |
|
|
|
static int hpsa_kdump_soft_reset(struct ctlr_info *h) |
|
{ |
|
int rc; |
|
hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER); |
|
|
|
dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); |
|
rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); |
|
if (rc) { |
|
dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); |
|
return rc; |
|
} |
|
|
|
dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); |
|
rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); |
|
if (rc) { |
|
dev_warn(&h->pdev->dev, "Board failed to become ready " |
|
"after soft reset.\n"); |
|
return rc; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void hpsa_free_reply_queues(struct ctlr_info *h) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < h->nreply_queues; i++) { |
|
if (!h->reply_queue[i].head) |
|
continue; |
|
pci_free_consistent(h->pdev, |
|
h->reply_queue_size, |
|
h->reply_queue[i].head, |
|
h->reply_queue[i].busaddr); |
|
h->reply_queue[i].head = NULL; |
|
h->reply_queue[i].busaddr = 0; |
|
} |
|
h->reply_queue_size = 0; |
|
} |
|
|
|
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) |
|
{ |
|
hpsa_free_performant_mode(h); /* init_one 7 */ |
|
hpsa_free_sg_chain_blocks(h); /* init_one 6 */ |
|
hpsa_free_cmd_pool(h); /* init_one 5 */ |
|
hpsa_free_irqs(h); /* init_one 4 */ |
|
scsi_host_put(h->scsi_host); /* init_one 3 */ |
|
h->scsi_host = NULL; /* init_one 3 */ |
|
hpsa_free_pci_init(h); /* init_one 2_5 */ |
|
free_percpu(h->lockup_detected); /* init_one 2 */ |
|
h->lockup_detected = NULL; /* init_one 2 */ |
|
if (h->resubmit_wq) { |
|
destroy_workqueue(h->resubmit_wq); /* init_one 1 */ |
|
h->resubmit_wq = NULL; |
|
} |
|
if (h->rescan_ctlr_wq) { |
|
destroy_workqueue(h->rescan_ctlr_wq); |
|
h->rescan_ctlr_wq = NULL; |
|
} |
|
kfree(h); /* init_one 1 */ |
|
} |
|
|
|
/* Called when controller lockup detected. */ |
|
static void fail_all_outstanding_cmds(struct ctlr_info *h) |
|
{ |
|
int i, refcount; |
|
struct CommandList *c; |
|
int failcount = 0; |
|
|
|
flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ |
|
for (i = 0; i < h->nr_cmds; i++) { |
|
c = h->cmd_pool + i; |
|
refcount = atomic_inc_return(&c->refcount); |
|
if (refcount > 1) { |
|
c->err_info->CommandStatus = CMD_CTLR_LOCKUP; |
|
finish_cmd(c); |
|
atomic_dec(&h->commands_outstanding); |
|
failcount++; |
|
} |
|
cmd_free(h, c); |
|
} |
|
dev_warn(&h->pdev->dev, |
|
"failed %d commands in fail_all\n", failcount); |
|
} |
|
|
|
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) |
|
{ |
|
int cpu; |
|
|
|
for_each_online_cpu(cpu) { |
|
u32 *lockup_detected; |
|
lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); |
|
*lockup_detected = value; |
|
} |
|
wmb(); /* be sure the per-cpu variables are out to memory */ |
|
} |
|
|
|
static void controller_lockup_detected(struct ctlr_info *h) |
|
{ |
|
unsigned long flags; |
|
u32 lockup_detected; |
|
|
|
h->access.set_intr_mask(h, HPSA_INTR_OFF); |
|
spin_lock_irqsave(&h->lock, flags); |
|
lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); |
|
if (!lockup_detected) { |
|
/* no heartbeat, but controller gave us a zero. */ |
|
dev_warn(&h->pdev->dev, |
|
"lockup detected after %d but scratchpad register is zero\n", |
|
h->heartbeat_sample_interval / HZ); |
|
lockup_detected = 0xffffffff; |
|
} |
|
set_lockup_detected_for_all_cpus(h, lockup_detected); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", |
|
lockup_detected, h->heartbeat_sample_interval / HZ); |
|
if (lockup_detected == 0xffff0000) { |
|
dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n"); |
|
writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL); |
|
} |
|
pci_disable_device(h->pdev); |
|
fail_all_outstanding_cmds(h); |
|
} |
|
|
|
static int detect_controller_lockup(struct ctlr_info *h) |
|
{ |
|
u64 now; |
|
u32 heartbeat; |
|
unsigned long flags; |
|
|
|
now = get_jiffies_64(); |
|
/* If we've received an interrupt recently, we're ok. */ |
|
if (time_after64(h->last_intr_timestamp + |
|
(h->heartbeat_sample_interval), now)) |
|
return false; |
|
|
|
/* |
|
* If we've already checked the heartbeat recently, we're ok. |
|
* This could happen if someone sends us a signal. We |
|
* otherwise don't care about signals in this thread. |
|
*/ |
|
if (time_after64(h->last_heartbeat_timestamp + |
|
(h->heartbeat_sample_interval), now)) |
|
return false; |
|
|
|
/* If heartbeat has not changed since we last looked, we're not ok. */ |
|
spin_lock_irqsave(&h->lock, flags); |
|
heartbeat = readl(&h->cfgtable->HeartBeat); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
if (h->last_heartbeat == heartbeat) { |
|
controller_lockup_detected(h); |
|
return true; |
|
} |
|
|
|
/* We're ok. */ |
|
h->last_heartbeat = heartbeat; |
|
h->last_heartbeat_timestamp = now; |
|
return false; |
|
} |
|
|
|
/* |
|
* Set ioaccel status for all ioaccel volumes. |
|
* |
|
* Called from monitor controller worker (hpsa_event_monitor_worker) |
|
* |
|
* A Volume (or Volumes that comprise an Array set may be undergoing a |
|
* transformation, so we will be turning off ioaccel for all volumes that |
|
* make up the Array. |
|
*/ |
|
static void hpsa_set_ioaccel_status(struct ctlr_info *h) |
|
{ |
|
int rc; |
|
int i; |
|
u8 ioaccel_status; |
|
unsigned char *buf; |
|
struct hpsa_scsi_dev_t *device; |
|
|
|
if (!h) |
|
return; |
|
|
|
buf = kmalloc(64, GFP_KERNEL); |
|
if (!buf) |
|
return; |
|
|
|
/* |
|
* Run through current device list used during I/O requests. |
|
*/ |
|
for (i = 0; i < h->ndevices; i++) { |
|
device = h->dev[i]; |
|
|
|
if (!device) |
|
continue; |
|
if (!hpsa_vpd_page_supported(h, device->scsi3addr, |
|
HPSA_VPD_LV_IOACCEL_STATUS)) |
|
continue; |
|
|
|
memset(buf, 0, 64); |
|
|
|
rc = hpsa_scsi_do_inquiry(h, device->scsi3addr, |
|
VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, |
|
buf, 64); |
|
if (rc != 0) |
|
continue; |
|
|
|
ioaccel_status = buf[IOACCEL_STATUS_BYTE]; |
|
device->offload_config = |
|
!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); |
|
if (device->offload_config) |
|
device->offload_to_be_enabled = |
|
!!(ioaccel_status & OFFLOAD_ENABLED_BIT); |
|
|
|
/* |
|
* Immediately turn off ioaccel for any volume the |
|
* controller tells us to. Some of the reasons could be: |
|
* transformation - change to the LVs of an Array. |
|
* degraded volume - component failure |
|
* |
|
* If ioaccel is to be re-enabled, re-enable later during the |
|
* scan operation so the driver can get a fresh raidmap |
|
* before turning ioaccel back on. |
|
* |
|
*/ |
|
if (!device->offload_to_be_enabled) |
|
device->offload_enabled = 0; |
|
} |
|
|
|
kfree(buf); |
|
} |
|
|
|
static void hpsa_ack_ctlr_events(struct ctlr_info *h) |
|
{ |
|
char *event_type; |
|
|
|
if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) |
|
return; |
|
|
|
/* Ask the controller to clear the events we're handling. */ |
|
if ((h->transMethod & (CFGTBL_Trans_io_accel1 |
|
| CFGTBL_Trans_io_accel2)) && |
|
(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || |
|
h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { |
|
|
|
if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) |
|
event_type = "state change"; |
|
if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) |
|
event_type = "configuration change"; |
|
/* Stop sending new RAID offload reqs via the IO accelerator */ |
|
scsi_block_requests(h->scsi_host); |
|
hpsa_set_ioaccel_status(h); |
|
hpsa_drain_accel_commands(h); |
|
/* Set 'accelerator path config change' bit */ |
|
dev_warn(&h->pdev->dev, |
|
"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", |
|
h->events, event_type); |
|
writel(h->events, &(h->cfgtable->clear_event_notify)); |
|
/* Set the "clear event notify field update" bit 6 */ |
|
writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); |
|
/* Wait until ctlr clears 'clear event notify field', bit 6 */ |
|
hpsa_wait_for_clear_event_notify_ack(h); |
|
scsi_unblock_requests(h->scsi_host); |
|
} else { |
|
/* Acknowledge controller notification events. */ |
|
writel(h->events, &(h->cfgtable->clear_event_notify)); |
|
writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); |
|
hpsa_wait_for_clear_event_notify_ack(h); |
|
} |
|
return; |
|
} |
|
|
|
/* Check a register on the controller to see if there are configuration |
|
* changes (added/changed/removed logical drives, etc.) which mean that |
|
* we should rescan the controller for devices. |
|
* Also check flag for driver-initiated rescan. |
|
*/ |
|
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) |
|
{ |
|
if (h->drv_req_rescan) { |
|
h->drv_req_rescan = 0; |
|
return 1; |
|
} |
|
|
|
if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) |
|
return 0; |
|
|
|
h->events = readl(&(h->cfgtable->event_notify)); |
|
return h->events & RESCAN_REQUIRED_EVENT_BITS; |
|
} |
|
|
|
/* |
|
* Check if any of the offline devices have become ready |
|
*/ |
|
static int hpsa_offline_devices_ready(struct ctlr_info *h) |
|
{ |
|
unsigned long flags; |
|
struct offline_device_entry *d; |
|
struct list_head *this, *tmp; |
|
|
|
spin_lock_irqsave(&h->offline_device_lock, flags); |
|
list_for_each_safe(this, tmp, &h->offline_device_list) { |
|
d = list_entry(this, struct offline_device_entry, |
|
offline_list); |
|
spin_unlock_irqrestore(&h->offline_device_lock, flags); |
|
if (!hpsa_volume_offline(h, d->scsi3addr)) { |
|
spin_lock_irqsave(&h->offline_device_lock, flags); |
|
list_del(&d->offline_list); |
|
spin_unlock_irqrestore(&h->offline_device_lock, flags); |
|
return 1; |
|
} |
|
spin_lock_irqsave(&h->offline_device_lock, flags); |
|
} |
|
spin_unlock_irqrestore(&h->offline_device_lock, flags); |
|
return 0; |
|
} |
|
|
|
static int hpsa_luns_changed(struct ctlr_info *h) |
|
{ |
|
int rc = 1; /* assume there are changes */ |
|
struct ReportLUNdata *logdev = NULL; |
|
|
|
/* if we can't find out if lun data has changed, |
|
* assume that it has. |
|
*/ |
|
|
|
if (!h->lastlogicals) |
|
return rc; |
|
|
|
logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); |
|
if (!logdev) |
|
return rc; |
|
|
|
if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { |
|
dev_warn(&h->pdev->dev, |
|
"report luns failed, can't track lun changes.\n"); |
|
goto out; |
|
} |
|
if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { |
|
dev_info(&h->pdev->dev, |
|
"Lun changes detected.\n"); |
|
memcpy(h->lastlogicals, logdev, sizeof(*logdev)); |
|
goto out; |
|
} else |
|
rc = 0; /* no changes detected. */ |
|
out: |
|
kfree(logdev); |
|
return rc; |
|
} |
|
|
|
static void hpsa_perform_rescan(struct ctlr_info *h) |
|
{ |
|
struct Scsi_Host *sh = NULL; |
|
unsigned long flags; |
|
|
|
/* |
|
* Do the scan after the reset |
|
*/ |
|
spin_lock_irqsave(&h->reset_lock, flags); |
|
if (h->reset_in_progress) { |
|
h->drv_req_rescan = 1; |
|
spin_unlock_irqrestore(&h->reset_lock, flags); |
|
return; |
|
} |
|
spin_unlock_irqrestore(&h->reset_lock, flags); |
|
|
|
sh = scsi_host_get(h->scsi_host); |
|
if (sh != NULL) { |
|
hpsa_scan_start(sh); |
|
scsi_host_put(sh); |
|
h->drv_req_rescan = 0; |
|
} |
|
} |
|
|
|
/* |
|
* watch for controller events |
|
*/ |
|
static void hpsa_event_monitor_worker(struct work_struct *work) |
|
{ |
|
struct ctlr_info *h = container_of(to_delayed_work(work), |
|
struct ctlr_info, event_monitor_work); |
|
unsigned long flags; |
|
|
|
spin_lock_irqsave(&h->lock, flags); |
|
if (h->remove_in_progress) { |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return; |
|
} |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
|
|
if (hpsa_ctlr_needs_rescan(h)) { |
|
hpsa_ack_ctlr_events(h); |
|
hpsa_perform_rescan(h); |
|
} |
|
|
|
spin_lock_irqsave(&h->lock, flags); |
|
if (!h->remove_in_progress) |
|
schedule_delayed_work(&h->event_monitor_work, |
|
HPSA_EVENT_MONITOR_INTERVAL); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
} |
|
|
|
static void hpsa_rescan_ctlr_worker(struct work_struct *work) |
|
{ |
|
unsigned long flags; |
|
struct ctlr_info *h = container_of(to_delayed_work(work), |
|
struct ctlr_info, rescan_ctlr_work); |
|
|
|
spin_lock_irqsave(&h->lock, flags); |
|
if (h->remove_in_progress) { |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
return; |
|
} |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
|
|
if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) { |
|
hpsa_perform_rescan(h); |
|
} else if (h->discovery_polling) { |
|
if (hpsa_luns_changed(h)) { |
|
dev_info(&h->pdev->dev, |
|
"driver discovery polling rescan.\n"); |
|
hpsa_perform_rescan(h); |
|
} |
|
} |
|
spin_lock_irqsave(&h->lock, flags); |
|
if (!h->remove_in_progress) |
|
queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, |
|
h->heartbeat_sample_interval); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
} |
|
|
|
static void hpsa_monitor_ctlr_worker(struct work_struct *work) |
|
{ |
|
unsigned long flags; |
|
struct ctlr_info *h = container_of(to_delayed_work(work), |
|
struct ctlr_info, monitor_ctlr_work); |
|
|
|
detect_controller_lockup(h); |
|
if (lockup_detected(h)) |
|
return; |
|
|
|
spin_lock_irqsave(&h->lock, flags); |
|
if (!h->remove_in_progress) |
|
schedule_delayed_work(&h->monitor_ctlr_work, |
|
h->heartbeat_sample_interval); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
} |
|
|
|
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, |
|
char *name) |
|
{ |
|
struct workqueue_struct *wq = NULL; |
|
|
|
wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); |
|
if (!wq) |
|
dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); |
|
|
|
return wq; |
|
} |
|
|
|
static void hpda_free_ctlr_info(struct ctlr_info *h) |
|
{ |
|
kfree(h->reply_map); |
|
kfree(h); |
|
} |
|
|
|
static struct ctlr_info *hpda_alloc_ctlr_info(void) |
|
{ |
|
struct ctlr_info *h; |
|
|
|
h = kzalloc(sizeof(*h), GFP_KERNEL); |
|
if (!h) |
|
return NULL; |
|
|
|
h->reply_map = kzalloc(sizeof(*h->reply_map) * nr_cpu_ids, GFP_KERNEL); |
|
if (!h->reply_map) { |
|
kfree(h); |
|
return NULL; |
|
} |
|
return h; |
|
} |
|
|
|
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
|
{ |
|
int dac, rc; |
|
struct ctlr_info *h; |
|
int try_soft_reset = 0; |
|
unsigned long flags; |
|
u32 board_id; |
|
|
|
if (number_of_controllers == 0) |
|
printk(KERN_INFO DRIVER_NAME "\n"); |
|
|
|
rc = hpsa_lookup_board_id(pdev, &board_id, NULL); |
|
if (rc < 0) { |
|
dev_warn(&pdev->dev, "Board ID not found\n"); |
|
return rc; |
|
} |
|
|
|
rc = hpsa_init_reset_devices(pdev, board_id); |
|
if (rc) { |
|
if (rc != -ENOTSUPP) |
|
return rc; |
|
/* If the reset fails in a particular way (it has no way to do |
|
* a proper hard reset, so returns -ENOTSUPP) we can try to do |
|
* a soft reset once we get the controller configured up to the |
|
* point that it can accept a command. |
|
*/ |
|
try_soft_reset = 1; |
|
rc = 0; |
|
} |
|
|
|
reinit_after_soft_reset: |
|
|
|
/* Command structures must be aligned on a 32-byte boundary because |
|
* the 5 lower bits of the address are used by the hardware. and by |
|
* the driver. See comments in hpsa.h for more info. |
|
*/ |
|
BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); |
|
h = hpda_alloc_ctlr_info(); |
|
if (!h) { |
|
dev_err(&pdev->dev, "Failed to allocate controller head\n"); |
|
return -ENOMEM; |
|
} |
|
|
|
h->pdev = pdev; |
|
|
|
h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; |
|
INIT_LIST_HEAD(&h->offline_device_list); |
|
spin_lock_init(&h->lock); |
|
spin_lock_init(&h->offline_device_lock); |
|
spin_lock_init(&h->scan_lock); |
|
spin_lock_init(&h->reset_lock); |
|
atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); |
|
|
|
/* Allocate and clear per-cpu variable lockup_detected */ |
|
h->lockup_detected = alloc_percpu(u32); |
|
if (!h->lockup_detected) { |
|
dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); |
|
rc = -ENOMEM; |
|
goto clean1; /* aer/h */ |
|
} |
|
set_lockup_detected_for_all_cpus(h, 0); |
|
|
|
rc = hpsa_pci_init(h); |
|
if (rc) |
|
goto clean2; /* lu, aer/h */ |
|
|
|
/* relies on h-> settings made by hpsa_pci_init, including |
|
* interrupt_mode h->intr */ |
|
rc = hpsa_scsi_host_alloc(h); |
|
if (rc) |
|
goto clean2_5; /* pci, lu, aer/h */ |
|
|
|
sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); |
|
h->ctlr = number_of_controllers; |
|
number_of_controllers++; |
|
|
|
/* configure PCI DMA stuff */ |
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
|
if (rc == 0) { |
|
dac = 1; |
|
} else { |
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
|
if (rc == 0) { |
|
dac = 0; |
|
} else { |
|
dev_err(&pdev->dev, "no suitable DMA available\n"); |
|
goto clean3; /* shost, pci, lu, aer/h */ |
|
} |
|
} |
|
|
|
/* make sure the board interrupts are off */ |
|
h->access.set_intr_mask(h, HPSA_INTR_OFF); |
|
|
|
rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); |
|
if (rc) |
|
goto clean3; /* shost, pci, lu, aer/h */ |
|
rc = hpsa_alloc_cmd_pool(h); |
|
if (rc) |
|
goto clean4; /* irq, shost, pci, lu, aer/h */ |
|
rc = hpsa_alloc_sg_chain_blocks(h); |
|
if (rc) |
|
goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ |
|
init_waitqueue_head(&h->scan_wait_queue); |
|
init_waitqueue_head(&h->event_sync_wait_queue); |
|
mutex_init(&h->reset_mutex); |
|
h->scan_finished = 1; /* no scan currently in progress */ |
|
h->scan_waiting = 0; |
|
|
|
pci_set_drvdata(pdev, h); |
|
h->ndevices = 0; |
|
|
|
spin_lock_init(&h->devlock); |
|
rc = hpsa_put_ctlr_into_performant_mode(h); |
|
if (rc) |
|
goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ |
|
|
|
/* create the resubmit workqueue */ |
|
h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); |
|
if (!h->rescan_ctlr_wq) { |
|
rc = -ENOMEM; |
|
goto clean7; |
|
} |
|
|
|
h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); |
|
if (!h->resubmit_wq) { |
|
rc = -ENOMEM; |
|
goto clean7; /* aer/h */ |
|
} |
|
|
|
/* |
|
* At this point, the controller is ready to take commands. |
|
* Now, if reset_devices and the hard reset didn't work, try |
|
* the soft reset and see if that works. |
|
*/ |
|
if (try_soft_reset) { |
|
|
|
/* This is kind of gross. We may or may not get a completion |
|
* from the soft reset command, and if we do, then the value |
|
* from the fifo may or may not be valid. So, we wait 10 secs |
|
* after the reset throwing away any completions we get during |
|
* that time. Unregister the interrupt handler and register |
|
* fake ones to scoop up any residual completions. |
|
*/ |
|
spin_lock_irqsave(&h->lock, flags); |
|
h->access.set_intr_mask(h, HPSA_INTR_OFF); |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
hpsa_free_irqs(h); |
|
rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, |
|
hpsa_intx_discard_completions); |
|
if (rc) { |
|
dev_warn(&h->pdev->dev, |
|
"Failed to request_irq after soft reset.\n"); |
|
/* |
|
* cannot goto clean7 or free_irqs will be called |
|
* again. Instead, do its work |
|
*/ |
|
hpsa_free_performant_mode(h); /* clean7 */ |
|
hpsa_free_sg_chain_blocks(h); /* clean6 */ |
|
hpsa_free_cmd_pool(h); /* clean5 */ |
|
/* |
|
* skip hpsa_free_irqs(h) clean4 since that |
|
* was just called before request_irqs failed |
|
*/ |
|
goto clean3; |
|
} |
|
|
|
rc = hpsa_kdump_soft_reset(h); |
|
if (rc) |
|
/* Neither hard nor soft reset worked, we're hosed. */ |
|
goto clean7; |
|
|
|
dev_info(&h->pdev->dev, "Board READY.\n"); |
|
dev_info(&h->pdev->dev, |
|
"Waiting for stale completions to drain.\n"); |
|
h->access.set_intr_mask(h, HPSA_INTR_ON); |
|
msleep(10000); |
|
h->access.set_intr_mask(h, HPSA_INTR_OFF); |
|
|
|
rc = controller_reset_failed(h->cfgtable); |
|
if (rc) |
|
dev_info(&h->pdev->dev, |
|
"Soft reset appears to have failed.\n"); |
|
|
|
/* since the controller's reset, we have to go back and re-init |
|
* everything. Easiest to just forget what we've done and do it |
|
* all over again. |
|
*/ |
|
hpsa_undo_allocations_after_kdump_soft_reset(h); |
|
try_soft_reset = 0; |
|
if (rc) |
|
/* don't goto clean, we already unallocated */ |
|
return -ENODEV; |
|
|
|
goto reinit_after_soft_reset; |
|
} |
|
|
|
/* Enable Accelerated IO path at driver layer */ |
|
h->acciopath_status = 1; |
|
/* Disable discovery polling.*/ |
|
h->discovery_polling = 0; |
|
|
|
|
|
/* Turn the interrupts on so we can service requests */ |
|
h->access.set_intr_mask(h, HPSA_INTR_ON); |
|
|
|
hpsa_hba_inquiry(h); |
|
|
|
h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); |
|
if (!h->lastlogicals) |
|
dev_info(&h->pdev->dev, |
|
"Can't track change to report lun data\n"); |
|
|
|
/* hook into SCSI subsystem */ |
|
rc = hpsa_scsi_add_host(h); |
|
if (rc) |
|
goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ |
|
|
|
/* Monitor the controller for firmware lockups */ |
|
h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; |
|
INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); |
|
schedule_delayed_work(&h->monitor_ctlr_work, |
|
h->heartbeat_sample_interval); |
|
INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); |
|
queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, |
|
h->heartbeat_sample_interval); |
|
INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker); |
|
schedule_delayed_work(&h->event_monitor_work, |
|
HPSA_EVENT_MONITOR_INTERVAL); |
|
return 0; |
|
|
|
clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ |
|
hpsa_free_performant_mode(h); |
|
h->access.set_intr_mask(h, HPSA_INTR_OFF); |
|
clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ |
|
hpsa_free_sg_chain_blocks(h); |
|
clean5: /* cmd, irq, shost, pci, lu, aer/h */ |
|
hpsa_free_cmd_pool(h); |
|
clean4: /* irq, shost, pci, lu, aer/h */ |
|
hpsa_free_irqs(h); |
|
clean3: /* shost, pci, lu, aer/h */ |
|
scsi_host_put(h->scsi_host); |
|
h->scsi_host = NULL; |
|
clean2_5: /* pci, lu, aer/h */ |
|
hpsa_free_pci_init(h); |
|
clean2: /* lu, aer/h */ |
|
if (h->lockup_detected) { |
|
free_percpu(h->lockup_detected); |
|
h->lockup_detected = NULL; |
|
} |
|
clean1: /* wq/aer/h */ |
|
if (h->resubmit_wq) { |
|
destroy_workqueue(h->resubmit_wq); |
|
h->resubmit_wq = NULL; |
|
} |
|
if (h->rescan_ctlr_wq) { |
|
destroy_workqueue(h->rescan_ctlr_wq); |
|
h->rescan_ctlr_wq = NULL; |
|
} |
|
kfree(h); |
|
return rc; |
|
} |
|
|
|
static void hpsa_flush_cache(struct ctlr_info *h) |
|
{ |
|
char *flush_buf; |
|
struct CommandList *c; |
|
int rc; |
|
|
|
if (unlikely(lockup_detected(h))) |
|
return; |
|
flush_buf = kzalloc(4, GFP_KERNEL); |
|
if (!flush_buf) |
|
return; |
|
|
|
c = cmd_alloc(h); |
|
|
|
if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, |
|
RAID_CTLR_LUNID, TYPE_CMD)) { |
|
goto out; |
|
} |
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_TODEVICE, DEFAULT_TIMEOUT); |
|
if (rc) |
|
goto out; |
|
if (c->err_info->CommandStatus != 0) |
|
out: |
|
dev_warn(&h->pdev->dev, |
|
"error flushing cache on controller\n"); |
|
cmd_free(h, c); |
|
kfree(flush_buf); |
|
} |
|
|
|
/* Make controller gather fresh report lun data each time we |
|
* send down a report luns request |
|
*/ |
|
static void hpsa_disable_rld_caching(struct ctlr_info *h) |
|
{ |
|
u32 *options; |
|
struct CommandList *c; |
|
int rc; |
|
|
|
/* Don't bother trying to set diag options if locked up */ |
|
if (unlikely(h->lockup_detected)) |
|
return; |
|
|
|
options = kzalloc(sizeof(*options), GFP_KERNEL); |
|
if (!options) |
|
return; |
|
|
|
c = cmd_alloc(h); |
|
|
|
/* first, get the current diag options settings */ |
|
if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, |
|
RAID_CTLR_LUNID, TYPE_CMD)) |
|
goto errout; |
|
|
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
|
if ((rc != 0) || (c->err_info->CommandStatus != 0)) |
|
goto errout; |
|
|
|
/* Now, set the bit for disabling the RLD caching */ |
|
*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; |
|
|
|
if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, |
|
RAID_CTLR_LUNID, TYPE_CMD)) |
|
goto errout; |
|
|
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_TODEVICE, NO_TIMEOUT); |
|
if ((rc != 0) || (c->err_info->CommandStatus != 0)) |
|
goto errout; |
|
|
|
/* Now verify that it got set: */ |
|
if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, |
|
RAID_CTLR_LUNID, TYPE_CMD)) |
|
goto errout; |
|
|
|
rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, |
|
PCI_DMA_FROMDEVICE, NO_TIMEOUT); |
|
if ((rc != 0) || (c->err_info->CommandStatus != 0)) |
|
goto errout; |
|
|
|
if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) |
|
goto out; |
|
|
|
errout: |
|
dev_err(&h->pdev->dev, |
|
"Error: failed to disable report lun data caching.\n"); |
|
out: |
|
cmd_free(h, c); |
|
kfree(options); |
|
} |
|
|
|
static void __hpsa_shutdown(struct pci_dev *pdev) |
|
{ |
|
struct ctlr_info *h; |
|
|
|
h = pci_get_drvdata(pdev); |
|
/* Turn board interrupts off and send the flush cache command |
|
* sendcmd will turn off interrupt, and send the flush... |
|
* To write all data in the battery backed cache to disks |
|
*/ |
|
hpsa_flush_cache(h); |
|
h->access.set_intr_mask(h, HPSA_INTR_OFF); |
|
hpsa_free_irqs(h); /* init_one 4 */ |
|
hpsa_disable_interrupt_mode(h); /* pci_init 2 */ |
|
} |
|
|
|
static void hpsa_shutdown(struct pci_dev *pdev) |
|
{ |
|
__hpsa_shutdown(pdev); |
|
pci_disable_device(pdev); |
|
} |
|
|
|
static void hpsa_free_device_info(struct ctlr_info *h) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < h->ndevices; i++) { |
|
kfree(h->dev[i]); |
|
h->dev[i] = NULL; |
|
} |
|
} |
|
|
|
static void hpsa_remove_one(struct pci_dev *pdev) |
|
{ |
|
struct ctlr_info *h; |
|
unsigned long flags; |
|
|
|
if (pci_get_drvdata(pdev) == NULL) { |
|
dev_err(&pdev->dev, "unable to remove device\n"); |
|
return; |
|
} |
|
h = pci_get_drvdata(pdev); |
|
|
|
/* Get rid of any controller monitoring work items */ |
|
spin_lock_irqsave(&h->lock, flags); |
|
h->remove_in_progress = 1; |
|
spin_unlock_irqrestore(&h->lock, flags); |
|
cancel_delayed_work_sync(&h->monitor_ctlr_work); |
|
cancel_delayed_work_sync(&h->rescan_ctlr_work); |
|
cancel_delayed_work_sync(&h->event_monitor_work); |
|
destroy_workqueue(h->rescan_ctlr_wq); |
|
destroy_workqueue(h->resubmit_wq); |
|
|
|
hpsa_delete_sas_host(h); |
|
|
|
/* |
|
* Call before disabling interrupts. |
|
* scsi_remove_host can trigger I/O operations especially |
|
* when multipath is enabled. There can be SYNCHRONIZE CACHE |
|
* operations which cannot complete and will hang the system. |
|
*/ |
|
if (h->scsi_host) |
|
scsi_remove_host(h->scsi_host); /* init_one 8 */ |
|
/* includes hpsa_free_irqs - init_one 4 */ |
|
/* includes hpsa_disable_interrupt_mode - pci_init 2 */ |
|
__hpsa_shutdown(pdev); |
|
|
|
hpsa_free_device_info(h); /* scan */ |
|
|
|
kfree(h->hba_inquiry_data); /* init_one 10 */ |
|
h->hba_inquiry_data = NULL; /* init_one 10 */ |
|
hpsa_free_ioaccel2_sg_chain_blocks(h); |
|
hpsa_free_performant_mode(h); /* init_one 7 */ |
|
hpsa_free_sg_chain_blocks(h); /* init_one 6 */ |
|
hpsa_free_cmd_pool(h); /* init_one 5 */ |
|
kfree(h->lastlogicals); |
|
|
|
/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ |
|
|
|
scsi_host_put(h->scsi_host); /* init_one 3 */ |
|
h->scsi_host = NULL; /* init_one 3 */ |
|
|
|
/* includes hpsa_disable_interrupt_mode - pci_init 2 */ |
|
hpsa_free_pci_init(h); /* init_one 2.5 */ |
|
|
|
free_percpu(h->lockup_detected); /* init_one 2 */ |
|
h->lockup_detected = NULL; /* init_one 2 */ |
|
/* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */ |
|
|
|
hpda_free_ctlr_info(h); /* init_one 1 */ |
|
} |
|
|
|
static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, |
|
__attribute__((unused)) pm_message_t state) |
|
{ |
|
return -ENOSYS; |
|
} |
|
|
|
static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) |
|
{ |
|
return -ENOSYS; |
|
} |
|
|
|
static struct pci_driver hpsa_pci_driver = { |
|
.name = HPSA, |
|
.probe = hpsa_init_one, |
|
.remove = hpsa_remove_one, |
|
.id_table = hpsa_pci_device_id, /* id_table */ |
|
.shutdown = hpsa_shutdown, |
|
.suspend = hpsa_suspend, |
|
.resume = hpsa_resume, |
|
}; |
|
|
|
/* Fill in bucket_map[], given nsgs (the max number of |
|
* scatter gather elements supported) and bucket[], |
|
* which is an array of 8 integers. The bucket[] array |
|
* contains 8 different DMA transfer sizes (in 16 |
|
* byte increments) which the controller uses to fetch |
|
* commands. This function fills in bucket_map[], which |
|
* maps a given number of scatter gather elements to one of |
|
* the 8 DMA transfer sizes. The point of it is to allow the |
|
* controller to only do as much DMA as needed to fetch the |
|
* command, with the DMA transfer size encoded in the lower |
|
* bits of the command address. |
|
*/ |
|
static void calc_bucket_map(int bucket[], int num_buckets, |
|
int nsgs, int min_blocks, u32 *bucket_map) |
|
{ |
|
int i, j, b, size; |
|
|
|
/* Note, bucket_map must have nsgs+1 entries. */ |
|
for (i = 0; i <= nsgs; i++) { |
|
/* Compute size of a command with i SG entries */ |
|
size = i + min_blocks; |
|
b = num_buckets; /* Assume the biggest bucket */ |
|
/* Find the bucket that is just big enough */ |
|
for (j = 0; j < num_buckets; j++) { |
|
if (bucket[j] >= size) { |
|
b = j; |
|
break; |
|
} |
|
} |
|
/* for a command with i SG entries, use bucket b. */ |
|
bucket_map[i] = b; |
|
} |
|
} |
|
|
|
/* |
|
* return -ENODEV on err, 0 on success (or no action) |
|
* allocates numerous items that must be freed later |
|
*/ |
|
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) |
|
{ |
|
int i; |
|
unsigned long register_value; |
|
unsigned long transMethod = CFGTBL_Trans_Performant | |
|
(trans_support & CFGTBL_Trans_use_short_tags) | |
|
CFGTBL_Trans_enable_directed_msix | |
|
(trans_support & (CFGTBL_Trans_io_accel1 | |
|
CFGTBL_Trans_io_accel2)); |
|
struct access_method access = SA5_performant_access; |
|
|
|
/* This is a bit complicated. There are 8 registers on |
|
* the controller which we write to to tell it 8 different |
|
* sizes of commands which there may be. It's a way of |
|
* reducing the DMA done to fetch each command. Encoded into |
|
* each command's tag are 3 bits which communicate to the controller |
|
* which of the eight sizes that command fits within. The size of |
|
* each command depends on how many scatter gather entries there are. |
|
* Each SG entry requires 16 bytes. The eight registers are programmed |
|
* with the number of 16-byte blocks a command of that size requires. |
|
* The smallest command possible requires 5 such 16 byte blocks. |
|
* the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte |
|
* blocks. Note, this only extends to the SG entries contained |
|
* within the command block, and does not extend to chained blocks |
|
* of SG elements. bft[] contains the eight values we write to |
|
* the registers. They are not evenly distributed, but have more |
|
* sizes for small commands, and fewer sizes for larger commands. |
|
*/ |
|
int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; |
|
#define MIN_IOACCEL2_BFT_ENTRY 5 |
|
#define HPSA_IOACCEL2_HEADER_SZ 4 |
|
int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, |
|
13, 14, 15, 16, 17, 18, 19, |
|
HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; |
|
BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); |
|
BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); |
|
BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > |
|
16 * MIN_IOACCEL2_BFT_ENTRY); |
|
BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); |
|
BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); |
|
/* 5 = 1 s/g entry or 4k |
|
* 6 = 2 s/g entry or 8k |
|
* 8 = 4 s/g entry or 16k |
|
* 10 = 6 s/g entry or 24k |
|
*/ |
|
|
|
/* If the controller supports either ioaccel method then |
|
* we can also use the RAID stack submit path that does not |
|
* perform the superfluous readl() after each command submission. |
|
*/ |
|
if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) |
|
access = SA5_performant_access_no_read; |
|
|
|
/* Controller spec: zero out this buffer. */ |
|
for (i = 0; i < h->nreply_queues; i++) |
|
memset(h->reply_queue[i].head, 0, h->reply_queue_size); |
|
|
|
bft[7] = SG_ENTRIES_IN_CMD + 4; |
|
calc_bucket_map(bft, ARRAY_SIZE(bft), |
|
SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); |
|
for (i = 0; i < 8; i++) |
|
writel(bft[i], &h->transtable->BlockFetch[i]); |
|
|
|
/* size of controller ring buffer */ |
|
writel(h->max_commands, &h->transtable->RepQSize); |
|
writel(h->nreply_queues, &h->transtable->RepQCount); |
|
writel(0, &h->transtable->RepQCtrAddrLow32); |
|
writel(0, &h->transtable->RepQCtrAddrHigh32); |
|
|
|
for (i = 0; i < h->nreply_queues; i++) { |
|
writel(0, &h->transtable->RepQAddr[i].upper); |
|
writel(h->reply_queue[i].busaddr, |
|
&h->transtable->RepQAddr[i].lower); |
|
} |
|
|
|
writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); |
|
writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); |
|
/* |
|
* enable outbound interrupt coalescing in accelerator mode; |
|
*/ |
|
if (trans_support & CFGTBL_Trans_io_accel1) { |
|
access = SA5_ioaccel_mode1_access; |
|
writel(10, &h->cfgtable->HostWrite.CoalIntDelay); |
|
writel(4, &h->cfgtable->HostWrite.CoalIntCount); |
|
} else |
|
if (trans_support & CFGTBL_Trans_io_accel2) |
|
access = SA5_ioaccel_mode2_access; |
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
|
if (hpsa_wait_for_mode_change_ack(h)) { |
|
dev_err(&h->pdev->dev, |
|
"performant mode problem - doorbell timeout\n"); |
|
return -ENODEV; |
|
} |
|
register_value = readl(&(h->cfgtable->TransportActive)); |
|
if (!(register_value & CFGTBL_Trans_Performant)) { |
|
dev_err(&h->pdev->dev, |
|
"performant mode problem - transport not active\n"); |
|
return -ENODEV; |
|
} |
|
/* Change the access methods to the performant access methods */ |
|
h->access = access; |
|
h->transMethod = transMethod; |
|
|
|
if (!((trans_support & CFGTBL_Trans_io_accel1) || |
|
(trans_support & CFGTBL_Trans_io_accel2))) |
|
return 0; |
|
|
|
if (trans_support & CFGTBL_Trans_io_accel1) { |
|
/* Set up I/O accelerator mode */ |
|
for (i = 0; i < h->nreply_queues; i++) { |
|
writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); |
|
h->reply_queue[i].current_entry = |
|
readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); |
|
} |
|
bft[7] = h->ioaccel_maxsg + 8; |
|
calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, |
|
h->ioaccel1_blockFetchTable); |
|
|
|
/* initialize all reply queue entries to unused */ |
|
for (i = 0; i < h->nreply_queues; i++) |
|
memset(h->reply_queue[i].head, |
|
(u8) IOACCEL_MODE1_REPLY_UNUSED, |
|
h->reply_queue_size); |
|
|
|
/* set all the constant fields in the accelerator command |
|
* frames once at init time to save CPU cycles later. |
|
*/ |
|
for (i = 0; i < h->nr_cmds; i++) { |
|
struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; |
|
|
|
cp->function = IOACCEL1_FUNCTION_SCSIIO; |
|
cp->err_info = (u32) (h->errinfo_pool_dhandle + |
|
(i * sizeof(struct ErrorInfo))); |
|
cp->err_info_len = sizeof(struct ErrorInfo); |
|
cp->sgl_offset = IOACCEL1_SGLOFFSET; |
|
cp->host_context_flags = |
|
cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); |
|
cp->timeout_sec = 0; |
|
cp->ReplyQueue = 0; |
|
cp->tag = |
|
cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); |
|
cp->host_addr = |
|
cpu_to_le64(h->ioaccel_cmd_pool_dhandle + |
|
(i * sizeof(struct io_accel1_cmd))); |
|
} |
|
} else if (trans_support & CFGTBL_Trans_io_accel2) { |
|
u64 cfg_offset, cfg_base_addr_index; |
|
u32 bft2_offset, cfg_base_addr; |
|
int rc; |
|
|
|
rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, |
|
&cfg_base_addr_index, &cfg_offset); |
|
BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); |
|
bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; |
|
calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, |
|
4, h->ioaccel2_blockFetchTable); |
|
bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); |
|
BUILD_BUG_ON(offsetof(struct CfgTable, |
|
io_accel_request_size_offset) != 0xb8); |
|
h->ioaccel2_bft2_regs = |
|
remap_pci_mem(pci_resource_start(h->pdev, |
|
cfg_base_addr_index) + |
|
cfg_offset + bft2_offset, |
|
ARRAY_SIZE(bft2) * |
|
sizeof(*h->ioaccel2_bft2_regs)); |
|
for (i = 0; i < ARRAY_SIZE(bft2); i++) |
|
writel(bft2[i], &h->ioaccel2_bft2_regs[i]); |
|
} |
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
|
if (hpsa_wait_for_mode_change_ack(h)) { |
|
dev_err(&h->pdev->dev, |
|
"performant mode problem - enabling ioaccel mode\n"); |
|
return -ENODEV; |
|
} |
|
return 0; |
|
} |
|
|
|
/* Free ioaccel1 mode command blocks and block fetch table */ |
|
static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) |
|
{ |
|
if (h->ioaccel_cmd_pool) { |
|
pci_free_consistent(h->pdev, |
|
h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), |
|
h->ioaccel_cmd_pool, |
|
h->ioaccel_cmd_pool_dhandle); |
|
h->ioaccel_cmd_pool = NULL; |
|
h->ioaccel_cmd_pool_dhandle = 0; |
|
} |
|
kfree(h->ioaccel1_blockFetchTable); |
|
h->ioaccel1_blockFetchTable = NULL; |
|
} |
|
|
|
/* Allocate ioaccel1 mode command blocks and block fetch table */ |
|
static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) |
|
{ |
|
h->ioaccel_maxsg = |
|
readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); |
|
if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) |
|
h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; |
|
|
|
/* Command structures must be aligned on a 128-byte boundary |
|
* because the 7 lower bits of the address are used by the |
|
* hardware. |
|
*/ |
|
BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % |
|
IOACCEL1_COMMANDLIST_ALIGNMENT); |
|
h->ioaccel_cmd_pool = |
|
pci_alloc_consistent(h->pdev, |
|
h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), |
|
&(h->ioaccel_cmd_pool_dhandle)); |
|
|
|
h->ioaccel1_blockFetchTable = |
|
kmalloc(((h->ioaccel_maxsg + 1) * |
|
sizeof(u32)), GFP_KERNEL); |
|
|
|
if ((h->ioaccel_cmd_pool == NULL) || |
|
(h->ioaccel1_blockFetchTable == NULL)) |
|
goto clean_up; |
|
|
|
memset(h->ioaccel_cmd_pool, 0, |
|
h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); |
|
return 0; |
|
|
|
clean_up: |
|
hpsa_free_ioaccel1_cmd_and_bft(h); |
|
return -ENOMEM; |
|
} |
|
|
|
/* Free ioaccel2 mode command blocks and block fetch table */ |
|
static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) |
|
{ |
|
hpsa_free_ioaccel2_sg_chain_blocks(h); |
|
|
|
if (h->ioaccel2_cmd_pool) { |
|
pci_free_consistent(h->pdev, |
|
h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), |
|
h->ioaccel2_cmd_pool, |
|
h->ioaccel2_cmd_pool_dhandle); |
|
h->ioaccel2_cmd_pool = NULL; |
|
h->ioaccel2_cmd_pool_dhandle = 0; |
|
} |
|
kfree(h->ioaccel2_blockFetchTable); |
|
h->ioaccel2_blockFetchTable = NULL; |
|
} |
|
|
|
/* Allocate ioaccel2 mode command blocks and block fetch table */ |
|
static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) |
|
{ |
|
int rc; |
|
|
|
/* Allocate ioaccel2 mode command blocks and block fetch table */ |
|
|
|
h->ioaccel_maxsg = |
|
readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); |
|
if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) |
|
h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; |
|
|
|
BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % |
|
IOACCEL2_COMMANDLIST_ALIGNMENT); |
|
h->ioaccel2_cmd_pool = |
|
pci_alloc_consistent(h->pdev, |
|
h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), |
|
&(h->ioaccel2_cmd_pool_dhandle)); |
|
|
|
h->ioaccel2_blockFetchTable = |
|
kmalloc(((h->ioaccel_maxsg + 1) * |
|
sizeof(u32)), GFP_KERNEL); |
|
|
|
if ((h->ioaccel2_cmd_pool == NULL) || |
|
(h->ioaccel2_blockFetchTable == NULL)) { |
|
rc = -ENOMEM; |
|
goto clean_up; |
|
} |
|
|
|
rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); |
|
if (rc) |
|
goto clean_up; |
|
|
|
memset(h->ioaccel2_cmd_pool, 0, |
|
h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); |
|
return 0; |
|
|
|
clean_up: |
|
hpsa_free_ioaccel2_cmd_and_bft(h); |
|
return rc; |
|
} |
|
|
|
/* Free items allocated by hpsa_put_ctlr_into_performant_mode */ |
|
static void hpsa_free_performant_mode(struct ctlr_info *h) |
|
{ |
|
kfree(h->blockFetchTable); |
|
h->blockFetchTable = NULL; |
|
hpsa_free_reply_queues(h); |
|
hpsa_free_ioaccel1_cmd_and_bft(h); |
|
hpsa_free_ioaccel2_cmd_and_bft(h); |
|
} |
|
|
|
/* return -ENODEV on error, 0 on success (or no action) |
|
* allocates numerous items that must be freed later |
|
*/ |
|
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) |
|
{ |
|
u32 trans_support; |
|
unsigned long transMethod = CFGTBL_Trans_Performant | |
|
CFGTBL_Trans_use_short_tags; |
|
int i, rc; |
|
|
|
if (hpsa_simple_mode) |
|
return 0; |
|
|
|
trans_support = readl(&(h->cfgtable->TransportSupport)); |
|
if (!(trans_support & PERFORMANT_MODE)) |
|
return 0; |
|
|
|
/* Check for I/O accelerator mode support */ |
|
if (trans_support & CFGTBL_Trans_io_accel1) { |
|
transMethod |= CFGTBL_Trans_io_accel1 | |
|
CFGTBL_Trans_enable_directed_msix; |
|
rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); |
|
if (rc) |
|
return rc; |
|
} else if (trans_support & CFGTBL_Trans_io_accel2) { |
|
transMethod |= CFGTBL_Trans_io_accel2 | |
|
CFGTBL_Trans_enable_directed_msix; |
|
rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); |
|
if (rc) |
|
return rc; |
|
} |
|
|
|
h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1; |
|
hpsa_get_max_perf_mode_cmds(h); |
|
/* Performant mode ring buffer and supporting data structures */ |
|
h->reply_queue_size = h->max_commands * sizeof(u64); |
|
|
|
for (i = 0; i < h->nreply_queues; i++) { |
|
h->reply_queue[i].head = pci_alloc_consistent(h->pdev, |
|
h->reply_queue_size, |
|
&(h->reply_queue[i].busaddr)); |
|
if (!h->reply_queue[i].head) { |
|
rc = -ENOMEM; |
|
goto clean1; /* rq, ioaccel */ |
|
} |
|
h->reply_queue[i].size = h->max_commands; |
|
h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ |
|
h->reply_queue[i].current_entry = 0; |
|
} |
|
|
|
/* Need a block fetch table for performant mode */ |
|
h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * |
|
sizeof(u32)), GFP_KERNEL); |
|
if (!h->blockFetchTable) { |
|
rc = -ENOMEM; |
|
goto clean1; /* rq, ioaccel */ |
|
} |
|
|
|
rc = hpsa_enter_performant_mode(h, trans_support); |
|
if (rc) |
|
goto clean2; /* bft, rq, ioaccel */ |
|
return 0; |
|
|
|
clean2: /* bft, rq, ioaccel */ |
|
kfree(h->blockFetchTable); |
|
h->blockFetchTable = NULL; |
|
clean1: /* rq, ioaccel */ |
|
hpsa_free_reply_queues(h); |
|
hpsa_free_ioaccel1_cmd_and_bft(h); |
|
hpsa_free_ioaccel2_cmd_and_bft(h); |
|
return rc; |
|
} |
|
|
|
static int is_accelerated_cmd(struct CommandList *c) |
|
{ |
|
return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; |
|
} |
|
|
|
static void hpsa_drain_accel_commands(struct ctlr_info *h) |
|
{ |
|
struct CommandList *c = NULL; |
|
int i, accel_cmds_out; |
|
int refcount; |
|
|
|
do { /* wait for all outstanding ioaccel commands to drain out */ |
|
accel_cmds_out = 0; |
|
for (i = 0; i < h->nr_cmds; i++) { |
|
c = h->cmd_pool + i; |
|
refcount = atomic_inc_return(&c->refcount); |
|
if (refcount > 1) /* Command is allocated */ |
|
accel_cmds_out += is_accelerated_cmd(c); |
|
cmd_free(h, c); |
|
} |
|
if (accel_cmds_out <= 0) |
|
break; |
|
msleep(100); |
|
} while (1); |
|
} |
|
|
|
static struct hpsa_sas_phy *hpsa_alloc_sas_phy( |
|
struct hpsa_sas_port *hpsa_sas_port) |
|
{ |
|
struct hpsa_sas_phy *hpsa_sas_phy; |
|
struct sas_phy *phy; |
|
|
|
hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); |
|
if (!hpsa_sas_phy) |
|
return NULL; |
|
|
|
phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, |
|
hpsa_sas_port->next_phy_index); |
|
if (!phy) { |
|
kfree(hpsa_sas_phy); |
|
return NULL; |
|
} |
|
|
|
hpsa_sas_port->next_phy_index++; |
|
hpsa_sas_phy->phy = phy; |
|
hpsa_sas_phy->parent_port = hpsa_sas_port; |
|
|
|
return hpsa_sas_phy; |
|
} |
|
|
|
static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) |
|
{ |
|
struct sas_phy *phy = hpsa_sas_phy->phy; |
|
|
|
sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); |
|
if (hpsa_sas_phy->added_to_port) |
|
list_del(&hpsa_sas_phy->phy_list_entry); |
|
sas_phy_delete(phy); |
|
kfree(hpsa_sas_phy); |
|
} |
|
|
|
static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) |
|
{ |
|
int rc; |
|
struct hpsa_sas_port *hpsa_sas_port; |
|
struct sas_phy *phy; |
|
struct sas_identify *identify; |
|
|
|
hpsa_sas_port = hpsa_sas_phy->parent_port; |
|
phy = hpsa_sas_phy->phy; |
|
|
|
identify = &phy->identify; |
|
memset(identify, 0, sizeof(*identify)); |
|
identify->sas_address = hpsa_sas_port->sas_address; |
|
identify->device_type = SAS_END_DEVICE; |
|
identify->initiator_port_protocols = SAS_PROTOCOL_STP; |
|
identify->target_port_protocols = SAS_PROTOCOL_STP; |
|
phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; |
|
phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; |
|
phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; |
|
phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; |
|
phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; |
|
|
|
rc = sas_phy_add(hpsa_sas_phy->phy); |
|
if (rc) |
|
return rc; |
|
|
|
sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); |
|
list_add_tail(&hpsa_sas_phy->phy_list_entry, |
|
&hpsa_sas_port->phy_list_head); |
|
hpsa_sas_phy->added_to_port = true; |
|
|
|
return 0; |
|
} |
|
|
|
static int |
|
hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, |
|
struct sas_rphy *rphy) |
|
{ |
|
struct sas_identify *identify; |
|
|
|
identify = &rphy->identify; |
|
identify->sas_address = hpsa_sas_port->sas_address; |
|
identify->initiator_port_protocols = SAS_PROTOCOL_STP; |
|
identify->target_port_protocols = SAS_PROTOCOL_STP; |
|
|
|
return sas_rphy_add(rphy); |
|
} |
|
|
|
static struct hpsa_sas_port |
|
*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, |
|
u64 sas_address) |
|
{ |
|
int rc; |
|
struct hpsa_sas_port *hpsa_sas_port; |
|
struct sas_port *port; |
|
|
|
hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); |
|
if (!hpsa_sas_port) |
|
return NULL; |
|
|
|
INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); |
|
hpsa_sas_port->parent_node = hpsa_sas_node; |
|
|
|
port = sas_port_alloc_num(hpsa_sas_node->parent_dev); |
|
if (!port) |
|
goto free_hpsa_port; |
|
|
|
rc = sas_port_add(port); |
|
if (rc) |
|
goto free_sas_port; |
|
|
|
hpsa_sas_port->port = port; |
|
hpsa_sas_port->sas_address = sas_address; |
|
list_add_tail(&hpsa_sas_port->port_list_entry, |
|
&hpsa_sas_node->port_list_head); |
|
|
|
return hpsa_sas_port; |
|
|
|
free_sas_port: |
|
sas_port_free(port); |
|
free_hpsa_port: |
|
kfree(hpsa_sas_port); |
|
|
|
return NULL; |
|
} |
|
|
|
static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) |
|
{ |
|
struct hpsa_sas_phy *hpsa_sas_phy; |
|
struct hpsa_sas_phy *next; |
|
|
|
list_for_each_entry_safe(hpsa_sas_phy, next, |
|
&hpsa_sas_port->phy_list_head, phy_list_entry) |
|
hpsa_free_sas_phy(hpsa_sas_phy); |
|
|
|
sas_port_delete(hpsa_sas_port->port); |
|
list_del(&hpsa_sas_port->port_list_entry); |
|
kfree(hpsa_sas_port); |
|
} |
|
|
|
static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) |
|
{ |
|
struct hpsa_sas_node *hpsa_sas_node; |
|
|
|
hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); |
|
if (hpsa_sas_node) { |
|
hpsa_sas_node->parent_dev = parent_dev; |
|
INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); |
|
} |
|
|
|
return hpsa_sas_node; |
|
} |
|
|
|
static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) |
|
{ |
|
struct hpsa_sas_port *hpsa_sas_port; |
|
struct hpsa_sas_port *next; |
|
|
|
if (!hpsa_sas_node) |
|
return; |
|
|
|
list_for_each_entry_safe(hpsa_sas_port, next, |
|
&hpsa_sas_node->port_list_head, port_list_entry) |
|
hpsa_free_sas_port(hpsa_sas_port); |
|
|
|
kfree(hpsa_sas_node); |
|
} |
|
|
|
static struct hpsa_scsi_dev_t |
|
*hpsa_find_device_by_sas_rphy(struct ctlr_info *h, |
|
struct sas_rphy *rphy) |
|
{ |
|
int i; |
|
struct hpsa_scsi_dev_t *device; |
|
|
|
for (i = 0; i < h->ndevices; i++) { |
|
device = h->dev[i]; |
|
if (!device->sas_port) |
|
continue; |
|
if (device->sas_port->rphy == rphy) |
|
return device; |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
static int hpsa_add_sas_host(struct ctlr_info *h) |
|
{ |
|
int rc; |
|
struct device *parent_dev; |
|
struct hpsa_sas_node *hpsa_sas_node; |
|
struct hpsa_sas_port *hpsa_sas_port; |
|
struct hpsa_sas_phy *hpsa_sas_phy; |
|
|
|
parent_dev = &h->scsi_host->shost_dev; |
|
|
|
hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); |
|
if (!hpsa_sas_node) |
|
return -ENOMEM; |
|
|
|
hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); |
|
if (!hpsa_sas_port) { |
|
rc = -ENODEV; |
|
goto free_sas_node; |
|
} |
|
|
|
hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); |
|
if (!hpsa_sas_phy) { |
|
rc = -ENODEV; |
|
goto free_sas_port; |
|
} |
|
|
|
rc = hpsa_sas_port_add_phy(hpsa_sas_phy); |
|
if (rc) |
|
goto free_sas_phy; |
|
|
|
h->sas_host = hpsa_sas_node; |
|
|
|
return 0; |
|
|
|
free_sas_phy: |
|
hpsa_free_sas_phy(hpsa_sas_phy); |
|
free_sas_port: |
|
hpsa_free_sas_port(hpsa_sas_port); |
|
free_sas_node: |
|
hpsa_free_sas_node(hpsa_sas_node); |
|
|
|
return rc; |
|
} |
|
|
|
static void hpsa_delete_sas_host(struct ctlr_info *h) |
|
{ |
|
hpsa_free_sas_node(h->sas_host); |
|
} |
|
|
|
static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, |
|
struct hpsa_scsi_dev_t *device) |
|
{ |
|
int rc; |
|
struct hpsa_sas_port *hpsa_sas_port; |
|
struct sas_rphy *rphy; |
|
|
|
hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); |
|
if (!hpsa_sas_port) |
|
return -ENOMEM; |
|
|
|
rphy = sas_end_device_alloc(hpsa_sas_port->port); |
|
if (!rphy) { |
|
rc = -ENODEV; |
|
goto free_sas_port; |
|
} |
|
|
|
hpsa_sas_port->rphy = rphy; |
|
device->sas_port = hpsa_sas_port; |
|
|
|
rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); |
|
if (rc) |
|
goto free_sas_port; |
|
|
|
return 0; |
|
|
|
free_sas_port: |
|
hpsa_free_sas_port(hpsa_sas_port); |
|
device->sas_port = NULL; |
|
|
|
return rc; |
|
} |
|
|
|
static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) |
|
{ |
|
if (device->sas_port) { |
|
hpsa_free_sas_port(device->sas_port); |
|
device->sas_port = NULL; |
|
} |
|
} |
|
|
|
static int |
|
hpsa_sas_get_linkerrors(struct sas_phy *phy) |
|
{ |
|
return 0; |
|
} |
|
|
|
static int |
|
hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) |
|
{ |
|
*identifier = rphy->identify.sas_address; |
|
return 0; |
|
} |
|
|
|
static int |
|
hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) |
|
{ |
|
return -ENXIO; |
|
} |
|
|
|
static int |
|
hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) |
|
{ |
|
return 0; |
|
} |
|
|
|
static int |
|
hpsa_sas_phy_enable(struct sas_phy *phy, int enable) |
|
{ |
|
return 0; |
|
} |
|
|
|
static int |
|
hpsa_sas_phy_setup(struct sas_phy *phy) |
|
{ |
|
return 0; |
|
} |
|
|
|
static void |
|
hpsa_sas_phy_release(struct sas_phy *phy) |
|
{ |
|
} |
|
|
|
static int |
|
hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) |
|
{ |
|
return -EINVAL; |
|
} |
|
|
|
static struct sas_function_template hpsa_sas_transport_functions = { |
|
.get_linkerrors = hpsa_sas_get_linkerrors, |
|
.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, |
|
.get_bay_identifier = hpsa_sas_get_bay_identifier, |
|
.phy_reset = hpsa_sas_phy_reset, |
|
.phy_enable = hpsa_sas_phy_enable, |
|
.phy_setup = hpsa_sas_phy_setup, |
|
.phy_release = hpsa_sas_phy_release, |
|
.set_phy_speed = hpsa_sas_phy_speed, |
|
}; |
|
|
|
/* |
|
* This is it. Register the PCI driver information for the cards we control |
|
* the OS will call our registered routines when it finds one of our cards. |
|
*/ |
|
static int __init hpsa_init(void) |
|
{ |
|
int rc; |
|
|
|
hpsa_sas_transport_template = |
|
sas_attach_transport(&hpsa_sas_transport_functions); |
|
if (!hpsa_sas_transport_template) |
|
return -ENODEV; |
|
|
|
rc = pci_register_driver(&hpsa_pci_driver); |
|
|
|
if (rc) |
|
sas_release_transport(hpsa_sas_transport_template); |
|
|
|
return rc; |
|
} |
|
|
|
static void __exit hpsa_cleanup(void) |
|
{ |
|
pci_unregister_driver(&hpsa_pci_driver); |
|
sas_release_transport(hpsa_sas_transport_template); |
|
} |
|
|
|
static void __attribute__((unused)) verify_offsets(void) |
|
{ |
|
#define VERIFY_OFFSET(member, offset) \ |
|
BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) |
|
|
|
VERIFY_OFFSET(structure_size, 0); |
|
VERIFY_OFFSET(volume_blk_size, 4); |
|
VERIFY_OFFSET(volume_blk_cnt, 8); |
|
VERIFY_OFFSET(phys_blk_shift, 16); |
|
VERIFY_OFFSET(parity_rotation_shift, 17); |
|
VERIFY_OFFSET(strip_size, 18); |
|
VERIFY_OFFSET(disk_starting_blk, 20); |
|
VERIFY_OFFSET(disk_blk_cnt, 28); |
|
VERIFY_OFFSET(data_disks_per_row, 36); |
|
VERIFY_OFFSET(metadata_disks_per_row, 38); |
|
VERIFY_OFFSET(row_cnt, 40); |
|
VERIFY_OFFSET(layout_map_count, 42); |
|
VERIFY_OFFSET(flags, 44); |
|
VERIFY_OFFSET(dekindex, 46); |
|
/* VERIFY_OFFSET(reserved, 48 */ |
|
VERIFY_OFFSET(data, 64); |
|
|
|
#undef VERIFY_OFFSET |
|
|
|
#define VERIFY_OFFSET(member, offset) \ |
|
BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) |
|
|
|
VERIFY_OFFSET(IU_type, 0); |
|
VERIFY_OFFSET(direction, 1); |
|
VERIFY_OFFSET(reply_queue, 2); |
|
/* VERIFY_OFFSET(reserved1, 3); */ |
|
VERIFY_OFFSET(scsi_nexus, 4); |
|
VERIFY_OFFSET(Tag, 8); |
|
VERIFY_OFFSET(cdb, 16); |
|
VERIFY_OFFSET(cciss_lun, 32); |
|
VERIFY_OFFSET(data_len, 40); |
|
VERIFY_OFFSET(cmd_priority_task_attr, 44); |
|
VERIFY_OFFSET(sg_count, 45); |
|
/* VERIFY_OFFSET(reserved3 */ |
|
VERIFY_OFFSET(err_ptr, 48); |
|
VERIFY_OFFSET(err_len, 56); |
|
/* VERIFY_OFFSET(reserved4 */ |
|
VERIFY_OFFSET(sg, 64); |
|
|
|
#undef VERIFY_OFFSET |
|
|
|
#define VERIFY_OFFSET(member, offset) \ |
|
BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) |
|
|
|
VERIFY_OFFSET(dev_handle, 0x00); |
|
VERIFY_OFFSET(reserved1, 0x02); |
|
VERIFY_OFFSET(function, 0x03); |
|
VERIFY_OFFSET(reserved2, 0x04); |
|
VERIFY_OFFSET(err_info, 0x0C); |
|
VERIFY_OFFSET(reserved3, 0x10); |
|
VERIFY_OFFSET(err_info_len, 0x12); |
|
VERIFY_OFFSET(reserved4, 0x13); |
|
VERIFY_OFFSET(sgl_offset, 0x14); |
|
VERIFY_OFFSET(reserved5, 0x15); |
|
VERIFY_OFFSET(transfer_len, 0x1C); |
|
VERIFY_OFFSET(reserved6, 0x20); |
|
VERIFY_OFFSET(io_flags, 0x24); |
|
VERIFY_OFFSET(reserved7, 0x26); |
|
VERIFY_OFFSET(LUN, 0x34); |
|
VERIFY_OFFSET(control, 0x3C); |
|
VERIFY_OFFSET(CDB, 0x40); |
|
VERIFY_OFFSET(reserved8, 0x50); |
|
VERIFY_OFFSET(host_context_flags, 0x60); |
|
VERIFY_OFFSET(timeout_sec, 0x62); |
|
VERIFY_OFFSET(ReplyQueue, 0x64); |
|
VERIFY_OFFSET(reserved9, 0x65); |
|
VERIFY_OFFSET(tag, 0x68); |
|
VERIFY_OFFSET(host_addr, 0x70); |
|
VERIFY_OFFSET(CISS_LUN, 0x78); |
|
VERIFY_OFFSET(SG, 0x78 + 8); |
|
#undef VERIFY_OFFSET |
|
} |
|
|
|
module_init(hpsa_init); |
|
module_exit(hpsa_cleanup);
|
|
|