You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
558 lines
20 KiB
558 lines
20 KiB
#ifndef REFS_H |
|
#define REFS_H |
|
|
|
/* |
|
* Resolve a reference, recursively following symbolic refererences. |
|
* |
|
* Store the referred-to object's name in sha1 and return the name of |
|
* the non-symbolic reference that ultimately pointed at it. The |
|
* return value, if not NULL, is a pointer into either a static buffer |
|
* or the input ref. |
|
* |
|
* If the reference cannot be resolved to an object, the behavior |
|
* depends on the RESOLVE_REF_READING flag: |
|
* |
|
* - If RESOLVE_REF_READING is set, return NULL. |
|
* |
|
* - If RESOLVE_REF_READING is not set, clear sha1 and return the name of |
|
* the last reference name in the chain, which will either be a non-symbolic |
|
* reference or an undefined reference. If this is a prelude to |
|
* "writing" to the ref, the return value is the name of the ref |
|
* that will actually be created or changed. |
|
* |
|
* If the RESOLVE_REF_NO_RECURSE flag is passed, only resolves one |
|
* level of symbolic reference. The value stored in sha1 for a symbolic |
|
* reference will always be null_sha1 in this case, and the return |
|
* value is the reference that the symref refers to directly. |
|
* |
|
* If flags is non-NULL, set the value that it points to the |
|
* combination of REF_ISPACKED (if the reference was found among the |
|
* packed references), REF_ISSYMREF (if the initial reference was a |
|
* symbolic reference), REF_BAD_NAME (if the reference name is ill |
|
* formed --- see RESOLVE_REF_ALLOW_BAD_NAME below), and REF_ISBROKEN |
|
* (if the ref is malformed or has a bad name). See refs.h for more detail |
|
* on each flag. |
|
* |
|
* If ref is not a properly-formatted, normalized reference, return |
|
* NULL. If more than MAXDEPTH recursive symbolic lookups are needed, |
|
* give up and return NULL. |
|
* |
|
* RESOLVE_REF_ALLOW_BAD_NAME allows resolving refs even when their |
|
* name is invalid according to git-check-ref-format(1). If the name |
|
* is bad then the value stored in sha1 will be null_sha1 and the two |
|
* flags REF_ISBROKEN and REF_BAD_NAME will be set. |
|
* |
|
* Even with RESOLVE_REF_ALLOW_BAD_NAME, names that escape the refs/ |
|
* directory and do not consist of all caps and underscores cannot be |
|
* resolved. The function returns NULL for such ref names. |
|
* Caps and underscores refers to the special refs, such as HEAD, |
|
* FETCH_HEAD and friends, that all live outside of the refs/ directory. |
|
*/ |
|
#define RESOLVE_REF_READING 0x01 |
|
#define RESOLVE_REF_NO_RECURSE 0x02 |
|
#define RESOLVE_REF_ALLOW_BAD_NAME 0x04 |
|
|
|
const char *resolve_ref_unsafe(const char *refname, int resolve_flags, |
|
unsigned char *sha1, int *flags); |
|
|
|
char *resolve_refdup(const char *refname, int resolve_flags, |
|
unsigned char *sha1, int *flags); |
|
|
|
int read_ref_full(const char *refname, int resolve_flags, |
|
unsigned char *sha1, int *flags); |
|
int read_ref(const char *refname, unsigned char *sha1); |
|
|
|
int ref_exists(const char *refname); |
|
|
|
int should_autocreate_reflog(const char *refname); |
|
|
|
int is_branch(const char *refname); |
|
|
|
extern int refs_init_db(struct strbuf *err); |
|
|
|
/* |
|
* If refname is a non-symbolic reference that refers to a tag object, |
|
* and the tag can be (recursively) dereferenced to a non-tag object, |
|
* store the SHA1 of the referred-to object to sha1 and return 0. If |
|
* any of these conditions are not met, return a non-zero value. |
|
* Symbolic references are considered unpeelable, even if they |
|
* ultimately resolve to a peelable tag. |
|
*/ |
|
int peel_ref(const char *refname, unsigned char *sha1); |
|
|
|
/** |
|
* Resolve refname in the nested "gitlink" repository in the specified |
|
* submodule (which must be non-NULL). If the resolution is |
|
* successful, return 0 and set sha1 to the name of the object; |
|
* otherwise, return a non-zero value. |
|
*/ |
|
int resolve_gitlink_ref(const char *submodule, const char *refname, |
|
unsigned char *sha1); |
|
|
|
/* |
|
* Return true iff abbrev_name is a possible abbreviation for |
|
* full_name according to the rules defined by ref_rev_parse_rules in |
|
* refs.c. |
|
*/ |
|
int refname_match(const char *abbrev_name, const char *full_name); |
|
|
|
int expand_ref(const char *str, int len, unsigned char *sha1, char **ref); |
|
int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref); |
|
int dwim_log(const char *str, int len, unsigned char *sha1, char **ref); |
|
|
|
/* |
|
* A ref_transaction represents a collection of ref updates |
|
* that should succeed or fail together. |
|
* |
|
* Calling sequence |
|
* ---------------- |
|
* - Allocate and initialize a `struct ref_transaction` by calling |
|
* `ref_transaction_begin()`. |
|
* |
|
* - List intended ref updates by calling functions like |
|
* `ref_transaction_update()` and `ref_transaction_create()`. |
|
* |
|
* - Call `ref_transaction_commit()` to execute the transaction. |
|
* If this succeeds, the ref updates will have taken place and |
|
* the transaction cannot be rolled back. |
|
* |
|
* - Instead of `ref_transaction_commit`, use |
|
* `initial_ref_transaction_commit()` if the ref database is known |
|
* to be empty (e.g. during clone). This is likely to be much |
|
* faster. |
|
* |
|
* - At any time call `ref_transaction_free()` to discard the |
|
* transaction and free associated resources. In particular, |
|
* this rolls back the transaction if it has not been |
|
* successfully committed. |
|
* |
|
* Error handling |
|
* -------------- |
|
* |
|
* On error, transaction functions append a message about what |
|
* went wrong to the 'err' argument. The message mentions what |
|
* ref was being updated (if any) when the error occurred so it |
|
* can be passed to 'die' or 'error' as-is. |
|
* |
|
* The message is appended to err without first clearing err. |
|
* err will not be '\n' terminated. |
|
* |
|
* Caveats |
|
* ------- |
|
* |
|
* Note that no locks are taken, and no refs are read, until |
|
* `ref_transaction_commit` is called. So `ref_transaction_verify` |
|
* won't report a verification failure until the commit is attempted. |
|
*/ |
|
struct ref_transaction; |
|
|
|
/* |
|
* Bit values set in the flags argument passed to each_ref_fn() and |
|
* stored in ref_iterator::flags. Other bits are for internal use |
|
* only: |
|
*/ |
|
|
|
/* Reference is a symbolic reference. */ |
|
#define REF_ISSYMREF 0x01 |
|
|
|
/* Reference is a packed reference. */ |
|
#define REF_ISPACKED 0x02 |
|
|
|
/* |
|
* Reference cannot be resolved to an object name: dangling symbolic |
|
* reference (directly or indirectly), corrupt reference file, |
|
* reference exists but name is bad, or symbolic reference refers to |
|
* ill-formatted reference name. |
|
*/ |
|
#define REF_ISBROKEN 0x04 |
|
|
|
/* |
|
* Reference name is not well formed. |
|
* |
|
* See git-check-ref-format(1) for the definition of well formed ref names. |
|
*/ |
|
#define REF_BAD_NAME 0x08 |
|
|
|
/* |
|
* The signature for the callback function for the for_each_*() |
|
* functions below. The memory pointed to by the refname and sha1 |
|
* arguments is only guaranteed to be valid for the duration of a |
|
* single callback invocation. |
|
*/ |
|
typedef int each_ref_fn(const char *refname, |
|
const struct object_id *oid, int flags, void *cb_data); |
|
|
|
/* |
|
* The following functions invoke the specified callback function for |
|
* each reference indicated. If the function ever returns a nonzero |
|
* value, stop the iteration and return that value. Please note that |
|
* it is not safe to modify references while an iteration is in |
|
* progress, unless the same callback function invocation that |
|
* modifies the reference also returns a nonzero value to immediately |
|
* stop the iteration. |
|
*/ |
|
int head_ref(each_ref_fn fn, void *cb_data); |
|
int for_each_ref(each_ref_fn fn, void *cb_data); |
|
int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data); |
|
int for_each_fullref_in(const char *prefix, each_ref_fn fn, void *cb_data, |
|
unsigned int broken); |
|
int for_each_tag_ref(each_ref_fn fn, void *cb_data); |
|
int for_each_branch_ref(each_ref_fn fn, void *cb_data); |
|
int for_each_remote_ref(each_ref_fn fn, void *cb_data); |
|
int for_each_replace_ref(each_ref_fn fn, void *cb_data); |
|
int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data); |
|
int for_each_glob_ref_in(each_ref_fn fn, const char *pattern, |
|
const char *prefix, void *cb_data); |
|
|
|
int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data); |
|
int for_each_ref_submodule(const char *submodule, |
|
each_ref_fn fn, void *cb_data); |
|
int for_each_ref_in_submodule(const char *submodule, const char *prefix, |
|
each_ref_fn fn, void *cb_data); |
|
int for_each_tag_ref_submodule(const char *submodule, |
|
each_ref_fn fn, void *cb_data); |
|
int for_each_branch_ref_submodule(const char *submodule, |
|
each_ref_fn fn, void *cb_data); |
|
int for_each_remote_ref_submodule(const char *submodule, |
|
each_ref_fn fn, void *cb_data); |
|
|
|
int head_ref_namespaced(each_ref_fn fn, void *cb_data); |
|
int for_each_namespaced_ref(each_ref_fn fn, void *cb_data); |
|
|
|
/* can be used to learn about broken ref and symref */ |
|
int for_each_rawref(each_ref_fn fn, void *cb_data); |
|
|
|
static inline const char *has_glob_specials(const char *pattern) |
|
{ |
|
return strpbrk(pattern, "?*["); |
|
} |
|
|
|
void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname); |
|
void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, |
|
const struct string_list *refnames); |
|
|
|
/* |
|
* Flags for controlling behaviour of pack_refs() |
|
* PACK_REFS_PRUNE: Prune loose refs after packing |
|
* PACK_REFS_ALL: Pack _all_ refs, not just tags and already packed refs |
|
*/ |
|
#define PACK_REFS_PRUNE 0x0001 |
|
#define PACK_REFS_ALL 0x0002 |
|
|
|
/* |
|
* Write a packed-refs file for the current repository. |
|
* flags: Combination of the above PACK_REFS_* flags. |
|
*/ |
|
int pack_refs(unsigned int flags); |
|
|
|
/* |
|
* Flags controlling ref_transaction_update(), ref_transaction_create(), etc. |
|
* REF_NODEREF: act on the ref directly, instead of dereferencing |
|
* symbolic references. |
|
* |
|
* Other flags are reserved for internal use. |
|
*/ |
|
#define REF_NODEREF 0x01 |
|
#define REF_FORCE_CREATE_REFLOG 0x40 |
|
|
|
/* |
|
* Setup reflog before using. Fill in err and return -1 on failure. |
|
*/ |
|
int safe_create_reflog(const char *refname, int force_create, struct strbuf *err); |
|
|
|
/** Reads log for the value of ref during at_time. **/ |
|
int read_ref_at(const char *refname, unsigned int flags, |
|
unsigned long at_time, int cnt, |
|
unsigned char *sha1, char **msg, |
|
unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt); |
|
|
|
/** Check if a particular reflog exists */ |
|
int reflog_exists(const char *refname); |
|
|
|
/* |
|
* Delete the specified reference. If old_sha1 is non-NULL, then |
|
* verify that the current value of the reference is old_sha1 before |
|
* deleting it. If old_sha1 is NULL, delete the reference if it |
|
* exists, regardless of its old value. It is an error for old_sha1 to |
|
* be NULL_SHA1. flags is passed through to ref_transaction_delete(). |
|
*/ |
|
int delete_ref(const char *refname, const unsigned char *old_sha1, |
|
unsigned int flags); |
|
|
|
/* |
|
* Delete the specified references. If there are any problems, emit |
|
* errors but attempt to keep going (i.e., the deletes are not done in |
|
* an all-or-nothing transaction). flags is passed through to |
|
* ref_transaction_delete(). |
|
*/ |
|
int delete_refs(struct string_list *refnames, unsigned int flags); |
|
|
|
/** Delete a reflog */ |
|
int delete_reflog(const char *refname); |
|
|
|
/* iterate over reflog entries */ |
|
typedef int each_reflog_ent_fn( |
|
unsigned char *old_sha1, unsigned char *new_sha1, |
|
const char *committer, unsigned long timestamp, |
|
int tz, const char *msg, void *cb_data); |
|
|
|
int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data); |
|
int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data); |
|
|
|
/* |
|
* Calls the specified function for each reflog file until it returns nonzero, |
|
* and returns the value |
|
*/ |
|
int for_each_reflog(each_ref_fn fn, void *cb_data); |
|
|
|
#define REFNAME_ALLOW_ONELEVEL 1 |
|
#define REFNAME_REFSPEC_PATTERN 2 |
|
|
|
/* |
|
* Return 0 iff refname has the correct format for a refname according |
|
* to the rules described in Documentation/git-check-ref-format.txt. |
|
* If REFNAME_ALLOW_ONELEVEL is set in flags, then accept one-level |
|
* reference names. If REFNAME_REFSPEC_PATTERN is set in flags, then |
|
* allow a single "*" wildcard character in the refspec. No leading or |
|
* repeated slashes are accepted. |
|
*/ |
|
int check_refname_format(const char *refname, int flags); |
|
|
|
const char *prettify_refname(const char *refname); |
|
|
|
char *shorten_unambiguous_ref(const char *refname, int strict); |
|
|
|
/** rename ref, return 0 on success **/ |
|
int rename_ref(const char *oldref, const char *newref, const char *logmsg); |
|
|
|
int create_symref(const char *refname, const char *target, const char *logmsg); |
|
|
|
/* |
|
* Update HEAD of the specified gitdir. |
|
* Similar to create_symref("relative-git-dir/HEAD", target, NULL), but |
|
* this can update the main working tree's HEAD regardless of where |
|
* $GIT_DIR points to. |
|
* Return 0 if successful, non-zero otherwise. |
|
* */ |
|
int set_worktree_head_symref(const char *gitdir, const char *target); |
|
|
|
enum action_on_err { |
|
UPDATE_REFS_MSG_ON_ERR, |
|
UPDATE_REFS_DIE_ON_ERR, |
|
UPDATE_REFS_QUIET_ON_ERR |
|
}; |
|
|
|
/* |
|
* Begin a reference transaction. The reference transaction must |
|
* be freed by calling ref_transaction_free(). |
|
*/ |
|
struct ref_transaction *ref_transaction_begin(struct strbuf *err); |
|
|
|
/* |
|
* Reference transaction updates |
|
* |
|
* The following four functions add a reference check or update to a |
|
* ref_transaction. They have some common similar parameters: |
|
* |
|
* transaction -- a pointer to an open ref_transaction, obtained |
|
* from ref_transaction_begin(). |
|
* |
|
* refname -- the name of the reference to be affected. |
|
* |
|
* flags -- flags affecting the update, passed to |
|
* update_ref_lock(). Can be REF_NODEREF, which means that |
|
* symbolic references should not be followed. |
|
* |
|
* msg -- a message describing the change (for the reflog). |
|
* |
|
* err -- a strbuf for receiving a description of any error that |
|
* might have occurred. |
|
* |
|
* The functions make internal copies of refname and msg, so the |
|
* caller retains ownership of these parameters. |
|
* |
|
* The functions return 0 on success and non-zero on failure. A |
|
* failure means that the transaction as a whole has failed and needs |
|
* to be rolled back. |
|
*/ |
|
|
|
/* |
|
* Add a reference update to transaction. new_sha1 is the value that |
|
* the reference should have after the update, or null_sha1 if it |
|
* should be deleted. If new_sha1 is NULL, then the reference is not |
|
* changed at all. old_sha1 is the value that the reference must have |
|
* before the update, or null_sha1 if it must not have existed |
|
* beforehand. The old value is checked after the lock is taken to |
|
* prevent races. If the old value doesn't agree with old_sha1, the |
|
* whole transaction fails. If old_sha1 is NULL, then the previous |
|
* value is not checked. |
|
* |
|
* See the above comment "Reference transaction updates" for more |
|
* information. |
|
*/ |
|
int ref_transaction_update(struct ref_transaction *transaction, |
|
const char *refname, |
|
const unsigned char *new_sha1, |
|
const unsigned char *old_sha1, |
|
unsigned int flags, const char *msg, |
|
struct strbuf *err); |
|
|
|
/* |
|
* Add a reference creation to transaction. new_sha1 is the value that |
|
* the reference should have after the update; it must not be |
|
* null_sha1. It is verified that the reference does not exist |
|
* already. |
|
* |
|
* See the above comment "Reference transaction updates" for more |
|
* information. |
|
*/ |
|
int ref_transaction_create(struct ref_transaction *transaction, |
|
const char *refname, |
|
const unsigned char *new_sha1, |
|
unsigned int flags, const char *msg, |
|
struct strbuf *err); |
|
|
|
/* |
|
* Add a reference deletion to transaction. If old_sha1 is non-NULL, |
|
* then it holds the value that the reference should have had before |
|
* the update (which must not be null_sha1). |
|
* |
|
* See the above comment "Reference transaction updates" for more |
|
* information. |
|
*/ |
|
int ref_transaction_delete(struct ref_transaction *transaction, |
|
const char *refname, |
|
const unsigned char *old_sha1, |
|
unsigned int flags, const char *msg, |
|
struct strbuf *err); |
|
|
|
/* |
|
* Verify, within a transaction, that refname has the value old_sha1, |
|
* or, if old_sha1 is null_sha1, then verify that the reference |
|
* doesn't exist. old_sha1 must be non-NULL. |
|
* |
|
* See the above comment "Reference transaction updates" for more |
|
* information. |
|
*/ |
|
int ref_transaction_verify(struct ref_transaction *transaction, |
|
const char *refname, |
|
const unsigned char *old_sha1, |
|
unsigned int flags, |
|
struct strbuf *err); |
|
|
|
/* |
|
* Commit all of the changes that have been queued in transaction, as |
|
* atomically as possible. |
|
* |
|
* Returns 0 for success, or one of the below error codes for errors. |
|
*/ |
|
/* Naming conflict (for example, the ref names A and A/B conflict). */ |
|
#define TRANSACTION_NAME_CONFLICT -1 |
|
/* All other errors. */ |
|
#define TRANSACTION_GENERIC_ERROR -2 |
|
int ref_transaction_commit(struct ref_transaction *transaction, |
|
struct strbuf *err); |
|
|
|
/* |
|
* Like ref_transaction_commit(), but optimized for creating |
|
* references when originally initializing a repository (e.g., by "git |
|
* clone"). It writes the new references directly to packed-refs |
|
* without locking the individual references. |
|
* |
|
* It is a bug to call this function when there might be other |
|
* processes accessing the repository or if there are existing |
|
* references that might conflict with the ones being created. All |
|
* old_sha1 values must either be absent or NULL_SHA1. |
|
*/ |
|
int initial_ref_transaction_commit(struct ref_transaction *transaction, |
|
struct strbuf *err); |
|
|
|
/* |
|
* Free an existing transaction and all associated data. |
|
*/ |
|
void ref_transaction_free(struct ref_transaction *transaction); |
|
|
|
/** |
|
* Lock, update, and unlock a single reference. This function |
|
* basically does a transaction containing a single call to |
|
* ref_transaction_update(). The parameters to this function have the |
|
* same meaning as the corresponding parameters to |
|
* ref_transaction_update(). Handle errors as requested by the `onerr` |
|
* argument. |
|
*/ |
|
int update_ref(const char *msg, const char *refname, |
|
const unsigned char *new_sha1, const unsigned char *old_sha1, |
|
unsigned int flags, enum action_on_err onerr); |
|
int update_ref_oid(const char *msg, const char *refname, |
|
const struct object_id *new_oid, const struct object_id *old_oid, |
|
unsigned int flags, enum action_on_err onerr); |
|
|
|
int parse_hide_refs_config(const char *var, const char *value, const char *); |
|
|
|
/* |
|
* Check whether a ref is hidden. If no namespace is set, both the first and |
|
* the second parameter point to the full ref name. If a namespace is set and |
|
* the ref is inside that namespace, the first parameter is a pointer to the |
|
* name of the ref with the namespace prefix removed. If a namespace is set and |
|
* the ref is outside that namespace, the first parameter is NULL. The second |
|
* parameter always points to the full ref name. |
|
*/ |
|
int ref_is_hidden(const char *, const char *); |
|
|
|
enum ref_type { |
|
REF_TYPE_PER_WORKTREE, |
|
REF_TYPE_PSEUDOREF, |
|
REF_TYPE_NORMAL, |
|
}; |
|
|
|
enum ref_type ref_type(const char *refname); |
|
|
|
enum expire_reflog_flags { |
|
EXPIRE_REFLOGS_DRY_RUN = 1 << 0, |
|
EXPIRE_REFLOGS_UPDATE_REF = 1 << 1, |
|
EXPIRE_REFLOGS_VERBOSE = 1 << 2, |
|
EXPIRE_REFLOGS_REWRITE = 1 << 3 |
|
}; |
|
|
|
/* |
|
* The following interface is used for reflog expiration. The caller |
|
* calls reflog_expire(), supplying it with three callback functions, |
|
* of the following types. The callback functions define the |
|
* expiration policy that is desired. |
|
* |
|
* reflog_expiry_prepare_fn -- Called once after the reference is |
|
* locked. |
|
* |
|
* reflog_expiry_should_prune_fn -- Called once for each entry in the |
|
* existing reflog. It should return true iff that entry should be |
|
* pruned. |
|
* |
|
* reflog_expiry_cleanup_fn -- Called once before the reference is |
|
* unlocked again. |
|
*/ |
|
typedef void reflog_expiry_prepare_fn(const char *refname, |
|
const unsigned char *sha1, |
|
void *cb_data); |
|
typedef int reflog_expiry_should_prune_fn(unsigned char *osha1, |
|
unsigned char *nsha1, |
|
const char *email, |
|
unsigned long timestamp, int tz, |
|
const char *message, void *cb_data); |
|
typedef void reflog_expiry_cleanup_fn(void *cb_data); |
|
|
|
/* |
|
* Expire reflog entries for the specified reference. sha1 is the old |
|
* value of the reference. flags is a combination of the constants in |
|
* enum expire_reflog_flags. The three function pointers are described |
|
* above. On success, return zero. |
|
*/ |
|
int reflog_expire(const char *refname, const unsigned char *sha1, |
|
unsigned int flags, |
|
reflog_expiry_prepare_fn prepare_fn, |
|
reflog_expiry_should_prune_fn should_prune_fn, |
|
reflog_expiry_cleanup_fn cleanup_fn, |
|
void *policy_cb_data); |
|
|
|
int ref_storage_backend_exists(const char *name); |
|
|
|
#endif /* REFS_H */
|
|
|