You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
6.9 KiB
251 lines
6.9 KiB
#include "cache.h" |
|
#include "pack-revindex.h" |
|
|
|
/* |
|
* Pack index for existing packs give us easy access to the offsets into |
|
* corresponding pack file where each object's data starts, but the entries |
|
* do not store the size of the compressed representation (uncompressed |
|
* size is easily available by examining the pack entry header). It is |
|
* also rather expensive to find the sha1 for an object given its offset. |
|
* |
|
* We build a hashtable of existing packs (pack_revindex), and keep reverse |
|
* index here -- pack index file is sorted by object name mapping to offset; |
|
* this pack_revindex[].revindex array is a list of offset/index_nr pairs |
|
* ordered by offset, so if you know the offset of an object, next offset |
|
* is where its packed representation ends and the index_nr can be used to |
|
* get the object sha1 from the main index. |
|
*/ |
|
|
|
static struct pack_revindex *pack_revindex; |
|
static int pack_revindex_hashsz; |
|
|
|
static int pack_revindex_ix(struct packed_git *p) |
|
{ |
|
unsigned long ui = (unsigned long)(intptr_t)p; |
|
int i; |
|
|
|
ui = ui ^ (ui >> 16); /* defeat structure alignment */ |
|
i = (int)(ui % pack_revindex_hashsz); |
|
while (pack_revindex[i].p) { |
|
if (pack_revindex[i].p == p) |
|
return i; |
|
if (++i == pack_revindex_hashsz) |
|
i = 0; |
|
} |
|
return -1 - i; |
|
} |
|
|
|
static void init_pack_revindex(void) |
|
{ |
|
int num; |
|
struct packed_git *p; |
|
|
|
for (num = 0, p = packed_git; p; p = p->next) |
|
num++; |
|
if (!num) |
|
return; |
|
pack_revindex_hashsz = num * 11; |
|
pack_revindex = xcalloc(pack_revindex_hashsz, sizeof(*pack_revindex)); |
|
for (p = packed_git; p; p = p->next) { |
|
num = pack_revindex_ix(p); |
|
num = - 1 - num; |
|
pack_revindex[num].p = p; |
|
} |
|
/* revindex elements are lazily initialized */ |
|
} |
|
|
|
/* |
|
* This is a least-significant-digit radix sort. |
|
* |
|
* It sorts each of the "n" items in "entries" by its offset field. The "max" |
|
* parameter must be at least as large as the largest offset in the array, |
|
* and lets us quit the sort early. |
|
*/ |
|
static void sort_revindex(struct revindex_entry *entries, unsigned n, off_t max) |
|
{ |
|
/* |
|
* We use a "digit" size of 16 bits. That keeps our memory |
|
* usage reasonable, and we can generally (for a 4G or smaller |
|
* packfile) quit after two rounds of radix-sorting. |
|
*/ |
|
#define DIGIT_SIZE (16) |
|
#define BUCKETS (1 << DIGIT_SIZE) |
|
/* |
|
* We want to know the bucket that a[i] will go into when we are using |
|
* the digit that is N bits from the (least significant) end. |
|
*/ |
|
#define BUCKET_FOR(a, i, bits) (((a)[(i)].offset >> (bits)) & (BUCKETS-1)) |
|
|
|
/* |
|
* We need O(n) temporary storage. Rather than do an extra copy of the |
|
* partial results into "entries", we sort back and forth between the |
|
* real array and temporary storage. In each iteration of the loop, we |
|
* keep track of them with alias pointers, always sorting from "from" |
|
* to "to". |
|
*/ |
|
struct revindex_entry *tmp, *from, *to; |
|
int bits; |
|
unsigned *pos; |
|
|
|
ALLOC_ARRAY(pos, BUCKETS); |
|
ALLOC_ARRAY(tmp, n); |
|
from = entries; |
|
to = tmp; |
|
|
|
/* |
|
* If (max >> bits) is zero, then we know that the radix digit we are |
|
* on (and any higher) will be zero for all entries, and our loop will |
|
* be a no-op, as everybody lands in the same zero-th bucket. |
|
*/ |
|
for (bits = 0; max >> bits; bits += DIGIT_SIZE) { |
|
struct revindex_entry *swap; |
|
unsigned i; |
|
|
|
memset(pos, 0, BUCKETS * sizeof(*pos)); |
|
|
|
/* |
|
* We want pos[i] to store the index of the last element that |
|
* will go in bucket "i" (actually one past the last element). |
|
* To do this, we first count the items that will go in each |
|
* bucket, which gives us a relative offset from the last |
|
* bucket. We can then cumulatively add the index from the |
|
* previous bucket to get the true index. |
|
*/ |
|
for (i = 0; i < n; i++) |
|
pos[BUCKET_FOR(from, i, bits)]++; |
|
for (i = 1; i < BUCKETS; i++) |
|
pos[i] += pos[i-1]; |
|
|
|
/* |
|
* Now we can drop the elements into their correct buckets (in |
|
* our temporary array). We iterate the pos counter backwards |
|
* to avoid using an extra index to count up. And since we are |
|
* going backwards there, we must also go backwards through the |
|
* array itself, to keep the sort stable. |
|
* |
|
* Note that we use an unsigned iterator to make sure we can |
|
* handle 2^32-1 objects, even on a 32-bit system. But this |
|
* means we cannot use the more obvious "i >= 0" loop condition |
|
* for counting backwards, and must instead check for |
|
* wrap-around with UINT_MAX. |
|
*/ |
|
for (i = n - 1; i != UINT_MAX; i--) |
|
to[--pos[BUCKET_FOR(from, i, bits)]] = from[i]; |
|
|
|
/* |
|
* Now "to" contains the most sorted list, so we swap "from" and |
|
* "to" for the next iteration. |
|
*/ |
|
swap = from; |
|
from = to; |
|
to = swap; |
|
} |
|
|
|
/* |
|
* If we ended with our data in the original array, great. If not, |
|
* we have to move it back from the temporary storage. |
|
*/ |
|
if (from != entries) |
|
memcpy(entries, tmp, n * sizeof(*entries)); |
|
free(tmp); |
|
free(pos); |
|
|
|
#undef BUCKET_FOR |
|
#undef BUCKETS |
|
#undef DIGIT_SIZE |
|
} |
|
|
|
/* |
|
* Ordered list of offsets of objects in the pack. |
|
*/ |
|
static void create_pack_revindex(struct pack_revindex *rix) |
|
{ |
|
struct packed_git *p = rix->p; |
|
unsigned num_ent = p->num_objects; |
|
unsigned i; |
|
const char *index = p->index_data; |
|
|
|
ALLOC_ARRAY(rix->revindex, num_ent + 1); |
|
index += 4 * 256; |
|
|
|
if (p->index_version > 1) { |
|
const uint32_t *off_32 = |
|
(uint32_t *)(index + 8 + p->num_objects * (20 + 4)); |
|
const uint32_t *off_64 = off_32 + p->num_objects; |
|
for (i = 0; i < num_ent; i++) { |
|
uint32_t off = ntohl(*off_32++); |
|
if (!(off & 0x80000000)) { |
|
rix->revindex[i].offset = off; |
|
} else { |
|
rix->revindex[i].offset = |
|
((uint64_t)ntohl(*off_64++)) << 32; |
|
rix->revindex[i].offset |= |
|
ntohl(*off_64++); |
|
} |
|
rix->revindex[i].nr = i; |
|
} |
|
} else { |
|
for (i = 0; i < num_ent; i++) { |
|
uint32_t hl = *((uint32_t *)(index + 24 * i)); |
|
rix->revindex[i].offset = ntohl(hl); |
|
rix->revindex[i].nr = i; |
|
} |
|
} |
|
|
|
/* This knows the pack format -- the 20-byte trailer |
|
* follows immediately after the last object data. |
|
*/ |
|
rix->revindex[num_ent].offset = p->pack_size - 20; |
|
rix->revindex[num_ent].nr = -1; |
|
sort_revindex(rix->revindex, num_ent, p->pack_size); |
|
} |
|
|
|
struct pack_revindex *revindex_for_pack(struct packed_git *p) |
|
{ |
|
int num; |
|
struct pack_revindex *rix; |
|
|
|
if (!pack_revindex_hashsz) |
|
init_pack_revindex(); |
|
|
|
num = pack_revindex_ix(p); |
|
if (num < 0) |
|
die("internal error: pack revindex fubar"); |
|
|
|
rix = &pack_revindex[num]; |
|
if (!rix->revindex) |
|
create_pack_revindex(rix); |
|
|
|
return rix; |
|
} |
|
|
|
int find_revindex_position(struct pack_revindex *pridx, off_t ofs) |
|
{ |
|
int lo = 0; |
|
int hi = pridx->p->num_objects + 1; |
|
struct revindex_entry *revindex = pridx->revindex; |
|
|
|
do { |
|
unsigned mi = lo + (hi - lo) / 2; |
|
if (revindex[mi].offset == ofs) { |
|
return mi; |
|
} else if (ofs < revindex[mi].offset) |
|
hi = mi; |
|
else |
|
lo = mi + 1; |
|
} while (lo < hi); |
|
|
|
error("bad offset for revindex"); |
|
return -1; |
|
} |
|
|
|
struct revindex_entry *find_pack_revindex(struct packed_git *p, off_t ofs) |
|
{ |
|
struct pack_revindex *pridx = revindex_for_pack(p); |
|
int pos = find_revindex_position(pridx, ofs); |
|
|
|
if (pos < 0) |
|
return NULL; |
|
|
|
return pridx->revindex + pos; |
|
}
|
|
|