You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
475 lines
12 KiB
475 lines
12 KiB
#include "cache.h" |
|
#include "pack-revindex.h" |
|
#include "object-store.h" |
|
#include "packfile.h" |
|
#include "config.h" |
|
#include "midx.h" |
|
|
|
struct revindex_entry { |
|
off_t offset; |
|
unsigned int nr; |
|
}; |
|
|
|
/* |
|
* Pack index for existing packs give us easy access to the offsets into |
|
* corresponding pack file where each object's data starts, but the entries |
|
* do not store the size of the compressed representation (uncompressed |
|
* size is easily available by examining the pack entry header). It is |
|
* also rather expensive to find the sha1 for an object given its offset. |
|
* |
|
* The pack index file is sorted by object name mapping to offset; |
|
* this revindex array is a list of offset/index_nr pairs |
|
* ordered by offset, so if you know the offset of an object, next offset |
|
* is where its packed representation ends and the index_nr can be used to |
|
* get the object sha1 from the main index. |
|
*/ |
|
|
|
/* |
|
* This is a least-significant-digit radix sort. |
|
* |
|
* It sorts each of the "n" items in "entries" by its offset field. The "max" |
|
* parameter must be at least as large as the largest offset in the array, |
|
* and lets us quit the sort early. |
|
*/ |
|
static void sort_revindex(struct revindex_entry *entries, unsigned n, off_t max) |
|
{ |
|
/* |
|
* We use a "digit" size of 16 bits. That keeps our memory |
|
* usage reasonable, and we can generally (for a 4G or smaller |
|
* packfile) quit after two rounds of radix-sorting. |
|
*/ |
|
#define DIGIT_SIZE (16) |
|
#define BUCKETS (1 << DIGIT_SIZE) |
|
/* |
|
* We want to know the bucket that a[i] will go into when we are using |
|
* the digit that is N bits from the (least significant) end. |
|
*/ |
|
#define BUCKET_FOR(a, i, bits) (((a)[(i)].offset >> (bits)) & (BUCKETS-1)) |
|
|
|
/* |
|
* We need O(n) temporary storage. Rather than do an extra copy of the |
|
* partial results into "entries", we sort back and forth between the |
|
* real array and temporary storage. In each iteration of the loop, we |
|
* keep track of them with alias pointers, always sorting from "from" |
|
* to "to". |
|
*/ |
|
struct revindex_entry *tmp, *from, *to; |
|
int bits; |
|
unsigned *pos; |
|
|
|
ALLOC_ARRAY(pos, BUCKETS); |
|
ALLOC_ARRAY(tmp, n); |
|
from = entries; |
|
to = tmp; |
|
|
|
/* |
|
* If (max >> bits) is zero, then we know that the radix digit we are |
|
* on (and any higher) will be zero for all entries, and our loop will |
|
* be a no-op, as everybody lands in the same zero-th bucket. |
|
*/ |
|
for (bits = 0; max >> bits; bits += DIGIT_SIZE) { |
|
unsigned i; |
|
|
|
memset(pos, 0, BUCKETS * sizeof(*pos)); |
|
|
|
/* |
|
* We want pos[i] to store the index of the last element that |
|
* will go in bucket "i" (actually one past the last element). |
|
* To do this, we first count the items that will go in each |
|
* bucket, which gives us a relative offset from the last |
|
* bucket. We can then cumulatively add the index from the |
|
* previous bucket to get the true index. |
|
*/ |
|
for (i = 0; i < n; i++) |
|
pos[BUCKET_FOR(from, i, bits)]++; |
|
for (i = 1; i < BUCKETS; i++) |
|
pos[i] += pos[i-1]; |
|
|
|
/* |
|
* Now we can drop the elements into their correct buckets (in |
|
* our temporary array). We iterate the pos counter backwards |
|
* to avoid using an extra index to count up. And since we are |
|
* going backwards there, we must also go backwards through the |
|
* array itself, to keep the sort stable. |
|
* |
|
* Note that we use an unsigned iterator to make sure we can |
|
* handle 2^32-1 objects, even on a 32-bit system. But this |
|
* means we cannot use the more obvious "i >= 0" loop condition |
|
* for counting backwards, and must instead check for |
|
* wrap-around with UINT_MAX. |
|
*/ |
|
for (i = n - 1; i != UINT_MAX; i--) |
|
to[--pos[BUCKET_FOR(from, i, bits)]] = from[i]; |
|
|
|
/* |
|
* Now "to" contains the most sorted list, so we swap "from" and |
|
* "to" for the next iteration. |
|
*/ |
|
SWAP(from, to); |
|
} |
|
|
|
/* |
|
* If we ended with our data in the original array, great. If not, |
|
* we have to move it back from the temporary storage. |
|
*/ |
|
if (from != entries) |
|
COPY_ARRAY(entries, tmp, n); |
|
free(tmp); |
|
free(pos); |
|
|
|
#undef BUCKET_FOR |
|
#undef BUCKETS |
|
#undef DIGIT_SIZE |
|
} |
|
|
|
/* |
|
* Ordered list of offsets of objects in the pack. |
|
*/ |
|
static void create_pack_revindex(struct packed_git *p) |
|
{ |
|
const unsigned num_ent = p->num_objects; |
|
unsigned i; |
|
const char *index = p->index_data; |
|
const unsigned hashsz = the_hash_algo->rawsz; |
|
|
|
ALLOC_ARRAY(p->revindex, num_ent + 1); |
|
index += 4 * 256; |
|
|
|
if (p->index_version > 1) { |
|
const uint32_t *off_32 = |
|
(uint32_t *)(index + 8 + (size_t)p->num_objects * (hashsz + 4)); |
|
const uint32_t *off_64 = off_32 + p->num_objects; |
|
for (i = 0; i < num_ent; i++) { |
|
const uint32_t off = ntohl(*off_32++); |
|
if (!(off & 0x80000000)) { |
|
p->revindex[i].offset = off; |
|
} else { |
|
p->revindex[i].offset = get_be64(off_64); |
|
off_64 += 2; |
|
} |
|
p->revindex[i].nr = i; |
|
} |
|
} else { |
|
for (i = 0; i < num_ent; i++) { |
|
const uint32_t hl = *((uint32_t *)(index + (hashsz + 4) * i)); |
|
p->revindex[i].offset = ntohl(hl); |
|
p->revindex[i].nr = i; |
|
} |
|
} |
|
|
|
/* |
|
* This knows the pack format -- the hash trailer |
|
* follows immediately after the last object data. |
|
*/ |
|
p->revindex[num_ent].offset = p->pack_size - hashsz; |
|
p->revindex[num_ent].nr = -1; |
|
sort_revindex(p->revindex, num_ent, p->pack_size); |
|
} |
|
|
|
static int create_pack_revindex_in_memory(struct packed_git *p) |
|
{ |
|
if (git_env_bool(GIT_TEST_REV_INDEX_DIE_IN_MEMORY, 0)) |
|
die("dying as requested by '%s'", |
|
GIT_TEST_REV_INDEX_DIE_IN_MEMORY); |
|
if (open_pack_index(p)) |
|
return -1; |
|
create_pack_revindex(p); |
|
return 0; |
|
} |
|
|
|
static char *pack_revindex_filename(struct packed_git *p) |
|
{ |
|
size_t len; |
|
if (!strip_suffix(p->pack_name, ".pack", &len)) |
|
BUG("pack_name does not end in .pack"); |
|
return xstrfmt("%.*s.rev", (int)len, p->pack_name); |
|
} |
|
|
|
#define RIDX_HEADER_SIZE (12) |
|
#define RIDX_MIN_SIZE (RIDX_HEADER_SIZE + (2 * the_hash_algo->rawsz)) |
|
|
|
struct revindex_header { |
|
uint32_t signature; |
|
uint32_t version; |
|
uint32_t hash_id; |
|
}; |
|
|
|
static int load_revindex_from_disk(char *revindex_name, |
|
uint32_t num_objects, |
|
const uint32_t **data_p, size_t *len_p) |
|
{ |
|
int fd, ret = 0; |
|
struct stat st; |
|
void *data = NULL; |
|
size_t revindex_size; |
|
struct revindex_header *hdr; |
|
|
|
fd = git_open(revindex_name); |
|
|
|
if (fd < 0) { |
|
ret = -1; |
|
goto cleanup; |
|
} |
|
if (fstat(fd, &st)) { |
|
ret = error_errno(_("failed to read %s"), revindex_name); |
|
goto cleanup; |
|
} |
|
|
|
revindex_size = xsize_t(st.st_size); |
|
|
|
if (revindex_size < RIDX_MIN_SIZE) { |
|
ret = error(_("reverse-index file %s is too small"), revindex_name); |
|
goto cleanup; |
|
} |
|
|
|
if (revindex_size - RIDX_MIN_SIZE != st_mult(sizeof(uint32_t), num_objects)) { |
|
ret = error(_("reverse-index file %s is corrupt"), revindex_name); |
|
goto cleanup; |
|
} |
|
|
|
data = xmmap(NULL, revindex_size, PROT_READ, MAP_PRIVATE, fd, 0); |
|
hdr = data; |
|
|
|
if (ntohl(hdr->signature) != RIDX_SIGNATURE) { |
|
ret = error(_("reverse-index file %s has unknown signature"), revindex_name); |
|
goto cleanup; |
|
} |
|
if (ntohl(hdr->version) != 1) { |
|
ret = error(_("reverse-index file %s has unsupported version %"PRIu32), |
|
revindex_name, ntohl(hdr->version)); |
|
goto cleanup; |
|
} |
|
if (!(ntohl(hdr->hash_id) == 1 || ntohl(hdr->hash_id) == 2)) { |
|
ret = error(_("reverse-index file %s has unsupported hash id %"PRIu32), |
|
revindex_name, ntohl(hdr->hash_id)); |
|
goto cleanup; |
|
} |
|
|
|
cleanup: |
|
if (ret) { |
|
if (data) |
|
munmap(data, revindex_size); |
|
} else { |
|
*len_p = revindex_size; |
|
*data_p = (const uint32_t *)data; |
|
} |
|
|
|
if (fd >= 0) |
|
close(fd); |
|
return ret; |
|
} |
|
|
|
static int load_pack_revindex_from_disk(struct packed_git *p) |
|
{ |
|
char *revindex_name; |
|
int ret; |
|
if (open_pack_index(p)) |
|
return -1; |
|
|
|
revindex_name = pack_revindex_filename(p); |
|
|
|
ret = load_revindex_from_disk(revindex_name, |
|
p->num_objects, |
|
&p->revindex_map, |
|
&p->revindex_size); |
|
if (ret) |
|
goto cleanup; |
|
|
|
p->revindex_data = (const uint32_t *)((const char *)p->revindex_map + RIDX_HEADER_SIZE); |
|
|
|
cleanup: |
|
free(revindex_name); |
|
return ret; |
|
} |
|
|
|
int load_pack_revindex(struct packed_git *p) |
|
{ |
|
if (p->revindex || p->revindex_data) |
|
return 0; |
|
|
|
if (!load_pack_revindex_from_disk(p)) |
|
return 0; |
|
else if (!create_pack_revindex_in_memory(p)) |
|
return 0; |
|
return -1; |
|
} |
|
|
|
int load_midx_revindex(struct multi_pack_index *m) |
|
{ |
|
struct strbuf revindex_name = STRBUF_INIT; |
|
int ret; |
|
if (m->revindex_data) |
|
return 0; |
|
|
|
get_midx_rev_filename(&revindex_name, m); |
|
|
|
ret = load_revindex_from_disk(revindex_name.buf, |
|
m->num_objects, |
|
&m->revindex_map, |
|
&m->revindex_len); |
|
if (ret) |
|
goto cleanup; |
|
|
|
m->revindex_data = (const uint32_t *)((const char *)m->revindex_map + RIDX_HEADER_SIZE); |
|
|
|
cleanup: |
|
strbuf_release(&revindex_name); |
|
return ret; |
|
} |
|
|
|
int close_midx_revindex(struct multi_pack_index *m) |
|
{ |
|
if (!m || !m->revindex_map) |
|
return 0; |
|
|
|
munmap((void*)m->revindex_map, m->revindex_len); |
|
|
|
m->revindex_map = NULL; |
|
m->revindex_data = NULL; |
|
m->revindex_len = 0; |
|
|
|
return 0; |
|
} |
|
|
|
int offset_to_pack_pos(struct packed_git *p, off_t ofs, uint32_t *pos) |
|
{ |
|
unsigned lo, hi; |
|
|
|
if (load_pack_revindex(p) < 0) |
|
return -1; |
|
|
|
lo = 0; |
|
hi = p->num_objects + 1; |
|
|
|
do { |
|
const unsigned mi = lo + (hi - lo) / 2; |
|
off_t got = pack_pos_to_offset(p, mi); |
|
|
|
if (got == ofs) { |
|
*pos = mi; |
|
return 0; |
|
} else if (ofs < got) |
|
hi = mi; |
|
else |
|
lo = mi + 1; |
|
} while (lo < hi); |
|
|
|
error("bad offset for revindex"); |
|
return -1; |
|
} |
|
|
|
uint32_t pack_pos_to_index(struct packed_git *p, uint32_t pos) |
|
{ |
|
if (!(p->revindex || p->revindex_data)) |
|
BUG("pack_pos_to_index: reverse index not yet loaded"); |
|
if (p->num_objects <= pos) |
|
BUG("pack_pos_to_index: out-of-bounds object at %"PRIu32, pos); |
|
|
|
if (p->revindex) |
|
return p->revindex[pos].nr; |
|
else |
|
return get_be32(p->revindex_data + pos); |
|
} |
|
|
|
off_t pack_pos_to_offset(struct packed_git *p, uint32_t pos) |
|
{ |
|
if (!(p->revindex || p->revindex_data)) |
|
BUG("pack_pos_to_index: reverse index not yet loaded"); |
|
if (p->num_objects < pos) |
|
BUG("pack_pos_to_offset: out-of-bounds object at %"PRIu32, pos); |
|
|
|
if (p->revindex) |
|
return p->revindex[pos].offset; |
|
else if (pos == p->num_objects) |
|
return p->pack_size - the_hash_algo->rawsz; |
|
else |
|
return nth_packed_object_offset(p, pack_pos_to_index(p, pos)); |
|
} |
|
|
|
uint32_t pack_pos_to_midx(struct multi_pack_index *m, uint32_t pos) |
|
{ |
|
if (!m->revindex_data) |
|
BUG("pack_pos_to_midx: reverse index not yet loaded"); |
|
if (m->num_objects <= pos) |
|
BUG("pack_pos_to_midx: out-of-bounds object at %"PRIu32, pos); |
|
return get_be32(m->revindex_data + pos); |
|
} |
|
|
|
struct midx_pack_key { |
|
uint32_t pack; |
|
off_t offset; |
|
|
|
uint32_t preferred_pack; |
|
struct multi_pack_index *midx; |
|
}; |
|
|
|
static int midx_pack_order_cmp(const void *va, const void *vb) |
|
{ |
|
const struct midx_pack_key *key = va; |
|
struct multi_pack_index *midx = key->midx; |
|
|
|
uint32_t versus = pack_pos_to_midx(midx, (uint32_t*)vb - (const uint32_t *)midx->revindex_data); |
|
uint32_t versus_pack = nth_midxed_pack_int_id(midx, versus); |
|
off_t versus_offset; |
|
|
|
uint32_t key_preferred = key->pack == key->preferred_pack; |
|
uint32_t versus_preferred = versus_pack == key->preferred_pack; |
|
|
|
/* |
|
* First, compare the preferred-ness, noting that the preferred pack |
|
* comes first. |
|
*/ |
|
if (key_preferred && !versus_preferred) |
|
return -1; |
|
else if (!key_preferred && versus_preferred) |
|
return 1; |
|
|
|
/* Then, break ties first by comparing the pack IDs. */ |
|
if (key->pack < versus_pack) |
|
return -1; |
|
else if (key->pack > versus_pack) |
|
return 1; |
|
|
|
/* Finally, break ties by comparing offsets within a pack. */ |
|
versus_offset = nth_midxed_offset(midx, versus); |
|
if (key->offset < versus_offset) |
|
return -1; |
|
else if (key->offset > versus_offset) |
|
return 1; |
|
|
|
return 0; |
|
} |
|
|
|
int midx_to_pack_pos(struct multi_pack_index *m, uint32_t at, uint32_t *pos) |
|
{ |
|
struct midx_pack_key key; |
|
uint32_t *found; |
|
|
|
if (!m->revindex_data) |
|
BUG("midx_to_pack_pos: reverse index not yet loaded"); |
|
if (m->num_objects <= at) |
|
BUG("midx_to_pack_pos: out-of-bounds object at %"PRIu32, at); |
|
|
|
key.pack = nth_midxed_pack_int_id(m, at); |
|
key.offset = nth_midxed_offset(m, at); |
|
key.midx = m; |
|
/* |
|
* The preferred pack sorts first, so determine its identifier by |
|
* looking at the first object in pseudo-pack order. |
|
* |
|
* Note that if no --preferred-pack is explicitly given when writing a |
|
* multi-pack index, then whichever pack has the lowest identifier |
|
* implicitly is preferred (and includes all its objects, since ties are |
|
* broken first by pack identifier). |
|
*/ |
|
key.preferred_pack = nth_midxed_pack_int_id(m, pack_pos_to_midx(m, 0)); |
|
|
|
found = bsearch(&key, m->revindex_data, m->num_objects, |
|
sizeof(*m->revindex_data), midx_pack_order_cmp); |
|
|
|
if (!found) |
|
return error("bad offset for revindex"); |
|
|
|
*pos = found - m->revindex_data; |
|
return 0; |
|
}
|
|
|