You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
431 lines
12 KiB
431 lines
12 KiB
#include "cache.h" |
|
#include "commit.h" |
|
#include "notes.h" |
|
#include "refs.h" |
|
#include "utf8.h" |
|
#include "strbuf.h" |
|
#include "tree-walk.h" |
|
|
|
/* |
|
* Use a non-balancing simple 16-tree structure with struct int_node as |
|
* internal nodes, and struct leaf_node as leaf nodes. Each int_node has a |
|
* 16-array of pointers to its children. |
|
* The bottom 2 bits of each pointer is used to identify the pointer type |
|
* - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL) |
|
* - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node * |
|
* - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node * |
|
* - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node * |
|
* |
|
* The root node is a statically allocated struct int_node. |
|
*/ |
|
struct int_node { |
|
void *a[16]; |
|
}; |
|
|
|
/* |
|
* Leaf nodes come in two variants, note entries and subtree entries, |
|
* distinguished by the LSb of the leaf node pointer (see above). |
|
* As a note entry, the key is the SHA1 of the referenced commit, and the |
|
* value is the SHA1 of the note object. |
|
* As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the |
|
* referenced commit, using the last byte of the key to store the length of |
|
* the prefix. The value is the SHA1 of the tree object containing the notes |
|
* subtree. |
|
*/ |
|
struct leaf_node { |
|
unsigned char key_sha1[20]; |
|
unsigned char val_sha1[20]; |
|
}; |
|
|
|
#define PTR_TYPE_NULL 0 |
|
#define PTR_TYPE_INTERNAL 1 |
|
#define PTR_TYPE_NOTE 2 |
|
#define PTR_TYPE_SUBTREE 3 |
|
|
|
#define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3) |
|
#define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3)) |
|
#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type))) |
|
|
|
#define GET_NIBBLE(n, sha1) (((sha1[n >> 1]) >> ((~n & 0x01) << 2)) & 0x0f) |
|
|
|
#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \ |
|
(memcmp(key_sha1, subtree_sha1, subtree_sha1[19])) |
|
|
|
static struct int_node root_node; |
|
|
|
static int initialized; |
|
|
|
static void load_subtree(struct leaf_node *subtree, struct int_node *node, |
|
unsigned int n); |
|
|
|
/* |
|
* Search the tree until the appropriate location for the given key is found: |
|
* 1. Start at the root node, with n = 0 |
|
* 2. If a[0] at the current level is a matching subtree entry, unpack that |
|
* subtree entry and remove it; restart search at the current level. |
|
* 3. Use the nth nibble of the key as an index into a: |
|
* - If a[n] is an int_node, recurse from #2 into that node and increment n |
|
* - If a matching subtree entry, unpack that subtree entry (and remove it); |
|
* restart search at the current level. |
|
* - Otherwise, we have found one of the following: |
|
* - a subtree entry which does not match the key |
|
* - a note entry which may or may not match the key |
|
* - an unused leaf node (NULL) |
|
* In any case, set *tree and *n, and return pointer to the tree location. |
|
*/ |
|
static void **note_tree_search(struct int_node **tree, |
|
unsigned char *n, const unsigned char *key_sha1) |
|
{ |
|
struct leaf_node *l; |
|
unsigned char i; |
|
void *p = (*tree)->a[0]; |
|
|
|
if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) { |
|
l = (struct leaf_node *) CLR_PTR_TYPE(p); |
|
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { |
|
/* unpack tree and resume search */ |
|
(*tree)->a[0] = NULL; |
|
load_subtree(l, *tree, *n); |
|
free(l); |
|
return note_tree_search(tree, n, key_sha1); |
|
} |
|
} |
|
|
|
i = GET_NIBBLE(*n, key_sha1); |
|
p = (*tree)->a[i]; |
|
switch(GET_PTR_TYPE(p)) { |
|
case PTR_TYPE_INTERNAL: |
|
*tree = CLR_PTR_TYPE(p); |
|
(*n)++; |
|
return note_tree_search(tree, n, key_sha1); |
|
case PTR_TYPE_SUBTREE: |
|
l = (struct leaf_node *) CLR_PTR_TYPE(p); |
|
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { |
|
/* unpack tree and resume search */ |
|
(*tree)->a[i] = NULL; |
|
load_subtree(l, *tree, *n); |
|
free(l); |
|
return note_tree_search(tree, n, key_sha1); |
|
} |
|
/* fall through */ |
|
default: |
|
return &((*tree)->a[i]); |
|
} |
|
} |
|
|
|
/* |
|
* To find a leaf_node: |
|
* Search to the tree location appropriate for the given key: |
|
* If a note entry with matching key, return the note entry, else return NULL. |
|
*/ |
|
static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n, |
|
const unsigned char *key_sha1) |
|
{ |
|
void **p = note_tree_search(&tree, &n, key_sha1); |
|
if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) { |
|
struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
|
if (!hashcmp(key_sha1, l->key_sha1)) |
|
return l; |
|
} |
|
return NULL; |
|
} |
|
|
|
/* Create a new blob object by concatenating the two given blob objects */ |
|
static int concatenate_notes(unsigned char *cur_sha1, |
|
const unsigned char *new_sha1) |
|
{ |
|
char *cur_msg, *new_msg, *buf; |
|
unsigned long cur_len, new_len, buf_len; |
|
enum object_type cur_type, new_type; |
|
int ret; |
|
|
|
/* read in both note blob objects */ |
|
new_msg = read_sha1_file(new_sha1, &new_type, &new_len); |
|
if (!new_msg || !new_len || new_type != OBJ_BLOB) { |
|
free(new_msg); |
|
return 0; |
|
} |
|
cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len); |
|
if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) { |
|
free(cur_msg); |
|
free(new_msg); |
|
hashcpy(cur_sha1, new_sha1); |
|
return 0; |
|
} |
|
|
|
/* we will separate the notes by a newline anyway */ |
|
if (cur_msg[cur_len - 1] == '\n') |
|
cur_len--; |
|
|
|
/* concatenate cur_msg and new_msg into buf */ |
|
buf_len = cur_len + 1 + new_len; |
|
buf = (char *) xmalloc(buf_len); |
|
memcpy(buf, cur_msg, cur_len); |
|
buf[cur_len] = '\n'; |
|
memcpy(buf + cur_len + 1, new_msg, new_len); |
|
|
|
free(cur_msg); |
|
free(new_msg); |
|
|
|
/* create a new blob object from buf */ |
|
ret = write_sha1_file(buf, buf_len, "blob", cur_sha1); |
|
free(buf); |
|
return ret; |
|
} |
|
|
|
/* |
|
* To insert a leaf_node: |
|
* Search to the tree location appropriate for the given leaf_node's key: |
|
* - If location is unused (NULL), store the tweaked pointer directly there |
|
* - If location holds a note entry that matches the note-to-be-inserted, then |
|
* concatenate the two notes. |
|
* - If location holds a note entry that matches the subtree-to-be-inserted, |
|
* then unpack the subtree-to-be-inserted into the location. |
|
* - If location holds a matching subtree entry, unpack the subtree at that |
|
* location, and restart the insert operation from that level. |
|
* - Else, create a new int_node, holding both the node-at-location and the |
|
* node-to-be-inserted, and store the new int_node into the location. |
|
*/ |
|
static void note_tree_insert(struct int_node *tree, unsigned char n, |
|
struct leaf_node *entry, unsigned char type) |
|
{ |
|
struct int_node *new_node; |
|
struct leaf_node *l; |
|
void **p = note_tree_search(&tree, &n, entry->key_sha1); |
|
|
|
assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ |
|
l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
|
switch(GET_PTR_TYPE(*p)) { |
|
case PTR_TYPE_NULL: |
|
assert(!*p); |
|
*p = SET_PTR_TYPE(entry, type); |
|
return; |
|
case PTR_TYPE_NOTE: |
|
switch (type) { |
|
case PTR_TYPE_NOTE: |
|
if (!hashcmp(l->key_sha1, entry->key_sha1)) { |
|
/* skip concatenation if l == entry */ |
|
if (!hashcmp(l->val_sha1, entry->val_sha1)) |
|
return; |
|
|
|
if (concatenate_notes(l->val_sha1, |
|
entry->val_sha1)) |
|
die("failed to concatenate note %s " |
|
"into note %s for commit %s", |
|
sha1_to_hex(entry->val_sha1), |
|
sha1_to_hex(l->val_sha1), |
|
sha1_to_hex(l->key_sha1)); |
|
free(entry); |
|
return; |
|
} |
|
break; |
|
case PTR_TYPE_SUBTREE: |
|
if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1, |
|
entry->key_sha1)) { |
|
/* unpack 'entry' */ |
|
load_subtree(entry, tree, n); |
|
free(entry); |
|
return; |
|
} |
|
break; |
|
} |
|
break; |
|
case PTR_TYPE_SUBTREE: |
|
if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) { |
|
/* unpack 'l' and restart insert */ |
|
*p = NULL; |
|
load_subtree(l, tree, n); |
|
free(l); |
|
note_tree_insert(tree, n, entry, type); |
|
return; |
|
} |
|
break; |
|
} |
|
|
|
/* non-matching leaf_node */ |
|
assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE || |
|
GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE); |
|
new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1); |
|
note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p)); |
|
*p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL); |
|
note_tree_insert(new_node, n + 1, entry, type); |
|
} |
|
|
|
/* Free the entire notes data contained in the given tree */ |
|
static void note_tree_free(struct int_node *tree) |
|
{ |
|
unsigned int i; |
|
for (i = 0; i < 16; i++) { |
|
void *p = tree->a[i]; |
|
switch(GET_PTR_TYPE(p)) { |
|
case PTR_TYPE_INTERNAL: |
|
note_tree_free(CLR_PTR_TYPE(p)); |
|
/* fall through */ |
|
case PTR_TYPE_NOTE: |
|
case PTR_TYPE_SUBTREE: |
|
free(CLR_PTR_TYPE(p)); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Convert a partial SHA1 hex string to the corresponding partial SHA1 value. |
|
* - hex - Partial SHA1 segment in ASCII hex format |
|
* - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40 |
|
* - sha1 - Partial SHA1 value is written here |
|
* - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20 |
|
* Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format). |
|
* Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2). |
|
* Pads sha1 with NULs up to sha1_len (not included in returned length). |
|
*/ |
|
static int get_sha1_hex_segment(const char *hex, unsigned int hex_len, |
|
unsigned char *sha1, unsigned int sha1_len) |
|
{ |
|
unsigned int i, len = hex_len >> 1; |
|
if (hex_len % 2 != 0 || len > sha1_len) |
|
return -1; |
|
for (i = 0; i < len; i++) { |
|
unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]); |
|
if (val & ~0xff) |
|
return -1; |
|
*sha1++ = val; |
|
hex += 2; |
|
} |
|
for (; i < sha1_len; i++) |
|
*sha1++ = 0; |
|
return len; |
|
} |
|
|
|
static void load_subtree(struct leaf_node *subtree, struct int_node *node, |
|
unsigned int n) |
|
{ |
|
unsigned char commit_sha1[20]; |
|
unsigned int prefix_len; |
|
void *buf; |
|
struct tree_desc desc; |
|
struct name_entry entry; |
|
|
|
buf = fill_tree_descriptor(&desc, subtree->val_sha1); |
|
if (!buf) |
|
die("Could not read %s for notes-index", |
|
sha1_to_hex(subtree->val_sha1)); |
|
|
|
prefix_len = subtree->key_sha1[19]; |
|
assert(prefix_len * 2 >= n); |
|
memcpy(commit_sha1, subtree->key_sha1, prefix_len); |
|
while (tree_entry(&desc, &entry)) { |
|
int len = get_sha1_hex_segment(entry.path, strlen(entry.path), |
|
commit_sha1 + prefix_len, 20 - prefix_len); |
|
if (len < 0) |
|
continue; /* entry.path is not a SHA1 sum. Skip */ |
|
len += prefix_len; |
|
|
|
/* |
|
* If commit SHA1 is complete (len == 20), assume note object |
|
* If commit SHA1 is incomplete (len < 20), assume note subtree |
|
*/ |
|
if (len <= 20) { |
|
unsigned char type = PTR_TYPE_NOTE; |
|
struct leaf_node *l = (struct leaf_node *) |
|
xcalloc(sizeof(struct leaf_node), 1); |
|
hashcpy(l->key_sha1, commit_sha1); |
|
hashcpy(l->val_sha1, entry.sha1); |
|
if (len < 20) { |
|
if (!S_ISDIR(entry.mode)) |
|
continue; /* entry cannot be subtree */ |
|
l->key_sha1[19] = (unsigned char) len; |
|
type = PTR_TYPE_SUBTREE; |
|
} |
|
note_tree_insert(node, n, l, type); |
|
} |
|
} |
|
free(buf); |
|
} |
|
|
|
static void initialize_notes(const char *notes_ref_name) |
|
{ |
|
unsigned char sha1[20], commit_sha1[20]; |
|
unsigned mode; |
|
struct leaf_node root_tree; |
|
|
|
if (!notes_ref_name || read_ref(notes_ref_name, commit_sha1) || |
|
get_tree_entry(commit_sha1, "", sha1, &mode)) |
|
return; |
|
|
|
hashclr(root_tree.key_sha1); |
|
hashcpy(root_tree.val_sha1, sha1); |
|
load_subtree(&root_tree, &root_node, 0); |
|
} |
|
|
|
static unsigned char *lookup_notes(const unsigned char *commit_sha1) |
|
{ |
|
struct leaf_node *found = note_tree_find(&root_node, 0, commit_sha1); |
|
if (found) |
|
return found->val_sha1; |
|
return NULL; |
|
} |
|
|
|
void free_notes(void) |
|
{ |
|
note_tree_free(&root_node); |
|
memset(&root_node, 0, sizeof(struct int_node)); |
|
initialized = 0; |
|
} |
|
|
|
void get_commit_notes(const struct commit *commit, struct strbuf *sb, |
|
const char *output_encoding, int flags) |
|
{ |
|
static const char utf8[] = "utf-8"; |
|
unsigned char *sha1; |
|
char *msg, *msg_p; |
|
unsigned long linelen, msglen; |
|
enum object_type type; |
|
|
|
if (!initialized) { |
|
const char *env = getenv(GIT_NOTES_REF_ENVIRONMENT); |
|
if (env) |
|
notes_ref_name = getenv(GIT_NOTES_REF_ENVIRONMENT); |
|
else if (!notes_ref_name) |
|
notes_ref_name = GIT_NOTES_DEFAULT_REF; |
|
initialize_notes(notes_ref_name); |
|
initialized = 1; |
|
} |
|
|
|
sha1 = lookup_notes(commit->object.sha1); |
|
if (!sha1) |
|
return; |
|
|
|
if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen || |
|
type != OBJ_BLOB) { |
|
free(msg); |
|
return; |
|
} |
|
|
|
if (output_encoding && *output_encoding && |
|
strcmp(utf8, output_encoding)) { |
|
char *reencoded = reencode_string(msg, output_encoding, utf8); |
|
if (reencoded) { |
|
free(msg); |
|
msg = reencoded; |
|
msglen = strlen(msg); |
|
} |
|
} |
|
|
|
/* we will end the annotation by a newline anyway */ |
|
if (msglen && msg[msglen - 1] == '\n') |
|
msglen--; |
|
|
|
if (flags & NOTES_SHOW_HEADER) |
|
strbuf_addstr(sb, "\nNotes:\n"); |
|
|
|
for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) { |
|
linelen = strchrnul(msg_p, '\n') - msg_p; |
|
|
|
if (flags & NOTES_INDENT) |
|
strbuf_addstr(sb, " "); |
|
strbuf_add(sb, msg_p, linelen); |
|
strbuf_addch(sb, '\n'); |
|
} |
|
|
|
free(msg); |
|
}
|
|
|