You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
671 lines
18 KiB
671 lines
18 KiB
#include "cache.h" |
|
#include "config.h" |
|
#include "entry.h" |
|
#include "parallel-checkout.h" |
|
#include "pkt-line.h" |
|
#include "progress.h" |
|
#include "run-command.h" |
|
#include "sigchain.h" |
|
#include "streaming.h" |
|
#include "thread-utils.h" |
|
#include "trace2.h" |
|
|
|
struct pc_worker { |
|
struct child_process cp; |
|
size_t next_item_to_complete, nr_items_to_complete; |
|
}; |
|
|
|
struct parallel_checkout { |
|
enum pc_status status; |
|
struct parallel_checkout_item *items; /* The parallel checkout queue. */ |
|
size_t nr, alloc; |
|
struct progress *progress; |
|
unsigned int *progress_cnt; |
|
}; |
|
|
|
static struct parallel_checkout parallel_checkout; |
|
|
|
enum pc_status parallel_checkout_status(void) |
|
{ |
|
return parallel_checkout.status; |
|
} |
|
|
|
static const int DEFAULT_THRESHOLD_FOR_PARALLELISM = 100; |
|
static const int DEFAULT_NUM_WORKERS = 1; |
|
|
|
void get_parallel_checkout_configs(int *num_workers, int *threshold) |
|
{ |
|
char *env_workers = getenv("GIT_TEST_CHECKOUT_WORKERS"); |
|
|
|
if (env_workers && *env_workers) { |
|
if (strtol_i(env_workers, 10, num_workers)) { |
|
die(_("invalid value for '%s': '%s'"), |
|
"GIT_TEST_CHECKOUT_WORKERS", env_workers); |
|
} |
|
if (*num_workers < 1) |
|
*num_workers = online_cpus(); |
|
|
|
*threshold = 0; |
|
return; |
|
} |
|
|
|
if (git_config_get_int("checkout.workers", num_workers)) |
|
*num_workers = DEFAULT_NUM_WORKERS; |
|
else if (*num_workers < 1) |
|
*num_workers = online_cpus(); |
|
|
|
if (git_config_get_int("checkout.thresholdForParallelism", threshold)) |
|
*threshold = DEFAULT_THRESHOLD_FOR_PARALLELISM; |
|
} |
|
|
|
void init_parallel_checkout(void) |
|
{ |
|
if (parallel_checkout.status != PC_UNINITIALIZED) |
|
BUG("parallel checkout already initialized"); |
|
|
|
parallel_checkout.status = PC_ACCEPTING_ENTRIES; |
|
} |
|
|
|
static void finish_parallel_checkout(void) |
|
{ |
|
if (parallel_checkout.status == PC_UNINITIALIZED) |
|
BUG("cannot finish parallel checkout: not initialized yet"); |
|
|
|
free(parallel_checkout.items); |
|
memset(¶llel_checkout, 0, sizeof(parallel_checkout)); |
|
} |
|
|
|
static int is_eligible_for_parallel_checkout(const struct cache_entry *ce, |
|
const struct conv_attrs *ca) |
|
{ |
|
enum conv_attrs_classification c; |
|
size_t packed_item_size; |
|
|
|
/* |
|
* Symlinks cannot be checked out in parallel as, in case of path |
|
* collision, they could racily replace leading directories of other |
|
* entries being checked out. Submodules are checked out in child |
|
* processes, which have their own parallel checkout queues. |
|
*/ |
|
if (!S_ISREG(ce->ce_mode)) |
|
return 0; |
|
|
|
packed_item_size = sizeof(struct pc_item_fixed_portion) + ce->ce_namelen + |
|
(ca->working_tree_encoding ? strlen(ca->working_tree_encoding) : 0); |
|
|
|
/* |
|
* The amount of data we send to the workers per checkout item is |
|
* typically small (75~300B). So unless we find an insanely huge path |
|
* of 64KB, we should never reach the 65KB limit of one pkt-line. If |
|
* that does happen, we let the sequential code handle the item. |
|
*/ |
|
if (packed_item_size > LARGE_PACKET_DATA_MAX) |
|
return 0; |
|
|
|
c = classify_conv_attrs(ca); |
|
switch (c) { |
|
case CA_CLASS_INCORE: |
|
return 1; |
|
|
|
case CA_CLASS_INCORE_FILTER: |
|
/* |
|
* It would be safe to allow concurrent instances of |
|
* single-file smudge filters, like rot13, but we should not |
|
* assume that all filters are parallel-process safe. So we |
|
* don't allow this. |
|
*/ |
|
return 0; |
|
|
|
case CA_CLASS_INCORE_PROCESS: |
|
/* |
|
* The parallel queue and the delayed queue are not compatible, |
|
* so they must be kept completely separated. And we can't tell |
|
* if a long-running process will delay its response without |
|
* actually asking it to perform the filtering. Therefore, this |
|
* type of filter is not allowed in parallel checkout. |
|
* |
|
* Furthermore, there should only be one instance of the |
|
* long-running process filter as we don't know how it is |
|
* managing its own concurrency. So, spreading the entries that |
|
* requisite such a filter among the parallel workers would |
|
* require a lot more inter-process communication. We would |
|
* probably have to designate a single process to interact with |
|
* the filter and send all the necessary data to it, for each |
|
* entry. |
|
*/ |
|
return 0; |
|
|
|
case CA_CLASS_STREAMABLE: |
|
return 1; |
|
|
|
default: |
|
BUG("unsupported conv_attrs classification '%d'", c); |
|
} |
|
} |
|
|
|
int enqueue_checkout(struct cache_entry *ce, struct conv_attrs *ca) |
|
{ |
|
struct parallel_checkout_item *pc_item; |
|
|
|
if (parallel_checkout.status != PC_ACCEPTING_ENTRIES || |
|
!is_eligible_for_parallel_checkout(ce, ca)) |
|
return -1; |
|
|
|
ALLOC_GROW(parallel_checkout.items, parallel_checkout.nr + 1, |
|
parallel_checkout.alloc); |
|
|
|
pc_item = ¶llel_checkout.items[parallel_checkout.nr]; |
|
pc_item->ce = ce; |
|
memcpy(&pc_item->ca, ca, sizeof(pc_item->ca)); |
|
pc_item->status = PC_ITEM_PENDING; |
|
pc_item->id = parallel_checkout.nr; |
|
parallel_checkout.nr++; |
|
|
|
return 0; |
|
} |
|
|
|
size_t pc_queue_size(void) |
|
{ |
|
return parallel_checkout.nr; |
|
} |
|
|
|
static void advance_progress_meter(void) |
|
{ |
|
if (parallel_checkout.progress) { |
|
(*parallel_checkout.progress_cnt)++; |
|
display_progress(parallel_checkout.progress, |
|
*parallel_checkout.progress_cnt); |
|
} |
|
} |
|
|
|
static int handle_results(struct checkout *state) |
|
{ |
|
int ret = 0; |
|
size_t i; |
|
int have_pending = 0; |
|
|
|
/* |
|
* We first update the successfully written entries with the collected |
|
* stat() data, so that they can be found by mark_colliding_entries(), |
|
* in the next loop, when necessary. |
|
*/ |
|
for (i = 0; i < parallel_checkout.nr; i++) { |
|
struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; |
|
if (pc_item->status == PC_ITEM_WRITTEN) |
|
update_ce_after_write(state, pc_item->ce, &pc_item->st); |
|
} |
|
|
|
for (i = 0; i < parallel_checkout.nr; i++) { |
|
struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; |
|
|
|
switch(pc_item->status) { |
|
case PC_ITEM_WRITTEN: |
|
/* Already handled */ |
|
break; |
|
case PC_ITEM_COLLIDED: |
|
/* |
|
* The entry could not be checked out due to a path |
|
* collision with another entry. Since there can only |
|
* be one entry of each colliding group on the disk, we |
|
* could skip trying to check out this one and move on. |
|
* However, this would leave the unwritten entries with |
|
* null stat() fields on the index, which could |
|
* potentially slow down subsequent operations that |
|
* require refreshing it: git would not be able to |
|
* trust st_size and would have to go to the filesystem |
|
* to see if the contents match (see ie_modified()). |
|
* |
|
* Instead, let's pay the overhead only once, now, and |
|
* call checkout_entry_ca() again for this file, to |
|
* have its stat() data stored in the index. This also |
|
* has the benefit of adding this entry and its |
|
* colliding pair to the collision report message. |
|
* Additionally, this overwriting behavior is consistent |
|
* with what the sequential checkout does, so it doesn't |
|
* add any extra overhead. |
|
*/ |
|
ret |= checkout_entry_ca(pc_item->ce, &pc_item->ca, |
|
state, NULL, NULL); |
|
advance_progress_meter(); |
|
break; |
|
case PC_ITEM_PENDING: |
|
have_pending = 1; |
|
/* fall through */ |
|
case PC_ITEM_FAILED: |
|
ret = -1; |
|
break; |
|
default: |
|
BUG("unknown checkout item status in parallel checkout"); |
|
} |
|
} |
|
|
|
if (have_pending) |
|
error("parallel checkout finished with pending entries"); |
|
|
|
return ret; |
|
} |
|
|
|
static int reset_fd(int fd, const char *path) |
|
{ |
|
if (lseek(fd, 0, SEEK_SET) != 0) |
|
return error_errno("failed to rewind descriptor of '%s'", path); |
|
if (ftruncate(fd, 0)) |
|
return error_errno("failed to truncate file '%s'", path); |
|
return 0; |
|
} |
|
|
|
static int write_pc_item_to_fd(struct parallel_checkout_item *pc_item, int fd, |
|
const char *path) |
|
{ |
|
int ret; |
|
struct stream_filter *filter; |
|
struct strbuf buf = STRBUF_INIT; |
|
char *blob; |
|
size_t size; |
|
ssize_t wrote; |
|
|
|
/* Sanity check */ |
|
assert(is_eligible_for_parallel_checkout(pc_item->ce, &pc_item->ca)); |
|
|
|
filter = get_stream_filter_ca(&pc_item->ca, &pc_item->ce->oid); |
|
if (filter) { |
|
if (stream_blob_to_fd(fd, &pc_item->ce->oid, filter, 1)) { |
|
/* On error, reset fd to try writing without streaming */ |
|
if (reset_fd(fd, path)) |
|
return -1; |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
blob = read_blob_entry(pc_item->ce, &size); |
|
if (!blob) |
|
return error("cannot read object %s '%s'", |
|
oid_to_hex(&pc_item->ce->oid), pc_item->ce->name); |
|
|
|
/* |
|
* checkout metadata is used to give context for external process |
|
* filters. Files requiring such filters are not eligible for parallel |
|
* checkout, so pass NULL. Note: if that changes, the metadata must also |
|
* be passed from the main process to the workers. |
|
*/ |
|
ret = convert_to_working_tree_ca(&pc_item->ca, pc_item->ce->name, |
|
blob, size, &buf, NULL); |
|
|
|
if (ret) { |
|
size_t newsize; |
|
free(blob); |
|
blob = strbuf_detach(&buf, &newsize); |
|
size = newsize; |
|
} |
|
|
|
wrote = write_in_full(fd, blob, size); |
|
free(blob); |
|
if (wrote < 0) |
|
return error("unable to write file '%s'", path); |
|
|
|
return 0; |
|
} |
|
|
|
static int close_and_clear(int *fd) |
|
{ |
|
int ret = 0; |
|
|
|
if (*fd >= 0) { |
|
ret = close(*fd); |
|
*fd = -1; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
void write_pc_item(struct parallel_checkout_item *pc_item, |
|
struct checkout *state) |
|
{ |
|
unsigned int mode = (pc_item->ce->ce_mode & 0100) ? 0777 : 0666; |
|
int fd = -1, fstat_done = 0; |
|
struct strbuf path = STRBUF_INIT; |
|
const char *dir_sep; |
|
|
|
strbuf_add(&path, state->base_dir, state->base_dir_len); |
|
strbuf_add(&path, pc_item->ce->name, pc_item->ce->ce_namelen); |
|
|
|
dir_sep = find_last_dir_sep(path.buf); |
|
|
|
/* |
|
* The leading dirs should have been already created by now. But, in |
|
* case of path collisions, one of the dirs could have been replaced by |
|
* a symlink (checked out after we enqueued this entry for parallel |
|
* checkout). Thus, we must check the leading dirs again. |
|
*/ |
|
if (dir_sep && !has_dirs_only_path(path.buf, dir_sep - path.buf, |
|
state->base_dir_len)) { |
|
pc_item->status = PC_ITEM_COLLIDED; |
|
trace2_data_string("pcheckout", NULL, "collision/dirname", path.buf); |
|
goto out; |
|
} |
|
|
|
fd = open(path.buf, O_WRONLY | O_CREAT | O_EXCL, mode); |
|
|
|
if (fd < 0) { |
|
if (errno == EEXIST || errno == EISDIR) { |
|
/* |
|
* Errors which probably represent a path collision. |
|
* Suppress the error message and mark the item to be |
|
* retried later, sequentially. ENOTDIR and ENOENT are |
|
* also interesting, but the above has_dirs_only_path() |
|
* call should have already caught these cases. |
|
*/ |
|
pc_item->status = PC_ITEM_COLLIDED; |
|
trace2_data_string("pcheckout", NULL, |
|
"collision/basename", path.buf); |
|
} else { |
|
error_errno("failed to open file '%s'", path.buf); |
|
pc_item->status = PC_ITEM_FAILED; |
|
} |
|
goto out; |
|
} |
|
|
|
if (write_pc_item_to_fd(pc_item, fd, path.buf)) { |
|
/* Error was already reported. */ |
|
pc_item->status = PC_ITEM_FAILED; |
|
close_and_clear(&fd); |
|
unlink(path.buf); |
|
goto out; |
|
} |
|
|
|
fstat_done = fstat_checkout_output(fd, state, &pc_item->st); |
|
|
|
if (close_and_clear(&fd)) { |
|
error_errno("unable to close file '%s'", path.buf); |
|
pc_item->status = PC_ITEM_FAILED; |
|
goto out; |
|
} |
|
|
|
if (state->refresh_cache && !fstat_done && lstat(path.buf, &pc_item->st) < 0) { |
|
error_errno("unable to stat just-written file '%s'", path.buf); |
|
pc_item->status = PC_ITEM_FAILED; |
|
goto out; |
|
} |
|
|
|
pc_item->status = PC_ITEM_WRITTEN; |
|
|
|
out: |
|
strbuf_release(&path); |
|
} |
|
|
|
static void send_one_item(int fd, struct parallel_checkout_item *pc_item) |
|
{ |
|
size_t len_data; |
|
char *data, *variant; |
|
struct pc_item_fixed_portion *fixed_portion; |
|
const char *working_tree_encoding = pc_item->ca.working_tree_encoding; |
|
size_t name_len = pc_item->ce->ce_namelen; |
|
size_t working_tree_encoding_len = working_tree_encoding ? |
|
strlen(working_tree_encoding) : 0; |
|
|
|
/* |
|
* Any changes in the calculation of the message size must also be made |
|
* in is_eligible_for_parallel_checkout(). |
|
*/ |
|
len_data = sizeof(struct pc_item_fixed_portion) + name_len + |
|
working_tree_encoding_len; |
|
|
|
data = xmalloc(len_data); |
|
|
|
fixed_portion = (struct pc_item_fixed_portion *)data; |
|
fixed_portion->id = pc_item->id; |
|
fixed_portion->ce_mode = pc_item->ce->ce_mode; |
|
fixed_portion->crlf_action = pc_item->ca.crlf_action; |
|
fixed_portion->ident = pc_item->ca.ident; |
|
fixed_portion->name_len = name_len; |
|
fixed_portion->working_tree_encoding_len = working_tree_encoding_len; |
|
/* |
|
* We pad the unused bytes in the hash array because, otherwise, |
|
* Valgrind would complain about passing uninitialized bytes to a |
|
* write() syscall. The warning doesn't represent any real risk here, |
|
* but it could hinder the detection of actual errors. |
|
*/ |
|
oidcpy_with_padding(&fixed_portion->oid, &pc_item->ce->oid); |
|
|
|
variant = data + sizeof(*fixed_portion); |
|
if (working_tree_encoding_len) { |
|
memcpy(variant, working_tree_encoding, working_tree_encoding_len); |
|
variant += working_tree_encoding_len; |
|
} |
|
memcpy(variant, pc_item->ce->name, name_len); |
|
|
|
packet_write(fd, data, len_data); |
|
|
|
free(data); |
|
} |
|
|
|
static void send_batch(int fd, size_t start, size_t nr) |
|
{ |
|
size_t i; |
|
sigchain_push(SIGPIPE, SIG_IGN); |
|
for (i = 0; i < nr; i++) |
|
send_one_item(fd, ¶llel_checkout.items[start + i]); |
|
packet_flush(fd); |
|
sigchain_pop(SIGPIPE); |
|
} |
|
|
|
static struct pc_worker *setup_workers(struct checkout *state, int num_workers) |
|
{ |
|
struct pc_worker *workers; |
|
int i, workers_with_one_extra_item; |
|
size_t base_batch_size, batch_beginning = 0; |
|
|
|
ALLOC_ARRAY(workers, num_workers); |
|
|
|
for (i = 0; i < num_workers; i++) { |
|
struct child_process *cp = &workers[i].cp; |
|
|
|
child_process_init(cp); |
|
cp->git_cmd = 1; |
|
cp->in = -1; |
|
cp->out = -1; |
|
cp->clean_on_exit = 1; |
|
strvec_push(&cp->args, "checkout--worker"); |
|
if (state->base_dir_len) |
|
strvec_pushf(&cp->args, "--prefix=%s", state->base_dir); |
|
if (start_command(cp)) |
|
die("failed to spawn checkout worker"); |
|
} |
|
|
|
base_batch_size = parallel_checkout.nr / num_workers; |
|
workers_with_one_extra_item = parallel_checkout.nr % num_workers; |
|
|
|
for (i = 0; i < num_workers; i++) { |
|
struct pc_worker *worker = &workers[i]; |
|
size_t batch_size = base_batch_size; |
|
|
|
/* distribute the extra work evenly */ |
|
if (i < workers_with_one_extra_item) |
|
batch_size++; |
|
|
|
send_batch(worker->cp.in, batch_beginning, batch_size); |
|
worker->next_item_to_complete = batch_beginning; |
|
worker->nr_items_to_complete = batch_size; |
|
|
|
batch_beginning += batch_size; |
|
} |
|
|
|
return workers; |
|
} |
|
|
|
static void finish_workers(struct pc_worker *workers, int num_workers) |
|
{ |
|
int i; |
|
|
|
/* |
|
* Close pipes before calling finish_command() to let the workers |
|
* exit asynchronously and avoid spending extra time on wait(). |
|
*/ |
|
for (i = 0; i < num_workers; i++) { |
|
struct child_process *cp = &workers[i].cp; |
|
if (cp->in >= 0) |
|
close(cp->in); |
|
if (cp->out >= 0) |
|
close(cp->out); |
|
} |
|
|
|
for (i = 0; i < num_workers; i++) { |
|
int rc = finish_command(&workers[i].cp); |
|
if (rc > 128) { |
|
/* |
|
* For a normal non-zero exit, the worker should have |
|
* already printed something useful to stderr. But a |
|
* death by signal should be mentioned to the user. |
|
*/ |
|
error("checkout worker %d died of signal %d", i, rc - 128); |
|
} |
|
} |
|
|
|
free(workers); |
|
} |
|
|
|
static inline void assert_pc_item_result_size(int got, int exp) |
|
{ |
|
if (got != exp) |
|
BUG("wrong result size from checkout worker (got %dB, exp %dB)", |
|
got, exp); |
|
} |
|
|
|
static void parse_and_save_result(const char *buffer, int len, |
|
struct pc_worker *worker) |
|
{ |
|
struct pc_item_result *res; |
|
struct parallel_checkout_item *pc_item; |
|
struct stat *st = NULL; |
|
|
|
if (len < PC_ITEM_RESULT_BASE_SIZE) |
|
BUG("too short result from checkout worker (got %dB, exp >=%dB)", |
|
len, (int)PC_ITEM_RESULT_BASE_SIZE); |
|
|
|
res = (struct pc_item_result *)buffer; |
|
|
|
/* |
|
* Worker should send either the full result struct on success, or |
|
* just the base (i.e. no stat data), otherwise. |
|
*/ |
|
if (res->status == PC_ITEM_WRITTEN) { |
|
assert_pc_item_result_size(len, (int)sizeof(struct pc_item_result)); |
|
st = &res->st; |
|
} else { |
|
assert_pc_item_result_size(len, (int)PC_ITEM_RESULT_BASE_SIZE); |
|
} |
|
|
|
if (!worker->nr_items_to_complete) |
|
BUG("received result from supposedly finished checkout worker"); |
|
if (res->id != worker->next_item_to_complete) |
|
BUG("unexpected item id from checkout worker (got %"PRIuMAX", exp %"PRIuMAX")", |
|
(uintmax_t)res->id, (uintmax_t)worker->next_item_to_complete); |
|
|
|
worker->next_item_to_complete++; |
|
worker->nr_items_to_complete--; |
|
|
|
pc_item = ¶llel_checkout.items[res->id]; |
|
pc_item->status = res->status; |
|
if (st) |
|
pc_item->st = *st; |
|
|
|
if (res->status != PC_ITEM_COLLIDED) |
|
advance_progress_meter(); |
|
} |
|
|
|
static void gather_results_from_workers(struct pc_worker *workers, |
|
int num_workers) |
|
{ |
|
int i, active_workers = num_workers; |
|
struct pollfd *pfds; |
|
|
|
CALLOC_ARRAY(pfds, num_workers); |
|
for (i = 0; i < num_workers; i++) { |
|
pfds[i].fd = workers[i].cp.out; |
|
pfds[i].events = POLLIN; |
|
} |
|
|
|
while (active_workers) { |
|
int nr = poll(pfds, num_workers, -1); |
|
|
|
if (nr < 0) { |
|
if (errno == EINTR) |
|
continue; |
|
die_errno("failed to poll checkout workers"); |
|
} |
|
|
|
for (i = 0; i < num_workers && nr > 0; i++) { |
|
struct pc_worker *worker = &workers[i]; |
|
struct pollfd *pfd = &pfds[i]; |
|
|
|
if (!pfd->revents) |
|
continue; |
|
|
|
if (pfd->revents & POLLIN) { |
|
int len = packet_read(pfd->fd, packet_buffer, |
|
sizeof(packet_buffer), 0); |
|
|
|
if (len < 0) { |
|
BUG("packet_read() returned negative value"); |
|
} else if (!len) { |
|
pfd->fd = -1; |
|
active_workers--; |
|
} else { |
|
parse_and_save_result(packet_buffer, |
|
len, worker); |
|
} |
|
} else if (pfd->revents & POLLHUP) { |
|
pfd->fd = -1; |
|
active_workers--; |
|
} else if (pfd->revents & (POLLNVAL | POLLERR)) { |
|
die("error polling from checkout worker"); |
|
} |
|
|
|
nr--; |
|
} |
|
} |
|
|
|
free(pfds); |
|
} |
|
|
|
static void write_items_sequentially(struct checkout *state) |
|
{ |
|
size_t i; |
|
|
|
for (i = 0; i < parallel_checkout.nr; i++) { |
|
struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; |
|
write_pc_item(pc_item, state); |
|
if (pc_item->status != PC_ITEM_COLLIDED) |
|
advance_progress_meter(); |
|
} |
|
} |
|
|
|
int run_parallel_checkout(struct checkout *state, int num_workers, int threshold, |
|
struct progress *progress, unsigned int *progress_cnt) |
|
{ |
|
int ret; |
|
|
|
if (parallel_checkout.status != PC_ACCEPTING_ENTRIES) |
|
BUG("cannot run parallel checkout: uninitialized or already running"); |
|
|
|
parallel_checkout.status = PC_RUNNING; |
|
parallel_checkout.progress = progress; |
|
parallel_checkout.progress_cnt = progress_cnt; |
|
|
|
if (parallel_checkout.nr < num_workers) |
|
num_workers = parallel_checkout.nr; |
|
|
|
if (num_workers <= 1 || parallel_checkout.nr < threshold) { |
|
write_items_sequentially(state); |
|
} else { |
|
struct pc_worker *workers = setup_workers(state, num_workers); |
|
gather_results_from_workers(workers, num_workers); |
|
finish_workers(workers, num_workers); |
|
} |
|
|
|
ret = handle_results(state); |
|
|
|
finish_parallel_checkout(); |
|
return ret; |
|
}
|
|
|