You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

693 lines
18 KiB

/*
* Copyright (c) 2005, Jon Seymour
*
* For more information about epoch theory on which this module is based,
* refer to http://blackcubes.dyndns.org/epoch/. That web page defines
* terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
* for some of the algorithms used here.
*
*/
#include <stdlib.h>
#include <openssl/bn.h> // provides arbitrary precision integers
// required to accurately represent fractional
//mass
#include "cache.h"
#include "commit.h"
#include "epoch.h"
struct fraction {
BIGNUM numerator;
BIGNUM denominator;
};
#define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)
static BN_CTX *context = NULL;
static struct fraction *one = NULL;
static struct fraction *zero = NULL;
static BN_CTX *get_BN_CTX()
{
if (!context) {
context = BN_CTX_new();
}
return context;
}
static struct fraction *new_zero()
{
struct fraction *result = xmalloc(sizeof(*result));
BN_init(&result->numerator);
BN_init(&result->denominator);
BN_zero(&result->numerator);
BN_one(&result->denominator);
return result;
}
static void clear_fraction(struct fraction *fraction)
{
BN_clear(&fraction->numerator);
BN_clear(&fraction->denominator);
}
static struct fraction *divide(struct fraction *result, struct fraction *fraction, int divisor)
{
BIGNUM bn_divisor;
BN_init(&bn_divisor);
BN_set_word(&bn_divisor, divisor);
BN_copy(&result->numerator, &fraction->numerator);
BN_mul(&result->denominator, &fraction->denominator, &bn_divisor, get_BN_CTX());
BN_clear(&bn_divisor);
return result;
}
static struct fraction *init_fraction(struct fraction *fraction)
{
BN_init(&fraction->numerator);
BN_init(&fraction->denominator);
BN_zero(&fraction->numerator);
BN_one(&fraction->denominator);
return fraction;
}
static struct fraction *get_one()
{
if (!one) {
one = new_zero();
BN_one(&one->numerator);
}
return one;
}
static struct fraction *get_zero()
{
if (!zero) {
zero = new_zero();
}
return zero;
}
static struct fraction *copy(struct fraction *to, struct fraction *from)
{
BN_copy(&to->numerator, &from->numerator);
BN_copy(&to->denominator, &from->denominator);
return to;
}
static struct fraction *add(struct fraction *result, struct fraction *left, struct fraction *right)
{
BIGNUM a, b, gcd;
BN_init(&a);
BN_init(&b);
BN_init(&gcd);
BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
BN_mul(&result->denominator, &left->denominator, &right->denominator, get_BN_CTX());
BN_add(&result->numerator, &a, &b);
BN_gcd(&gcd, &result->denominator, &result->numerator, get_BN_CTX());
BN_div(&result->denominator, NULL, &result->denominator, &gcd, get_BN_CTX());
BN_div(&result->numerator, NULL, &result->numerator, &gcd, get_BN_CTX());
BN_clear(&a);
BN_clear(&b);
BN_clear(&gcd);
return result;
}
static int compare(struct fraction *left, struct fraction *right)
{
BIGNUM a, b;
int result;
BN_init(&a);
BN_init(&b);
BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
result = BN_cmp(&a, &b);
BN_clear(&a);
BN_clear(&b);
return result;
}
struct mass_counter {
struct fraction seen;
struct fraction pending;
};
static struct mass_counter *new_mass_counter(struct commit *commit, struct fraction *pending)
{
struct mass_counter *mass_counter = xmalloc(sizeof(*mass_counter));
memset(mass_counter, 0, sizeof(*mass_counter));
init_fraction(&mass_counter->seen);
init_fraction(&mass_counter->pending);
copy(&mass_counter->pending, pending);
copy(&mass_counter->seen, get_zero());
if (commit->object.util) {
die("multiple attempts to initialize mass counter for %s\n", sha1_to_hex(commit->object.sha1));
}
commit->object.util = mass_counter;
return mass_counter;
}
static void free_mass_counter(struct mass_counter *counter)
{
clear_fraction(&counter->seen);
clear_fraction(&counter->pending);
free(counter);
}
//
// Finds the base commit of a list of commits.
//
// One property of the commit being searched for is that every commit reachable
// from the base commit is reachable from the commits in the starting list only
// via paths that include the base commit.
//
// This algorithm uses a conservation of mass approach to find the base commit.
//
// We start by injecting one unit of mass into the graph at each
// of the commits in the starting list. Injecting mass into a commit
// is achieved by adding to its pending mass counter and, if it is not already
// enqueued, enqueuing the commit in a list of pending commits, in latest
// commit date first order.
//
// The algorithm then preceeds to visit each commit in the pending queue.
// Upon each visit, the pending mass is added to the mass already seen for that
// commit and then divided into N equal portions, where N is the number of
// parents of the commit being visited. The divided portions are then injected
// into each of the parents.
//
// The algorithm continues until we discover a commit which has seen all the
// mass originally injected or until we run out of things to do.
//
// If we find a commit that has seen all the original mass, we have found
// the common base of all the commits in the starting list.
//
// The algorithm does _not_ depend on accurate timestamps for correct operation.
// However, reasonably sane (e.g. non-random) timestamps are required in order
// to prevent an exponential performance characteristic. The occasional
// timestamp inaccuracy will not dramatically affect performance but may
// result in more nodes being processed than strictly necessary.
//
// This procedure sets *boundary to the address of the base commit. It returns
// non-zero if, and only if, there was a problem parsing one of the
// commits discovered during the traversal.
//
static int find_base_for_list(struct commit_list *list, struct commit **boundary)
{
int ret = 0;
struct commit_list *cleaner = NULL;
struct commit_list *pending = NULL;
*boundary = NULL;
struct fraction injected;
init_fraction(&injected);
for (; list; list = list->next) {
struct commit *item = list->item;
if (item->object.util || (item->object.flags & UNINTERESTING)) {
die("%s:%d:%s: logic error: this should not have happened - commit %s\n",
__FILE__, __LINE__, __FUNCTION__, sha1_to_hex(item->object.sha1));
}
new_mass_counter(list->item, get_one());
add(&injected, &injected, get_one());
commit_list_insert(list->item, &cleaner);
commit_list_insert(list->item, &pending);
}
while (!*boundary && pending && !ret) {
struct commit *latest = pop_commit(&pending);
struct mass_counter *latest_node = (struct mass_counter *) latest->object.util;
if ((ret = parse_commit(latest)))
continue;
add(&latest_node->seen, &latest_node->seen, &latest_node->pending);
int num_parents = count_parents(latest);
if (num_parents) {
struct fraction distribution;
struct commit_list *parents;
divide(init_fraction(&distribution), &latest_node->pending, num_parents);
for (parents = latest->parents; parents; parents = parents->next) {
struct commit *parent = parents->item;
struct mass_counter *parent_node = (struct mass_counter *) parent->object.util;
if (!parent_node) {
parent_node = new_mass_counter(parent, &distribution);
insert_by_date(&pending, parent);
commit_list_insert(parent, &cleaner);
} else {
if (!compare(&parent_node->pending, get_zero())) {
insert_by_date(&pending, parent);
}
add(&parent_node->pending, &parent_node->pending, &distribution);
}
}
clear_fraction(&distribution);
}
if (!compare(&latest_node->seen, &injected)) {
*boundary = latest;
}
copy(&latest_node->pending, get_zero());
}
while (cleaner) {
struct commit *next = pop_commit(&cleaner);
free_mass_counter((struct mass_counter *) next->object.util);
next->object.util = NULL;
}
if (pending)
free_commit_list(pending);
clear_fraction(&injected);
return ret;
}
//
// Finds the base of an minimal, non-linear epoch, headed at head, by
// applying the find_base_for_list to a list consisting of the parents
//
static int find_base(struct commit *head, struct commit **boundary)
{
int ret = 0;
struct commit_list *pending = NULL;
struct commit_list *next;
commit_list_insert(head, &pending);
for (next = head->parents; next; next = next->next) {
commit_list_insert(next->item, &pending);
}
ret = find_base_for_list(pending, boundary);
free_commit_list(pending);
return ret;
}
//
// This procedure traverses to the boundary of the first epoch in the epoch
// sequence of the epoch headed at head_of_epoch. This is either the end of
// the maximal linear epoch or the base of a minimal non-linear epoch.
//
// The queue of pending nodes is sorted in reverse date order and each node
// is currently in the queue at most once.
//
static int find_next_epoch_boundary(struct commit *head_of_epoch, struct commit **boundary)
{
int ret;
struct commit *item = head_of_epoch;
ret = parse_commit(item);
if (ret)
return ret;
if (HAS_EXACTLY_ONE_PARENT(item)) {
// we are at the start of a maximimal linear epoch .. traverse to the end
// traverse to the end of a maximal linear epoch
while (HAS_EXACTLY_ONE_PARENT(item) && !ret) {
item = item->parents->item;
ret = parse_commit(item);
}
*boundary = item;
} else {
// otherwise, we are at the start of a minimal, non-linear
// epoch - find the common base of all parents.
ret = find_base(item, boundary);
}
return ret;
}
//
// Returns non-zero if parent is known to be a parent of child.
//
static int is_parent_of(struct commit *parent, struct commit *child)
{
struct commit_list *parents;
for (parents = child->parents; parents; parents = parents->next) {
if (!memcmp(parent->object.sha1, parents->item->object.sha1, sizeof(parents->item->object.sha1)))
return 1;
}
return 0;
}
//
// Pushes an item onto the merge order stack. If the top of the stack is
// marked as being a possible "break", we check to see whether it actually
// is a break.
//
static void push_onto_merge_order_stack(struct commit_list **stack, struct commit *item)
{
struct commit_list *top = *stack;
if (top && (top->item->object.flags & DISCONTINUITY)) {
if (is_parent_of(top->item, item)) {
top->item->object.flags &= ~DISCONTINUITY;
}
}
commit_list_insert(item, stack);
}
//
// Marks all interesting, visited commits reachable from this commit
// as uninteresting. We stop recursing when we reach the epoch boundary,
// an unvisited node or a node that has already been marking uninteresting.
// This doesn't actually mark all ancestors between the start node and the
// epoch boundary uninteresting, but does ensure that they will
// eventually be marked uninteresting when the main sort_first_epoch
// traversal eventually reaches them.
//
static void mark_ancestors_uninteresting(struct commit *commit)
{
unsigned int flags = commit->object.flags;
int visited = flags & VISITED;
int boundary = flags & BOUNDARY;
int uninteresting = flags & UNINTERESTING;
if (uninteresting || boundary || !visited) {
commit->object.flags |= UNINTERESTING;
return;
// we only need to recurse if
// we are not on the boundary, and,
// we have not already been marked uninteresting, and,
// we have already been visited.
//
// the main sort_first_epoch traverse will
// mark unreachable all uninteresting, unvisited parents
// as they are visited so there is no need to duplicate
// that traversal here.
//
// similarly, if we are already marked uninteresting
// then either all ancestors have already been marked
// uninteresting or will be once the sort_first_epoch
// traverse reaches them.
//
}
struct commit_list *next;
for (next = commit->parents; next; next = next->next)
mark_ancestors_uninteresting(next->item);
}
//
// Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
// into merge order.
//
static void sort_first_epoch(struct commit *head, struct commit_list **stack)
{
struct commit_list *parents;
struct commit_list *reversed_parents = NULL;
head->object.flags |= VISITED;
//
// parse_commit builds the parent list in reverse order with respect to the order of
// the git-commit-tree arguments.
//
// so we need to reverse this list to output the oldest (or most "local") commits last.
//
for (parents = head->parents; parents; parents = parents->next)
commit_list_insert(parents->item, &reversed_parents);
//
// todo: by sorting the parents in a different order, we can alter the
// merge order to show contemporaneous changes in parallel branches
// occurring after "local" changes. This is useful for a developer
// when a developer wants to see all changes that were incorporated
// into the same merge as her own changes occur after her own
// changes.
//
while (reversed_parents) {
struct commit *parent = pop_commit(&reversed_parents);
if (head->object.flags & UNINTERESTING) {
// propagates the uninteresting bit to
// all parents. if we have already visited
// this parent, then the uninteresting bit
// will be propagated to each reachable
// commit that is still not marked uninteresting
// and won't otherwise be reached.
mark_ancestors_uninteresting(parent);
}
if (!(parent->object.flags & VISITED)) {
if (parent->object.flags & BOUNDARY) {
if (*stack) {
die("something else is on the stack - %s\n", sha1_to_hex((*stack)->item->object.sha1));
}
push_onto_merge_order_stack(stack, parent);
parent->object.flags |= VISITED;
} else {
sort_first_epoch(parent, stack);
if (reversed_parents) {
//
// this indicates a possible discontinuity
// it may not be be actual discontinuity if
// the head of parent N happens to be the tail
// of parent N+1
//
// the next push onto the stack will resolve the
// question
//
(*stack)->item->object.flags |= DISCONTINUITY;
}
}
}
}
push_onto_merge_order_stack(stack, head);
}
//
// Emit the contents of the stack.
//
// The stack is freed and replaced by NULL.
//
// Sets the return value to STOP if no further output should be generated.
//
static int emit_stack(struct commit_list **stack, emitter_func emitter)
{
unsigned int seen = 0;
int action = CONTINUE;
while (*stack && (action != STOP)) {
struct commit *next = pop_commit(stack);
seen |= next->object.flags;
if (*stack) {
action = (*emitter) (next);
}
}
if (*stack) {
free_commit_list(*stack);
*stack = NULL;
}
return (action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE;
}
//
// Sorts an arbitrary epoch into merge order by sorting each epoch
// of its epoch sequence into order.
//
// Note: this algorithm currently leaves traces of its execution in the
// object flags of nodes it discovers. This should probably be fixed.
//
static int sort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter)
{
struct commit *next = head_of_epoch;
int ret = 0;
int action = CONTINUE;
ret = parse_commit(head_of_epoch);
while (next && next->parents && !ret && (action != STOP)) {
struct commit *base = NULL;
if ((ret = find_next_epoch_boundary(next, &base)))
return ret;
next->object.flags |= BOUNDARY;
if (base) {
base->object.flags |= BOUNDARY;
}
if (HAS_EXACTLY_ONE_PARENT(next)) {
while (HAS_EXACTLY_ONE_PARENT(next)
&& (action != STOP)
&& !ret) {
if (next->object.flags & UNINTERESTING) {
action = STOP;
} else {
action = (*emitter) (next);
}
if (action != STOP) {
next = next->parents->item;
ret = parse_commit(next);
}
}
} else {
struct commit_list *stack = NULL;
sort_first_epoch(next, &stack);
action = emit_stack(&stack, emitter);
next = base;
}
}
if (next && (action != STOP) && !ret) {
(*emitter) (next);
}
return ret;
}
//
// Sorts the nodes reachable from a starting list in merge order, we
// first find the base for the starting list and then sort all nodes in this
// subgraph using the sort_first_epoch algorithm. Once we have reached the base
// we can continue sorting using sort_in_merge_order.
//
int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter)
{
struct commit_list *stack = NULL;
struct commit *base;
int ret = 0;
int action = CONTINUE;
struct commit_list *reversed = NULL;
for (; list; list = list->next) {
struct commit *next = list->item;
if (!(next->object.flags & UNINTERESTING)) {
if (next->object.flags & DUPCHECK) {
fprintf(stderr, "%s: duplicate commit %s ignored\n", __FUNCTION__, sha1_to_hex(next->object.sha1));
} else {
next->object.flags |= DUPCHECK;
commit_list_insert(list->item, &reversed);
}
}
}
if (!reversed->next) {
// if there is only one element in the list, we can sort it using
// sort_in_merge_order.
base = reversed->item;
} else {
// otherwise, we search for the base of the list
if ((ret = find_base_for_list(reversed, &base)))
return ret;
if (base) {
base->object.flags |= BOUNDARY;
}
while (reversed) {
sort_first_epoch(pop_commit(&reversed), &stack);
if (reversed) {
//
// if we have more commits to push, then the
// first push for the next parent may (or may not)
// represent a discontinuity with respect to the
// parent currently on the top of the stack.
//
// mark it for checking here, and check it
// with the next push...see sort_first_epoch for
// more details.
//
stack->item->object.flags |= DISCONTINUITY;
}
}
action = emit_stack(&stack, emitter);
}
if (base && (action != STOP)) {
ret = sort_in_merge_order(base, emitter);
}
return ret;
}