You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
731 lines
19 KiB
731 lines
19 KiB
/* |
|
* name-hash.c |
|
* |
|
* Hashing names in the index state |
|
* |
|
* Copyright (C) 2008 Linus Torvalds |
|
*/ |
|
#include "cache.h" |
|
#include "thread-utils.h" |
|
|
|
struct dir_entry { |
|
struct hashmap_entry ent; |
|
struct dir_entry *parent; |
|
int nr; |
|
unsigned int namelen; |
|
char name[FLEX_ARRAY]; |
|
}; |
|
|
|
static int dir_entry_cmp(const void *unused_cmp_data, |
|
const struct hashmap_entry *eptr, |
|
const struct hashmap_entry *entry_or_key, |
|
const void *keydata) |
|
{ |
|
const struct dir_entry *e1, *e2; |
|
const char *name = keydata; |
|
|
|
e1 = container_of(eptr, const struct dir_entry, ent); |
|
e2 = container_of(entry_or_key, const struct dir_entry, ent); |
|
|
|
return e1->namelen != e2->namelen || strncasecmp(e1->name, |
|
name ? name : e2->name, e1->namelen); |
|
} |
|
|
|
static struct dir_entry *find_dir_entry__hash(struct index_state *istate, |
|
const char *name, unsigned int namelen, unsigned int hash) |
|
{ |
|
struct dir_entry key; |
|
hashmap_entry_init(&key.ent, hash); |
|
key.namelen = namelen; |
|
return hashmap_get_entry(&istate->dir_hash, &key, ent, name); |
|
} |
|
|
|
static struct dir_entry *find_dir_entry(struct index_state *istate, |
|
const char *name, unsigned int namelen) |
|
{ |
|
return find_dir_entry__hash(istate, name, namelen, memihash(name, namelen)); |
|
} |
|
|
|
static struct dir_entry *hash_dir_entry(struct index_state *istate, |
|
struct cache_entry *ce, int namelen) |
|
{ |
|
/* |
|
* Throw each directory component in the hash for quick lookup |
|
* during a git status. Directory components are stored without their |
|
* closing slash. Despite submodules being a directory, they never |
|
* reach this point, because they are stored |
|
* in index_state.name_hash (as ordinary cache_entries). |
|
*/ |
|
struct dir_entry *dir; |
|
|
|
/* get length of parent directory */ |
|
while (namelen > 0 && !is_dir_sep(ce->name[namelen - 1])) |
|
namelen--; |
|
if (namelen <= 0) |
|
return NULL; |
|
namelen--; |
|
|
|
/* lookup existing entry for that directory */ |
|
dir = find_dir_entry(istate, ce->name, namelen); |
|
if (!dir) { |
|
/* not found, create it and add to hash table */ |
|
FLEX_ALLOC_MEM(dir, name, ce->name, namelen); |
|
hashmap_entry_init(&dir->ent, memihash(ce->name, namelen)); |
|
dir->namelen = namelen; |
|
hashmap_add(&istate->dir_hash, &dir->ent); |
|
|
|
/* recursively add missing parent directories */ |
|
dir->parent = hash_dir_entry(istate, ce, namelen); |
|
} |
|
return dir; |
|
} |
|
|
|
static void add_dir_entry(struct index_state *istate, struct cache_entry *ce) |
|
{ |
|
/* Add reference to the directory entry (and parents if 0). */ |
|
struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce)); |
|
while (dir && !(dir->nr++)) |
|
dir = dir->parent; |
|
} |
|
|
|
static void remove_dir_entry(struct index_state *istate, struct cache_entry *ce) |
|
{ |
|
/* |
|
* Release reference to the directory entry. If 0, remove and continue |
|
* with parent directory. |
|
*/ |
|
struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce)); |
|
while (dir && !(--dir->nr)) { |
|
struct dir_entry *parent = dir->parent; |
|
hashmap_remove(&istate->dir_hash, &dir->ent, NULL); |
|
free(dir); |
|
dir = parent; |
|
} |
|
} |
|
|
|
static void hash_index_entry(struct index_state *istate, struct cache_entry *ce) |
|
{ |
|
if (ce->ce_flags & CE_HASHED) |
|
return; |
|
ce->ce_flags |= CE_HASHED; |
|
hashmap_entry_init(&ce->ent, memihash(ce->name, ce_namelen(ce))); |
|
hashmap_add(&istate->name_hash, &ce->ent); |
|
|
|
if (ignore_case) |
|
add_dir_entry(istate, ce); |
|
} |
|
|
|
static int cache_entry_cmp(const void *unused_cmp_data, |
|
const struct hashmap_entry *eptr, |
|
const struct hashmap_entry *entry_or_key, |
|
const void *remove) |
|
{ |
|
const struct cache_entry *ce1, *ce2; |
|
|
|
ce1 = container_of(eptr, const struct cache_entry, ent); |
|
ce2 = container_of(entry_or_key, const struct cache_entry, ent); |
|
|
|
/* |
|
* For remove_name_hash, find the exact entry (pointer equality); for |
|
* index_file_exists, find all entries with matching hash code and |
|
* decide whether the entry matches in same_name. |
|
*/ |
|
return remove ? !(ce1 == ce2) : 0; |
|
} |
|
|
|
static int lazy_try_threaded = 1; |
|
static int lazy_nr_dir_threads; |
|
|
|
/* |
|
* Set a minimum number of cache_entries that we will handle per |
|
* thread and use that to decide how many threads to run (up to |
|
* the number on the system). |
|
* |
|
* For guidance setting the lower per-thread bound, see: |
|
* t/helper/test-lazy-init-name-hash --analyze |
|
*/ |
|
#define LAZY_THREAD_COST (2000) |
|
|
|
/* |
|
* We use n mutexes to guard n partitions of the "istate->dir_hash" |
|
* hashtable. Since "find" and "insert" operations will hash to a |
|
* particular bucket and modify/search a single chain, we can say |
|
* that "all chains mod n" are guarded by the same mutex -- rather |
|
* than having a single mutex to guard the entire table. (This does |
|
* require that we disable "rehashing" on the hashtable.) |
|
* |
|
* So, a larger value here decreases the probability of a collision |
|
* and the time that each thread must wait for the mutex. |
|
*/ |
|
#define LAZY_MAX_MUTEX (32) |
|
|
|
static pthread_mutex_t *lazy_dir_mutex_array; |
|
|
|
/* |
|
* An array of lazy_entry items is used by the n threads in |
|
* the directory parse (first) phase to (lock-free) store the |
|
* intermediate results. These values are then referenced by |
|
* the 2 threads in the second phase. |
|
*/ |
|
struct lazy_entry { |
|
struct dir_entry *dir; |
|
unsigned int hash_dir; |
|
unsigned int hash_name; |
|
}; |
|
|
|
/* |
|
* Decide if we want to use threads (if available) to load |
|
* the hash tables. We set "lazy_nr_dir_threads" to zero when |
|
* it is not worth it. |
|
*/ |
|
static int lookup_lazy_params(struct index_state *istate) |
|
{ |
|
int nr_cpus; |
|
|
|
lazy_nr_dir_threads = 0; |
|
|
|
if (!lazy_try_threaded) |
|
return 0; |
|
|
|
/* |
|
* If we are respecting case, just use the original |
|
* code to build the "istate->name_hash". We don't |
|
* need the complexity here. |
|
*/ |
|
if (!ignore_case) |
|
return 0; |
|
|
|
nr_cpus = online_cpus(); |
|
if (nr_cpus < 2) |
|
return 0; |
|
|
|
if (istate->cache_nr < 2 * LAZY_THREAD_COST) |
|
return 0; |
|
|
|
if (istate->cache_nr < nr_cpus * LAZY_THREAD_COST) |
|
nr_cpus = istate->cache_nr / LAZY_THREAD_COST; |
|
lazy_nr_dir_threads = nr_cpus; |
|
return lazy_nr_dir_threads; |
|
} |
|
|
|
/* |
|
* Initialize n mutexes for use when searching and inserting |
|
* into "istate->dir_hash". All "dir" threads are trying |
|
* to insert partial pathnames into the hash as they iterate |
|
* over their portions of the index, so lock contention is |
|
* high. |
|
* |
|
* However, the hashmap is going to put items into bucket |
|
* chains based on their hash values. Use that to create n |
|
* mutexes and lock on mutex[bucket(hash) % n]. This will |
|
* decrease the collision rate by (hopefully) a factor of n. |
|
*/ |
|
static void init_dir_mutex(void) |
|
{ |
|
int j; |
|
|
|
lazy_dir_mutex_array = xcalloc(LAZY_MAX_MUTEX, sizeof(pthread_mutex_t)); |
|
|
|
for (j = 0; j < LAZY_MAX_MUTEX; j++) |
|
init_recursive_mutex(&lazy_dir_mutex_array[j]); |
|
} |
|
|
|
static void cleanup_dir_mutex(void) |
|
{ |
|
int j; |
|
|
|
for (j = 0; j < LAZY_MAX_MUTEX; j++) |
|
pthread_mutex_destroy(&lazy_dir_mutex_array[j]); |
|
|
|
free(lazy_dir_mutex_array); |
|
} |
|
|
|
static void lock_dir_mutex(int j) |
|
{ |
|
pthread_mutex_lock(&lazy_dir_mutex_array[j]); |
|
} |
|
|
|
static void unlock_dir_mutex(int j) |
|
{ |
|
pthread_mutex_unlock(&lazy_dir_mutex_array[j]); |
|
} |
|
|
|
static inline int compute_dir_lock_nr( |
|
const struct hashmap *map, |
|
unsigned int hash) |
|
{ |
|
return hashmap_bucket(map, hash) % LAZY_MAX_MUTEX; |
|
} |
|
|
|
static struct dir_entry *hash_dir_entry_with_parent_and_prefix( |
|
struct index_state *istate, |
|
struct dir_entry *parent, |
|
struct strbuf *prefix) |
|
{ |
|
struct dir_entry *dir; |
|
unsigned int hash; |
|
int lock_nr; |
|
|
|
/* |
|
* Either we have a parent directory and path with slash(es) |
|
* or the directory is an immediate child of the root directory. |
|
*/ |
|
assert((parent != NULL) ^ (strchr(prefix->buf, '/') == NULL)); |
|
|
|
if (parent) |
|
hash = memihash_cont(parent->ent.hash, |
|
prefix->buf + parent->namelen, |
|
prefix->len - parent->namelen); |
|
else |
|
hash = memihash(prefix->buf, prefix->len); |
|
|
|
lock_nr = compute_dir_lock_nr(&istate->dir_hash, hash); |
|
lock_dir_mutex(lock_nr); |
|
|
|
dir = find_dir_entry__hash(istate, prefix->buf, prefix->len, hash); |
|
if (!dir) { |
|
FLEX_ALLOC_MEM(dir, name, prefix->buf, prefix->len); |
|
hashmap_entry_init(&dir->ent, hash); |
|
dir->namelen = prefix->len; |
|
dir->parent = parent; |
|
hashmap_add(&istate->dir_hash, &dir->ent); |
|
|
|
if (parent) { |
|
unlock_dir_mutex(lock_nr); |
|
|
|
/* All I really need here is an InterlockedIncrement(&(parent->nr)) */ |
|
lock_nr = compute_dir_lock_nr(&istate->dir_hash, parent->ent.hash); |
|
lock_dir_mutex(lock_nr); |
|
parent->nr++; |
|
} |
|
} |
|
|
|
unlock_dir_mutex(lock_nr); |
|
|
|
return dir; |
|
} |
|
|
|
/* |
|
* handle_range_1() and handle_range_dir() are derived from |
|
* clear_ce_flags_1() and clear_ce_flags_dir() in unpack-trees.c |
|
* and handle the iteration over the entire array of index entries. |
|
* They use recursion for adjacent entries in the same parent |
|
* directory. |
|
*/ |
|
static int handle_range_1( |
|
struct index_state *istate, |
|
int k_start, |
|
int k_end, |
|
struct dir_entry *parent, |
|
struct strbuf *prefix, |
|
struct lazy_entry *lazy_entries); |
|
|
|
static int handle_range_dir( |
|
struct index_state *istate, |
|
int k_start, |
|
int k_end, |
|
struct dir_entry *parent, |
|
struct strbuf *prefix, |
|
struct lazy_entry *lazy_entries, |
|
struct dir_entry **dir_new_out) |
|
{ |
|
int rc, k; |
|
int input_prefix_len = prefix->len; |
|
struct dir_entry *dir_new; |
|
|
|
dir_new = hash_dir_entry_with_parent_and_prefix(istate, parent, prefix); |
|
|
|
strbuf_addch(prefix, '/'); |
|
|
|
/* |
|
* Scan forward in the index array for index entries having the same |
|
* path prefix (that are also in this directory). |
|
*/ |
|
if (k_start + 1 >= k_end) |
|
k = k_end; |
|
else if (strncmp(istate->cache[k_start + 1]->name, prefix->buf, prefix->len) > 0) |
|
k = k_start + 1; |
|
else if (strncmp(istate->cache[k_end - 1]->name, prefix->buf, prefix->len) == 0) |
|
k = k_end; |
|
else { |
|
int begin = k_start; |
|
int end = k_end; |
|
assert(begin >= 0); |
|
while (begin < end) { |
|
int mid = begin + ((end - begin) >> 1); |
|
int cmp = strncmp(istate->cache[mid]->name, prefix->buf, prefix->len); |
|
if (cmp == 0) /* mid has same prefix; look in second part */ |
|
begin = mid + 1; |
|
else if (cmp > 0) /* mid is past group; look in first part */ |
|
end = mid; |
|
else |
|
die("cache entry out of order"); |
|
} |
|
k = begin; |
|
} |
|
|
|
/* |
|
* Recurse and process what we can of this subset [k_start, k). |
|
*/ |
|
rc = handle_range_1(istate, k_start, k, dir_new, prefix, lazy_entries); |
|
|
|
strbuf_setlen(prefix, input_prefix_len); |
|
|
|
*dir_new_out = dir_new; |
|
return rc; |
|
} |
|
|
|
static int handle_range_1( |
|
struct index_state *istate, |
|
int k_start, |
|
int k_end, |
|
struct dir_entry *parent, |
|
struct strbuf *prefix, |
|
struct lazy_entry *lazy_entries) |
|
{ |
|
int input_prefix_len = prefix->len; |
|
int k = k_start; |
|
|
|
while (k < k_end) { |
|
struct cache_entry *ce_k = istate->cache[k]; |
|
const char *name, *slash; |
|
|
|
if (prefix->len && strncmp(ce_k->name, prefix->buf, prefix->len)) |
|
break; |
|
|
|
name = ce_k->name + prefix->len; |
|
slash = strchr(name, '/'); |
|
|
|
if (slash) { |
|
int len = slash - name; |
|
int processed; |
|
struct dir_entry *dir_new; |
|
|
|
strbuf_add(prefix, name, len); |
|
processed = handle_range_dir(istate, k, k_end, parent, prefix, lazy_entries, &dir_new); |
|
if (processed) { |
|
k += processed; |
|
strbuf_setlen(prefix, input_prefix_len); |
|
continue; |
|
} |
|
|
|
strbuf_addch(prefix, '/'); |
|
processed = handle_range_1(istate, k, k_end, dir_new, prefix, lazy_entries); |
|
k += processed; |
|
strbuf_setlen(prefix, input_prefix_len); |
|
continue; |
|
} |
|
|
|
/* |
|
* It is too expensive to take a lock to insert "ce_k" |
|
* into "istate->name_hash" and increment the ref-count |
|
* on the "parent" dir. So we defer actually updating |
|
* permanent data structures until phase 2 (where we |
|
* can change the locking requirements) and simply |
|
* accumulate our current results into the lazy_entries |
|
* data array). |
|
* |
|
* We do not need to lock the lazy_entries array because |
|
* we have exclusive access to the cells in the range |
|
* [k_start,k_end) that this thread was given. |
|
*/ |
|
lazy_entries[k].dir = parent; |
|
if (parent) { |
|
lazy_entries[k].hash_name = memihash_cont( |
|
parent->ent.hash, |
|
ce_k->name + parent->namelen, |
|
ce_namelen(ce_k) - parent->namelen); |
|
lazy_entries[k].hash_dir = parent->ent.hash; |
|
} else { |
|
lazy_entries[k].hash_name = memihash(ce_k->name, ce_namelen(ce_k)); |
|
} |
|
|
|
k++; |
|
} |
|
|
|
return k - k_start; |
|
} |
|
|
|
struct lazy_dir_thread_data { |
|
pthread_t pthread; |
|
struct index_state *istate; |
|
struct lazy_entry *lazy_entries; |
|
int k_start; |
|
int k_end; |
|
}; |
|
|
|
static void *lazy_dir_thread_proc(void *_data) |
|
{ |
|
struct lazy_dir_thread_data *d = _data; |
|
struct strbuf prefix = STRBUF_INIT; |
|
handle_range_1(d->istate, d->k_start, d->k_end, NULL, &prefix, d->lazy_entries); |
|
strbuf_release(&prefix); |
|
return NULL; |
|
} |
|
|
|
struct lazy_name_thread_data { |
|
pthread_t pthread; |
|
struct index_state *istate; |
|
struct lazy_entry *lazy_entries; |
|
}; |
|
|
|
static void *lazy_name_thread_proc(void *_data) |
|
{ |
|
struct lazy_name_thread_data *d = _data; |
|
int k; |
|
|
|
for (k = 0; k < d->istate->cache_nr; k++) { |
|
struct cache_entry *ce_k = d->istate->cache[k]; |
|
ce_k->ce_flags |= CE_HASHED; |
|
hashmap_entry_init(&ce_k->ent, d->lazy_entries[k].hash_name); |
|
hashmap_add(&d->istate->name_hash, &ce_k->ent); |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
static inline void lazy_update_dir_ref_counts( |
|
struct index_state *istate, |
|
struct lazy_entry *lazy_entries) |
|
{ |
|
int k; |
|
|
|
for (k = 0; k < istate->cache_nr; k++) { |
|
if (lazy_entries[k].dir) |
|
lazy_entries[k].dir->nr++; |
|
} |
|
} |
|
|
|
static void threaded_lazy_init_name_hash( |
|
struct index_state *istate) |
|
{ |
|
int err; |
|
int nr_each; |
|
int k_start; |
|
int t; |
|
struct lazy_entry *lazy_entries; |
|
struct lazy_dir_thread_data *td_dir; |
|
struct lazy_name_thread_data *td_name; |
|
|
|
if (!HAVE_THREADS) |
|
return; |
|
|
|
k_start = 0; |
|
nr_each = DIV_ROUND_UP(istate->cache_nr, lazy_nr_dir_threads); |
|
|
|
lazy_entries = xcalloc(istate->cache_nr, sizeof(struct lazy_entry)); |
|
td_dir = xcalloc(lazy_nr_dir_threads, sizeof(struct lazy_dir_thread_data)); |
|
td_name = xcalloc(1, sizeof(struct lazy_name_thread_data)); |
|
|
|
init_dir_mutex(); |
|
|
|
/* |
|
* Phase 1: |
|
* Build "istate->dir_hash" using n "dir" threads (and a read-only index). |
|
*/ |
|
for (t = 0; t < lazy_nr_dir_threads; t++) { |
|
struct lazy_dir_thread_data *td_dir_t = td_dir + t; |
|
td_dir_t->istate = istate; |
|
td_dir_t->lazy_entries = lazy_entries; |
|
td_dir_t->k_start = k_start; |
|
k_start += nr_each; |
|
if (k_start > istate->cache_nr) |
|
k_start = istate->cache_nr; |
|
td_dir_t->k_end = k_start; |
|
err = pthread_create(&td_dir_t->pthread, NULL, lazy_dir_thread_proc, td_dir_t); |
|
if (err) |
|
die(_("unable to create lazy_dir thread: %s"), strerror(err)); |
|
} |
|
for (t = 0; t < lazy_nr_dir_threads; t++) { |
|
struct lazy_dir_thread_data *td_dir_t = td_dir + t; |
|
if (pthread_join(td_dir_t->pthread, NULL)) |
|
die("unable to join lazy_dir_thread"); |
|
} |
|
|
|
/* |
|
* Phase 2: |
|
* Iterate over all index entries and add them to the "istate->name_hash" |
|
* using a single "name" background thread. |
|
* (Testing showed it wasn't worth running more than 1 thread for this.) |
|
* |
|
* Meanwhile, finish updating the parent directory ref-counts for each |
|
* index entry using the current thread. (This step is very fast and |
|
* doesn't need threading.) |
|
*/ |
|
td_name->istate = istate; |
|
td_name->lazy_entries = lazy_entries; |
|
err = pthread_create(&td_name->pthread, NULL, lazy_name_thread_proc, td_name); |
|
if (err) |
|
die(_("unable to create lazy_name thread: %s"), strerror(err)); |
|
|
|
lazy_update_dir_ref_counts(istate, lazy_entries); |
|
|
|
err = pthread_join(td_name->pthread, NULL); |
|
if (err) |
|
die(_("unable to join lazy_name thread: %s"), strerror(err)); |
|
|
|
cleanup_dir_mutex(); |
|
|
|
free(td_name); |
|
free(td_dir); |
|
free(lazy_entries); |
|
} |
|
|
|
static void lazy_init_name_hash(struct index_state *istate) |
|
{ |
|
|
|
if (istate->name_hash_initialized) |
|
return; |
|
trace_performance_enter(); |
|
hashmap_init(&istate->name_hash, cache_entry_cmp, NULL, istate->cache_nr); |
|
hashmap_init(&istate->dir_hash, dir_entry_cmp, NULL, istate->cache_nr); |
|
|
|
if (lookup_lazy_params(istate)) { |
|
/* |
|
* Disable item counting and automatic rehashing because |
|
* we do per-chain (mod n) locking rather than whole hashmap |
|
* locking and we need to prevent the table-size from changing |
|
* and bucket items from being redistributed. |
|
*/ |
|
hashmap_disable_item_counting(&istate->dir_hash); |
|
threaded_lazy_init_name_hash(istate); |
|
hashmap_enable_item_counting(&istate->dir_hash); |
|
} else { |
|
int nr; |
|
for (nr = 0; nr < istate->cache_nr; nr++) |
|
hash_index_entry(istate, istate->cache[nr]); |
|
} |
|
|
|
istate->name_hash_initialized = 1; |
|
trace_performance_leave("initialize name hash"); |
|
} |
|
|
|
/* |
|
* A test routine for t/helper/ sources. |
|
* |
|
* Returns the number of threads used or 0 when |
|
* the non-threaded code path was used. |
|
* |
|
* Requesting threading WILL NOT override guards |
|
* in lookup_lazy_params(). |
|
*/ |
|
int test_lazy_init_name_hash(struct index_state *istate, int try_threaded) |
|
{ |
|
lazy_nr_dir_threads = 0; |
|
lazy_try_threaded = try_threaded; |
|
|
|
lazy_init_name_hash(istate); |
|
|
|
return lazy_nr_dir_threads; |
|
} |
|
|
|
void add_name_hash(struct index_state *istate, struct cache_entry *ce) |
|
{ |
|
if (istate->name_hash_initialized) |
|
hash_index_entry(istate, ce); |
|
} |
|
|
|
void remove_name_hash(struct index_state *istate, struct cache_entry *ce) |
|
{ |
|
if (!istate->name_hash_initialized || !(ce->ce_flags & CE_HASHED)) |
|
return; |
|
ce->ce_flags &= ~CE_HASHED; |
|
hashmap_remove(&istate->name_hash, &ce->ent, ce); |
|
|
|
if (ignore_case) |
|
remove_dir_entry(istate, ce); |
|
} |
|
|
|
static int slow_same_name(const char *name1, int len1, const char *name2, int len2) |
|
{ |
|
if (len1 != len2) |
|
return 0; |
|
|
|
while (len1) { |
|
unsigned char c1 = *name1++; |
|
unsigned char c2 = *name2++; |
|
len1--; |
|
if (c1 != c2) { |
|
c1 = toupper(c1); |
|
c2 = toupper(c2); |
|
if (c1 != c2) |
|
return 0; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
static int same_name(const struct cache_entry *ce, const char *name, int namelen, int icase) |
|
{ |
|
int len = ce_namelen(ce); |
|
|
|
/* |
|
* Always do exact compare, even if we want a case-ignoring comparison; |
|
* we do the quick exact one first, because it will be the common case. |
|
*/ |
|
if (len == namelen && !memcmp(name, ce->name, len)) |
|
return 1; |
|
|
|
if (!icase) |
|
return 0; |
|
|
|
return slow_same_name(name, namelen, ce->name, len); |
|
} |
|
|
|
int index_dir_exists(struct index_state *istate, const char *name, int namelen) |
|
{ |
|
struct dir_entry *dir; |
|
|
|
lazy_init_name_hash(istate); |
|
dir = find_dir_entry(istate, name, namelen); |
|
return dir && dir->nr; |
|
} |
|
|
|
void adjust_dirname_case(struct index_state *istate, char *name) |
|
{ |
|
const char *startPtr = name; |
|
const char *ptr = startPtr; |
|
|
|
lazy_init_name_hash(istate); |
|
while (*ptr) { |
|
while (*ptr && *ptr != '/') |
|
ptr++; |
|
|
|
if (*ptr == '/') { |
|
struct dir_entry *dir; |
|
|
|
dir = find_dir_entry(istate, name, ptr - name); |
|
if (dir) { |
|
memcpy((void *)startPtr, dir->name + (startPtr - name), ptr - startPtr); |
|
startPtr = ptr + 1; |
|
} |
|
ptr++; |
|
} |
|
} |
|
} |
|
|
|
struct cache_entry *index_file_exists(struct index_state *istate, const char *name, int namelen, int icase) |
|
{ |
|
struct cache_entry *ce; |
|
unsigned int hash = memihash(name, namelen); |
|
|
|
lazy_init_name_hash(istate); |
|
|
|
ce = hashmap_get_entry_from_hash(&istate->name_hash, hash, NULL, |
|
struct cache_entry, ent); |
|
hashmap_for_each_entry_from(&istate->name_hash, ce, ent) { |
|
if (same_name(ce, name, namelen, icase)) |
|
return ce; |
|
} |
|
return NULL; |
|
} |
|
|
|
void free_name_hash(struct index_state *istate) |
|
{ |
|
if (!istate->name_hash_initialized) |
|
return; |
|
istate->name_hash_initialized = 0; |
|
|
|
hashmap_clear(&istate->name_hash); |
|
hashmap_clear_and_free(&istate->dir_hash, struct dir_entry, ent); |
|
}
|
|
|