You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
451 lines
9.8 KiB
451 lines
9.8 KiB
#include "cache.h" |
|
#include "commit.h" |
|
#include "diff.h" |
|
#include "revision.h" |
|
#include "bisect.h" |
|
|
|
static unsigned char (*skipped_sha1)[20]; |
|
static int skipped_sha1_nr; |
|
|
|
/* bits #0-15 in revision.h */ |
|
|
|
#define COUNTED (1u<<16) |
|
|
|
/* |
|
* This is a truly stupid algorithm, but it's only |
|
* used for bisection, and we just don't care enough. |
|
* |
|
* We care just barely enough to avoid recursing for |
|
* non-merge entries. |
|
*/ |
|
static int count_distance(struct commit_list *entry) |
|
{ |
|
int nr = 0; |
|
|
|
while (entry) { |
|
struct commit *commit = entry->item; |
|
struct commit_list *p; |
|
|
|
if (commit->object.flags & (UNINTERESTING | COUNTED)) |
|
break; |
|
if (!(commit->object.flags & TREESAME)) |
|
nr++; |
|
commit->object.flags |= COUNTED; |
|
p = commit->parents; |
|
entry = p; |
|
if (p) { |
|
p = p->next; |
|
while (p) { |
|
nr += count_distance(p); |
|
p = p->next; |
|
} |
|
} |
|
} |
|
|
|
return nr; |
|
} |
|
|
|
static void clear_distance(struct commit_list *list) |
|
{ |
|
while (list) { |
|
struct commit *commit = list->item; |
|
commit->object.flags &= ~COUNTED; |
|
list = list->next; |
|
} |
|
} |
|
|
|
#define DEBUG_BISECT 0 |
|
|
|
static inline int weight(struct commit_list *elem) |
|
{ |
|
return *((int*)(elem->item->util)); |
|
} |
|
|
|
static inline void weight_set(struct commit_list *elem, int weight) |
|
{ |
|
*((int*)(elem->item->util)) = weight; |
|
} |
|
|
|
static int count_interesting_parents(struct commit *commit) |
|
{ |
|
struct commit_list *p; |
|
int count; |
|
|
|
for (count = 0, p = commit->parents; p; p = p->next) { |
|
if (p->item->object.flags & UNINTERESTING) |
|
continue; |
|
count++; |
|
} |
|
return count; |
|
} |
|
|
|
static inline int halfway(struct commit_list *p, int nr) |
|
{ |
|
/* |
|
* Don't short-cut something we are not going to return! |
|
*/ |
|
if (p->item->object.flags & TREESAME) |
|
return 0; |
|
if (DEBUG_BISECT) |
|
return 0; |
|
/* |
|
* 2 and 3 are halfway of 5. |
|
* 3 is halfway of 6 but 2 and 4 are not. |
|
*/ |
|
switch (2 * weight(p) - nr) { |
|
case -1: case 0: case 1: |
|
return 1; |
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
#if !DEBUG_BISECT |
|
#define show_list(a,b,c,d) do { ; } while (0) |
|
#else |
|
static void show_list(const char *debug, int counted, int nr, |
|
struct commit_list *list) |
|
{ |
|
struct commit_list *p; |
|
|
|
fprintf(stderr, "%s (%d/%d)\n", debug, counted, nr); |
|
|
|
for (p = list; p; p = p->next) { |
|
struct commit_list *pp; |
|
struct commit *commit = p->item; |
|
unsigned flags = commit->object.flags; |
|
enum object_type type; |
|
unsigned long size; |
|
char *buf = read_sha1_file(commit->object.sha1, &type, &size); |
|
char *ep, *sp; |
|
|
|
fprintf(stderr, "%c%c%c ", |
|
(flags & TREESAME) ? ' ' : 'T', |
|
(flags & UNINTERESTING) ? 'U' : ' ', |
|
(flags & COUNTED) ? 'C' : ' '); |
|
if (commit->util) |
|
fprintf(stderr, "%3d", weight(p)); |
|
else |
|
fprintf(stderr, "---"); |
|
fprintf(stderr, " %.*s", 8, sha1_to_hex(commit->object.sha1)); |
|
for (pp = commit->parents; pp; pp = pp->next) |
|
fprintf(stderr, " %.*s", 8, |
|
sha1_to_hex(pp->item->object.sha1)); |
|
|
|
sp = strstr(buf, "\n\n"); |
|
if (sp) { |
|
sp += 2; |
|
for (ep = sp; *ep && *ep != '\n'; ep++) |
|
; |
|
fprintf(stderr, " %.*s", (int)(ep - sp), sp); |
|
} |
|
fprintf(stderr, "\n"); |
|
} |
|
} |
|
#endif /* DEBUG_BISECT */ |
|
|
|
static struct commit_list *best_bisection(struct commit_list *list, int nr) |
|
{ |
|
struct commit_list *p, *best; |
|
int best_distance = -1; |
|
|
|
best = list; |
|
for (p = list; p; p = p->next) { |
|
int distance; |
|
unsigned flags = p->item->object.flags; |
|
|
|
if (flags & TREESAME) |
|
continue; |
|
distance = weight(p); |
|
if (nr - distance < distance) |
|
distance = nr - distance; |
|
if (distance > best_distance) { |
|
best = p; |
|
best_distance = distance; |
|
} |
|
} |
|
|
|
return best; |
|
} |
|
|
|
struct commit_dist { |
|
struct commit *commit; |
|
int distance; |
|
}; |
|
|
|
static int compare_commit_dist(const void *a_, const void *b_) |
|
{ |
|
struct commit_dist *a, *b; |
|
|
|
a = (struct commit_dist *)a_; |
|
b = (struct commit_dist *)b_; |
|
if (a->distance != b->distance) |
|
return b->distance - a->distance; /* desc sort */ |
|
return hashcmp(a->commit->object.sha1, b->commit->object.sha1); |
|
} |
|
|
|
static struct commit_list *best_bisection_sorted(struct commit_list *list, int nr) |
|
{ |
|
struct commit_list *p; |
|
struct commit_dist *array = xcalloc(nr, sizeof(*array)); |
|
int cnt, i; |
|
|
|
for (p = list, cnt = 0; p; p = p->next) { |
|
int distance; |
|
unsigned flags = p->item->object.flags; |
|
|
|
if (flags & TREESAME) |
|
continue; |
|
distance = weight(p); |
|
if (nr - distance < distance) |
|
distance = nr - distance; |
|
array[cnt].commit = p->item; |
|
array[cnt].distance = distance; |
|
cnt++; |
|
} |
|
qsort(array, cnt, sizeof(*array), compare_commit_dist); |
|
for (p = list, i = 0; i < cnt; i++) { |
|
struct name_decoration *r = xmalloc(sizeof(*r) + 100); |
|
struct object *obj = &(array[i].commit->object); |
|
|
|
sprintf(r->name, "dist=%d", array[i].distance); |
|
r->next = add_decoration(&name_decoration, obj, r); |
|
p->item = array[i].commit; |
|
p = p->next; |
|
} |
|
if (p) |
|
p->next = NULL; |
|
free(array); |
|
return list; |
|
} |
|
|
|
/* |
|
* zero or positive weight is the number of interesting commits it can |
|
* reach, including itself. Especially, weight = 0 means it does not |
|
* reach any tree-changing commits (e.g. just above uninteresting one |
|
* but traversal is with pathspec). |
|
* |
|
* weight = -1 means it has one parent and its distance is yet to |
|
* be computed. |
|
* |
|
* weight = -2 means it has more than one parent and its distance is |
|
* unknown. After running count_distance() first, they will get zero |
|
* or positive distance. |
|
*/ |
|
static struct commit_list *do_find_bisection(struct commit_list *list, |
|
int nr, int *weights, |
|
int find_all) |
|
{ |
|
int n, counted; |
|
struct commit_list *p; |
|
|
|
counted = 0; |
|
|
|
for (n = 0, p = list; p; p = p->next) { |
|
struct commit *commit = p->item; |
|
unsigned flags = commit->object.flags; |
|
|
|
p->item->util = &weights[n++]; |
|
switch (count_interesting_parents(commit)) { |
|
case 0: |
|
if (!(flags & TREESAME)) { |
|
weight_set(p, 1); |
|
counted++; |
|
show_list("bisection 2 count one", |
|
counted, nr, list); |
|
} |
|
/* |
|
* otherwise, it is known not to reach any |
|
* tree-changing commit and gets weight 0. |
|
*/ |
|
break; |
|
case 1: |
|
weight_set(p, -1); |
|
break; |
|
default: |
|
weight_set(p, -2); |
|
break; |
|
} |
|
} |
|
|
|
show_list("bisection 2 initialize", counted, nr, list); |
|
|
|
/* |
|
* If you have only one parent in the resulting set |
|
* then you can reach one commit more than that parent |
|
* can reach. So we do not have to run the expensive |
|
* count_distance() for single strand of pearls. |
|
* |
|
* However, if you have more than one parents, you cannot |
|
* just add their distance and one for yourself, since |
|
* they usually reach the same ancestor and you would |
|
* end up counting them twice that way. |
|
* |
|
* So we will first count distance of merges the usual |
|
* way, and then fill the blanks using cheaper algorithm. |
|
*/ |
|
for (p = list; p; p = p->next) { |
|
if (p->item->object.flags & UNINTERESTING) |
|
continue; |
|
if (weight(p) != -2) |
|
continue; |
|
weight_set(p, count_distance(p)); |
|
clear_distance(list); |
|
|
|
/* Does it happen to be at exactly half-way? */ |
|
if (!find_all && halfway(p, nr)) |
|
return p; |
|
counted++; |
|
} |
|
|
|
show_list("bisection 2 count_distance", counted, nr, list); |
|
|
|
while (counted < nr) { |
|
for (p = list; p; p = p->next) { |
|
struct commit_list *q; |
|
unsigned flags = p->item->object.flags; |
|
|
|
if (0 <= weight(p)) |
|
continue; |
|
for (q = p->item->parents; q; q = q->next) { |
|
if (q->item->object.flags & UNINTERESTING) |
|
continue; |
|
if (0 <= weight(q)) |
|
break; |
|
} |
|
if (!q) |
|
continue; |
|
|
|
/* |
|
* weight for p is unknown but q is known. |
|
* add one for p itself if p is to be counted, |
|
* otherwise inherit it from q directly. |
|
*/ |
|
if (!(flags & TREESAME)) { |
|
weight_set(p, weight(q)+1); |
|
counted++; |
|
show_list("bisection 2 count one", |
|
counted, nr, list); |
|
} |
|
else |
|
weight_set(p, weight(q)); |
|
|
|
/* Does it happen to be at exactly half-way? */ |
|
if (!find_all && halfway(p, nr)) |
|
return p; |
|
} |
|
} |
|
|
|
show_list("bisection 2 counted all", counted, nr, list); |
|
|
|
if (!find_all) |
|
return best_bisection(list, nr); |
|
else |
|
return best_bisection_sorted(list, nr); |
|
} |
|
|
|
struct commit_list *find_bisection(struct commit_list *list, |
|
int *reaches, int *all, |
|
int find_all) |
|
{ |
|
int nr, on_list; |
|
struct commit_list *p, *best, *next, *last; |
|
int *weights; |
|
|
|
show_list("bisection 2 entry", 0, 0, list); |
|
|
|
/* |
|
* Count the number of total and tree-changing items on the |
|
* list, while reversing the list. |
|
*/ |
|
for (nr = on_list = 0, last = NULL, p = list; |
|
p; |
|
p = next) { |
|
unsigned flags = p->item->object.flags; |
|
|
|
next = p->next; |
|
if (flags & UNINTERESTING) |
|
continue; |
|
p->next = last; |
|
last = p; |
|
if (!(flags & TREESAME)) |
|
nr++; |
|
on_list++; |
|
} |
|
list = last; |
|
show_list("bisection 2 sorted", 0, nr, list); |
|
|
|
*all = nr; |
|
weights = xcalloc(on_list, sizeof(*weights)); |
|
|
|
/* Do the real work of finding bisection commit. */ |
|
best = do_find_bisection(list, nr, weights, find_all); |
|
if (best) { |
|
if (!find_all) |
|
best->next = NULL; |
|
*reaches = weight(best); |
|
} |
|
free(weights); |
|
return best; |
|
} |
|
|
|
static int skipcmp(const void *a, const void *b) |
|
{ |
|
return hashcmp(a, b); |
|
} |
|
|
|
static void prepare_skipped(void) |
|
{ |
|
qsort(skipped_sha1, skipped_sha1_nr, sizeof(*skipped_sha1), skipcmp); |
|
} |
|
|
|
static int lookup_skipped(unsigned char *sha1) |
|
{ |
|
int lo, hi; |
|
lo = 0; |
|
hi = skipped_sha1_nr; |
|
while (lo < hi) { |
|
int mi = (lo + hi) / 2; |
|
int cmp = hashcmp(sha1, skipped_sha1[mi]); |
|
if (!cmp) |
|
return mi; |
|
if (cmp < 0) |
|
hi = mi; |
|
else |
|
lo = mi + 1; |
|
} |
|
return -lo - 1; |
|
} |
|
|
|
struct commit_list *filter_skipped(struct commit_list *list, |
|
struct commit_list **tried, |
|
int show_all) |
|
{ |
|
struct commit_list *filtered = NULL, **f = &filtered; |
|
|
|
*tried = NULL; |
|
|
|
if (!skipped_sha1_nr) |
|
return list; |
|
|
|
prepare_skipped(); |
|
|
|
while (list) { |
|
struct commit_list *next = list->next; |
|
list->next = NULL; |
|
if (0 <= lookup_skipped(list->item->object.sha1)) { |
|
/* Move current to tried list */ |
|
*tried = list; |
|
tried = &list->next; |
|
} else { |
|
if (!show_all) |
|
return list; |
|
/* Move current to filtered list */ |
|
*f = list; |
|
f = &list->next; |
|
} |
|
list = next; |
|
} |
|
|
|
return filtered; |
|
}
|
|
|