You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
551 lines
14 KiB
551 lines
14 KiB
#include "../cache.h" |
|
#include "../refs.h" |
|
#include "refs-internal.h" |
|
#include "ref-cache.h" |
|
#include "../iterator.h" |
|
|
|
void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry) |
|
{ |
|
ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc); |
|
dir->entries[dir->nr++] = entry; |
|
/* optimize for the case that entries are added in order */ |
|
if (dir->nr == 1 || |
|
(dir->nr == dir->sorted + 1 && |
|
strcmp(dir->entries[dir->nr - 2]->name, |
|
dir->entries[dir->nr - 1]->name) < 0)) |
|
dir->sorted = dir->nr; |
|
} |
|
|
|
struct ref_dir *get_ref_dir(struct ref_entry *entry) |
|
{ |
|
struct ref_dir *dir; |
|
assert(entry->flag & REF_DIR); |
|
dir = &entry->u.subdir; |
|
if (entry->flag & REF_INCOMPLETE) { |
|
if (!dir->cache->fill_ref_dir) |
|
die("BUG: incomplete ref_store without fill_ref_dir function"); |
|
|
|
dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name); |
|
entry->flag &= ~REF_INCOMPLETE; |
|
} |
|
return dir; |
|
} |
|
|
|
struct ref_entry *create_ref_entry(const char *refname, |
|
const struct object_id *oid, int flag) |
|
{ |
|
struct ref_entry *ref; |
|
|
|
FLEX_ALLOC_STR(ref, name, refname); |
|
oidcpy(&ref->u.value.oid, oid); |
|
ref->flag = flag; |
|
return ref; |
|
} |
|
|
|
struct ref_cache *create_ref_cache(struct ref_store *refs, |
|
fill_ref_dir_fn *fill_ref_dir) |
|
{ |
|
struct ref_cache *ret = xcalloc(1, sizeof(*ret)); |
|
|
|
ret->ref_store = refs; |
|
ret->fill_ref_dir = fill_ref_dir; |
|
ret->root = create_dir_entry(ret, "", 0, 1); |
|
return ret; |
|
} |
|
|
|
static void clear_ref_dir(struct ref_dir *dir); |
|
|
|
static void free_ref_entry(struct ref_entry *entry) |
|
{ |
|
if (entry->flag & REF_DIR) { |
|
/* |
|
* Do not use get_ref_dir() here, as that might |
|
* trigger the reading of loose refs. |
|
*/ |
|
clear_ref_dir(&entry->u.subdir); |
|
} |
|
free(entry); |
|
} |
|
|
|
void free_ref_cache(struct ref_cache *cache) |
|
{ |
|
free_ref_entry(cache->root); |
|
free(cache); |
|
} |
|
|
|
/* |
|
* Clear and free all entries in dir, recursively. |
|
*/ |
|
static void clear_ref_dir(struct ref_dir *dir) |
|
{ |
|
int i; |
|
for (i = 0; i < dir->nr; i++) |
|
free_ref_entry(dir->entries[i]); |
|
FREE_AND_NULL(dir->entries); |
|
dir->sorted = dir->nr = dir->alloc = 0; |
|
} |
|
|
|
struct ref_entry *create_dir_entry(struct ref_cache *cache, |
|
const char *dirname, size_t len, |
|
int incomplete) |
|
{ |
|
struct ref_entry *direntry; |
|
|
|
FLEX_ALLOC_MEM(direntry, name, dirname, len); |
|
direntry->u.subdir.cache = cache; |
|
direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0); |
|
return direntry; |
|
} |
|
|
|
static int ref_entry_cmp(const void *a, const void *b) |
|
{ |
|
struct ref_entry *one = *(struct ref_entry **)a; |
|
struct ref_entry *two = *(struct ref_entry **)b; |
|
return strcmp(one->name, two->name); |
|
} |
|
|
|
static void sort_ref_dir(struct ref_dir *dir); |
|
|
|
struct string_slice { |
|
size_t len; |
|
const char *str; |
|
}; |
|
|
|
static int ref_entry_cmp_sslice(const void *key_, const void *ent_) |
|
{ |
|
const struct string_slice *key = key_; |
|
const struct ref_entry *ent = *(const struct ref_entry * const *)ent_; |
|
int cmp = strncmp(key->str, ent->name, key->len); |
|
if (cmp) |
|
return cmp; |
|
return '\0' - (unsigned char)ent->name[key->len]; |
|
} |
|
|
|
int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len) |
|
{ |
|
struct ref_entry **r; |
|
struct string_slice key; |
|
|
|
if (refname == NULL || !dir->nr) |
|
return -1; |
|
|
|
sort_ref_dir(dir); |
|
key.len = len; |
|
key.str = refname; |
|
r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries), |
|
ref_entry_cmp_sslice); |
|
|
|
if (r == NULL) |
|
return -1; |
|
|
|
return r - dir->entries; |
|
} |
|
|
|
/* |
|
* Search for a directory entry directly within dir (without |
|
* recursing). Sort dir if necessary. subdirname must be a directory |
|
* name (i.e., end in '/'). If mkdir is set, then create the |
|
* directory if it is missing; otherwise, return NULL if the desired |
|
* directory cannot be found. dir must already be complete. |
|
*/ |
|
static struct ref_dir *search_for_subdir(struct ref_dir *dir, |
|
const char *subdirname, size_t len, |
|
int mkdir) |
|
{ |
|
int entry_index = search_ref_dir(dir, subdirname, len); |
|
struct ref_entry *entry; |
|
if (entry_index == -1) { |
|
if (!mkdir) |
|
return NULL; |
|
/* |
|
* Since dir is complete, the absence of a subdir |
|
* means that the subdir really doesn't exist; |
|
* therefore, create an empty record for it but mark |
|
* the record complete. |
|
*/ |
|
entry = create_dir_entry(dir->cache, subdirname, len, 0); |
|
add_entry_to_dir(dir, entry); |
|
} else { |
|
entry = dir->entries[entry_index]; |
|
} |
|
return get_ref_dir(entry); |
|
} |
|
|
|
/* |
|
* If refname is a reference name, find the ref_dir within the dir |
|
* tree that should hold refname. If refname is a directory name |
|
* (i.e., it ends in '/'), then return that ref_dir itself. dir must |
|
* represent the top-level directory and must already be complete. |
|
* Sort ref_dirs and recurse into subdirectories as necessary. If |
|
* mkdir is set, then create any missing directories; otherwise, |
|
* return NULL if the desired directory cannot be found. |
|
*/ |
|
static struct ref_dir *find_containing_dir(struct ref_dir *dir, |
|
const char *refname, int mkdir) |
|
{ |
|
const char *slash; |
|
for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) { |
|
size_t dirnamelen = slash - refname + 1; |
|
struct ref_dir *subdir; |
|
subdir = search_for_subdir(dir, refname, dirnamelen, mkdir); |
|
if (!subdir) { |
|
dir = NULL; |
|
break; |
|
} |
|
dir = subdir; |
|
} |
|
|
|
return dir; |
|
} |
|
|
|
struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname) |
|
{ |
|
int entry_index; |
|
struct ref_entry *entry; |
|
dir = find_containing_dir(dir, refname, 0); |
|
if (!dir) |
|
return NULL; |
|
entry_index = search_ref_dir(dir, refname, strlen(refname)); |
|
if (entry_index == -1) |
|
return NULL; |
|
entry = dir->entries[entry_index]; |
|
return (entry->flag & REF_DIR) ? NULL : entry; |
|
} |
|
|
|
int remove_entry_from_dir(struct ref_dir *dir, const char *refname) |
|
{ |
|
int refname_len = strlen(refname); |
|
int entry_index; |
|
struct ref_entry *entry; |
|
int is_dir = refname[refname_len - 1] == '/'; |
|
if (is_dir) { |
|
/* |
|
* refname represents a reference directory. Remove |
|
* the trailing slash; otherwise we will get the |
|
* directory *representing* refname rather than the |
|
* one *containing* it. |
|
*/ |
|
char *dirname = xmemdupz(refname, refname_len - 1); |
|
dir = find_containing_dir(dir, dirname, 0); |
|
free(dirname); |
|
} else { |
|
dir = find_containing_dir(dir, refname, 0); |
|
} |
|
if (!dir) |
|
return -1; |
|
entry_index = search_ref_dir(dir, refname, refname_len); |
|
if (entry_index == -1) |
|
return -1; |
|
entry = dir->entries[entry_index]; |
|
|
|
MOVE_ARRAY(&dir->entries[entry_index], |
|
&dir->entries[entry_index + 1], dir->nr - entry_index - 1); |
|
dir->nr--; |
|
if (dir->sorted > entry_index) |
|
dir->sorted--; |
|
free_ref_entry(entry); |
|
return dir->nr; |
|
} |
|
|
|
int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref) |
|
{ |
|
dir = find_containing_dir(dir, ref->name, 1); |
|
if (!dir) |
|
return -1; |
|
add_entry_to_dir(dir, ref); |
|
return 0; |
|
} |
|
|
|
/* |
|
* Emit a warning and return true iff ref1 and ref2 have the same name |
|
* and the same oid. Die if they have the same name but different |
|
* oids. |
|
*/ |
|
static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2) |
|
{ |
|
if (strcmp(ref1->name, ref2->name)) |
|
return 0; |
|
|
|
/* Duplicate name; make sure that they don't conflict: */ |
|
|
|
if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR)) |
|
/* This is impossible by construction */ |
|
die("Reference directory conflict: %s", ref1->name); |
|
|
|
if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid)) |
|
die("Duplicated ref, and SHA1s don't match: %s", ref1->name); |
|
|
|
warning("Duplicated ref: %s", ref1->name); |
|
return 1; |
|
} |
|
|
|
/* |
|
* Sort the entries in dir non-recursively (if they are not already |
|
* sorted) and remove any duplicate entries. |
|
*/ |
|
static void sort_ref_dir(struct ref_dir *dir) |
|
{ |
|
int i, j; |
|
struct ref_entry *last = NULL; |
|
|
|
/* |
|
* This check also prevents passing a zero-length array to qsort(), |
|
* which is a problem on some platforms. |
|
*/ |
|
if (dir->sorted == dir->nr) |
|
return; |
|
|
|
QSORT(dir->entries, dir->nr, ref_entry_cmp); |
|
|
|
/* Remove any duplicates: */ |
|
for (i = 0, j = 0; j < dir->nr; j++) { |
|
struct ref_entry *entry = dir->entries[j]; |
|
if (last && is_dup_ref(last, entry)) |
|
free_ref_entry(entry); |
|
else |
|
last = dir->entries[i++] = entry; |
|
} |
|
dir->sorted = dir->nr = i; |
|
} |
|
|
|
enum prefix_state { |
|
/* All refs within the directory would match prefix: */ |
|
PREFIX_CONTAINS_DIR, |
|
|
|
/* Some, but not all, refs within the directory might match prefix: */ |
|
PREFIX_WITHIN_DIR, |
|
|
|
/* No refs within the directory could possibly match prefix: */ |
|
PREFIX_EXCLUDES_DIR |
|
}; |
|
|
|
/* |
|
* Return a `prefix_state` constant describing the relationship |
|
* between the directory with the specified `dirname` and `prefix`. |
|
*/ |
|
static enum prefix_state overlaps_prefix(const char *dirname, |
|
const char *prefix) |
|
{ |
|
while (*prefix && *dirname == *prefix) { |
|
dirname++; |
|
prefix++; |
|
} |
|
if (!*prefix) |
|
return PREFIX_CONTAINS_DIR; |
|
else if (!*dirname) |
|
return PREFIX_WITHIN_DIR; |
|
else |
|
return PREFIX_EXCLUDES_DIR; |
|
} |
|
|
|
/* |
|
* Load all of the refs from `dir` (recursively) that could possibly |
|
* contain references matching `prefix` into our in-memory cache. If |
|
* `prefix` is NULL, prime unconditionally. |
|
*/ |
|
static void prime_ref_dir(struct ref_dir *dir, const char *prefix) |
|
{ |
|
/* |
|
* The hard work of loading loose refs is done by get_ref_dir(), so we |
|
* just need to recurse through all of the sub-directories. We do not |
|
* even need to care about sorting, as traversal order does not matter |
|
* to us. |
|
*/ |
|
int i; |
|
for (i = 0; i < dir->nr; i++) { |
|
struct ref_entry *entry = dir->entries[i]; |
|
if (!(entry->flag & REF_DIR)) { |
|
/* Not a directory; no need to recurse. */ |
|
} else if (!prefix) { |
|
/* Recurse in any case: */ |
|
prime_ref_dir(get_ref_dir(entry), NULL); |
|
} else { |
|
switch (overlaps_prefix(entry->name, prefix)) { |
|
case PREFIX_CONTAINS_DIR: |
|
/* |
|
* Recurse, and from here down we |
|
* don't have to check the prefix |
|
* anymore: |
|
*/ |
|
prime_ref_dir(get_ref_dir(entry), NULL); |
|
break; |
|
case PREFIX_WITHIN_DIR: |
|
prime_ref_dir(get_ref_dir(entry), prefix); |
|
break; |
|
case PREFIX_EXCLUDES_DIR: |
|
/* No need to prime this directory. */ |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* A level in the reference hierarchy that is currently being iterated |
|
* through. |
|
*/ |
|
struct cache_ref_iterator_level { |
|
/* |
|
* The ref_dir being iterated over at this level. The ref_dir |
|
* is sorted before being stored here. |
|
*/ |
|
struct ref_dir *dir; |
|
|
|
enum prefix_state prefix_state; |
|
|
|
/* |
|
* The index of the current entry within dir (which might |
|
* itself be a directory). If index == -1, then the iteration |
|
* hasn't yet begun. If index == dir->nr, then the iteration |
|
* through this level is over. |
|
*/ |
|
int index; |
|
}; |
|
|
|
/* |
|
* Represent an iteration through a ref_dir in the memory cache. The |
|
* iteration recurses through subdirectories. |
|
*/ |
|
struct cache_ref_iterator { |
|
struct ref_iterator base; |
|
|
|
/* |
|
* The number of levels currently on the stack. This is always |
|
* at least 1, because when it becomes zero the iteration is |
|
* ended and this struct is freed. |
|
*/ |
|
size_t levels_nr; |
|
|
|
/* The number of levels that have been allocated on the stack */ |
|
size_t levels_alloc; |
|
|
|
/* |
|
* Only include references with this prefix in the iteration. |
|
* The prefix is matched textually, without regard for path |
|
* component boundaries. |
|
*/ |
|
const char *prefix; |
|
|
|
/* |
|
* A stack of levels. levels[0] is the uppermost level that is |
|
* being iterated over in this iteration. (This is not |
|
* necessary the top level in the references hierarchy. If we |
|
* are iterating through a subtree, then levels[0] will hold |
|
* the ref_dir for that subtree, and subsequent levels will go |
|
* on from there.) |
|
*/ |
|
struct cache_ref_iterator_level *levels; |
|
}; |
|
|
|
static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator) |
|
{ |
|
struct cache_ref_iterator *iter = |
|
(struct cache_ref_iterator *)ref_iterator; |
|
|
|
while (1) { |
|
struct cache_ref_iterator_level *level = |
|
&iter->levels[iter->levels_nr - 1]; |
|
struct ref_dir *dir = level->dir; |
|
struct ref_entry *entry; |
|
enum prefix_state entry_prefix_state; |
|
|
|
if (level->index == -1) |
|
sort_ref_dir(dir); |
|
|
|
if (++level->index == level->dir->nr) { |
|
/* This level is exhausted; pop up a level */ |
|
if (--iter->levels_nr == 0) |
|
return ref_iterator_abort(ref_iterator); |
|
|
|
continue; |
|
} |
|
|
|
entry = dir->entries[level->index]; |
|
|
|
if (level->prefix_state == PREFIX_WITHIN_DIR) { |
|
entry_prefix_state = overlaps_prefix(entry->name, iter->prefix); |
|
if (entry_prefix_state == PREFIX_EXCLUDES_DIR) |
|
continue; |
|
} else { |
|
entry_prefix_state = level->prefix_state; |
|
} |
|
|
|
if (entry->flag & REF_DIR) { |
|
/* push down a level */ |
|
ALLOC_GROW(iter->levels, iter->levels_nr + 1, |
|
iter->levels_alloc); |
|
|
|
level = &iter->levels[iter->levels_nr++]; |
|
level->dir = get_ref_dir(entry); |
|
level->prefix_state = entry_prefix_state; |
|
level->index = -1; |
|
} else { |
|
iter->base.refname = entry->name; |
|
iter->base.oid = &entry->u.value.oid; |
|
iter->base.flags = entry->flag; |
|
return ITER_OK; |
|
} |
|
} |
|
} |
|
|
|
static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator, |
|
struct object_id *peeled) |
|
{ |
|
return peel_object(ref_iterator->oid, peeled); |
|
} |
|
|
|
static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator) |
|
{ |
|
struct cache_ref_iterator *iter = |
|
(struct cache_ref_iterator *)ref_iterator; |
|
|
|
free((char *)iter->prefix); |
|
free(iter->levels); |
|
base_ref_iterator_free(ref_iterator); |
|
return ITER_DONE; |
|
} |
|
|
|
static struct ref_iterator_vtable cache_ref_iterator_vtable = { |
|
cache_ref_iterator_advance, |
|
cache_ref_iterator_peel, |
|
cache_ref_iterator_abort |
|
}; |
|
|
|
struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache, |
|
const char *prefix, |
|
int prime_dir) |
|
{ |
|
struct ref_dir *dir; |
|
struct cache_ref_iterator *iter; |
|
struct ref_iterator *ref_iterator; |
|
struct cache_ref_iterator_level *level; |
|
|
|
dir = get_ref_dir(cache->root); |
|
if (prefix && *prefix) |
|
dir = find_containing_dir(dir, prefix, 0); |
|
if (!dir) |
|
/* There's nothing to iterate over. */ |
|
return empty_ref_iterator_begin(); |
|
|
|
if (prime_dir) |
|
prime_ref_dir(dir, prefix); |
|
|
|
iter = xcalloc(1, sizeof(*iter)); |
|
ref_iterator = &iter->base; |
|
base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable, 1); |
|
ALLOC_GROW(iter->levels, 10, iter->levels_alloc); |
|
|
|
iter->levels_nr = 1; |
|
level = &iter->levels[0]; |
|
level->index = -1; |
|
level->dir = dir; |
|
|
|
if (prefix && *prefix) { |
|
iter->prefix = xstrdup(prefix); |
|
level->prefix_state = PREFIX_WITHIN_DIR; |
|
} else { |
|
level->prefix_state = PREFIX_CONTAINS_DIR; |
|
} |
|
|
|
return ref_iterator; |
|
}
|
|
|