You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
644 lines
16 KiB
644 lines
16 KiB
/* |
|
* LibXDiff by Davide Libenzi ( File Differential Library ) |
|
* Copyright (C) 2003 Davide Libenzi |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* This library is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with this library; if not, write to the Free Software |
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
* |
|
* Davide Libenzi <davidel@xmailserver.org> |
|
* |
|
*/ |
|
|
|
#include "xinclude.h" |
|
|
|
|
|
|
|
#define XDL_MAX_COST_MIN 256 |
|
#define XDL_HEUR_MIN_COST 256 |
|
#define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1) |
|
#define XDL_SNAKE_CNT 20 |
|
#define XDL_K_HEUR 4 |
|
|
|
|
|
|
|
typedef struct s_xdpsplit { |
|
long i1, i2; |
|
int min_lo, min_hi; |
|
} xdpsplit_t; |
|
|
|
|
|
|
|
|
|
static long xdl_split(unsigned long const *ha1, long off1, long lim1, |
|
unsigned long const *ha2, long off2, long lim2, |
|
long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl, |
|
xdalgoenv_t *xenv); |
|
static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2); |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
* See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers. |
|
* Basically considers a "box" (off1, off2, lim1, lim2) and scan from both |
|
* the forward diagonal starting from (off1, off2) and the backward diagonal |
|
* starting from (lim1, lim2). If the K values on the same diagonal crosses |
|
* returns the furthest point of reach. We might end up having to expensive |
|
* cases using this algorithm is full, so a little bit of heuristic is needed |
|
* to cut the search and to return a suboptimal point. |
|
*/ |
|
static long xdl_split(unsigned long const *ha1, long off1, long lim1, |
|
unsigned long const *ha2, long off2, long lim2, |
|
long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl, |
|
xdalgoenv_t *xenv) { |
|
long dmin = off1 - lim2, dmax = lim1 - off2; |
|
long fmid = off1 - off2, bmid = lim1 - lim2; |
|
long odd = (fmid - bmid) & 1; |
|
long fmin = fmid, fmax = fmid; |
|
long bmin = bmid, bmax = bmid; |
|
long ec, d, i1, i2, prev1, best, dd, v, k; |
|
|
|
/* |
|
* Set initial diagonal values for both forward and backward path. |
|
*/ |
|
kvdf[fmid] = off1; |
|
kvdb[bmid] = lim1; |
|
|
|
for (ec = 1;; ec++) { |
|
int got_snake = 0; |
|
|
|
/* |
|
* We need to extent the diagonal "domain" by one. If the next |
|
* values exits the box boundaries we need to change it in the |
|
* opposite direction because (max - min) must be a power of two. |
|
* Also we initialize the external K value to -1 so that we can |
|
* avoid extra conditions check inside the core loop. |
|
*/ |
|
if (fmin > dmin) |
|
kvdf[--fmin - 1] = -1; |
|
else |
|
++fmin; |
|
if (fmax < dmax) |
|
kvdf[++fmax + 1] = -1; |
|
else |
|
--fmax; |
|
|
|
for (d = fmax; d >= fmin; d -= 2) { |
|
if (kvdf[d - 1] >= kvdf[d + 1]) |
|
i1 = kvdf[d - 1] + 1; |
|
else |
|
i1 = kvdf[d + 1]; |
|
prev1 = i1; |
|
i2 = i1 - d; |
|
for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++); |
|
if (i1 - prev1 > xenv->snake_cnt) |
|
got_snake = 1; |
|
kvdf[d] = i1; |
|
if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) { |
|
spl->i1 = i1; |
|
spl->i2 = i2; |
|
spl->min_lo = spl->min_hi = 1; |
|
return ec; |
|
} |
|
} |
|
|
|
/* |
|
* We need to extent the diagonal "domain" by one. If the next |
|
* values exits the box boundaries we need to change it in the |
|
* opposite direction because (max - min) must be a power of two. |
|
* Also we initialize the external K value to -1 so that we can |
|
* avoid extra conditions check inside the core loop. |
|
*/ |
|
if (bmin > dmin) |
|
kvdb[--bmin - 1] = XDL_LINE_MAX; |
|
else |
|
++bmin; |
|
if (bmax < dmax) |
|
kvdb[++bmax + 1] = XDL_LINE_MAX; |
|
else |
|
--bmax; |
|
|
|
for (d = bmax; d >= bmin; d -= 2) { |
|
if (kvdb[d - 1] < kvdb[d + 1]) |
|
i1 = kvdb[d - 1]; |
|
else |
|
i1 = kvdb[d + 1] - 1; |
|
prev1 = i1; |
|
i2 = i1 - d; |
|
for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--); |
|
if (prev1 - i1 > xenv->snake_cnt) |
|
got_snake = 1; |
|
kvdb[d] = i1; |
|
if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) { |
|
spl->i1 = i1; |
|
spl->i2 = i2; |
|
spl->min_lo = spl->min_hi = 1; |
|
return ec; |
|
} |
|
} |
|
|
|
if (need_min) |
|
continue; |
|
|
|
/* |
|
* If the edit cost is above the heuristic trigger and if |
|
* we got a good snake, we sample current diagonals to see |
|
* if some of the, have reached an "interesting" path. Our |
|
* measure is a function of the distance from the diagonal |
|
* corner (i1 + i2) penalized with the distance from the |
|
* mid diagonal itself. If this value is above the current |
|
* edit cost times a magic factor (XDL_K_HEUR) we consider |
|
* it interesting. |
|
*/ |
|
if (got_snake && ec > xenv->heur_min) { |
|
for (best = 0, d = fmax; d >= fmin; d -= 2) { |
|
dd = d > fmid ? d - fmid: fmid - d; |
|
i1 = kvdf[d]; |
|
i2 = i1 - d; |
|
v = (i1 - off1) + (i2 - off2) - dd; |
|
|
|
if (v > XDL_K_HEUR * ec && v > best && |
|
off1 + xenv->snake_cnt <= i1 && i1 < lim1 && |
|
off2 + xenv->snake_cnt <= i2 && i2 < lim2) { |
|
for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++) |
|
if (k == xenv->snake_cnt) { |
|
best = v; |
|
spl->i1 = i1; |
|
spl->i2 = i2; |
|
break; |
|
} |
|
} |
|
} |
|
if (best > 0) { |
|
spl->min_lo = 1; |
|
spl->min_hi = 0; |
|
return ec; |
|
} |
|
|
|
for (best = 0, d = bmax; d >= bmin; d -= 2) { |
|
dd = d > bmid ? d - bmid: bmid - d; |
|
i1 = kvdb[d]; |
|
i2 = i1 - d; |
|
v = (lim1 - i1) + (lim2 - i2) - dd; |
|
|
|
if (v > XDL_K_HEUR * ec && v > best && |
|
off1 < i1 && i1 <= lim1 - xenv->snake_cnt && |
|
off2 < i2 && i2 <= lim2 - xenv->snake_cnt) { |
|
for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++) |
|
if (k == xenv->snake_cnt - 1) { |
|
best = v; |
|
spl->i1 = i1; |
|
spl->i2 = i2; |
|
break; |
|
} |
|
} |
|
} |
|
if (best > 0) { |
|
spl->min_lo = 0; |
|
spl->min_hi = 1; |
|
return ec; |
|
} |
|
} |
|
|
|
/* |
|
* Enough is enough. We spent too much time here and now we collect |
|
* the furthest reaching path using the (i1 + i2) measure. |
|
*/ |
|
if (ec >= xenv->mxcost) { |
|
long fbest, fbest1, bbest, bbest1; |
|
|
|
fbest = fbest1 = -1; |
|
for (d = fmax; d >= fmin; d -= 2) { |
|
i1 = XDL_MIN(kvdf[d], lim1); |
|
i2 = i1 - d; |
|
if (lim2 < i2) |
|
i1 = lim2 + d, i2 = lim2; |
|
if (fbest < i1 + i2) { |
|
fbest = i1 + i2; |
|
fbest1 = i1; |
|
} |
|
} |
|
|
|
bbest = bbest1 = XDL_LINE_MAX; |
|
for (d = bmax; d >= bmin; d -= 2) { |
|
i1 = XDL_MAX(off1, kvdb[d]); |
|
i2 = i1 - d; |
|
if (i2 < off2) |
|
i1 = off2 + d, i2 = off2; |
|
if (i1 + i2 < bbest) { |
|
bbest = i1 + i2; |
|
bbest1 = i1; |
|
} |
|
} |
|
|
|
if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) { |
|
spl->i1 = fbest1; |
|
spl->i2 = fbest - fbest1; |
|
spl->min_lo = 1; |
|
spl->min_hi = 0; |
|
} else { |
|
spl->i1 = bbest1; |
|
spl->i2 = bbest - bbest1; |
|
spl->min_lo = 0; |
|
spl->min_hi = 1; |
|
} |
|
return ec; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling |
|
* the box splitting function. Note that the real job (marking changed lines) |
|
* is done in the two boundary reaching checks. |
|
*/ |
|
int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1, |
|
diffdata_t *dd2, long off2, long lim2, |
|
long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) { |
|
unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha; |
|
|
|
/* |
|
* Shrink the box by walking through each diagonal snake (SW and NE). |
|
*/ |
|
for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++); |
|
for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--); |
|
|
|
/* |
|
* If one dimension is empty, then all records on the other one must |
|
* be obviously changed. |
|
*/ |
|
if (off1 == lim1) { |
|
char *rchg2 = dd2->rchg; |
|
long *rindex2 = dd2->rindex; |
|
|
|
for (; off2 < lim2; off2++) |
|
rchg2[rindex2[off2]] = 1; |
|
} else if (off2 == lim2) { |
|
char *rchg1 = dd1->rchg; |
|
long *rindex1 = dd1->rindex; |
|
|
|
for (; off1 < lim1; off1++) |
|
rchg1[rindex1[off1]] = 1; |
|
} else { |
|
xdpsplit_t spl; |
|
spl.i1 = spl.i2 = 0; |
|
|
|
/* |
|
* Divide ... |
|
*/ |
|
if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb, |
|
need_min, &spl, xenv) < 0) { |
|
|
|
return -1; |
|
} |
|
|
|
/* |
|
* ... et Impera. |
|
*/ |
|
if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2, |
|
kvdf, kvdb, spl.min_lo, xenv) < 0 || |
|
xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2, |
|
kvdf, kvdb, spl.min_hi, xenv) < 0) { |
|
|
|
return -1; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
|
xdfenv_t *xe) { |
|
long ndiags; |
|
long *kvd, *kvdf, *kvdb; |
|
xdalgoenv_t xenv; |
|
diffdata_t dd1, dd2; |
|
|
|
if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF) |
|
return xdl_do_patience_diff(mf1, mf2, xpp, xe); |
|
|
|
if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF) |
|
return xdl_do_histogram_diff(mf1, mf2, xpp, xe); |
|
|
|
if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) { |
|
|
|
return -1; |
|
} |
|
|
|
/* |
|
* Allocate and setup K vectors to be used by the differential algorithm. |
|
* One is to store the forward path and one to store the backward path. |
|
*/ |
|
ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3; |
|
if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) { |
|
|
|
xdl_free_env(xe); |
|
return -1; |
|
} |
|
kvdf = kvd; |
|
kvdb = kvdf + ndiags; |
|
kvdf += xe->xdf2.nreff + 1; |
|
kvdb += xe->xdf2.nreff + 1; |
|
|
|
xenv.mxcost = xdl_bogosqrt(ndiags); |
|
if (xenv.mxcost < XDL_MAX_COST_MIN) |
|
xenv.mxcost = XDL_MAX_COST_MIN; |
|
xenv.snake_cnt = XDL_SNAKE_CNT; |
|
xenv.heur_min = XDL_HEUR_MIN_COST; |
|
|
|
dd1.nrec = xe->xdf1.nreff; |
|
dd1.ha = xe->xdf1.ha; |
|
dd1.rchg = xe->xdf1.rchg; |
|
dd1.rindex = xe->xdf1.rindex; |
|
dd2.nrec = xe->xdf2.nreff; |
|
dd2.ha = xe->xdf2.ha; |
|
dd2.rchg = xe->xdf2.rchg; |
|
dd2.rindex = xe->xdf2.rindex; |
|
|
|
if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec, |
|
kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) { |
|
|
|
xdl_free(kvd); |
|
xdl_free_env(xe); |
|
return -1; |
|
} |
|
|
|
xdl_free(kvd); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) { |
|
xdchange_t *xch; |
|
|
|
if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t)))) |
|
return NULL; |
|
|
|
xch->next = xscr; |
|
xch->i1 = i1; |
|
xch->i2 = i2; |
|
xch->chg1 = chg1; |
|
xch->chg2 = chg2; |
|
xch->ignore = 0; |
|
|
|
return xch; |
|
} |
|
|
|
|
|
static int is_blank_line(xrecord_t **recs, long ix, long flags) |
|
{ |
|
return xdl_blankline(recs[ix]->ptr, recs[ix]->size, flags); |
|
} |
|
|
|
static int recs_match(xrecord_t **recs, long ixs, long ix, long flags) |
|
{ |
|
return (recs[ixs]->ha == recs[ix]->ha && |
|
xdl_recmatch(recs[ixs]->ptr, recs[ixs]->size, |
|
recs[ix]->ptr, recs[ix]->size, |
|
flags)); |
|
} |
|
|
|
int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) { |
|
long ix, ixo, ixs, ixref, grpsiz, nrec = xdf->nrec; |
|
char *rchg = xdf->rchg, *rchgo = xdfo->rchg; |
|
unsigned int blank_lines; |
|
xrecord_t **recs = xdf->recs; |
|
|
|
/* |
|
* This is the same of what GNU diff does. Move back and forward |
|
* change groups for a consistent and pretty diff output. This also |
|
* helps in finding joinable change groups and reduce the diff size. |
|
*/ |
|
for (ix = ixo = 0;;) { |
|
/* |
|
* Find the first changed line in the to-be-compacted file. |
|
* We need to keep track of both indexes, so if we find a |
|
* changed lines group on the other file, while scanning the |
|
* to-be-compacted file, we need to skip it properly. Note |
|
* that loops that are testing for changed lines on rchg* do |
|
* not need index bounding since the array is prepared with |
|
* a zero at position -1 and N. |
|
*/ |
|
for (; ix < nrec && !rchg[ix]; ix++) |
|
while (rchgo[ixo++]); |
|
if (ix == nrec) |
|
break; |
|
|
|
/* |
|
* Record the start of a changed-group in the to-be-compacted file |
|
* and find the end of it, on both to-be-compacted and other file |
|
* indexes (ix and ixo). |
|
*/ |
|
ixs = ix; |
|
for (ix++; rchg[ix]; ix++); |
|
for (; rchgo[ixo]; ixo++); |
|
|
|
do { |
|
grpsiz = ix - ixs; |
|
blank_lines = 0; |
|
|
|
/* |
|
* If the line before the current change group, is equal to |
|
* the last line of the current change group, shift backward |
|
* the group. |
|
*/ |
|
while (ixs > 0 && recs_match(recs, ixs - 1, ix - 1, flags)) { |
|
rchg[--ixs] = 1; |
|
rchg[--ix] = 0; |
|
|
|
/* |
|
* This change might have joined two change groups, |
|
* so we try to take this scenario in account by moving |
|
* the start index accordingly (and so the other-file |
|
* end-of-group index). |
|
*/ |
|
for (; rchg[ixs - 1]; ixs--); |
|
while (rchgo[--ixo]); |
|
} |
|
|
|
/* |
|
* Record the end-of-group position in case we are matched |
|
* with a group of changes in the other file (that is, the |
|
* change record before the end-of-group index in the other |
|
* file is set). |
|
*/ |
|
ixref = rchgo[ixo - 1] ? ix: nrec; |
|
|
|
/* |
|
* If the first line of the current change group, is equal to |
|
* the line next of the current change group, shift forward |
|
* the group. |
|
*/ |
|
while (ix < nrec && recs_match(recs, ixs, ix, flags)) { |
|
blank_lines += is_blank_line(recs, ix, flags); |
|
|
|
rchg[ixs++] = 0; |
|
rchg[ix++] = 1; |
|
|
|
/* |
|
* This change might have joined two change groups, |
|
* so we try to take this scenario in account by moving |
|
* the start index accordingly (and so the other-file |
|
* end-of-group index). Keep tracking the reference |
|
* index in case we are shifting together with a |
|
* corresponding group of changes in the other file. |
|
*/ |
|
for (; rchg[ix]; ix++); |
|
while (rchgo[++ixo]) |
|
ixref = ix; |
|
} |
|
} while (grpsiz != ix - ixs); |
|
|
|
/* |
|
* Try to move back the possibly merged group of changes, to match |
|
* the recorded position in the other file. |
|
*/ |
|
while (ixref < ix) { |
|
rchg[--ixs] = 1; |
|
rchg[--ix] = 0; |
|
while (rchgo[--ixo]); |
|
} |
|
|
|
/* |
|
* If a group can be moved back and forth, see if there is a |
|
* blank line in the moving space. If there is a blank line, |
|
* make sure the last blank line is the end of the group. |
|
* |
|
* As we already shifted the group forward as far as possible |
|
* in the earlier loop, we need to shift it back only if at all. |
|
*/ |
|
if ((flags & XDF_COMPACTION_HEURISTIC) && blank_lines) { |
|
while (ixs > 0 && |
|
!is_blank_line(recs, ix - 1, flags) && |
|
recs_match(recs, ixs - 1, ix - 1, flags)) { |
|
rchg[--ixs] = 1; |
|
rchg[--ix] = 0; |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) { |
|
xdchange_t *cscr = NULL, *xch; |
|
char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg; |
|
long i1, i2, l1, l2; |
|
|
|
/* |
|
* Trivial. Collects "groups" of changes and creates an edit script. |
|
*/ |
|
for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--) |
|
if (rchg1[i1 - 1] || rchg2[i2 - 1]) { |
|
for (l1 = i1; rchg1[i1 - 1]; i1--); |
|
for (l2 = i2; rchg2[i2 - 1]; i2--); |
|
|
|
if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) { |
|
xdl_free_script(cscr); |
|
return -1; |
|
} |
|
cscr = xch; |
|
} |
|
|
|
*xscr = cscr; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
void xdl_free_script(xdchange_t *xscr) { |
|
xdchange_t *xch; |
|
|
|
while ((xch = xscr) != NULL) { |
|
xscr = xscr->next; |
|
xdl_free(xch); |
|
} |
|
} |
|
|
|
static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb, |
|
xdemitconf_t const *xecfg) |
|
{ |
|
xdchange_t *xch, *xche; |
|
|
|
for (xch = xscr; xch; xch = xche->next) { |
|
xche = xdl_get_hunk(&xch, xecfg); |
|
if (!xch) |
|
break; |
|
if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1, |
|
xch->i2, xche->i2 + xche->chg2 - xch->i2, |
|
ecb->priv) < 0) |
|
return -1; |
|
} |
|
return 0; |
|
} |
|
|
|
static void xdl_mark_ignorable(xdchange_t *xscr, xdfenv_t *xe, long flags) |
|
{ |
|
xdchange_t *xch; |
|
|
|
for (xch = xscr; xch; xch = xch->next) { |
|
int ignore = 1; |
|
xrecord_t **rec; |
|
long i; |
|
|
|
rec = &xe->xdf1.recs[xch->i1]; |
|
for (i = 0; i < xch->chg1 && ignore; i++) |
|
ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags); |
|
|
|
rec = &xe->xdf2.recs[xch->i2]; |
|
for (i = 0; i < xch->chg2 && ignore; i++) |
|
ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags); |
|
|
|
xch->ignore = ignore; |
|
} |
|
} |
|
|
|
int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
|
xdemitconf_t const *xecfg, xdemitcb_t *ecb) { |
|
xdchange_t *xscr; |
|
xdfenv_t xe; |
|
emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff; |
|
|
|
if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) { |
|
|
|
return -1; |
|
} |
|
if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 || |
|
xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 || |
|
xdl_build_script(&xe, &xscr) < 0) { |
|
|
|
xdl_free_env(&xe); |
|
return -1; |
|
} |
|
if (xscr) { |
|
if (xpp->flags & XDF_IGNORE_BLANK_LINES) |
|
xdl_mark_ignorable(xscr, &xe, xpp->flags); |
|
|
|
if (ef(&xe, xscr, ecb, xecfg) < 0) { |
|
|
|
xdl_free_script(xscr); |
|
xdl_free_env(&xe); |
|
return -1; |
|
} |
|
xdl_free_script(xscr); |
|
} |
|
xdl_free_env(&xe); |
|
|
|
return 0; |
|
}
|
|
|