You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1593 lines
44 KiB
1593 lines
44 KiB
#include "builtin.h" |
|
#include "abspath.h" |
|
#include "alloc.h" |
|
#include "config.h" |
|
#include "environment.h" |
|
#include "gettext.h" |
|
#include "parse-options.h" |
|
#include "fsmonitor.h" |
|
#include "fsmonitor-ipc.h" |
|
#include "fsmonitor-path-utils.h" |
|
#include "compat/fsmonitor/fsm-health.h" |
|
#include "compat/fsmonitor/fsm-listen.h" |
|
#include "fsmonitor--daemon.h" |
|
#include "simple-ipc.h" |
|
#include "khash.h" |
|
#include "pkt-line.h" |
|
#include "trace2.h" |
|
|
|
static const char * const builtin_fsmonitor__daemon_usage[] = { |
|
N_("git fsmonitor--daemon start [<options>]"), |
|
N_("git fsmonitor--daemon run [<options>]"), |
|
"git fsmonitor--daemon stop", |
|
"git fsmonitor--daemon status", |
|
NULL |
|
}; |
|
|
|
#ifdef HAVE_FSMONITOR_DAEMON_BACKEND |
|
/* |
|
* Global state loaded from config. |
|
*/ |
|
#define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads" |
|
static int fsmonitor__ipc_threads = 8; |
|
|
|
#define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout" |
|
static int fsmonitor__start_timeout_sec = 60; |
|
|
|
#define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup" |
|
static int fsmonitor__announce_startup = 0; |
|
|
|
static int fsmonitor_config(const char *var, const char *value, void *cb) |
|
{ |
|
if (!strcmp(var, FSMONITOR__IPC_THREADS)) { |
|
int i = git_config_int(var, value); |
|
if (i < 1) |
|
return error(_("value of '%s' out of range: %d"), |
|
FSMONITOR__IPC_THREADS, i); |
|
fsmonitor__ipc_threads = i; |
|
return 0; |
|
} |
|
|
|
if (!strcmp(var, FSMONITOR__START_TIMEOUT)) { |
|
int i = git_config_int(var, value); |
|
if (i < 0) |
|
return error(_("value of '%s' out of range: %d"), |
|
FSMONITOR__START_TIMEOUT, i); |
|
fsmonitor__start_timeout_sec = i; |
|
return 0; |
|
} |
|
|
|
if (!strcmp(var, FSMONITOR__ANNOUNCE_STARTUP)) { |
|
int is_bool; |
|
int i = git_config_bool_or_int(var, value, &is_bool); |
|
if (i < 0) |
|
return error(_("value of '%s' not bool or int: %d"), |
|
var, i); |
|
fsmonitor__announce_startup = i; |
|
return 0; |
|
} |
|
|
|
return git_default_config(var, value, cb); |
|
} |
|
|
|
/* |
|
* Acting as a CLIENT. |
|
* |
|
* Send a "quit" command to the `git-fsmonitor--daemon` (if running) |
|
* and wait for it to shutdown. |
|
*/ |
|
static int do_as_client__send_stop(void) |
|
{ |
|
struct strbuf answer = STRBUF_INIT; |
|
int ret; |
|
|
|
ret = fsmonitor_ipc__send_command("quit", &answer); |
|
|
|
/* The quit command does not return any response data. */ |
|
strbuf_release(&answer); |
|
|
|
if (ret) |
|
return ret; |
|
|
|
trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL); |
|
while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING) |
|
sleep_millisec(50); |
|
trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL); |
|
|
|
return 0; |
|
} |
|
|
|
static int do_as_client__status(void) |
|
{ |
|
enum ipc_active_state state = fsmonitor_ipc__get_state(); |
|
|
|
switch (state) { |
|
case IPC_STATE__LISTENING: |
|
printf(_("fsmonitor-daemon is watching '%s'\n"), |
|
the_repository->worktree); |
|
return 0; |
|
|
|
default: |
|
printf(_("fsmonitor-daemon is not watching '%s'\n"), |
|
the_repository->worktree); |
|
return 1; |
|
} |
|
} |
|
|
|
enum fsmonitor_cookie_item_result { |
|
FCIR_ERROR = -1, /* could not create cookie file ? */ |
|
FCIR_INIT, |
|
FCIR_SEEN, |
|
FCIR_ABORT, |
|
}; |
|
|
|
struct fsmonitor_cookie_item { |
|
struct hashmap_entry entry; |
|
char *name; |
|
enum fsmonitor_cookie_item_result result; |
|
}; |
|
|
|
static int cookies_cmp(const void *data, const struct hashmap_entry *he1, |
|
const struct hashmap_entry *he2, const void *keydata) |
|
{ |
|
const struct fsmonitor_cookie_item *a = |
|
container_of(he1, const struct fsmonitor_cookie_item, entry); |
|
const struct fsmonitor_cookie_item *b = |
|
container_of(he2, const struct fsmonitor_cookie_item, entry); |
|
|
|
return strcmp(a->name, keydata ? keydata : b->name); |
|
} |
|
|
|
static enum fsmonitor_cookie_item_result with_lock__wait_for_cookie( |
|
struct fsmonitor_daemon_state *state) |
|
{ |
|
/* assert current thread holding state->main_lock */ |
|
|
|
int fd; |
|
struct fsmonitor_cookie_item *cookie; |
|
struct strbuf cookie_pathname = STRBUF_INIT; |
|
struct strbuf cookie_filename = STRBUF_INIT; |
|
enum fsmonitor_cookie_item_result result; |
|
int my_cookie_seq; |
|
|
|
CALLOC_ARRAY(cookie, 1); |
|
|
|
my_cookie_seq = state->cookie_seq++; |
|
|
|
strbuf_addf(&cookie_filename, "%i-%i", getpid(), my_cookie_seq); |
|
|
|
strbuf_addbuf(&cookie_pathname, &state->path_cookie_prefix); |
|
strbuf_addbuf(&cookie_pathname, &cookie_filename); |
|
|
|
cookie->name = strbuf_detach(&cookie_filename, NULL); |
|
cookie->result = FCIR_INIT; |
|
hashmap_entry_init(&cookie->entry, strhash(cookie->name)); |
|
|
|
hashmap_add(&state->cookies, &cookie->entry); |
|
|
|
trace_printf_key(&trace_fsmonitor, "cookie-wait: '%s' '%s'", |
|
cookie->name, cookie_pathname.buf); |
|
|
|
/* |
|
* Create the cookie file on disk and then wait for a notification |
|
* that the listener thread has seen it. |
|
*/ |
|
fd = open(cookie_pathname.buf, O_WRONLY | O_CREAT | O_EXCL, 0600); |
|
if (fd < 0) { |
|
error_errno(_("could not create fsmonitor cookie '%s'"), |
|
cookie->name); |
|
|
|
cookie->result = FCIR_ERROR; |
|
goto done; |
|
} |
|
|
|
/* |
|
* Technically, close() and unlink() can fail, but we don't |
|
* care here. We only created the file to trigger a watch |
|
* event from the FS to know that when we're up to date. |
|
*/ |
|
close(fd); |
|
unlink(cookie_pathname.buf); |
|
|
|
/* |
|
* Technically, this is an infinite wait (well, unless another |
|
* thread sends us an abort). I'd like to change this to |
|
* use `pthread_cond_timedwait()` and return an error/timeout |
|
* and let the caller do the trivial response thing, but we |
|
* don't have that routine in our thread-utils. |
|
* |
|
* After extensive beta testing I'm not really worried about |
|
* this. Also note that the above open() and unlink() calls |
|
* will cause at least two FS events on that path, so the odds |
|
* of getting stuck are pretty slim. |
|
*/ |
|
while (cookie->result == FCIR_INIT) |
|
pthread_cond_wait(&state->cookies_cond, |
|
&state->main_lock); |
|
|
|
done: |
|
hashmap_remove(&state->cookies, &cookie->entry, NULL); |
|
|
|
result = cookie->result; |
|
|
|
free(cookie->name); |
|
free(cookie); |
|
strbuf_release(&cookie_pathname); |
|
|
|
return result; |
|
} |
|
|
|
/* |
|
* Mark these cookies as _SEEN and wake up the corresponding client threads. |
|
*/ |
|
static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state *state, |
|
const struct string_list *cookie_names) |
|
{ |
|
/* assert current thread holding state->main_lock */ |
|
|
|
int k; |
|
int nr_seen = 0; |
|
|
|
for (k = 0; k < cookie_names->nr; k++) { |
|
struct fsmonitor_cookie_item key; |
|
struct fsmonitor_cookie_item *cookie; |
|
|
|
key.name = cookie_names->items[k].string; |
|
hashmap_entry_init(&key.entry, strhash(key.name)); |
|
|
|
cookie = hashmap_get_entry(&state->cookies, &key, entry, NULL); |
|
if (cookie) { |
|
trace_printf_key(&trace_fsmonitor, "cookie-seen: '%s'", |
|
cookie->name); |
|
cookie->result = FCIR_SEEN; |
|
nr_seen++; |
|
} |
|
} |
|
|
|
if (nr_seen) |
|
pthread_cond_broadcast(&state->cookies_cond); |
|
} |
|
|
|
/* |
|
* Set _ABORT on all pending cookies and wake up all client threads. |
|
*/ |
|
static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state *state) |
|
{ |
|
/* assert current thread holding state->main_lock */ |
|
|
|
struct hashmap_iter iter; |
|
struct fsmonitor_cookie_item *cookie; |
|
int nr_aborted = 0; |
|
|
|
hashmap_for_each_entry(&state->cookies, &iter, cookie, entry) { |
|
trace_printf_key(&trace_fsmonitor, "cookie-abort: '%s'", |
|
cookie->name); |
|
cookie->result = FCIR_ABORT; |
|
nr_aborted++; |
|
} |
|
|
|
if (nr_aborted) |
|
pthread_cond_broadcast(&state->cookies_cond); |
|
} |
|
|
|
/* |
|
* Requests to and from a FSMonitor Protocol V2 provider use an opaque |
|
* "token" as a virtual timestamp. Clients can request a summary of all |
|
* created/deleted/modified files relative to a token. In the response, |
|
* clients receive a new token for the next (relative) request. |
|
* |
|
* |
|
* Token Format |
|
* ============ |
|
* |
|
* The contents of the token are private and provider-specific. |
|
* |
|
* For the built-in fsmonitor--daemon, we define a token as follows: |
|
* |
|
* "builtin" ":" <token_id> ":" <sequence_nr> |
|
* |
|
* The "builtin" prefix is used as a namespace to avoid conflicts |
|
* with other providers (such as Watchman). |
|
* |
|
* The <token_id> is an arbitrary OPAQUE string, such as a GUID, |
|
* UUID, or {timestamp,pid}. It is used to group all filesystem |
|
* events that happened while the daemon was monitoring (and in-sync |
|
* with the filesystem). |
|
* |
|
* Unlike FSMonitor Protocol V1, it is not defined as a timestamp |
|
* and does not define less-than/greater-than relationships. |
|
* (There are too many race conditions to rely on file system |
|
* event timestamps.) |
|
* |
|
* The <sequence_nr> is a simple integer incremented whenever the |
|
* daemon needs to make its state public. For example, if 1000 file |
|
* system events come in, but no clients have requested the data, |
|
* the daemon can continue to accumulate file changes in the same |
|
* bin and does not need to advance the sequence number. However, |
|
* as soon as a client does arrive, the daemon needs to start a new |
|
* bin and increment the sequence number. |
|
* |
|
* The sequence number serves as the boundary between 2 sets |
|
* of bins -- the older ones that the client has already seen |
|
* and the newer ones that it hasn't. |
|
* |
|
* When a new <token_id> is created, the <sequence_nr> is reset to |
|
* zero. |
|
* |
|
* |
|
* About Token Ids |
|
* =============== |
|
* |
|
* A new token_id is created: |
|
* |
|
* [1] each time the daemon is started. |
|
* |
|
* [2] any time that the daemon must re-sync with the filesystem |
|
* (such as when the kernel drops or we miss events on a very |
|
* active volume). |
|
* |
|
* [3] in response to a client "flush" command (for dropped event |
|
* testing). |
|
* |
|
* When a new token_id is created, the daemon is free to discard all |
|
* cached filesystem events associated with any previous token_ids. |
|
* Events associated with a non-current token_id will never be sent |
|
* to a client. A token_id change implicitly means that the daemon |
|
* has gap in its event history. |
|
* |
|
* Therefore, clients that present a token with a stale (non-current) |
|
* token_id will always be given a trivial response. |
|
*/ |
|
struct fsmonitor_token_data { |
|
struct strbuf token_id; |
|
struct fsmonitor_batch *batch_head; |
|
struct fsmonitor_batch *batch_tail; |
|
uint64_t client_ref_count; |
|
}; |
|
|
|
struct fsmonitor_batch { |
|
struct fsmonitor_batch *next; |
|
uint64_t batch_seq_nr; |
|
const char **interned_paths; |
|
size_t nr, alloc; |
|
time_t pinned_time; |
|
}; |
|
|
|
static struct fsmonitor_token_data *fsmonitor_new_token_data(void) |
|
{ |
|
static int test_env_value = -1; |
|
static uint64_t flush_count = 0; |
|
struct fsmonitor_token_data *token; |
|
struct fsmonitor_batch *batch; |
|
|
|
CALLOC_ARRAY(token, 1); |
|
batch = fsmonitor_batch__new(); |
|
|
|
strbuf_init(&token->token_id, 0); |
|
token->batch_head = batch; |
|
token->batch_tail = batch; |
|
token->client_ref_count = 0; |
|
|
|
if (test_env_value < 0) |
|
test_env_value = git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0); |
|
|
|
if (!test_env_value) { |
|
struct timeval tv; |
|
struct tm tm; |
|
time_t secs; |
|
|
|
gettimeofday(&tv, NULL); |
|
secs = tv.tv_sec; |
|
gmtime_r(&secs, &tm); |
|
|
|
strbuf_addf(&token->token_id, |
|
"%"PRIu64".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ", |
|
flush_count++, |
|
getpid(), |
|
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, |
|
tm.tm_hour, tm.tm_min, tm.tm_sec, |
|
(long)tv.tv_usec); |
|
} else { |
|
strbuf_addf(&token->token_id, "test_%08x", test_env_value++); |
|
} |
|
|
|
/* |
|
* We created a new <token_id> and are starting a new series |
|
* of tokens with a zero <seq_nr>. |
|
* |
|
* Since clients cannot guess our new (non test) <token_id> |
|
* they will always receive a trivial response (because of the |
|
* mismatch on the <token_id>). The trivial response will |
|
* tell them our new <token_id> so that subsequent requests |
|
* will be relative to our new series. (And when sending that |
|
* response, we pin the current head of the batch list.) |
|
* |
|
* Even if the client correctly guesses the <token_id>, their |
|
* request of "builtin:<token_id>:0" asks for all changes MORE |
|
* RECENT than batch/bin 0. |
|
* |
|
* This implies that it is a waste to accumulate paths in the |
|
* initial batch/bin (because they will never be transmitted). |
|
* |
|
* So the daemon could be running for days and watching the |
|
* file system, but doesn't need to actually accumulate any |
|
* paths UNTIL we need to set a reference point for a later |
|
* relative request. |
|
* |
|
* However, it is very useful for testing to always have a |
|
* reference point set. Pin batch 0 to force early file system |
|
* events to accumulate. |
|
*/ |
|
if (test_env_value) |
|
batch->pinned_time = time(NULL); |
|
|
|
return token; |
|
} |
|
|
|
struct fsmonitor_batch *fsmonitor_batch__new(void) |
|
{ |
|
struct fsmonitor_batch *batch; |
|
|
|
CALLOC_ARRAY(batch, 1); |
|
|
|
return batch; |
|
} |
|
|
|
void fsmonitor_batch__free_list(struct fsmonitor_batch *batch) |
|
{ |
|
while (batch) { |
|
struct fsmonitor_batch *next = batch->next; |
|
|
|
/* |
|
* The actual strings within the array of this batch |
|
* are interned, so we don't own them. We only own |
|
* the array. |
|
*/ |
|
free(batch->interned_paths); |
|
free(batch); |
|
|
|
batch = next; |
|
} |
|
} |
|
|
|
void fsmonitor_batch__add_path(struct fsmonitor_batch *batch, |
|
const char *path) |
|
{ |
|
const char *interned_path = strintern(path); |
|
|
|
trace_printf_key(&trace_fsmonitor, "event: %s", interned_path); |
|
|
|
ALLOC_GROW(batch->interned_paths, batch->nr + 1, batch->alloc); |
|
batch->interned_paths[batch->nr++] = interned_path; |
|
} |
|
|
|
static void fsmonitor_batch__combine(struct fsmonitor_batch *batch_dest, |
|
const struct fsmonitor_batch *batch_src) |
|
{ |
|
size_t k; |
|
|
|
ALLOC_GROW(batch_dest->interned_paths, |
|
batch_dest->nr + batch_src->nr + 1, |
|
batch_dest->alloc); |
|
|
|
for (k = 0; k < batch_src->nr; k++) |
|
batch_dest->interned_paths[batch_dest->nr++] = |
|
batch_src->interned_paths[k]; |
|
} |
|
|
|
/* |
|
* To keep the batch list from growing unbounded in response to filesystem |
|
* activity, we try to truncate old batches from the end of the list as |
|
* they become irrelevant. |
|
* |
|
* We assume that the .git/index will be updated with the most recent token |
|
* any time the index is updated. And future commands will only ask for |
|
* recent changes *since* that new token. So as tokens advance into the |
|
* future, older batch items will never be requested/needed. So we can |
|
* truncate them without loss of functionality. |
|
* |
|
* However, multiple commands may be talking to the daemon concurrently |
|
* or perform a slow command, so a little "token skew" is possible. |
|
* Therefore, we want this to be a little bit lazy and have a generous |
|
* delay. |
|
* |
|
* The current reader thread walked backwards in time from `token->batch_head` |
|
* back to `batch_marker` somewhere in the middle of the batch list. |
|
* |
|
* Let's walk backwards in time from that marker an arbitrary delay |
|
* and truncate the list there. Note that these timestamps are completely |
|
* artificial (based on when we pinned the batch item) and not on any |
|
* filesystem activity. |
|
* |
|
* Return the obsolete portion of the list after we have removed it from |
|
* the official list so that the caller can free it after leaving the lock. |
|
*/ |
|
#define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */ |
|
|
|
static struct fsmonitor_batch *with_lock__truncate_old_batches( |
|
struct fsmonitor_daemon_state *state, |
|
const struct fsmonitor_batch *batch_marker) |
|
{ |
|
/* assert current thread holding state->main_lock */ |
|
|
|
const struct fsmonitor_batch *batch; |
|
struct fsmonitor_batch *remainder; |
|
|
|
if (!batch_marker) |
|
return NULL; |
|
|
|
trace_printf_key(&trace_fsmonitor, "Truncate: mark (%"PRIu64",%"PRIu64")", |
|
batch_marker->batch_seq_nr, |
|
(uint64_t)batch_marker->pinned_time); |
|
|
|
for (batch = batch_marker; batch; batch = batch->next) { |
|
time_t t; |
|
|
|
if (!batch->pinned_time) /* an overflow batch */ |
|
continue; |
|
|
|
t = batch->pinned_time + MY_TIME_DELAY_SECONDS; |
|
if (t > batch_marker->pinned_time) /* too close to marker */ |
|
continue; |
|
|
|
goto truncate_past_here; |
|
} |
|
|
|
return NULL; |
|
|
|
truncate_past_here: |
|
state->current_token_data->batch_tail = (struct fsmonitor_batch *)batch; |
|
|
|
remainder = ((struct fsmonitor_batch *)batch)->next; |
|
((struct fsmonitor_batch *)batch)->next = NULL; |
|
|
|
return remainder; |
|
} |
|
|
|
static void fsmonitor_free_token_data(struct fsmonitor_token_data *token) |
|
{ |
|
if (!token) |
|
return; |
|
|
|
assert(token->client_ref_count == 0); |
|
|
|
strbuf_release(&token->token_id); |
|
|
|
fsmonitor_batch__free_list(token->batch_head); |
|
|
|
free(token); |
|
} |
|
|
|
/* |
|
* Flush all of our cached data about the filesystem. Call this if we |
|
* lose sync with the filesystem and miss some notification events. |
|
* |
|
* [1] If we are missing events, then we no longer have a complete |
|
* history of the directory (relative to our current start token). |
|
* We should create a new token and start fresh (as if we just |
|
* booted up). |
|
* |
|
* [2] Some of those lost events may have been for cookie files. We |
|
* should assume the worst and abort them rather letting them starve. |
|
* |
|
* If there are no concurrent threads reading the current token data |
|
* series, we can free it now. Otherwise, let the last reader free |
|
* it. |
|
* |
|
* Either way, the old token data series is no longer associated with |
|
* our state data. |
|
*/ |
|
static void with_lock__do_force_resync(struct fsmonitor_daemon_state *state) |
|
{ |
|
/* assert current thread holding state->main_lock */ |
|
|
|
struct fsmonitor_token_data *free_me = NULL; |
|
struct fsmonitor_token_data *new_one = NULL; |
|
|
|
new_one = fsmonitor_new_token_data(); |
|
|
|
if (state->current_token_data->client_ref_count == 0) |
|
free_me = state->current_token_data; |
|
state->current_token_data = new_one; |
|
|
|
fsmonitor_free_token_data(free_me); |
|
|
|
with_lock__abort_all_cookies(state); |
|
} |
|
|
|
void fsmonitor_force_resync(struct fsmonitor_daemon_state *state) |
|
{ |
|
pthread_mutex_lock(&state->main_lock); |
|
with_lock__do_force_resync(state); |
|
pthread_mutex_unlock(&state->main_lock); |
|
} |
|
|
|
/* |
|
* Format an opaque token string to send to the client. |
|
*/ |
|
static void with_lock__format_response_token( |
|
struct strbuf *response_token, |
|
const struct strbuf *response_token_id, |
|
const struct fsmonitor_batch *batch) |
|
{ |
|
/* assert current thread holding state->main_lock */ |
|
|
|
strbuf_reset(response_token); |
|
strbuf_addf(response_token, "builtin:%s:%"PRIu64, |
|
response_token_id->buf, batch->batch_seq_nr); |
|
} |
|
|
|
/* |
|
* Parse an opaque token from the client. |
|
* Returns -1 on error. |
|
*/ |
|
static int fsmonitor_parse_client_token(const char *buf_token, |
|
struct strbuf *requested_token_id, |
|
uint64_t *seq_nr) |
|
{ |
|
const char *p; |
|
char *p_end; |
|
|
|
strbuf_reset(requested_token_id); |
|
*seq_nr = 0; |
|
|
|
if (!skip_prefix(buf_token, "builtin:", &p)) |
|
return -1; |
|
|
|
while (*p && *p != ':') |
|
strbuf_addch(requested_token_id, *p++); |
|
if (!*p++) |
|
return -1; |
|
|
|
*seq_nr = (uint64_t)strtoumax(p, &p_end, 10); |
|
if (*p_end) |
|
return -1; |
|
|
|
return 0; |
|
} |
|
|
|
KHASH_INIT(str, const char *, int, 0, kh_str_hash_func, kh_str_hash_equal) |
|
|
|
static int do_handle_client(struct fsmonitor_daemon_state *state, |
|
const char *command, |
|
ipc_server_reply_cb *reply, |
|
struct ipc_server_reply_data *reply_data) |
|
{ |
|
struct fsmonitor_token_data *token_data = NULL; |
|
struct strbuf response_token = STRBUF_INIT; |
|
struct strbuf requested_token_id = STRBUF_INIT; |
|
struct strbuf payload = STRBUF_INIT; |
|
uint64_t requested_oldest_seq_nr = 0; |
|
uint64_t total_response_len = 0; |
|
const char *p; |
|
const struct fsmonitor_batch *batch_head; |
|
const struct fsmonitor_batch *batch; |
|
struct fsmonitor_batch *remainder = NULL; |
|
intmax_t count = 0, duplicates = 0; |
|
kh_str_t *shown; |
|
int hash_ret; |
|
int do_trivial = 0; |
|
int do_flush = 0; |
|
int do_cookie = 0; |
|
enum fsmonitor_cookie_item_result cookie_result; |
|
|
|
/* |
|
* We expect `command` to be of the form: |
|
* |
|
* <command> := quit NUL |
|
* | flush NUL |
|
* | <V1-time-since-epoch-ns> NUL |
|
* | <V2-opaque-fsmonitor-token> NUL |
|
*/ |
|
|
|
if (!strcmp(command, "quit")) { |
|
/* |
|
* A client has requested over the socket/pipe that the |
|
* daemon shutdown. |
|
* |
|
* Tell the IPC thread pool to shutdown (which completes |
|
* the await in the main thread (which can stop the |
|
* fsmonitor listener thread)). |
|
* |
|
* There is no reply to the client. |
|
*/ |
|
return SIMPLE_IPC_QUIT; |
|
|
|
} else if (!strcmp(command, "flush")) { |
|
/* |
|
* Flush all of our cached data and generate a new token |
|
* just like if we lost sync with the filesystem. |
|
* |
|
* Then send a trivial response using the new token. |
|
*/ |
|
do_flush = 1; |
|
do_trivial = 1; |
|
|
|
} else if (!skip_prefix(command, "builtin:", &p)) { |
|
/* assume V1 timestamp or garbage */ |
|
|
|
char *p_end; |
|
|
|
strtoumax(command, &p_end, 10); |
|
trace_printf_key(&trace_fsmonitor, |
|
((*p_end) ? |
|
"fsmonitor: invalid command line '%s'" : |
|
"fsmonitor: unsupported V1 protocol '%s'"), |
|
command); |
|
do_trivial = 1; |
|
do_cookie = 1; |
|
|
|
} else { |
|
/* We have "builtin:*" */ |
|
if (fsmonitor_parse_client_token(command, &requested_token_id, |
|
&requested_oldest_seq_nr)) { |
|
trace_printf_key(&trace_fsmonitor, |
|
"fsmonitor: invalid V2 protocol token '%s'", |
|
command); |
|
do_trivial = 1; |
|
do_cookie = 1; |
|
|
|
} else { |
|
/* |
|
* We have a V2 valid token: |
|
* "builtin:<token_id>:<seq_nr>" |
|
*/ |
|
do_cookie = 1; |
|
} |
|
} |
|
|
|
pthread_mutex_lock(&state->main_lock); |
|
|
|
if (!state->current_token_data) |
|
BUG("fsmonitor state does not have a current token"); |
|
|
|
/* |
|
* Write a cookie file inside the directory being watched in |
|
* an effort to flush out existing filesystem events that we |
|
* actually care about. Suspend this client thread until we |
|
* see the filesystem events for this cookie file. |
|
* |
|
* Creating the cookie lets us guarantee that our FS listener |
|
* thread has drained the kernel queue and we are caught up |
|
* with the kernel. |
|
* |
|
* If we cannot create the cookie (or otherwise guarantee that |
|
* we are caught up), we send a trivial response. We have to |
|
* assume that there might be some very, very recent activity |
|
* on the FS still in flight. |
|
*/ |
|
if (do_cookie) { |
|
cookie_result = with_lock__wait_for_cookie(state); |
|
if (cookie_result != FCIR_SEEN) { |
|
error(_("fsmonitor: cookie_result '%d' != SEEN"), |
|
cookie_result); |
|
do_trivial = 1; |
|
} |
|
} |
|
|
|
if (do_flush) |
|
with_lock__do_force_resync(state); |
|
|
|
/* |
|
* We mark the current head of the batch list as "pinned" so |
|
* that the listener thread will treat this item as read-only |
|
* (and prevent any more paths from being added to it) from |
|
* now on. |
|
*/ |
|
token_data = state->current_token_data; |
|
batch_head = token_data->batch_head; |
|
((struct fsmonitor_batch *)batch_head)->pinned_time = time(NULL); |
|
|
|
/* |
|
* FSMonitor Protocol V2 requires that we send a response header |
|
* with a "new current token" and then all of the paths that changed |
|
* since the "requested token". We send the seq_nr of the just-pinned |
|
* head batch so that future requests from a client will be relative |
|
* to it. |
|
*/ |
|
with_lock__format_response_token(&response_token, |
|
&token_data->token_id, batch_head); |
|
|
|
reply(reply_data, response_token.buf, response_token.len + 1); |
|
total_response_len += response_token.len + 1; |
|
|
|
trace2_data_string("fsmonitor", the_repository, "response/token", |
|
response_token.buf); |
|
trace_printf_key(&trace_fsmonitor, "response token: %s", |
|
response_token.buf); |
|
|
|
if (!do_trivial) { |
|
if (strcmp(requested_token_id.buf, token_data->token_id.buf)) { |
|
/* |
|
* The client last spoke to a different daemon |
|
* instance -OR- the daemon had to resync with |
|
* the filesystem (and lost events), so reject. |
|
*/ |
|
trace2_data_string("fsmonitor", the_repository, |
|
"response/token", "different"); |
|
do_trivial = 1; |
|
|
|
} else if (requested_oldest_seq_nr < |
|
token_data->batch_tail->batch_seq_nr) { |
|
/* |
|
* The client wants older events than we have for |
|
* this token_id. This means that the end of our |
|
* batch list was truncated and we cannot give the |
|
* client a complete snapshot relative to their |
|
* request. |
|
*/ |
|
trace_printf_key(&trace_fsmonitor, |
|
"client requested truncated data"); |
|
do_trivial = 1; |
|
} |
|
} |
|
|
|
if (do_trivial) { |
|
pthread_mutex_unlock(&state->main_lock); |
|
|
|
reply(reply_data, "/", 2); |
|
|
|
trace2_data_intmax("fsmonitor", the_repository, |
|
"response/trivial", 1); |
|
|
|
goto cleanup; |
|
} |
|
|
|
/* |
|
* We're going to hold onto a pointer to the current |
|
* token-data while we walk the list of batches of files. |
|
* During this time, we will NOT be under the lock. |
|
* So we ref-count it. |
|
* |
|
* This allows the listener thread to continue prepending |
|
* new batches of items to the token-data (which we'll ignore). |
|
* |
|
* AND it allows the listener thread to do a token-reset |
|
* (and install a new `current_token_data`). |
|
*/ |
|
token_data->client_ref_count++; |
|
|
|
pthread_mutex_unlock(&state->main_lock); |
|
|
|
/* |
|
* The client request is relative to the token that they sent, |
|
* so walk the batch list backwards from the current head back |
|
* to the batch (sequence number) they named. |
|
* |
|
* We use khash to de-dup the list of pathnames. |
|
* |
|
* NEEDSWORK: each batch contains a list of interned strings, |
|
* so we only need to do pointer comparisons here to build the |
|
* hash table. Currently, we're still comparing the string |
|
* values. |
|
*/ |
|
shown = kh_init_str(); |
|
for (batch = batch_head; |
|
batch && batch->batch_seq_nr > requested_oldest_seq_nr; |
|
batch = batch->next) { |
|
size_t k; |
|
|
|
for (k = 0; k < batch->nr; k++) { |
|
const char *s = batch->interned_paths[k]; |
|
size_t s_len; |
|
|
|
if (kh_get_str(shown, s) != kh_end(shown)) |
|
duplicates++; |
|
else { |
|
kh_put_str(shown, s, &hash_ret); |
|
|
|
trace_printf_key(&trace_fsmonitor, |
|
"send[%"PRIuMAX"]: %s", |
|
count, s); |
|
|
|
/* Each path gets written with a trailing NUL */ |
|
s_len = strlen(s) + 1; |
|
|
|
if (payload.len + s_len >= |
|
LARGE_PACKET_DATA_MAX) { |
|
reply(reply_data, payload.buf, |
|
payload.len); |
|
total_response_len += payload.len; |
|
strbuf_reset(&payload); |
|
} |
|
|
|
strbuf_add(&payload, s, s_len); |
|
count++; |
|
} |
|
} |
|
} |
|
|
|
if (payload.len) { |
|
reply(reply_data, payload.buf, payload.len); |
|
total_response_len += payload.len; |
|
} |
|
|
|
kh_release_str(shown); |
|
|
|
pthread_mutex_lock(&state->main_lock); |
|
|
|
if (token_data->client_ref_count > 0) |
|
token_data->client_ref_count--; |
|
|
|
if (token_data->client_ref_count == 0) { |
|
if (token_data != state->current_token_data) { |
|
/* |
|
* The listener thread did a token-reset while we were |
|
* walking the batch list. Therefore, this token is |
|
* stale and can be discarded completely. If we are |
|
* the last reader thread using this token, we own |
|
* that work. |
|
*/ |
|
fsmonitor_free_token_data(token_data); |
|
} else if (batch) { |
|
/* |
|
* We are holding the lock and are the only |
|
* reader of the ref-counted portion of the |
|
* list, so we get the honor of seeing if the |
|
* list can be truncated to save memory. |
|
* |
|
* The main loop did not walk to the end of the |
|
* list, so this batch is the first item in the |
|
* batch-list that is older than the requested |
|
* end-point sequence number. See if the tail |
|
* end of the list is obsolete. |
|
*/ |
|
remainder = with_lock__truncate_old_batches(state, |
|
batch); |
|
} |
|
} |
|
|
|
pthread_mutex_unlock(&state->main_lock); |
|
|
|
if (remainder) |
|
fsmonitor_batch__free_list(remainder); |
|
|
|
trace2_data_intmax("fsmonitor", the_repository, "response/length", total_response_len); |
|
trace2_data_intmax("fsmonitor", the_repository, "response/count/files", count); |
|
trace2_data_intmax("fsmonitor", the_repository, "response/count/duplicates", duplicates); |
|
|
|
cleanup: |
|
strbuf_release(&response_token); |
|
strbuf_release(&requested_token_id); |
|
strbuf_release(&payload); |
|
|
|
return 0; |
|
} |
|
|
|
static ipc_server_application_cb handle_client; |
|
|
|
static int handle_client(void *data, |
|
const char *command, size_t command_len, |
|
ipc_server_reply_cb *reply, |
|
struct ipc_server_reply_data *reply_data) |
|
{ |
|
struct fsmonitor_daemon_state *state = data; |
|
int result; |
|
|
|
/* |
|
* The Simple IPC API now supports {char*, len} arguments, but |
|
* FSMonitor always uses proper null-terminated strings, so |
|
* we can ignore the command_len argument. (Trust, but verify.) |
|
*/ |
|
if (command_len != strlen(command)) |
|
BUG("FSMonitor assumes text messages"); |
|
|
|
trace_printf_key(&trace_fsmonitor, "requested token: %s", command); |
|
|
|
trace2_region_enter("fsmonitor", "handle_client", the_repository); |
|
trace2_data_string("fsmonitor", the_repository, "request", command); |
|
|
|
result = do_handle_client(state, command, reply, reply_data); |
|
|
|
trace2_region_leave("fsmonitor", "handle_client", the_repository); |
|
|
|
return result; |
|
} |
|
|
|
#define FSMONITOR_DIR "fsmonitor--daemon" |
|
#define FSMONITOR_COOKIE_DIR "cookies" |
|
#define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/") |
|
|
|
enum fsmonitor_path_type fsmonitor_classify_path_workdir_relative( |
|
const char *rel) |
|
{ |
|
if (fspathncmp(rel, ".git", 4)) |
|
return IS_WORKDIR_PATH; |
|
rel += 4; |
|
|
|
if (!*rel) |
|
return IS_DOT_GIT; |
|
if (*rel != '/') |
|
return IS_WORKDIR_PATH; /* e.g. .gitignore */ |
|
rel++; |
|
|
|
if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX, |
|
strlen(FSMONITOR_COOKIE_PREFIX))) |
|
return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX; |
|
|
|
return IS_INSIDE_DOT_GIT; |
|
} |
|
|
|
enum fsmonitor_path_type fsmonitor_classify_path_gitdir_relative( |
|
const char *rel) |
|
{ |
|
if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX, |
|
strlen(FSMONITOR_COOKIE_PREFIX))) |
|
return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX; |
|
|
|
return IS_INSIDE_GITDIR; |
|
} |
|
|
|
static enum fsmonitor_path_type try_classify_workdir_abs_path( |
|
struct fsmonitor_daemon_state *state, |
|
const char *path) |
|
{ |
|
const char *rel; |
|
|
|
if (fspathncmp(path, state->path_worktree_watch.buf, |
|
state->path_worktree_watch.len)) |
|
return IS_OUTSIDE_CONE; |
|
|
|
rel = path + state->path_worktree_watch.len; |
|
|
|
if (!*rel) |
|
return IS_WORKDIR_PATH; /* it is the root dir exactly */ |
|
if (*rel != '/') |
|
return IS_OUTSIDE_CONE; |
|
rel++; |
|
|
|
return fsmonitor_classify_path_workdir_relative(rel); |
|
} |
|
|
|
enum fsmonitor_path_type fsmonitor_classify_path_absolute( |
|
struct fsmonitor_daemon_state *state, |
|
const char *path) |
|
{ |
|
const char *rel; |
|
enum fsmonitor_path_type t; |
|
|
|
t = try_classify_workdir_abs_path(state, path); |
|
if (state->nr_paths_watching == 1) |
|
return t; |
|
if (t != IS_OUTSIDE_CONE) |
|
return t; |
|
|
|
if (fspathncmp(path, state->path_gitdir_watch.buf, |
|
state->path_gitdir_watch.len)) |
|
return IS_OUTSIDE_CONE; |
|
|
|
rel = path + state->path_gitdir_watch.len; |
|
|
|
if (!*rel) |
|
return IS_GITDIR; /* it is the <gitdir> exactly */ |
|
if (*rel != '/') |
|
return IS_OUTSIDE_CONE; |
|
rel++; |
|
|
|
return fsmonitor_classify_path_gitdir_relative(rel); |
|
} |
|
|
|
/* |
|
* We try to combine small batches at the front of the batch-list to avoid |
|
* having a long list. This hopefully makes it a little easier when we want |
|
* to truncate and maintain the list. However, we don't want the paths array |
|
* to just keep growing and growing with realloc, so we insert an arbitrary |
|
* limit. |
|
*/ |
|
#define MY_COMBINE_LIMIT (1024) |
|
|
|
void fsmonitor_publish(struct fsmonitor_daemon_state *state, |
|
struct fsmonitor_batch *batch, |
|
const struct string_list *cookie_names) |
|
{ |
|
if (!batch && !cookie_names->nr) |
|
return; |
|
|
|
pthread_mutex_lock(&state->main_lock); |
|
|
|
if (batch) { |
|
struct fsmonitor_batch *head; |
|
|
|
head = state->current_token_data->batch_head; |
|
if (!head) { |
|
BUG("token does not have batch"); |
|
} else if (head->pinned_time) { |
|
/* |
|
* We cannot alter the current batch list |
|
* because: |
|
* |
|
* [a] it is being transmitted to at least one |
|
* client and the handle_client() thread has a |
|
* ref-count, but not a lock on the batch list |
|
* starting with this item. |
|
* |
|
* [b] it has been transmitted in the past to |
|
* at least one client such that future |
|
* requests are relative to this head batch. |
|
* |
|
* So, we can only prepend a new batch onto |
|
* the front of the list. |
|
*/ |
|
batch->batch_seq_nr = head->batch_seq_nr + 1; |
|
batch->next = head; |
|
state->current_token_data->batch_head = batch; |
|
} else if (!head->batch_seq_nr) { |
|
/* |
|
* Batch 0 is unpinned. See the note in |
|
* `fsmonitor_new_token_data()` about why we |
|
* don't need to accumulate these paths. |
|
*/ |
|
fsmonitor_batch__free_list(batch); |
|
} else if (head->nr + batch->nr > MY_COMBINE_LIMIT) { |
|
/* |
|
* The head batch in the list has never been |
|
* transmitted to a client, but folding the |
|
* contents of the new batch onto it would |
|
* exceed our arbitrary limit, so just prepend |
|
* the new batch onto the list. |
|
*/ |
|
batch->batch_seq_nr = head->batch_seq_nr + 1; |
|
batch->next = head; |
|
state->current_token_data->batch_head = batch; |
|
} else { |
|
/* |
|
* We are free to add the paths in the given |
|
* batch onto the end of the current head batch. |
|
*/ |
|
fsmonitor_batch__combine(head, batch); |
|
fsmonitor_batch__free_list(batch); |
|
} |
|
} |
|
|
|
if (cookie_names->nr) |
|
with_lock__mark_cookies_seen(state, cookie_names); |
|
|
|
pthread_mutex_unlock(&state->main_lock); |
|
} |
|
|
|
static void *fsm_health__thread_proc(void *_state) |
|
{ |
|
struct fsmonitor_daemon_state *state = _state; |
|
|
|
trace2_thread_start("fsm-health"); |
|
|
|
fsm_health__loop(state); |
|
|
|
trace2_thread_exit(); |
|
return NULL; |
|
} |
|
|
|
static void *fsm_listen__thread_proc(void *_state) |
|
{ |
|
struct fsmonitor_daemon_state *state = _state; |
|
|
|
trace2_thread_start("fsm-listen"); |
|
|
|
trace_printf_key(&trace_fsmonitor, "Watching: worktree '%s'", |
|
state->path_worktree_watch.buf); |
|
if (state->nr_paths_watching > 1) |
|
trace_printf_key(&trace_fsmonitor, "Watching: gitdir '%s'", |
|
state->path_gitdir_watch.buf); |
|
|
|
fsm_listen__loop(state); |
|
|
|
pthread_mutex_lock(&state->main_lock); |
|
if (state->current_token_data && |
|
state->current_token_data->client_ref_count == 0) |
|
fsmonitor_free_token_data(state->current_token_data); |
|
state->current_token_data = NULL; |
|
pthread_mutex_unlock(&state->main_lock); |
|
|
|
trace2_thread_exit(); |
|
return NULL; |
|
} |
|
|
|
static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state *state) |
|
{ |
|
struct ipc_server_opts ipc_opts = { |
|
.nr_threads = fsmonitor__ipc_threads, |
|
|
|
/* |
|
* We know that there are no other active threads yet, |
|
* so we can let the IPC layer temporarily chdir() if |
|
* it needs to when creating the server side of the |
|
* Unix domain socket. |
|
*/ |
|
.uds_disallow_chdir = 0 |
|
}; |
|
int health_started = 0; |
|
int listener_started = 0; |
|
int err = 0; |
|
|
|
/* |
|
* Start the IPC thread pool before the we've started the file |
|
* system event listener thread so that we have the IPC handle |
|
* before we need it. |
|
*/ |
|
if (ipc_server_run_async(&state->ipc_server_data, |
|
state->path_ipc.buf, &ipc_opts, |
|
handle_client, state)) |
|
return error_errno( |
|
_("could not start IPC thread pool on '%s'"), |
|
state->path_ipc.buf); |
|
|
|
/* |
|
* Start the fsmonitor listener thread to collect filesystem |
|
* events. |
|
*/ |
|
if (pthread_create(&state->listener_thread, NULL, |
|
fsm_listen__thread_proc, state)) { |
|
ipc_server_stop_async(state->ipc_server_data); |
|
err = error(_("could not start fsmonitor listener thread")); |
|
goto cleanup; |
|
} |
|
listener_started = 1; |
|
|
|
/* |
|
* Start the health thread to watch over our process. |
|
*/ |
|
if (pthread_create(&state->health_thread, NULL, |
|
fsm_health__thread_proc, state)) { |
|
ipc_server_stop_async(state->ipc_server_data); |
|
err = error(_("could not start fsmonitor health thread")); |
|
goto cleanup; |
|
} |
|
health_started = 1; |
|
|
|
/* |
|
* The daemon is now fully functional in background threads. |
|
* Our primary thread should now just wait while the threads |
|
* do all the work. |
|
*/ |
|
cleanup: |
|
/* |
|
* Wait for the IPC thread pool to shutdown (whether by client |
|
* request, from filesystem activity, or an error). |
|
*/ |
|
ipc_server_await(state->ipc_server_data); |
|
|
|
/* |
|
* The fsmonitor listener thread may have received a shutdown |
|
* event from the IPC thread pool, but it doesn't hurt to tell |
|
* it again. And wait for it to shutdown. |
|
*/ |
|
if (listener_started) { |
|
fsm_listen__stop_async(state); |
|
pthread_join(state->listener_thread, NULL); |
|
} |
|
|
|
if (health_started) { |
|
fsm_health__stop_async(state); |
|
pthread_join(state->health_thread, NULL); |
|
} |
|
|
|
if (err) |
|
return err; |
|
if (state->listen_error_code) |
|
return state->listen_error_code; |
|
if (state->health_error_code) |
|
return state->health_error_code; |
|
return 0; |
|
} |
|
|
|
static int fsmonitor_run_daemon(void) |
|
{ |
|
struct fsmonitor_daemon_state state; |
|
const char *home; |
|
int err; |
|
|
|
memset(&state, 0, sizeof(state)); |
|
|
|
hashmap_init(&state.cookies, cookies_cmp, NULL, 0); |
|
pthread_mutex_init(&state.main_lock, NULL); |
|
pthread_cond_init(&state.cookies_cond, NULL); |
|
state.listen_error_code = 0; |
|
state.health_error_code = 0; |
|
state.current_token_data = fsmonitor_new_token_data(); |
|
|
|
/* Prepare to (recursively) watch the <worktree-root> directory. */ |
|
strbuf_init(&state.path_worktree_watch, 0); |
|
strbuf_addstr(&state.path_worktree_watch, absolute_path(get_git_work_tree())); |
|
state.nr_paths_watching = 1; |
|
|
|
strbuf_init(&state.alias.alias, 0); |
|
strbuf_init(&state.alias.points_to, 0); |
|
if ((err = fsmonitor__get_alias(state.path_worktree_watch.buf, &state.alias))) |
|
goto done; |
|
|
|
/* |
|
* We create and delete cookie files somewhere inside the .git |
|
* directory to help us keep sync with the file system. If |
|
* ".git" is not a directory, then <gitdir> is not inside the |
|
* cone of <worktree-root>, so set up a second watch to watch |
|
* the <gitdir> so that we get events for the cookie files. |
|
*/ |
|
strbuf_init(&state.path_gitdir_watch, 0); |
|
strbuf_addbuf(&state.path_gitdir_watch, &state.path_worktree_watch); |
|
strbuf_addstr(&state.path_gitdir_watch, "/.git"); |
|
if (!is_directory(state.path_gitdir_watch.buf)) { |
|
strbuf_reset(&state.path_gitdir_watch); |
|
strbuf_addstr(&state.path_gitdir_watch, absolute_path(get_git_dir())); |
|
state.nr_paths_watching = 2; |
|
} |
|
|
|
/* |
|
* We will write filesystem syncing cookie files into |
|
* <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>. |
|
* |
|
* The extra layers of subdirectories here keep us from |
|
* changing the mtime on ".git/" or ".git/foo/" when we create |
|
* or delete cookie files. |
|
* |
|
* There have been problems with some IDEs that do a |
|
* non-recursive watch of the ".git/" directory and run a |
|
* series of commands any time something happens. |
|
* |
|
* For example, if we place our cookie files directly in |
|
* ".git/" or ".git/foo/" then a `git status` (or similar |
|
* command) from the IDE will cause a cookie file to be |
|
* created in one of those dirs. This causes the mtime of |
|
* those dirs to change. This triggers the IDE's watch |
|
* notification. This triggers the IDE to run those commands |
|
* again. And the process repeats and the machine never goes |
|
* idle. |
|
* |
|
* Adding the extra layers of subdirectories prevents the |
|
* mtime of ".git/" and ".git/foo" from changing when a |
|
* cookie file is created. |
|
*/ |
|
strbuf_init(&state.path_cookie_prefix, 0); |
|
strbuf_addbuf(&state.path_cookie_prefix, &state.path_gitdir_watch); |
|
|
|
strbuf_addch(&state.path_cookie_prefix, '/'); |
|
strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_DIR); |
|
mkdir(state.path_cookie_prefix.buf, 0777); |
|
|
|
strbuf_addch(&state.path_cookie_prefix, '/'); |
|
strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_COOKIE_DIR); |
|
mkdir(state.path_cookie_prefix.buf, 0777); |
|
|
|
strbuf_addch(&state.path_cookie_prefix, '/'); |
|
|
|
/* |
|
* We create a named-pipe or unix domain socket inside of the |
|
* ".git" directory. (Well, on Windows, we base our named |
|
* pipe in the NPFS on the absolute path of the git |
|
* directory.) |
|
*/ |
|
strbuf_init(&state.path_ipc, 0); |
|
strbuf_addstr(&state.path_ipc, |
|
absolute_path(fsmonitor_ipc__get_path(the_repository))); |
|
|
|
/* |
|
* Confirm that we can create platform-specific resources for the |
|
* filesystem listener before we bother starting all the threads. |
|
*/ |
|
if (fsm_listen__ctor(&state)) { |
|
err = error(_("could not initialize listener thread")); |
|
goto done; |
|
} |
|
|
|
if (fsm_health__ctor(&state)) { |
|
err = error(_("could not initialize health thread")); |
|
goto done; |
|
} |
|
|
|
/* |
|
* CD out of the worktree root directory. |
|
* |
|
* The common Git startup mechanism causes our CWD to be the |
|
* root of the worktree. On Windows, this causes our process |
|
* to hold a locked handle on the CWD. This prevents the |
|
* worktree from being moved or deleted while the daemon is |
|
* running. |
|
* |
|
* We assume that our FS and IPC listener threads have either |
|
* opened all of the handles that they need or will do |
|
* everything using absolute paths. |
|
*/ |
|
home = getenv("HOME"); |
|
if (home && *home && chdir(home)) |
|
die_errno(_("could not cd home '%s'"), home); |
|
|
|
err = fsmonitor_run_daemon_1(&state); |
|
|
|
done: |
|
pthread_cond_destroy(&state.cookies_cond); |
|
pthread_mutex_destroy(&state.main_lock); |
|
fsm_listen__dtor(&state); |
|
fsm_health__dtor(&state); |
|
|
|
ipc_server_free(state.ipc_server_data); |
|
|
|
strbuf_release(&state.path_worktree_watch); |
|
strbuf_release(&state.path_gitdir_watch); |
|
strbuf_release(&state.path_cookie_prefix); |
|
strbuf_release(&state.path_ipc); |
|
strbuf_release(&state.alias.alias); |
|
strbuf_release(&state.alias.points_to); |
|
|
|
return err; |
|
} |
|
|
|
static int try_to_run_foreground_daemon(int detach_console) |
|
{ |
|
/* |
|
* Technically, we don't need to probe for an existing daemon |
|
* process, since we could just call `fsmonitor_run_daemon()` |
|
* and let it fail if the pipe/socket is busy. |
|
* |
|
* However, this method gives us a nicer error message for a |
|
* common error case. |
|
*/ |
|
if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING) |
|
die(_("fsmonitor--daemon is already running '%s'"), |
|
the_repository->worktree); |
|
|
|
if (fsmonitor__announce_startup) { |
|
fprintf(stderr, _("running fsmonitor-daemon in '%s'\n"), |
|
the_repository->worktree); |
|
fflush(stderr); |
|
} |
|
|
|
#ifdef GIT_WINDOWS_NATIVE |
|
if (detach_console) |
|
FreeConsole(); |
|
#endif |
|
|
|
return !!fsmonitor_run_daemon(); |
|
} |
|
|
|
static start_bg_wait_cb bg_wait_cb; |
|
|
|
static int bg_wait_cb(const struct child_process *cp, void *cb_data) |
|
{ |
|
enum ipc_active_state s = fsmonitor_ipc__get_state(); |
|
|
|
switch (s) { |
|
case IPC_STATE__LISTENING: |
|
/* child is "ready" */ |
|
return 0; |
|
|
|
case IPC_STATE__NOT_LISTENING: |
|
case IPC_STATE__PATH_NOT_FOUND: |
|
/* give child more time */ |
|
return 1; |
|
|
|
default: |
|
case IPC_STATE__INVALID_PATH: |
|
case IPC_STATE__OTHER_ERROR: |
|
/* all the time in world won't help */ |
|
return -1; |
|
} |
|
} |
|
|
|
static int try_to_start_background_daemon(void) |
|
{ |
|
struct child_process cp = CHILD_PROCESS_INIT; |
|
enum start_bg_result sbgr; |
|
|
|
/* |
|
* Before we try to create a background daemon process, see |
|
* if a daemon process is already listening. This makes it |
|
* easier for us to report an already-listening error to the |
|
* console, since our spawn/daemon can only report the success |
|
* of creating the background process (and not whether it |
|
* immediately exited). |
|
*/ |
|
if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING) |
|
die(_("fsmonitor--daemon is already running '%s'"), |
|
the_repository->worktree); |
|
|
|
if (fsmonitor__announce_startup) { |
|
fprintf(stderr, _("starting fsmonitor-daemon in '%s'\n"), |
|
the_repository->worktree); |
|
fflush(stderr); |
|
} |
|
|
|
cp.git_cmd = 1; |
|
|
|
strvec_push(&cp.args, "fsmonitor--daemon"); |
|
strvec_push(&cp.args, "run"); |
|
strvec_push(&cp.args, "--detach"); |
|
strvec_pushf(&cp.args, "--ipc-threads=%d", fsmonitor__ipc_threads); |
|
|
|
cp.no_stdin = 1; |
|
cp.no_stdout = 1; |
|
cp.no_stderr = 1; |
|
|
|
sbgr = start_bg_command(&cp, bg_wait_cb, NULL, |
|
fsmonitor__start_timeout_sec); |
|
|
|
switch (sbgr) { |
|
case SBGR_READY: |
|
return 0; |
|
|
|
default: |
|
case SBGR_ERROR: |
|
case SBGR_CB_ERROR: |
|
return error(_("daemon failed to start")); |
|
|
|
case SBGR_TIMEOUT: |
|
return error(_("daemon not online yet")); |
|
|
|
case SBGR_DIED: |
|
return error(_("daemon terminated")); |
|
} |
|
} |
|
|
|
int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix) |
|
{ |
|
const char *subcmd; |
|
enum fsmonitor_reason reason; |
|
int detach_console = 0; |
|
|
|
struct option options[] = { |
|
OPT_BOOL(0, "detach", &detach_console, N_("detach from console")), |
|
OPT_INTEGER(0, "ipc-threads", |
|
&fsmonitor__ipc_threads, |
|
N_("use <n> ipc worker threads")), |
|
OPT_INTEGER(0, "start-timeout", |
|
&fsmonitor__start_timeout_sec, |
|
N_("max seconds to wait for background daemon startup")), |
|
|
|
OPT_END() |
|
}; |
|
|
|
git_config(fsmonitor_config, NULL); |
|
|
|
argc = parse_options(argc, argv, prefix, options, |
|
builtin_fsmonitor__daemon_usage, 0); |
|
if (argc != 1) |
|
usage_with_options(builtin_fsmonitor__daemon_usage, options); |
|
subcmd = argv[0]; |
|
|
|
if (fsmonitor__ipc_threads < 1) |
|
die(_("invalid 'ipc-threads' value (%d)"), |
|
fsmonitor__ipc_threads); |
|
|
|
prepare_repo_settings(the_repository); |
|
/* |
|
* If the repo is fsmonitor-compatible, explicitly set IPC-mode |
|
* (without bothering to load the `core.fsmonitor` config settings). |
|
* |
|
* If the repo is not compatible, the repo-settings will be set to |
|
* incompatible rather than IPC, so we can use one of the __get |
|
* routines to detect the discrepancy. |
|
*/ |
|
fsm_settings__set_ipc(the_repository); |
|
|
|
reason = fsm_settings__get_reason(the_repository); |
|
if (reason > FSMONITOR_REASON_OK) |
|
die("%s", |
|
fsm_settings__get_incompatible_msg(the_repository, |
|
reason)); |
|
|
|
if (!strcmp(subcmd, "start")) |
|
return !!try_to_start_background_daemon(); |
|
|
|
if (!strcmp(subcmd, "run")) |
|
return !!try_to_run_foreground_daemon(detach_console); |
|
|
|
if (!strcmp(subcmd, "stop")) |
|
return !!do_as_client__send_stop(); |
|
|
|
if (!strcmp(subcmd, "status")) |
|
return !!do_as_client__status(); |
|
|
|
die(_("Unhandled subcommand '%s'"), subcmd); |
|
} |
|
|
|
#else |
|
int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix UNUSED) |
|
{ |
|
struct option options[] = { |
|
OPT_END() |
|
}; |
|
|
|
if (argc == 2 && !strcmp(argv[1], "-h")) |
|
usage_with_options(builtin_fsmonitor__daemon_usage, options); |
|
|
|
die(_("fsmonitor--daemon not supported on this platform")); |
|
} |
|
#endif
|
|
|