You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3875 lines
122 KiB
3875 lines
122 KiB
/* |
|
* "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant |
|
* as a drop-in replacement for the "recursive" merge strategy, allowing one |
|
* to replace |
|
* |
|
* git merge [-s recursive] |
|
* |
|
* with |
|
* |
|
* git merge -s ort |
|
* |
|
* Note: git's parser allows the space between '-s' and its argument to be |
|
* missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo", |
|
* "cale", "peedy", or "ins" instead of "ort"?) |
|
*/ |
|
|
|
#include "cache.h" |
|
#include "merge-ort.h" |
|
|
|
#include "alloc.h" |
|
#include "attr.h" |
|
#include "blob.h" |
|
#include "cache-tree.h" |
|
#include "commit.h" |
|
#include "commit-reach.h" |
|
#include "diff.h" |
|
#include "diffcore.h" |
|
#include "dir.h" |
|
#include "entry.h" |
|
#include "ll-merge.h" |
|
#include "object-store.h" |
|
#include "revision.h" |
|
#include "strmap.h" |
|
#include "submodule.h" |
|
#include "tree.h" |
|
#include "unpack-trees.h" |
|
#include "xdiff-interface.h" |
|
|
|
/* |
|
* We have many arrays of size 3. Whenever we have such an array, the |
|
* indices refer to one of the sides of the three-way merge. This is so |
|
* pervasive that the constants 0, 1, and 2 are used in many places in the |
|
* code (especially in arithmetic operations to find the other side's index |
|
* or to compute a relevant mask), but sometimes these enum names are used |
|
* to aid code clarity. |
|
* |
|
* See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side" |
|
* referred to there is one of these three sides. |
|
*/ |
|
enum merge_side { |
|
MERGE_BASE = 0, |
|
MERGE_SIDE1 = 1, |
|
MERGE_SIDE2 = 2 |
|
}; |
|
|
|
struct traversal_callback_data { |
|
unsigned long mask; |
|
unsigned long dirmask; |
|
struct name_entry names[3]; |
|
}; |
|
|
|
struct rename_info { |
|
/* |
|
* All variables that are arrays of size 3 correspond to data tracked |
|
* for the sides in enum merge_side. Index 0 is almost always unused |
|
* because we often only need to track information for MERGE_SIDE1 and |
|
* MERGE_SIDE2 (MERGE_BASE can't have rename information since renames |
|
* are determined relative to what changed since the MERGE_BASE). |
|
*/ |
|
|
|
/* |
|
* pairs: pairing of filenames from diffcore_rename() |
|
*/ |
|
struct diff_queue_struct pairs[3]; |
|
|
|
/* |
|
* dirs_removed: directories removed on a given side of history. |
|
* |
|
* The keys of dirs_removed[side] are the directories that were removed |
|
* on the given side of history. The value of the strintmap for each |
|
* directory is a value from enum dir_rename_relevance. |
|
*/ |
|
struct strintmap dirs_removed[3]; |
|
|
|
/* |
|
* dir_rename_count: tracking where parts of a directory were renamed to |
|
* |
|
* When files in a directory are renamed, they may not all go to the |
|
* same location. Each strmap here tracks: |
|
* old_dir => {new_dir => int} |
|
* That is, dir_rename_count[side] is a strmap to a strintmap. |
|
*/ |
|
struct strmap dir_rename_count[3]; |
|
|
|
/* |
|
* dir_renames: computed directory renames |
|
* |
|
* This is a map of old_dir => new_dir and is derived in part from |
|
* dir_rename_count. |
|
*/ |
|
struct strmap dir_renames[3]; |
|
|
|
/* |
|
* relevant_sources: deleted paths wanted in rename detection, and why |
|
* |
|
* relevant_sources is a set of deleted paths on each side of |
|
* history for which we need rename detection. If a path is deleted |
|
* on one side of history, we need to detect if it is part of a |
|
* rename if either |
|
* * the file is modified/deleted on the other side of history |
|
* * we need to detect renames for an ancestor directory |
|
* If neither of those are true, we can skip rename detection for |
|
* that path. The reason is stored as a value from enum |
|
* file_rename_relevance, as the reason can inform the algorithm in |
|
* diffcore_rename_extended(). |
|
*/ |
|
struct strintmap relevant_sources[3]; |
|
|
|
/* |
|
* dir_rename_mask: |
|
* 0: optimization removing unmodified potential rename source okay |
|
* 2 or 4: optimization okay, but must check for files added to dir |
|
* 7: optimization forbidden; need rename source in case of dir rename |
|
*/ |
|
unsigned dir_rename_mask:3; |
|
|
|
/* |
|
* callback_data_*: supporting data structures for alternate traversal |
|
* |
|
* We sometimes need to be able to traverse through all the files |
|
* in a given tree before all immediate subdirectories within that |
|
* tree. Since traverse_trees() doesn't do that naturally, we have |
|
* a traverse_trees_wrapper() that stores any immediate |
|
* subdirectories while traversing files, then traverses the |
|
* immediate subdirectories later. These callback_data* variables |
|
* store the information for the subdirectories so that we can do |
|
* that traversal order. |
|
*/ |
|
struct traversal_callback_data *callback_data; |
|
int callback_data_nr, callback_data_alloc; |
|
char *callback_data_traverse_path; |
|
|
|
/* |
|
* needed_limit: value needed for inexact rename detection to run |
|
* |
|
* If the current rename limit wasn't high enough for inexact |
|
* rename detection to run, this records the limit needed. Otherwise, |
|
* this value remains 0. |
|
*/ |
|
int needed_limit; |
|
}; |
|
|
|
struct merge_options_internal { |
|
/* |
|
* paths: primary data structure in all of merge ort. |
|
* |
|
* The keys of paths: |
|
* * are full relative paths from the toplevel of the repository |
|
* (e.g. "drivers/firmware/raspberrypi.c"). |
|
* * store all relevant paths in the repo, both directories and |
|
* files (e.g. drivers, drivers/firmware would also be included) |
|
* * these keys serve to intern all the path strings, which allows |
|
* us to do pointer comparison on directory names instead of |
|
* strcmp; we just have to be careful to use the interned strings. |
|
* (Technically paths_to_free may track some strings that were |
|
* removed from froms paths.) |
|
* |
|
* The values of paths: |
|
* * either a pointer to a merged_info, or a conflict_info struct |
|
* * merged_info contains all relevant information for a |
|
* non-conflicted entry. |
|
* * conflict_info contains a merged_info, plus any additional |
|
* information about a conflict such as the higher orders stages |
|
* involved and the names of the paths those came from (handy |
|
* once renames get involved). |
|
* * a path may start "conflicted" (i.e. point to a conflict_info) |
|
* and then a later step (e.g. three-way content merge) determines |
|
* it can be cleanly merged, at which point it'll be marked clean |
|
* and the algorithm will ignore any data outside the contained |
|
* merged_info for that entry |
|
* * If an entry remains conflicted, the merged_info portion of a |
|
* conflict_info will later be filled with whatever version of |
|
* the file should be placed in the working directory (e.g. an |
|
* as-merged-as-possible variation that contains conflict markers). |
|
*/ |
|
struct strmap paths; |
|
|
|
/* |
|
* conflicted: a subset of keys->values from "paths" |
|
* |
|
* conflicted is basically an optimization between process_entries() |
|
* and record_conflicted_index_entries(); the latter could loop over |
|
* ALL the entries in paths AGAIN and look for the ones that are |
|
* still conflicted, but since process_entries() has to loop over |
|
* all of them, it saves the ones it couldn't resolve in this strmap |
|
* so that record_conflicted_index_entries() can iterate just the |
|
* relevant entries. |
|
*/ |
|
struct strmap conflicted; |
|
|
|
/* |
|
* paths_to_free: additional list of strings to free |
|
* |
|
* If keys are removed from "paths", they are added to paths_to_free |
|
* to ensure they are later freed. We avoid free'ing immediately since |
|
* other places (e.g. conflict_info.pathnames[]) may still be |
|
* referencing these paths. |
|
*/ |
|
struct string_list paths_to_free; |
|
|
|
/* |
|
* output: special messages and conflict notices for various paths |
|
* |
|
* This is a map of pathnames (a subset of the keys in "paths" above) |
|
* to strbufs. It gathers various warning/conflict/notice messages |
|
* for later processing. |
|
*/ |
|
struct strmap output; |
|
|
|
/* |
|
* renames: various data relating to rename detection |
|
*/ |
|
struct rename_info renames; |
|
|
|
/* |
|
* attr_index: hacky minimal index used for renormalization |
|
* |
|
* renormalization code _requires_ an index, though it only needs to |
|
* find a .gitattributes file within the index. So, when |
|
* renormalization is important, we create a special index with just |
|
* that one file. |
|
*/ |
|
struct index_state attr_index; |
|
|
|
/* |
|
* current_dir_name, toplevel_dir: temporary vars |
|
* |
|
* These are used in collect_merge_info_callback(), and will set the |
|
* various merged_info.directory_name for the various paths we get; |
|
* see documentation for that variable and the requirements placed on |
|
* that field. |
|
*/ |
|
const char *current_dir_name; |
|
const char *toplevel_dir; |
|
|
|
/* call_depth: recursion level counter for merging merge bases */ |
|
int call_depth; |
|
}; |
|
|
|
struct version_info { |
|
struct object_id oid; |
|
unsigned short mode; |
|
}; |
|
|
|
struct merged_info { |
|
/* if is_null, ignore result. otherwise result has oid & mode */ |
|
struct version_info result; |
|
unsigned is_null:1; |
|
|
|
/* |
|
* clean: whether the path in question is cleanly merged. |
|
* |
|
* see conflict_info.merged for more details. |
|
*/ |
|
unsigned clean:1; |
|
|
|
/* |
|
* basename_offset: offset of basename of path. |
|
* |
|
* perf optimization to avoid recomputing offset of final '/' |
|
* character in pathname (0 if no '/' in pathname). |
|
*/ |
|
size_t basename_offset; |
|
|
|
/* |
|
* directory_name: containing directory name. |
|
* |
|
* Note that we assume directory_name is constructed such that |
|
* strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name, |
|
* i.e. string equality is equivalent to pointer equality. For this |
|
* to hold, we have to be careful setting directory_name. |
|
*/ |
|
const char *directory_name; |
|
}; |
|
|
|
struct conflict_info { |
|
/* |
|
* merged: the version of the path that will be written to working tree |
|
* |
|
* WARNING: It is critical to check merged.clean and ensure it is 0 |
|
* before reading any conflict_info fields outside of merged. |
|
* Allocated merge_info structs will always have clean set to 1. |
|
* Allocated conflict_info structs will have merged.clean set to 0 |
|
* initially. The merged.clean field is how we know if it is safe |
|
* to access other parts of conflict_info besides merged; if a |
|
* conflict_info's merged.clean is changed to 1, the rest of the |
|
* algorithm is not allowed to look at anything outside of the |
|
* merged member anymore. |
|
*/ |
|
struct merged_info merged; |
|
|
|
/* oids & modes from each of the three trees for this path */ |
|
struct version_info stages[3]; |
|
|
|
/* pathnames for each stage; may differ due to rename detection */ |
|
const char *pathnames[3]; |
|
|
|
/* Whether this path is/was involved in a directory/file conflict */ |
|
unsigned df_conflict:1; |
|
|
|
/* |
|
* Whether this path is/was involved in a non-content conflict other |
|
* than a directory/file conflict (e.g. rename/rename, rename/delete, |
|
* file location based on possible directory rename). |
|
*/ |
|
unsigned path_conflict:1; |
|
|
|
/* |
|
* For filemask and dirmask, the ith bit corresponds to whether the |
|
* ith entry is a file (filemask) or a directory (dirmask). Thus, |
|
* filemask & dirmask is always zero, and filemask | dirmask is at |
|
* most 7 but can be less when a path does not appear as either a |
|
* file or a directory on at least one side of history. |
|
* |
|
* Note that these masks are related to enum merge_side, as the ith |
|
* entry corresponds to side i. |
|
* |
|
* These values come from a traverse_trees() call; more info may be |
|
* found looking at tree-walk.h's struct traverse_info, |
|
* particularly the documentation above the "fn" member (note that |
|
* filemask = mask & ~dirmask from that documentation). |
|
*/ |
|
unsigned filemask:3; |
|
unsigned dirmask:3; |
|
|
|
/* |
|
* Optimization to track which stages match, to avoid the need to |
|
* recompute it in multiple steps. Either 0 or at least 2 bits are |
|
* set; if at least 2 bits are set, their corresponding stages match. |
|
*/ |
|
unsigned match_mask:3; |
|
}; |
|
|
|
/*** Function Grouping: various utility functions ***/ |
|
|
|
/* |
|
* For the next three macros, see warning for conflict_info.merged. |
|
* |
|
* In each of the below, mi is a struct merged_info*, and ci was defined |
|
* as a struct conflict_info* (but we need to verify ci isn't actually |
|
* pointed at a struct merged_info*). |
|
* |
|
* INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise. |
|
* VERIFY_CI: Ensure that something we assigned to a conflict_info* is one. |
|
* ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first. |
|
*/ |
|
#define INITIALIZE_CI(ci, mi) do { \ |
|
(ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \ |
|
} while (0) |
|
#define VERIFY_CI(ci) assert(ci && !ci->merged.clean); |
|
#define ASSIGN_AND_VERIFY_CI(ci, mi) do { \ |
|
(ci) = (struct conflict_info *)(mi); \ |
|
assert((ci) && !(mi)->clean); \ |
|
} while (0) |
|
|
|
static void free_strmap_strings(struct strmap *map) |
|
{ |
|
struct hashmap_iter iter; |
|
struct strmap_entry *entry; |
|
|
|
strmap_for_each_entry(map, &iter, entry) { |
|
free((char*)entry->key); |
|
} |
|
} |
|
|
|
static void clear_or_reinit_internal_opts(struct merge_options_internal *opti, |
|
int reinitialize) |
|
{ |
|
struct rename_info *renames = &opti->renames; |
|
int i; |
|
void (*strmap_func)(struct strmap *, int) = |
|
reinitialize ? strmap_partial_clear : strmap_clear; |
|
void (*strintmap_func)(struct strintmap *) = |
|
reinitialize ? strintmap_partial_clear : strintmap_clear; |
|
|
|
/* |
|
* We marked opti->paths with strdup_strings = 0, so that we |
|
* wouldn't have to make another copy of the fullpath created by |
|
* make_traverse_path from setup_path_info(). But, now that we've |
|
* used it and have no other references to these strings, it is time |
|
* to deallocate them. |
|
*/ |
|
free_strmap_strings(&opti->paths); |
|
strmap_func(&opti->paths, 1); |
|
|
|
/* |
|
* All keys and values in opti->conflicted are a subset of those in |
|
* opti->paths. We don't want to deallocate anything twice, so we |
|
* don't free the keys and we pass 0 for free_values. |
|
*/ |
|
strmap_func(&opti->conflicted, 0); |
|
|
|
/* |
|
* opti->paths_to_free is similar to opti->paths; we created it with |
|
* strdup_strings = 0 to avoid making _another_ copy of the fullpath |
|
* but now that we've used it and have no other references to these |
|
* strings, it is time to deallocate them. We do so by temporarily |
|
* setting strdup_strings to 1. |
|
*/ |
|
opti->paths_to_free.strdup_strings = 1; |
|
string_list_clear(&opti->paths_to_free, 0); |
|
opti->paths_to_free.strdup_strings = 0; |
|
|
|
if (opti->attr_index.cache_nr) /* true iff opt->renormalize */ |
|
discard_index(&opti->attr_index); |
|
|
|
/* Free memory used by various renames maps */ |
|
for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) { |
|
strintmap_func(&renames->dirs_removed[i]); |
|
|
|
partial_clear_dir_rename_count(&renames->dir_rename_count[i]); |
|
if (!reinitialize) |
|
strmap_clear(&renames->dir_rename_count[i], 1); |
|
|
|
strmap_func(&renames->dir_renames[i], 0); |
|
|
|
strintmap_func(&renames->relevant_sources[i]); |
|
} |
|
|
|
if (!reinitialize) { |
|
struct hashmap_iter iter; |
|
struct strmap_entry *e; |
|
|
|
/* Release and free each strbuf found in output */ |
|
strmap_for_each_entry(&opti->output, &iter, e) { |
|
struct strbuf *sb = e->value; |
|
strbuf_release(sb); |
|
/* |
|
* While strictly speaking we don't need to free(sb) |
|
* here because we could pass free_values=1 when |
|
* calling strmap_clear() on opti->output, that would |
|
* require strmap_clear to do another |
|
* strmap_for_each_entry() loop, so we just free it |
|
* while we're iterating anyway. |
|
*/ |
|
free(sb); |
|
} |
|
strmap_clear(&opti->output, 0); |
|
} |
|
|
|
renames->dir_rename_mask = 0; |
|
|
|
/* Clean out callback_data as well. */ |
|
FREE_AND_NULL(renames->callback_data); |
|
renames->callback_data_nr = renames->callback_data_alloc = 0; |
|
} |
|
|
|
static int err(struct merge_options *opt, const char *err, ...) |
|
{ |
|
va_list params; |
|
struct strbuf sb = STRBUF_INIT; |
|
|
|
strbuf_addstr(&sb, "error: "); |
|
va_start(params, err); |
|
strbuf_vaddf(&sb, err, params); |
|
va_end(params); |
|
|
|
error("%s", sb.buf); |
|
strbuf_release(&sb); |
|
|
|
return -1; |
|
} |
|
|
|
static void format_commit(struct strbuf *sb, |
|
int indent, |
|
struct commit *commit) |
|
{ |
|
struct merge_remote_desc *desc; |
|
struct pretty_print_context ctx = {0}; |
|
ctx.abbrev = DEFAULT_ABBREV; |
|
|
|
strbuf_addchars(sb, ' ', indent); |
|
desc = merge_remote_util(commit); |
|
if (desc) { |
|
strbuf_addf(sb, "virtual %s\n", desc->name); |
|
return; |
|
} |
|
|
|
format_commit_message(commit, "%h %s", sb, &ctx); |
|
strbuf_addch(sb, '\n'); |
|
} |
|
|
|
__attribute__((format (printf, 4, 5))) |
|
static void path_msg(struct merge_options *opt, |
|
const char *path, |
|
int omittable_hint, /* skippable under --remerge-diff */ |
|
const char *fmt, ...) |
|
{ |
|
va_list ap; |
|
struct strbuf *sb = strmap_get(&opt->priv->output, path); |
|
if (!sb) { |
|
sb = xmalloc(sizeof(*sb)); |
|
strbuf_init(sb, 0); |
|
strmap_put(&opt->priv->output, path, sb); |
|
} |
|
|
|
va_start(ap, fmt); |
|
strbuf_vaddf(sb, fmt, ap); |
|
va_end(ap); |
|
|
|
strbuf_addch(sb, '\n'); |
|
} |
|
|
|
/* add a string to a strbuf, but converting "/" to "_" */ |
|
static void add_flattened_path(struct strbuf *out, const char *s) |
|
{ |
|
size_t i = out->len; |
|
strbuf_addstr(out, s); |
|
for (; i < out->len; i++) |
|
if (out->buf[i] == '/') |
|
out->buf[i] = '_'; |
|
} |
|
|
|
static char *unique_path(struct strmap *existing_paths, |
|
const char *path, |
|
const char *branch) |
|
{ |
|
struct strbuf newpath = STRBUF_INIT; |
|
int suffix = 0; |
|
size_t base_len; |
|
|
|
strbuf_addf(&newpath, "%s~", path); |
|
add_flattened_path(&newpath, branch); |
|
|
|
base_len = newpath.len; |
|
while (strmap_contains(existing_paths, newpath.buf)) { |
|
strbuf_setlen(&newpath, base_len); |
|
strbuf_addf(&newpath, "_%d", suffix++); |
|
} |
|
|
|
return strbuf_detach(&newpath, NULL); |
|
} |
|
|
|
/*** Function Grouping: functions related to collect_merge_info() ***/ |
|
|
|
static int traverse_trees_wrapper_callback(int n, |
|
unsigned long mask, |
|
unsigned long dirmask, |
|
struct name_entry *names, |
|
struct traverse_info *info) |
|
{ |
|
struct merge_options *opt = info->data; |
|
struct rename_info *renames = &opt->priv->renames; |
|
unsigned filemask = mask & ~dirmask; |
|
|
|
assert(n==3); |
|
|
|
if (!renames->callback_data_traverse_path) |
|
renames->callback_data_traverse_path = xstrdup(info->traverse_path); |
|
|
|
if (filemask && filemask == renames->dir_rename_mask) |
|
renames->dir_rename_mask = 0x07; |
|
|
|
ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1, |
|
renames->callback_data_alloc); |
|
renames->callback_data[renames->callback_data_nr].mask = mask; |
|
renames->callback_data[renames->callback_data_nr].dirmask = dirmask; |
|
COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names, |
|
names, 3); |
|
renames->callback_data_nr++; |
|
|
|
return mask; |
|
} |
|
|
|
/* |
|
* Much like traverse_trees(), BUT: |
|
* - read all the tree entries FIRST, saving them |
|
* - note that the above step provides an opportunity to compute necessary |
|
* additional details before the "real" traversal |
|
* - loop through the saved entries and call the original callback on them |
|
*/ |
|
static int traverse_trees_wrapper(struct index_state *istate, |
|
int n, |
|
struct tree_desc *t, |
|
struct traverse_info *info) |
|
{ |
|
int ret, i, old_offset; |
|
traverse_callback_t old_fn; |
|
char *old_callback_data_traverse_path; |
|
struct merge_options *opt = info->data; |
|
struct rename_info *renames = &opt->priv->renames; |
|
|
|
assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4); |
|
|
|
old_callback_data_traverse_path = renames->callback_data_traverse_path; |
|
old_fn = info->fn; |
|
old_offset = renames->callback_data_nr; |
|
|
|
renames->callback_data_traverse_path = NULL; |
|
info->fn = traverse_trees_wrapper_callback; |
|
ret = traverse_trees(istate, n, t, info); |
|
if (ret < 0) |
|
return ret; |
|
|
|
info->traverse_path = renames->callback_data_traverse_path; |
|
info->fn = old_fn; |
|
for (i = old_offset; i < renames->callback_data_nr; ++i) { |
|
info->fn(n, |
|
renames->callback_data[i].mask, |
|
renames->callback_data[i].dirmask, |
|
renames->callback_data[i].names, |
|
info); |
|
} |
|
|
|
renames->callback_data_nr = old_offset; |
|
free(renames->callback_data_traverse_path); |
|
renames->callback_data_traverse_path = old_callback_data_traverse_path; |
|
info->traverse_path = NULL; |
|
return 0; |
|
} |
|
|
|
static void setup_path_info(struct merge_options *opt, |
|
struct string_list_item *result, |
|
const char *current_dir_name, |
|
int current_dir_name_len, |
|
char *fullpath, /* we'll take over ownership */ |
|
struct name_entry *names, |
|
struct name_entry *merged_version, |
|
unsigned is_null, /* boolean */ |
|
unsigned df_conflict, /* boolean */ |
|
unsigned filemask, |
|
unsigned dirmask, |
|
int resolved /* boolean */) |
|
{ |
|
/* result->util is void*, so mi is a convenience typed variable */ |
|
struct merged_info *mi; |
|
|
|
assert(!is_null || resolved); |
|
assert(!df_conflict || !resolved); /* df_conflict implies !resolved */ |
|
assert(resolved == (merged_version != NULL)); |
|
|
|
mi = xcalloc(1, resolved ? sizeof(struct merged_info) : |
|
sizeof(struct conflict_info)); |
|
mi->directory_name = current_dir_name; |
|
mi->basename_offset = current_dir_name_len; |
|
mi->clean = !!resolved; |
|
if (resolved) { |
|
mi->result.mode = merged_version->mode; |
|
oidcpy(&mi->result.oid, &merged_version->oid); |
|
mi->is_null = !!is_null; |
|
} else { |
|
int i; |
|
struct conflict_info *ci; |
|
|
|
ASSIGN_AND_VERIFY_CI(ci, mi); |
|
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) { |
|
ci->pathnames[i] = fullpath; |
|
ci->stages[i].mode = names[i].mode; |
|
oidcpy(&ci->stages[i].oid, &names[i].oid); |
|
} |
|
ci->filemask = filemask; |
|
ci->dirmask = dirmask; |
|
ci->df_conflict = !!df_conflict; |
|
if (dirmask) |
|
/* |
|
* Assume is_null for now, but if we have entries |
|
* under the directory then when it is complete in |
|
* write_completed_directory() it'll update this. |
|
* Also, for D/F conflicts, we have to handle the |
|
* directory first, then clear this bit and process |
|
* the file to see how it is handled -- that occurs |
|
* near the top of process_entry(). |
|
*/ |
|
mi->is_null = 1; |
|
} |
|
strmap_put(&opt->priv->paths, fullpath, mi); |
|
result->string = fullpath; |
|
result->util = mi; |
|
} |
|
|
|
static void add_pair(struct merge_options *opt, |
|
struct name_entry *names, |
|
const char *pathname, |
|
unsigned side, |
|
unsigned is_add /* if false, is_delete */, |
|
unsigned match_mask, |
|
unsigned dir_rename_mask) |
|
{ |
|
struct diff_filespec *one, *two; |
|
struct rename_info *renames = &opt->priv->renames; |
|
int names_idx = is_add ? side : 0; |
|
|
|
if (!is_add) { |
|
unsigned content_relevant = (match_mask == 0); |
|
unsigned location_relevant = (dir_rename_mask == 0x07); |
|
|
|
if (content_relevant || location_relevant) { |
|
/* content_relevant trumps location_relevant */ |
|
strintmap_set(&renames->relevant_sources[side], pathname, |
|
content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION); |
|
} |
|
} |
|
|
|
one = alloc_filespec(pathname); |
|
two = alloc_filespec(pathname); |
|
fill_filespec(is_add ? two : one, |
|
&names[names_idx].oid, 1, names[names_idx].mode); |
|
diff_queue(&renames->pairs[side], one, two); |
|
} |
|
|
|
static void collect_rename_info(struct merge_options *opt, |
|
struct name_entry *names, |
|
const char *dirname, |
|
const char *fullname, |
|
unsigned filemask, |
|
unsigned dirmask, |
|
unsigned match_mask) |
|
{ |
|
struct rename_info *renames = &opt->priv->renames; |
|
unsigned side; |
|
|
|
/* |
|
* Update dir_rename_mask (determines ignore-rename-source validity) |
|
* |
|
* dir_rename_mask helps us keep track of when directory rename |
|
* detection may be relevant. Basically, whenver a directory is |
|
* removed on one side of history, and a file is added to that |
|
* directory on the other side of history, directory rename |
|
* detection is relevant (meaning we have to detect renames for all |
|
* files within that directory to deduce where the directory |
|
* moved). Also, whenever a directory needs directory rename |
|
* detection, due to the "majority rules" choice for where to move |
|
* it (see t6423 testcase 1f), we also need to detect renames for |
|
* all files within subdirectories of that directory as well. |
|
* |
|
* Here we haven't looked at files within the directory yet, we are |
|
* just looking at the directory itself. So, if we aren't yet in |
|
* a case where a parent directory needed directory rename detection |
|
* (i.e. dir_rename_mask != 0x07), and if the directory was removed |
|
* on one side of history, record the mask of the other side of |
|
* history in dir_rename_mask. |
|
*/ |
|
if (renames->dir_rename_mask != 0x07 && |
|
(dirmask == 3 || dirmask == 5)) { |
|
/* simple sanity check */ |
|
assert(renames->dir_rename_mask == 0 || |
|
renames->dir_rename_mask == (dirmask & ~1)); |
|
/* update dir_rename_mask; have it record mask of new side */ |
|
renames->dir_rename_mask = (dirmask & ~1); |
|
} |
|
|
|
/* Update dirs_removed, as needed */ |
|
if (dirmask == 1 || dirmask == 3 || dirmask == 5) { |
|
/* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */ |
|
unsigned sides = (0x07 - dirmask)/2; |
|
unsigned relevance = (renames->dir_rename_mask == 0x07) ? |
|
RELEVANT_FOR_ANCESTOR : NOT_RELEVANT; |
|
/* |
|
* Record relevance of this directory. However, note that |
|
* when collect_merge_info_callback() recurses into this |
|
* directory and calls collect_rename_info() on paths |
|
* within that directory, if we find a path that was added |
|
* to this directory on the other side of history, we will |
|
* upgrade this value to RELEVANT_FOR_SELF; see below. |
|
*/ |
|
if (sides & 1) |
|
strintmap_set(&renames->dirs_removed[1], fullname, |
|
relevance); |
|
if (sides & 2) |
|
strintmap_set(&renames->dirs_removed[2], fullname, |
|
relevance); |
|
} |
|
|
|
/* |
|
* Here's the block that potentially upgrades to RELEVANT_FOR_SELF. |
|
* When we run across a file added to a directory. In such a case, |
|
* find the directory of the file and upgrade its relevance. |
|
*/ |
|
if (renames->dir_rename_mask == 0x07 && |
|
(filemask == 2 || filemask == 4)) { |
|
/* |
|
* Need directory rename for parent directory on other side |
|
* of history from added file. Thus |
|
* side = (~filemask & 0x06) >> 1 |
|
* or |
|
* side = 3 - (filemask/2). |
|
*/ |
|
unsigned side = 3 - (filemask >> 1); |
|
strintmap_set(&renames->dirs_removed[side], dirname, |
|
RELEVANT_FOR_SELF); |
|
} |
|
|
|
if (filemask == 0 || filemask == 7) |
|
return; |
|
|
|
for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) { |
|
unsigned side_mask = (1 << side); |
|
|
|
/* Check for deletion on side */ |
|
if ((filemask & 1) && !(filemask & side_mask)) |
|
add_pair(opt, names, fullname, side, 0 /* delete */, |
|
match_mask & filemask, |
|
renames->dir_rename_mask); |
|
|
|
/* Check for addition on side */ |
|
if (!(filemask & 1) && (filemask & side_mask)) |
|
add_pair(opt, names, fullname, side, 1 /* add */, |
|
match_mask & filemask, |
|
renames->dir_rename_mask); |
|
} |
|
} |
|
|
|
static int collect_merge_info_callback(int n, |
|
unsigned long mask, |
|
unsigned long dirmask, |
|
struct name_entry *names, |
|
struct traverse_info *info) |
|
{ |
|
/* |
|
* n is 3. Always. |
|
* common ancestor (mbase) has mask 1, and stored in index 0 of names |
|
* head of side 1 (side1) has mask 2, and stored in index 1 of names |
|
* head of side 2 (side2) has mask 4, and stored in index 2 of names |
|
*/ |
|
struct merge_options *opt = info->data; |
|
struct merge_options_internal *opti = opt->priv; |
|
struct rename_info *renames = &opt->priv->renames; |
|
struct string_list_item pi; /* Path Info */ |
|
struct conflict_info *ci; /* typed alias to pi.util (which is void*) */ |
|
struct name_entry *p; |
|
size_t len; |
|
char *fullpath; |
|
const char *dirname = opti->current_dir_name; |
|
unsigned prev_dir_rename_mask = renames->dir_rename_mask; |
|
unsigned filemask = mask & ~dirmask; |
|
unsigned match_mask = 0; /* will be updated below */ |
|
unsigned mbase_null = !(mask & 1); |
|
unsigned side1_null = !(mask & 2); |
|
unsigned side2_null = !(mask & 4); |
|
unsigned side1_matches_mbase = (!side1_null && !mbase_null && |
|
names[0].mode == names[1].mode && |
|
oideq(&names[0].oid, &names[1].oid)); |
|
unsigned side2_matches_mbase = (!side2_null && !mbase_null && |
|
names[0].mode == names[2].mode && |
|
oideq(&names[0].oid, &names[2].oid)); |
|
unsigned sides_match = (!side1_null && !side2_null && |
|
names[1].mode == names[2].mode && |
|
oideq(&names[1].oid, &names[2].oid)); |
|
|
|
/* |
|
* Note: When a path is a file on one side of history and a directory |
|
* in another, we have a directory/file conflict. In such cases, if |
|
* the conflict doesn't resolve from renames and deletions, then we |
|
* always leave directories where they are and move files out of the |
|
* way. Thus, while struct conflict_info has a df_conflict field to |
|
* track such conflicts, we ignore that field for any directories at |
|
* a path and only pay attention to it for files at the given path. |
|
* The fact that we leave directories were they are also means that |
|
* we do not need to worry about getting additional df_conflict |
|
* information propagated from parent directories down to children |
|
* (unlike, say traverse_trees_recursive() in unpack-trees.c, which |
|
* sets a newinfo.df_conflicts field specifically to propagate it). |
|
*/ |
|
unsigned df_conflict = (filemask != 0) && (dirmask != 0); |
|
|
|
/* n = 3 is a fundamental assumption. */ |
|
if (n != 3) |
|
BUG("Called collect_merge_info_callback wrong"); |
|
|
|
/* |
|
* A bunch of sanity checks verifying that traverse_trees() calls |
|
* us the way I expect. Could just remove these at some point, |
|
* though maybe they are helpful to future code readers. |
|
*/ |
|
assert(mbase_null == is_null_oid(&names[0].oid)); |
|
assert(side1_null == is_null_oid(&names[1].oid)); |
|
assert(side2_null == is_null_oid(&names[2].oid)); |
|
assert(!mbase_null || !side1_null || !side2_null); |
|
assert(mask > 0 && mask < 8); |
|
|
|
/* Determine match_mask */ |
|
if (side1_matches_mbase) |
|
match_mask = (side2_matches_mbase ? 7 : 3); |
|
else if (side2_matches_mbase) |
|
match_mask = 5; |
|
else if (sides_match) |
|
match_mask = 6; |
|
|
|
/* |
|
* Get the name of the relevant filepath, which we'll pass to |
|
* setup_path_info() for tracking. |
|
*/ |
|
p = names; |
|
while (!p->mode) |
|
p++; |
|
len = traverse_path_len(info, p->pathlen); |
|
|
|
/* +1 in both of the following lines to include the NUL byte */ |
|
fullpath = xmalloc(len + 1); |
|
make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen); |
|
|
|
/* |
|
* If mbase, side1, and side2 all match, we can resolve early. Even |
|
* if these are trees, there will be no renames or anything |
|
* underneath. |
|
*/ |
|
if (side1_matches_mbase && side2_matches_mbase) { |
|
/* mbase, side1, & side2 all match; use mbase as resolution */ |
|
setup_path_info(opt, &pi, dirname, info->pathlen, fullpath, |
|
names, names+0, mbase_null, 0, |
|
filemask, dirmask, 1); |
|
return mask; |
|
} |
|
|
|
/* |
|
* Gather additional information used in rename detection. |
|
*/ |
|
collect_rename_info(opt, names, dirname, fullpath, |
|
filemask, dirmask, match_mask); |
|
|
|
/* |
|
* Record information about the path so we can resolve later in |
|
* process_entries. |
|
*/ |
|
setup_path_info(opt, &pi, dirname, info->pathlen, fullpath, |
|
names, NULL, 0, df_conflict, filemask, dirmask, 0); |
|
|
|
ci = pi.util; |
|
VERIFY_CI(ci); |
|
ci->match_mask = match_mask; |
|
|
|
/* If dirmask, recurse into subdirectories */ |
|
if (dirmask) { |
|
struct traverse_info newinfo; |
|
struct tree_desc t[3]; |
|
void *buf[3] = {NULL, NULL, NULL}; |
|
const char *original_dir_name; |
|
int i, ret; |
|
|
|
ci->match_mask &= filemask; |
|
newinfo = *info; |
|
newinfo.prev = info; |
|
newinfo.name = p->path; |
|
newinfo.namelen = p->pathlen; |
|
newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1); |
|
/* |
|
* If this directory we are about to recurse into cared about |
|
* its parent directory (the current directory) having a D/F |
|
* conflict, then we'd propagate the masks in this way: |
|
* newinfo.df_conflicts |= (mask & ~dirmask); |
|
* But we don't worry about propagating D/F conflicts. (See |
|
* comment near setting of local df_conflict variable near |
|
* the beginning of this function). |
|
*/ |
|
|
|
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) { |
|
if (i == 1 && side1_matches_mbase) |
|
t[1] = t[0]; |
|
else if (i == 2 && side2_matches_mbase) |
|
t[2] = t[0]; |
|
else if (i == 2 && sides_match) |
|
t[2] = t[1]; |
|
else { |
|
const struct object_id *oid = NULL; |
|
if (dirmask & 1) |
|
oid = &names[i].oid; |
|
buf[i] = fill_tree_descriptor(opt->repo, |
|
t + i, oid); |
|
} |
|
dirmask >>= 1; |
|
} |
|
|
|
original_dir_name = opti->current_dir_name; |
|
opti->current_dir_name = pi.string; |
|
if (renames->dir_rename_mask == 0 || |
|
renames->dir_rename_mask == 0x07) |
|
ret = traverse_trees(NULL, 3, t, &newinfo); |
|
else |
|
ret = traverse_trees_wrapper(NULL, 3, t, &newinfo); |
|
opti->current_dir_name = original_dir_name; |
|
renames->dir_rename_mask = prev_dir_rename_mask; |
|
|
|
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) |
|
free(buf[i]); |
|
|
|
if (ret < 0) |
|
return -1; |
|
} |
|
|
|
return mask; |
|
} |
|
|
|
static int collect_merge_info(struct merge_options *opt, |
|
struct tree *merge_base, |
|
struct tree *side1, |
|
struct tree *side2) |
|
{ |
|
int ret; |
|
struct tree_desc t[3]; |
|
struct traverse_info info; |
|
|
|
opt->priv->toplevel_dir = ""; |
|
opt->priv->current_dir_name = opt->priv->toplevel_dir; |
|
setup_traverse_info(&info, opt->priv->toplevel_dir); |
|
info.fn = collect_merge_info_callback; |
|
info.data = opt; |
|
info.show_all_errors = 1; |
|
|
|
parse_tree(merge_base); |
|
parse_tree(side1); |
|
parse_tree(side2); |
|
init_tree_desc(t + 0, merge_base->buffer, merge_base->size); |
|
init_tree_desc(t + 1, side1->buffer, side1->size); |
|
init_tree_desc(t + 2, side2->buffer, side2->size); |
|
|
|
trace2_region_enter("merge", "traverse_trees", opt->repo); |
|
ret = traverse_trees(NULL, 3, t, &info); |
|
trace2_region_leave("merge", "traverse_trees", opt->repo); |
|
|
|
return ret; |
|
} |
|
|
|
/*** Function Grouping: functions related to threeway content merges ***/ |
|
|
|
static int find_first_merges(struct repository *repo, |
|
const char *path, |
|
struct commit *a, |
|
struct commit *b, |
|
struct object_array *result) |
|
{ |
|
int i, j; |
|
struct object_array merges = OBJECT_ARRAY_INIT; |
|
struct commit *commit; |
|
int contains_another; |
|
|
|
char merged_revision[GIT_MAX_HEXSZ + 2]; |
|
const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path", |
|
"--all", merged_revision, NULL }; |
|
struct rev_info revs; |
|
struct setup_revision_opt rev_opts; |
|
|
|
memset(result, 0, sizeof(struct object_array)); |
|
memset(&rev_opts, 0, sizeof(rev_opts)); |
|
|
|
/* get all revisions that merge commit a */ |
|
xsnprintf(merged_revision, sizeof(merged_revision), "^%s", |
|
oid_to_hex(&a->object.oid)); |
|
repo_init_revisions(repo, &revs, NULL); |
|
rev_opts.submodule = path; |
|
/* FIXME: can't handle linked worktrees in submodules yet */ |
|
revs.single_worktree = path != NULL; |
|
setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts); |
|
|
|
/* save all revisions from the above list that contain b */ |
|
if (prepare_revision_walk(&revs)) |
|
die("revision walk setup failed"); |
|
while ((commit = get_revision(&revs)) != NULL) { |
|
struct object *o = &(commit->object); |
|
if (in_merge_bases(b, commit)) |
|
add_object_array(o, NULL, &merges); |
|
} |
|
reset_revision_walk(); |
|
|
|
/* Now we've got all merges that contain a and b. Prune all |
|
* merges that contain another found merge and save them in |
|
* result. |
|
*/ |
|
for (i = 0; i < merges.nr; i++) { |
|
struct commit *m1 = (struct commit *) merges.objects[i].item; |
|
|
|
contains_another = 0; |
|
for (j = 0; j < merges.nr; j++) { |
|
struct commit *m2 = (struct commit *) merges.objects[j].item; |
|
if (i != j && in_merge_bases(m2, m1)) { |
|
contains_another = 1; |
|
break; |
|
} |
|
} |
|
|
|
if (!contains_another) |
|
add_object_array(merges.objects[i].item, NULL, result); |
|
} |
|
|
|
object_array_clear(&merges); |
|
return result->nr; |
|
} |
|
|
|
static int merge_submodule(struct merge_options *opt, |
|
const char *path, |
|
const struct object_id *o, |
|
const struct object_id *a, |
|
const struct object_id *b, |
|
struct object_id *result) |
|
{ |
|
struct commit *commit_o, *commit_a, *commit_b; |
|
int parent_count; |
|
struct object_array merges; |
|
struct strbuf sb = STRBUF_INIT; |
|
|
|
int i; |
|
int search = !opt->priv->call_depth; |
|
|
|
/* store fallback answer in result in case we fail */ |
|
oidcpy(result, opt->priv->call_depth ? o : a); |
|
|
|
/* we can not handle deletion conflicts */ |
|
if (is_null_oid(o)) |
|
return 0; |
|
if (is_null_oid(a)) |
|
return 0; |
|
if (is_null_oid(b)) |
|
return 0; |
|
|
|
if (add_submodule_odb(path)) { |
|
path_msg(opt, path, 0, |
|
_("Failed to merge submodule %s (not checked out)"), |
|
path); |
|
return 0; |
|
} |
|
|
|
if (!(commit_o = lookup_commit_reference(opt->repo, o)) || |
|
!(commit_a = lookup_commit_reference(opt->repo, a)) || |
|
!(commit_b = lookup_commit_reference(opt->repo, b))) { |
|
path_msg(opt, path, 0, |
|
_("Failed to merge submodule %s (commits not present)"), |
|
path); |
|
return 0; |
|
} |
|
|
|
/* check whether both changes are forward */ |
|
if (!in_merge_bases(commit_o, commit_a) || |
|
!in_merge_bases(commit_o, commit_b)) { |
|
path_msg(opt, path, 0, |
|
_("Failed to merge submodule %s " |
|
"(commits don't follow merge-base)"), |
|
path); |
|
return 0; |
|
} |
|
|
|
/* Case #1: a is contained in b or vice versa */ |
|
if (in_merge_bases(commit_a, commit_b)) { |
|
oidcpy(result, b); |
|
path_msg(opt, path, 1, |
|
_("Note: Fast-forwarding submodule %s to %s"), |
|
path, oid_to_hex(b)); |
|
return 1; |
|
} |
|
if (in_merge_bases(commit_b, commit_a)) { |
|
oidcpy(result, a); |
|
path_msg(opt, path, 1, |
|
_("Note: Fast-forwarding submodule %s to %s"), |
|
path, oid_to_hex(a)); |
|
return 1; |
|
} |
|
|
|
/* |
|
* Case #2: There are one or more merges that contain a and b in |
|
* the submodule. If there is only one, then present it as a |
|
* suggestion to the user, but leave it marked unmerged so the |
|
* user needs to confirm the resolution. |
|
*/ |
|
|
|
/* Skip the search if makes no sense to the calling context. */ |
|
if (!search) |
|
return 0; |
|
|
|
/* find commit which merges them */ |
|
parent_count = find_first_merges(opt->repo, path, commit_a, commit_b, |
|
&merges); |
|
switch (parent_count) { |
|
case 0: |
|
path_msg(opt, path, 0, _("Failed to merge submodule %s"), path); |
|
break; |
|
|
|
case 1: |
|
format_commit(&sb, 4, |
|
(struct commit *)merges.objects[0].item); |
|
path_msg(opt, path, 0, |
|
_("Failed to merge submodule %s, but a possible merge " |
|
"resolution exists:\n%s\n"), |
|
path, sb.buf); |
|
path_msg(opt, path, 1, |
|
_("If this is correct simply add it to the index " |
|
"for example\n" |
|
"by using:\n\n" |
|
" git update-index --cacheinfo 160000 %s \"%s\"\n\n" |
|
"which will accept this suggestion.\n"), |
|
oid_to_hex(&merges.objects[0].item->oid), path); |
|
strbuf_release(&sb); |
|
break; |
|
default: |
|
for (i = 0; i < merges.nr; i++) |
|
format_commit(&sb, 4, |
|
(struct commit *)merges.objects[i].item); |
|
path_msg(opt, path, 0, |
|
_("Failed to merge submodule %s, but multiple " |
|
"possible merges exist:\n%s"), path, sb.buf); |
|
strbuf_release(&sb); |
|
} |
|
|
|
object_array_clear(&merges); |
|
return 0; |
|
} |
|
|
|
static void initialize_attr_index(struct merge_options *opt) |
|
{ |
|
/* |
|
* The renormalize_buffer() functions require attributes, and |
|
* annoyingly those can only be read from the working tree or from |
|
* an index_state. merge-ort doesn't have an index_state, so we |
|
* generate a fake one containing only attribute information. |
|
*/ |
|
struct merged_info *mi; |
|
struct index_state *attr_index = &opt->priv->attr_index; |
|
struct cache_entry *ce; |
|
|
|
attr_index->initialized = 1; |
|
|
|
if (!opt->renormalize) |
|
return; |
|
|
|
mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE); |
|
if (!mi) |
|
return; |
|
|
|
if (mi->clean) { |
|
int len = strlen(GITATTRIBUTES_FILE); |
|
ce = make_empty_cache_entry(attr_index, len); |
|
ce->ce_mode = create_ce_mode(mi->result.mode); |
|
ce->ce_flags = create_ce_flags(0); |
|
ce->ce_namelen = len; |
|
oidcpy(&ce->oid, &mi->result.oid); |
|
memcpy(ce->name, GITATTRIBUTES_FILE, len); |
|
add_index_entry(attr_index, ce, |
|
ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE); |
|
get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid); |
|
} else { |
|
int stage, len; |
|
struct conflict_info *ci; |
|
|
|
ASSIGN_AND_VERIFY_CI(ci, mi); |
|
for (stage = 0; stage < 3; stage++) { |
|
unsigned stage_mask = (1 << stage); |
|
|
|
if (!(ci->filemask & stage_mask)) |
|
continue; |
|
len = strlen(GITATTRIBUTES_FILE); |
|
ce = make_empty_cache_entry(attr_index, len); |
|
ce->ce_mode = create_ce_mode(ci->stages[stage].mode); |
|
ce->ce_flags = create_ce_flags(stage); |
|
ce->ce_namelen = len; |
|
oidcpy(&ce->oid, &ci->stages[stage].oid); |
|
memcpy(ce->name, GITATTRIBUTES_FILE, len); |
|
add_index_entry(attr_index, ce, |
|
ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE); |
|
get_stream_filter(attr_index, GITATTRIBUTES_FILE, |
|
&ce->oid); |
|
} |
|
} |
|
} |
|
|
|
static int merge_3way(struct merge_options *opt, |
|
const char *path, |
|
const struct object_id *o, |
|
const struct object_id *a, |
|
const struct object_id *b, |
|
const char *pathnames[3], |
|
const int extra_marker_size, |
|
mmbuffer_t *result_buf) |
|
{ |
|
mmfile_t orig, src1, src2; |
|
struct ll_merge_options ll_opts = {0}; |
|
char *base, *name1, *name2; |
|
int merge_status; |
|
|
|
if (!opt->priv->attr_index.initialized) |
|
initialize_attr_index(opt); |
|
|
|
ll_opts.renormalize = opt->renormalize; |
|
ll_opts.extra_marker_size = extra_marker_size; |
|
ll_opts.xdl_opts = opt->xdl_opts; |
|
|
|
if (opt->priv->call_depth) { |
|
ll_opts.virtual_ancestor = 1; |
|
ll_opts.variant = 0; |
|
} else { |
|
switch (opt->recursive_variant) { |
|
case MERGE_VARIANT_OURS: |
|
ll_opts.variant = XDL_MERGE_FAVOR_OURS; |
|
break; |
|
case MERGE_VARIANT_THEIRS: |
|
ll_opts.variant = XDL_MERGE_FAVOR_THEIRS; |
|
break; |
|
default: |
|
ll_opts.variant = 0; |
|
break; |
|
} |
|
} |
|
|
|
assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor); |
|
if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) { |
|
base = mkpathdup("%s", opt->ancestor); |
|
name1 = mkpathdup("%s", opt->branch1); |
|
name2 = mkpathdup("%s", opt->branch2); |
|
} else { |
|
base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]); |
|
name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]); |
|
name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]); |
|
} |
|
|
|
read_mmblob(&orig, o); |
|
read_mmblob(&src1, a); |
|
read_mmblob(&src2, b); |
|
|
|
merge_status = ll_merge(result_buf, path, &orig, base, |
|
&src1, name1, &src2, name2, |
|
&opt->priv->attr_index, &ll_opts); |
|
|
|
free(base); |
|
free(name1); |
|
free(name2); |
|
free(orig.ptr); |
|
free(src1.ptr); |
|
free(src2.ptr); |
|
return merge_status; |
|
} |
|
|
|
static int handle_content_merge(struct merge_options *opt, |
|
const char *path, |
|
const struct version_info *o, |
|
const struct version_info *a, |
|
const struct version_info *b, |
|
const char *pathnames[3], |
|
const int extra_marker_size, |
|
struct version_info *result) |
|
{ |
|
/* |
|
* path is the target location where we want to put the file, and |
|
* is used to determine any normalization rules in ll_merge. |
|
* |
|
* The normal case is that path and all entries in pathnames are |
|
* identical, though renames can affect which path we got one of |
|
* the three blobs to merge on various sides of history. |
|
* |
|
* extra_marker_size is the amount to extend conflict markers in |
|
* ll_merge; this is neeed if we have content merges of content |
|
* merges, which happens for example with rename/rename(2to1) and |
|
* rename/add conflicts. |
|
*/ |
|
unsigned clean = 1; |
|
|
|
/* |
|
* handle_content_merge() needs both files to be of the same type, i.e. |
|
* both files OR both submodules OR both symlinks. Conflicting types |
|
* needs to be handled elsewhere. |
|
*/ |
|
assert((S_IFMT & a->mode) == (S_IFMT & b->mode)); |
|
|
|
/* Merge modes */ |
|
if (a->mode == b->mode || a->mode == o->mode) |
|
result->mode = b->mode; |
|
else { |
|
/* must be the 100644/100755 case */ |
|
assert(S_ISREG(a->mode)); |
|
result->mode = a->mode; |
|
clean = (b->mode == o->mode); |
|
/* |
|
* FIXME: If opt->priv->call_depth && !clean, then we really |
|
* should not make result->mode match either a->mode or |
|
* b->mode; that causes t6036 "check conflicting mode for |
|
* regular file" to fail. It would be best to use some other |
|
* mode, but we'll confuse all kinds of stuff if we use one |
|
* where S_ISREG(result->mode) isn't true, and if we use |
|
* something like 0100666, then tree-walk.c's calls to |
|
* canon_mode() will just normalize that to 100644 for us and |
|
* thus not solve anything. |
|
* |
|
* Figure out if there's some kind of way we can work around |
|
* this... |
|
*/ |
|
} |
|
|
|
/* |
|
* Trivial oid merge. |
|
* |
|
* Note: While one might assume that the next four lines would |
|
* be unnecessary due to the fact that match_mask is often |
|
* setup and already handled, renames don't always take care |
|
* of that. |
|
*/ |
|
if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid)) |
|
oidcpy(&result->oid, &b->oid); |
|
else if (oideq(&b->oid, &o->oid)) |
|
oidcpy(&result->oid, &a->oid); |
|
|
|
/* Remaining rules depend on file vs. submodule vs. symlink. */ |
|
else if (S_ISREG(a->mode)) { |
|
mmbuffer_t result_buf; |
|
int ret = 0, merge_status; |
|
int two_way; |
|
|
|
/* |
|
* If 'o' is different type, treat it as null so we do a |
|
* two-way merge. |
|
*/ |
|
two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode)); |
|
|
|
merge_status = merge_3way(opt, path, |
|
two_way ? null_oid() : &o->oid, |
|
&a->oid, &b->oid, |
|
pathnames, extra_marker_size, |
|
&result_buf); |
|
|
|
if ((merge_status < 0) || !result_buf.ptr) |
|
ret = err(opt, _("Failed to execute internal merge")); |
|
|
|
if (!ret && |
|
write_object_file(result_buf.ptr, result_buf.size, |
|
blob_type, &result->oid)) |
|
ret = err(opt, _("Unable to add %s to database"), |
|
path); |
|
|
|
free(result_buf.ptr); |
|
if (ret) |
|
return -1; |
|
clean &= (merge_status == 0); |
|
path_msg(opt, path, 1, _("Auto-merging %s"), path); |
|
} else if (S_ISGITLINK(a->mode)) { |
|
int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode)); |
|
clean = merge_submodule(opt, pathnames[0], |
|
two_way ? null_oid() : &o->oid, |
|
&a->oid, &b->oid, &result->oid); |
|
if (opt->priv->call_depth && two_way && !clean) { |
|
result->mode = o->mode; |
|
oidcpy(&result->oid, &o->oid); |
|
} |
|
} else if (S_ISLNK(a->mode)) { |
|
if (opt->priv->call_depth) { |
|
clean = 0; |
|
result->mode = o->mode; |
|
oidcpy(&result->oid, &o->oid); |
|
} else { |
|
switch (opt->recursive_variant) { |
|
case MERGE_VARIANT_NORMAL: |
|
clean = 0; |
|
oidcpy(&result->oid, &a->oid); |
|
break; |
|
case MERGE_VARIANT_OURS: |
|
oidcpy(&result->oid, &a->oid); |
|
break; |
|
case MERGE_VARIANT_THEIRS: |
|
oidcpy(&result->oid, &b->oid); |
|
break; |
|
} |
|
} |
|
} else |
|
BUG("unsupported object type in the tree: %06o for %s", |
|
a->mode, path); |
|
|
|
return clean; |
|
} |
|
|
|
/*** Function Grouping: functions related to detect_and_process_renames(), *** |
|
*** which are split into directory and regular rename detection sections. ***/ |
|
|
|
/*** Function Grouping: functions related to directory rename detection ***/ |
|
|
|
struct collision_info { |
|
struct string_list source_files; |
|
unsigned reported_already:1; |
|
}; |
|
|
|
/* |
|
* Return a new string that replaces the beginning portion (which matches |
|
* rename_info->key), with rename_info->util.new_dir. In perl-speak: |
|
* new_path_name = (old_path =~ s/rename_info->key/rename_info->value/); |
|
* NOTE: |
|
* Caller must ensure that old_path starts with rename_info->key + '/'. |
|
*/ |
|
static char *apply_dir_rename(struct strmap_entry *rename_info, |
|
const char *old_path) |
|
{ |
|
struct strbuf new_path = STRBUF_INIT; |
|
const char *old_dir = rename_info->key; |
|
const char *new_dir = rename_info->value; |
|
int oldlen, newlen, new_dir_len; |
|
|
|
oldlen = strlen(old_dir); |
|
if (*new_dir == '\0') |
|
/* |
|
* If someone renamed/merged a subdirectory into the root |
|
* directory (e.g. 'some/subdir' -> ''), then we want to |
|
* avoid returning |
|
* '' + '/filename' |
|
* as the rename; we need to make old_path + oldlen advance |
|
* past the '/' character. |
|
*/ |
|
oldlen++; |
|
new_dir_len = strlen(new_dir); |
|
newlen = new_dir_len + (strlen(old_path) - oldlen) + 1; |
|
strbuf_grow(&new_path, newlen); |
|
strbuf_add(&new_path, new_dir, new_dir_len); |
|
strbuf_addstr(&new_path, &old_path[oldlen]); |
|
|
|
return strbuf_detach(&new_path, NULL); |
|
} |
|
|
|
static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask) |
|
{ |
|
struct merged_info *mi = strmap_get(paths, path); |
|
struct conflict_info *ci; |
|
if (!mi) |
|
return 0; |
|
INITIALIZE_CI(ci, mi); |
|
return mi->clean || (side_mask & (ci->filemask | ci->dirmask)); |
|
} |
|
|
|
/* |
|
* See if there is a directory rename for path, and if there are any file |
|
* level conflicts on the given side for the renamed location. If there is |
|
* a rename and there are no conflicts, return the new name. Otherwise, |
|
* return NULL. |
|
*/ |
|
static char *handle_path_level_conflicts(struct merge_options *opt, |
|
const char *path, |
|
unsigned side_index, |
|
struct strmap_entry *rename_info, |
|
struct strmap *collisions) |
|
{ |
|
char *new_path = NULL; |
|
struct collision_info *c_info; |
|
int clean = 1; |
|
struct strbuf collision_paths = STRBUF_INIT; |
|
|
|
/* |
|
* entry has the mapping of old directory name to new directory name |
|
* that we want to apply to path. |
|
*/ |
|
new_path = apply_dir_rename(rename_info, path); |
|
if (!new_path) |
|
BUG("Failed to apply directory rename!"); |
|
|
|
/* |
|
* The caller needs to have ensured that it has pre-populated |
|
* collisions with all paths that map to new_path. Do a quick check |
|
* to ensure that's the case. |
|
*/ |
|
c_info = strmap_get(collisions, new_path); |
|
if (c_info == NULL) |
|
BUG("c_info is NULL"); |
|
|
|
/* |
|
* Check for one-sided add/add/.../add conflicts, i.e. |
|
* where implicit renames from the other side doing |
|
* directory rename(s) can affect this side of history |
|
* to put multiple paths into the same location. Warn |
|
* and bail on directory renames for such paths. |
|
*/ |
|
if (c_info->reported_already) { |
|
clean = 0; |
|
} else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) { |
|
c_info->reported_already = 1; |
|
strbuf_add_separated_string_list(&collision_paths, ", ", |
|
&c_info->source_files); |
|
path_msg(opt, new_path, 0, |
|
_("CONFLICT (implicit dir rename): Existing file/dir " |
|
"at %s in the way of implicit directory rename(s) " |
|
"putting the following path(s) there: %s."), |
|
new_path, collision_paths.buf); |
|
clean = 0; |
|
} else if (c_info->source_files.nr > 1) { |
|
c_info->reported_already = 1; |
|
strbuf_add_separated_string_list(&collision_paths, ", ", |
|
&c_info->source_files); |
|
path_msg(opt, new_path, 0, |
|
_("CONFLICT (implicit dir rename): Cannot map more " |
|
"than one path to %s; implicit directory renames " |
|
"tried to put these paths there: %s"), |
|
new_path, collision_paths.buf); |
|
clean = 0; |
|
} |
|
|
|
/* Free memory we no longer need */ |
|
strbuf_release(&collision_paths); |
|
if (!clean && new_path) { |
|
free(new_path); |
|
return NULL; |
|
} |
|
|
|
return new_path; |
|
} |
|
|
|
static void get_provisional_directory_renames(struct merge_options *opt, |
|
unsigned side, |
|
int *clean) |
|
{ |
|
struct hashmap_iter iter; |
|
struct strmap_entry *entry; |
|
struct rename_info *renames = &opt->priv->renames; |
|
|
|
/* |
|
* Collapse |
|
* dir_rename_count: old_directory -> {new_directory -> count} |
|
* down to |
|
* dir_renames: old_directory -> best_new_directory |
|
* where best_new_directory is the one with the unique highest count. |
|
*/ |
|
strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) { |
|
const char *source_dir = entry->key; |
|
struct strintmap *counts = entry->value; |
|
struct hashmap_iter count_iter; |
|
struct strmap_entry *count_entry; |
|
int max = 0; |
|
int bad_max = 0; |
|
const char *best = NULL; |
|
|
|
strintmap_for_each_entry(counts, &count_iter, count_entry) { |
|
const char *target_dir = count_entry->key; |
|
intptr_t count = (intptr_t)count_entry->value; |
|
|
|
if (count == max) |
|
bad_max = max; |
|
else if (count > max) { |
|
max = count; |
|
best = target_dir; |
|
} |
|
} |
|
|
|
if (max == 0) |
|
continue; |
|
|
|
if (bad_max == max) { |
|
path_msg(opt, source_dir, 0, |
|
_("CONFLICT (directory rename split): " |
|
"Unclear where to rename %s to; it was " |
|
"renamed to multiple other directories, with " |
|
"no destination getting a majority of the " |
|
"files."), |
|
source_dir); |
|
*clean = 0; |
|
} else { |
|
strmap_put(&renames->dir_renames[side], |
|
source_dir, (void*)best); |
|
} |
|
} |
|
} |
|
|
|
static void handle_directory_level_conflicts(struct merge_options *opt) |
|
{ |
|
struct hashmap_iter iter; |
|
struct strmap_entry *entry; |
|
struct string_list duplicated = STRING_LIST_INIT_NODUP; |
|
struct rename_info *renames = &opt->priv->renames; |
|
struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1]; |
|
struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2]; |
|
int i; |
|
|
|
strmap_for_each_entry(side1_dir_renames, &iter, entry) { |
|
if (strmap_contains(side2_dir_renames, entry->key)) |
|
string_list_append(&duplicated, entry->key); |
|
} |
|
|
|
for (i = 0; i < duplicated.nr; i++) { |
|
strmap_remove(side1_dir_renames, duplicated.items[i].string, 0); |
|
strmap_remove(side2_dir_renames, duplicated.items[i].string, 0); |
|
} |
|
string_list_clear(&duplicated, 0); |
|
} |
|
|
|
static struct strmap_entry *check_dir_renamed(const char *path, |
|
struct strmap *dir_renames) |
|
{ |
|
char *temp = xstrdup(path); |
|
char *end; |
|
struct strmap_entry *e = NULL; |
|
|
|
while ((end = strrchr(temp, '/'))) { |
|
*end = '\0'; |
|
e = strmap_get_entry(dir_renames, temp); |
|
if (e) |
|
break; |
|
} |
|
free(temp); |
|
return e; |
|
} |
|
|
|
static void compute_collisions(struct strmap *collisions, |
|
struct strmap *dir_renames, |
|
struct diff_queue_struct *pairs) |
|
{ |
|
int i; |
|
|
|
strmap_init_with_options(collisions, NULL, 0); |
|
if (strmap_empty(dir_renames)) |
|
return; |
|
|
|
/* |
|
* Multiple files can be mapped to the same path due to directory |
|
* renames done by the other side of history. Since that other |
|
* side of history could have merged multiple directories into one, |
|
* if our side of history added the same file basename to each of |
|
* those directories, then all N of them would get implicitly |
|
* renamed by the directory rename detection into the same path, |
|
* and we'd get an add/add/.../add conflict, and all those adds |
|
* from *this* side of history. This is not representable in the |
|
* index, and users aren't going to easily be able to make sense of |
|
* it. So we need to provide a good warning about what's |
|
* happening, and fall back to no-directory-rename detection |
|
* behavior for those paths. |
|
* |
|
* See testcases 9e and all of section 5 from t6043 for examples. |
|
*/ |
|
for (i = 0; i < pairs->nr; ++i) { |
|
struct strmap_entry *rename_info; |
|
struct collision_info *collision_info; |
|
char *new_path; |
|
struct diff_filepair *pair = pairs->queue[i]; |
|
|
|
if (pair->status != 'A' && pair->status != 'R') |
|
continue; |
|
rename_info = check_dir_renamed(pair->two->path, dir_renames); |
|
if (!rename_info) |
|
continue; |
|
|
|
new_path = apply_dir_rename(rename_info, pair->two->path); |
|
assert(new_path); |
|
collision_info = strmap_get(collisions, new_path); |
|
if (collision_info) { |
|
free(new_path); |
|
} else { |
|
CALLOC_ARRAY(collision_info, 1); |
|
string_list_init(&collision_info->source_files, 0); |
|
strmap_put(collisions, new_path, collision_info); |
|
} |
|
string_list_insert(&collision_info->source_files, |
|
pair->two->path); |
|
} |
|
} |
|
|
|
static char *check_for_directory_rename(struct merge_options *opt, |
|
const char *path, |
|
unsigned side_index, |
|
struct strmap *dir_renames, |
|
struct strmap *dir_rename_exclusions, |
|
struct strmap *collisions, |
|
int *clean_merge) |
|
{ |
|
char *new_path = NULL; |
|
struct strmap_entry *rename_info; |
|
struct strmap_entry *otherinfo = NULL; |
|
const char *new_dir; |
|
|
|
if (strmap_empty(dir_renames)) |
|
return new_path; |
|
rename_info = check_dir_renamed(path, dir_renames); |
|
if (!rename_info) |
|
return new_path; |
|
/* old_dir = rename_info->key; */ |
|
new_dir = rename_info->value; |
|
|
|
/* |
|
* This next part is a little weird. We do not want to do an |
|
* implicit rename into a directory we renamed on our side, because |
|
* that will result in a spurious rename/rename(1to2) conflict. An |
|
* example: |
|
* Base commit: dumbdir/afile, otherdir/bfile |
|
* Side 1: smrtdir/afile, otherdir/bfile |
|
* Side 2: dumbdir/afile, dumbdir/bfile |
|
* Here, while working on Side 1, we could notice that otherdir was |
|
* renamed/merged to dumbdir, and change the diff_filepair for |
|
* otherdir/bfile into a rename into dumbdir/bfile. However, Side |
|
* 2 will notice the rename from dumbdir to smrtdir, and do the |
|
* transitive rename to move it from dumbdir/bfile to |
|
* smrtdir/bfile. That gives us bfile in dumbdir vs being in |
|
* smrtdir, a rename/rename(1to2) conflict. We really just want |
|
* the file to end up in smrtdir. And the way to achieve that is |
|
* to not let Side1 do the rename to dumbdir, since we know that is |
|
* the source of one of our directory renames. |
|
* |
|
* That's why otherinfo and dir_rename_exclusions is here. |
|
* |
|
* As it turns out, this also prevents N-way transient rename |
|
* confusion; See testcases 9c and 9d of t6043. |
|
*/ |
|
otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir); |
|
if (otherinfo) { |
|
path_msg(opt, rename_info->key, 1, |
|
_("WARNING: Avoiding applying %s -> %s rename " |
|
"to %s, because %s itself was renamed."), |
|
rename_info->key, new_dir, path, new_dir); |
|
return NULL; |
|
} |
|
|
|
new_path = handle_path_level_conflicts(opt, path, side_index, |
|
rename_info, collisions); |
|
*clean_merge &= (new_path != NULL); |
|
|
|
return new_path; |
|
} |
|
|
|
static void apply_directory_rename_modifications(struct merge_options *opt, |
|
struct diff_filepair *pair, |
|
char *new_path) |
|
{ |
|
/* |
|
* The basic idea is to get the conflict_info from opt->priv->paths |
|
* at old path, and insert it into new_path; basically just this: |
|
* ci = strmap_get(&opt->priv->paths, old_path); |
|
* strmap_remove(&opt->priv->paths, old_path, 0); |
|
* strmap_put(&opt->priv->paths, new_path, ci); |
|
* However, there are some factors complicating this: |
|
* - opt->priv->paths may already have an entry at new_path |
|
* - Each ci tracks its containing directory, so we need to |
|
* update that |
|
* - If another ci has the same containing directory, then |
|
* the two char*'s MUST point to the same location. See the |
|
* comment in struct merged_info. strcmp equality is not |
|
* enough; we need pointer equality. |
|
* - opt->priv->paths must hold the parent directories of any |
|
* entries that are added. So, if this directory rename |
|
* causes entirely new directories, we must recursively add |
|
* parent directories. |
|
* - For each parent directory added to opt->priv->paths, we |
|
* also need to get its parent directory stored in its |
|
* conflict_info->merged.directory_name with all the same |
|
* requirements about pointer equality. |
|
*/ |
|
struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP; |
|
struct conflict_info *ci, *new_ci; |
|
struct strmap_entry *entry; |
|
const char *branch_with_new_path, *branch_with_dir_rename; |
|
const char *old_path = pair->two->path; |
|
const char *parent_name; |
|
const char *cur_path; |
|
int i, len; |
|
|
|
entry = strmap_get_entry(&opt->priv->paths, old_path); |
|
old_path = entry->key; |
|
ci = entry->value; |
|
VERIFY_CI(ci); |
|
|
|
/* Find parent directories missing from opt->priv->paths */ |
|
cur_path = new_path; |
|
while (1) { |
|
/* Find the parent directory of cur_path */ |
|
char *last_slash = strrchr(cur_path, '/'); |
|
if (last_slash) { |
|
parent_name = xstrndup(cur_path, last_slash - cur_path); |
|
} else { |
|
parent_name = opt->priv->toplevel_dir; |
|
break; |
|
} |
|
|
|
/* Look it up in opt->priv->paths */ |
|
entry = strmap_get_entry(&opt->priv->paths, parent_name); |
|
if (entry) { |
|
free((char*)parent_name); |
|
parent_name = entry->key; /* reuse known pointer */ |
|
break; |
|
} |
|
|
|
/* Record this is one of the directories we need to insert */ |
|
string_list_append(&dirs_to_insert, parent_name); |
|
cur_path = parent_name; |
|
} |
|
|
|
/* Traverse dirs_to_insert and insert them into opt->priv->paths */ |
|
for (i = dirs_to_insert.nr-1; i >= 0; --i) { |
|
struct conflict_info *dir_ci; |
|
char *cur_dir = dirs_to_insert.items[i].string; |
|
|
|
CALLOC_ARRAY(dir_ci, 1); |
|
|
|
dir_ci->merged.directory_name = parent_name; |
|
len = strlen(parent_name); |
|
/* len+1 because of trailing '/' character */ |
|
dir_ci->merged.basename_offset = (len > 0 ? len+1 : len); |
|
dir_ci->dirmask = ci->filemask; |
|
strmap_put(&opt->priv->paths, cur_dir, dir_ci); |
|
|
|
parent_name = cur_dir; |
|
} |
|
|
|
/* |
|
* We are removing old_path from opt->priv->paths. old_path also will |
|
* eventually need to be freed, but it may still be used by e.g. |
|
* ci->pathnames. So, store it in another string-list for now. |
|
*/ |
|
string_list_append(&opt->priv->paths_to_free, old_path); |
|
|
|
assert(ci->filemask == 2 || ci->filemask == 4); |
|
assert(ci->dirmask == 0); |
|
strmap_remove(&opt->priv->paths, old_path, 0); |
|
|
|
branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2; |
|
branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1; |
|
|
|
/* Now, finally update ci and stick it into opt->priv->paths */ |
|
ci->merged.directory_name = parent_name; |
|
len = strlen(parent_name); |
|
ci->merged.basename_offset = (len > 0 ? len+1 : len); |
|
new_ci = strmap_get(&opt->priv->paths, new_path); |
|
if (!new_ci) { |
|
/* Place ci back into opt->priv->paths, but at new_path */ |
|
strmap_put(&opt->priv->paths, new_path, ci); |
|
} else { |
|
int index; |
|
|
|
/* A few sanity checks */ |
|
VERIFY_CI(new_ci); |
|
assert(ci->filemask == 2 || ci->filemask == 4); |
|
assert((new_ci->filemask & ci->filemask) == 0); |
|
assert(!new_ci->merged.clean); |
|
|
|
/* Copy stuff from ci into new_ci */ |
|
new_ci->filemask |= ci->filemask; |
|
if (new_ci->dirmask) |
|
new_ci->df_conflict = 1; |
|
index = (ci->filemask >> 1); |
|
new_ci->pathnames[index] = ci->pathnames[index]; |
|
new_ci->stages[index].mode = ci->stages[index].mode; |
|
oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid); |
|
|
|
free(ci); |
|
ci = new_ci; |
|
} |
|
|
|
if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) { |
|
/* Notify user of updated path */ |
|
if (pair->status == 'A') |
|
path_msg(opt, new_path, 1, |
|
_("Path updated: %s added in %s inside a " |
|
"directory that was renamed in %s; moving " |
|
"it to %s."), |
|
old_path, branch_with_new_path, |
|
branch_with_dir_rename, new_path); |
|
else |
|
path_msg(opt, new_path, 1, |
|
_("Path updated: %s renamed to %s in %s, " |
|
"inside a directory that was renamed in %s; " |
|
"moving it to %s."), |
|
pair->one->path, old_path, branch_with_new_path, |
|
branch_with_dir_rename, new_path); |
|
} else { |
|
/* |
|
* opt->detect_directory_renames has the value |
|
* MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts. |
|
*/ |
|
ci->path_conflict = 1; |
|
if (pair->status == 'A') |
|
path_msg(opt, new_path, 0, |
|
_("CONFLICT (file location): %s added in %s " |
|
"inside a directory that was renamed in %s, " |
|
"suggesting it should perhaps be moved to " |
|
"%s."), |
|
old_path, branch_with_new_path, |
|
branch_with_dir_rename, new_path); |
|
else |
|
path_msg(opt, new_path, 0, |
|
_("CONFLICT (file location): %s renamed to %s " |
|
"in %s, inside a directory that was renamed " |
|
"in %s, suggesting it should perhaps be " |
|
"moved to %s."), |
|
pair->one->path, old_path, branch_with_new_path, |
|
branch_with_dir_rename, new_path); |
|
} |
|
|
|
/* |
|
* Finally, record the new location. |
|
*/ |
|
pair->two->path = new_path; |
|
} |
|
|
|
/*** Function Grouping: functions related to regular rename detection ***/ |
|
|
|
static int process_renames(struct merge_options *opt, |
|
struct diff_queue_struct *renames) |
|
{ |
|
int clean_merge = 1, i; |
|
|
|
for (i = 0; i < renames->nr; ++i) { |
|
const char *oldpath = NULL, *newpath; |
|
struct diff_filepair *pair = renames->queue[i]; |
|
struct conflict_info *oldinfo = NULL, *newinfo = NULL; |
|
struct strmap_entry *old_ent, *new_ent; |
|
unsigned int old_sidemask; |
|
int target_index, other_source_index; |
|
int source_deleted, collision, type_changed; |
|
const char *rename_branch = NULL, *delete_branch = NULL; |
|
|
|
old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path); |
|
new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path); |
|
if (old_ent) { |
|
oldpath = old_ent->key; |
|
oldinfo = old_ent->value; |
|
} |
|
newpath = pair->two->path; |
|
if (new_ent) { |
|
newpath = new_ent->key; |
|
newinfo = new_ent->value; |
|
} |
|
|
|
/* |
|
* If pair->one->path isn't in opt->priv->paths, that means |
|
* that either directory rename detection removed that |
|
* path, or a parent directory of oldpath was resolved and |
|
* we don't even need the rename; in either case, we can |
|
* skip it. If oldinfo->merged.clean, then the other side |
|
* of history had no changes to oldpath and we don't need |
|
* the rename and can skip it. |
|
*/ |
|
if (!oldinfo || oldinfo->merged.clean) |
|
continue; |
|
|
|
/* |
|
* diff_filepairs have copies of pathnames, thus we have to |
|
* use standard 'strcmp()' (negated) instead of '=='. |
|
*/ |
|
if (i + 1 < renames->nr && |
|
!strcmp(oldpath, renames->queue[i+1]->one->path)) { |
|
/* Handle rename/rename(1to2) or rename/rename(1to1) */ |
|
const char *pathnames[3]; |
|
struct version_info merged; |
|
struct conflict_info *base, *side1, *side2; |
|
unsigned was_binary_blob = 0; |
|
|
|
pathnames[0] = oldpath; |
|
pathnames[1] = newpath; |
|
pathnames[2] = renames->queue[i+1]->two->path; |
|
|
|
base = strmap_get(&opt->priv->paths, pathnames[0]); |
|
side1 = strmap_get(&opt->priv->paths, pathnames[1]); |
|
side2 = strmap_get(&opt->priv->paths, pathnames[2]); |
|
|
|
VERIFY_CI(base); |
|
VERIFY_CI(side1); |
|
VERIFY_CI(side2); |
|
|
|
if (!strcmp(pathnames[1], pathnames[2])) { |
|
/* Both sides renamed the same way */ |
|
assert(side1 == side2); |
|
memcpy(&side1->stages[0], &base->stages[0], |
|
sizeof(merged)); |
|
side1->filemask |= (1 << MERGE_BASE); |
|
/* Mark base as resolved by removal */ |
|
base->merged.is_null = 1; |
|
base->merged.clean = 1; |
|
|
|
/* We handled both renames, i.e. i+1 handled */ |
|
i++; |
|
/* Move to next rename */ |
|
continue; |
|
} |
|
|
|
/* This is a rename/rename(1to2) */ |
|
clean_merge = handle_content_merge(opt, |
|
pair->one->path, |
|
&base->stages[0], |
|
&side1->stages[1], |
|
&side2->stages[2], |
|
pathnames, |
|
1 + 2 * opt->priv->call_depth, |
|
&merged); |
|
if (!clean_merge && |
|
merged.mode == side1->stages[1].mode && |
|
oideq(&merged.oid, &side1->stages[1].oid)) |
|
was_binary_blob = 1; |
|
memcpy(&side1->stages[1], &merged, sizeof(merged)); |
|
if (was_binary_blob) { |
|
/* |
|
* Getting here means we were attempting to |
|
* merge a binary blob. |
|
* |
|
* Since we can't merge binaries, |
|
* handle_content_merge() just takes one |
|
* side. But we don't want to copy the |
|
* contents of one side to both paths. We |
|
* used the contents of side1 above for |
|
* side1->stages, let's use the contents of |
|
* side2 for side2->stages below. |
|
*/ |
|
oidcpy(&merged.oid, &side2->stages[2].oid); |
|
merged.mode = side2->stages[2].mode; |
|
} |
|
memcpy(&side2->stages[2], &merged, sizeof(merged)); |
|
|
|
side1->path_conflict = 1; |
|
side2->path_conflict = 1; |
|
/* |
|
* TODO: For renames we normally remove the path at the |
|
* old name. It would thus seem consistent to do the |
|
* same for rename/rename(1to2) cases, but we haven't |
|
* done so traditionally and a number of the regression |
|
* tests now encode an expectation that the file is |
|
* left there at stage 1. If we ever decide to change |
|
* this, add the following two lines here: |
|
* base->merged.is_null = 1; |
|
* base->merged.clean = 1; |
|
* and remove the setting of base->path_conflict to 1. |
|
*/ |
|
base->path_conflict = 1; |
|
path_msg(opt, oldpath, 0, |
|
_("CONFLICT (rename/rename): %s renamed to " |
|
"%s in %s and to %s in %s."), |
|
pathnames[0], |
|
pathnames[1], opt->branch1, |
|
pathnames[2], opt->branch2); |
|
|
|
i++; /* We handled both renames, i.e. i+1 handled */ |
|
continue; |
|
} |
|
|
|
VERIFY_CI(oldinfo); |
|
VERIFY_CI(newinfo); |
|
target_index = pair->score; /* from collect_renames() */ |
|
assert(target_index == 1 || target_index == 2); |
|
other_source_index = 3 - target_index; |
|
old_sidemask = (1 << other_source_index); /* 2 or 4 */ |
|
source_deleted = (oldinfo->filemask == 1); |
|
collision = ((newinfo->filemask & old_sidemask) != 0); |
|
type_changed = !source_deleted && |
|
(S_ISREG(oldinfo->stages[other_source_index].mode) != |
|
S_ISREG(newinfo->stages[target_index].mode)); |
|
if (type_changed && collision) { |
|
/* |
|
* special handling so later blocks can handle this... |
|
* |
|
* if type_changed && collision are both true, then this |
|
* was really a double rename, but one side wasn't |
|
* detected due to lack of break detection. I.e. |
|
* something like |
|
* orig: has normal file 'foo' |
|
* side1: renames 'foo' to 'bar', adds 'foo' symlink |
|
* side2: renames 'foo' to 'bar' |
|
* In this case, the foo->bar rename on side1 won't be |
|
* detected because the new symlink named 'foo' is |
|
* there and we don't do break detection. But we detect |
|
* this here because we don't want to merge the content |
|
* of the foo symlink with the foo->bar file, so we |
|
* have some logic to handle this special case. The |
|
* easiest way to do that is make 'bar' on side1 not |
|
* be considered a colliding file but the other part |
|
* of a normal rename. If the file is very different, |
|
* well we're going to get content merge conflicts |
|
* anyway so it doesn't hurt. And if the colliding |
|
* file also has a different type, that'll be handled |
|
* by the content merge logic in process_entry() too. |
|
* |
|
* See also t6430, 'rename vs. rename/symlink' |
|
*/ |
|
collision = 0; |
|
} |
|
if (source_deleted) { |
|
if (target_index == 1) { |
|
rename_branch = opt->branch1; |
|
delete_branch = opt->branch2; |
|
} else { |
|
rename_branch = opt->branch2; |
|
delete_branch = opt->branch1; |
|
} |
|
} |
|
|
|
assert(source_deleted || oldinfo->filemask & old_sidemask); |
|
|
|
/* Need to check for special types of rename conflicts... */ |
|
if (collision && !source_deleted) { |
|
/* collision: rename/add or rename/rename(2to1) */ |
|
const char *pathnames[3]; |
|
struct version_info merged; |
|
|
|
struct conflict_info *base, *side1, *side2; |
|
unsigned clean; |
|
|
|
pathnames[0] = oldpath; |
|
pathnames[other_source_index] = oldpath; |
|
pathnames[target_index] = newpath; |
|
|
|
base = strmap_get(&opt->priv->paths, pathnames[0]); |
|
side1 = strmap_get(&opt->priv->paths, pathnames[1]); |
|
side2 = strmap_get(&opt->priv->paths, pathnames[2]); |
|
|
|
VERIFY_CI(base); |
|
VERIFY_CI(side1); |
|
VERIFY_CI(side2); |
|
|
|
clean = handle_content_merge(opt, pair->one->path, |
|
&base->stages[0], |
|
&side1->stages[1], |
|
&side2->stages[2], |
|
pathnames, |
|
1 + 2 * opt->priv->call_depth, |
|
&merged); |
|
|
|
memcpy(&newinfo->stages[target_index], &merged, |
|
sizeof(merged)); |
|
if (!clean) { |
|
path_msg(opt, newpath, 0, |
|
_("CONFLICT (rename involved in " |
|
"collision): rename of %s -> %s has " |
|
"content conflicts AND collides " |
|
"with another path; this may result " |
|
"in nested conflict markers."), |
|
oldpath, newpath); |
|
} |
|
} else if (collision && source_deleted) { |
|
/* |
|
* rename/add/delete or rename/rename(2to1)/delete: |
|
* since oldpath was deleted on the side that didn't |
|
* do the rename, there's not much of a content merge |
|
* we can do for the rename. oldinfo->merged.is_null |
|
* was already set, so we just leave things as-is so |
|
* they look like an add/add conflict. |
|
*/ |
|
|
|
newinfo->path_conflict = 1; |
|
path_msg(opt, newpath, 0, |
|
_("CONFLICT (rename/delete): %s renamed " |
|
"to %s in %s, but deleted in %s."), |
|
oldpath, newpath, rename_branch, delete_branch); |
|
} else { |
|
/* |
|
* a few different cases...start by copying the |
|
* existing stage(s) from oldinfo over the newinfo |
|
* and update the pathname(s). |
|
*/ |
|
memcpy(&newinfo->stages[0], &oldinfo->stages[0], |
|
sizeof(newinfo->stages[0])); |
|
newinfo->filemask |= (1 << MERGE_BASE); |
|
newinfo->pathnames[0] = oldpath; |
|
if (type_changed) { |
|
/* rename vs. typechange */ |
|
/* Mark the original as resolved by removal */ |
|
memcpy(&oldinfo->stages[0].oid, null_oid(), |
|
sizeof(oldinfo->stages[0].oid)); |
|
oldinfo->stages[0].mode = 0; |
|
oldinfo->filemask &= 0x06; |
|
} else if (source_deleted) { |
|
/* rename/delete */ |
|
newinfo->path_conflict = 1; |
|
path_msg(opt, newpath, 0, |
|
_("CONFLICT (rename/delete): %s renamed" |
|
" to %s in %s, but deleted in %s."), |
|
oldpath, newpath, |
|
rename_branch, delete_branch); |
|
} else { |
|
/* normal rename */ |
|
memcpy(&newinfo->stages[other_source_index], |
|
&oldinfo->stages[other_source_index], |
|
sizeof(newinfo->stages[0])); |
|
newinfo->filemask |= (1 << other_source_index); |
|
newinfo->pathnames[other_source_index] = oldpath; |
|
} |
|
} |
|
|
|
if (!type_changed) { |
|
/* Mark the original as resolved by removal */ |
|
oldinfo->merged.is_null = 1; |
|
oldinfo->merged.clean = 1; |
|
} |
|
|
|
} |
|
|
|
return clean_merge; |
|
} |
|
|
|
static inline int possible_side_renames(struct rename_info *renames, |
|
unsigned side_index) |
|
{ |
|
return renames->pairs[side_index].nr > 0 && |
|
!strintmap_empty(&renames->relevant_sources[side_index]); |
|
} |
|
|
|
static inline int possible_renames(struct rename_info *renames) |
|
{ |
|
return possible_side_renames(renames, 1) || |
|
possible_side_renames(renames, 2); |
|
} |
|
|
|
static void resolve_diffpair_statuses(struct diff_queue_struct *q) |
|
{ |
|
/* |
|
* A simplified version of diff_resolve_rename_copy(); would probably |
|
* just use that function but it's static... |
|
*/ |
|
int i; |
|
struct diff_filepair *p; |
|
|
|
for (i = 0; i < q->nr; ++i) { |
|
p = q->queue[i]; |
|
p->status = 0; /* undecided */ |
|
if (!DIFF_FILE_VALID(p->one)) |
|
p->status = DIFF_STATUS_ADDED; |
|
else if (!DIFF_FILE_VALID(p->two)) |
|
p->status = DIFF_STATUS_DELETED; |
|
else if (DIFF_PAIR_RENAME(p)) |
|
p->status = DIFF_STATUS_RENAMED; |
|
} |
|
} |
|
|
|
static int compare_pairs(const void *a_, const void *b_) |
|
{ |
|
const struct diff_filepair *a = *((const struct diff_filepair **)a_); |
|
const struct diff_filepair *b = *((const struct diff_filepair **)b_); |
|
|
|
return strcmp(a->one->path, b->one->path); |
|
} |
|
|
|
/* Call diffcore_rename() to compute which files have changed on given side */ |
|
static void detect_regular_renames(struct merge_options *opt, |
|
unsigned side_index) |
|
{ |
|
struct diff_options diff_opts; |
|
struct rename_info *renames = &opt->priv->renames; |
|
|
|
if (!possible_side_renames(renames, side_index)) { |
|
/* |
|
* No rename detection needed for this side, but we still need |
|
* to make sure 'adds' are marked correctly in case the other |
|
* side had directory renames. |
|
*/ |
|
resolve_diffpair_statuses(&renames->pairs[side_index]); |
|
return; |
|
} |
|
|
|
repo_diff_setup(opt->repo, &diff_opts); |
|
diff_opts.flags.recursive = 1; |
|
diff_opts.flags.rename_empty = 0; |
|
diff_opts.detect_rename = DIFF_DETECT_RENAME; |
|
diff_opts.rename_limit = opt->rename_limit; |
|
if (opt->rename_limit <= 0) |
|
diff_opts.rename_limit = 1000; |
|
diff_opts.rename_score = opt->rename_score; |
|
diff_opts.show_rename_progress = opt->show_rename_progress; |
|
diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT; |
|
diff_setup_done(&diff_opts); |
|
|
|
diff_queued_diff = renames->pairs[side_index]; |
|
trace2_region_enter("diff", "diffcore_rename", opt->repo); |
|
diffcore_rename_extended(&diff_opts, |
|
&renames->relevant_sources[side_index], |
|
&renames->dirs_removed[side_index], |
|
&renames->dir_rename_count[side_index]); |
|
trace2_region_leave("diff", "diffcore_rename", opt->repo); |
|
resolve_diffpair_statuses(&diff_queued_diff); |
|
|
|
if (diff_opts.needed_rename_limit > renames->needed_limit) |
|
renames->needed_limit = diff_opts.needed_rename_limit; |
|
|
|
renames->pairs[side_index] = diff_queued_diff; |
|
|
|
diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT; |
|
diff_queued_diff.nr = 0; |
|
diff_queued_diff.queue = NULL; |
|
diff_flush(&diff_opts); |
|
} |
|
|
|
/* |
|
* Get information of all renames which occurred in 'side_pairs', discarding |
|
* non-renames. |
|
*/ |
|
static int collect_renames(struct merge_options *opt, |
|
struct diff_queue_struct *result, |
|
unsigned side_index, |
|
struct strmap *dir_renames_for_side, |
|
struct strmap *rename_exclusions) |
|
{ |
|
int i, clean = 1; |
|
struct strmap collisions; |
|
struct diff_queue_struct *side_pairs; |
|
struct hashmap_iter iter; |
|
struct strmap_entry *entry; |
|
struct rename_info *renames = &opt->priv->renames; |
|
|
|
side_pairs = &renames->pairs[side_index]; |
|
compute_collisions(&collisions, dir_renames_for_side, side_pairs); |
|
|
|
for (i = 0; i < side_pairs->nr; ++i) { |
|
struct diff_filepair *p = side_pairs->queue[i]; |
|
char *new_path; /* non-NULL only with directory renames */ |
|
|
|
if (p->status != 'A' && p->status != 'R') { |
|
diff_free_filepair(p); |
|
continue; |
|
} |
|
|
|
new_path = check_for_directory_rename(opt, p->two->path, |
|
side_index, |
|
dir_renames_for_side, |
|
rename_exclusions, |
|
&collisions, |
|
&clean); |
|
|
|
if (p->status != 'R' && !new_path) { |
|
diff_free_filepair(p); |
|
continue; |
|
} |
|
|
|
if (new_path) |
|
apply_directory_rename_modifications(opt, p, new_path); |
|
|
|
/* |
|
* p->score comes back from diffcore_rename_extended() with |
|
* the similarity of the renamed file. The similarity is |
|
* was used to determine that the two files were related |
|
* and are a rename, which we have already used, but beyond |
|
* that we have no use for the similarity. So p->score is |
|
* now irrelevant. However, process_renames() will need to |
|
* know which side of the merge this rename was associated |
|
* with, so overwrite p->score with that value. |
|
*/ |
|
p->score = side_index; |
|
result->queue[result->nr++] = p; |
|
} |
|
|
|
/* Free each value in the collisions map */ |
|
strmap_for_each_entry(&collisions, &iter, entry) { |
|
struct collision_info *info = entry->value; |
|
string_list_clear(&info->source_files, 0); |
|
} |
|
/* |
|
* In compute_collisions(), we set collisions.strdup_strings to 0 |
|
* so that we wouldn't have to make another copy of the new_path |
|
* allocated by apply_dir_rename(). But now that we've used them |
|
* and have no other references to these strings, it is time to |
|
* deallocate them. |
|
*/ |
|
free_strmap_strings(&collisions); |
|
strmap_clear(&collisions, 1); |
|
return clean; |
|
} |
|
|
|
static int detect_and_process_renames(struct merge_options *opt, |
|
struct tree *merge_base, |
|
struct tree *side1, |
|
struct tree *side2) |
|
{ |
|
struct diff_queue_struct combined; |
|
struct rename_info *renames = &opt->priv->renames; |
|
int need_dir_renames, s, clean = 1; |
|
|
|
memset(&combined, 0, sizeof(combined)); |
|
if (!possible_renames(renames)) |
|
goto cleanup; |
|
|
|
trace2_region_enter("merge", "regular renames", opt->repo); |
|
detect_regular_renames(opt, MERGE_SIDE1); |
|
detect_regular_renames(opt, MERGE_SIDE2); |
|
trace2_region_leave("merge", "regular renames", opt->repo); |
|
|
|
trace2_region_enter("merge", "directory renames", opt->repo); |
|
need_dir_renames = |
|
!opt->priv->call_depth && |
|
(opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE || |
|
opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT); |
|
|
|
if (need_dir_renames) { |
|
get_provisional_directory_renames(opt, MERGE_SIDE1, &clean); |
|
get_provisional_directory_renames(opt, MERGE_SIDE2, &clean); |
|
handle_directory_level_conflicts(opt); |
|
} |
|
|
|
ALLOC_GROW(combined.queue, |
|
renames->pairs[1].nr + renames->pairs[2].nr, |
|
combined.alloc); |
|
clean &= collect_renames(opt, &combined, MERGE_SIDE1, |
|
&renames->dir_renames[2], |
|
&renames->dir_renames[1]); |
|
clean &= collect_renames(opt, &combined, MERGE_SIDE2, |
|
&renames->dir_renames[1], |
|
&renames->dir_renames[2]); |
|
STABLE_QSORT(combined.queue, combined.nr, compare_pairs); |
|
trace2_region_leave("merge", "directory renames", opt->repo); |
|
|
|
trace2_region_enter("merge", "process renames", opt->repo); |
|
clean &= process_renames(opt, &combined); |
|
trace2_region_leave("merge", "process renames", opt->repo); |
|
|
|
goto simple_cleanup; /* collect_renames() handles some of cleanup */ |
|
|
|
cleanup: |
|
/* |
|
* Free now unneeded filepairs, which would have been handled |
|
* in collect_renames() normally but we skipped that code. |
|
*/ |
|
for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) { |
|
struct diff_queue_struct *side_pairs; |
|
int i; |
|
|
|
side_pairs = &renames->pairs[s]; |
|
for (i = 0; i < side_pairs->nr; ++i) { |
|
struct diff_filepair *p = side_pairs->queue[i]; |
|
diff_free_filepair(p); |
|
} |
|
} |
|
|
|
simple_cleanup: |
|
/* Free memory for renames->pairs[] and combined */ |
|
for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) { |
|
free(renames->pairs[s].queue); |
|
DIFF_QUEUE_CLEAR(&renames->pairs[s]); |
|
} |
|
if (combined.nr) { |
|
int i; |
|
for (i = 0; i < combined.nr; i++) |
|
diff_free_filepair(combined.queue[i]); |
|
free(combined.queue); |
|
} |
|
|
|
return clean; |
|
} |
|
|
|
/*** Function Grouping: functions related to process_entries() ***/ |
|
|
|
static int string_list_df_name_compare(const char *one, const char *two) |
|
{ |
|
int onelen = strlen(one); |
|
int twolen = strlen(two); |
|
/* |
|
* Here we only care that entries for D/F conflicts are |
|
* adjacent, in particular with the file of the D/F conflict |
|
* appearing before files below the corresponding directory. |
|
* The order of the rest of the list is irrelevant for us. |
|
* |
|
* To achieve this, we sort with df_name_compare and provide |
|
* the mode S_IFDIR so that D/F conflicts will sort correctly. |
|
* We use the mode S_IFDIR for everything else for simplicity, |
|
* since in other cases any changes in their order due to |
|
* sorting cause no problems for us. |
|
*/ |
|
int cmp = df_name_compare(one, onelen, S_IFDIR, |
|
two, twolen, S_IFDIR); |
|
/* |
|
* Now that 'foo' and 'foo/bar' compare equal, we have to make sure |
|
* that 'foo' comes before 'foo/bar'. |
|
*/ |
|
if (cmp) |
|
return cmp; |
|
return onelen - twolen; |
|
} |
|
|
|
static int read_oid_strbuf(struct merge_options *opt, |
|
const struct object_id *oid, |
|
struct strbuf *dst) |
|
{ |
|
void *buf; |
|
enum object_type type; |
|
unsigned long size; |
|
buf = read_object_file(oid, &type, &size); |
|
if (!buf) |
|
return err(opt, _("cannot read object %s"), oid_to_hex(oid)); |
|
if (type != OBJ_BLOB) { |
|
free(buf); |
|
return err(opt, _("object %s is not a blob"), oid_to_hex(oid)); |
|
} |
|
strbuf_attach(dst, buf, size, size + 1); |
|
return 0; |
|
} |
|
|
|
static int blob_unchanged(struct merge_options *opt, |
|
const struct version_info *base, |
|
const struct version_info *side, |
|
const char *path) |
|
{ |
|
struct strbuf basebuf = STRBUF_INIT; |
|
struct strbuf sidebuf = STRBUF_INIT; |
|
int ret = 0; /* assume changed for safety */ |
|
struct index_state *idx = &opt->priv->attr_index; |
|
|
|
if (!idx->initialized) |
|
initialize_attr_index(opt); |
|
|
|
if (base->mode != side->mode) |
|
return 0; |
|
if (oideq(&base->oid, &side->oid)) |
|
return 1; |
|
|
|
if (read_oid_strbuf(opt, &base->oid, &basebuf) || |
|
read_oid_strbuf(opt, &side->oid, &sidebuf)) |
|
goto error_return; |
|
/* |
|
* Note: binary | is used so that both renormalizations are |
|
* performed. Comparison can be skipped if both files are |
|
* unchanged since their sha1s have already been compared. |
|
*/ |
|
if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) | |
|
renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf)) |
|
ret = (basebuf.len == sidebuf.len && |
|
!memcmp(basebuf.buf, sidebuf.buf, basebuf.len)); |
|
|
|
error_return: |
|
strbuf_release(&basebuf); |
|
strbuf_release(&sidebuf); |
|
return ret; |
|
} |
|
|
|
struct directory_versions { |
|
/* |
|
* versions: list of (basename -> version_info) |
|
* |
|
* The basenames are in reverse lexicographic order of full pathnames, |
|
* as processed in process_entries(). This puts all entries within |
|
* a directory together, and covers the directory itself after |
|
* everything within it, allowing us to write subtrees before needing |
|
* to record information for the tree itself. |
|
*/ |
|
struct string_list versions; |
|
|
|
/* |
|
* offsets: list of (full relative path directories -> integer offsets) |
|
* |
|
* Since versions contains basenames from files in multiple different |
|
* directories, we need to know which entries in versions correspond |
|
* to which directories. Values of e.g. |
|
* "" 0 |
|
* src 2 |
|
* src/moduleA 5 |
|
* Would mean that entries 0-1 of versions are files in the toplevel |
|
* directory, entries 2-4 are files under src/, and the remaining |
|
* entries starting at index 5 are files under src/moduleA/. |
|
*/ |
|
struct string_list offsets; |
|
|
|
/* |
|
* last_directory: directory that previously processed file found in |
|
* |
|
* last_directory starts NULL, but records the directory in which the |
|
* previous file was found within. As soon as |
|
* directory(current_file) != last_directory |
|
* then we need to start updating accounting in versions & offsets. |
|
* Note that last_directory is always the last path in "offsets" (or |
|
* NULL if "offsets" is empty) so this exists just for quick access. |
|
*/ |
|
const char *last_directory; |
|
|
|
/* last_directory_len: cached computation of strlen(last_directory) */ |
|
unsigned last_directory_len; |
|
}; |
|
|
|
static int tree_entry_order(const void *a_, const void *b_) |
|
{ |
|
const struct string_list_item *a = a_; |
|
const struct string_list_item *b = b_; |
|
|
|
const struct merged_info *ami = a->util; |
|
const struct merged_info *bmi = b->util; |
|
return base_name_compare(a->string, strlen(a->string), ami->result.mode, |
|
b->string, strlen(b->string), bmi->result.mode); |
|
} |
|
|
|
static void write_tree(struct object_id *result_oid, |
|
struct string_list *versions, |
|
unsigned int offset, |
|
size_t hash_size) |
|
{ |
|
size_t maxlen = 0, extra; |
|
unsigned int nr; |
|
struct strbuf buf = STRBUF_INIT; |
|
int i; |
|
|
|
assert(offset <= versions->nr); |
|
nr = versions->nr - offset; |
|
if (versions->nr) |
|
/* No need for STABLE_QSORT -- filenames must be unique */ |
|
QSORT(versions->items + offset, nr, tree_entry_order); |
|
|
|
/* Pre-allocate some space in buf */ |
|
extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */ |
|
for (i = 0; i < nr; i++) { |
|
maxlen += strlen(versions->items[offset+i].string) + extra; |
|
} |
|
strbuf_grow(&buf, maxlen); |
|
|
|
/* Write each entry out to buf */ |
|
for (i = 0; i < nr; i++) { |
|
struct merged_info *mi = versions->items[offset+i].util; |
|
struct version_info *ri = &mi->result; |
|
strbuf_addf(&buf, "%o %s%c", |
|
ri->mode, |
|
versions->items[offset+i].string, '\0'); |
|
strbuf_add(&buf, ri->oid.hash, hash_size); |
|
} |
|
|
|
/* Write this object file out, and record in result_oid */ |
|
write_object_file(buf.buf, buf.len, tree_type, result_oid); |
|
strbuf_release(&buf); |
|
} |
|
|
|
static void record_entry_for_tree(struct directory_versions *dir_metadata, |
|
const char *path, |
|
struct merged_info *mi) |
|
{ |
|
const char *basename; |
|
|
|
if (mi->is_null) |
|
/* nothing to record */ |
|
return; |
|
|
|
basename = path + mi->basename_offset; |
|
assert(strchr(basename, '/') == NULL); |
|
string_list_append(&dir_metadata->versions, |
|
basename)->util = &mi->result; |
|
} |
|
|
|
static void write_completed_directory(struct merge_options *opt, |
|
const char *new_directory_name, |
|
struct directory_versions *info) |
|
{ |
|
const char *prev_dir; |
|
struct merged_info *dir_info = NULL; |
|
unsigned int offset; |
|
|
|
/* |
|
* Some explanation of info->versions and info->offsets... |
|
* |
|
* process_entries() iterates over all relevant files AND |
|
* directories in reverse lexicographic order, and calls this |
|
* function. Thus, an example of the paths that process_entries() |
|
* could operate on (along with the directories for those paths |
|
* being shown) is: |
|
* |
|
* xtract.c "" |
|
* tokens.txt "" |
|
* src/moduleB/umm.c src/moduleB |
|
* src/moduleB/stuff.h src/moduleB |
|
* src/moduleB/baz.c src/moduleB |
|
* src/moduleB src |
|
* src/moduleA/foo.c src/moduleA |
|
* src/moduleA/bar.c src/moduleA |
|
* src/moduleA src |
|
* src "" |
|
* Makefile "" |
|
* |
|
* info->versions: |
|
* |
|
* always contains the unprocessed entries and their |
|
* version_info information. For example, after the first five |
|
* entries above, info->versions would be: |
|
* |
|
* xtract.c <xtract.c's version_info> |
|
* token.txt <token.txt's version_info> |
|
* umm.c <src/moduleB/umm.c's version_info> |
|
* stuff.h <src/moduleB/stuff.h's version_info> |
|
* baz.c <src/moduleB/baz.c's version_info> |
|
* |
|
* Once a subdirectory is completed we remove the entries in |
|
* that subdirectory from info->versions, writing it as a tree |
|
* (write_tree()). Thus, as soon as we get to src/moduleB, |
|
* info->versions would be updated to |
|
* |
|
* xtract.c <xtract.c's version_info> |
|
* token.txt <token.txt's version_info> |
|
* moduleB <src/moduleB's version_info> |
|
* |
|
* info->offsets: |
|
* |
|
* helps us track which entries in info->versions correspond to |
|
* which directories. When we are N directories deep (e.g. 4 |
|
* for src/modA/submod/subdir/), we have up to N+1 unprocessed |
|
* directories (+1 because of toplevel dir). Corresponding to |
|
* the info->versions example above, after processing five entries |
|
* info->offsets will be: |
|
* |
|
* "" 0 |
|
* src/moduleB 2 |
|
* |
|
* which is used to know that xtract.c & token.txt are from the |
|
* toplevel dirctory, while umm.c & stuff.h & baz.c are from the |
|
* src/moduleB directory. Again, following the example above, |
|
* once we need to process src/moduleB, then info->offsets is |
|
* updated to |
|
* |
|
* "" 0 |
|
* src 2 |
|
* |
|
* which says that moduleB (and only moduleB so far) is in the |
|
* src directory. |
|
* |
|
* One unique thing to note about info->offsets here is that |
|
* "src" was not added to info->offsets until there was a path |
|
* (a file OR directory) immediately below src/ that got |
|
* processed. |
|
* |
|
* Since process_entry() just appends new entries to info->versions, |
|
* write_completed_directory() only needs to do work if the next path |
|
* is in a directory that is different than the last directory found |
|
* in info->offsets. |
|
*/ |
|
|
|
/* |
|
* If we are working with the same directory as the last entry, there |
|
* is no work to do. (See comments above the directory_name member of |
|
* struct merged_info for why we can use pointer comparison instead of |
|
* strcmp here.) |
|
*/ |
|
if (new_directory_name == info->last_directory) |
|
return; |
|
|
|
/* |
|
* If we are just starting (last_directory is NULL), or last_directory |
|
* is a prefix of the current directory, then we can just update |
|
* info->offsets to record the offset where we started this directory |
|
* and update last_directory to have quick access to it. |
|
*/ |
|
if (info->last_directory == NULL || |
|
!strncmp(new_directory_name, info->last_directory, |
|
info->last_directory_len)) { |
|
uintptr_t offset = info->versions.nr; |
|
|
|
info->last_directory = new_directory_name; |
|
info->last_directory_len = strlen(info->last_directory); |
|
/* |
|
* Record the offset into info->versions where we will |
|
* start recording basenames of paths found within |
|
* new_directory_name. |
|
*/ |
|
string_list_append(&info->offsets, |
|
info->last_directory)->util = (void*)offset; |
|
return; |
|
} |
|
|
|
/* |
|
* The next entry that will be processed will be within |
|
* new_directory_name. Since at this point we know that |
|
* new_directory_name is within a different directory than |
|
* info->last_directory, we have all entries for info->last_directory |
|
* in info->versions and we need to create a tree object for them. |
|
*/ |
|
dir_info = strmap_get(&opt->priv->paths, info->last_directory); |
|
assert(dir_info); |
|
offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util; |
|
if (offset == info->versions.nr) { |
|
/* |
|
* Actually, we don't need to create a tree object in this |
|
* case. Whenever all files within a directory disappear |
|
* during the merge (e.g. unmodified on one side and |
|
* deleted on the other, or files were renamed elsewhere), |
|
* then we get here and the directory itself needs to be |
|
* omitted from its parent tree as well. |
|
*/ |
|
dir_info->is_null = 1; |
|
} else { |
|
/* |
|
* Write out the tree to the git object directory, and also |
|
* record the mode and oid in dir_info->result. |
|
*/ |
|
dir_info->is_null = 0; |
|
dir_info->result.mode = S_IFDIR; |
|
write_tree(&dir_info->result.oid, &info->versions, offset, |
|
opt->repo->hash_algo->rawsz); |
|
} |
|
|
|
/* |
|
* We've now used several entries from info->versions and one entry |
|
* from info->offsets, so we get rid of those values. |
|
*/ |
|
info->offsets.nr--; |
|
info->versions.nr = offset; |
|
|
|
/* |
|
* Now we've taken care of the completed directory, but we need to |
|
* prepare things since future entries will be in |
|
* new_directory_name. (In particular, process_entry() will be |
|
* appending new entries to info->versions.) So, we need to make |
|
* sure new_directory_name is the last entry in info->offsets. |
|
*/ |
|
prev_dir = info->offsets.nr == 0 ? NULL : |
|
info->offsets.items[info->offsets.nr-1].string; |
|
if (new_directory_name != prev_dir) { |
|
uintptr_t c = info->versions.nr; |
|
string_list_append(&info->offsets, |
|
new_directory_name)->util = (void*)c; |
|
} |
|
|
|
/* And, of course, we need to update last_directory to match. */ |
|
info->last_directory = new_directory_name; |
|
info->last_directory_len = strlen(info->last_directory); |
|
} |
|
|
|
/* Per entry merge function */ |
|
static void process_entry(struct merge_options *opt, |
|
const char *path, |
|
struct conflict_info *ci, |
|
struct directory_versions *dir_metadata) |
|
{ |
|
int df_file_index = 0; |
|
|
|
VERIFY_CI(ci); |
|
assert(ci->filemask >= 0 && ci->filemask <= 7); |
|
/* ci->match_mask == 7 was handled in collect_merge_info_callback() */ |
|
assert(ci->match_mask == 0 || ci->match_mask == 3 || |
|
ci->match_mask == 5 || ci->match_mask == 6); |
|
|
|
if (ci->dirmask) { |
|
record_entry_for_tree(dir_metadata, path, &ci->merged); |
|
if (ci->filemask == 0) |
|
/* nothing else to handle */ |
|
return; |
|
assert(ci->df_conflict); |
|
} |
|
|
|
if (ci->df_conflict && ci->merged.result.mode == 0) { |
|
int i; |
|
|
|
/* |
|
* directory no longer in the way, but we do have a file we |
|
* need to place here so we need to clean away the "directory |
|
* merges to nothing" result. |
|
*/ |
|
ci->df_conflict = 0; |
|
assert(ci->filemask != 0); |
|
ci->merged.clean = 0; |
|
ci->merged.is_null = 0; |
|
/* and we want to zero out any directory-related entries */ |
|
ci->match_mask = (ci->match_mask & ~ci->dirmask); |
|
ci->dirmask = 0; |
|
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) { |
|
if (ci->filemask & (1 << i)) |
|
continue; |
|
ci->stages[i].mode = 0; |
|
oidcpy(&ci->stages[i].oid, null_oid()); |
|
} |
|
} else if (ci->df_conflict && ci->merged.result.mode != 0) { |
|
/* |
|
* This started out as a D/F conflict, and the entries in |
|
* the competing directory were not removed by the merge as |
|
* evidenced by write_completed_directory() writing a value |
|
* to ci->merged.result.mode. |
|
*/ |
|
struct conflict_info *new_ci; |
|
const char *branch; |
|
const char *old_path = path; |
|
int i; |
|
|
|
assert(ci->merged.result.mode == S_IFDIR); |
|
|
|
/* |
|
* If filemask is 1, we can just ignore the file as having |
|
* been deleted on both sides. We do not want to overwrite |
|
* ci->merged.result, since it stores the tree for all the |
|
* files under it. |
|
*/ |
|
if (ci->filemask == 1) { |
|
ci->filemask = 0; |
|
return; |
|
} |
|
|
|
/* |
|
* This file still exists on at least one side, and we want |
|
* the directory to remain here, so we need to move this |
|
* path to some new location. |
|
*/ |
|
CALLOC_ARRAY(new_ci, 1); |
|
/* We don't really want new_ci->merged.result copied, but it'll |
|
* be overwritten below so it doesn't matter. We also don't |
|
* want any directory mode/oid values copied, but we'll zero |
|
* those out immediately. We do want the rest of ci copied. |
|
*/ |
|
memcpy(new_ci, ci, sizeof(*ci)); |
|
new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask); |
|
new_ci->dirmask = 0; |
|
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) { |
|
if (new_ci->filemask & (1 << i)) |
|
continue; |
|
/* zero out any entries related to directories */ |
|
new_ci->stages[i].mode = 0; |
|
oidcpy(&new_ci->stages[i].oid, null_oid()); |
|
} |
|
|
|
/* |
|
* Find out which side this file came from; note that we |
|
* cannot just use ci->filemask, because renames could cause |
|
* the filemask to go back to 7. So we use dirmask, then |
|
* pick the opposite side's index. |
|
*/ |
|
df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1; |
|
branch = (df_file_index == 1) ? opt->branch1 : opt->branch2; |
|
path = unique_path(&opt->priv->paths, path, branch); |
|
strmap_put(&opt->priv->paths, path, new_ci); |
|
|
|
path_msg(opt, path, 0, |
|
_("CONFLICT (file/directory): directory in the way " |
|
"of %s from %s; moving it to %s instead."), |
|
old_path, branch, path); |
|
|
|
/* |
|
* Zero out the filemask for the old ci. At this point, ci |
|
* was just an entry for a directory, so we don't need to |
|
* do anything more with it. |
|
*/ |
|
ci->filemask = 0; |
|
|
|
/* |
|
* Now note that we're working on the new entry (path was |
|
* updated above. |
|
*/ |
|
ci = new_ci; |
|
} |
|
|
|
/* |
|
* NOTE: Below there is a long switch-like if-elseif-elseif... block |
|
* which the code goes through even for the df_conflict cases |
|
* above. |
|
*/ |
|
if (ci->match_mask) { |
|
ci->merged.clean = 1; |
|
if (ci->match_mask == 6) { |
|
/* stages[1] == stages[2] */ |
|
ci->merged.result.mode = ci->stages[1].mode; |
|
oidcpy(&ci->merged.result.oid, &ci->stages[1].oid); |
|
} else { |
|
/* determine the mask of the side that didn't match */ |
|
unsigned int othermask = 7 & ~ci->match_mask; |
|
int side = (othermask == 4) ? 2 : 1; |
|
|
|
ci->merged.result.mode = ci->stages[side].mode; |
|
ci->merged.is_null = !ci->merged.result.mode; |
|
oidcpy(&ci->merged.result.oid, &ci->stages[side].oid); |
|
|
|
assert(othermask == 2 || othermask == 4); |
|
assert(ci->merged.is_null == |
|
(ci->filemask == ci->match_mask)); |
|
} |
|
} else if (ci->filemask >= 6 && |
|
(S_IFMT & ci->stages[1].mode) != |
|
(S_IFMT & ci->stages[2].mode)) { |
|
/* Two different items from (file/submodule/symlink) */ |
|
if (opt->priv->call_depth) { |
|
/* Just use the version from the merge base */ |
|
ci->merged.clean = 0; |
|
oidcpy(&ci->merged.result.oid, &ci->stages[0].oid); |
|
ci->merged.result.mode = ci->stages[0].mode; |
|
ci->merged.is_null = (ci->merged.result.mode == 0); |
|
} else { |
|
/* Handle by renaming one or both to separate paths. */ |
|
unsigned o_mode = ci->stages[0].mode; |
|
unsigned a_mode = ci->stages[1].mode; |
|
unsigned b_mode = ci->stages[2].mode; |
|
struct conflict_info *new_ci; |
|
const char *a_path = NULL, *b_path = NULL; |
|
int rename_a = 0, rename_b = 0; |
|
|
|
new_ci = xmalloc(sizeof(*new_ci)); |
|
|
|
if (S_ISREG(a_mode)) |
|
rename_a = 1; |
|
else if (S_ISREG(b_mode)) |
|
rename_b = 1; |
|
else { |
|
rename_a = 1; |
|
rename_b = 1; |
|
} |
|
|
|
if (rename_a && rename_b) { |
|
path_msg(opt, path, 0, |
|
_("CONFLICT (distinct types): %s had " |
|
"different types on each side; " |
|
"renamed both of them so each can " |
|
"be recorded somewhere."), |
|
path); |
|
} else { |
|
path_msg(opt, path, 0, |
|
_("CONFLICT (distinct types): %s had " |
|
"different types on each side; " |
|
"renamed one of them so each can be " |
|
"recorded somewhere."), |
|
path); |
|
} |
|
|
|
ci->merged.clean = 0; |
|
memcpy(new_ci, ci, sizeof(*new_ci)); |
|
|
|
/* Put b into new_ci, removing a from stages */ |
|
new_ci->merged.result.mode = ci->stages[2].mode; |
|
oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid); |
|
new_ci->stages[1].mode = 0; |
|
oidcpy(&new_ci->stages[1].oid, null_oid()); |
|
new_ci->filemask = 5; |
|
if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) { |
|
new_ci->stages[0].mode = 0; |
|
oidcpy(&new_ci->stages[0].oid, null_oid()); |
|
new_ci->filemask = 4; |
|
} |
|
|
|
/* Leave only a in ci, fixing stages. */ |
|
ci->merged.result.mode = ci->stages[1].mode; |
|
oidcpy(&ci->merged.result.oid, &ci->stages[1].oid); |
|
ci->stages[2].mode = 0; |
|
oidcpy(&ci->stages[2].oid, null_oid()); |
|
ci->filemask = 3; |
|
if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) { |
|
ci->stages[0].mode = 0; |
|
oidcpy(&ci->stages[0].oid, null_oid()); |
|
ci->filemask = 2; |
|
} |
|
|
|
/* Insert entries into opt->priv_paths */ |
|
assert(rename_a || rename_b); |
|
if (rename_a) { |
|
a_path = unique_path(&opt->priv->paths, |
|
path, opt->branch1); |
|
strmap_put(&opt->priv->paths, a_path, ci); |
|
} |
|
|
|
if (rename_b) |
|
b_path = unique_path(&opt->priv->paths, |
|
path, opt->branch2); |
|
else |
|
b_path = path; |
|
strmap_put(&opt->priv->paths, b_path, new_ci); |
|
|
|
if (rename_a && rename_b) { |
|
strmap_remove(&opt->priv->paths, path, 0); |
|
/* |
|
* We removed path from opt->priv->paths. path |
|
* will also eventually need to be freed, but |
|
* it may still be used by e.g. ci->pathnames. |
|
* So, store it in another string-list for now. |
|
*/ |
|
string_list_append(&opt->priv->paths_to_free, |
|
path); |
|
} |
|
|
|
/* |
|
* Do special handling for b_path since process_entry() |
|
* won't be called on it specially. |
|
*/ |
|
strmap_put(&opt->priv->conflicted, b_path, new_ci); |
|
record_entry_for_tree(dir_metadata, b_path, |
|
&new_ci->merged); |
|
|
|
/* |
|
* Remaining code for processing this entry should |
|
* think in terms of processing a_path. |
|
*/ |
|
if (a_path) |
|
path = a_path; |
|
} |
|
} else if (ci->filemask >= 6) { |
|
/* Need a two-way or three-way content merge */ |
|
struct version_info merged_file; |
|
unsigned clean_merge; |
|
struct version_info *o = &ci->stages[0]; |
|
struct version_info *a = &ci->stages[1]; |
|
struct version_info *b = &ci->stages[2]; |
|
|
|
clean_merge = handle_content_merge(opt, path, o, a, b, |
|
ci->pathnames, |
|
opt->priv->call_depth * 2, |
|
&merged_file); |
|
ci->merged.clean = clean_merge && |
|
!ci->df_conflict && !ci->path_conflict; |
|
ci->merged.result.mode = merged_file.mode; |
|
ci->merged.is_null = (merged_file.mode == 0); |
|
oidcpy(&ci->merged.result.oid, &merged_file.oid); |
|
if (clean_merge && ci->df_conflict) { |
|
assert(df_file_index == 1 || df_file_index == 2); |
|
ci->filemask = 1 << df_file_index; |
|
ci->stages[df_file_index].mode = merged_file.mode; |
|
oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid); |
|
} |
|
if (!clean_merge) { |
|
const char *reason = _("content"); |
|
if (ci->filemask == 6) |
|
reason = _("add/add"); |
|
if (S_ISGITLINK(merged_file.mode)) |
|
reason = _("submodule"); |
|
path_msg(opt, path, 0, |
|
_("CONFLICT (%s): Merge conflict in %s"), |
|
reason, path); |
|
} |
|
} else if (ci->filemask == 3 || ci->filemask == 5) { |
|
/* Modify/delete */ |
|
const char *modify_branch, *delete_branch; |
|
int side = (ci->filemask == 5) ? 2 : 1; |
|
int index = opt->priv->call_depth ? 0 : side; |
|
|
|
ci->merged.result.mode = ci->stages[index].mode; |
|
oidcpy(&ci->merged.result.oid, &ci->stages[index].oid); |
|
ci->merged.clean = 0; |
|
|
|
modify_branch = (side == 1) ? opt->branch1 : opt->branch2; |
|
delete_branch = (side == 1) ? opt->branch2 : opt->branch1; |
|
|
|
if (opt->renormalize && |
|
blob_unchanged(opt, &ci->stages[0], &ci->stages[side], |
|
path)) { |
|
ci->merged.is_null = 1; |
|
ci->merged.clean = 1; |
|
} else if (ci->path_conflict && |
|
oideq(&ci->stages[0].oid, &ci->stages[side].oid)) { |
|
/* |
|
* This came from a rename/delete; no action to take, |
|
* but avoid printing "modify/delete" conflict notice |
|
* since the contents were not modified. |
|
*/ |
|
} else { |
|
path_msg(opt, path, 0, |
|
_("CONFLICT (modify/delete): %s deleted in %s " |
|
"and modified in %s. Version %s of %s left " |
|
"in tree."), |
|
path, delete_branch, modify_branch, |
|
modify_branch, path); |
|
} |
|
} else if (ci->filemask == 2 || ci->filemask == 4) { |
|
/* Added on one side */ |
|
int side = (ci->filemask == 4) ? 2 : 1; |
|
ci->merged.result.mode = ci->stages[side].mode; |
|
oidcpy(&ci->merged.result.oid, &ci->stages[side].oid); |
|
ci->merged.clean = !ci->df_conflict && !ci->path_conflict; |
|
} else if (ci->filemask == 1) { |
|
/* Deleted on both sides */ |
|
ci->merged.is_null = 1; |
|
ci->merged.result.mode = 0; |
|
oidcpy(&ci->merged.result.oid, null_oid()); |
|
ci->merged.clean = !ci->path_conflict; |
|
} |
|
|
|
/* |
|
* If still conflicted, record it separately. This allows us to later |
|
* iterate over just conflicted entries when updating the index instead |
|
* of iterating over all entries. |
|
*/ |
|
if (!ci->merged.clean) |
|
strmap_put(&opt->priv->conflicted, path, ci); |
|
record_entry_for_tree(dir_metadata, path, &ci->merged); |
|
} |
|
|
|
static void process_entries(struct merge_options *opt, |
|
struct object_id *result_oid) |
|
{ |
|
struct hashmap_iter iter; |
|
struct strmap_entry *e; |
|
struct string_list plist = STRING_LIST_INIT_NODUP; |
|
struct string_list_item *entry; |
|
struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP, |
|
STRING_LIST_INIT_NODUP, |
|
NULL, 0 }; |
|
|
|
trace2_region_enter("merge", "process_entries setup", opt->repo); |
|
if (strmap_empty(&opt->priv->paths)) { |
|
oidcpy(result_oid, opt->repo->hash_algo->empty_tree); |
|
return; |
|
} |
|
|
|
/* Hack to pre-allocate plist to the desired size */ |
|
trace2_region_enter("merge", "plist grow", opt->repo); |
|
ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc); |
|
trace2_region_leave("merge", "plist grow", opt->repo); |
|
|
|
/* Put every entry from paths into plist, then sort */ |
|
trace2_region_enter("merge", "plist copy", opt->repo); |
|
strmap_for_each_entry(&opt->priv->paths, &iter, e) { |
|
string_list_append(&plist, e->key)->util = e->value; |
|
} |
|
trace2_region_leave("merge", "plist copy", opt->repo); |
|
|
|
trace2_region_enter("merge", "plist special sort", opt->repo); |
|
plist.cmp = string_list_df_name_compare; |
|
string_list_sort(&plist); |
|
trace2_region_leave("merge", "plist special sort", opt->repo); |
|
|
|
trace2_region_leave("merge", "process_entries setup", opt->repo); |
|
|
|
/* |
|
* Iterate over the items in reverse order, so we can handle paths |
|
* below a directory before needing to handle the directory itself. |
|
* |
|
* This allows us to write subtrees before we need to write trees, |
|
* and it also enables sane handling of directory/file conflicts |
|
* (because it allows us to know whether the directory is still in |
|
* the way when it is time to process the file at the same path). |
|
*/ |
|
trace2_region_enter("merge", "processing", opt->repo); |
|
for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) { |
|
char *path = entry->string; |
|
/* |
|
* NOTE: mi may actually be a pointer to a conflict_info, but |
|
* we have to check mi->clean first to see if it's safe to |
|
* reassign to such a pointer type. |
|
*/ |
|
struct merged_info *mi = entry->util; |
|
|
|
write_completed_directory(opt, mi->directory_name, |
|
&dir_metadata); |
|
if (mi->clean) |
|
record_entry_for_tree(&dir_metadata, path, mi); |
|
else { |
|
struct conflict_info *ci = (struct conflict_info *)mi; |
|
process_entry(opt, path, ci, &dir_metadata); |
|
} |
|
} |
|
trace2_region_leave("merge", "processing", opt->repo); |
|
|
|
trace2_region_enter("merge", "process_entries cleanup", opt->repo); |
|
if (dir_metadata.offsets.nr != 1 || |
|
(uintptr_t)dir_metadata.offsets.items[0].util != 0) { |
|
printf("dir_metadata.offsets.nr = %d (should be 1)\n", |
|
dir_metadata.offsets.nr); |
|
printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n", |
|
(unsigned)(uintptr_t)dir_metadata.offsets.items[0].util); |
|
fflush(stdout); |
|
BUG("dir_metadata accounting completely off; shouldn't happen"); |
|
} |
|
write_tree(result_oid, &dir_metadata.versions, 0, |
|
opt->repo->hash_algo->rawsz); |
|
string_list_clear(&plist, 0); |
|
string_list_clear(&dir_metadata.versions, 0); |
|
string_list_clear(&dir_metadata.offsets, 0); |
|
trace2_region_leave("merge", "process_entries cleanup", opt->repo); |
|
} |
|
|
|
/*** Function Grouping: functions related to merge_switch_to_result() ***/ |
|
|
|
static int checkout(struct merge_options *opt, |
|
struct tree *prev, |
|
struct tree *next) |
|
{ |
|
/* Switch the index/working copy from old to new */ |
|
int ret; |
|
struct tree_desc trees[2]; |
|
struct unpack_trees_options unpack_opts; |
|
|
|
memset(&unpack_opts, 0, sizeof(unpack_opts)); |
|
unpack_opts.head_idx = -1; |
|
unpack_opts.src_index = opt->repo->index; |
|
unpack_opts.dst_index = opt->repo->index; |
|
|
|
setup_unpack_trees_porcelain(&unpack_opts, "merge"); |
|
|
|
/* |
|
* NOTE: if this were just "git checkout" code, we would probably |
|
* read or refresh the cache and check for a conflicted index, but |
|
* builtin/merge.c or sequencer.c really needs to read the index |
|
* and check for conflicted entries before starting merging for a |
|
* good user experience (no sense waiting for merges/rebases before |
|
* erroring out), so there's no reason to duplicate that work here. |
|
*/ |
|
|
|
/* 2-way merge to the new branch */ |
|
unpack_opts.update = 1; |
|
unpack_opts.merge = 1; |
|
unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */ |
|
unpack_opts.verbose_update = (opt->verbosity > 2); |
|
unpack_opts.fn = twoway_merge; |
|
if (1/* FIXME: opts->overwrite_ignore*/) { |
|
CALLOC_ARRAY(unpack_opts.dir, 1); |
|
unpack_opts.dir->flags |= DIR_SHOW_IGNORED; |
|
setup_standard_excludes(unpack_opts.dir); |
|
} |
|
parse_tree(prev); |
|
init_tree_desc(&trees[0], prev->buffer, prev->size); |
|
parse_tree(next); |
|
init_tree_desc(&trees[1], next->buffer, next->size); |
|
|
|
ret = unpack_trees(2, trees, &unpack_opts); |
|
clear_unpack_trees_porcelain(&unpack_opts); |
|
dir_clear(unpack_opts.dir); |
|
FREE_AND_NULL(unpack_opts.dir); |
|
return ret; |
|
} |
|
|
|
static int record_conflicted_index_entries(struct merge_options *opt) |
|
{ |
|
struct hashmap_iter iter; |
|
struct strmap_entry *e; |
|
struct index_state *index = opt->repo->index; |
|
struct checkout state = CHECKOUT_INIT; |
|
int errs = 0; |
|
int original_cache_nr; |
|
|
|
if (strmap_empty(&opt->priv->conflicted)) |
|
return 0; |
|
|
|
/* If any entries have skip_worktree set, we'll have to check 'em out */ |
|
state.force = 1; |
|
state.quiet = 1; |
|
state.refresh_cache = 1; |
|
state.istate = index; |
|
original_cache_nr = index->cache_nr; |
|
|
|
/* Put every entry from paths into plist, then sort */ |
|
strmap_for_each_entry(&opt->priv->conflicted, &iter, e) { |
|
const char *path = e->key; |
|
struct conflict_info *ci = e->value; |
|
int pos; |
|
struct cache_entry *ce; |
|
int i; |
|
|
|
VERIFY_CI(ci); |
|
|
|
/* |
|
* The index will already have a stage=0 entry for this path, |
|
* because we created an as-merged-as-possible version of the |
|
* file and checkout() moved the working copy and index over |
|
* to that version. |
|
* |
|
* However, previous iterations through this loop will have |
|
* added unstaged entries to the end of the cache which |
|
* ignore the standard alphabetical ordering of cache |
|
* entries and break invariants needed for index_name_pos() |
|
* to work. However, we know the entry we want is before |
|
* those appended cache entries, so do a temporary swap on |
|
* cache_nr to only look through entries of interest. |
|
*/ |
|
SWAP(index->cache_nr, original_cache_nr); |
|
pos = index_name_pos(index, path, strlen(path)); |
|
SWAP(index->cache_nr, original_cache_nr); |
|
if (pos < 0) { |
|
if (ci->filemask != 1) |
|
BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path); |
|
cache_tree_invalidate_path(index, path); |
|
} else { |
|
ce = index->cache[pos]; |
|
|
|
/* |
|
* Clean paths with CE_SKIP_WORKTREE set will not be |
|
* written to the working tree by the unpack_trees() |
|
* call in checkout(). Our conflicted entries would |
|
* have appeared clean to that code since we ignored |
|
* the higher order stages. Thus, we need override |
|
* the CE_SKIP_WORKTREE bit and manually write those |
|
* files to the working disk here. |
|
*/ |
|
if (ce_skip_worktree(ce)) { |
|
struct stat st; |
|
|
|
if (!lstat(path, &st)) { |
|
char *new_name = unique_path(&opt->priv->paths, |
|
path, |
|
"cruft"); |
|
|
|
path_msg(opt, path, 1, |
|
_("Note: %s not up to date and in way of checking out conflicted version; old copy renamed to %s"), |
|
path, new_name); |
|
errs |= rename(path, new_name); |
|
free(new_name); |
|
} |
|
errs |= checkout_entry(ce, &state, NULL, NULL); |
|
} |
|
|
|
/* |
|
* Mark this cache entry for removal and instead add |
|
* new stage>0 entries corresponding to the |
|
* conflicts. If there are many conflicted entries, we |
|
* want to avoid memmove'ing O(NM) entries by |
|
* inserting the new entries one at a time. So, |
|
* instead, we just add the new cache entries to the |
|
* end (ignoring normal index requirements on sort |
|
* order) and sort the index once we're all done. |
|
*/ |
|
ce->ce_flags |= CE_REMOVE; |
|
} |
|
|
|
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) { |
|
struct version_info *vi; |
|
if (!(ci->filemask & (1ul << i))) |
|
continue; |
|
vi = &ci->stages[i]; |
|
ce = make_cache_entry(index, vi->mode, &vi->oid, |
|
path, i+1, 0); |
|
add_index_entry(index, ce, ADD_CACHE_JUST_APPEND); |
|
} |
|
} |
|
|
|
/* |
|
* Remove the unused cache entries (and invalidate the relevant |
|
* cache-trees), then sort the index entries to get the conflicted |
|
* entries we added to the end into their right locations. |
|
*/ |
|
remove_marked_cache_entries(index, 1); |
|
/* |
|
* No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily |
|
* on filename and secondarily on stage, and (name, stage #) are a |
|
* unique tuple. |
|
*/ |
|
QSORT(index->cache, index->cache_nr, cmp_cache_name_compare); |
|
|
|
return errs; |
|
} |
|
|
|
void merge_switch_to_result(struct merge_options *opt, |
|
struct tree *head, |
|
struct merge_result *result, |
|
int update_worktree_and_index, |
|
int display_update_msgs) |
|
{ |
|
assert(opt->priv == NULL); |
|
if (result->clean >= 0 && update_worktree_and_index) { |
|
const char *filename; |
|
FILE *fp; |
|
|
|
trace2_region_enter("merge", "checkout", opt->repo); |
|
if (checkout(opt, head, result->tree)) { |
|
/* failure to function */ |
|
result->clean = -1; |
|
return; |
|
} |
|
trace2_region_leave("merge", "checkout", opt->repo); |
|
|
|
trace2_region_enter("merge", "record_conflicted", opt->repo); |
|
opt->priv = result->priv; |
|
if (record_conflicted_index_entries(opt)) { |
|
/* failure to function */ |
|
opt->priv = NULL; |
|
result->clean = -1; |
|
return; |
|
} |
|
opt->priv = NULL; |
|
trace2_region_leave("merge", "record_conflicted", opt->repo); |
|
|
|
trace2_region_enter("merge", "write_auto_merge", opt->repo); |
|
filename = git_path_auto_merge(opt->repo); |
|
fp = xfopen(filename, "w"); |
|
fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid)); |
|
fclose(fp); |
|
trace2_region_leave("merge", "write_auto_merge", opt->repo); |
|
} |
|
|
|
if (display_update_msgs) { |
|
struct merge_options_internal *opti = result->priv; |
|
struct hashmap_iter iter; |
|
struct strmap_entry *e; |
|
struct string_list olist = STRING_LIST_INIT_NODUP; |
|
int i; |
|
|
|
trace2_region_enter("merge", "display messages", opt->repo); |
|
|
|
/* Hack to pre-allocate olist to the desired size */ |
|
ALLOC_GROW(olist.items, strmap_get_size(&opti->output), |
|
olist.alloc); |
|
|
|
/* Put every entry from output into olist, then sort */ |
|
strmap_for_each_entry(&opti->output, &iter, e) { |
|
string_list_append(&olist, e->key)->util = e->value; |
|
} |
|
string_list_sort(&olist); |
|
|
|
/* Iterate over the items, printing them */ |
|
for (i = 0; i < olist.nr; ++i) { |
|
struct strbuf *sb = olist.items[i].util; |
|
|
|
printf("%s", sb->buf); |
|
} |
|
string_list_clear(&olist, 0); |
|
|
|
/* Also include needed rename limit adjustment now */ |
|
diff_warn_rename_limit("merge.renamelimit", |
|
opti->renames.needed_limit, 0); |
|
|
|
trace2_region_leave("merge", "display messages", opt->repo); |
|
} |
|
|
|
merge_finalize(opt, result); |
|
} |
|
|
|
void merge_finalize(struct merge_options *opt, |
|
struct merge_result *result) |
|
{ |
|
struct merge_options_internal *opti = result->priv; |
|
|
|
if (opt->renormalize) |
|
git_attr_set_direction(GIT_ATTR_CHECKIN); |
|
assert(opt->priv == NULL); |
|
|
|
clear_or_reinit_internal_opts(opti, 0); |
|
FREE_AND_NULL(opti); |
|
} |
|
|
|
/*** Function Grouping: helper functions for merge_incore_*() ***/ |
|
|
|
static struct tree *shift_tree_object(struct repository *repo, |
|
struct tree *one, struct tree *two, |
|
const char *subtree_shift) |
|
{ |
|
struct object_id shifted; |
|
|
|
if (!*subtree_shift) { |
|
shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0); |
|
} else { |
|
shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted, |
|
subtree_shift); |
|
} |
|
if (oideq(&two->object.oid, &shifted)) |
|
return two; |
|
return lookup_tree(repo, &shifted); |
|
} |
|
|
|
static inline void set_commit_tree(struct commit *c, struct tree *t) |
|
{ |
|
c->maybe_tree = t; |
|
} |
|
|
|
static struct commit *make_virtual_commit(struct repository *repo, |
|
struct tree *tree, |
|
const char *comment) |
|
{ |
|
struct commit *commit = alloc_commit_node(repo); |
|
|
|
set_merge_remote_desc(commit, comment, (struct object *)commit); |
|
set_commit_tree(commit, tree); |
|
commit->object.parsed = 1; |
|
return commit; |
|
} |
|
|
|
static void merge_start(struct merge_options *opt, struct merge_result *result) |
|
{ |
|
struct rename_info *renames; |
|
int i; |
|
|
|
/* Sanity checks on opt */ |
|
trace2_region_enter("merge", "sanity checks", opt->repo); |
|
assert(opt->repo); |
|
|
|
assert(opt->branch1 && opt->branch2); |
|
|
|
assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE && |
|
opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE); |
|
assert(opt->rename_limit >= -1); |
|
assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE); |
|
assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1); |
|
|
|
assert(opt->xdl_opts >= 0); |
|
assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL && |
|
opt->recursive_variant <= MERGE_VARIANT_THEIRS); |
|
|
|
/* |
|
* detect_renames, verbosity, buffer_output, and obuf are ignored |
|
* fields that were used by "recursive" rather than "ort" -- but |
|
* sanity check them anyway. |
|
*/ |
|
assert(opt->detect_renames >= -1 && |
|
opt->detect_renames <= DIFF_DETECT_COPY); |
|
assert(opt->verbosity >= 0 && opt->verbosity <= 5); |
|
assert(opt->buffer_output <= 2); |
|
assert(opt->obuf.len == 0); |
|
|
|
assert(opt->priv == NULL); |
|
if (result->priv) { |
|
opt->priv = result->priv; |
|
result->priv = NULL; |
|
/* |
|
* opt->priv non-NULL means we had results from a previous |
|
* run; do a few sanity checks that user didn't mess with |
|
* it in an obvious fashion. |
|
*/ |
|
assert(opt->priv->call_depth == 0); |
|
assert(!opt->priv->toplevel_dir || |
|
0 == strlen(opt->priv->toplevel_dir)); |
|
} |
|
trace2_region_leave("merge", "sanity checks", opt->repo); |
|
|
|
/* Default to histogram diff. Actually, just hardcode it...for now. */ |
|
opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF); |
|
|
|
/* Handle attr direction stuff for renormalization */ |
|
if (opt->renormalize) |
|
git_attr_set_direction(GIT_ATTR_CHECKOUT); |
|
|
|
/* Initialization of opt->priv, our internal merge data */ |
|
trace2_region_enter("merge", "allocate/init", opt->repo); |
|
if (opt->priv) { |
|
clear_or_reinit_internal_opts(opt->priv, 1); |
|
trace2_region_leave("merge", "allocate/init", opt->repo); |
|
return; |
|
} |
|
opt->priv = xcalloc(1, sizeof(*opt->priv)); |
|
|
|
/* Initialization of various renames fields */ |
|
renames = &opt->priv->renames; |
|
for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) { |
|
strintmap_init_with_options(&renames->dirs_removed[i], |
|
NOT_RELEVANT, NULL, 0); |
|
strmap_init_with_options(&renames->dir_rename_count[i], |
|
NULL, 1); |
|
strmap_init_with_options(&renames->dir_renames[i], |
|
NULL, 0); |
|
strintmap_init_with_options(&renames->relevant_sources[i], |
|
0, NULL, 0); |
|
} |
|
|
|
/* |
|
* Although we initialize opt->priv->paths with strdup_strings=0, |
|
* that's just to avoid making yet another copy of an allocated |
|
* string. Putting the entry into paths means we are taking |
|
* ownership, so we will later free it. paths_to_free is similar. |
|
* |
|
* In contrast, conflicted just has a subset of keys from paths, so |
|
* we don't want to free those (it'd be a duplicate free). |
|
*/ |
|
strmap_init_with_options(&opt->priv->paths, NULL, 0); |
|
strmap_init_with_options(&opt->priv->conflicted, NULL, 0); |
|
string_list_init(&opt->priv->paths_to_free, 0); |
|
|
|
/* |
|
* keys & strbufs in output will sometimes need to outlive "paths", |
|
* so it will have a copy of relevant keys. It's probably a small |
|
* subset of the overall paths that have special output. |
|
*/ |
|
strmap_init(&opt->priv->output); |
|
|
|
trace2_region_leave("merge", "allocate/init", opt->repo); |
|
} |
|
|
|
/*** Function Grouping: merge_incore_*() and their internal variants ***/ |
|
|
|
/* |
|
* Originally from merge_trees_internal(); heavily adapted, though. |
|
*/ |
|
static void merge_ort_nonrecursive_internal(struct merge_options *opt, |
|
struct tree *merge_base, |
|
struct tree *side1, |
|
struct tree *side2, |
|
struct merge_result *result) |
|
{ |
|
struct object_id working_tree_oid; |
|
|
|
if (opt->subtree_shift) { |
|
side2 = shift_tree_object(opt->repo, side1, side2, |
|
opt->subtree_shift); |
|
merge_base = shift_tree_object(opt->repo, side1, merge_base, |
|
opt->subtree_shift); |
|
} |
|
|
|
trace2_region_enter("merge", "collect_merge_info", opt->repo); |
|
if (collect_merge_info(opt, merge_base, side1, side2) != 0) { |
|
/* |
|
* TRANSLATORS: The %s arguments are: 1) tree hash of a merge |
|
* base, and 2-3) the trees for the two trees we're merging. |
|
*/ |
|
err(opt, _("collecting merge info failed for trees %s, %s, %s"), |
|
oid_to_hex(&merge_base->object.oid), |
|
oid_to_hex(&side1->object.oid), |
|
oid_to_hex(&side2->object.oid)); |
|
result->clean = -1; |
|
return; |
|
} |
|
trace2_region_leave("merge", "collect_merge_info", opt->repo); |
|
|
|
trace2_region_enter("merge", "renames", opt->repo); |
|
result->clean = detect_and_process_renames(opt, merge_base, |
|
side1, side2); |
|
trace2_region_leave("merge", "renames", opt->repo); |
|
|
|
trace2_region_enter("merge", "process_entries", opt->repo); |
|
process_entries(opt, &working_tree_oid); |
|
trace2_region_leave("merge", "process_entries", opt->repo); |
|
|
|
/* Set return values */ |
|
result->tree = parse_tree_indirect(&working_tree_oid); |
|
/* existence of conflicted entries implies unclean */ |
|
result->clean &= strmap_empty(&opt->priv->conflicted); |
|
if (!opt->priv->call_depth) { |
|
result->priv = opt->priv; |
|
opt->priv = NULL; |
|
} |
|
} |
|
|
|
/* |
|
* Originally from merge_recursive_internal(); somewhat adapted, though. |
|
*/ |
|
static void merge_ort_internal(struct merge_options *opt, |
|
struct commit_list *merge_bases, |
|
struct commit *h1, |
|
struct commit *h2, |
|
struct merge_result *result) |
|
{ |
|
struct commit_list *iter; |
|
struct commit *merged_merge_bases; |
|
const char *ancestor_name; |
|
struct strbuf merge_base_abbrev = STRBUF_INIT; |
|
|
|
if (!merge_bases) { |
|
merge_bases = get_merge_bases(h1, h2); |
|
/* See merge-ort.h:merge_incore_recursive() declaration NOTE */ |
|
merge_bases = reverse_commit_list(merge_bases); |
|
} |
|
|
|
merged_merge_bases = pop_commit(&merge_bases); |
|
if (merged_merge_bases == NULL) { |
|
/* if there is no common ancestor, use an empty tree */ |
|
struct tree *tree; |
|
|
|
tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree); |
|
merged_merge_bases = make_virtual_commit(opt->repo, tree, |
|
"ancestor"); |
|
ancestor_name = "empty tree"; |
|
} else if (merge_bases) { |
|
ancestor_name = "merged common ancestors"; |
|
} else { |
|
strbuf_add_unique_abbrev(&merge_base_abbrev, |
|
&merged_merge_bases->object.oid, |
|
DEFAULT_ABBREV); |
|
ancestor_name = merge_base_abbrev.buf; |
|
} |
|
|
|
for (iter = merge_bases; iter; iter = iter->next) { |
|
const char *saved_b1, *saved_b2; |
|
struct commit *prev = merged_merge_bases; |
|
|
|
opt->priv->call_depth++; |
|
/* |
|
* When the merge fails, the result contains files |
|
* with conflict markers. The cleanness flag is |
|
* ignored (unless indicating an error), it was never |
|
* actually used, as result of merge_trees has always |
|
* overwritten it: the committed "conflicts" were |
|
* already resolved. |
|
*/ |
|
saved_b1 = opt->branch1; |
|
saved_b2 = opt->branch2; |
|
opt->branch1 = "Temporary merge branch 1"; |
|
opt->branch2 = "Temporary merge branch 2"; |
|
merge_ort_internal(opt, NULL, prev, iter->item, result); |
|
if (result->clean < 0) |
|
return; |
|
opt->branch1 = saved_b1; |
|
opt->branch2 = saved_b2; |
|
opt->priv->call_depth--; |
|
|
|
merged_merge_bases = make_virtual_commit(opt->repo, |
|
result->tree, |
|
"merged tree"); |
|
commit_list_insert(prev, &merged_merge_bases->parents); |
|
commit_list_insert(iter->item, |
|
&merged_merge_bases->parents->next); |
|
|
|
clear_or_reinit_internal_opts(opt->priv, 1); |
|
} |
|
|
|
opt->ancestor = ancestor_name; |
|
merge_ort_nonrecursive_internal(opt, |
|
repo_get_commit_tree(opt->repo, |
|
merged_merge_bases), |
|
repo_get_commit_tree(opt->repo, h1), |
|
repo_get_commit_tree(opt->repo, h2), |
|
result); |
|
strbuf_release(&merge_base_abbrev); |
|
opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */ |
|
} |
|
|
|
void merge_incore_nonrecursive(struct merge_options *opt, |
|
struct tree *merge_base, |
|
struct tree *side1, |
|
struct tree *side2, |
|
struct merge_result *result) |
|
{ |
|
trace2_region_enter("merge", "incore_nonrecursive", opt->repo); |
|
|
|
trace2_region_enter("merge", "merge_start", opt->repo); |
|
assert(opt->ancestor != NULL); |
|
merge_start(opt, result); |
|
trace2_region_leave("merge", "merge_start", opt->repo); |
|
|
|
merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result); |
|
trace2_region_leave("merge", "incore_nonrecursive", opt->repo); |
|
} |
|
|
|
void merge_incore_recursive(struct merge_options *opt, |
|
struct commit_list *merge_bases, |
|
struct commit *side1, |
|
struct commit *side2, |
|
struct merge_result *result) |
|
{ |
|
trace2_region_enter("merge", "incore_recursive", opt->repo); |
|
|
|
/* We set the ancestor label based on the merge_bases */ |
|
assert(opt->ancestor == NULL); |
|
|
|
trace2_region_enter("merge", "merge_start", opt->repo); |
|
merge_start(opt, result); |
|
trace2_region_leave("merge", "merge_start", opt->repo); |
|
|
|
merge_ort_internal(opt, merge_bases, side1, side2, result); |
|
trace2_region_leave("merge", "incore_recursive", opt->repo); |
|
}
|
|
|