You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

730 lines
17 KiB

#include "cache.h"
#include "lockfile.h"
#include "tree.h"
#include "tree-walk.h"
#include "cache-tree.h"
#ifndef DEBUG
#define DEBUG 0
#endif
struct cache_tree *cache_tree(void)
{
struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
it->entry_count = -1;
return it;
}
void cache_tree_free(struct cache_tree **it_p)
{
int i;
struct cache_tree *it = *it_p;
if (!it)
return;
for (i = 0; i < it->subtree_nr; i++)
if (it->down[i]) {
cache_tree_free(&it->down[i]->cache_tree);
free(it->down[i]);
}
free(it->down);
free(it);
*it_p = NULL;
}
static int subtree_name_cmp(const char *one, int onelen,
const char *two, int twolen)
{
if (onelen < twolen)
return -1;
if (twolen < onelen)
return 1;
return memcmp(one, two, onelen);
}
static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
{
struct cache_tree_sub **down = it->down;
int lo, hi;
lo = 0;
hi = it->subtree_nr;
while (lo < hi) {
int mi = lo + (hi - lo) / 2;
struct cache_tree_sub *mdl = down[mi];
int cmp = subtree_name_cmp(path, pathlen,
mdl->name, mdl->namelen);
if (!cmp)
return mi;
if (cmp < 0)
hi = mi;
else
lo = mi + 1;
}
return -lo-1;
}
static struct cache_tree_sub *find_subtree(struct cache_tree *it,
const char *path,
int pathlen,
int create)
{
struct cache_tree_sub *down;
int pos = subtree_pos(it, path, pathlen);
if (0 <= pos)
return it->down[pos];
if (!create)
return NULL;
pos = -pos-1;
ALLOC_GROW(it->down, it->subtree_nr + 1, it->subtree_alloc);
it->subtree_nr++;
FLEX_ALLOC_MEM(down, name, path, pathlen);
down->cache_tree = NULL;
down->namelen = pathlen;
if (pos < it->subtree_nr)
MOVE_ARRAY(it->down + pos + 1, it->down + pos,
it->subtree_nr - pos - 1);
it->down[pos] = down;
return down;
}
struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
{
int pathlen = strlen(path);
return find_subtree(it, path, pathlen, 1);
}
static int do_invalidate_path(struct cache_tree *it, const char *path)
{
/* a/b/c
* ==> invalidate self
* ==> find "a", have it invalidate "b/c"
* a
* ==> invalidate self
* ==> if "a" exists as a subtree, remove it.
*/
const char *slash;
int namelen;
struct cache_tree_sub *down;
#if DEBUG
fprintf(stderr, "cache-tree invalidate <%s>\n", path);
#endif
if (!it)
return 0;
slash = strchrnul(path, '/');
namelen = slash - path;
it->entry_count = -1;
if (!*slash) {
int pos;
pos = subtree_pos(it, path, namelen);
if (0 <= pos) {
cache_tree_free(&it->down[pos]->cache_tree);
free(it->down[pos]);
/* 0 1 2 3 4 5
* ^ ^subtree_nr = 6
* pos
* move 4 and 5 up one place (2 entries)
* 2 = 6 - 3 - 1 = subtree_nr - pos - 1
*/
MOVE_ARRAY(it->down + pos, it->down + pos + 1,
it->subtree_nr - pos - 1);
it->subtree_nr--;
}
return 1;
}
down = find_subtree(it, path, namelen, 0);
if (down)
do_invalidate_path(down->cache_tree, slash + 1);
return 1;
}
void cache_tree_invalidate_path(struct index_state *istate, const char *path)
{
if (do_invalidate_path(istate->cache_tree, path))
istate->cache_changed |= CACHE_TREE_CHANGED;
}
static int verify_cache(struct cache_entry **cache,
int entries, int flags)
{
int i, funny;
int silent = flags & WRITE_TREE_SILENT;
/* Verify that the tree is merged */
funny = 0;
for (i = 0; i < entries; i++) {
const struct cache_entry *ce = cache[i];
if (ce_stage(ce)) {
if (silent)
return -1;
if (10 < ++funny) {
fprintf(stderr, "...\n");
break;
}
fprintf(stderr, "%s: unmerged (%s)\n",
ce->name, oid_to_hex(&ce->oid));
}
}
if (funny)
return -1;
/* Also verify that the cache does not have path and path/file
* at the same time. At this point we know the cache has only
* stage 0 entries.
*/
funny = 0;
for (i = 0; i < entries - 1; i++) {
/* path/file always comes after path because of the way
* the cache is sorted. Also path can appear only once,
* which means conflicting one would immediately follow.
*/
const char *this_name = cache[i]->name;
const char *next_name = cache[i+1]->name;
int this_len = strlen(this_name);
if (this_len < strlen(next_name) &&
strncmp(this_name, next_name, this_len) == 0 &&
next_name[this_len] == '/') {
if (10 < ++funny) {
fprintf(stderr, "...\n");
break;
}
fprintf(stderr, "You have both %s and %s\n",
this_name, next_name);
}
}
if (funny)
return -1;
return 0;
}
static void discard_unused_subtrees(struct cache_tree *it)
{
struct cache_tree_sub **down = it->down;
int nr = it->subtree_nr;
int dst, src;
for (dst = src = 0; src < nr; src++) {
struct cache_tree_sub *s = down[src];
if (s->used)
down[dst++] = s;
else {
cache_tree_free(&s->cache_tree);
free(s);
it->subtree_nr--;
}
}
}
int cache_tree_fully_valid(struct cache_tree *it)
{
int i;
if (!it)
return 0;
if (it->entry_count < 0 || !has_sha1_file(it->oid.hash))
return 0;
for (i = 0; i < it->subtree_nr; i++) {
if (!cache_tree_fully_valid(it->down[i]->cache_tree))
return 0;
}
return 1;
}
static int update_one(struct cache_tree *it,
struct cache_entry **cache,
int entries,
const char *base,
int baselen,
int *skip_count,
int flags)
{
struct strbuf buffer;
int missing_ok = flags & WRITE_TREE_MISSING_OK;
int dryrun = flags & WRITE_TREE_DRY_RUN;
int repair = flags & WRITE_TREE_REPAIR;
int to_invalidate = 0;
int i;
assert(!(dryrun && repair));
*skip_count = 0;
if (0 <= it->entry_count && has_sha1_file(it->oid.hash))
return it->entry_count;
/*
* We first scan for subtrees and update them; we start by
* marking existing subtrees -- the ones that are unmarked
* should not be in the result.
*/
for (i = 0; i < it->subtree_nr; i++)
it->down[i]->used = 0;
/*
* Find the subtrees and update them.
*/
i = 0;
while (i < entries) {
const struct cache_entry *ce = cache[i];
struct cache_tree_sub *sub;
const char *path, *slash;
int pathlen, sublen, subcnt, subskip;
path = ce->name;
pathlen = ce_namelen(ce);
if (pathlen <= baselen || memcmp(base, path, baselen))
break; /* at the end of this level */
slash = strchr(path + baselen, '/');
if (!slash) {
i++;
continue;
}
/*
* a/bbb/c (base = a/, slash = /c)
* ==>
* path+baselen = bbb/c, sublen = 3
*/
sublen = slash - (path + baselen);
sub = find_subtree(it, path + baselen, sublen, 1);
if (!sub->cache_tree)
sub->cache_tree = cache_tree();
subcnt = update_one(sub->cache_tree,
cache + i, entries - i,
path,
baselen + sublen + 1,
&subskip,
flags);
if (subcnt < 0)
return subcnt;
if (!subcnt)
die("index cache-tree records empty sub-tree");
i += subcnt;
sub->count = subcnt; /* to be used in the next loop */
*skip_count += subskip;
sub->used = 1;
}
discard_unused_subtrees(it);
/*
* Then write out the tree object for this level.
*/
strbuf_init(&buffer, 8192);
i = 0;
while (i < entries) {
const struct cache_entry *ce = cache[i];
struct cache_tree_sub *sub = NULL;
const char *path, *slash;
int pathlen, entlen;
const struct object_id *oid;
unsigned mode;
int expected_missing = 0;
int contains_ita = 0;
path = ce->name;
pathlen = ce_namelen(ce);
if (pathlen <= baselen || memcmp(base, path, baselen))
break; /* at the end of this level */
slash = strchr(path + baselen, '/');
if (slash) {
entlen = slash - (path + baselen);
sub = find_subtree(it, path + baselen, entlen, 0);
if (!sub)
die("cache-tree.c: '%.*s' in '%s' not found",
entlen, path + baselen, path);
i += sub->count;
oid = &sub->cache_tree->oid;
mode = S_IFDIR;
contains_ita = sub->cache_tree->entry_count < 0;
if (contains_ita) {
to_invalidate = 1;
expected_missing = 1;
}
}
else {
oid = &ce->oid;
mode = ce->ce_mode;
entlen = pathlen - baselen;
i++;
}
if (is_null_oid(oid) ||
(mode != S_IFGITLINK && !missing_ok && !has_object_file(oid))) {
strbuf_release(&buffer);
if (expected_missing)
return -1;
return error("invalid object %06o %s for '%.*s'",
mode, oid_to_hex(oid), entlen+baselen, path);
}
/*
* CE_REMOVE entries are removed before the index is
* written to disk. Skip them to remain consistent
* with the future on-disk index.
*/
if (ce->ce_flags & CE_REMOVE) {
*skip_count = *skip_count + 1;
continue;
}
/*
* CE_INTENT_TO_ADD entries exist on on-disk index but
* they are not part of generated trees. Invalidate up
* to root to force cache-tree users to read elsewhere.
*/
if (!sub && ce_intent_to_add(ce)) {
to_invalidate = 1;
continue;
}
/*
* "sub" can be an empty tree if all subentries are i-t-a.
*/
if (contains_ita && is_empty_tree_oid(oid))
continue;
strbuf_grow(&buffer, entlen + 100);
strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
strbuf_add(&buffer, oid->hash, the_hash_algo->rawsz);
#if DEBUG
fprintf(stderr, "cache-tree update-one %o %.*s\n",
mode, entlen, path + baselen);
#endif
}
if (repair) {
struct object_id oid;
hash_object_file(buffer.buf, buffer.len, tree_type, &oid);
if (has_object_file(&oid))
oidcpy(&it->oid, &oid);
else
to_invalidate = 1;
} else if (dryrun) {
hash_object_file(buffer.buf, buffer.len, tree_type, &it->oid);
} else if (write_object_file(buffer.buf, buffer.len, tree_type,
&it->oid)) {
strbuf_release(&buffer);
return -1;
}
strbuf_release(&buffer);
it->entry_count = to_invalidate ? -1 : i - *skip_count;
#if DEBUG
fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
it->entry_count, it->subtree_nr,
oid_to_hex(&it->oid));
#endif
return i;
}
int cache_tree_update(struct index_state *istate, int flags)
{
struct cache_tree *it = istate->cache_tree;
struct cache_entry **cache = istate->cache;
int entries = istate->cache_nr;
int skip, i = verify_cache(cache, entries, flags);
if (i)
return i;
i = update_one(it, cache, entries, "", 0, &skip, flags);
if (i < 0)
return i;
istate->cache_changed |= CACHE_TREE_CHANGED;
return 0;
}
static void write_one(struct strbuf *buffer, struct cache_tree *it,
const char *path, int pathlen)
{
int i;
/* One "cache-tree" entry consists of the following:
* path (NUL terminated)
* entry_count, subtree_nr ("%d %d\n")
* tree-sha1 (missing if invalid)
* subtree_nr "cache-tree" entries for subtrees.
*/
strbuf_grow(buffer, pathlen + 100);
strbuf_add(buffer, path, pathlen);
strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
#if DEBUG
if (0 <= it->entry_count)
fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
pathlen, path, it->entry_count, it->subtree_nr,
oid_to_hex(&it->oid));
else
fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
pathlen, path, it->subtree_nr);
#endif
if (0 <= it->entry_count) {
strbuf_add(buffer, it->oid.hash, the_hash_algo->rawsz);
}
for (i = 0; i < it->subtree_nr; i++) {
struct cache_tree_sub *down = it->down[i];
if (i) {
struct cache_tree_sub *prev = it->down[i-1];
if (subtree_name_cmp(down->name, down->namelen,
prev->name, prev->namelen) <= 0)
die("fatal - unsorted cache subtree");
}
write_one(buffer, down->cache_tree, down->name, down->namelen);
}
}
void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
{
write_one(sb, root, "", 0);
}
static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
{
const char *buf = *buffer;
unsigned long size = *size_p;
const char *cp;
char *ep;
struct cache_tree *it;
int i, subtree_nr;
const unsigned rawsz = the_hash_algo->rawsz;
it = NULL;
/* skip name, but make sure name exists */
while (size && *buf) {
size--;
buf++;
}
if (!size)
goto free_return;
buf++; size--;
it = cache_tree();
cp = buf;
it->entry_count = strtol(cp, &ep, 10);
if (cp == ep)
goto free_return;
cp = ep;
subtree_nr = strtol(cp, &ep, 10);
if (cp == ep)
goto free_return;
while (size && *buf && *buf != '\n') {
size--;
buf++;
}
if (!size)
goto free_return;
buf++; size--;
if (0 <= it->entry_count) {
if (size < rawsz)
goto free_return;
oidread(&it->oid, (const unsigned char *)buf);
buf += rawsz;
size -= rawsz;
}
#if DEBUG
if (0 <= it->entry_count)
fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
*buffer, it->entry_count, subtree_nr,
oid_to_hex(&it->oid));
else
fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
*buffer, subtree_nr);
#endif
/*
* Just a heuristic -- we do not add directories that often but
* we do not want to have to extend it immediately when we do,
* hence +2.
*/
it->subtree_alloc = subtree_nr + 2;
it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
for (i = 0; i < subtree_nr; i++) {
/* read each subtree */
struct cache_tree *sub;
struct cache_tree_sub *subtree;
const char *name = buf;
sub = read_one(&buf, &size);
if (!sub)
goto free_return;
subtree = cache_tree_sub(it, name);
subtree->cache_tree = sub;
}
if (subtree_nr != it->subtree_nr)
die("cache-tree: internal error");
*buffer = buf;
*size_p = size;
return it;
free_return:
cache_tree_free(&it);
return NULL;
}
struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
{
if (buffer[0])
return NULL; /* not the whole tree */
return read_one(&buffer, &size);
}
static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
{
if (!it)
return NULL;
while (*path) {
const char *slash;
struct cache_tree_sub *sub;
slash = strchrnul(path, '/');
/*
* Between path and slash is the name of the subtree
* to look for.
*/
sub = find_subtree(it, path, slash - path, 0);
if (!sub)
return NULL;
it = sub->cache_tree;
path = slash;
while (*path == '/')
path++;
}
return it;
}
int write_index_as_tree(struct object_id *oid, struct index_state *index_state, const char *index_path, int flags, const char *prefix)
{
int entries, was_valid;
struct lock_file lock_file = LOCK_INIT;
int ret = 0;
hold_lock_file_for_update(&lock_file, index_path, LOCK_DIE_ON_ERROR);
entries = read_index_from(index_state, index_path, get_git_dir());
if (entries < 0) {
ret = WRITE_TREE_UNREADABLE_INDEX;
goto out;
}
if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
cache_tree_free(&index_state->cache_tree);
if (!index_state->cache_tree)
index_state->cache_tree = cache_tree();
was_valid = cache_tree_fully_valid(index_state->cache_tree);
if (!was_valid) {
if (cache_tree_update(index_state, flags) < 0) {
ret = WRITE_TREE_UNMERGED_INDEX;
goto out;
}
write_locked_index(index_state, &lock_file, COMMIT_LOCK);
/* Not being able to write is fine -- we are only interested
* in updating the cache-tree part, and if the next caller
* ends up using the old index with unupdated cache-tree part
* it misses the work we did here, but that is just a
* performance penalty and not a big deal.
*/
}
if (prefix) {
struct cache_tree *subtree;
subtree = cache_tree_find(index_state->cache_tree, prefix);
if (!subtree) {
ret = WRITE_TREE_PREFIX_ERROR;
goto out;
}
oidcpy(oid, &subtree->oid);
}
else
oidcpy(oid, &index_state->cache_tree->oid);
out:
rollback_lock_file(&lock_file);
return ret;
}
int write_cache_as_tree(struct object_id *oid, int flags, const char *prefix)
{
return write_index_as_tree(oid, &the_index, get_index_file(), flags, prefix);
}
static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
{
struct tree_desc desc;
struct name_entry entry;
int cnt;
oidcpy(&it->oid, &tree->object.oid);
init_tree_desc(&desc, tree->buffer, tree->size);
cnt = 0;
while (tree_entry(&desc, &entry)) {
if (!S_ISDIR(entry.mode))
cnt++;
else {
struct cache_tree_sub *sub;
struct tree *subtree = lookup_tree(entry.oid);
if (!subtree->object.parsed)
parse_tree(subtree);
sub = cache_tree_sub(it, entry.path);
sub->cache_tree = cache_tree();
prime_cache_tree_rec(sub->cache_tree, subtree);
cnt += sub->cache_tree->entry_count;
}
}
it->entry_count = cnt;
}
void prime_cache_tree(struct index_state *istate, struct tree *tree)
{
cache_tree_free(&istate->cache_tree);
istate->cache_tree = cache_tree();
prime_cache_tree_rec(istate->cache_tree, tree);
istate->cache_changed |= CACHE_TREE_CHANGED;
}
/*
* find the cache_tree that corresponds to the current level without
* exploding the full path into textual form. The root of the
* cache tree is given as "root", and our current level is "info".
* (1) When at root level, info->prev is NULL, so it is "root" itself.
* (2) Otherwise, find the cache_tree that corresponds to one level
* above us, and find ourselves in there.
*/
static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
struct traverse_info *info)
{
struct cache_tree *our_parent;
if (!info->prev)
return root;
our_parent = find_cache_tree_from_traversal(root, info->prev);
return cache_tree_find(our_parent, info->name.path);
}
int cache_tree_matches_traversal(struct cache_tree *root,
struct name_entry *ent,
struct traverse_info *info)
{
struct cache_tree *it;
it = find_cache_tree_from_traversal(root, info);
it = cache_tree_find(it, ent->path);
if (it && it->entry_count > 0 && !oidcmp(ent->oid, &it->oid))
return it->entry_count;
return 0;
}
int update_main_cache_tree(int flags)
{
if (!the_index.cache_tree)
the_index.cache_tree = cache_tree();
return cache_tree_update(&the_index, flags);
}