|
|
/* Extended regular expression matching and search library. |
|
|
Copyright (C) 2002-2007,2009,2010 Free Software Foundation, Inc. |
|
|
This file is part of the GNU C Library. |
|
|
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
|
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or |
|
|
modify it under the terms of the GNU Lesser General Public |
|
|
License as published by the Free Software Foundation; either |
|
|
version 2.1 of the License, or (at your option) any later version. |
|
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful, |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
|
Lesser General Public License for more details. |
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public |
|
|
License along with the GNU C Library; if not, see |
|
|
<http://www.gnu.org/licenses/>. */ |
|
|
|
|
|
static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, |
|
|
size_t length, reg_syntax_t syntax); |
|
|
static void re_compile_fastmap_iter (regex_t *bufp, |
|
|
const re_dfastate_t *init_state, |
|
|
char *fastmap); |
|
|
static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
static void free_charset (re_charset_t *cset); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
static void free_workarea_compile (regex_t *preg); |
|
|
static reg_errcode_t create_initial_state (re_dfa_t *dfa); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
static void optimize_utf8 (re_dfa_t *dfa); |
|
|
#endif |
|
|
static reg_errcode_t analyze (regex_t *preg); |
|
|
static reg_errcode_t preorder (bin_tree_t *root, |
|
|
reg_errcode_t (fn (void *, bin_tree_t *)), |
|
|
void *extra); |
|
|
static reg_errcode_t postorder (bin_tree_t *root, |
|
|
reg_errcode_t (fn (void *, bin_tree_t *)), |
|
|
void *extra); |
|
|
static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); |
|
|
static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); |
|
|
static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, |
|
|
bin_tree_t *node); |
|
|
static reg_errcode_t calc_first (void *extra, bin_tree_t *node); |
|
|
static reg_errcode_t calc_next (void *extra, bin_tree_t *node); |
|
|
static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); |
|
|
static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint); |
|
|
static int search_duplicated_node (const re_dfa_t *dfa, int org_node, |
|
|
unsigned int constraint); |
|
|
static reg_errcode_t calc_eclosure (re_dfa_t *dfa); |
|
|
static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, |
|
|
int node, int root); |
|
|
static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); |
|
|
static int fetch_number (re_string_t *input, re_token_t *token, |
|
|
reg_syntax_t syntax); |
|
|
static int peek_token (re_token_t *token, re_string_t *input, |
|
|
reg_syntax_t syntax) internal_function; |
|
|
static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, |
|
|
reg_syntax_t syntax, reg_errcode_t *err); |
|
|
static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, |
|
|
re_token_t *token, reg_syntax_t syntax, |
|
|
int nest, reg_errcode_t *err); |
|
|
static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, |
|
|
re_token_t *token, reg_syntax_t syntax, |
|
|
int nest, reg_errcode_t *err); |
|
|
static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, |
|
|
re_token_t *token, reg_syntax_t syntax, |
|
|
int nest, reg_errcode_t *err); |
|
|
static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, |
|
|
re_token_t *token, reg_syntax_t syntax, |
|
|
int nest, reg_errcode_t *err); |
|
|
static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, |
|
|
re_dfa_t *dfa, re_token_t *token, |
|
|
reg_syntax_t syntax, reg_errcode_t *err); |
|
|
static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, |
|
|
re_token_t *token, reg_syntax_t syntax, |
|
|
reg_errcode_t *err); |
|
|
static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, |
|
|
re_string_t *regexp, |
|
|
re_token_t *token, int token_len, |
|
|
re_dfa_t *dfa, |
|
|
reg_syntax_t syntax, |
|
|
int accept_hyphen); |
|
|
static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, |
|
|
re_string_t *regexp, |
|
|
re_token_t *token); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
static reg_errcode_t build_equiv_class (bitset_t sbcset, |
|
|
re_charset_t *mbcset, |
|
|
int *equiv_class_alloc, |
|
|
const unsigned char *name); |
|
|
static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, |
|
|
bitset_t sbcset, |
|
|
re_charset_t *mbcset, |
|
|
int *char_class_alloc, |
|
|
const char *class_name, |
|
|
reg_syntax_t syntax); |
|
|
#else /* not RE_ENABLE_I18N */ |
|
|
static reg_errcode_t build_equiv_class (bitset_t sbcset, |
|
|
const unsigned char *name); |
|
|
static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, |
|
|
bitset_t sbcset, |
|
|
const char *class_name, |
|
|
reg_syntax_t syntax); |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
static bin_tree_t *build_charclass_op (re_dfa_t *dfa, |
|
|
RE_TRANSLATE_TYPE trans, |
|
|
const char *class_name, |
|
|
const char *extra, |
|
|
int non_match, reg_errcode_t *err); |
|
|
static bin_tree_t *create_tree (re_dfa_t *dfa, |
|
|
bin_tree_t *left, bin_tree_t *right, |
|
|
re_token_type_t type); |
|
|
static bin_tree_t *create_token_tree (re_dfa_t *dfa, |
|
|
bin_tree_t *left, bin_tree_t *right, |
|
|
const re_token_t *token); |
|
|
static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); |
|
|
static void free_token (re_token_t *node); |
|
|
static reg_errcode_t free_tree (void *extra, bin_tree_t *node); |
|
|
static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); |
|
|
|
|
|
/* This table gives an error message for each of the error codes listed |
|
|
in regex.h. Obviously the order here has to be same as there. |
|
|
POSIX doesn't require that we do anything for REG_NOERROR, |
|
|
but why not be nice? */ |
|
|
|
|
|
const char __re_error_msgid[] attribute_hidden = |
|
|
{ |
|
|
#define REG_NOERROR_IDX 0 |
|
|
gettext_noop ("Success") /* REG_NOERROR */ |
|
|
"\0" |
|
|
#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") |
|
|
gettext_noop ("No match") /* REG_NOMATCH */ |
|
|
"\0" |
|
|
#define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") |
|
|
gettext_noop ("Invalid regular expression") /* REG_BADPAT */ |
|
|
"\0" |
|
|
#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") |
|
|
gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ |
|
|
"\0" |
|
|
#define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") |
|
|
gettext_noop ("Invalid character class name") /* REG_ECTYPE */ |
|
|
"\0" |
|
|
#define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") |
|
|
gettext_noop ("Trailing backslash") /* REG_EESCAPE */ |
|
|
"\0" |
|
|
#define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") |
|
|
gettext_noop ("Invalid back reference") /* REG_ESUBREG */ |
|
|
"\0" |
|
|
#define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") |
|
|
gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ |
|
|
"\0" |
|
|
#define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") |
|
|
gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ |
|
|
"\0" |
|
|
#define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") |
|
|
gettext_noop ("Unmatched \\{") /* REG_EBRACE */ |
|
|
"\0" |
|
|
#define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") |
|
|
gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ |
|
|
"\0" |
|
|
#define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") |
|
|
gettext_noop ("Invalid range end") /* REG_ERANGE */ |
|
|
"\0" |
|
|
#define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") |
|
|
gettext_noop ("Memory exhausted") /* REG_ESPACE */ |
|
|
"\0" |
|
|
#define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") |
|
|
gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ |
|
|
"\0" |
|
|
#define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") |
|
|
gettext_noop ("Premature end of regular expression") /* REG_EEND */ |
|
|
"\0" |
|
|
#define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") |
|
|
gettext_noop ("Regular expression too big") /* REG_ESIZE */ |
|
|
"\0" |
|
|
#define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") |
|
|
gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ |
|
|
}; |
|
|
|
|
|
const size_t __re_error_msgid_idx[] attribute_hidden = |
|
|
{ |
|
|
REG_NOERROR_IDX, |
|
|
REG_NOMATCH_IDX, |
|
|
REG_BADPAT_IDX, |
|
|
REG_ECOLLATE_IDX, |
|
|
REG_ECTYPE_IDX, |
|
|
REG_EESCAPE_IDX, |
|
|
REG_ESUBREG_IDX, |
|
|
REG_EBRACK_IDX, |
|
|
REG_EPAREN_IDX, |
|
|
REG_EBRACE_IDX, |
|
|
REG_BADBR_IDX, |
|
|
REG_ERANGE_IDX, |
|
|
REG_ESPACE_IDX, |
|
|
REG_BADRPT_IDX, |
|
|
REG_EEND_IDX, |
|
|
REG_ESIZE_IDX, |
|
|
REG_ERPAREN_IDX |
|
|
}; |
|
|
|
|
|
/* Entry points for GNU code. */ |
|
|
|
|
|
|
|
|
#ifdef ZOS_USS |
|
|
|
|
|
/* For ZOS USS we must define btowc */ |
|
|
|
|
|
wchar_t |
|
|
btowc (int c) |
|
|
{ |
|
|
wchar_t wtmp[2]; |
|
|
char tmp[2]; |
|
|
|
|
|
tmp[0] = c; |
|
|
tmp[1] = 0; |
|
|
|
|
|
mbtowc (wtmp, tmp, 1); |
|
|
return wtmp[0]; |
|
|
} |
|
|
#endif |
|
|
|
|
|
/* re_compile_pattern is the GNU regular expression compiler: it |
|
|
compiles PATTERN (of length LENGTH) and puts the result in BUFP. |
|
|
Returns 0 if the pattern was valid, otherwise an error string. |
|
|
|
|
|
Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
|
|
are set in BUFP on entry. */ |
|
|
|
|
|
const char * |
|
|
re_compile_pattern (const char *pattern, |
|
|
size_t length, |
|
|
struct re_pattern_buffer *bufp) |
|
|
{ |
|
|
reg_errcode_t ret; |
|
|
|
|
|
/* And GNU code determines whether or not to get register information |
|
|
by passing null for the REGS argument to re_match, etc., not by |
|
|
setting no_sub, unless RE_NO_SUB is set. */ |
|
|
bufp->no_sub = !!(re_syntax_options & RE_NO_SUB); |
|
|
|
|
|
/* Match anchors at newline. */ |
|
|
bufp->newline_anchor = 1; |
|
|
|
|
|
ret = re_compile_internal (bufp, pattern, length, re_syntax_options); |
|
|
|
|
|
if (!ret) |
|
|
return NULL; |
|
|
return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); |
|
|
} |
|
|
#ifdef _LIBC |
|
|
weak_alias (__re_compile_pattern, re_compile_pattern) |
|
|
#endif |
|
|
|
|
|
/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can |
|
|
also be assigned to arbitrarily: each pattern buffer stores its own |
|
|
syntax, so it can be changed between regex compilations. */ |
|
|
/* This has no initializer because initialized variables in Emacs |
|
|
become read-only after dumping. */ |
|
|
reg_syntax_t re_syntax_options; |
|
|
|
|
|
|
|
|
/* Specify the precise syntax of regexps for compilation. This provides |
|
|
for compatibility for various utilities which historically have |
|
|
different, incompatible syntaxes. |
|
|
|
|
|
The argument SYNTAX is a bit mask comprised of the various bits |
|
|
defined in regex.h. We return the old syntax. */ |
|
|
|
|
|
reg_syntax_t |
|
|
re_set_syntax (reg_syntax_t syntax) |
|
|
{ |
|
|
reg_syntax_t ret = re_syntax_options; |
|
|
|
|
|
re_syntax_options = syntax; |
|
|
return ret; |
|
|
} |
|
|
#ifdef _LIBC |
|
|
weak_alias (__re_set_syntax, re_set_syntax) |
|
|
#endif |
|
|
|
|
|
int |
|
|
re_compile_fastmap (struct re_pattern_buffer *bufp) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; |
|
|
char *fastmap = bufp->fastmap; |
|
|
|
|
|
memset (fastmap, '\0', sizeof (char) * SBC_MAX); |
|
|
re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); |
|
|
if (dfa->init_state != dfa->init_state_word) |
|
|
re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); |
|
|
if (dfa->init_state != dfa->init_state_nl) |
|
|
re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); |
|
|
if (dfa->init_state != dfa->init_state_begbuf) |
|
|
re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); |
|
|
bufp->fastmap_accurate = 1; |
|
|
return 0; |
|
|
} |
|
|
#ifdef _LIBC |
|
|
weak_alias (__re_compile_fastmap, re_compile_fastmap) |
|
|
#endif |
|
|
|
|
|
static inline void |
|
|
__attribute ((always_inline)) |
|
|
re_set_fastmap (char *fastmap, int icase, int ch) |
|
|
{ |
|
|
fastmap[ch] = 1; |
|
|
if (icase) |
|
|
fastmap[tolower (ch)] = 1; |
|
|
} |
|
|
|
|
|
/* Helper function for re_compile_fastmap. |
|
|
Compile fastmap for the initial_state INIT_STATE. */ |
|
|
|
|
|
static void |
|
|
re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, |
|
|
char *fastmap) |
|
|
{ |
|
|
volatile re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; |
|
|
int node_cnt; |
|
|
int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE)); |
|
|
for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) |
|
|
{ |
|
|
int node = init_state->nodes.elems[node_cnt]; |
|
|
re_token_type_t type = dfa->nodes[node].type; |
|
|
|
|
|
if (type == CHARACTER) |
|
|
{ |
|
|
re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) |
|
|
{ |
|
|
unsigned char *buf = re_malloc (unsigned char, dfa->mb_cur_max), *p; |
|
|
wchar_t wc; |
|
|
mbstate_t state; |
|
|
|
|
|
p = buf; |
|
|
*p++ = dfa->nodes[node].opr.c; |
|
|
while (++node < dfa->nodes_len |
|
|
&& dfa->nodes[node].type == CHARACTER |
|
|
&& dfa->nodes[node].mb_partial) |
|
|
*p++ = dfa->nodes[node].opr.c; |
|
|
memset (&state, '\0', sizeof (state)); |
|
|
if (__mbrtowc (&wc, (const char *) buf, p - buf, |
|
|
&state) == p - buf |
|
|
&& (__wcrtomb ((char *) buf, towlower (wc), &state) |
|
|
!= (size_t) -1)) |
|
|
re_set_fastmap (fastmap, 0, buf[0]); |
|
|
re_free (buf); |
|
|
} |
|
|
#endif |
|
|
} |
|
|
else if (type == SIMPLE_BRACKET) |
|
|
{ |
|
|
int i, ch; |
|
|
for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
|
|
{ |
|
|
int j; |
|
|
bitset_word_t w = dfa->nodes[node].opr.sbcset[i]; |
|
|
for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
|
|
if (w & ((bitset_word_t) 1 << j)) |
|
|
re_set_fastmap (fastmap, icase, ch); |
|
|
} |
|
|
} |
|
|
#ifdef RE_ENABLE_I18N |
|
|
else if (type == COMPLEX_BRACKET) |
|
|
{ |
|
|
re_charset_t *cset = dfa->nodes[node].opr.mbcset; |
|
|
int i; |
|
|
|
|
|
# ifdef _LIBC |
|
|
/* See if we have to try all bytes which start multiple collation |
|
|
elements. |
|
|
e.g. In da_DK, we want to catch 'a' since "aa" is a valid |
|
|
collation element, and don't catch 'b' since 'b' is |
|
|
the only collation element which starts from 'b' (and |
|
|
it is caught by SIMPLE_BRACKET). */ |
|
|
if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0 |
|
|
&& (cset->ncoll_syms || cset->nranges)) |
|
|
{ |
|
|
const int32_t *table = (const int32_t *) |
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
|
|
for (i = 0; i < SBC_MAX; ++i) |
|
|
if (table[i] < 0) |
|
|
re_set_fastmap (fastmap, icase, i); |
|
|
} |
|
|
# endif /* _LIBC */ |
|
|
|
|
|
/* See if we have to start the match at all multibyte characters, |
|
|
i.e. where we would not find an invalid sequence. This only |
|
|
applies to multibyte character sets; for single byte character |
|
|
sets, the SIMPLE_BRACKET again suffices. */ |
|
|
if (dfa->mb_cur_max > 1 |
|
|
&& (cset->nchar_classes || cset->non_match || cset->nranges |
|
|
# ifdef _LIBC |
|
|
|| cset->nequiv_classes |
|
|
# endif /* _LIBC */ |
|
|
)) |
|
|
{ |
|
|
unsigned char c = 0; |
|
|
do |
|
|
{ |
|
|
mbstate_t mbs; |
|
|
memset (&mbs, 0, sizeof (mbs)); |
|
|
if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2) |
|
|
re_set_fastmap (fastmap, false, (int) c); |
|
|
} |
|
|
while (++c != 0); |
|
|
} |
|
|
|
|
|
else |
|
|
{ |
|
|
/* ... Else catch all bytes which can start the mbchars. */ |
|
|
for (i = 0; i < cset->nmbchars; ++i) |
|
|
{ |
|
|
char buf[256]; |
|
|
mbstate_t state; |
|
|
memset (&state, '\0', sizeof (state)); |
|
|
if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) |
|
|
re_set_fastmap (fastmap, icase, *(unsigned char *) buf); |
|
|
if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) |
|
|
{ |
|
|
if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) |
|
|
!= (size_t) -1) |
|
|
re_set_fastmap (fastmap, false, *(unsigned char *) buf); |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
else if (type == OP_PERIOD |
|
|
#ifdef RE_ENABLE_I18N |
|
|
|| type == OP_UTF8_PERIOD |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|| type == END_OF_RE) |
|
|
{ |
|
|
memset (fastmap, '\1', sizeof (char) * SBC_MAX); |
|
|
if (type == END_OF_RE) |
|
|
bufp->can_be_null = 1; |
|
|
return; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
/* Entry point for POSIX code. */ |
|
|
/* regcomp takes a regular expression as a string and compiles it. |
|
|
|
|
|
PREG is a regex_t *. We do not expect any fields to be initialized, |
|
|
since POSIX says we shouldn't. Thus, we set |
|
|
|
|
|
`buffer' to the compiled pattern; |
|
|
`used' to the length of the compiled pattern; |
|
|
`syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
|
|
REG_EXTENDED bit in CFLAGS is set; otherwise, to |
|
|
RE_SYNTAX_POSIX_BASIC; |
|
|
`newline_anchor' to REG_NEWLINE being set in CFLAGS; |
|
|
`fastmap' to an allocated space for the fastmap; |
|
|
`fastmap_accurate' to zero; |
|
|
`re_nsub' to the number of subexpressions in PATTERN. |
|
|
|
|
|
PATTERN is the address of the pattern string. |
|
|
|
|
|
CFLAGS is a series of bits which affect compilation. |
|
|
|
|
|
If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we |
|
|
use POSIX basic syntax. |
|
|
|
|
|
If REG_NEWLINE is set, then . and [^...] don't match newline. |
|
|
Also, regexec will try a match beginning after every newline. |
|
|
|
|
|
If REG_ICASE is set, then we considers upper- and lowercase |
|
|
versions of letters to be equivalent when matching. |
|
|
|
|
|
If REG_NOSUB is set, then when PREG is passed to regexec, that |
|
|
routine will report only success or failure, and nothing about the |
|
|
registers. |
|
|
|
|
|
It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
|
|
the return codes and their meanings.) */ |
|
|
|
|
|
int |
|
|
regcomp (regex_t *__restrict preg, |
|
|
const char *__restrict pattern, |
|
|
int cflags) |
|
|
{ |
|
|
reg_errcode_t ret; |
|
|
reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED |
|
|
: RE_SYNTAX_POSIX_BASIC); |
|
|
|
|
|
preg->buffer = NULL; |
|
|
preg->allocated = 0; |
|
|
preg->used = 0; |
|
|
|
|
|
/* Try to allocate space for the fastmap. */ |
|
|
preg->fastmap = re_malloc (char, SBC_MAX); |
|
|
if (BE (preg->fastmap == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
|
|
|
syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; |
|
|
|
|
|
/* If REG_NEWLINE is set, newlines are treated differently. */ |
|
|
if (cflags & REG_NEWLINE) |
|
|
{ /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
|
|
syntax &= ~RE_DOT_NEWLINE; |
|
|
syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
|
|
/* It also changes the matching behavior. */ |
|
|
preg->newline_anchor = 1; |
|
|
} |
|
|
else |
|
|
preg->newline_anchor = 0; |
|
|
preg->no_sub = !!(cflags & REG_NOSUB); |
|
|
preg->translate = NULL; |
|
|
|
|
|
ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); |
|
|
|
|
|
/* POSIX doesn't distinguish between an unmatched open-group and an |
|
|
unmatched close-group: both are REG_EPAREN. */ |
|
|
if (ret == REG_ERPAREN) |
|
|
ret = REG_EPAREN; |
|
|
|
|
|
/* We have already checked preg->fastmap != NULL. */ |
|
|
if (BE (ret == REG_NOERROR, 1)) |
|
|
/* Compute the fastmap now, since regexec cannot modify the pattern |
|
|
buffer. This function never fails in this implementation. */ |
|
|
(void) re_compile_fastmap (preg); |
|
|
else |
|
|
{ |
|
|
/* Some error occurred while compiling the expression. */ |
|
|
re_free (preg->fastmap); |
|
|
preg->fastmap = NULL; |
|
|
} |
|
|
|
|
|
return (int) ret; |
|
|
} |
|
|
#ifdef _LIBC |
|
|
weak_alias (__regcomp, regcomp) |
|
|
#endif |
|
|
|
|
|
/* Returns a message corresponding to an error code, ERRCODE, returned |
|
|
from either regcomp or regexec. We don't use PREG here. */ |
|
|
|
|
|
size_t |
|
|
regerror(int errcode, const regex_t *__restrict preg, |
|
|
char *__restrict errbuf, size_t errbuf_size) |
|
|
{ |
|
|
const char *msg; |
|
|
size_t msg_size; |
|
|
|
|
|
if (BE (errcode < 0 |
|
|
|| errcode >= (int) (sizeof (__re_error_msgid_idx) |
|
|
/ sizeof (__re_error_msgid_idx[0])), 0)) |
|
|
/* Only error codes returned by the rest of the code should be passed |
|
|
to this routine. If we are given anything else, or if other regex |
|
|
code generates an invalid error code, then the program has a bug. |
|
|
Dump core so we can fix it. */ |
|
|
abort (); |
|
|
|
|
|
msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); |
|
|
|
|
|
msg_size = strlen (msg) + 1; /* Includes the null. */ |
|
|
|
|
|
if (BE (errbuf_size != 0, 1)) |
|
|
{ |
|
|
if (BE (msg_size > errbuf_size, 0)) |
|
|
{ |
|
|
memcpy (errbuf, msg, errbuf_size - 1); |
|
|
errbuf[errbuf_size - 1] = 0; |
|
|
} |
|
|
else |
|
|
memcpy (errbuf, msg, msg_size); |
|
|
} |
|
|
|
|
|
return msg_size; |
|
|
} |
|
|
#ifdef _LIBC |
|
|
weak_alias (__regerror, regerror) |
|
|
#endif |
|
|
|
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
/* This static array is used for the map to single-byte characters when |
|
|
UTF-8 is used. Otherwise we would allocate memory just to initialize |
|
|
it the same all the time. UTF-8 is the preferred encoding so this is |
|
|
a worthwhile optimization. */ |
|
|
#if __GNUC__ >= 3 |
|
|
static const bitset_t utf8_sb_map = { |
|
|
/* Set the first 128 bits. */ |
|
|
[0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX |
|
|
}; |
|
|
#else /* ! (__GNUC__ >= 3) */ |
|
|
static bitset_t utf8_sb_map; |
|
|
#endif /* __GNUC__ >= 3 */ |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|
|
|
|
|
|
static void |
|
|
free_dfa_content (re_dfa_t *dfa) |
|
|
{ |
|
|
int i, j; |
|
|
|
|
|
if (dfa->nodes) |
|
|
for (i = 0; i < dfa->nodes_len; ++i) |
|
|
free_token (dfa->nodes + i); |
|
|
re_free (dfa->nexts); |
|
|
for (i = 0; i < dfa->nodes_len; ++i) |
|
|
{ |
|
|
if (dfa->eclosures != NULL) |
|
|
re_node_set_free (dfa->eclosures + i); |
|
|
if (dfa->inveclosures != NULL) |
|
|
re_node_set_free (dfa->inveclosures + i); |
|
|
if (dfa->edests != NULL) |
|
|
re_node_set_free (dfa->edests + i); |
|
|
} |
|
|
re_free (dfa->edests); |
|
|
re_free (dfa->eclosures); |
|
|
re_free (dfa->inveclosures); |
|
|
re_free (dfa->nodes); |
|
|
|
|
|
if (dfa->state_table) |
|
|
for (i = 0; i <= dfa->state_hash_mask; ++i) |
|
|
{ |
|
|
struct re_state_table_entry *entry = dfa->state_table + i; |
|
|
for (j = 0; j < entry->num; ++j) |
|
|
{ |
|
|
re_dfastate_t *state = entry->array[j]; |
|
|
free_state (state); |
|
|
} |
|
|
re_free (entry->array); |
|
|
} |
|
|
re_free (dfa->state_table); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (dfa->sb_char != utf8_sb_map) |
|
|
re_free (dfa->sb_char); |
|
|
#endif |
|
|
re_free (dfa->subexp_map); |
|
|
#ifdef DEBUG |
|
|
re_free (dfa->re_str); |
|
|
#endif |
|
|
|
|
|
re_free (dfa); |
|
|
} |
|
|
|
|
|
|
|
|
/* Free dynamically allocated space used by PREG. */ |
|
|
|
|
|
void |
|
|
regfree (regex_t *preg) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
if (BE (dfa != NULL, 1)) |
|
|
free_dfa_content (dfa); |
|
|
preg->buffer = NULL; |
|
|
preg->allocated = 0; |
|
|
|
|
|
re_free (preg->fastmap); |
|
|
preg->fastmap = NULL; |
|
|
|
|
|
re_free (preg->translate); |
|
|
preg->translate = NULL; |
|
|
} |
|
|
#ifdef _LIBC |
|
|
weak_alias (__regfree, regfree) |
|
|
#endif |
|
|
|
|
|
/* Entry points compatible with 4.2 BSD regex library. We don't define |
|
|
them unless specifically requested. */ |
|
|
|
|
|
#if defined _REGEX_RE_COMP || defined _LIBC |
|
|
|
|
|
/* BSD has one and only one pattern buffer. */ |
|
|
static struct re_pattern_buffer re_comp_buf; |
|
|
|
|
|
char * |
|
|
# ifdef _LIBC |
|
|
/* Make these definitions weak in libc, so POSIX programs can redefine |
|
|
these names if they don't use our functions, and still use |
|
|
regcomp/regexec above without link errors. */ |
|
|
weak_function |
|
|
# endif |
|
|
re_comp (s) |
|
|
const char *s; |
|
|
{ |
|
|
reg_errcode_t ret; |
|
|
char *fastmap; |
|
|
|
|
|
if (!s) |
|
|
{ |
|
|
if (!re_comp_buf.buffer) |
|
|
return gettext ("No previous regular expression"); |
|
|
return 0; |
|
|
} |
|
|
|
|
|
if (re_comp_buf.buffer) |
|
|
{ |
|
|
fastmap = re_comp_buf.fastmap; |
|
|
re_comp_buf.fastmap = NULL; |
|
|
__regfree (&re_comp_buf); |
|
|
memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); |
|
|
re_comp_buf.fastmap = fastmap; |
|
|
} |
|
|
|
|
|
if (re_comp_buf.fastmap == NULL) |
|
|
{ |
|
|
re_comp_buf.fastmap = (char *) malloc (SBC_MAX); |
|
|
if (re_comp_buf.fastmap == NULL) |
|
|
return (char *) gettext (__re_error_msgid |
|
|
+ __re_error_msgid_idx[(int) REG_ESPACE]); |
|
|
} |
|
|
|
|
|
/* Since `re_exec' always passes NULL for the `regs' argument, we |
|
|
don't need to initialize the pattern buffer fields which affect it. */ |
|
|
|
|
|
/* Match anchors at newlines. */ |
|
|
re_comp_buf.newline_anchor = 1; |
|
|
|
|
|
ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); |
|
|
|
|
|
if (!ret) |
|
|
return NULL; |
|
|
|
|
|
/* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ |
|
|
return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); |
|
|
} |
|
|
|
|
|
#ifdef _LIBC |
|
|
libc_freeres_fn (free_mem) |
|
|
{ |
|
|
__regfree (&re_comp_buf); |
|
|
} |
|
|
#endif |
|
|
|
|
|
#endif /* _REGEX_RE_COMP */ |
|
|
|
|
|
/* Internal entry point. |
|
|
Compile the regular expression PATTERN, whose length is LENGTH. |
|
|
SYNTAX indicate regular expression's syntax. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
re_compile_internal (regex_t *preg, const char * pattern, size_t length, |
|
|
reg_syntax_t syntax) |
|
|
{ |
|
|
reg_errcode_t err = REG_NOERROR; |
|
|
re_dfa_t *dfa; |
|
|
re_string_t regexp; |
|
|
|
|
|
/* Initialize the pattern buffer. */ |
|
|
preg->fastmap_accurate = 0; |
|
|
preg->syntax = syntax; |
|
|
preg->not_bol = preg->not_eol = 0; |
|
|
preg->used = 0; |
|
|
preg->re_nsub = 0; |
|
|
preg->can_be_null = 0; |
|
|
preg->regs_allocated = REGS_UNALLOCATED; |
|
|
|
|
|
/* Initialize the dfa. */ |
|
|
dfa = (re_dfa_t *) preg->buffer; |
|
|
if (BE (preg->allocated < sizeof (re_dfa_t), 0)) |
|
|
{ |
|
|
/* If zero allocated, but buffer is non-null, try to realloc |
|
|
enough space. This loses if buffer's address is bogus, but |
|
|
that is the user's responsibility. If ->buffer is NULL this |
|
|
is a simple allocation. */ |
|
|
dfa = re_realloc (preg->buffer, re_dfa_t, 1); |
|
|
if (dfa == NULL) |
|
|
return REG_ESPACE; |
|
|
preg->allocated = sizeof (re_dfa_t); |
|
|
preg->buffer = (unsigned char *) dfa; |
|
|
} |
|
|
preg->used = sizeof (re_dfa_t); |
|
|
|
|
|
err = init_dfa (dfa, length); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
{ |
|
|
free_dfa_content (dfa); |
|
|
preg->buffer = NULL; |
|
|
preg->allocated = 0; |
|
|
return err; |
|
|
} |
|
|
#ifdef DEBUG |
|
|
/* Note: length+1 will not overflow since it is checked in init_dfa. */ |
|
|
dfa->re_str = re_malloc (char, length + 1); |
|
|
strncpy (dfa->re_str, pattern, length + 1); |
|
|
#endif |
|
|
|
|
|
__libc_lock_init (dfa->lock); |
|
|
|
|
|
err = re_string_construct (®exp, pattern, length, preg->translate, |
|
|
syntax & RE_ICASE, dfa); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
{ |
|
|
re_compile_internal_free_return: |
|
|
free_workarea_compile (preg); |
|
|
re_string_destruct (®exp); |
|
|
free_dfa_content (dfa); |
|
|
preg->buffer = NULL; |
|
|
preg->allocated = 0; |
|
|
return err; |
|
|
} |
|
|
|
|
|
/* Parse the regular expression, and build a structure tree. */ |
|
|
preg->re_nsub = 0; |
|
|
dfa->str_tree = parse (®exp, preg, syntax, &err); |
|
|
if (BE (dfa->str_tree == NULL, 0)) |
|
|
goto re_compile_internal_free_return; |
|
|
|
|
|
/* Analyze the tree and create the nfa. */ |
|
|
err = analyze (preg); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
goto re_compile_internal_free_return; |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
/* If possible, do searching in single byte encoding to speed things up. */ |
|
|
if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL) |
|
|
optimize_utf8 (dfa); |
|
|
#endif |
|
|
|
|
|
/* Then create the initial state of the dfa. */ |
|
|
err = create_initial_state (dfa); |
|
|
|
|
|
/* Release work areas. */ |
|
|
free_workarea_compile (preg); |
|
|
re_string_destruct (®exp); |
|
|
|
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
{ |
|
|
free_dfa_content (dfa); |
|
|
preg->buffer = NULL; |
|
|
preg->allocated = 0; |
|
|
} |
|
|
|
|
|
return err; |
|
|
} |
|
|
|
|
|
/* Initialize DFA. We use the length of the regular expression PAT_LEN |
|
|
as the initial length of some arrays. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
init_dfa (re_dfa_t *dfa, size_t pat_len) |
|
|
{ |
|
|
unsigned int table_size; |
|
|
#ifndef _LIBC |
|
|
char *codeset_name; |
|
|
#endif |
|
|
|
|
|
memset (dfa, '\0', sizeof (re_dfa_t)); |
|
|
|
|
|
/* Force allocation of str_tree_storage the first time. */ |
|
|
dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; |
|
|
|
|
|
/* Avoid overflows. */ |
|
|
if (pat_len == SIZE_MAX) |
|
|
return REG_ESPACE; |
|
|
|
|
|
dfa->nodes_alloc = pat_len + 1; |
|
|
dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); |
|
|
|
|
|
/* table_size = 2 ^ ceil(log pat_len) */ |
|
|
for (table_size = 1; ; table_size <<= 1) |
|
|
if (table_size > pat_len) |
|
|
break; |
|
|
|
|
|
dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size); |
|
|
dfa->state_hash_mask = table_size - 1; |
|
|
|
|
|
dfa->mb_cur_max = MB_CUR_MAX; |
|
|
#ifdef _LIBC |
|
|
if (dfa->mb_cur_max == 6 |
|
|
&& strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) |
|
|
dfa->is_utf8 = 1; |
|
|
dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) |
|
|
!= 0); |
|
|
#else |
|
|
# ifdef HAVE_LANGINFO_CODESET |
|
|
codeset_name = nl_langinfo (CODESET); |
|
|
# else |
|
|
codeset_name = getenv ("LC_ALL"); |
|
|
if (codeset_name == NULL || codeset_name[0] == '\0') |
|
|
codeset_name = getenv ("LC_CTYPE"); |
|
|
if (codeset_name == NULL || codeset_name[0] == '\0') |
|
|
codeset_name = getenv ("LANG"); |
|
|
if (codeset_name == NULL) |
|
|
codeset_name = ""; |
|
|
else if (strchr (codeset_name, '.') != NULL) |
|
|
codeset_name = strchr (codeset_name, '.') + 1; |
|
|
# endif |
|
|
|
|
|
/* strcasecmp isn't a standard interface. brute force check */ |
|
|
#if 0 |
|
|
if (strcasecmp (codeset_name, "UTF-8") == 0 |
|
|
|| strcasecmp (codeset_name, "UTF8") == 0) |
|
|
dfa->is_utf8 = 1; |
|
|
#else |
|
|
if ( (codeset_name[0] == 'U' || codeset_name[0] == 'u') |
|
|
&& (codeset_name[1] == 'T' || codeset_name[1] == 't') |
|
|
&& (codeset_name[2] == 'F' || codeset_name[2] == 'f') |
|
|
&& (codeset_name[3] == '-' |
|
|
? codeset_name[4] == '8' && codeset_name[5] == '\0' |
|
|
: codeset_name[3] == '8' && codeset_name[4] == '\0')) |
|
|
dfa->is_utf8 = 1; |
|
|
#endif |
|
|
|
|
|
/* We check exhaustively in the loop below if this charset is a |
|
|
superset of ASCII. */ |
|
|
dfa->map_notascii = 0; |
|
|
#endif |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (dfa->mb_cur_max > 1) |
|
|
{ |
|
|
if (dfa->is_utf8) |
|
|
{ |
|
|
#if !defined(__GNUC__) || __GNUC__ < 3 |
|
|
static short utf8_sb_map_inited = 0; |
|
|
|
|
|
if (! utf8_sb_map_inited) |
|
|
{ |
|
|
int i; |
|
|
|
|
|
utf8_sb_map_inited = 0; |
|
|
for (i = 0; i <= 0x80 / BITSET_WORD_BITS - 1; i++) |
|
|
utf8_sb_map[i] = BITSET_WORD_MAX; |
|
|
} |
|
|
#endif |
|
|
dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; |
|
|
} |
|
|
else |
|
|
{ |
|
|
int i, j, ch; |
|
|
|
|
|
dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
|
|
if (BE (dfa->sb_char == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
|
|
|
/* Set the bits corresponding to single byte chars. */ |
|
|
for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
|
|
for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
|
|
{ |
|
|
wint_t wch = __btowc (ch); |
|
|
if (wch != WEOF) |
|
|
dfa->sb_char[i] |= (bitset_word_t) 1 << j; |
|
|
# ifndef _LIBC |
|
|
if (isascii (ch) && wch != ch) |
|
|
dfa->map_notascii = 1; |
|
|
# endif |
|
|
} |
|
|
} |
|
|
} |
|
|
#endif |
|
|
|
|
|
if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Initialize WORD_CHAR table, which indicate which character is |
|
|
"word". In this case "word" means that it is the word construction |
|
|
character used by some operators like "\<", "\>", etc. */ |
|
|
|
|
|
static void |
|
|
internal_function |
|
|
init_word_char (re_dfa_t *dfa) |
|
|
{ |
|
|
int i, j, ch; |
|
|
dfa->word_ops_used = 1; |
|
|
for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
|
|
for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
|
|
if (isalnum (ch) || ch == '_') |
|
|
dfa->word_char[i] |= (bitset_word_t) 1 << j; |
|
|
} |
|
|
|
|
|
/* Free the work area which are only used while compiling. */ |
|
|
|
|
|
static void |
|
|
free_workarea_compile (regex_t *preg) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
bin_tree_storage_t *storage, *next; |
|
|
for (storage = dfa->str_tree_storage; storage; storage = next) |
|
|
{ |
|
|
next = storage->next; |
|
|
re_free (storage); |
|
|
} |
|
|
dfa->str_tree_storage = NULL; |
|
|
dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; |
|
|
dfa->str_tree = NULL; |
|
|
re_free (dfa->org_indices); |
|
|
dfa->org_indices = NULL; |
|
|
} |
|
|
|
|
|
/* Create initial states for all contexts. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
create_initial_state (re_dfa_t *dfa) |
|
|
{ |
|
|
int first, i; |
|
|
reg_errcode_t err; |
|
|
re_node_set init_nodes; |
|
|
|
|
|
/* Initial states have the epsilon closure of the node which is |
|
|
the first node of the regular expression. */ |
|
|
first = dfa->str_tree->first->node_idx; |
|
|
dfa->init_node = first; |
|
|
err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
|
|
|
/* The back-references which are in initial states can epsilon transit, |
|
|
since in this case all of the subexpressions can be null. |
|
|
Then we add epsilon closures of the nodes which are the next nodes of |
|
|
the back-references. */ |
|
|
if (dfa->nbackref > 0) |
|
|
for (i = 0; i < init_nodes.nelem; ++i) |
|
|
{ |
|
|
int node_idx = init_nodes.elems[i]; |
|
|
re_token_type_t type = dfa->nodes[node_idx].type; |
|
|
|
|
|
int clexp_idx; |
|
|
if (type != OP_BACK_REF) |
|
|
continue; |
|
|
for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) |
|
|
{ |
|
|
re_token_t *clexp_node; |
|
|
clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; |
|
|
if (clexp_node->type == OP_CLOSE_SUBEXP |
|
|
&& clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) |
|
|
break; |
|
|
} |
|
|
if (clexp_idx == init_nodes.nelem) |
|
|
continue; |
|
|
|
|
|
if (type == OP_BACK_REF) |
|
|
{ |
|
|
int dest_idx = dfa->edests[node_idx].elems[0]; |
|
|
if (!re_node_set_contains (&init_nodes, dest_idx)) |
|
|
{ |
|
|
reg_errcode_t err = re_node_set_merge (&init_nodes, |
|
|
dfa->eclosures |
|
|
+ dest_idx); |
|
|
if (err != REG_NOERROR) |
|
|
return err; |
|
|
i = 0; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
/* It must be the first time to invoke acquire_state. */ |
|
|
dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); |
|
|
/* We don't check ERR here, since the initial state must not be NULL. */ |
|
|
if (BE (dfa->init_state == NULL, 0)) |
|
|
return err; |
|
|
if (dfa->init_state->has_constraint) |
|
|
{ |
|
|
dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, |
|
|
CONTEXT_WORD); |
|
|
dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, |
|
|
CONTEXT_NEWLINE); |
|
|
dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, |
|
|
&init_nodes, |
|
|
CONTEXT_NEWLINE |
|
|
| CONTEXT_BEGBUF); |
|
|
if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL |
|
|
|| dfa->init_state_begbuf == NULL, 0)) |
|
|
return err; |
|
|
} |
|
|
else |
|
|
dfa->init_state_word = dfa->init_state_nl |
|
|
= dfa->init_state_begbuf = dfa->init_state; |
|
|
|
|
|
re_node_set_free (&init_nodes); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
/* If it is possible to do searching in single byte encoding instead of UTF-8 |
|
|
to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change |
|
|
DFA nodes where needed. */ |
|
|
|
|
|
static void |
|
|
optimize_utf8 (re_dfa_t *dfa) |
|
|
{ |
|
|
int node, i, mb_chars = 0, has_period = 0; |
|
|
|
|
|
for (node = 0; node < dfa->nodes_len; ++node) |
|
|
switch (dfa->nodes[node].type) |
|
|
{ |
|
|
case CHARACTER: |
|
|
if (dfa->nodes[node].opr.c >= 0x80) |
|
|
mb_chars = 1; |
|
|
break; |
|
|
case ANCHOR: |
|
|
switch (dfa->nodes[node].opr.ctx_type) |
|
|
{ |
|
|
case LINE_FIRST: |
|
|
case LINE_LAST: |
|
|
case BUF_FIRST: |
|
|
case BUF_LAST: |
|
|
break; |
|
|
default: |
|
|
/* Word anchors etc. cannot be handled. It's okay to test |
|
|
opr.ctx_type since constraints (for all DFA nodes) are |
|
|
created by ORing one or more opr.ctx_type values. */ |
|
|
return; |
|
|
} |
|
|
break; |
|
|
case OP_PERIOD: |
|
|
has_period = 1; |
|
|
break; |
|
|
case OP_BACK_REF: |
|
|
case OP_ALT: |
|
|
case END_OF_RE: |
|
|
case OP_DUP_ASTERISK: |
|
|
case OP_OPEN_SUBEXP: |
|
|
case OP_CLOSE_SUBEXP: |
|
|
break; |
|
|
case COMPLEX_BRACKET: |
|
|
return; |
|
|
case SIMPLE_BRACKET: |
|
|
/* Just double check. The non-ASCII range starts at 0x80. */ |
|
|
assert (0x80 % BITSET_WORD_BITS == 0); |
|
|
for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) |
|
|
if (dfa->nodes[node].opr.sbcset[i]) |
|
|
return; |
|
|
break; |
|
|
default: |
|
|
abort (); |
|
|
} |
|
|
|
|
|
if (mb_chars || has_period) |
|
|
for (node = 0; node < dfa->nodes_len; ++node) |
|
|
{ |
|
|
if (dfa->nodes[node].type == CHARACTER |
|
|
&& dfa->nodes[node].opr.c >= 0x80) |
|
|
dfa->nodes[node].mb_partial = 0; |
|
|
else if (dfa->nodes[node].type == OP_PERIOD) |
|
|
dfa->nodes[node].type = OP_UTF8_PERIOD; |
|
|
} |
|
|
|
|
|
/* The search can be in single byte locale. */ |
|
|
dfa->mb_cur_max = 1; |
|
|
dfa->is_utf8 = 0; |
|
|
dfa->has_mb_node = dfa->nbackref > 0 || has_period; |
|
|
} |
|
|
#endif |
|
|
|
|
|
/* Analyze the structure tree, and calculate "first", "next", "edest", |
|
|
"eclosure", and "inveclosure". */ |
|
|
|
|
|
static reg_errcode_t |
|
|
analyze (regex_t *preg) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
reg_errcode_t ret; |
|
|
|
|
|
/* Allocate arrays. */ |
|
|
dfa->nexts = re_malloc (int, dfa->nodes_alloc); |
|
|
dfa->org_indices = re_malloc (int, dfa->nodes_alloc); |
|
|
dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); |
|
|
dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); |
|
|
if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL |
|
|
|| dfa->eclosures == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
|
|
|
dfa->subexp_map = re_malloc (int, preg->re_nsub); |
|
|
if (dfa->subexp_map != NULL) |
|
|
{ |
|
|
int i; |
|
|
for (i = 0; i < preg->re_nsub; i++) |
|
|
dfa->subexp_map[i] = i; |
|
|
preorder (dfa->str_tree, optimize_subexps, dfa); |
|
|
for (i = 0; i < preg->re_nsub; i++) |
|
|
if (dfa->subexp_map[i] != i) |
|
|
break; |
|
|
if (i == preg->re_nsub) |
|
|
{ |
|
|
free (dfa->subexp_map); |
|
|
dfa->subexp_map = NULL; |
|
|
} |
|
|
} |
|
|
|
|
|
ret = postorder (dfa->str_tree, lower_subexps, preg); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
ret = postorder (dfa->str_tree, calc_first, dfa); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
preorder (dfa->str_tree, calc_next, dfa); |
|
|
ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
ret = calc_eclosure (dfa); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
|
|
|
/* We only need this during the prune_impossible_nodes pass in regexec.c; |
|
|
skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */ |
|
|
if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match) |
|
|
|| dfa->nbackref) |
|
|
{ |
|
|
dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len); |
|
|
if (BE (dfa->inveclosures == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
ret = calc_inveclosure (dfa); |
|
|
} |
|
|
|
|
|
return ret; |
|
|
} |
|
|
|
|
|
/* Our parse trees are very unbalanced, so we cannot use a stack to |
|
|
implement parse tree visits. Instead, we use parent pointers and |
|
|
some hairy code in these two functions. */ |
|
|
static reg_errcode_t |
|
|
postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), |
|
|
void *extra) |
|
|
{ |
|
|
bin_tree_t *node, *prev; |
|
|
|
|
|
for (node = root; ; ) |
|
|
{ |
|
|
/* Descend down the tree, preferably to the left (or to the right |
|
|
if that's the only child). */ |
|
|
while (node->left || node->right) |
|
|
if (node->left) |
|
|
node = node->left; |
|
|
else |
|
|
node = node->right; |
|
|
|
|
|
do |
|
|
{ |
|
|
reg_errcode_t err = fn (extra, node); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
if (node->parent == NULL) |
|
|
return REG_NOERROR; |
|
|
prev = node; |
|
|
node = node->parent; |
|
|
} |
|
|
/* Go up while we have a node that is reached from the right. */ |
|
|
while (node->right == prev || node->right == NULL); |
|
|
node = node->right; |
|
|
} |
|
|
} |
|
|
|
|
|
static reg_errcode_t |
|
|
preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), |
|
|
void *extra) |
|
|
{ |
|
|
bin_tree_t *node; |
|
|
|
|
|
for (node = root; ; ) |
|
|
{ |
|
|
reg_errcode_t err = fn (extra, node); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
|
|
|
/* Go to the left node, or up and to the right. */ |
|
|
if (node->left) |
|
|
node = node->left; |
|
|
else |
|
|
{ |
|
|
bin_tree_t *prev = NULL; |
|
|
while (node->right == prev || node->right == NULL) |
|
|
{ |
|
|
prev = node; |
|
|
node = node->parent; |
|
|
if (!node) |
|
|
return REG_NOERROR; |
|
|
} |
|
|
node = node->right; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
/* Optimization pass: if a SUBEXP is entirely contained, strip it and tell |
|
|
re_search_internal to map the inner one's opr.idx to this one's. Adjust |
|
|
backreferences as well. Requires a preorder visit. */ |
|
|
static reg_errcode_t |
|
|
optimize_subexps (void *extra, bin_tree_t *node) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) extra; |
|
|
|
|
|
if (node->token.type == OP_BACK_REF && dfa->subexp_map) |
|
|
{ |
|
|
int idx = node->token.opr.idx; |
|
|
node->token.opr.idx = dfa->subexp_map[idx]; |
|
|
dfa->used_bkref_map |= 1 << node->token.opr.idx; |
|
|
} |
|
|
|
|
|
else if (node->token.type == SUBEXP |
|
|
&& node->left && node->left->token.type == SUBEXP) |
|
|
{ |
|
|
int other_idx = node->left->token.opr.idx; |
|
|
|
|
|
node->left = node->left->left; |
|
|
if (node->left) |
|
|
node->left->parent = node; |
|
|
|
|
|
dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; |
|
|
if (other_idx < BITSET_WORD_BITS) |
|
|
dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx); |
|
|
} |
|
|
|
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Lowering pass: Turn each SUBEXP node into the appropriate concatenation |
|
|
of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */ |
|
|
static reg_errcode_t |
|
|
lower_subexps (void *extra, bin_tree_t *node) |
|
|
{ |
|
|
regex_t *preg = (regex_t *) extra; |
|
|
reg_errcode_t err = REG_NOERROR; |
|
|
|
|
|
if (node->left && node->left->token.type == SUBEXP) |
|
|
{ |
|
|
node->left = lower_subexp (&err, preg, node->left); |
|
|
if (node->left) |
|
|
node->left->parent = node; |
|
|
} |
|
|
if (node->right && node->right->token.type == SUBEXP) |
|
|
{ |
|
|
node->right = lower_subexp (&err, preg, node->right); |
|
|
if (node->right) |
|
|
node->right->parent = node; |
|
|
} |
|
|
|
|
|
return err; |
|
|
} |
|
|
|
|
|
static bin_tree_t * |
|
|
lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
bin_tree_t *body = node->left; |
|
|
bin_tree_t *op, *cls, *tree1, *tree; |
|
|
|
|
|
if (preg->no_sub |
|
|
/* We do not optimize empty subexpressions, because otherwise we may |
|
|
have bad CONCAT nodes with NULL children. This is obviously not |
|
|
very common, so we do not lose much. An example that triggers |
|
|
this case is the sed "script" /\(\)/x. */ |
|
|
&& node->left != NULL |
|
|
&& (node->token.opr.idx >= BITSET_WORD_BITS |
|
|
|| !(dfa->used_bkref_map |
|
|
& ((bitset_word_t) 1 << node->token.opr.idx)))) |
|
|
return node->left; |
|
|
|
|
|
/* Convert the SUBEXP node to the concatenation of an |
|
|
OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */ |
|
|
op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); |
|
|
cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); |
|
|
tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; |
|
|
tree = create_tree (dfa, op, tree1, CONCAT); |
|
|
if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; |
|
|
op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; |
|
|
return tree; |
|
|
} |
|
|
|
|
|
/* Pass 1 in building the NFA: compute FIRST and create unlinked automaton |
|
|
nodes. Requires a postorder visit. */ |
|
|
static reg_errcode_t |
|
|
calc_first (void *extra, bin_tree_t *node) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) extra; |
|
|
if (node->token.type == CONCAT) |
|
|
{ |
|
|
node->first = node->left->first; |
|
|
node->node_idx = node->left->node_idx; |
|
|
} |
|
|
else |
|
|
{ |
|
|
node->first = node; |
|
|
node->node_idx = re_dfa_add_node (dfa, node->token); |
|
|
if (BE (node->node_idx == -1, 0)) |
|
|
return REG_ESPACE; |
|
|
if (node->token.type == ANCHOR) |
|
|
dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type; |
|
|
} |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Pass 2: compute NEXT on the tree. Preorder visit. */ |
|
|
static reg_errcode_t |
|
|
calc_next (void *extra, bin_tree_t *node) |
|
|
{ |
|
|
switch (node->token.type) |
|
|
{ |
|
|
case OP_DUP_ASTERISK: |
|
|
node->left->next = node; |
|
|
break; |
|
|
case CONCAT: |
|
|
node->left->next = node->right->first; |
|
|
node->right->next = node->next; |
|
|
break; |
|
|
default: |
|
|
if (node->left) |
|
|
node->left->next = node->next; |
|
|
if (node->right) |
|
|
node->right->next = node->next; |
|
|
break; |
|
|
} |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Pass 3: link all DFA nodes to their NEXT node (any order will do). */ |
|
|
static reg_errcode_t |
|
|
link_nfa_nodes (void *extra, bin_tree_t *node) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) extra; |
|
|
int idx = node->node_idx; |
|
|
reg_errcode_t err = REG_NOERROR; |
|
|
|
|
|
switch (node->token.type) |
|
|
{ |
|
|
case CONCAT: |
|
|
break; |
|
|
|
|
|
case END_OF_RE: |
|
|
assert (node->next == NULL); |
|
|
break; |
|
|
|
|
|
case OP_DUP_ASTERISK: |
|
|
case OP_ALT: |
|
|
{ |
|
|
int left, right; |
|
|
dfa->has_plural_match = 1; |
|
|
if (node->left != NULL) |
|
|
left = node->left->first->node_idx; |
|
|
else |
|
|
left = node->next->node_idx; |
|
|
if (node->right != NULL) |
|
|
right = node->right->first->node_idx; |
|
|
else |
|
|
right = node->next->node_idx; |
|
|
assert (left > -1); |
|
|
assert (right > -1); |
|
|
err = re_node_set_init_2 (dfa->edests + idx, left, right); |
|
|
} |
|
|
break; |
|
|
|
|
|
case ANCHOR: |
|
|
case OP_OPEN_SUBEXP: |
|
|
case OP_CLOSE_SUBEXP: |
|
|
err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); |
|
|
break; |
|
|
|
|
|
case OP_BACK_REF: |
|
|
dfa->nexts[idx] = node->next->node_idx; |
|
|
if (node->token.type == OP_BACK_REF) |
|
|
err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); |
|
|
break; |
|
|
|
|
|
default: |
|
|
assert (!IS_EPSILON_NODE (node->token.type)); |
|
|
dfa->nexts[idx] = node->next->node_idx; |
|
|
break; |
|
|
} |
|
|
|
|
|
return err; |
|
|
} |
|
|
|
|
|
/* Duplicate the epsilon closure of the node ROOT_NODE. |
|
|
Note that duplicated nodes have constraint INIT_CONSTRAINT in addition |
|
|
to their own constraint. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node, |
|
|
int root_node, unsigned int init_constraint) |
|
|
{ |
|
|
int org_node, clone_node, ret; |
|
|
unsigned int constraint = init_constraint; |
|
|
for (org_node = top_org_node, clone_node = top_clone_node;;) |
|
|
{ |
|
|
int org_dest, clone_dest; |
|
|
if (dfa->nodes[org_node].type == OP_BACK_REF) |
|
|
{ |
|
|
/* If the back reference epsilon-transit, its destination must |
|
|
also have the constraint. Then duplicate the epsilon closure |
|
|
of the destination of the back reference, and store it in |
|
|
edests of the back reference. */ |
|
|
org_dest = dfa->nexts[org_node]; |
|
|
re_node_set_empty (dfa->edests + clone_node); |
|
|
clone_dest = duplicate_node (dfa, org_dest, constraint); |
|
|
if (BE (clone_dest == -1, 0)) |
|
|
return REG_ESPACE; |
|
|
dfa->nexts[clone_node] = dfa->nexts[org_node]; |
|
|
ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
|
|
if (BE (ret < 0, 0)) |
|
|
return REG_ESPACE; |
|
|
} |
|
|
else if (dfa->edests[org_node].nelem == 0) |
|
|
{ |
|
|
/* In case of the node can't epsilon-transit, don't duplicate the |
|
|
destination and store the original destination as the |
|
|
destination of the node. */ |
|
|
dfa->nexts[clone_node] = dfa->nexts[org_node]; |
|
|
break; |
|
|
} |
|
|
else if (dfa->edests[org_node].nelem == 1) |
|
|
{ |
|
|
/* In case of the node can epsilon-transit, and it has only one |
|
|
destination. */ |
|
|
org_dest = dfa->edests[org_node].elems[0]; |
|
|
re_node_set_empty (dfa->edests + clone_node); |
|
|
/* If the node is root_node itself, it means the epsilon clsoure |
|
|
has a loop. Then tie it to the destination of the root_node. */ |
|
|
if (org_node == root_node && clone_node != org_node) |
|
|
{ |
|
|
ret = re_node_set_insert (dfa->edests + clone_node, org_dest); |
|
|
if (BE (ret < 0, 0)) |
|
|
return REG_ESPACE; |
|
|
break; |
|
|
} |
|
|
/* In case of the node has another constraint, add it. */ |
|
|
constraint |= dfa->nodes[org_node].constraint; |
|
|
clone_dest = duplicate_node (dfa, org_dest, constraint); |
|
|
if (BE (clone_dest == -1, 0)) |
|
|
return REG_ESPACE; |
|
|
ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
|
|
if (BE (ret < 0, 0)) |
|
|
return REG_ESPACE; |
|
|
} |
|
|
else /* dfa->edests[org_node].nelem == 2 */ |
|
|
{ |
|
|
/* In case of the node can epsilon-transit, and it has two |
|
|
destinations. In the bin_tree_t and DFA, that's '|' and '*'. */ |
|
|
org_dest = dfa->edests[org_node].elems[0]; |
|
|
re_node_set_empty (dfa->edests + clone_node); |
|
|
/* Search for a duplicated node which satisfies the constraint. */ |
|
|
clone_dest = search_duplicated_node (dfa, org_dest, constraint); |
|
|
if (clone_dest == -1) |
|
|
{ |
|
|
/* There is no such duplicated node, create a new one. */ |
|
|
reg_errcode_t err; |
|
|
clone_dest = duplicate_node (dfa, org_dest, constraint); |
|
|
if (BE (clone_dest == -1, 0)) |
|
|
return REG_ESPACE; |
|
|
ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
|
|
if (BE (ret < 0, 0)) |
|
|
return REG_ESPACE; |
|
|
err = duplicate_node_closure (dfa, org_dest, clone_dest, |
|
|
root_node, constraint); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
} |
|
|
else |
|
|
{ |
|
|
/* There is a duplicated node which satisfies the constraint, |
|
|
use it to avoid infinite loop. */ |
|
|
ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
|
|
if (BE (ret < 0, 0)) |
|
|
return REG_ESPACE; |
|
|
} |
|
|
|
|
|
org_dest = dfa->edests[org_node].elems[1]; |
|
|
clone_dest = duplicate_node (dfa, org_dest, constraint); |
|
|
if (BE (clone_dest == -1, 0)) |
|
|
return REG_ESPACE; |
|
|
ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
|
|
if (BE (ret < 0, 0)) |
|
|
return REG_ESPACE; |
|
|
} |
|
|
org_node = org_dest; |
|
|
clone_node = clone_dest; |
|
|
} |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Search for a node which is duplicated from the node ORG_NODE, and |
|
|
satisfies the constraint CONSTRAINT. */ |
|
|
|
|
|
static int |
|
|
search_duplicated_node (const re_dfa_t *dfa, int org_node, |
|
|
unsigned int constraint) |
|
|
{ |
|
|
int idx; |
|
|
for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) |
|
|
{ |
|
|
if (org_node == dfa->org_indices[idx] |
|
|
&& constraint == dfa->nodes[idx].constraint) |
|
|
return idx; /* Found. */ |
|
|
} |
|
|
return -1; /* Not found. */ |
|
|
} |
|
|
|
|
|
/* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. |
|
|
Return the index of the new node, or -1 if insufficient storage is |
|
|
available. */ |
|
|
|
|
|
static int |
|
|
duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint) |
|
|
{ |
|
|
int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); |
|
|
if (BE (dup_idx != -1, 1)) |
|
|
{ |
|
|
dfa->nodes[dup_idx].constraint = constraint; |
|
|
dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint; |
|
|
dfa->nodes[dup_idx].duplicated = 1; |
|
|
|
|
|
/* Store the index of the original node. */ |
|
|
dfa->org_indices[dup_idx] = org_idx; |
|
|
} |
|
|
return dup_idx; |
|
|
} |
|
|
|
|
|
static reg_errcode_t |
|
|
calc_inveclosure (re_dfa_t *dfa) |
|
|
{ |
|
|
int src, idx, ret; |
|
|
for (idx = 0; idx < dfa->nodes_len; ++idx) |
|
|
re_node_set_init_empty (dfa->inveclosures + idx); |
|
|
|
|
|
for (src = 0; src < dfa->nodes_len; ++src) |
|
|
{ |
|
|
int *elems = dfa->eclosures[src].elems; |
|
|
for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) |
|
|
{ |
|
|
ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); |
|
|
if (BE (ret == -1, 0)) |
|
|
return REG_ESPACE; |
|
|
} |
|
|
} |
|
|
|
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Calculate "eclosure" for all the node in DFA. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
calc_eclosure (re_dfa_t *dfa) |
|
|
{ |
|
|
int node_idx, incomplete; |
|
|
#ifdef DEBUG |
|
|
assert (dfa->nodes_len > 0); |
|
|
#endif |
|
|
incomplete = 0; |
|
|
/* For each nodes, calculate epsilon closure. */ |
|
|
for (node_idx = 0; ; ++node_idx) |
|
|
{ |
|
|
reg_errcode_t err; |
|
|
re_node_set eclosure_elem; |
|
|
if (node_idx == dfa->nodes_len) |
|
|
{ |
|
|
if (!incomplete) |
|
|
break; |
|
|
incomplete = 0; |
|
|
node_idx = 0; |
|
|
} |
|
|
|
|
|
#ifdef DEBUG |
|
|
assert (dfa->eclosures[node_idx].nelem != -1); |
|
|
#endif |
|
|
|
|
|
/* If we have already calculated, skip it. */ |
|
|
if (dfa->eclosures[node_idx].nelem != 0) |
|
|
continue; |
|
|
/* Calculate epsilon closure of `node_idx'. */ |
|
|
err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
|
|
|
if (dfa->eclosures[node_idx].nelem == 0) |
|
|
{ |
|
|
incomplete = 1; |
|
|
re_node_set_free (&eclosure_elem); |
|
|
} |
|
|
} |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Calculate epsilon closure of NODE. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root) |
|
|
{ |
|
|
reg_errcode_t err; |
|
|
int i; |
|
|
re_node_set eclosure; |
|
|
int ret; |
|
|
int incomplete = 0; |
|
|
err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
|
|
|
/* This indicates that we are calculating this node now. |
|
|
We reference this value to avoid infinite loop. */ |
|
|
dfa->eclosures[node].nelem = -1; |
|
|
|
|
|
/* If the current node has constraints, duplicate all nodes |
|
|
since they must inherit the constraints. */ |
|
|
if (dfa->nodes[node].constraint |
|
|
&& dfa->edests[node].nelem |
|
|
&& !dfa->nodes[dfa->edests[node].elems[0]].duplicated) |
|
|
{ |
|
|
err = duplicate_node_closure (dfa, node, node, node, |
|
|
dfa->nodes[node].constraint); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
} |
|
|
|
|
|
/* Expand each epsilon destination nodes. */ |
|
|
if (IS_EPSILON_NODE(dfa->nodes[node].type)) |
|
|
for (i = 0; i < dfa->edests[node].nelem; ++i) |
|
|
{ |
|
|
re_node_set eclosure_elem; |
|
|
int edest = dfa->edests[node].elems[i]; |
|
|
/* If calculating the epsilon closure of `edest' is in progress, |
|
|
return intermediate result. */ |
|
|
if (dfa->eclosures[edest].nelem == -1) |
|
|
{ |
|
|
incomplete = 1; |
|
|
continue; |
|
|
} |
|
|
/* If we haven't calculated the epsilon closure of `edest' yet, |
|
|
calculate now. Otherwise use calculated epsilon closure. */ |
|
|
if (dfa->eclosures[edest].nelem == 0) |
|
|
{ |
|
|
err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
} |
|
|
else |
|
|
eclosure_elem = dfa->eclosures[edest]; |
|
|
/* Merge the epsilon closure of `edest'. */ |
|
|
err = re_node_set_merge (&eclosure, &eclosure_elem); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return err; |
|
|
/* If the epsilon closure of `edest' is incomplete, |
|
|
the epsilon closure of this node is also incomplete. */ |
|
|
if (dfa->eclosures[edest].nelem == 0) |
|
|
{ |
|
|
incomplete = 1; |
|
|
re_node_set_free (&eclosure_elem); |
|
|
} |
|
|
} |
|
|
|
|
|
/* An epsilon closure includes itself. */ |
|
|
ret = re_node_set_insert (&eclosure, node); |
|
|
if (BE (ret < 0, 0)) |
|
|
return REG_ESPACE; |
|
|
if (incomplete && !root) |
|
|
dfa->eclosures[node].nelem = 0; |
|
|
else |
|
|
dfa->eclosures[node] = eclosure; |
|
|
*new_set = eclosure; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Functions for token which are used in the parser. */ |
|
|
|
|
|
/* Fetch a token from INPUT. |
|
|
We must not use this function inside bracket expressions. */ |
|
|
|
|
|
static void |
|
|
internal_function |
|
|
fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) |
|
|
{ |
|
|
re_string_skip_bytes (input, peek_token (result, input, syntax)); |
|
|
} |
|
|
|
|
|
/* Peek a token from INPUT, and return the length of the token. |
|
|
We must not use this function inside bracket expressions. */ |
|
|
|
|
|
static int |
|
|
internal_function |
|
|
peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) |
|
|
{ |
|
|
unsigned char c; |
|
|
|
|
|
if (re_string_eoi (input)) |
|
|
{ |
|
|
token->type = END_OF_RE; |
|
|
return 0; |
|
|
} |
|
|
|
|
|
c = re_string_peek_byte (input, 0); |
|
|
token->opr.c = c; |
|
|
|
|
|
token->word_char = 0; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
token->mb_partial = 0; |
|
|
if (input->mb_cur_max > 1 && |
|
|
!re_string_first_byte (input, re_string_cur_idx (input))) |
|
|
{ |
|
|
token->type = CHARACTER; |
|
|
token->mb_partial = 1; |
|
|
return 1; |
|
|
} |
|
|
#endif |
|
|
if (c == '\\') |
|
|
{ |
|
|
unsigned char c2; |
|
|
if (re_string_cur_idx (input) + 1 >= re_string_length (input)) |
|
|
{ |
|
|
token->type = BACK_SLASH; |
|
|
return 1; |
|
|
} |
|
|
|
|
|
c2 = re_string_peek_byte_case (input, 1); |
|
|
token->opr.c = c2; |
|
|
token->type = CHARACTER; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (input->mb_cur_max > 1) |
|
|
{ |
|
|
wint_t wc = re_string_wchar_at (input, |
|
|
re_string_cur_idx (input) + 1); |
|
|
token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; |
|
|
} |
|
|
else |
|
|
#endif |
|
|
token->word_char = IS_WORD_CHAR (c2) != 0; |
|
|
|
|
|
switch (c2) |
|
|
{ |
|
|
case '|': |
|
|
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) |
|
|
token->type = OP_ALT; |
|
|
break; |
|
|
case '1': case '2': case '3': case '4': case '5': |
|
|
case '6': case '7': case '8': case '9': |
|
|
if (!(syntax & RE_NO_BK_REFS)) |
|
|
{ |
|
|
token->type = OP_BACK_REF; |
|
|
token->opr.idx = c2 - '1'; |
|
|
} |
|
|
break; |
|
|
case '<': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
{ |
|
|
token->type = ANCHOR; |
|
|
token->opr.ctx_type = WORD_FIRST; |
|
|
} |
|
|
break; |
|
|
case '>': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
{ |
|
|
token->type = ANCHOR; |
|
|
token->opr.ctx_type = WORD_LAST; |
|
|
} |
|
|
break; |
|
|
case 'b': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
{ |
|
|
token->type = ANCHOR; |
|
|
token->opr.ctx_type = WORD_DELIM; |
|
|
} |
|
|
break; |
|
|
case 'B': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
{ |
|
|
token->type = ANCHOR; |
|
|
token->opr.ctx_type = NOT_WORD_DELIM; |
|
|
} |
|
|
break; |
|
|
case 'w': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
token->type = OP_WORD; |
|
|
break; |
|
|
case 'W': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
token->type = OP_NOTWORD; |
|
|
break; |
|
|
case 's': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
token->type = OP_SPACE; |
|
|
break; |
|
|
case 'S': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
token->type = OP_NOTSPACE; |
|
|
break; |
|
|
case '`': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
{ |
|
|
token->type = ANCHOR; |
|
|
token->opr.ctx_type = BUF_FIRST; |
|
|
} |
|
|
break; |
|
|
case '\'': |
|
|
if (!(syntax & RE_NO_GNU_OPS)) |
|
|
{ |
|
|
token->type = ANCHOR; |
|
|
token->opr.ctx_type = BUF_LAST; |
|
|
} |
|
|
break; |
|
|
case '(': |
|
|
if (!(syntax & RE_NO_BK_PARENS)) |
|
|
token->type = OP_OPEN_SUBEXP; |
|
|
break; |
|
|
case ')': |
|
|
if (!(syntax & RE_NO_BK_PARENS)) |
|
|
token->type = OP_CLOSE_SUBEXP; |
|
|
break; |
|
|
case '+': |
|
|
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) |
|
|
token->type = OP_DUP_PLUS; |
|
|
break; |
|
|
case '?': |
|
|
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) |
|
|
token->type = OP_DUP_QUESTION; |
|
|
break; |
|
|
case '{': |
|
|
if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) |
|
|
token->type = OP_OPEN_DUP_NUM; |
|
|
break; |
|
|
case '}': |
|
|
if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) |
|
|
token->type = OP_CLOSE_DUP_NUM; |
|
|
break; |
|
|
default: |
|
|
break; |
|
|
} |
|
|
return 2; |
|
|
} |
|
|
|
|
|
token->type = CHARACTER; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (input->mb_cur_max > 1) |
|
|
{ |
|
|
wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); |
|
|
token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; |
|
|
} |
|
|
else |
|
|
#endif |
|
|
token->word_char = IS_WORD_CHAR (token->opr.c); |
|
|
|
|
|
switch (c) |
|
|
{ |
|
|
case '\n': |
|
|
if (syntax & RE_NEWLINE_ALT) |
|
|
token->type = OP_ALT; |
|
|
break; |
|
|
case '|': |
|
|
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) |
|
|
token->type = OP_ALT; |
|
|
break; |
|
|
case '*': |
|
|
token->type = OP_DUP_ASTERISK; |
|
|
break; |
|
|
case '+': |
|
|
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) |
|
|
token->type = OP_DUP_PLUS; |
|
|
break; |
|
|
case '?': |
|
|
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) |
|
|
token->type = OP_DUP_QUESTION; |
|
|
break; |
|
|
case '{': |
|
|
if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
|
|
token->type = OP_OPEN_DUP_NUM; |
|
|
break; |
|
|
case '}': |
|
|
if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
|
|
token->type = OP_CLOSE_DUP_NUM; |
|
|
break; |
|
|
case '(': |
|
|
if (syntax & RE_NO_BK_PARENS) |
|
|
token->type = OP_OPEN_SUBEXP; |
|
|
break; |
|
|
case ')': |
|
|
if (syntax & RE_NO_BK_PARENS) |
|
|
token->type = OP_CLOSE_SUBEXP; |
|
|
break; |
|
|
case '[': |
|
|
token->type = OP_OPEN_BRACKET; |
|
|
break; |
|
|
case '.': |
|
|
token->type = OP_PERIOD; |
|
|
break; |
|
|
case '^': |
|
|
if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) && |
|
|
re_string_cur_idx (input) != 0) |
|
|
{ |
|
|
char prev = re_string_peek_byte (input, -1); |
|
|
if (!(syntax & RE_NEWLINE_ALT) || prev != '\n') |
|
|
break; |
|
|
} |
|
|
token->type = ANCHOR; |
|
|
token->opr.ctx_type = LINE_FIRST; |
|
|
break; |
|
|
case '$': |
|
|
if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && |
|
|
re_string_cur_idx (input) + 1 != re_string_length (input)) |
|
|
{ |
|
|
re_token_t next; |
|
|
re_string_skip_bytes (input, 1); |
|
|
peek_token (&next, input, syntax); |
|
|
re_string_skip_bytes (input, -1); |
|
|
if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) |
|
|
break; |
|
|
} |
|
|
token->type = ANCHOR; |
|
|
token->opr.ctx_type = LINE_LAST; |
|
|
break; |
|
|
default: |
|
|
break; |
|
|
} |
|
|
return 1; |
|
|
} |
|
|
|
|
|
/* Peek a token from INPUT, and return the length of the token. |
|
|
We must not use this function out of bracket expressions. */ |
|
|
|
|
|
static int |
|
|
internal_function |
|
|
peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) |
|
|
{ |
|
|
unsigned char c; |
|
|
if (re_string_eoi (input)) |
|
|
{ |
|
|
token->type = END_OF_RE; |
|
|
return 0; |
|
|
} |
|
|
c = re_string_peek_byte (input, 0); |
|
|
token->opr.c = c; |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (input->mb_cur_max > 1 && |
|
|
!re_string_first_byte (input, re_string_cur_idx (input))) |
|
|
{ |
|
|
token->type = CHARACTER; |
|
|
return 1; |
|
|
} |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|
|
|
if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) |
|
|
&& re_string_cur_idx (input) + 1 < re_string_length (input)) |
|
|
{ |
|
|
/* In this case, '\' escape a character. */ |
|
|
unsigned char c2; |
|
|
re_string_skip_bytes (input, 1); |
|
|
c2 = re_string_peek_byte (input, 0); |
|
|
token->opr.c = c2; |
|
|
token->type = CHARACTER; |
|
|
return 1; |
|
|
} |
|
|
if (c == '[') /* '[' is a special char in a bracket exps. */ |
|
|
{ |
|
|
unsigned char c2; |
|
|
int token_len; |
|
|
if (re_string_cur_idx (input) + 1 < re_string_length (input)) |
|
|
c2 = re_string_peek_byte (input, 1); |
|
|
else |
|
|
c2 = 0; |
|
|
token->opr.c = c2; |
|
|
token_len = 2; |
|
|
switch (c2) |
|
|
{ |
|
|
case '.': |
|
|
token->type = OP_OPEN_COLL_ELEM; |
|
|
break; |
|
|
case '=': |
|
|
token->type = OP_OPEN_EQUIV_CLASS; |
|
|
break; |
|
|
case ':': |
|
|
if (syntax & RE_CHAR_CLASSES) |
|
|
{ |
|
|
token->type = OP_OPEN_CHAR_CLASS; |
|
|
break; |
|
|
} |
|
|
/* else fall through. */ |
|
|
default: |
|
|
token->type = CHARACTER; |
|
|
token->opr.c = c; |
|
|
token_len = 1; |
|
|
break; |
|
|
} |
|
|
return token_len; |
|
|
} |
|
|
switch (c) |
|
|
{ |
|
|
case '-': |
|
|
token->type = OP_CHARSET_RANGE; |
|
|
break; |
|
|
case ']': |
|
|
token->type = OP_CLOSE_BRACKET; |
|
|
break; |
|
|
case '^': |
|
|
token->type = OP_NON_MATCH_LIST; |
|
|
break; |
|
|
default: |
|
|
token->type = CHARACTER; |
|
|
} |
|
|
return 1; |
|
|
} |
|
|
|
|
|
/* Functions for parser. */ |
|
|
|
|
|
/* Entry point of the parser. |
|
|
Parse the regular expression REGEXP and return the structure tree. |
|
|
If an error has occurred, ERR is set by error code, and return NULL. |
|
|
This function build the following tree, from regular expression <reg_exp>: |
|
|
CAT |
|
|
/ \ |
|
|
/ \ |
|
|
<reg_exp> EOR |
|
|
|
|
|
CAT means concatenation. |
|
|
EOR means end of regular expression. */ |
|
|
|
|
|
static bin_tree_t * |
|
|
parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, |
|
|
reg_errcode_t *err) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
bin_tree_t *tree, *eor, *root; |
|
|
re_token_t current_token; |
|
|
dfa->syntax = syntax; |
|
|
fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
|
|
tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); |
|
|
if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
|
|
return NULL; |
|
|
eor = create_tree (dfa, NULL, NULL, END_OF_RE); |
|
|
if (tree != NULL) |
|
|
root = create_tree (dfa, tree, eor, CONCAT); |
|
|
else |
|
|
root = eor; |
|
|
if (BE (eor == NULL || root == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
return root; |
|
|
} |
|
|
|
|
|
/* This function build the following tree, from regular expression |
|
|
<branch1>|<branch2>: |
|
|
ALT |
|
|
/ \ |
|
|
/ \ |
|
|
<branch1> <branch2> |
|
|
|
|
|
ALT means alternative, which represents the operator `|'. */ |
|
|
|
|
|
static bin_tree_t * |
|
|
parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, |
|
|
reg_syntax_t syntax, int nest, reg_errcode_t *err) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
bin_tree_t *tree, *branch = NULL; |
|
|
tree = parse_branch (regexp, preg, token, syntax, nest, err); |
|
|
if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
|
|
return NULL; |
|
|
|
|
|
while (token->type == OP_ALT) |
|
|
{ |
|
|
fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
|
|
if (token->type != OP_ALT && token->type != END_OF_RE |
|
|
&& (nest == 0 || token->type != OP_CLOSE_SUBEXP)) |
|
|
{ |
|
|
branch = parse_branch (regexp, preg, token, syntax, nest, err); |
|
|
if (BE (*err != REG_NOERROR && branch == NULL, 0)) |
|
|
return NULL; |
|
|
} |
|
|
else |
|
|
branch = NULL; |
|
|
tree = create_tree (dfa, tree, branch, OP_ALT); |
|
|
if (BE (tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
} |
|
|
return tree; |
|
|
} |
|
|
|
|
|
/* This function build the following tree, from regular expression |
|
|
<exp1><exp2>: |
|
|
CAT |
|
|
/ \ |
|
|
/ \ |
|
|
<exp1> <exp2> |
|
|
|
|
|
CAT means concatenation. */ |
|
|
|
|
|
static bin_tree_t * |
|
|
parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, |
|
|
reg_syntax_t syntax, int nest, reg_errcode_t *err) |
|
|
{ |
|
|
bin_tree_t *tree, *exp; |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
tree = parse_expression (regexp, preg, token, syntax, nest, err); |
|
|
if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
|
|
return NULL; |
|
|
|
|
|
while (token->type != OP_ALT && token->type != END_OF_RE |
|
|
&& (nest == 0 || token->type != OP_CLOSE_SUBEXP)) |
|
|
{ |
|
|
exp = parse_expression (regexp, preg, token, syntax, nest, err); |
|
|
if (BE (*err != REG_NOERROR && exp == NULL, 0)) |
|
|
{ |
|
|
return NULL; |
|
|
} |
|
|
if (tree != NULL && exp != NULL) |
|
|
{ |
|
|
tree = create_tree (dfa, tree, exp, CONCAT); |
|
|
if (tree == NULL) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
} |
|
|
else if (tree == NULL) |
|
|
tree = exp; |
|
|
/* Otherwise exp == NULL, we don't need to create new tree. */ |
|
|
} |
|
|
return tree; |
|
|
} |
|
|
|
|
|
/* This function build the following tree, from regular expression a*: |
|
|
* |
|
|
| |
|
|
a |
|
|
*/ |
|
|
|
|
|
static bin_tree_t * |
|
|
parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, |
|
|
reg_syntax_t syntax, int nest, reg_errcode_t *err) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
bin_tree_t *tree; |
|
|
switch (token->type) |
|
|
{ |
|
|
case CHARACTER: |
|
|
tree = create_token_tree (dfa, NULL, NULL, token); |
|
|
if (BE (tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (dfa->mb_cur_max > 1) |
|
|
{ |
|
|
while (!re_string_eoi (regexp) |
|
|
&& !re_string_first_byte (regexp, re_string_cur_idx (regexp))) |
|
|
{ |
|
|
bin_tree_t *mbc_remain; |
|
|
fetch_token (token, regexp, syntax); |
|
|
mbc_remain = create_token_tree (dfa, NULL, NULL, token); |
|
|
tree = create_tree (dfa, tree, mbc_remain, CONCAT); |
|
|
if (BE (mbc_remain == NULL || tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
} |
|
|
} |
|
|
#endif |
|
|
break; |
|
|
case OP_OPEN_SUBEXP: |
|
|
tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); |
|
|
if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
|
|
return NULL; |
|
|
break; |
|
|
case OP_OPEN_BRACKET: |
|
|
tree = parse_bracket_exp (regexp, dfa, token, syntax, err); |
|
|
if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
|
|
return NULL; |
|
|
break; |
|
|
case OP_BACK_REF: |
|
|
if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) |
|
|
{ |
|
|
*err = REG_ESUBREG; |
|
|
return NULL; |
|
|
} |
|
|
dfa->used_bkref_map |= 1 << token->opr.idx; |
|
|
tree = create_token_tree (dfa, NULL, NULL, token); |
|
|
if (BE (tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
++dfa->nbackref; |
|
|
dfa->has_mb_node = 1; |
|
|
break; |
|
|
case OP_OPEN_DUP_NUM: |
|
|
if (syntax & RE_CONTEXT_INVALID_DUP) |
|
|
{ |
|
|
*err = REG_BADRPT; |
|
|
return NULL; |
|
|
} |
|
|
/* FALLTHROUGH */ |
|
|
case OP_DUP_ASTERISK: |
|
|
case OP_DUP_PLUS: |
|
|
case OP_DUP_QUESTION: |
|
|
if (syntax & RE_CONTEXT_INVALID_OPS) |
|
|
{ |
|
|
*err = REG_BADRPT; |
|
|
return NULL; |
|
|
} |
|
|
else if (syntax & RE_CONTEXT_INDEP_OPS) |
|
|
{ |
|
|
fetch_token (token, regexp, syntax); |
|
|
return parse_expression (regexp, preg, token, syntax, nest, err); |
|
|
} |
|
|
/* else fall through */ |
|
|
case OP_CLOSE_SUBEXP: |
|
|
if ((token->type == OP_CLOSE_SUBEXP) && |
|
|
!(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) |
|
|
{ |
|
|
*err = REG_ERPAREN; |
|
|
return NULL; |
|
|
} |
|
|
/* else fall through */ |
|
|
case OP_CLOSE_DUP_NUM: |
|
|
/* We treat it as a normal character. */ |
|
|
|
|
|
/* Then we can these characters as normal characters. */ |
|
|
token->type = CHARACTER; |
|
|
/* mb_partial and word_char bits should be initialized already |
|
|
by peek_token. */ |
|
|
tree = create_token_tree (dfa, NULL, NULL, token); |
|
|
if (BE (tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
break; |
|
|
case ANCHOR: |
|
|
if ((token->opr.ctx_type |
|
|
& (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) |
|
|
&& dfa->word_ops_used == 0) |
|
|
init_word_char (dfa); |
|
|
if (token->opr.ctx_type == WORD_DELIM |
|
|
|| token->opr.ctx_type == NOT_WORD_DELIM) |
|
|
{ |
|
|
bin_tree_t *tree_first, *tree_last; |
|
|
if (token->opr.ctx_type == WORD_DELIM) |
|
|
{ |
|
|
token->opr.ctx_type = WORD_FIRST; |
|
|
tree_first = create_token_tree (dfa, NULL, NULL, token); |
|
|
token->opr.ctx_type = WORD_LAST; |
|
|
} |
|
|
else |
|
|
{ |
|
|
token->opr.ctx_type = INSIDE_WORD; |
|
|
tree_first = create_token_tree (dfa, NULL, NULL, token); |
|
|
token->opr.ctx_type = INSIDE_NOTWORD; |
|
|
} |
|
|
tree_last = create_token_tree (dfa, NULL, NULL, token); |
|
|
tree = create_tree (dfa, tree_first, tree_last, OP_ALT); |
|
|
if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
tree = create_token_tree (dfa, NULL, NULL, token); |
|
|
if (BE (tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
} |
|
|
/* We must return here, since ANCHORs can't be followed |
|
|
by repetition operators. |
|
|
eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", |
|
|
it must not be "<ANCHOR(^)><REPEAT(*)>". */ |
|
|
fetch_token (token, regexp, syntax); |
|
|
return tree; |
|
|
case OP_PERIOD: |
|
|
tree = create_token_tree (dfa, NULL, NULL, token); |
|
|
if (BE (tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
if (dfa->mb_cur_max > 1) |
|
|
dfa->has_mb_node = 1; |
|
|
break; |
|
|
case OP_WORD: |
|
|
case OP_NOTWORD: |
|
|
tree = build_charclass_op (dfa, regexp->trans, |
|
|
"alnum", |
|
|
"_", |
|
|
token->type == OP_NOTWORD, err); |
|
|
if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
|
|
return NULL; |
|
|
break; |
|
|
case OP_SPACE: |
|
|
case OP_NOTSPACE: |
|
|
tree = build_charclass_op (dfa, regexp->trans, |
|
|
"space", |
|
|
"", |
|
|
token->type == OP_NOTSPACE, err); |
|
|
if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
|
|
return NULL; |
|
|
break; |
|
|
case OP_ALT: |
|
|
case END_OF_RE: |
|
|
return NULL; |
|
|
case BACK_SLASH: |
|
|
*err = REG_EESCAPE; |
|
|
return NULL; |
|
|
default: |
|
|
/* Must not happen? */ |
|
|
#ifdef DEBUG |
|
|
assert (0); |
|
|
#endif |
|
|
return NULL; |
|
|
} |
|
|
fetch_token (token, regexp, syntax); |
|
|
|
|
|
while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS |
|
|
|| token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) |
|
|
{ |
|
|
tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); |
|
|
if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
|
|
return NULL; |
|
|
/* In BRE consecutive duplications are not allowed. */ |
|
|
if ((syntax & RE_CONTEXT_INVALID_DUP) |
|
|
&& (token->type == OP_DUP_ASTERISK |
|
|
|| token->type == OP_OPEN_DUP_NUM)) |
|
|
{ |
|
|
*err = REG_BADRPT; |
|
|
return NULL; |
|
|
} |
|
|
} |
|
|
|
|
|
return tree; |
|
|
} |
|
|
|
|
|
/* This function build the following tree, from regular expression |
|
|
(<reg_exp>): |
|
|
SUBEXP |
|
|
| |
|
|
<reg_exp> |
|
|
*/ |
|
|
|
|
|
static bin_tree_t * |
|
|
parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, |
|
|
reg_syntax_t syntax, int nest, reg_errcode_t *err) |
|
|
{ |
|
|
re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
|
|
bin_tree_t *tree; |
|
|
size_t cur_nsub; |
|
|
cur_nsub = preg->re_nsub++; |
|
|
|
|
|
fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
|
|
|
|
|
/* The subexpression may be a null string. */ |
|
|
if (token->type == OP_CLOSE_SUBEXP) |
|
|
tree = NULL; |
|
|
else |
|
|
{ |
|
|
tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); |
|
|
if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) |
|
|
*err = REG_EPAREN; |
|
|
if (BE (*err != REG_NOERROR, 0)) |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
if (cur_nsub <= '9' - '1') |
|
|
dfa->completed_bkref_map |= 1 << cur_nsub; |
|
|
|
|
|
tree = create_tree (dfa, tree, NULL, SUBEXP); |
|
|
if (BE (tree == NULL, 0)) |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
tree->token.opr.idx = cur_nsub; |
|
|
return tree; |
|
|
} |
|
|
|
|
|
/* This function parse repetition operators like "*", "+", "{1,3}" etc. */ |
|
|
|
|
|
static bin_tree_t * |
|
|
parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, |
|
|
re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) |
|
|
{ |
|
|
bin_tree_t *tree = NULL, *old_tree = NULL; |
|
|
int i, start, end, start_idx = re_string_cur_idx (regexp); |
|
|
#ifndef RE_TOKEN_INIT_BUG |
|
|
re_token_t start_token = *token; |
|
|
#else |
|
|
re_token_t start_token; |
|
|
|
|
|
memcpy ((void *) &start_token, (void *) token, sizeof start_token); |
|
|
#endif |
|
|
|
|
|
if (token->type == OP_OPEN_DUP_NUM) |
|
|
{ |
|
|
end = 0; |
|
|
start = fetch_number (regexp, token, syntax); |
|
|
if (start == -1) |
|
|
{ |
|
|
if (token->type == CHARACTER && token->opr.c == ',') |
|
|
start = 0; /* We treat "{,m}" as "{0,m}". */ |
|
|
else |
|
|
{ |
|
|
*err = REG_BADBR; /* <re>{} is invalid. */ |
|
|
return NULL; |
|
|
} |
|
|
} |
|
|
if (BE (start != -2, 1)) |
|
|
{ |
|
|
/* We treat "{n}" as "{n,n}". */ |
|
|
end = ((token->type == OP_CLOSE_DUP_NUM) ? start |
|
|
: ((token->type == CHARACTER && token->opr.c == ',') |
|
|
? fetch_number (regexp, token, syntax) : -2)); |
|
|
} |
|
|
if (BE (start == -2 || end == -2, 0)) |
|
|
{ |
|
|
/* Invalid sequence. */ |
|
|
if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0)) |
|
|
{ |
|
|
if (token->type == END_OF_RE) |
|
|
*err = REG_EBRACE; |
|
|
else |
|
|
*err = REG_BADBR; |
|
|
|
|
|
return NULL; |
|
|
} |
|
|
|
|
|
/* If the syntax bit is set, rollback. */ |
|
|
re_string_set_index (regexp, start_idx); |
|
|
*token = start_token; |
|
|
token->type = CHARACTER; |
|
|
/* mb_partial and word_char bits should be already initialized by |
|
|
peek_token. */ |
|
|
return elem; |
|
|
} |
|
|
|
|
|
if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0)) |
|
|
{ |
|
|
/* First number greater than second. */ |
|
|
*err = REG_BADBR; |
|
|
return NULL; |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
start = (token->type == OP_DUP_PLUS) ? 1 : 0; |
|
|
end = (token->type == OP_DUP_QUESTION) ? 1 : -1; |
|
|
} |
|
|
|
|
|
fetch_token (token, regexp, syntax); |
|
|
|
|
|
if (BE (elem == NULL, 0)) |
|
|
return NULL; |
|
|
if (BE (start == 0 && end == 0, 0)) |
|
|
{ |
|
|
postorder (elem, free_tree, NULL); |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
/* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */ |
|
|
if (BE (start > 0, 0)) |
|
|
{ |
|
|
tree = elem; |
|
|
for (i = 2; i <= start; ++i) |
|
|
{ |
|
|
elem = duplicate_tree (elem, dfa); |
|
|
tree = create_tree (dfa, tree, elem, CONCAT); |
|
|
if (BE (elem == NULL || tree == NULL, 0)) |
|
|
goto parse_dup_op_espace; |
|
|
} |
|
|
|
|
|
if (start == end) |
|
|
return tree; |
|
|
|
|
|
/* Duplicate ELEM before it is marked optional. */ |
|
|
elem = duplicate_tree (elem, dfa); |
|
|
old_tree = tree; |
|
|
} |
|
|
else |
|
|
old_tree = NULL; |
|
|
|
|
|
if (elem->token.type == SUBEXP) |
|
|
postorder (elem, mark_opt_subexp, (void *) (intptr_t) elem->token.opr.idx); |
|
|
|
|
|
tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT)); |
|
|
if (BE (tree == NULL, 0)) |
|
|
goto parse_dup_op_espace; |
|
|
|
|
|
/* This loop is actually executed only when end != -1, |
|
|
to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have |
|
|
already created the start+1-th copy. */ |
|
|
for (i = start + 2; i <= end; ++i) |
|
|
{ |
|
|
elem = duplicate_tree (elem, dfa); |
|
|
tree = create_tree (dfa, tree, elem, CONCAT); |
|
|
if (BE (elem == NULL || tree == NULL, 0)) |
|
|
goto parse_dup_op_espace; |
|
|
|
|
|
tree = create_tree (dfa, tree, NULL, OP_ALT); |
|
|
if (BE (tree == NULL, 0)) |
|
|
goto parse_dup_op_espace; |
|
|
} |
|
|
|
|
|
if (old_tree) |
|
|
tree = create_tree (dfa, old_tree, tree, CONCAT); |
|
|
|
|
|
return tree; |
|
|
|
|
|
parse_dup_op_espace: |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
/* Size of the names for collating symbol/equivalence_class/character_class. |
|
|
I'm not sure, but maybe enough. */ |
|
|
#define BRACKET_NAME_BUF_SIZE 32 |
|
|
|
|
|
#ifndef _LIBC |
|
|
/* Local function for parse_bracket_exp only used in case of NOT _LIBC. |
|
|
Build the range expression which starts from START_ELEM, and ends |
|
|
at END_ELEM. The result are written to MBCSET and SBCSET. |
|
|
RANGE_ALLOC is the allocated size of mbcset->range_starts, and |
|
|
mbcset->range_ends, is a pointer argument since we may |
|
|
update it. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
# ifdef RE_ENABLE_I18N |
|
|
build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc, |
|
|
bracket_elem_t *start_elem, bracket_elem_t *end_elem) |
|
|
# else /* not RE_ENABLE_I18N */ |
|
|
build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem, |
|
|
bracket_elem_t *end_elem) |
|
|
# endif /* not RE_ENABLE_I18N */ |
|
|
{ |
|
|
unsigned int start_ch, end_ch; |
|
|
/* Equivalence Classes and Character Classes can't be a range start/end. */ |
|
|
if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS |
|
|
|| end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, |
|
|
0)) |
|
|
return REG_ERANGE; |
|
|
|
|
|
/* We can handle no multi character collating elements without libc |
|
|
support. */ |
|
|
if (BE ((start_elem->type == COLL_SYM |
|
|
&& strlen ((char *) start_elem->opr.name) > 1) |
|
|
|| (end_elem->type == COLL_SYM |
|
|
&& strlen ((char *) end_elem->opr.name) > 1), 0)) |
|
|
return REG_ECOLLATE; |
|
|
|
|
|
# ifdef RE_ENABLE_I18N |
|
|
{ |
|
|
wchar_t wc; |
|
|
wint_t start_wc; |
|
|
wint_t end_wc; |
|
|
wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; |
|
|
|
|
|
start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch |
|
|
: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] |
|
|
: 0)); |
|
|
end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch |
|
|
: ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] |
|
|
: 0)); |
|
|
#ifdef GAWK |
|
|
/* |
|
|
* Fedora Core 2, maybe others, have broken `btowc' that returns -1 |
|
|
* for any value > 127. Sigh. Note that `start_ch' and `end_ch' are |
|
|
* unsigned, so we don't have sign extension problems. |
|
|
*/ |
|
|
start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) |
|
|
? start_ch : start_elem->opr.wch); |
|
|
end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) |
|
|
? end_ch : end_elem->opr.wch); |
|
|
#else |
|
|
start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) |
|
|
? __btowc (start_ch) : start_elem->opr.wch); |
|
|
end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) |
|
|
? __btowc (end_ch) : end_elem->opr.wch); |
|
|
#endif |
|
|
if (start_wc == WEOF || end_wc == WEOF) |
|
|
return REG_ECOLLATE; |
|
|
cmp_buf[0] = start_wc; |
|
|
cmp_buf[4] = end_wc; |
|
|
if (wcscoll (cmp_buf, cmp_buf + 4) > 0) |
|
|
return REG_ERANGE; |
|
|
|
|
|
/* Got valid collation sequence values, add them as a new entry. |
|
|
However, for !_LIBC we have no collation elements: if the |
|
|
character set is single byte, the single byte character set |
|
|
that we build below suffices. parse_bracket_exp passes |
|
|
no MBCSET if dfa->mb_cur_max == 1. */ |
|
|
if (mbcset) |
|
|
{ |
|
|
/* Check the space of the arrays. */ |
|
|
if (BE (*range_alloc == mbcset->nranges, 0)) |
|
|
{ |
|
|
/* There is not enough space, need realloc. */ |
|
|
wchar_t *new_array_start, *new_array_end; |
|
|
int new_nranges; |
|
|
|
|
|
/* +1 in case of mbcset->nranges is 0. */ |
|
|
new_nranges = 2 * mbcset->nranges + 1; |
|
|
/* Use realloc since mbcset->range_starts and mbcset->range_ends |
|
|
are NULL if *range_alloc == 0. */ |
|
|
new_array_start = re_realloc (mbcset->range_starts, wchar_t, |
|
|
new_nranges); |
|
|
new_array_end = re_realloc (mbcset->range_ends, wchar_t, |
|
|
new_nranges); |
|
|
|
|
|
if (BE (new_array_start == NULL || new_array_end == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
|
|
|
mbcset->range_starts = new_array_start; |
|
|
mbcset->range_ends = new_array_end; |
|
|
*range_alloc = new_nranges; |
|
|
} |
|
|
|
|
|
mbcset->range_starts[mbcset->nranges] = start_wc; |
|
|
mbcset->range_ends[mbcset->nranges++] = end_wc; |
|
|
} |
|
|
|
|
|
/* Build the table for single byte characters. */ |
|
|
for (wc = 0; wc < SBC_MAX; ++wc) |
|
|
{ |
|
|
cmp_buf[2] = wc; |
|
|
if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 |
|
|
&& wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) |
|
|
bitset_set (sbcset, wc); |
|
|
} |
|
|
} |
|
|
# else /* not RE_ENABLE_I18N */ |
|
|
{ |
|
|
unsigned int ch; |
|
|
start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch |
|
|
: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] |
|
|
: 0)); |
|
|
end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch |
|
|
: ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] |
|
|
: 0)); |
|
|
if (start_ch > end_ch) |
|
|
return REG_ERANGE; |
|
|
/* Build the table for single byte characters. */ |
|
|
for (ch = 0; ch < SBC_MAX; ++ch) |
|
|
if (start_ch <= ch && ch <= end_ch) |
|
|
bitset_set (sbcset, ch); |
|
|
} |
|
|
# endif /* not RE_ENABLE_I18N */ |
|
|
return REG_NOERROR; |
|
|
} |
|
|
#endif /* not _LIBC */ |
|
|
|
|
|
#ifndef _LIBC |
|
|
/* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. |
|
|
Build the collating element which is represented by NAME. |
|
|
The result are written to MBCSET and SBCSET. |
|
|
COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a |
|
|
pointer argument since we may update it. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
# ifdef RE_ENABLE_I18N |
|
|
build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset, |
|
|
int *coll_sym_alloc, const unsigned char *name) |
|
|
# else /* not RE_ENABLE_I18N */ |
|
|
build_collating_symbol (bitset_t sbcset, const unsigned char *name) |
|
|
# endif /* not RE_ENABLE_I18N */ |
|
|
{ |
|
|
size_t name_len = strlen ((const char *) name); |
|
|
if (BE (name_len != 1, 0)) |
|
|
return REG_ECOLLATE; |
|
|
else |
|
|
{ |
|
|
bitset_set (sbcset, name[0]); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
} |
|
|
#endif /* not _LIBC */ |
|
|
|
|
|
/* This function parse bracket expression like "[abc]", "[a-c]", |
|
|
"[[.a-a.]]" etc. */ |
|
|
|
|
|
static bin_tree_t * |
|
|
parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, |
|
|
reg_syntax_t syntax, reg_errcode_t *err) |
|
|
{ |
|
|
#ifdef _LIBC |
|
|
const unsigned char *collseqmb; |
|
|
const char *collseqwc; |
|
|
uint32_t nrules; |
|
|
int32_t table_size; |
|
|
const int32_t *symb_table; |
|
|
const unsigned char *extra; |
|
|
|
|
|
/* Local function for parse_bracket_exp used in _LIBC environment. |
|
|
Seek the collating symbol entry correspondings to NAME. |
|
|
Return the index of the symbol in the SYMB_TABLE. */ |
|
|
|
|
|
auto inline int32_t |
|
|
__attribute ((always_inline)) |
|
|
seek_collating_symbol_entry (name, name_len) |
|
|
const unsigned char *name; |
|
|
size_t name_len; |
|
|
{ |
|
|
int32_t hash = elem_hash ((const char *) name, name_len); |
|
|
int32_t elem = hash % table_size; |
|
|
if (symb_table[2 * elem] != 0) |
|
|
{ |
|
|
int32_t second = hash % (table_size - 2) + 1; |
|
|
|
|
|
do |
|
|
{ |
|
|
/* First compare the hashing value. */ |
|
|
if (symb_table[2 * elem] == hash |
|
|
/* Compare the length of the name. */ |
|
|
&& name_len == extra[symb_table[2 * elem + 1]] |
|
|
/* Compare the name. */ |
|
|
&& memcmp (name, &extra[symb_table[2 * elem + 1] + 1], |
|
|
name_len) == 0) |
|
|
{ |
|
|
/* Yep, this is the entry. */ |
|
|
break; |
|
|
} |
|
|
|
|
|
/* Next entry. */ |
|
|
elem += second; |
|
|
} |
|
|
while (symb_table[2 * elem] != 0); |
|
|
} |
|
|
return elem; |
|
|
} |
|
|
|
|
|
/* Local function for parse_bracket_exp used in _LIBC environment. |
|
|
Look up the collation sequence value of BR_ELEM. |
|
|
Return the value if succeeded, UINT_MAX otherwise. */ |
|
|
|
|
|
auto inline unsigned int |
|
|
__attribute ((always_inline)) |
|
|
lookup_collation_sequence_value (br_elem) |
|
|
bracket_elem_t *br_elem; |
|
|
{ |
|
|
if (br_elem->type == SB_CHAR) |
|
|
{ |
|
|
/* |
|
|
if (MB_CUR_MAX == 1) |
|
|
*/ |
|
|
if (nrules == 0) |
|
|
return collseqmb[br_elem->opr.ch]; |
|
|
else |
|
|
{ |
|
|
wint_t wc = __btowc (br_elem->opr.ch); |
|
|
return __collseq_table_lookup (collseqwc, wc); |
|
|
} |
|
|
} |
|
|
else if (br_elem->type == MB_CHAR) |
|
|
{ |
|
|
if (nrules != 0) |
|
|
return __collseq_table_lookup (collseqwc, br_elem->opr.wch); |
|
|
} |
|
|
else if (br_elem->type == COLL_SYM) |
|
|
{ |
|
|
size_t sym_name_len = strlen ((char *) br_elem->opr.name); |
|
|
if (nrules != 0) |
|
|
{ |
|
|
int32_t elem, idx; |
|
|
elem = seek_collating_symbol_entry (br_elem->opr.name, |
|
|
sym_name_len); |
|
|
if (symb_table[2 * elem] != 0) |
|
|
{ |
|
|
/* We found the entry. */ |
|
|
idx = symb_table[2 * elem + 1]; |
|
|
/* Skip the name of collating element name. */ |
|
|
idx += 1 + extra[idx]; |
|
|
/* Skip the byte sequence of the collating element. */ |
|
|
idx += 1 + extra[idx]; |
|
|
/* Adjust for the alignment. */ |
|
|
idx = (idx + 3) & ~3; |
|
|
/* Skip the multibyte collation sequence value. */ |
|
|
idx += sizeof (unsigned int); |
|
|
/* Skip the wide char sequence of the collating element. */ |
|
|
idx += sizeof (unsigned int) * |
|
|
(1 + *(unsigned int *) (extra + idx)); |
|
|
/* Return the collation sequence value. */ |
|
|
return *(unsigned int *) (extra + idx); |
|
|
} |
|
|
else if (symb_table[2 * elem] == 0 && sym_name_len == 1) |
|
|
{ |
|
|
/* No valid character. Match it as a single byte |
|
|
character. */ |
|
|
return collseqmb[br_elem->opr.name[0]]; |
|
|
} |
|
|
} |
|
|
else if (sym_name_len == 1) |
|
|
return collseqmb[br_elem->opr.name[0]]; |
|
|
} |
|
|
return UINT_MAX; |
|
|
} |
|
|
|
|
|
/* Local function for parse_bracket_exp used in _LIBC environment. |
|
|
Build the range expression which starts from START_ELEM, and ends |
|
|
at END_ELEM. The result are written to MBCSET and SBCSET. |
|
|
RANGE_ALLOC is the allocated size of mbcset->range_starts, and |
|
|
mbcset->range_ends, is a pointer argument since we may |
|
|
update it. */ |
|
|
|
|
|
auto inline reg_errcode_t |
|
|
__attribute ((always_inline)) |
|
|
build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem) |
|
|
re_charset_t *mbcset; |
|
|
int *range_alloc; |
|
|
bitset_t sbcset; |
|
|
bracket_elem_t *start_elem, *end_elem; |
|
|
{ |
|
|
unsigned int ch; |
|
|
uint32_t start_collseq; |
|
|
uint32_t end_collseq; |
|
|
|
|
|
/* Equivalence Classes and Character Classes can't be a range |
|
|
start/end. */ |
|
|
if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS |
|
|
|| end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, |
|
|
0)) |
|
|
return REG_ERANGE; |
|
|
|
|
|
start_collseq = lookup_collation_sequence_value (start_elem); |
|
|
end_collseq = lookup_collation_sequence_value (end_elem); |
|
|
/* Check start/end collation sequence values. */ |
|
|
if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) |
|
|
return REG_ECOLLATE; |
|
|
if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) |
|
|
return REG_ERANGE; |
|
|
|
|
|
/* Got valid collation sequence values, add them as a new entry. |
|
|
However, if we have no collation elements, and the character set |
|
|
is single byte, the single byte character set that we |
|
|
build below suffices. */ |
|
|
if (nrules > 0 || dfa->mb_cur_max > 1) |
|
|
{ |
|
|
/* Check the space of the arrays. */ |
|
|
if (BE (*range_alloc == mbcset->nranges, 0)) |
|
|
{ |
|
|
/* There is not enough space, need realloc. */ |
|
|
uint32_t *new_array_start; |
|
|
uint32_t *new_array_end; |
|
|
int new_nranges; |
|
|
|
|
|
/* +1 in case of mbcset->nranges is 0. */ |
|
|
new_nranges = 2 * mbcset->nranges + 1; |
|
|
new_array_start = re_realloc (mbcset->range_starts, uint32_t, |
|
|
new_nranges); |
|
|
new_array_end = re_realloc (mbcset->range_ends, uint32_t, |
|
|
new_nranges); |
|
|
|
|
|
if (BE (new_array_start == NULL || new_array_end == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
|
|
|
mbcset->range_starts = new_array_start; |
|
|
mbcset->range_ends = new_array_end; |
|
|
*range_alloc = new_nranges; |
|
|
} |
|
|
|
|
|
mbcset->range_starts[mbcset->nranges] = start_collseq; |
|
|
mbcset->range_ends[mbcset->nranges++] = end_collseq; |
|
|
} |
|
|
|
|
|
/* Build the table for single byte characters. */ |
|
|
for (ch = 0; ch < SBC_MAX; ch++) |
|
|
{ |
|
|
uint32_t ch_collseq; |
|
|
/* |
|
|
if (MB_CUR_MAX == 1) |
|
|
*/ |
|
|
if (nrules == 0) |
|
|
ch_collseq = collseqmb[ch]; |
|
|
else |
|
|
ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); |
|
|
if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) |
|
|
bitset_set (sbcset, ch); |
|
|
} |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Local function for parse_bracket_exp used in _LIBC environment. |
|
|
Build the collating element which is represented by NAME. |
|
|
The result are written to MBCSET and SBCSET. |
|
|
COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a |
|
|
pointer argument since we may update it. */ |
|
|
|
|
|
auto inline reg_errcode_t |
|
|
__attribute ((always_inline)) |
|
|
build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name) |
|
|
re_charset_t *mbcset; |
|
|
int *coll_sym_alloc; |
|
|
bitset_t sbcset; |
|
|
const unsigned char *name; |
|
|
{ |
|
|
int32_t elem, idx; |
|
|
size_t name_len = strlen ((const char *) name); |
|
|
if (nrules != 0) |
|
|
{ |
|
|
elem = seek_collating_symbol_entry (name, name_len); |
|
|
if (symb_table[2 * elem] != 0) |
|
|
{ |
|
|
/* We found the entry. */ |
|
|
idx = symb_table[2 * elem + 1]; |
|
|
/* Skip the name of collating element name. */ |
|
|
idx += 1 + extra[idx]; |
|
|
} |
|
|
else if (symb_table[2 * elem] == 0 && name_len == 1) |
|
|
{ |
|
|
/* No valid character, treat it as a normal |
|
|
character. */ |
|
|
bitset_set (sbcset, name[0]); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
else |
|
|
return REG_ECOLLATE; |
|
|
|
|
|
/* Got valid collation sequence, add it as a new entry. */ |
|
|
/* Check the space of the arrays. */ |
|
|
if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) |
|
|
{ |
|
|
/* Not enough, realloc it. */ |
|
|
/* +1 in case of mbcset->ncoll_syms is 0. */ |
|
|
int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; |
|
|
/* Use realloc since mbcset->coll_syms is NULL |
|
|
if *alloc == 0. */ |
|
|
int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t, |
|
|
new_coll_sym_alloc); |
|
|
if (BE (new_coll_syms == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
mbcset->coll_syms = new_coll_syms; |
|
|
*coll_sym_alloc = new_coll_sym_alloc; |
|
|
} |
|
|
mbcset->coll_syms[mbcset->ncoll_syms++] = idx; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
else |
|
|
{ |
|
|
if (BE (name_len != 1, 0)) |
|
|
return REG_ECOLLATE; |
|
|
else |
|
|
{ |
|
|
bitset_set (sbcset, name[0]); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
} |
|
|
} |
|
|
#endif |
|
|
|
|
|
re_token_t br_token; |
|
|
re_bitset_ptr_t sbcset; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
re_charset_t *mbcset; |
|
|
int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; |
|
|
int equiv_class_alloc = 0, char_class_alloc = 0; |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
int non_match = 0; |
|
|
bin_tree_t *work_tree; |
|
|
int token_len; |
|
|
int first_round = 1; |
|
|
#ifdef _LIBC |
|
|
collseqmb = (const unsigned char *) |
|
|
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
|
|
nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
|
|
if (nrules) |
|
|
{ |
|
|
/* |
|
|
if (MB_CUR_MAX > 1) |
|
|
*/ |
|
|
collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
|
|
table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); |
|
|
symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, |
|
|
_NL_COLLATE_SYMB_TABLEMB); |
|
|
extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
|
|
_NL_COLLATE_SYMB_EXTRAMB); |
|
|
} |
|
|
#endif |
|
|
sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (BE (sbcset == NULL || mbcset == NULL, 0)) |
|
|
#else |
|
|
if (BE (sbcset == NULL, 0)) |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
token_len = peek_token_bracket (token, regexp, syntax); |
|
|
if (BE (token->type == END_OF_RE, 0)) |
|
|
{ |
|
|
*err = REG_BADPAT; |
|
|
goto parse_bracket_exp_free_return; |
|
|
} |
|
|
if (token->type == OP_NON_MATCH_LIST) |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
mbcset->non_match = 1; |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
non_match = 1; |
|
|
if (syntax & RE_HAT_LISTS_NOT_NEWLINE) |
|
|
bitset_set (sbcset, '\n'); |
|
|
re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
|
|
token_len = peek_token_bracket (token, regexp, syntax); |
|
|
if (BE (token->type == END_OF_RE, 0)) |
|
|
{ |
|
|
*err = REG_BADPAT; |
|
|
goto parse_bracket_exp_free_return; |
|
|
} |
|
|
} |
|
|
|
|
|
/* We treat the first ']' as a normal character. */ |
|
|
if (token->type == OP_CLOSE_BRACKET) |
|
|
token->type = CHARACTER; |
|
|
|
|
|
while (1) |
|
|
{ |
|
|
bracket_elem_t start_elem, end_elem; |
|
|
unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; |
|
|
unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; |
|
|
reg_errcode_t ret; |
|
|
int token_len2 = 0, is_range_exp = 0; |
|
|
re_token_t token2; |
|
|
|
|
|
start_elem.opr.name = start_name_buf; |
|
|
ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, |
|
|
syntax, first_round); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
{ |
|
|
*err = ret; |
|
|
goto parse_bracket_exp_free_return; |
|
|
} |
|
|
first_round = 0; |
|
|
|
|
|
/* Get information about the next token. We need it in any case. */ |
|
|
token_len = peek_token_bracket (token, regexp, syntax); |
|
|
|
|
|
/* Do not check for ranges if we know they are not allowed. */ |
|
|
if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) |
|
|
{ |
|
|
if (BE (token->type == END_OF_RE, 0)) |
|
|
{ |
|
|
*err = REG_EBRACK; |
|
|
goto parse_bracket_exp_free_return; |
|
|
} |
|
|
if (token->type == OP_CHARSET_RANGE) |
|
|
{ |
|
|
re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ |
|
|
token_len2 = peek_token_bracket (&token2, regexp, syntax); |
|
|
if (BE (token2.type == END_OF_RE, 0)) |
|
|
{ |
|
|
*err = REG_EBRACK; |
|
|
goto parse_bracket_exp_free_return; |
|
|
} |
|
|
if (token2.type == OP_CLOSE_BRACKET) |
|
|
{ |
|
|
/* We treat the last '-' as a normal character. */ |
|
|
re_string_skip_bytes (regexp, -token_len); |
|
|
token->type = CHARACTER; |
|
|
} |
|
|
else |
|
|
is_range_exp = 1; |
|
|
} |
|
|
} |
|
|
|
|
|
if (is_range_exp == 1) |
|
|
{ |
|
|
end_elem.opr.name = end_name_buf; |
|
|
ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, |
|
|
dfa, syntax, 1); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
{ |
|
|
*err = ret; |
|
|
goto parse_bracket_exp_free_return; |
|
|
} |
|
|
|
|
|
token_len = peek_token_bracket (token, regexp, syntax); |
|
|
|
|
|
#ifdef _LIBC |
|
|
*err = build_range_exp (sbcset, mbcset, &range_alloc, |
|
|
&start_elem, &end_elem); |
|
|
#else |
|
|
# ifdef RE_ENABLE_I18N |
|
|
*err = build_range_exp (sbcset, |
|
|
dfa->mb_cur_max > 1 ? mbcset : NULL, |
|
|
&range_alloc, &start_elem, &end_elem); |
|
|
# else |
|
|
*err = build_range_exp (sbcset, &start_elem, &end_elem); |
|
|
# endif |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
if (BE (*err != REG_NOERROR, 0)) |
|
|
goto parse_bracket_exp_free_return; |
|
|
} |
|
|
else |
|
|
{ |
|
|
switch (start_elem.type) |
|
|
{ |
|
|
case SB_CHAR: |
|
|
bitset_set (sbcset, start_elem.opr.ch); |
|
|
break; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
case MB_CHAR: |
|
|
/* Check whether the array has enough space. */ |
|
|
if (BE (mbchar_alloc == mbcset->nmbchars, 0)) |
|
|
{ |
|
|
wchar_t *new_mbchars; |
|
|
/* Not enough, realloc it. */ |
|
|
/* +1 in case of mbcset->nmbchars is 0. */ |
|
|
mbchar_alloc = 2 * mbcset->nmbchars + 1; |
|
|
/* Use realloc since array is NULL if *alloc == 0. */ |
|
|
new_mbchars = re_realloc (mbcset->mbchars, wchar_t, |
|
|
mbchar_alloc); |
|
|
if (BE (new_mbchars == NULL, 0)) |
|
|
goto parse_bracket_exp_espace; |
|
|
mbcset->mbchars = new_mbchars; |
|
|
} |
|
|
mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; |
|
|
break; |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
case EQUIV_CLASS: |
|
|
*err = build_equiv_class (sbcset, |
|
|
#ifdef RE_ENABLE_I18N |
|
|
mbcset, &equiv_class_alloc, |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
start_elem.opr.name); |
|
|
if (BE (*err != REG_NOERROR, 0)) |
|
|
goto parse_bracket_exp_free_return; |
|
|
break; |
|
|
case COLL_SYM: |
|
|
*err = build_collating_symbol (sbcset, |
|
|
#ifdef RE_ENABLE_I18N |
|
|
mbcset, &coll_sym_alloc, |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
start_elem.opr.name); |
|
|
if (BE (*err != REG_NOERROR, 0)) |
|
|
goto parse_bracket_exp_free_return; |
|
|
break; |
|
|
case CHAR_CLASS: |
|
|
*err = build_charclass (regexp->trans, sbcset, |
|
|
#ifdef RE_ENABLE_I18N |
|
|
mbcset, &char_class_alloc, |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
(const char *) start_elem.opr.name, syntax); |
|
|
if (BE (*err != REG_NOERROR, 0)) |
|
|
goto parse_bracket_exp_free_return; |
|
|
break; |
|
|
default: |
|
|
assert (0); |
|
|
break; |
|
|
} |
|
|
} |
|
|
if (BE (token->type == END_OF_RE, 0)) |
|
|
{ |
|
|
*err = REG_EBRACK; |
|
|
goto parse_bracket_exp_free_return; |
|
|
} |
|
|
if (token->type == OP_CLOSE_BRACKET) |
|
|
break; |
|
|
} |
|
|
|
|
|
re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
|
|
|
|
|
/* If it is non-matching list. */ |
|
|
if (non_match) |
|
|
bitset_not (sbcset); |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
/* Ensure only single byte characters are set. */ |
|
|
if (dfa->mb_cur_max > 1) |
|
|
bitset_mask (sbcset, dfa->sb_char); |
|
|
|
|
|
if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes |
|
|
|| mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes |
|
|
|| mbcset->non_match))) |
|
|
{ |
|
|
bin_tree_t *mbc_tree; |
|
|
int sbc_idx; |
|
|
/* Build a tree for complex bracket. */ |
|
|
dfa->has_mb_node = 1; |
|
|
br_token.type = COMPLEX_BRACKET; |
|
|
br_token.opr.mbcset = mbcset; |
|
|
mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
|
|
if (BE (mbc_tree == NULL, 0)) |
|
|
goto parse_bracket_exp_espace; |
|
|
for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) |
|
|
if (sbcset[sbc_idx]) |
|
|
break; |
|
|
/* If there are no bits set in sbcset, there is no point |
|
|
of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */ |
|
|
if (sbc_idx < BITSET_WORDS) |
|
|
{ |
|
|
/* Build a tree for simple bracket. */ |
|
|
br_token.type = SIMPLE_BRACKET; |
|
|
br_token.opr.sbcset = sbcset; |
|
|
work_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
|
|
if (BE (work_tree == NULL, 0)) |
|
|
goto parse_bracket_exp_espace; |
|
|
|
|
|
/* Then join them by ALT node. */ |
|
|
work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); |
|
|
if (BE (work_tree == NULL, 0)) |
|
|
goto parse_bracket_exp_espace; |
|
|
} |
|
|
else |
|
|
{ |
|
|
re_free (sbcset); |
|
|
work_tree = mbc_tree; |
|
|
} |
|
|
} |
|
|
else |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
free_charset (mbcset); |
|
|
#endif |
|
|
/* Build a tree for simple bracket. */ |
|
|
br_token.type = SIMPLE_BRACKET; |
|
|
br_token.opr.sbcset = sbcset; |
|
|
work_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
|
|
if (BE (work_tree == NULL, 0)) |
|
|
goto parse_bracket_exp_espace; |
|
|
} |
|
|
return work_tree; |
|
|
|
|
|
parse_bracket_exp_espace: |
|
|
*err = REG_ESPACE; |
|
|
parse_bracket_exp_free_return: |
|
|
re_free (sbcset); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
free_charset (mbcset); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
/* Parse an element in the bracket expression. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, |
|
|
re_token_t *token, int token_len, re_dfa_t *dfa, |
|
|
reg_syntax_t syntax, int accept_hyphen) |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
int cur_char_size; |
|
|
cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); |
|
|
if (cur_char_size > 1) |
|
|
{ |
|
|
elem->type = MB_CHAR; |
|
|
elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); |
|
|
re_string_skip_bytes (regexp, cur_char_size); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
|
|
if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS |
|
|
|| token->type == OP_OPEN_EQUIV_CLASS) |
|
|
return parse_bracket_symbol (elem, regexp, token); |
|
|
if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) |
|
|
{ |
|
|
/* A '-' must only appear as anything but a range indicator before |
|
|
the closing bracket. Everything else is an error. */ |
|
|
re_token_t token2; |
|
|
(void) peek_token_bracket (&token2, regexp, syntax); |
|
|
if (token2.type != OP_CLOSE_BRACKET) |
|
|
/* The actual error value is not standardized since this whole |
|
|
case is undefined. But ERANGE makes good sense. */ |
|
|
return REG_ERANGE; |
|
|
} |
|
|
elem->type = SB_CHAR; |
|
|
elem->opr.ch = token->opr.c; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Parse a bracket symbol in the bracket expression. Bracket symbols are |
|
|
such as [:<character_class>:], [.<collating_element>.], and |
|
|
[=<equivalent_class>=]. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, |
|
|
re_token_t *token) |
|
|
{ |
|
|
unsigned char ch, delim = token->opr.c; |
|
|
int i = 0; |
|
|
if (re_string_eoi(regexp)) |
|
|
return REG_EBRACK; |
|
|
for (;; ++i) |
|
|
{ |
|
|
if (i >= BRACKET_NAME_BUF_SIZE) |
|
|
return REG_EBRACK; |
|
|
if (token->type == OP_OPEN_CHAR_CLASS) |
|
|
ch = re_string_fetch_byte_case (regexp); |
|
|
else |
|
|
ch = re_string_fetch_byte (regexp); |
|
|
if (re_string_eoi(regexp)) |
|
|
return REG_EBRACK; |
|
|
if (ch == delim && re_string_peek_byte (regexp, 0) == ']') |
|
|
break; |
|
|
elem->opr.name[i] = ch; |
|
|
} |
|
|
re_string_skip_bytes (regexp, 1); |
|
|
elem->opr.name[i] = '\0'; |
|
|
switch (token->type) |
|
|
{ |
|
|
case OP_OPEN_COLL_ELEM: |
|
|
elem->type = COLL_SYM; |
|
|
break; |
|
|
case OP_OPEN_EQUIV_CLASS: |
|
|
elem->type = EQUIV_CLASS; |
|
|
break; |
|
|
case OP_OPEN_CHAR_CLASS: |
|
|
elem->type = CHAR_CLASS; |
|
|
break; |
|
|
default: |
|
|
break; |
|
|
} |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Helper function for parse_bracket_exp. |
|
|
Build the equivalence class which is represented by NAME. |
|
|
The result are written to MBCSET and SBCSET. |
|
|
EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, |
|
|
is a pointer argument since we may update it. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
#ifdef RE_ENABLE_I18N |
|
|
build_equiv_class (bitset_t sbcset, re_charset_t *mbcset, |
|
|
int *equiv_class_alloc, const unsigned char *name) |
|
|
#else /* not RE_ENABLE_I18N */ |
|
|
build_equiv_class (bitset_t sbcset, const unsigned char *name) |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
{ |
|
|
#ifdef _LIBC |
|
|
uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
|
|
if (nrules != 0) |
|
|
{ |
|
|
const int32_t *table, *indirect; |
|
|
const unsigned char *weights, *extra, *cp; |
|
|
unsigned char char_buf[2]; |
|
|
int32_t idx1, idx2; |
|
|
unsigned int ch; |
|
|
size_t len; |
|
|
/* This #include defines a local function! */ |
|
|
# include <locale/weight.h> |
|
|
/* Calculate the index for equivalence class. */ |
|
|
cp = name; |
|
|
table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
|
|
weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
|
|
_NL_COLLATE_WEIGHTMB); |
|
|
extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
|
|
_NL_COLLATE_EXTRAMB); |
|
|
indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, |
|
|
_NL_COLLATE_INDIRECTMB); |
|
|
idx1 = findidx (&cp); |
|
|
if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) |
|
|
/* This isn't a valid character. */ |
|
|
return REG_ECOLLATE; |
|
|
|
|
|
/* Build single byte matcing table for this equivalence class. */ |
|
|
char_buf[1] = (unsigned char) '\0'; |
|
|
len = weights[idx1 & 0xffffff]; |
|
|
for (ch = 0; ch < SBC_MAX; ++ch) |
|
|
{ |
|
|
char_buf[0] = ch; |
|
|
cp = char_buf; |
|
|
idx2 = findidx (&cp); |
|
|
/* |
|
|
idx2 = table[ch]; |
|
|
*/ |
|
|
if (idx2 == 0) |
|
|
/* This isn't a valid character. */ |
|
|
continue; |
|
|
/* Compare only if the length matches and the collation rule |
|
|
index is the same. */ |
|
|
if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24)) |
|
|
{ |
|
|
int cnt = 0; |
|
|
|
|
|
while (cnt <= len && |
|
|
weights[(idx1 & 0xffffff) + 1 + cnt] |
|
|
== weights[(idx2 & 0xffffff) + 1 + cnt]) |
|
|
++cnt; |
|
|
|
|
|
if (cnt > len) |
|
|
bitset_set (sbcset, ch); |
|
|
} |
|
|
} |
|
|
/* Check whether the array has enough space. */ |
|
|
if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) |
|
|
{ |
|
|
/* Not enough, realloc it. */ |
|
|
/* +1 in case of mbcset->nequiv_classes is 0. */ |
|
|
int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; |
|
|
/* Use realloc since the array is NULL if *alloc == 0. */ |
|
|
int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes, |
|
|
int32_t, |
|
|
new_equiv_class_alloc); |
|
|
if (BE (new_equiv_classes == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
mbcset->equiv_classes = new_equiv_classes; |
|
|
*equiv_class_alloc = new_equiv_class_alloc; |
|
|
} |
|
|
mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; |
|
|
} |
|
|
else |
|
|
#endif /* _LIBC */ |
|
|
{ |
|
|
if (BE (strlen ((const char *) name) != 1, 0)) |
|
|
return REG_ECOLLATE; |
|
|
bitset_set (sbcset, *name); |
|
|
} |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Helper function for parse_bracket_exp. |
|
|
Build the character class which is represented by NAME. |
|
|
The result are written to MBCSET and SBCSET. |
|
|
CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, |
|
|
is a pointer argument since we may update it. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
#ifdef RE_ENABLE_I18N |
|
|
build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, |
|
|
re_charset_t *mbcset, int *char_class_alloc, |
|
|
const char *class_name, reg_syntax_t syntax) |
|
|
#else /* not RE_ENABLE_I18N */ |
|
|
build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, |
|
|
const char *class_name, reg_syntax_t syntax) |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
{ |
|
|
int i; |
|
|
|
|
|
/* In case of REG_ICASE "upper" and "lower" match the both of |
|
|
upper and lower cases. */ |
|
|
if ((syntax & RE_ICASE) |
|
|
&& (strcmp (class_name, "upper") == 0 || strcmp (class_name, "lower") == 0)) |
|
|
class_name = "alpha"; |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
/* Check the space of the arrays. */ |
|
|
if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) |
|
|
{ |
|
|
/* Not enough, realloc it. */ |
|
|
/* +1 in case of mbcset->nchar_classes is 0. */ |
|
|
int new_char_class_alloc = 2 * mbcset->nchar_classes + 1; |
|
|
/* Use realloc since array is NULL if *alloc == 0. */ |
|
|
wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t, |
|
|
new_char_class_alloc); |
|
|
if (BE (new_char_classes == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
mbcset->char_classes = new_char_classes; |
|
|
*char_class_alloc = new_char_class_alloc; |
|
|
} |
|
|
mbcset->char_classes[mbcset->nchar_classes++] = __wctype (class_name); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|
|
|
#define BUILD_CHARCLASS_LOOP(ctype_func) \ |
|
|
do { \ |
|
|
if (BE (trans != NULL, 0)) \ |
|
|
{ \ |
|
|
for (i = 0; i < SBC_MAX; ++i) \ |
|
|
if (ctype_func (i)) \ |
|
|
bitset_set (sbcset, trans[i]); \ |
|
|
} \ |
|
|
else \ |
|
|
{ \ |
|
|
for (i = 0; i < SBC_MAX; ++i) \ |
|
|
if (ctype_func (i)) \ |
|
|
bitset_set (sbcset, i); \ |
|
|
} \ |
|
|
} while (0) |
|
|
|
|
|
if (strcmp (class_name, "alnum") == 0) |
|
|
BUILD_CHARCLASS_LOOP (isalnum); |
|
|
else if (strcmp (class_name, "cntrl") == 0) |
|
|
BUILD_CHARCLASS_LOOP (iscntrl); |
|
|
else if (strcmp (class_name, "lower") == 0) |
|
|
BUILD_CHARCLASS_LOOP (islower); |
|
|
else if (strcmp (class_name, "space") == 0) |
|
|
BUILD_CHARCLASS_LOOP (isspace); |
|
|
else if (strcmp (class_name, "alpha") == 0) |
|
|
BUILD_CHARCLASS_LOOP (isalpha); |
|
|
else if (strcmp (class_name, "digit") == 0) |
|
|
BUILD_CHARCLASS_LOOP (isdigit); |
|
|
else if (strcmp (class_name, "print") == 0) |
|
|
BUILD_CHARCLASS_LOOP (isprint); |
|
|
else if (strcmp (class_name, "upper") == 0) |
|
|
BUILD_CHARCLASS_LOOP (isupper); |
|
|
else if (strcmp (class_name, "blank") == 0) |
|
|
#ifndef GAWK |
|
|
BUILD_CHARCLASS_LOOP (isblank); |
|
|
#else |
|
|
/* see comments above */ |
|
|
BUILD_CHARCLASS_LOOP (is_blank); |
|
|
#endif |
|
|
else if (strcmp (class_name, "graph") == 0) |
|
|
BUILD_CHARCLASS_LOOP (isgraph); |
|
|
else if (strcmp (class_name, "punct") == 0) |
|
|
BUILD_CHARCLASS_LOOP (ispunct); |
|
|
else if (strcmp (class_name, "xdigit") == 0) |
|
|
BUILD_CHARCLASS_LOOP (isxdigit); |
|
|
else |
|
|
return REG_ECTYPE; |
|
|
|
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
static bin_tree_t * |
|
|
build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans, |
|
|
const char *class_name, |
|
|
const char *extra, int non_match, |
|
|
reg_errcode_t *err) |
|
|
{ |
|
|
re_bitset_ptr_t sbcset; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
re_charset_t *mbcset; |
|
|
int alloc = 0; |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
reg_errcode_t ret; |
|
|
re_token_t br_token; |
|
|
bin_tree_t *tree; |
|
|
|
|
|
sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (BE (sbcset == NULL || mbcset == NULL, 0)) |
|
|
#else /* not RE_ENABLE_I18N */ |
|
|
if (BE (sbcset == NULL, 0)) |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
{ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
if (non_match) |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
mbcset->non_match = 1; |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
} |
|
|
|
|
|
/* We don't care the syntax in this case. */ |
|
|
ret = build_charclass (trans, sbcset, |
|
|
#ifdef RE_ENABLE_I18N |
|
|
mbcset, &alloc, |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
class_name, 0); |
|
|
|
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
{ |
|
|
re_free (sbcset); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
free_charset (mbcset); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
*err = ret; |
|
|
return NULL; |
|
|
} |
|
|
/* \w match '_' also. */ |
|
|
for (; *extra; extra++) |
|
|
bitset_set (sbcset, *extra); |
|
|
|
|
|
/* If it is non-matching list. */ |
|
|
if (non_match) |
|
|
bitset_not (sbcset); |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
/* Ensure only single byte characters are set. */ |
|
|
if (dfa->mb_cur_max > 1) |
|
|
bitset_mask (sbcset, dfa->sb_char); |
|
|
#endif |
|
|
|
|
|
/* Build a tree for simple bracket. */ |
|
|
br_token.type = SIMPLE_BRACKET; |
|
|
br_token.opr.sbcset = sbcset; |
|
|
tree = create_token_tree (dfa, NULL, NULL, &br_token); |
|
|
if (BE (tree == NULL, 0)) |
|
|
goto build_word_op_espace; |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (dfa->mb_cur_max > 1) |
|
|
{ |
|
|
bin_tree_t *mbc_tree; |
|
|
/* Build a tree for complex bracket. */ |
|
|
br_token.type = COMPLEX_BRACKET; |
|
|
br_token.opr.mbcset = mbcset; |
|
|
dfa->has_mb_node = 1; |
|
|
mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
|
|
if (BE (mbc_tree == NULL, 0)) |
|
|
goto build_word_op_espace; |
|
|
/* Then join them by ALT node. */ |
|
|
tree = create_tree (dfa, tree, mbc_tree, OP_ALT); |
|
|
if (BE (mbc_tree != NULL, 1)) |
|
|
return tree; |
|
|
} |
|
|
else |
|
|
{ |
|
|
free_charset (mbcset); |
|
|
return tree; |
|
|
} |
|
|
#else /* not RE_ENABLE_I18N */ |
|
|
return tree; |
|
|
#endif /* not RE_ENABLE_I18N */ |
|
|
|
|
|
build_word_op_espace: |
|
|
re_free (sbcset); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
free_charset (mbcset); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
*err = REG_ESPACE; |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
/* This is intended for the expressions like "a{1,3}". |
|
|
Fetch a number from `input', and return the number. |
|
|
Return -1, if the number field is empty like "{,1}". |
|
|
Return -2, if an error has occurred. */ |
|
|
|
|
|
static int |
|
|
fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) |
|
|
{ |
|
|
int num = -1; |
|
|
unsigned char c; |
|
|
while (1) |
|
|
{ |
|
|
fetch_token (token, input, syntax); |
|
|
c = token->opr.c; |
|
|
if (BE (token->type == END_OF_RE, 0)) |
|
|
return -2; |
|
|
if (token->type == OP_CLOSE_DUP_NUM || c == ',') |
|
|
break; |
|
|
num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2) |
|
|
? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0')); |
|
|
num = (num > RE_DUP_MAX) ? -2 : num; |
|
|
} |
|
|
return num; |
|
|
} |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
static void |
|
|
free_charset (re_charset_t *cset) |
|
|
{ |
|
|
re_free (cset->mbchars); |
|
|
# ifdef _LIBC |
|
|
re_free (cset->coll_syms); |
|
|
re_free (cset->equiv_classes); |
|
|
re_free (cset->range_starts); |
|
|
re_free (cset->range_ends); |
|
|
# endif |
|
|
re_free (cset->char_classes); |
|
|
re_free (cset); |
|
|
} |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|
|
|
/* Functions for binary tree operation. */ |
|
|
|
|
|
/* Create a tree node. */ |
|
|
|
|
|
static bin_tree_t * |
|
|
create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, |
|
|
re_token_type_t type) |
|
|
{ |
|
|
re_token_t t; |
|
|
t.type = type; |
|
|
return create_token_tree (dfa, left, right, &t); |
|
|
} |
|
|
|
|
|
static bin_tree_t * |
|
|
create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, |
|
|
const re_token_t *token) |
|
|
{ |
|
|
bin_tree_t *tree; |
|
|
if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) |
|
|
{ |
|
|
bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); |
|
|
|
|
|
if (storage == NULL) |
|
|
return NULL; |
|
|
storage->next = dfa->str_tree_storage; |
|
|
dfa->str_tree_storage = storage; |
|
|
dfa->str_tree_storage_idx = 0; |
|
|
} |
|
|
tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; |
|
|
|
|
|
tree->parent = NULL; |
|
|
tree->left = left; |
|
|
tree->right = right; |
|
|
tree->token = *token; |
|
|
tree->token.duplicated = 0; |
|
|
tree->token.opt_subexp = 0; |
|
|
tree->first = NULL; |
|
|
tree->next = NULL; |
|
|
tree->node_idx = -1; |
|
|
|
|
|
if (left != NULL) |
|
|
left->parent = tree; |
|
|
if (right != NULL) |
|
|
right->parent = tree; |
|
|
return tree; |
|
|
} |
|
|
|
|
|
/* Mark the tree SRC as an optional subexpression. |
|
|
To be called from preorder or postorder. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
mark_opt_subexp (void *extra, bin_tree_t *node) |
|
|
{ |
|
|
int idx = (int) (intptr_t) extra; |
|
|
if (node->token.type == SUBEXP && node->token.opr.idx == idx) |
|
|
node->token.opt_subexp = 1; |
|
|
|
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Free the allocated memory inside NODE. */ |
|
|
|
|
|
static void |
|
|
free_token (re_token_t *node) |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (node->type == COMPLEX_BRACKET && node->duplicated == 0) |
|
|
free_charset (node->opr.mbcset); |
|
|
else |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
if (node->type == SIMPLE_BRACKET && node->duplicated == 0) |
|
|
re_free (node->opr.sbcset); |
|
|
} |
|
|
|
|
|
/* Worker function for tree walking. Free the allocated memory inside NODE |
|
|
and its children. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
free_tree (void *extra, bin_tree_t *node) |
|
|
{ |
|
|
free_token (&node->token); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
|
|
|
/* Duplicate the node SRC, and return new node. This is a preorder |
|
|
visit similar to the one implemented by the generic visitor, but |
|
|
we need more infrastructure to maintain two parallel trees --- so, |
|
|
it's easier to duplicate. */ |
|
|
|
|
|
static bin_tree_t * |
|
|
duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) |
|
|
{ |
|
|
const bin_tree_t *node; |
|
|
bin_tree_t *dup_root; |
|
|
bin_tree_t **p_new = &dup_root, *dup_node = root->parent; |
|
|
|
|
|
for (node = root; ; ) |
|
|
{ |
|
|
/* Create a new tree and link it back to the current parent. */ |
|
|
*p_new = create_token_tree (dfa, NULL, NULL, &node->token); |
|
|
if (*p_new == NULL) |
|
|
return NULL; |
|
|
(*p_new)->parent = dup_node; |
|
|
(*p_new)->token.duplicated = 1; |
|
|
dup_node = *p_new; |
|
|
|
|
|
/* Go to the left node, or up and to the right. */ |
|
|
if (node->left) |
|
|
{ |
|
|
node = node->left; |
|
|
p_new = &dup_node->left; |
|
|
} |
|
|
else |
|
|
{ |
|
|
const bin_tree_t *prev = NULL; |
|
|
while (node->right == prev || node->right == NULL) |
|
|
{ |
|
|
prev = node; |
|
|
node = node->parent; |
|
|
dup_node = dup_node->parent; |
|
|
if (!node) |
|
|
return dup_root; |
|
|
} |
|
|
node = node->right; |
|
|
p_new = &dup_node->right; |
|
|
} |
|
|
} |
|
|
}
|
|
|
|