You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1741 lines
52 KiB
1741 lines
52 KiB
7 years ago
|
From 66bf22e129f0b8621903a8b0489b2684e70fad65 Mon Sep 17 00:00:00 2001
|
||
|
From: Siddhesh Poyarekar <siddhesh@redhat.com>
|
||
|
Date: Fri, 8 Mar 2013 11:38:41 +0530
|
||
|
Subject: [PATCH 17/42] Consolidate copies of mp code in powerpc
|
||
|
|
||
|
Retain a single copy of the mp code in power4 instead of the two
|
||
|
identical copies in powerpc32 and powerpc64.
|
||
|
(backported from commit 6d9145d817e570cd986bb088cf2af0bf51ac7dde)
|
||
|
---
|
||
|
sysdeps/powerpc/power4/fpu/Makefile | 5 +
|
||
|
sysdeps/powerpc/power4/fpu/mpa.c | 548 ++++++++++++++++++++++++++
|
||
|
sysdeps/powerpc/powerpc32/power4/Implies | 2 +
|
||
|
sysdeps/powerpc/powerpc32/power4/fpu/Makefile | 5 -
|
||
|
sysdeps/powerpc/powerpc32/power4/fpu/mpa.c | 548 --------------------------
|
||
|
sysdeps/powerpc/powerpc64/power4/Implies | 2 +
|
||
|
sysdeps/powerpc/powerpc64/power4/fpu/Makefile | 5 -
|
||
|
sysdeps/powerpc/powerpc64/power4/fpu/mpa.c | 548 --------------------------
|
||
|
9 files changed, 568 insertions(+), 1106 deletions(-)
|
||
|
create mode 100644 sysdeps/powerpc/power4/fpu/Makefile
|
||
|
create mode 100644 sysdeps/powerpc/power4/fpu/mpa.c
|
||
|
create mode 100644 sysdeps/powerpc/powerpc32/power4/Implies
|
||
|
delete mode 100644 sysdeps/powerpc/powerpc32/power4/fpu/Makefile
|
||
|
delete mode 100644 sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
|
||
|
create mode 100644 sysdeps/powerpc/powerpc64/power4/Implies
|
||
|
delete mode 100644 sysdeps/powerpc/powerpc64/power4/fpu/Makefile
|
||
|
delete mode 100644 sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
|
||
|
|
||
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/Makefile glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/Makefile
|
||
|
new file mode 100644
|
||
|
index 0000000..f487ed6
|
||
|
--- /dev/null
|
||
|
+++ glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/Makefile
|
||
|
@@ -0,0 +1,5 @@
|
||
|
+# Makefile fragment for POWER4/5/5+ with FPU.
|
||
|
+
|
||
|
+ifeq ($(subdir),math)
|
||
|
+CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
|
||
|
+endif
|
||
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/mpa.c glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/mpa.c
|
||
|
new file mode 100644
|
||
|
index 0000000..d15680e
|
||
|
--- /dev/null
|
||
|
+++ glibc-2.17-c758a686/sysdeps/powerpc/power4/fpu/mpa.c
|
||
|
@@ -0,0 +1,548 @@
|
||
|
+
|
||
|
+/*
|
||
|
+ * IBM Accurate Mathematical Library
|
||
|
+ * written by International Business Machines Corp.
|
||
|
+ * Copyright (C) 2001, 2006 Free Software Foundation
|
||
|
+ *
|
||
|
+ * This program is free software; you can redistribute it and/or modify
|
||
|
+ * it under the terms of the GNU Lesser General Public License as published by
|
||
|
+ * the Free Software Foundation; either version 2.1 of the License, or
|
||
|
+ * (at your option) any later version.
|
||
|
+ *
|
||
|
+ * This program is distributed in the hope that it will be useful,
|
||
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
+ * GNU Lesser General Public License for more details.
|
||
|
+ *
|
||
|
+ * You should have received a copy of the GNU Lesser General Public License
|
||
|
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
+ */
|
||
|
+/************************************************************************/
|
||
|
+/* MODULE_NAME: mpa.c */
|
||
|
+/* */
|
||
|
+/* FUNCTIONS: */
|
||
|
+/* mcr */
|
||
|
+/* acr */
|
||
|
+/* cr */
|
||
|
+/* cpy */
|
||
|
+/* cpymn */
|
||
|
+/* norm */
|
||
|
+/* denorm */
|
||
|
+/* mp_dbl */
|
||
|
+/* dbl_mp */
|
||
|
+/* add_magnitudes */
|
||
|
+/* sub_magnitudes */
|
||
|
+/* add */
|
||
|
+/* sub */
|
||
|
+/* mul */
|
||
|
+/* inv */
|
||
|
+/* dvd */
|
||
|
+/* */
|
||
|
+/* Arithmetic functions for multiple precision numbers. */
|
||
|
+/* Relative errors are bounded */
|
||
|
+/************************************************************************/
|
||
|
+
|
||
|
+
|
||
|
+#include "endian.h"
|
||
|
+#include "mpa.h"
|
||
|
+#include "mpa2.h"
|
||
|
+#include <sys/param.h> /* For MIN() */
|
||
|
+/* mcr() compares the sizes of the mantissas of two multiple precision */
|
||
|
+/* numbers. Mantissas are compared regardless of the signs of the */
|
||
|
+/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */
|
||
|
+/* disregarded. */
|
||
|
+static int mcr(const mp_no *x, const mp_no *y, int p) {
|
||
|
+ long i;
|
||
|
+ long p2 = p;
|
||
|
+ for (i=1; i<=p2; i++) {
|
||
|
+ if (X[i] == Y[i]) continue;
|
||
|
+ else if (X[i] > Y[i]) return 1;
|
||
|
+ else return -1; }
|
||
|
+ return 0;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+
|
||
|
+/* acr() compares the absolute values of two multiple precision numbers */
|
||
|
+int __acr(const mp_no *x, const mp_no *y, int p) {
|
||
|
+ long i;
|
||
|
+
|
||
|
+ if (X[0] == ZERO) {
|
||
|
+ if (Y[0] == ZERO) i= 0;
|
||
|
+ else i=-1;
|
||
|
+ }
|
||
|
+ else if (Y[0] == ZERO) i= 1;
|
||
|
+ else {
|
||
|
+ if (EX > EY) i= 1;
|
||
|
+ else if (EX < EY) i=-1;
|
||
|
+ else i= mcr(x,y,p);
|
||
|
+ }
|
||
|
+
|
||
|
+ return i;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* cr90 compares the values of two multiple precision numbers */
|
||
|
+int __cr(const mp_no *x, const mp_no *y, int p) {
|
||
|
+ int i;
|
||
|
+
|
||
|
+ if (X[0] > Y[0]) i= 1;
|
||
|
+ else if (X[0] < Y[0]) i=-1;
|
||
|
+ else if (X[0] < ZERO ) i= __acr(y,x,p);
|
||
|
+ else i= __acr(x,y,p);
|
||
|
+
|
||
|
+ return i;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
|
||
|
+void __cpy(const mp_no *x, mp_no *y, int p) {
|
||
|
+ long i;
|
||
|
+
|
||
|
+ EY = EX;
|
||
|
+ for (i=0; i <= p; i++) Y[i] = X[i];
|
||
|
+
|
||
|
+ return;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* Copy a multiple precision number x of precision m into a */
|
||
|
+/* multiple precision number y of precision n. In case n>m, */
|
||
|
+/* the digits of y beyond the m'th are set to zero. In case */
|
||
|
+/* n<m, the digits of x beyond the n'th are ignored. */
|
||
|
+/* x=y is permissible. */
|
||
|
+
|
||
|
+void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
|
||
|
+
|
||
|
+ long i,k;
|
||
|
+ long n2 = n;
|
||
|
+ long m2 = m;
|
||
|
+
|
||
|
+ EY = EX; k=MIN(m2,n2);
|
||
|
+ for (i=0; i <= k; i++) Y[i] = X[i];
|
||
|
+ for ( ; i <= n2; i++) Y[i] = ZERO;
|
||
|
+
|
||
|
+ return;
|
||
|
+}
|
||
|
+
|
||
|
+/* Convert a multiple precision number *x into a double precision */
|
||
|
+/* number *y, normalized case (|x| >= 2**(-1022))) */
|
||
|
+static void norm(const mp_no *x, double *y, int p)
|
||
|
+{
|
||
|
+ #define R radixi.d
|
||
|
+ long i;
|
||
|
+#if 0
|
||
|
+ int k;
|
||
|
+#endif
|
||
|
+ double a,c,u,v,z[5];
|
||
|
+ if (p<5) {
|
||
|
+ if (p==1) c = X[1];
|
||
|
+ else if (p==2) c = X[1] + R* X[2];
|
||
|
+ else if (p==3) c = X[1] + R*(X[2] + R* X[3]);
|
||
|
+ else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
|
||
|
+ }
|
||
|
+ else {
|
||
|
+ for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
|
||
|
+ {a *= TWO; z[1] *= TWO; }
|
||
|
+
|
||
|
+ for (i=2; i<5; i++) {
|
||
|
+ z[i] = X[i]*a;
|
||
|
+ u = (z[i] + CUTTER)-CUTTER;
|
||
|
+ if (u > z[i]) u -= RADIX;
|
||
|
+ z[i] -= u;
|
||
|
+ z[i-1] += u*RADIXI;
|
||
|
+ }
|
||
|
+
|
||
|
+ u = (z[3] + TWO71) - TWO71;
|
||
|
+ if (u > z[3]) u -= TWO19;
|
||
|
+ v = z[3]-u;
|
||
|
+
|
||
|
+ if (v == TWO18) {
|
||
|
+ if (z[4] == ZERO) {
|
||
|
+ for (i=5; i <= p; i++) {
|
||
|
+ if (X[i] == ZERO) continue;
|
||
|
+ else {z[3] += ONE; break; }
|
||
|
+ }
|
||
|
+ }
|
||
|
+ else z[3] += ONE;
|
||
|
+ }
|
||
|
+
|
||
|
+ c = (z[1] + R *(z[2] + R * z[3]))/a;
|
||
|
+ }
|
||
|
+
|
||
|
+ c *= X[0];
|
||
|
+
|
||
|
+ for (i=1; i<EX; i++) c *= RADIX;
|
||
|
+ for (i=1; i>EX; i--) c *= RADIXI;
|
||
|
+
|
||
|
+ *y = c;
|
||
|
+ return;
|
||
|
+#undef R
|
||
|
+}
|
||
|
+
|
||
|
+/* Convert a multiple precision number *x into a double precision */
|
||
|
+/* number *y, denormalized case (|x| < 2**(-1022))) */
|
||
|
+static void denorm(const mp_no *x, double *y, int p)
|
||
|
+{
|
||
|
+ long i,k;
|
||
|
+ long p2 = p;
|
||
|
+ double c,u,z[5];
|
||
|
+#if 0
|
||
|
+ double a,v;
|
||
|
+#endif
|
||
|
+
|
||
|
+#define R radixi.d
|
||
|
+ if (EX<-44 || (EX==-44 && X[1]<TWO5))
|
||
|
+ { *y=ZERO; return; }
|
||
|
+
|
||
|
+ if (p2==1) {
|
||
|
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;}
|
||
|
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;}
|
||
|
+ else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
|
||
|
+ }
|
||
|
+ else if (p2==2) {
|
||
|
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;}
|
||
|
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;}
|
||
|
+ else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
|
||
|
+ }
|
||
|
+ else {
|
||
|
+ if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;}
|
||
|
+ else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;}
|
||
|
+ else {z[1]= TWO10; z[2]=ZERO; k=1;}
|
||
|
+ z[3] = X[k];
|
||
|
+ }
|
||
|
+
|
||
|
+ u = (z[3] + TWO57) - TWO57;
|
||
|
+ if (u > z[3]) u -= TWO5;
|
||
|
+
|
||
|
+ if (u==z[3]) {
|
||
|
+ for (i=k+1; i <= p2; i++) {
|
||
|
+ if (X[i] == ZERO) continue;
|
||
|
+ else {z[3] += ONE; break; }
|
||
|
+ }
|
||
|
+ }
|
||
|
+
|
||
|
+ c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
|
||
|
+
|
||
|
+ *y = c*TWOM1032;
|
||
|
+ return;
|
||
|
+
|
||
|
+#undef R
|
||
|
+}
|
||
|
+
|
||
|
+/* Convert a multiple precision number *x into a double precision number *y. */
|
||
|
+/* The result is correctly rounded to the nearest/even. *x is left unchanged */
|
||
|
+
|
||
|
+void __mp_dbl(const mp_no *x, double *y, int p) {
|
||
|
+#if 0
|
||
|
+ int i,k;
|
||
|
+ double a,c,u,v,z[5];
|
||
|
+#endif
|
||
|
+
|
||
|
+ if (X[0] == ZERO) {*y = ZERO; return; }
|
||
|
+
|
||
|
+ if (EX> -42) norm(x,y,p);
|
||
|
+ else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
|
||
|
+ else denorm(x,y,p);
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* dbl_mp() converts a double precision number x into a multiple precision */
|
||
|
+/* number *y. If the precision p is too small the result is truncated. x is */
|
||
|
+/* left unchanged. */
|
||
|
+
|
||
|
+void __dbl_mp(double x, mp_no *y, int p) {
|
||
|
+
|
||
|
+ long i,n;
|
||
|
+ long p2 = p;
|
||
|
+ double u;
|
||
|
+
|
||
|
+ /* Sign */
|
||
|
+ if (x == ZERO) {Y[0] = ZERO; return; }
|
||
|
+ else if (x > ZERO) Y[0] = ONE;
|
||
|
+ else {Y[0] = MONE; x=-x; }
|
||
|
+
|
||
|
+ /* Exponent */
|
||
|
+ for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI;
|
||
|
+ for ( ; x < ONE; EY -= ONE) x *= RADIX;
|
||
|
+
|
||
|
+ /* Digits */
|
||
|
+ n=MIN(p2,4);
|
||
|
+ for (i=1; i<=n; i++) {
|
||
|
+ u = (x + TWO52) - TWO52;
|
||
|
+ if (u>x) u -= ONE;
|
||
|
+ Y[i] = u; x -= u; x *= RADIX; }
|
||
|
+ for ( ; i<=p2; i++) Y[i] = ZERO;
|
||
|
+ return;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* add_magnitudes() adds the magnitudes of *x & *y assuming that */
|
||
|
+/* abs(*x) >= abs(*y) > 0. */
|
||
|
+/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
|
||
|
+/* No guard digit is used. The result equals the exact sum, truncated. */
|
||
|
+/* *x & *y are left unchanged. */
|
||
|
+
|
||
|
+static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
+
|
||
|
+ long i,j,k;
|
||
|
+ long p2 = p;
|
||
|
+
|
||
|
+ EZ = EX;
|
||
|
+
|
||
|
+ i=p2; j=p2+ EY - EX; k=p2+1;
|
||
|
+
|
||
|
+ if (j<1)
|
||
|
+ {__cpy(x,z,p); return; }
|
||
|
+ else Z[k] = ZERO;
|
||
|
+
|
||
|
+ for (; j>0; i--,j--) {
|
||
|
+ Z[k] += X[i] + Y[j];
|
||
|
+ if (Z[k] >= RADIX) {
|
||
|
+ Z[k] -= RADIX;
|
||
|
+ Z[--k] = ONE; }
|
||
|
+ else
|
||
|
+ Z[--k] = ZERO;
|
||
|
+ }
|
||
|
+
|
||
|
+ for (; i>0; i--) {
|
||
|
+ Z[k] += X[i];
|
||
|
+ if (Z[k] >= RADIX) {
|
||
|
+ Z[k] -= RADIX;
|
||
|
+ Z[--k] = ONE; }
|
||
|
+ else
|
||
|
+ Z[--k] = ZERO;
|
||
|
+ }
|
||
|
+
|
||
|
+ if (Z[1] == ZERO) {
|
||
|
+ for (i=1; i<=p2; i++) Z[i] = Z[i+1]; }
|
||
|
+ else EZ += ONE;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */
|
||
|
+/* abs(*x) > abs(*y) > 0. */
|
||
|
+/* The sign of the difference *z is undefined. x&y may overlap but not x&z */
|
||
|
+/* or y&z. One guard digit is used. The error is less than one ulp. */
|
||
|
+/* *x & *y are left unchanged. */
|
||
|
+
|
||
|
+static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
+
|
||
|
+ long i,j,k;
|
||
|
+ long p2 = p;
|
||
|
+
|
||
|
+ EZ = EX;
|
||
|
+
|
||
|
+ if (EX == EY) {
|
||
|
+ i=j=k=p2;
|
||
|
+ Z[k] = Z[k+1] = ZERO; }
|
||
|
+ else {
|
||
|
+ j= EX - EY;
|
||
|
+ if (j > p2) {__cpy(x,z,p); return; }
|
||
|
+ else {
|
||
|
+ i=p2; j=p2+1-j; k=p2;
|
||
|
+ if (Y[j] > ZERO) {
|
||
|
+ Z[k+1] = RADIX - Y[j--];
|
||
|
+ Z[k] = MONE; }
|
||
|
+ else {
|
||
|
+ Z[k+1] = ZERO;
|
||
|
+ Z[k] = ZERO; j--;}
|
||
|
+ }
|
||
|
+ }
|
||
|
+
|
||
|
+ for (; j>0; i--,j--) {
|
||
|
+ Z[k] += (X[i] - Y[j]);
|
||
|
+ if (Z[k] < ZERO) {
|
||
|
+ Z[k] += RADIX;
|
||
|
+ Z[--k] = MONE; }
|
||
|
+ else
|
||
|
+ Z[--k] = ZERO;
|
||
|
+ }
|
||
|
+
|
||
|
+ for (; i>0; i--) {
|
||
|
+ Z[k] += X[i];
|
||
|
+ if (Z[k] < ZERO) {
|
||
|
+ Z[k] += RADIX;
|
||
|
+ Z[--k] = MONE; }
|
||
|
+ else
|
||
|
+ Z[--k] = ZERO;
|
||
|
+ }
|
||
|
+
|
||
|
+ for (i=1; Z[i] == ZERO; i++) ;
|
||
|
+ EZ = EZ - i + 1;
|
||
|
+ for (k=1; i <= p2+1; )
|
||
|
+ Z[k++] = Z[i++];
|
||
|
+ for (; k <= p2; )
|
||
|
+ Z[k++] = ZERO;
|
||
|
+
|
||
|
+ return;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */
|
||
|
+/* but not x&z or y&z. One guard digit is used. The error is less than */
|
||
|
+/* one ulp. *x & *y are left unchanged. */
|
||
|
+
|
||
|
+void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
+
|
||
|
+ int n;
|
||
|
+
|
||
|
+ if (X[0] == ZERO) {__cpy(y,z,p); return; }
|
||
|
+ else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
|
||
|
+
|
||
|
+ if (X[0] == Y[0]) {
|
||
|
+ if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
+ else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; }
|
||
|
+ }
|
||
|
+ else {
|
||
|
+ if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
+ else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; }
|
||
|
+ else Z[0] = ZERO;
|
||
|
+ }
|
||
|
+ return;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
|
||
|
+/* overlap but not x&z or y&z. One guard digit is used. The error is */
|
||
|
+/* less than one ulp. *x & *y are left unchanged. */
|
||
|
+
|
||
|
+void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
+
|
||
|
+ int n;
|
||
|
+
|
||
|
+ if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; }
|
||
|
+ else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
|
||
|
+
|
||
|
+ if (X[0] != Y[0]) {
|
||
|
+ if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
+ else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
|
||
|
+ }
|
||
|
+ else {
|
||
|
+ if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
+ else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
|
||
|
+ else Z[0] = ZERO;
|
||
|
+ }
|
||
|
+ return;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */
|
||
|
+/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */
|
||
|
+/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */
|
||
|
+/* *x & *y are left unchanged. */
|
||
|
+
|
||
|
+void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
+
|
||
|
+ long i, i1, i2, j, k, k2;
|
||
|
+ long p2 = p;
|
||
|
+ double u, zk, zk2;
|
||
|
+
|
||
|
+ /* Is z=0? */
|
||
|
+ if (X[0]*Y[0]==ZERO)
|
||
|
+ { Z[0]=ZERO; return; }
|
||
|
+
|
||
|
+ /* Multiply, add and carry */
|
||
|
+ k2 = (p2<3) ? p2+p2 : p2+3;
|
||
|
+ zk = Z[k2]=ZERO;
|
||
|
+ for (k=k2; k>1; ) {
|
||
|
+ if (k > p2) {i1=k-p2; i2=p2+1; }
|
||
|
+ else {i1=1; i2=k; }
|
||
|
+#if 1
|
||
|
+ /* rearange this inner loop to allow the fmadd instructions to be
|
||
|
+ independent and execute in parallel on processors that have
|
||
|
+ dual symetrical FP pipelines. */
|
||
|
+ if (i1 < (i2-1))
|
||
|
+ {
|
||
|
+ /* make sure we have at least 2 iterations */
|
||
|
+ if (((i2 - i1) & 1L) == 1L)
|
||
|
+ {
|
||
|
+ /* Handle the odd iterations case. */
|
||
|
+ zk2 = x->d[i2-1]*y->d[i1];
|
||
|
+ }
|
||
|
+ else
|
||
|
+ zk2 = zero.d;
|
||
|
+ /* Do two multiply/adds per loop iteration, using independent
|
||
|
+ accumulators; zk and zk2. */
|
||
|
+ for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2)
|
||
|
+ {
|
||
|
+ zk += x->d[i]*y->d[j];
|
||
|
+ zk2 += x->d[i+1]*y->d[j-1];
|
||
|
+ }
|
||
|
+ zk += zk2; /* final sum. */
|
||
|
+ }
|
||
|
+ else
|
||
|
+ {
|
||
|
+ /* Special case when iterations is 1. */
|
||
|
+ zk += x->d[i1]*y->d[i1];
|
||
|
+ }
|
||
|
+#else
|
||
|
+ /* The orginal code. */
|
||
|
+ for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j];
|
||
|
+#endif
|
||
|
+
|
||
|
+ u = (zk + CUTTER)-CUTTER;
|
||
|
+ if (u > zk) u -= RADIX;
|
||
|
+ Z[k] = zk - u;
|
||
|
+ zk = u*RADIXI;
|
||
|
+ --k;
|
||
|
+ }
|
||
|
+ Z[k] = zk;
|
||
|
+
|
||
|
+ /* Is there a carry beyond the most significant digit? */
|
||
|
+ if (Z[1] == ZERO) {
|
||
|
+ for (i=1; i<=p2; i++) Z[i]=Z[i+1];
|
||
|
+ EZ = EX + EY - 1; }
|
||
|
+ else
|
||
|
+ EZ = EX + EY;
|
||
|
+
|
||
|
+ Z[0] = X[0] * Y[0];
|
||
|
+ return;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* Invert a multiple precision number. Set *y = 1 / *x. */
|
||
|
+/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */
|
||
|
+/* 2.001*r**(1-p) for p>3. */
|
||
|
+/* *x=0 is not permissible. *x is left unchanged. */
|
||
|
+
|
||
|
+void __inv(const mp_no *x, mp_no *y, int p) {
|
||
|
+ long i;
|
||
|
+#if 0
|
||
|
+ int l;
|
||
|
+#endif
|
||
|
+ double t;
|
||
|
+ mp_no z,w;
|
||
|
+ static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
|
||
|
+ 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
|
||
|
+ const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
|
||
|
+
|
||
|
+ __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p);
|
||
|
+ t=ONE/t; __dbl_mp(t,y,p); EY -= EX;
|
||
|
+
|
||
|
+ for (i=0; i<np1[p]; i++) {
|
||
|
+ __cpy(y,&w,p);
|
||
|
+ __mul(x,&w,y,p);
|
||
|
+ __sub(&mptwo,y,&z,p);
|
||
|
+ __mul(&w,&z,y,p);
|
||
|
+ }
|
||
|
+ return;
|
||
|
+}
|
||
|
+
|
||
|
+
|
||
|
+/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
|
||
|
+/* are left unchanged. x&y may overlap but not x&z or y&z. */
|
||
|
+/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */
|
||
|
+/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */
|
||
|
+
|
||
|
+void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
+
|
||
|
+ mp_no w;
|
||
|
+
|
||
|
+ if (X[0] == ZERO) Z[0] = ZERO;
|
||
|
+ else {__inv(y,&w,p); __mul(x,&w,z,p);}
|
||
|
+ return;
|
||
|
+}
|
||
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/Implies glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/Implies
|
||
|
new file mode 100644
|
||
|
index 0000000..a372141
|
||
|
--- /dev/null
|
||
|
+++ glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/Implies
|
||
|
@@ -0,0 +1,2 @@
|
||
|
+powerpc/power4/fpu
|
||
|
+powerpc/power4
|
||
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/Makefile glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/Makefile
|
||
|
deleted file mode 100644
|
||
|
index f487ed6..0000000
|
||
|
--- glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/Makefile
|
||
|
+++ /dev/null
|
||
|
@@ -1,5 +0,0 @@
|
||
|
-# Makefile fragment for POWER4/5/5+ with FPU.
|
||
|
-
|
||
|
-ifeq ($(subdir),math)
|
||
|
-CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
|
||
|
-endif
|
||
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
|
||
|
deleted file mode 100644
|
||
|
index d15680e..0000000
|
||
|
--- glibc-2.17-c758a686/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
|
||
|
+++ /dev/null
|
||
|
@@ -1,548 +0,0 @@
|
||
|
-
|
||
|
-/*
|
||
|
- * IBM Accurate Mathematical Library
|
||
|
- * written by International Business Machines Corp.
|
||
|
- * Copyright (C) 2001, 2006 Free Software Foundation
|
||
|
- *
|
||
|
- * This program is free software; you can redistribute it and/or modify
|
||
|
- * it under the terms of the GNU Lesser General Public License as published by
|
||
|
- * the Free Software Foundation; either version 2.1 of the License, or
|
||
|
- * (at your option) any later version.
|
||
|
- *
|
||
|
- * This program is distributed in the hope that it will be useful,
|
||
|
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
- * GNU Lesser General Public License for more details.
|
||
|
- *
|
||
|
- * You should have received a copy of the GNU Lesser General Public License
|
||
|
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
- */
|
||
|
-/************************************************************************/
|
||
|
-/* MODULE_NAME: mpa.c */
|
||
|
-/* */
|
||
|
-/* FUNCTIONS: */
|
||
|
-/* mcr */
|
||
|
-/* acr */
|
||
|
-/* cr */
|
||
|
-/* cpy */
|
||
|
-/* cpymn */
|
||
|
-/* norm */
|
||
|
-/* denorm */
|
||
|
-/* mp_dbl */
|
||
|
-/* dbl_mp */
|
||
|
-/* add_magnitudes */
|
||
|
-/* sub_magnitudes */
|
||
|
-/* add */
|
||
|
-/* sub */
|
||
|
-/* mul */
|
||
|
-/* inv */
|
||
|
-/* dvd */
|
||
|
-/* */
|
||
|
-/* Arithmetic functions for multiple precision numbers. */
|
||
|
-/* Relative errors are bounded */
|
||
|
-/************************************************************************/
|
||
|
-
|
||
|
-
|
||
|
-#include "endian.h"
|
||
|
-#include "mpa.h"
|
||
|
-#include "mpa2.h"
|
||
|
-#include <sys/param.h> /* For MIN() */
|
||
|
-/* mcr() compares the sizes of the mantissas of two multiple precision */
|
||
|
-/* numbers. Mantissas are compared regardless of the signs of the */
|
||
|
-/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */
|
||
|
-/* disregarded. */
|
||
|
-static int mcr(const mp_no *x, const mp_no *y, int p) {
|
||
|
- long i;
|
||
|
- long p2 = p;
|
||
|
- for (i=1; i<=p2; i++) {
|
||
|
- if (X[i] == Y[i]) continue;
|
||
|
- else if (X[i] > Y[i]) return 1;
|
||
|
- else return -1; }
|
||
|
- return 0;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-
|
||
|
-/* acr() compares the absolute values of two multiple precision numbers */
|
||
|
-int __acr(const mp_no *x, const mp_no *y, int p) {
|
||
|
- long i;
|
||
|
-
|
||
|
- if (X[0] == ZERO) {
|
||
|
- if (Y[0] == ZERO) i= 0;
|
||
|
- else i=-1;
|
||
|
- }
|
||
|
- else if (Y[0] == ZERO) i= 1;
|
||
|
- else {
|
||
|
- if (EX > EY) i= 1;
|
||
|
- else if (EX < EY) i=-1;
|
||
|
- else i= mcr(x,y,p);
|
||
|
- }
|
||
|
-
|
||
|
- return i;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* cr90 compares the values of two multiple precision numbers */
|
||
|
-int __cr(const mp_no *x, const mp_no *y, int p) {
|
||
|
- int i;
|
||
|
-
|
||
|
- if (X[0] > Y[0]) i= 1;
|
||
|
- else if (X[0] < Y[0]) i=-1;
|
||
|
- else if (X[0] < ZERO ) i= __acr(y,x,p);
|
||
|
- else i= __acr(x,y,p);
|
||
|
-
|
||
|
- return i;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
|
||
|
-void __cpy(const mp_no *x, mp_no *y, int p) {
|
||
|
- long i;
|
||
|
-
|
||
|
- EY = EX;
|
||
|
- for (i=0; i <= p; i++) Y[i] = X[i];
|
||
|
-
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Copy a multiple precision number x of precision m into a */
|
||
|
-/* multiple precision number y of precision n. In case n>m, */
|
||
|
-/* the digits of y beyond the m'th are set to zero. In case */
|
||
|
-/* n<m, the digits of x beyond the n'th are ignored. */
|
||
|
-/* x=y is permissible. */
|
||
|
-
|
||
|
-void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
|
||
|
-
|
||
|
- long i,k;
|
||
|
- long n2 = n;
|
||
|
- long m2 = m;
|
||
|
-
|
||
|
- EY = EX; k=MIN(m2,n2);
|
||
|
- for (i=0; i <= k; i++) Y[i] = X[i];
|
||
|
- for ( ; i <= n2; i++) Y[i] = ZERO;
|
||
|
-
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-/* Convert a multiple precision number *x into a double precision */
|
||
|
-/* number *y, normalized case (|x| >= 2**(-1022))) */
|
||
|
-static void norm(const mp_no *x, double *y, int p)
|
||
|
-{
|
||
|
- #define R radixi.d
|
||
|
- long i;
|
||
|
-#if 0
|
||
|
- int k;
|
||
|
-#endif
|
||
|
- double a,c,u,v,z[5];
|
||
|
- if (p<5) {
|
||
|
- if (p==1) c = X[1];
|
||
|
- else if (p==2) c = X[1] + R* X[2];
|
||
|
- else if (p==3) c = X[1] + R*(X[2] + R* X[3]);
|
||
|
- else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
|
||
|
- }
|
||
|
- else {
|
||
|
- for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
|
||
|
- {a *= TWO; z[1] *= TWO; }
|
||
|
-
|
||
|
- for (i=2; i<5; i++) {
|
||
|
- z[i] = X[i]*a;
|
||
|
- u = (z[i] + CUTTER)-CUTTER;
|
||
|
- if (u > z[i]) u -= RADIX;
|
||
|
- z[i] -= u;
|
||
|
- z[i-1] += u*RADIXI;
|
||
|
- }
|
||
|
-
|
||
|
- u = (z[3] + TWO71) - TWO71;
|
||
|
- if (u > z[3]) u -= TWO19;
|
||
|
- v = z[3]-u;
|
||
|
-
|
||
|
- if (v == TWO18) {
|
||
|
- if (z[4] == ZERO) {
|
||
|
- for (i=5; i <= p; i++) {
|
||
|
- if (X[i] == ZERO) continue;
|
||
|
- else {z[3] += ONE; break; }
|
||
|
- }
|
||
|
- }
|
||
|
- else z[3] += ONE;
|
||
|
- }
|
||
|
-
|
||
|
- c = (z[1] + R *(z[2] + R * z[3]))/a;
|
||
|
- }
|
||
|
-
|
||
|
- c *= X[0];
|
||
|
-
|
||
|
- for (i=1; i<EX; i++) c *= RADIX;
|
||
|
- for (i=1; i>EX; i--) c *= RADIXI;
|
||
|
-
|
||
|
- *y = c;
|
||
|
- return;
|
||
|
-#undef R
|
||
|
-}
|
||
|
-
|
||
|
-/* Convert a multiple precision number *x into a double precision */
|
||
|
-/* number *y, denormalized case (|x| < 2**(-1022))) */
|
||
|
-static void denorm(const mp_no *x, double *y, int p)
|
||
|
-{
|
||
|
- long i,k;
|
||
|
- long p2 = p;
|
||
|
- double c,u,z[5];
|
||
|
-#if 0
|
||
|
- double a,v;
|
||
|
-#endif
|
||
|
-
|
||
|
-#define R radixi.d
|
||
|
- if (EX<-44 || (EX==-44 && X[1]<TWO5))
|
||
|
- { *y=ZERO; return; }
|
||
|
-
|
||
|
- if (p2==1) {
|
||
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;}
|
||
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;}
|
||
|
- else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
|
||
|
- }
|
||
|
- else if (p2==2) {
|
||
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;}
|
||
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;}
|
||
|
- else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
|
||
|
- }
|
||
|
- else {
|
||
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;}
|
||
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;}
|
||
|
- else {z[1]= TWO10; z[2]=ZERO; k=1;}
|
||
|
- z[3] = X[k];
|
||
|
- }
|
||
|
-
|
||
|
- u = (z[3] + TWO57) - TWO57;
|
||
|
- if (u > z[3]) u -= TWO5;
|
||
|
-
|
||
|
- if (u==z[3]) {
|
||
|
- for (i=k+1; i <= p2; i++) {
|
||
|
- if (X[i] == ZERO) continue;
|
||
|
- else {z[3] += ONE; break; }
|
||
|
- }
|
||
|
- }
|
||
|
-
|
||
|
- c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
|
||
|
-
|
||
|
- *y = c*TWOM1032;
|
||
|
- return;
|
||
|
-
|
||
|
-#undef R
|
||
|
-}
|
||
|
-
|
||
|
-/* Convert a multiple precision number *x into a double precision number *y. */
|
||
|
-/* The result is correctly rounded to the nearest/even. *x is left unchanged */
|
||
|
-
|
||
|
-void __mp_dbl(const mp_no *x, double *y, int p) {
|
||
|
-#if 0
|
||
|
- int i,k;
|
||
|
- double a,c,u,v,z[5];
|
||
|
-#endif
|
||
|
-
|
||
|
- if (X[0] == ZERO) {*y = ZERO; return; }
|
||
|
-
|
||
|
- if (EX> -42) norm(x,y,p);
|
||
|
- else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
|
||
|
- else denorm(x,y,p);
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* dbl_mp() converts a double precision number x into a multiple precision */
|
||
|
-/* number *y. If the precision p is too small the result is truncated. x is */
|
||
|
-/* left unchanged. */
|
||
|
-
|
||
|
-void __dbl_mp(double x, mp_no *y, int p) {
|
||
|
-
|
||
|
- long i,n;
|
||
|
- long p2 = p;
|
||
|
- double u;
|
||
|
-
|
||
|
- /* Sign */
|
||
|
- if (x == ZERO) {Y[0] = ZERO; return; }
|
||
|
- else if (x > ZERO) Y[0] = ONE;
|
||
|
- else {Y[0] = MONE; x=-x; }
|
||
|
-
|
||
|
- /* Exponent */
|
||
|
- for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI;
|
||
|
- for ( ; x < ONE; EY -= ONE) x *= RADIX;
|
||
|
-
|
||
|
- /* Digits */
|
||
|
- n=MIN(p2,4);
|
||
|
- for (i=1; i<=n; i++) {
|
||
|
- u = (x + TWO52) - TWO52;
|
||
|
- if (u>x) u -= ONE;
|
||
|
- Y[i] = u; x -= u; x *= RADIX; }
|
||
|
- for ( ; i<=p2; i++) Y[i] = ZERO;
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* add_magnitudes() adds the magnitudes of *x & *y assuming that */
|
||
|
-/* abs(*x) >= abs(*y) > 0. */
|
||
|
-/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
|
||
|
-/* No guard digit is used. The result equals the exact sum, truncated. */
|
||
|
-/* *x & *y are left unchanged. */
|
||
|
-
|
||
|
-static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- long i,j,k;
|
||
|
- long p2 = p;
|
||
|
-
|
||
|
- EZ = EX;
|
||
|
-
|
||
|
- i=p2; j=p2+ EY - EX; k=p2+1;
|
||
|
-
|
||
|
- if (j<1)
|
||
|
- {__cpy(x,z,p); return; }
|
||
|
- else Z[k] = ZERO;
|
||
|
-
|
||
|
- for (; j>0; i--,j--) {
|
||
|
- Z[k] += X[i] + Y[j];
|
||
|
- if (Z[k] >= RADIX) {
|
||
|
- Z[k] -= RADIX;
|
||
|
- Z[--k] = ONE; }
|
||
|
- else
|
||
|
- Z[--k] = ZERO;
|
||
|
- }
|
||
|
-
|
||
|
- for (; i>0; i--) {
|
||
|
- Z[k] += X[i];
|
||
|
- if (Z[k] >= RADIX) {
|
||
|
- Z[k] -= RADIX;
|
||
|
- Z[--k] = ONE; }
|
||
|
- else
|
||
|
- Z[--k] = ZERO;
|
||
|
- }
|
||
|
-
|
||
|
- if (Z[1] == ZERO) {
|
||
|
- for (i=1; i<=p2; i++) Z[i] = Z[i+1]; }
|
||
|
- else EZ += ONE;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */
|
||
|
-/* abs(*x) > abs(*y) > 0. */
|
||
|
-/* The sign of the difference *z is undefined. x&y may overlap but not x&z */
|
||
|
-/* or y&z. One guard digit is used. The error is less than one ulp. */
|
||
|
-/* *x & *y are left unchanged. */
|
||
|
-
|
||
|
-static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- long i,j,k;
|
||
|
- long p2 = p;
|
||
|
-
|
||
|
- EZ = EX;
|
||
|
-
|
||
|
- if (EX == EY) {
|
||
|
- i=j=k=p2;
|
||
|
- Z[k] = Z[k+1] = ZERO; }
|
||
|
- else {
|
||
|
- j= EX - EY;
|
||
|
- if (j > p2) {__cpy(x,z,p); return; }
|
||
|
- else {
|
||
|
- i=p2; j=p2+1-j; k=p2;
|
||
|
- if (Y[j] > ZERO) {
|
||
|
- Z[k+1] = RADIX - Y[j--];
|
||
|
- Z[k] = MONE; }
|
||
|
- else {
|
||
|
- Z[k+1] = ZERO;
|
||
|
- Z[k] = ZERO; j--;}
|
||
|
- }
|
||
|
- }
|
||
|
-
|
||
|
- for (; j>0; i--,j--) {
|
||
|
- Z[k] += (X[i] - Y[j]);
|
||
|
- if (Z[k] < ZERO) {
|
||
|
- Z[k] += RADIX;
|
||
|
- Z[--k] = MONE; }
|
||
|
- else
|
||
|
- Z[--k] = ZERO;
|
||
|
- }
|
||
|
-
|
||
|
- for (; i>0; i--) {
|
||
|
- Z[k] += X[i];
|
||
|
- if (Z[k] < ZERO) {
|
||
|
- Z[k] += RADIX;
|
||
|
- Z[--k] = MONE; }
|
||
|
- else
|
||
|
- Z[--k] = ZERO;
|
||
|
- }
|
||
|
-
|
||
|
- for (i=1; Z[i] == ZERO; i++) ;
|
||
|
- EZ = EZ - i + 1;
|
||
|
- for (k=1; i <= p2+1; )
|
||
|
- Z[k++] = Z[i++];
|
||
|
- for (; k <= p2; )
|
||
|
- Z[k++] = ZERO;
|
||
|
-
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */
|
||
|
-/* but not x&z or y&z. One guard digit is used. The error is less than */
|
||
|
-/* one ulp. *x & *y are left unchanged. */
|
||
|
-
|
||
|
-void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- int n;
|
||
|
-
|
||
|
- if (X[0] == ZERO) {__cpy(y,z,p); return; }
|
||
|
- else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
|
||
|
-
|
||
|
- if (X[0] == Y[0]) {
|
||
|
- if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
- else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; }
|
||
|
- }
|
||
|
- else {
|
||
|
- if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
- else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; }
|
||
|
- else Z[0] = ZERO;
|
||
|
- }
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
|
||
|
-/* overlap but not x&z or y&z. One guard digit is used. The error is */
|
||
|
-/* less than one ulp. *x & *y are left unchanged. */
|
||
|
-
|
||
|
-void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- int n;
|
||
|
-
|
||
|
- if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; }
|
||
|
- else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
|
||
|
-
|
||
|
- if (X[0] != Y[0]) {
|
||
|
- if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
- else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
|
||
|
- }
|
||
|
- else {
|
||
|
- if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
- else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
|
||
|
- else Z[0] = ZERO;
|
||
|
- }
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */
|
||
|
-/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */
|
||
|
-/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */
|
||
|
-/* *x & *y are left unchanged. */
|
||
|
-
|
||
|
-void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- long i, i1, i2, j, k, k2;
|
||
|
- long p2 = p;
|
||
|
- double u, zk, zk2;
|
||
|
-
|
||
|
- /* Is z=0? */
|
||
|
- if (X[0]*Y[0]==ZERO)
|
||
|
- { Z[0]=ZERO; return; }
|
||
|
-
|
||
|
- /* Multiply, add and carry */
|
||
|
- k2 = (p2<3) ? p2+p2 : p2+3;
|
||
|
- zk = Z[k2]=ZERO;
|
||
|
- for (k=k2; k>1; ) {
|
||
|
- if (k > p2) {i1=k-p2; i2=p2+1; }
|
||
|
- else {i1=1; i2=k; }
|
||
|
-#if 1
|
||
|
- /* rearange this inner loop to allow the fmadd instructions to be
|
||
|
- independent and execute in parallel on processors that have
|
||
|
- dual symetrical FP pipelines. */
|
||
|
- if (i1 < (i2-1))
|
||
|
- {
|
||
|
- /* make sure we have at least 2 iterations */
|
||
|
- if (((i2 - i1) & 1L) == 1L)
|
||
|
- {
|
||
|
- /* Handle the odd iterations case. */
|
||
|
- zk2 = x->d[i2-1]*y->d[i1];
|
||
|
- }
|
||
|
- else
|
||
|
- zk2 = zero.d;
|
||
|
- /* Do two multiply/adds per loop iteration, using independent
|
||
|
- accumulators; zk and zk2. */
|
||
|
- for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2)
|
||
|
- {
|
||
|
- zk += x->d[i]*y->d[j];
|
||
|
- zk2 += x->d[i+1]*y->d[j-1];
|
||
|
- }
|
||
|
- zk += zk2; /* final sum. */
|
||
|
- }
|
||
|
- else
|
||
|
- {
|
||
|
- /* Special case when iterations is 1. */
|
||
|
- zk += x->d[i1]*y->d[i1];
|
||
|
- }
|
||
|
-#else
|
||
|
- /* The orginal code. */
|
||
|
- for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j];
|
||
|
-#endif
|
||
|
-
|
||
|
- u = (zk + CUTTER)-CUTTER;
|
||
|
- if (u > zk) u -= RADIX;
|
||
|
- Z[k] = zk - u;
|
||
|
- zk = u*RADIXI;
|
||
|
- --k;
|
||
|
- }
|
||
|
- Z[k] = zk;
|
||
|
-
|
||
|
- /* Is there a carry beyond the most significant digit? */
|
||
|
- if (Z[1] == ZERO) {
|
||
|
- for (i=1; i<=p2; i++) Z[i]=Z[i+1];
|
||
|
- EZ = EX + EY - 1; }
|
||
|
- else
|
||
|
- EZ = EX + EY;
|
||
|
-
|
||
|
- Z[0] = X[0] * Y[0];
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Invert a multiple precision number. Set *y = 1 / *x. */
|
||
|
-/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */
|
||
|
-/* 2.001*r**(1-p) for p>3. */
|
||
|
-/* *x=0 is not permissible. *x is left unchanged. */
|
||
|
-
|
||
|
-void __inv(const mp_no *x, mp_no *y, int p) {
|
||
|
- long i;
|
||
|
-#if 0
|
||
|
- int l;
|
||
|
-#endif
|
||
|
- double t;
|
||
|
- mp_no z,w;
|
||
|
- static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
|
||
|
- 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
|
||
|
- const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
|
||
|
-
|
||
|
- __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p);
|
||
|
- t=ONE/t; __dbl_mp(t,y,p); EY -= EX;
|
||
|
-
|
||
|
- for (i=0; i<np1[p]; i++) {
|
||
|
- __cpy(y,&w,p);
|
||
|
- __mul(x,&w,y,p);
|
||
|
- __sub(&mptwo,y,&z,p);
|
||
|
- __mul(&w,&z,y,p);
|
||
|
- }
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
|
||
|
-/* are left unchanged. x&y may overlap but not x&z or y&z. */
|
||
|
-/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */
|
||
|
-/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */
|
||
|
-
|
||
|
-void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- mp_no w;
|
||
|
-
|
||
|
- if (X[0] == ZERO) Z[0] = ZERO;
|
||
|
- else {__inv(y,&w,p); __mul(x,&w,z,p);}
|
||
|
- return;
|
||
|
-}
|
||
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/Implies glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/Implies
|
||
|
new file mode 100644
|
||
|
index 0000000..a372141
|
||
|
--- /dev/null
|
||
|
+++ glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/Implies
|
||
|
@@ -0,0 +1,2 @@
|
||
|
+powerpc/power4/fpu
|
||
|
+powerpc/power4
|
||
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/Makefile glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/Makefile
|
||
|
deleted file mode 100644
|
||
|
index f8bb3ef..0000000
|
||
|
--- glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/Makefile
|
||
|
+++ /dev/null
|
||
|
@@ -1,5 +0,0 @@
|
||
|
-# Makefile fragment for POWER4/5/5+ platforms with FPU.
|
||
|
-
|
||
|
-ifeq ($(subdir),math)
|
||
|
-CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
|
||
|
-endif
|
||
|
diff --git glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
|
||
|
deleted file mode 100644
|
||
|
index d15680e..0000000
|
||
|
--- glibc-2.17-c758a686/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
|
||
|
+++ /dev/null
|
||
|
@@ -1,548 +0,0 @@
|
||
|
-
|
||
|
-/*
|
||
|
- * IBM Accurate Mathematical Library
|
||
|
- * written by International Business Machines Corp.
|
||
|
- * Copyright (C) 2001, 2006 Free Software Foundation
|
||
|
- *
|
||
|
- * This program is free software; you can redistribute it and/or modify
|
||
|
- * it under the terms of the GNU Lesser General Public License as published by
|
||
|
- * the Free Software Foundation; either version 2.1 of the License, or
|
||
|
- * (at your option) any later version.
|
||
|
- *
|
||
|
- * This program is distributed in the hope that it will be useful,
|
||
|
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
- * GNU Lesser General Public License for more details.
|
||
|
- *
|
||
|
- * You should have received a copy of the GNU Lesser General Public License
|
||
|
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
- */
|
||
|
-/************************************************************************/
|
||
|
-/* MODULE_NAME: mpa.c */
|
||
|
-/* */
|
||
|
-/* FUNCTIONS: */
|
||
|
-/* mcr */
|
||
|
-/* acr */
|
||
|
-/* cr */
|
||
|
-/* cpy */
|
||
|
-/* cpymn */
|
||
|
-/* norm */
|
||
|
-/* denorm */
|
||
|
-/* mp_dbl */
|
||
|
-/* dbl_mp */
|
||
|
-/* add_magnitudes */
|
||
|
-/* sub_magnitudes */
|
||
|
-/* add */
|
||
|
-/* sub */
|
||
|
-/* mul */
|
||
|
-/* inv */
|
||
|
-/* dvd */
|
||
|
-/* */
|
||
|
-/* Arithmetic functions for multiple precision numbers. */
|
||
|
-/* Relative errors are bounded */
|
||
|
-/************************************************************************/
|
||
|
-
|
||
|
-
|
||
|
-#include "endian.h"
|
||
|
-#include "mpa.h"
|
||
|
-#include "mpa2.h"
|
||
|
-#include <sys/param.h> /* For MIN() */
|
||
|
-/* mcr() compares the sizes of the mantissas of two multiple precision */
|
||
|
-/* numbers. Mantissas are compared regardless of the signs of the */
|
||
|
-/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */
|
||
|
-/* disregarded. */
|
||
|
-static int mcr(const mp_no *x, const mp_no *y, int p) {
|
||
|
- long i;
|
||
|
- long p2 = p;
|
||
|
- for (i=1; i<=p2; i++) {
|
||
|
- if (X[i] == Y[i]) continue;
|
||
|
- else if (X[i] > Y[i]) return 1;
|
||
|
- else return -1; }
|
||
|
- return 0;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-
|
||
|
-/* acr() compares the absolute values of two multiple precision numbers */
|
||
|
-int __acr(const mp_no *x, const mp_no *y, int p) {
|
||
|
- long i;
|
||
|
-
|
||
|
- if (X[0] == ZERO) {
|
||
|
- if (Y[0] == ZERO) i= 0;
|
||
|
- else i=-1;
|
||
|
- }
|
||
|
- else if (Y[0] == ZERO) i= 1;
|
||
|
- else {
|
||
|
- if (EX > EY) i= 1;
|
||
|
- else if (EX < EY) i=-1;
|
||
|
- else i= mcr(x,y,p);
|
||
|
- }
|
||
|
-
|
||
|
- return i;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* cr90 compares the values of two multiple precision numbers */
|
||
|
-int __cr(const mp_no *x, const mp_no *y, int p) {
|
||
|
- int i;
|
||
|
-
|
||
|
- if (X[0] > Y[0]) i= 1;
|
||
|
- else if (X[0] < Y[0]) i=-1;
|
||
|
- else if (X[0] < ZERO ) i= __acr(y,x,p);
|
||
|
- else i= __acr(x,y,p);
|
||
|
-
|
||
|
- return i;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
|
||
|
-void __cpy(const mp_no *x, mp_no *y, int p) {
|
||
|
- long i;
|
||
|
-
|
||
|
- EY = EX;
|
||
|
- for (i=0; i <= p; i++) Y[i] = X[i];
|
||
|
-
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Copy a multiple precision number x of precision m into a */
|
||
|
-/* multiple precision number y of precision n. In case n>m, */
|
||
|
-/* the digits of y beyond the m'th are set to zero. In case */
|
||
|
-/* n<m, the digits of x beyond the n'th are ignored. */
|
||
|
-/* x=y is permissible. */
|
||
|
-
|
||
|
-void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
|
||
|
-
|
||
|
- long i,k;
|
||
|
- long n2 = n;
|
||
|
- long m2 = m;
|
||
|
-
|
||
|
- EY = EX; k=MIN(m2,n2);
|
||
|
- for (i=0; i <= k; i++) Y[i] = X[i];
|
||
|
- for ( ; i <= n2; i++) Y[i] = ZERO;
|
||
|
-
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-/* Convert a multiple precision number *x into a double precision */
|
||
|
-/* number *y, normalized case (|x| >= 2**(-1022))) */
|
||
|
-static void norm(const mp_no *x, double *y, int p)
|
||
|
-{
|
||
|
- #define R radixi.d
|
||
|
- long i;
|
||
|
-#if 0
|
||
|
- int k;
|
||
|
-#endif
|
||
|
- double a,c,u,v,z[5];
|
||
|
- if (p<5) {
|
||
|
- if (p==1) c = X[1];
|
||
|
- else if (p==2) c = X[1] + R* X[2];
|
||
|
- else if (p==3) c = X[1] + R*(X[2] + R* X[3]);
|
||
|
- else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
|
||
|
- }
|
||
|
- else {
|
||
|
- for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
|
||
|
- {a *= TWO; z[1] *= TWO; }
|
||
|
-
|
||
|
- for (i=2; i<5; i++) {
|
||
|
- z[i] = X[i]*a;
|
||
|
- u = (z[i] + CUTTER)-CUTTER;
|
||
|
- if (u > z[i]) u -= RADIX;
|
||
|
- z[i] -= u;
|
||
|
- z[i-1] += u*RADIXI;
|
||
|
- }
|
||
|
-
|
||
|
- u = (z[3] + TWO71) - TWO71;
|
||
|
- if (u > z[3]) u -= TWO19;
|
||
|
- v = z[3]-u;
|
||
|
-
|
||
|
- if (v == TWO18) {
|
||
|
- if (z[4] == ZERO) {
|
||
|
- for (i=5; i <= p; i++) {
|
||
|
- if (X[i] == ZERO) continue;
|
||
|
- else {z[3] += ONE; break; }
|
||
|
- }
|
||
|
- }
|
||
|
- else z[3] += ONE;
|
||
|
- }
|
||
|
-
|
||
|
- c = (z[1] + R *(z[2] + R * z[3]))/a;
|
||
|
- }
|
||
|
-
|
||
|
- c *= X[0];
|
||
|
-
|
||
|
- for (i=1; i<EX; i++) c *= RADIX;
|
||
|
- for (i=1; i>EX; i--) c *= RADIXI;
|
||
|
-
|
||
|
- *y = c;
|
||
|
- return;
|
||
|
-#undef R
|
||
|
-}
|
||
|
-
|
||
|
-/* Convert a multiple precision number *x into a double precision */
|
||
|
-/* number *y, denormalized case (|x| < 2**(-1022))) */
|
||
|
-static void denorm(const mp_no *x, double *y, int p)
|
||
|
-{
|
||
|
- long i,k;
|
||
|
- long p2 = p;
|
||
|
- double c,u,z[5];
|
||
|
-#if 0
|
||
|
- double a,v;
|
||
|
-#endif
|
||
|
-
|
||
|
-#define R radixi.d
|
||
|
- if (EX<-44 || (EX==-44 && X[1]<TWO5))
|
||
|
- { *y=ZERO; return; }
|
||
|
-
|
||
|
- if (p2==1) {
|
||
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;}
|
||
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;}
|
||
|
- else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
|
||
|
- }
|
||
|
- else if (p2==2) {
|
||
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;}
|
||
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;}
|
||
|
- else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
|
||
|
- }
|
||
|
- else {
|
||
|
- if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;}
|
||
|
- else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;}
|
||
|
- else {z[1]= TWO10; z[2]=ZERO; k=1;}
|
||
|
- z[3] = X[k];
|
||
|
- }
|
||
|
-
|
||
|
- u = (z[3] + TWO57) - TWO57;
|
||
|
- if (u > z[3]) u -= TWO5;
|
||
|
-
|
||
|
- if (u==z[3]) {
|
||
|
- for (i=k+1; i <= p2; i++) {
|
||
|
- if (X[i] == ZERO) continue;
|
||
|
- else {z[3] += ONE; break; }
|
||
|
- }
|
||
|
- }
|
||
|
-
|
||
|
- c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
|
||
|
-
|
||
|
- *y = c*TWOM1032;
|
||
|
- return;
|
||
|
-
|
||
|
-#undef R
|
||
|
-}
|
||
|
-
|
||
|
-/* Convert a multiple precision number *x into a double precision number *y. */
|
||
|
-/* The result is correctly rounded to the nearest/even. *x is left unchanged */
|
||
|
-
|
||
|
-void __mp_dbl(const mp_no *x, double *y, int p) {
|
||
|
-#if 0
|
||
|
- int i,k;
|
||
|
- double a,c,u,v,z[5];
|
||
|
-#endif
|
||
|
-
|
||
|
- if (X[0] == ZERO) {*y = ZERO; return; }
|
||
|
-
|
||
|
- if (EX> -42) norm(x,y,p);
|
||
|
- else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
|
||
|
- else denorm(x,y,p);
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* dbl_mp() converts a double precision number x into a multiple precision */
|
||
|
-/* number *y. If the precision p is too small the result is truncated. x is */
|
||
|
-/* left unchanged. */
|
||
|
-
|
||
|
-void __dbl_mp(double x, mp_no *y, int p) {
|
||
|
-
|
||
|
- long i,n;
|
||
|
- long p2 = p;
|
||
|
- double u;
|
||
|
-
|
||
|
- /* Sign */
|
||
|
- if (x == ZERO) {Y[0] = ZERO; return; }
|
||
|
- else if (x > ZERO) Y[0] = ONE;
|
||
|
- else {Y[0] = MONE; x=-x; }
|
||
|
-
|
||
|
- /* Exponent */
|
||
|
- for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI;
|
||
|
- for ( ; x < ONE; EY -= ONE) x *= RADIX;
|
||
|
-
|
||
|
- /* Digits */
|
||
|
- n=MIN(p2,4);
|
||
|
- for (i=1; i<=n; i++) {
|
||
|
- u = (x + TWO52) - TWO52;
|
||
|
- if (u>x) u -= ONE;
|
||
|
- Y[i] = u; x -= u; x *= RADIX; }
|
||
|
- for ( ; i<=p2; i++) Y[i] = ZERO;
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* add_magnitudes() adds the magnitudes of *x & *y assuming that */
|
||
|
-/* abs(*x) >= abs(*y) > 0. */
|
||
|
-/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
|
||
|
-/* No guard digit is used. The result equals the exact sum, truncated. */
|
||
|
-/* *x & *y are left unchanged. */
|
||
|
-
|
||
|
-static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- long i,j,k;
|
||
|
- long p2 = p;
|
||
|
-
|
||
|
- EZ = EX;
|
||
|
-
|
||
|
- i=p2; j=p2+ EY - EX; k=p2+1;
|
||
|
-
|
||
|
- if (j<1)
|
||
|
- {__cpy(x,z,p); return; }
|
||
|
- else Z[k] = ZERO;
|
||
|
-
|
||
|
- for (; j>0; i--,j--) {
|
||
|
- Z[k] += X[i] + Y[j];
|
||
|
- if (Z[k] >= RADIX) {
|
||
|
- Z[k] -= RADIX;
|
||
|
- Z[--k] = ONE; }
|
||
|
- else
|
||
|
- Z[--k] = ZERO;
|
||
|
- }
|
||
|
-
|
||
|
- for (; i>0; i--) {
|
||
|
- Z[k] += X[i];
|
||
|
- if (Z[k] >= RADIX) {
|
||
|
- Z[k] -= RADIX;
|
||
|
- Z[--k] = ONE; }
|
||
|
- else
|
||
|
- Z[--k] = ZERO;
|
||
|
- }
|
||
|
-
|
||
|
- if (Z[1] == ZERO) {
|
||
|
- for (i=1; i<=p2; i++) Z[i] = Z[i+1]; }
|
||
|
- else EZ += ONE;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */
|
||
|
-/* abs(*x) > abs(*y) > 0. */
|
||
|
-/* The sign of the difference *z is undefined. x&y may overlap but not x&z */
|
||
|
-/* or y&z. One guard digit is used. The error is less than one ulp. */
|
||
|
-/* *x & *y are left unchanged. */
|
||
|
-
|
||
|
-static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- long i,j,k;
|
||
|
- long p2 = p;
|
||
|
-
|
||
|
- EZ = EX;
|
||
|
-
|
||
|
- if (EX == EY) {
|
||
|
- i=j=k=p2;
|
||
|
- Z[k] = Z[k+1] = ZERO; }
|
||
|
- else {
|
||
|
- j= EX - EY;
|
||
|
- if (j > p2) {__cpy(x,z,p); return; }
|
||
|
- else {
|
||
|
- i=p2; j=p2+1-j; k=p2;
|
||
|
- if (Y[j] > ZERO) {
|
||
|
- Z[k+1] = RADIX - Y[j--];
|
||
|
- Z[k] = MONE; }
|
||
|
- else {
|
||
|
- Z[k+1] = ZERO;
|
||
|
- Z[k] = ZERO; j--;}
|
||
|
- }
|
||
|
- }
|
||
|
-
|
||
|
- for (; j>0; i--,j--) {
|
||
|
- Z[k] += (X[i] - Y[j]);
|
||
|
- if (Z[k] < ZERO) {
|
||
|
- Z[k] += RADIX;
|
||
|
- Z[--k] = MONE; }
|
||
|
- else
|
||
|
- Z[--k] = ZERO;
|
||
|
- }
|
||
|
-
|
||
|
- for (; i>0; i--) {
|
||
|
- Z[k] += X[i];
|
||
|
- if (Z[k] < ZERO) {
|
||
|
- Z[k] += RADIX;
|
||
|
- Z[--k] = MONE; }
|
||
|
- else
|
||
|
- Z[--k] = ZERO;
|
||
|
- }
|
||
|
-
|
||
|
- for (i=1; Z[i] == ZERO; i++) ;
|
||
|
- EZ = EZ - i + 1;
|
||
|
- for (k=1; i <= p2+1; )
|
||
|
- Z[k++] = Z[i++];
|
||
|
- for (; k <= p2; )
|
||
|
- Z[k++] = ZERO;
|
||
|
-
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */
|
||
|
-/* but not x&z or y&z. One guard digit is used. The error is less than */
|
||
|
-/* one ulp. *x & *y are left unchanged. */
|
||
|
-
|
||
|
-void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- int n;
|
||
|
-
|
||
|
- if (X[0] == ZERO) {__cpy(y,z,p); return; }
|
||
|
- else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
|
||
|
-
|
||
|
- if (X[0] == Y[0]) {
|
||
|
- if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
- else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; }
|
||
|
- }
|
||
|
- else {
|
||
|
- if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
- else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; }
|
||
|
- else Z[0] = ZERO;
|
||
|
- }
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
|
||
|
-/* overlap but not x&z or y&z. One guard digit is used. The error is */
|
||
|
-/* less than one ulp. *x & *y are left unchanged. */
|
||
|
-
|
||
|
-void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- int n;
|
||
|
-
|
||
|
- if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; }
|
||
|
- else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
|
||
|
-
|
||
|
- if (X[0] != Y[0]) {
|
||
|
- if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
- else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
|
||
|
- }
|
||
|
- else {
|
||
|
- if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
|
||
|
- else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
|
||
|
- else Z[0] = ZERO;
|
||
|
- }
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */
|
||
|
-/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */
|
||
|
-/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */
|
||
|
-/* *x & *y are left unchanged. */
|
||
|
-
|
||
|
-void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- long i, i1, i2, j, k, k2;
|
||
|
- long p2 = p;
|
||
|
- double u, zk, zk2;
|
||
|
-
|
||
|
- /* Is z=0? */
|
||
|
- if (X[0]*Y[0]==ZERO)
|
||
|
- { Z[0]=ZERO; return; }
|
||
|
-
|
||
|
- /* Multiply, add and carry */
|
||
|
- k2 = (p2<3) ? p2+p2 : p2+3;
|
||
|
- zk = Z[k2]=ZERO;
|
||
|
- for (k=k2; k>1; ) {
|
||
|
- if (k > p2) {i1=k-p2; i2=p2+1; }
|
||
|
- else {i1=1; i2=k; }
|
||
|
-#if 1
|
||
|
- /* rearange this inner loop to allow the fmadd instructions to be
|
||
|
- independent and execute in parallel on processors that have
|
||
|
- dual symetrical FP pipelines. */
|
||
|
- if (i1 < (i2-1))
|
||
|
- {
|
||
|
- /* make sure we have at least 2 iterations */
|
||
|
- if (((i2 - i1) & 1L) == 1L)
|
||
|
- {
|
||
|
- /* Handle the odd iterations case. */
|
||
|
- zk2 = x->d[i2-1]*y->d[i1];
|
||
|
- }
|
||
|
- else
|
||
|
- zk2 = zero.d;
|
||
|
- /* Do two multiply/adds per loop iteration, using independent
|
||
|
- accumulators; zk and zk2. */
|
||
|
- for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2)
|
||
|
- {
|
||
|
- zk += x->d[i]*y->d[j];
|
||
|
- zk2 += x->d[i+1]*y->d[j-1];
|
||
|
- }
|
||
|
- zk += zk2; /* final sum. */
|
||
|
- }
|
||
|
- else
|
||
|
- {
|
||
|
- /* Special case when iterations is 1. */
|
||
|
- zk += x->d[i1]*y->d[i1];
|
||
|
- }
|
||
|
-#else
|
||
|
- /* The orginal code. */
|
||
|
- for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j];
|
||
|
-#endif
|
||
|
-
|
||
|
- u = (zk + CUTTER)-CUTTER;
|
||
|
- if (u > zk) u -= RADIX;
|
||
|
- Z[k] = zk - u;
|
||
|
- zk = u*RADIXI;
|
||
|
- --k;
|
||
|
- }
|
||
|
- Z[k] = zk;
|
||
|
-
|
||
|
- /* Is there a carry beyond the most significant digit? */
|
||
|
- if (Z[1] == ZERO) {
|
||
|
- for (i=1; i<=p2; i++) Z[i]=Z[i+1];
|
||
|
- EZ = EX + EY - 1; }
|
||
|
- else
|
||
|
- EZ = EX + EY;
|
||
|
-
|
||
|
- Z[0] = X[0] * Y[0];
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Invert a multiple precision number. Set *y = 1 / *x. */
|
||
|
-/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */
|
||
|
-/* 2.001*r**(1-p) for p>3. */
|
||
|
-/* *x=0 is not permissible. *x is left unchanged. */
|
||
|
-
|
||
|
-void __inv(const mp_no *x, mp_no *y, int p) {
|
||
|
- long i;
|
||
|
-#if 0
|
||
|
- int l;
|
||
|
-#endif
|
||
|
- double t;
|
||
|
- mp_no z,w;
|
||
|
- static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
|
||
|
- 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
|
||
|
- const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
|
||
|
- 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
|
||
|
-
|
||
|
- __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p);
|
||
|
- t=ONE/t; __dbl_mp(t,y,p); EY -= EX;
|
||
|
-
|
||
|
- for (i=0; i<np1[p]; i++) {
|
||
|
- __cpy(y,&w,p);
|
||
|
- __mul(x,&w,y,p);
|
||
|
- __sub(&mptwo,y,&z,p);
|
||
|
- __mul(&w,&z,y,p);
|
||
|
- }
|
||
|
- return;
|
||
|
-}
|
||
|
-
|
||
|
-
|
||
|
-/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
|
||
|
-/* are left unchanged. x&y may overlap but not x&z or y&z. */
|
||
|
-/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */
|
||
|
-/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */
|
||
|
-
|
||
|
-void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
|
||
|
-
|
||
|
- mp_no w;
|
||
|
-
|
||
|
- if (X[0] == ZERO) Z[0] = ZERO;
|
||
|
- else {__inv(y,&w,p); __mul(x,&w,z,p);}
|
||
|
- return;
|
||
|
-}
|
||
|
--
|
||
|
1.7.11.7
|