You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1302 lines
36 KiB
1302 lines
36 KiB
#include "cache.h" |
|
#include "notes.h" |
|
#include "blob.h" |
|
#include "tree.h" |
|
#include "utf8.h" |
|
#include "strbuf.h" |
|
#include "tree-walk.h" |
|
#include "string-list.h" |
|
#include "refs.h" |
|
|
|
/* |
|
* Use a non-balancing simple 16-tree structure with struct int_node as |
|
* internal nodes, and struct leaf_node as leaf nodes. Each int_node has a |
|
* 16-array of pointers to its children. |
|
* The bottom 2 bits of each pointer is used to identify the pointer type |
|
* - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL) |
|
* - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node * |
|
* - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node * |
|
* - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node * |
|
* |
|
* The root node is a statically allocated struct int_node. |
|
*/ |
|
struct int_node { |
|
void *a[16]; |
|
}; |
|
|
|
/* |
|
* Leaf nodes come in two variants, note entries and subtree entries, |
|
* distinguished by the LSb of the leaf node pointer (see above). |
|
* As a note entry, the key is the SHA1 of the referenced object, and the |
|
* value is the SHA1 of the note object. |
|
* As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the |
|
* referenced object, using the last byte of the key to store the length of |
|
* the prefix. The value is the SHA1 of the tree object containing the notes |
|
* subtree. |
|
*/ |
|
struct leaf_node { |
|
unsigned char key_sha1[20]; |
|
unsigned char val_sha1[20]; |
|
}; |
|
|
|
/* |
|
* A notes tree may contain entries that are not notes, and that do not follow |
|
* the naming conventions of notes. There are typically none/few of these, but |
|
* we still need to keep track of them. Keep a simple linked list sorted alpha- |
|
* betically on the non-note path. The list is populated when parsing tree |
|
* objects in load_subtree(), and the non-notes are correctly written back into |
|
* the tree objects produced by write_notes_tree(). |
|
*/ |
|
struct non_note { |
|
struct non_note *next; /* grounded (last->next == NULL) */ |
|
char *path; |
|
unsigned int mode; |
|
unsigned char sha1[20]; |
|
}; |
|
|
|
#define PTR_TYPE_NULL 0 |
|
#define PTR_TYPE_INTERNAL 1 |
|
#define PTR_TYPE_NOTE 2 |
|
#define PTR_TYPE_SUBTREE 3 |
|
|
|
#define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3) |
|
#define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3)) |
|
#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type))) |
|
|
|
#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f) |
|
|
|
#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \ |
|
(memcmp(key_sha1, subtree_sha1, subtree_sha1[19])) |
|
|
|
struct notes_tree default_notes_tree; |
|
|
|
static struct string_list display_notes_refs; |
|
static struct notes_tree **display_notes_trees; |
|
|
|
static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, |
|
struct int_node *node, unsigned int n); |
|
|
|
/* |
|
* Search the tree until the appropriate location for the given key is found: |
|
* 1. Start at the root node, with n = 0 |
|
* 2. If a[0] at the current level is a matching subtree entry, unpack that |
|
* subtree entry and remove it; restart search at the current level. |
|
* 3. Use the nth nibble of the key as an index into a: |
|
* - If a[n] is an int_node, recurse from #2 into that node and increment n |
|
* - If a matching subtree entry, unpack that subtree entry (and remove it); |
|
* restart search at the current level. |
|
* - Otherwise, we have found one of the following: |
|
* - a subtree entry which does not match the key |
|
* - a note entry which may or may not match the key |
|
* - an unused leaf node (NULL) |
|
* In any case, set *tree and *n, and return pointer to the tree location. |
|
*/ |
|
static void **note_tree_search(struct notes_tree *t, struct int_node **tree, |
|
unsigned char *n, const unsigned char *key_sha1) |
|
{ |
|
struct leaf_node *l; |
|
unsigned char i; |
|
void *p = (*tree)->a[0]; |
|
|
|
if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) { |
|
l = (struct leaf_node *) CLR_PTR_TYPE(p); |
|
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { |
|
/* unpack tree and resume search */ |
|
(*tree)->a[0] = NULL; |
|
load_subtree(t, l, *tree, *n); |
|
free(l); |
|
return note_tree_search(t, tree, n, key_sha1); |
|
} |
|
} |
|
|
|
i = GET_NIBBLE(*n, key_sha1); |
|
p = (*tree)->a[i]; |
|
switch (GET_PTR_TYPE(p)) { |
|
case PTR_TYPE_INTERNAL: |
|
*tree = CLR_PTR_TYPE(p); |
|
(*n)++; |
|
return note_tree_search(t, tree, n, key_sha1); |
|
case PTR_TYPE_SUBTREE: |
|
l = (struct leaf_node *) CLR_PTR_TYPE(p); |
|
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { |
|
/* unpack tree and resume search */ |
|
(*tree)->a[i] = NULL; |
|
load_subtree(t, l, *tree, *n); |
|
free(l); |
|
return note_tree_search(t, tree, n, key_sha1); |
|
} |
|
/* fall through */ |
|
default: |
|
return &((*tree)->a[i]); |
|
} |
|
} |
|
|
|
/* |
|
* To find a leaf_node: |
|
* Search to the tree location appropriate for the given key: |
|
* If a note entry with matching key, return the note entry, else return NULL. |
|
*/ |
|
static struct leaf_node *note_tree_find(struct notes_tree *t, |
|
struct int_node *tree, unsigned char n, |
|
const unsigned char *key_sha1) |
|
{ |
|
void **p = note_tree_search(t, &tree, &n, key_sha1); |
|
if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) { |
|
struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
|
if (!hashcmp(key_sha1, l->key_sha1)) |
|
return l; |
|
} |
|
return NULL; |
|
} |
|
|
|
/* |
|
* How to consolidate an int_node: |
|
* If there are > 1 non-NULL entries, give up and return non-zero. |
|
* Otherwise replace the int_node at the given index in the given parent node |
|
* with the only entry (or a NULL entry if no entries) from the given tree, |
|
* and return 0. |
|
*/ |
|
static int note_tree_consolidate(struct int_node *tree, |
|
struct int_node *parent, unsigned char index) |
|
{ |
|
unsigned int i; |
|
void *p = NULL; |
|
|
|
assert(tree && parent); |
|
assert(CLR_PTR_TYPE(parent->a[index]) == tree); |
|
|
|
for (i = 0; i < 16; i++) { |
|
if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) { |
|
if (p) /* more than one entry */ |
|
return -2; |
|
p = tree->a[i]; |
|
} |
|
} |
|
|
|
/* replace tree with p in parent[index] */ |
|
parent->a[index] = p; |
|
free(tree); |
|
return 0; |
|
} |
|
|
|
/* |
|
* To remove a leaf_node: |
|
* Search to the tree location appropriate for the given leaf_node's key: |
|
* - If location does not hold a matching entry, abort and do nothing. |
|
* - Copy the matching entry's value into the given entry. |
|
* - Replace the matching leaf_node with a NULL entry (and free the leaf_node). |
|
* - Consolidate int_nodes repeatedly, while walking up the tree towards root. |
|
*/ |
|
static void note_tree_remove(struct notes_tree *t, |
|
struct int_node *tree, unsigned char n, |
|
struct leaf_node *entry) |
|
{ |
|
struct leaf_node *l; |
|
struct int_node *parent_stack[20]; |
|
unsigned char i, j; |
|
void **p = note_tree_search(t, &tree, &n, entry->key_sha1); |
|
|
|
assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ |
|
if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE) |
|
return; /* type mismatch, nothing to remove */ |
|
l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
|
if (hashcmp(l->key_sha1, entry->key_sha1)) |
|
return; /* key mismatch, nothing to remove */ |
|
|
|
/* we have found a matching entry */ |
|
hashcpy(entry->val_sha1, l->val_sha1); |
|
free(l); |
|
*p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL); |
|
|
|
/* consolidate this tree level, and parent levels, if possible */ |
|
if (!n) |
|
return; /* cannot consolidate top level */ |
|
/* first, build stack of ancestors between root and current node */ |
|
parent_stack[0] = t->root; |
|
for (i = 0; i < n; i++) { |
|
j = GET_NIBBLE(i, entry->key_sha1); |
|
parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]); |
|
} |
|
assert(i == n && parent_stack[i] == tree); |
|
/* next, unwind stack until note_tree_consolidate() is done */ |
|
while (i > 0 && |
|
!note_tree_consolidate(parent_stack[i], parent_stack[i - 1], |
|
GET_NIBBLE(i - 1, entry->key_sha1))) |
|
i--; |
|
} |
|
|
|
/* |
|
* To insert a leaf_node: |
|
* Search to the tree location appropriate for the given leaf_node's key: |
|
* - If location is unused (NULL), store the tweaked pointer directly there |
|
* - If location holds a note entry that matches the note-to-be-inserted, then |
|
* combine the two notes (by calling the given combine_notes function). |
|
* - If location holds a note entry that matches the subtree-to-be-inserted, |
|
* then unpack the subtree-to-be-inserted into the location. |
|
* - If location holds a matching subtree entry, unpack the subtree at that |
|
* location, and restart the insert operation from that level. |
|
* - Else, create a new int_node, holding both the node-at-location and the |
|
* node-to-be-inserted, and store the new int_node into the location. |
|
*/ |
|
static int note_tree_insert(struct notes_tree *t, struct int_node *tree, |
|
unsigned char n, struct leaf_node *entry, unsigned char type, |
|
combine_notes_fn combine_notes) |
|
{ |
|
struct int_node *new_node; |
|
struct leaf_node *l; |
|
void **p = note_tree_search(t, &tree, &n, entry->key_sha1); |
|
int ret = 0; |
|
|
|
assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ |
|
l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
|
switch (GET_PTR_TYPE(*p)) { |
|
case PTR_TYPE_NULL: |
|
assert(!*p); |
|
if (is_null_sha1(entry->val_sha1)) |
|
free(entry); |
|
else |
|
*p = SET_PTR_TYPE(entry, type); |
|
return 0; |
|
case PTR_TYPE_NOTE: |
|
switch (type) { |
|
case PTR_TYPE_NOTE: |
|
if (!hashcmp(l->key_sha1, entry->key_sha1)) { |
|
/* skip concatenation if l == entry */ |
|
if (!hashcmp(l->val_sha1, entry->val_sha1)) |
|
return 0; |
|
|
|
ret = combine_notes(l->val_sha1, |
|
entry->val_sha1); |
|
if (!ret && is_null_sha1(l->val_sha1)) |
|
note_tree_remove(t, tree, n, entry); |
|
free(entry); |
|
return ret; |
|
} |
|
break; |
|
case PTR_TYPE_SUBTREE: |
|
if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1, |
|
entry->key_sha1)) { |
|
/* unpack 'entry' */ |
|
load_subtree(t, entry, tree, n); |
|
free(entry); |
|
return 0; |
|
} |
|
break; |
|
} |
|
break; |
|
case PTR_TYPE_SUBTREE: |
|
if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) { |
|
/* unpack 'l' and restart insert */ |
|
*p = NULL; |
|
load_subtree(t, l, tree, n); |
|
free(l); |
|
return note_tree_insert(t, tree, n, entry, type, |
|
combine_notes); |
|
} |
|
break; |
|
} |
|
|
|
/* non-matching leaf_node */ |
|
assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE || |
|
GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE); |
|
if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */ |
|
free(entry); |
|
return 0; |
|
} |
|
new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node)); |
|
ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p), |
|
combine_notes); |
|
if (ret) |
|
return ret; |
|
*p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL); |
|
return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes); |
|
} |
|
|
|
/* Free the entire notes data contained in the given tree */ |
|
static void note_tree_free(struct int_node *tree) |
|
{ |
|
unsigned int i; |
|
for (i = 0; i < 16; i++) { |
|
void *p = tree->a[i]; |
|
switch (GET_PTR_TYPE(p)) { |
|
case PTR_TYPE_INTERNAL: |
|
note_tree_free(CLR_PTR_TYPE(p)); |
|
/* fall through */ |
|
case PTR_TYPE_NOTE: |
|
case PTR_TYPE_SUBTREE: |
|
free(CLR_PTR_TYPE(p)); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Convert a partial SHA1 hex string to the corresponding partial SHA1 value. |
|
* - hex - Partial SHA1 segment in ASCII hex format |
|
* - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40 |
|
* - sha1 - Partial SHA1 value is written here |
|
* - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20 |
|
* Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)). |
|
* Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2). |
|
* Pads sha1 with NULs up to sha1_len (not included in returned length). |
|
*/ |
|
static int get_sha1_hex_segment(const char *hex, unsigned int hex_len, |
|
unsigned char *sha1, unsigned int sha1_len) |
|
{ |
|
unsigned int i, len = hex_len >> 1; |
|
if (hex_len % 2 != 0 || len > sha1_len) |
|
return -1; |
|
for (i = 0; i < len; i++) { |
|
unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]); |
|
if (val & ~0xff) |
|
return -1; |
|
*sha1++ = val; |
|
hex += 2; |
|
} |
|
for (; i < sha1_len; i++) |
|
*sha1++ = 0; |
|
return len; |
|
} |
|
|
|
static int non_note_cmp(const struct non_note *a, const struct non_note *b) |
|
{ |
|
return strcmp(a->path, b->path); |
|
} |
|
|
|
/* note: takes ownership of path string */ |
|
static void add_non_note(struct notes_tree *t, char *path, |
|
unsigned int mode, const unsigned char *sha1) |
|
{ |
|
struct non_note *p = t->prev_non_note, *n; |
|
n = (struct non_note *) xmalloc(sizeof(struct non_note)); |
|
n->next = NULL; |
|
n->path = path; |
|
n->mode = mode; |
|
hashcpy(n->sha1, sha1); |
|
t->prev_non_note = n; |
|
|
|
if (!t->first_non_note) { |
|
t->first_non_note = n; |
|
return; |
|
} |
|
|
|
if (non_note_cmp(p, n) < 0) |
|
; /* do nothing */ |
|
else if (non_note_cmp(t->first_non_note, n) <= 0) |
|
p = t->first_non_note; |
|
else { |
|
/* n sorts before t->first_non_note */ |
|
n->next = t->first_non_note; |
|
t->first_non_note = n; |
|
return; |
|
} |
|
|
|
/* n sorts equal or after p */ |
|
while (p->next && non_note_cmp(p->next, n) <= 0) |
|
p = p->next; |
|
|
|
if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */ |
|
assert(strcmp(p->path, n->path) == 0); |
|
p->mode = n->mode; |
|
hashcpy(p->sha1, n->sha1); |
|
free(n); |
|
t->prev_non_note = p; |
|
return; |
|
} |
|
|
|
/* n sorts between p and p->next */ |
|
n->next = p->next; |
|
p->next = n; |
|
} |
|
|
|
static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, |
|
struct int_node *node, unsigned int n) |
|
{ |
|
unsigned char object_sha1[20]; |
|
unsigned int prefix_len; |
|
void *buf; |
|
struct tree_desc desc; |
|
struct name_entry entry; |
|
int len, path_len; |
|
unsigned char type; |
|
struct leaf_node *l; |
|
|
|
buf = fill_tree_descriptor(&desc, subtree->val_sha1); |
|
if (!buf) |
|
die("Could not read %s for notes-index", |
|
sha1_to_hex(subtree->val_sha1)); |
|
|
|
prefix_len = subtree->key_sha1[19]; |
|
assert(prefix_len * 2 >= n); |
|
memcpy(object_sha1, subtree->key_sha1, prefix_len); |
|
while (tree_entry(&desc, &entry)) { |
|
path_len = strlen(entry.path); |
|
len = get_sha1_hex_segment(entry.path, path_len, |
|
object_sha1 + prefix_len, 20 - prefix_len); |
|
if (len < 0) |
|
goto handle_non_note; /* entry.path is not a SHA1 */ |
|
len += prefix_len; |
|
|
|
/* |
|
* If object SHA1 is complete (len == 20), assume note object |
|
* If object SHA1 is incomplete (len < 20), and current |
|
* component consists of 2 hex chars, assume note subtree |
|
*/ |
|
if (len <= 20) { |
|
type = PTR_TYPE_NOTE; |
|
l = (struct leaf_node *) |
|
xcalloc(1, sizeof(struct leaf_node)); |
|
hashcpy(l->key_sha1, object_sha1); |
|
hashcpy(l->val_sha1, entry.sha1); |
|
if (len < 20) { |
|
if (!S_ISDIR(entry.mode) || path_len != 2) |
|
goto handle_non_note; /* not subtree */ |
|
l->key_sha1[19] = (unsigned char) len; |
|
type = PTR_TYPE_SUBTREE; |
|
} |
|
if (note_tree_insert(t, node, n, l, type, |
|
combine_notes_concatenate)) |
|
die("Failed to load %s %s into notes tree " |
|
"from %s", |
|
type == PTR_TYPE_NOTE ? "note" : "subtree", |
|
sha1_to_hex(l->key_sha1), t->ref); |
|
} |
|
continue; |
|
|
|
handle_non_note: |
|
/* |
|
* Determine full path for this non-note entry: |
|
* The filename is already found in entry.path, but the |
|
* directory part of the path must be deduced from the subtree |
|
* containing this entry. We assume here that the overall notes |
|
* tree follows a strict byte-based progressive fanout |
|
* structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not |
|
* e.g. 4/36 fanout). This means that if a non-note is found at |
|
* path "dead/beef", the following code will register it as |
|
* being found on "de/ad/beef". |
|
* On the other hand, if you use such non-obvious non-note |
|
* paths in the middle of a notes tree, you deserve what's |
|
* coming to you ;). Note that for non-notes that are not |
|
* SHA1-like at the top level, there will be no problems. |
|
* |
|
* To conclude, it is strongly advised to make sure non-notes |
|
* have at least one non-hex character in the top-level path |
|
* component. |
|
*/ |
|
{ |
|
struct strbuf non_note_path = STRBUF_INIT; |
|
const char *q = sha1_to_hex(subtree->key_sha1); |
|
int i; |
|
for (i = 0; i < prefix_len; i++) { |
|
strbuf_addch(&non_note_path, *q++); |
|
strbuf_addch(&non_note_path, *q++); |
|
strbuf_addch(&non_note_path, '/'); |
|
} |
|
strbuf_addstr(&non_note_path, entry.path); |
|
add_non_note(t, strbuf_detach(&non_note_path, NULL), |
|
entry.mode, entry.sha1); |
|
} |
|
} |
|
free(buf); |
|
} |
|
|
|
/* |
|
* Determine optimal on-disk fanout for this part of the notes tree |
|
* |
|
* Given a (sub)tree and the level in the internal tree structure, determine |
|
* whether or not the given existing fanout should be expanded for this |
|
* (sub)tree. |
|
* |
|
* Values of the 'fanout' variable: |
|
* - 0: No fanout (all notes are stored directly in the root notes tree) |
|
* - 1: 2/38 fanout |
|
* - 2: 2/2/36 fanout |
|
* - 3: 2/2/2/34 fanout |
|
* etc. |
|
*/ |
|
static unsigned char determine_fanout(struct int_node *tree, unsigned char n, |
|
unsigned char fanout) |
|
{ |
|
/* |
|
* The following is a simple heuristic that works well in practice: |
|
* For each even-numbered 16-tree level (remember that each on-disk |
|
* fanout level corresponds to _two_ 16-tree levels), peek at all 16 |
|
* entries at that tree level. If all of them are either int_nodes or |
|
* subtree entries, then there are likely plenty of notes below this |
|
* level, so we return an incremented fanout. |
|
*/ |
|
unsigned int i; |
|
if ((n % 2) || (n > 2 * fanout)) |
|
return fanout; |
|
for (i = 0; i < 16; i++) { |
|
switch (GET_PTR_TYPE(tree->a[i])) { |
|
case PTR_TYPE_SUBTREE: |
|
case PTR_TYPE_INTERNAL: |
|
continue; |
|
default: |
|
return fanout; |
|
} |
|
} |
|
return fanout + 1; |
|
} |
|
|
|
static void construct_path_with_fanout(const unsigned char *sha1, |
|
unsigned char fanout, char *path) |
|
{ |
|
unsigned int i = 0, j = 0; |
|
const char *hex_sha1 = sha1_to_hex(sha1); |
|
assert(fanout < 20); |
|
while (fanout) { |
|
path[i++] = hex_sha1[j++]; |
|
path[i++] = hex_sha1[j++]; |
|
path[i++] = '/'; |
|
fanout--; |
|
} |
|
strcpy(path + i, hex_sha1 + j); |
|
} |
|
|
|
static int for_each_note_helper(struct notes_tree *t, struct int_node *tree, |
|
unsigned char n, unsigned char fanout, int flags, |
|
each_note_fn fn, void *cb_data) |
|
{ |
|
unsigned int i; |
|
void *p; |
|
int ret = 0; |
|
struct leaf_node *l; |
|
static char path[40 + 19 + 1]; /* hex SHA1 + 19 * '/' + NUL */ |
|
|
|
fanout = determine_fanout(tree, n, fanout); |
|
for (i = 0; i < 16; i++) { |
|
redo: |
|
p = tree->a[i]; |
|
switch (GET_PTR_TYPE(p)) { |
|
case PTR_TYPE_INTERNAL: |
|
/* recurse into int_node */ |
|
ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1, |
|
fanout, flags, fn, cb_data); |
|
break; |
|
case PTR_TYPE_SUBTREE: |
|
l = (struct leaf_node *) CLR_PTR_TYPE(p); |
|
/* |
|
* Subtree entries in the note tree represent parts of |
|
* the note tree that have not yet been explored. There |
|
* is a direct relationship between subtree entries at |
|
* level 'n' in the tree, and the 'fanout' variable: |
|
* Subtree entries at level 'n <= 2 * fanout' should be |
|
* preserved, since they correspond exactly to a fanout |
|
* directory in the on-disk structure. However, subtree |
|
* entries at level 'n > 2 * fanout' should NOT be |
|
* preserved, but rather consolidated into the above |
|
* notes tree level. We achieve this by unconditionally |
|
* unpacking subtree entries that exist below the |
|
* threshold level at 'n = 2 * fanout'. |
|
*/ |
|
if (n <= 2 * fanout && |
|
flags & FOR_EACH_NOTE_YIELD_SUBTREES) { |
|
/* invoke callback with subtree */ |
|
unsigned int path_len = |
|
l->key_sha1[19] * 2 + fanout; |
|
assert(path_len < 40 + 19); |
|
construct_path_with_fanout(l->key_sha1, fanout, |
|
path); |
|
/* Create trailing slash, if needed */ |
|
if (path[path_len - 1] != '/') |
|
path[path_len++] = '/'; |
|
path[path_len] = '\0'; |
|
ret = fn(l->key_sha1, l->val_sha1, path, |
|
cb_data); |
|
} |
|
if (n > fanout * 2 || |
|
!(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) { |
|
/* unpack subtree and resume traversal */ |
|
tree->a[i] = NULL; |
|
load_subtree(t, l, tree, n); |
|
free(l); |
|
goto redo; |
|
} |
|
break; |
|
case PTR_TYPE_NOTE: |
|
l = (struct leaf_node *) CLR_PTR_TYPE(p); |
|
construct_path_with_fanout(l->key_sha1, fanout, path); |
|
ret = fn(l->key_sha1, l->val_sha1, path, cb_data); |
|
break; |
|
} |
|
if (ret) |
|
return ret; |
|
} |
|
return 0; |
|
} |
|
|
|
struct tree_write_stack { |
|
struct tree_write_stack *next; |
|
struct strbuf buf; |
|
char path[2]; /* path to subtree in next, if any */ |
|
}; |
|
|
|
static inline int matches_tree_write_stack(struct tree_write_stack *tws, |
|
const char *full_path) |
|
{ |
|
return full_path[0] == tws->path[0] && |
|
full_path[1] == tws->path[1] && |
|
full_path[2] == '/'; |
|
} |
|
|
|
static void write_tree_entry(struct strbuf *buf, unsigned int mode, |
|
const char *path, unsigned int path_len, const |
|
unsigned char *sha1) |
|
{ |
|
strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0'); |
|
strbuf_add(buf, sha1, 20); |
|
} |
|
|
|
static void tree_write_stack_init_subtree(struct tree_write_stack *tws, |
|
const char *path) |
|
{ |
|
struct tree_write_stack *n; |
|
assert(!tws->next); |
|
assert(tws->path[0] == '\0' && tws->path[1] == '\0'); |
|
n = (struct tree_write_stack *) |
|
xmalloc(sizeof(struct tree_write_stack)); |
|
n->next = NULL; |
|
strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */ |
|
n->path[0] = n->path[1] = '\0'; |
|
tws->next = n; |
|
tws->path[0] = path[0]; |
|
tws->path[1] = path[1]; |
|
} |
|
|
|
static int tree_write_stack_finish_subtree(struct tree_write_stack *tws) |
|
{ |
|
int ret; |
|
struct tree_write_stack *n = tws->next; |
|
unsigned char s[20]; |
|
if (n) { |
|
ret = tree_write_stack_finish_subtree(n); |
|
if (ret) |
|
return ret; |
|
ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s); |
|
if (ret) |
|
return ret; |
|
strbuf_release(&n->buf); |
|
free(n); |
|
tws->next = NULL; |
|
write_tree_entry(&tws->buf, 040000, tws->path, 2, s); |
|
tws->path[0] = tws->path[1] = '\0'; |
|
} |
|
return 0; |
|
} |
|
|
|
static int write_each_note_helper(struct tree_write_stack *tws, |
|
const char *path, unsigned int mode, |
|
const unsigned char *sha1) |
|
{ |
|
size_t path_len = strlen(path); |
|
unsigned int n = 0; |
|
int ret; |
|
|
|
/* Determine common part of tree write stack */ |
|
while (tws && 3 * n < path_len && |
|
matches_tree_write_stack(tws, path + 3 * n)) { |
|
n++; |
|
tws = tws->next; |
|
} |
|
|
|
/* tws point to last matching tree_write_stack entry */ |
|
ret = tree_write_stack_finish_subtree(tws); |
|
if (ret) |
|
return ret; |
|
|
|
/* Start subtrees needed to satisfy path */ |
|
while (3 * n + 2 < path_len && path[3 * n + 2] == '/') { |
|
tree_write_stack_init_subtree(tws, path + 3 * n); |
|
n++; |
|
tws = tws->next; |
|
} |
|
|
|
/* There should be no more directory components in the given path */ |
|
assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL); |
|
|
|
/* Finally add given entry to the current tree object */ |
|
write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n), |
|
sha1); |
|
|
|
return 0; |
|
} |
|
|
|
struct write_each_note_data { |
|
struct tree_write_stack *root; |
|
struct non_note *next_non_note; |
|
}; |
|
|
|
static int write_each_non_note_until(const char *note_path, |
|
struct write_each_note_data *d) |
|
{ |
|
struct non_note *n = d->next_non_note; |
|
int cmp = 0, ret; |
|
while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) { |
|
if (note_path && cmp == 0) |
|
; /* do nothing, prefer note to non-note */ |
|
else { |
|
ret = write_each_note_helper(d->root, n->path, n->mode, |
|
n->sha1); |
|
if (ret) |
|
return ret; |
|
} |
|
n = n->next; |
|
} |
|
d->next_non_note = n; |
|
return 0; |
|
} |
|
|
|
static int write_each_note(const unsigned char *object_sha1, |
|
const unsigned char *note_sha1, char *note_path, |
|
void *cb_data) |
|
{ |
|
struct write_each_note_data *d = |
|
(struct write_each_note_data *) cb_data; |
|
size_t note_path_len = strlen(note_path); |
|
unsigned int mode = 0100644; |
|
|
|
if (note_path[note_path_len - 1] == '/') { |
|
/* subtree entry */ |
|
note_path_len--; |
|
note_path[note_path_len] = '\0'; |
|
mode = 040000; |
|
} |
|
assert(note_path_len <= 40 + 19); |
|
|
|
/* Weave non-note entries into note entries */ |
|
return write_each_non_note_until(note_path, d) || |
|
write_each_note_helper(d->root, note_path, mode, note_sha1); |
|
} |
|
|
|
struct note_delete_list { |
|
struct note_delete_list *next; |
|
const unsigned char *sha1; |
|
}; |
|
|
|
static int prune_notes_helper(const unsigned char *object_sha1, |
|
const unsigned char *note_sha1, char *note_path, |
|
void *cb_data) |
|
{ |
|
struct note_delete_list **l = (struct note_delete_list **) cb_data; |
|
struct note_delete_list *n; |
|
|
|
if (has_sha1_file(object_sha1)) |
|
return 0; /* nothing to do for this note */ |
|
|
|
/* failed to find object => prune this note */ |
|
n = (struct note_delete_list *) xmalloc(sizeof(*n)); |
|
n->next = *l; |
|
n->sha1 = object_sha1; |
|
*l = n; |
|
return 0; |
|
} |
|
|
|
int combine_notes_concatenate(unsigned char *cur_sha1, |
|
const unsigned char *new_sha1) |
|
{ |
|
char *cur_msg = NULL, *new_msg = NULL, *buf; |
|
unsigned long cur_len, new_len, buf_len; |
|
enum object_type cur_type, new_type; |
|
int ret; |
|
|
|
/* read in both note blob objects */ |
|
if (!is_null_sha1(new_sha1)) |
|
new_msg = read_sha1_file(new_sha1, &new_type, &new_len); |
|
if (!new_msg || !new_len || new_type != OBJ_BLOB) { |
|
free(new_msg); |
|
return 0; |
|
} |
|
if (!is_null_sha1(cur_sha1)) |
|
cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len); |
|
if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) { |
|
free(cur_msg); |
|
free(new_msg); |
|
hashcpy(cur_sha1, new_sha1); |
|
return 0; |
|
} |
|
|
|
/* we will separate the notes by two newlines anyway */ |
|
if (cur_msg[cur_len - 1] == '\n') |
|
cur_len--; |
|
|
|
/* concatenate cur_msg and new_msg into buf */ |
|
buf_len = cur_len + 2 + new_len; |
|
buf = (char *) xmalloc(buf_len); |
|
memcpy(buf, cur_msg, cur_len); |
|
buf[cur_len] = '\n'; |
|
buf[cur_len + 1] = '\n'; |
|
memcpy(buf + cur_len + 2, new_msg, new_len); |
|
free(cur_msg); |
|
free(new_msg); |
|
|
|
/* create a new blob object from buf */ |
|
ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1); |
|
free(buf); |
|
return ret; |
|
} |
|
|
|
int combine_notes_overwrite(unsigned char *cur_sha1, |
|
const unsigned char *new_sha1) |
|
{ |
|
hashcpy(cur_sha1, new_sha1); |
|
return 0; |
|
} |
|
|
|
int combine_notes_ignore(unsigned char *cur_sha1, |
|
const unsigned char *new_sha1) |
|
{ |
|
return 0; |
|
} |
|
|
|
/* |
|
* Add the lines from the named object to list, with trailing |
|
* newlines removed. |
|
*/ |
|
static int string_list_add_note_lines(struct string_list *list, |
|
const unsigned char *sha1) |
|
{ |
|
char *data; |
|
unsigned long len; |
|
enum object_type t; |
|
|
|
if (is_null_sha1(sha1)) |
|
return 0; |
|
|
|
/* read_sha1_file NUL-terminates */ |
|
data = read_sha1_file(sha1, &t, &len); |
|
if (t != OBJ_BLOB || !data || !len) { |
|
free(data); |
|
return t != OBJ_BLOB || !data; |
|
} |
|
|
|
/* |
|
* If the last line of the file is EOL-terminated, this will |
|
* add an empty string to the list. But it will be removed |
|
* later, along with any empty strings that came from empty |
|
* lines within the file. |
|
*/ |
|
string_list_split(list, data, '\n', -1); |
|
free(data); |
|
return 0; |
|
} |
|
|
|
static int string_list_join_lines_helper(struct string_list_item *item, |
|
void *cb_data) |
|
{ |
|
struct strbuf *buf = cb_data; |
|
strbuf_addstr(buf, item->string); |
|
strbuf_addch(buf, '\n'); |
|
return 0; |
|
} |
|
|
|
int combine_notes_cat_sort_uniq(unsigned char *cur_sha1, |
|
const unsigned char *new_sha1) |
|
{ |
|
struct string_list sort_uniq_list = STRING_LIST_INIT_DUP; |
|
struct strbuf buf = STRBUF_INIT; |
|
int ret = 1; |
|
|
|
/* read both note blob objects into unique_lines */ |
|
if (string_list_add_note_lines(&sort_uniq_list, cur_sha1)) |
|
goto out; |
|
if (string_list_add_note_lines(&sort_uniq_list, new_sha1)) |
|
goto out; |
|
string_list_remove_empty_items(&sort_uniq_list, 0); |
|
string_list_sort(&sort_uniq_list); |
|
string_list_remove_duplicates(&sort_uniq_list, 0); |
|
|
|
/* create a new blob object from sort_uniq_list */ |
|
if (for_each_string_list(&sort_uniq_list, |
|
string_list_join_lines_helper, &buf)) |
|
goto out; |
|
|
|
ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1); |
|
|
|
out: |
|
strbuf_release(&buf); |
|
string_list_clear(&sort_uniq_list, 0); |
|
return ret; |
|
} |
|
|
|
static int string_list_add_one_ref(const char *refname, const struct object_id *oid, |
|
int flag, void *cb) |
|
{ |
|
struct string_list *refs = cb; |
|
if (!unsorted_string_list_has_string(refs, refname)) |
|
string_list_append(refs, refname); |
|
return 0; |
|
} |
|
|
|
/* |
|
* The list argument must have strdup_strings set on it. |
|
*/ |
|
void string_list_add_refs_by_glob(struct string_list *list, const char *glob) |
|
{ |
|
assert(list->strdup_strings); |
|
if (has_glob_specials(glob)) { |
|
for_each_glob_ref(string_list_add_one_ref, glob, list); |
|
} else { |
|
unsigned char sha1[20]; |
|
if (get_sha1(glob, sha1)) |
|
warning("notes ref %s is invalid", glob); |
|
if (!unsorted_string_list_has_string(list, glob)) |
|
string_list_append(list, glob); |
|
} |
|
} |
|
|
|
void string_list_add_refs_from_colon_sep(struct string_list *list, |
|
const char *globs) |
|
{ |
|
struct string_list split = STRING_LIST_INIT_NODUP; |
|
char *globs_copy = xstrdup(globs); |
|
int i; |
|
|
|
string_list_split_in_place(&split, globs_copy, ':', -1); |
|
string_list_remove_empty_items(&split, 0); |
|
|
|
for (i = 0; i < split.nr; i++) |
|
string_list_add_refs_by_glob(list, split.items[i].string); |
|
|
|
string_list_clear(&split, 0); |
|
free(globs_copy); |
|
} |
|
|
|
static int notes_display_config(const char *k, const char *v, void *cb) |
|
{ |
|
int *load_refs = cb; |
|
|
|
if (*load_refs && !strcmp(k, "notes.displayref")) { |
|
if (!v) |
|
config_error_nonbool(k); |
|
string_list_add_refs_by_glob(&display_notes_refs, v); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
const char *default_notes_ref(void) |
|
{ |
|
const char *notes_ref = NULL; |
|
if (!notes_ref) |
|
notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT); |
|
if (!notes_ref) |
|
notes_ref = notes_ref_name; /* value of core.notesRef config */ |
|
if (!notes_ref) |
|
notes_ref = GIT_NOTES_DEFAULT_REF; |
|
return notes_ref; |
|
} |
|
|
|
void init_notes(struct notes_tree *t, const char *notes_ref, |
|
combine_notes_fn combine_notes, int flags) |
|
{ |
|
unsigned char sha1[20], object_sha1[20]; |
|
unsigned mode; |
|
struct leaf_node root_tree; |
|
|
|
if (!t) |
|
t = &default_notes_tree; |
|
assert(!t->initialized); |
|
|
|
if (!notes_ref) |
|
notes_ref = default_notes_ref(); |
|
|
|
if (!combine_notes) |
|
combine_notes = combine_notes_concatenate; |
|
|
|
t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node)); |
|
t->first_non_note = NULL; |
|
t->prev_non_note = NULL; |
|
t->ref = xstrdup_or_null(notes_ref); |
|
t->combine_notes = combine_notes; |
|
t->initialized = 1; |
|
t->dirty = 0; |
|
|
|
if (flags & NOTES_INIT_EMPTY || !notes_ref || |
|
read_ref(notes_ref, object_sha1)) |
|
return; |
|
if (get_tree_entry(object_sha1, "", sha1, &mode)) |
|
die("Failed to read notes tree referenced by %s (%s)", |
|
notes_ref, sha1_to_hex(object_sha1)); |
|
|
|
hashclr(root_tree.key_sha1); |
|
hashcpy(root_tree.val_sha1, sha1); |
|
load_subtree(t, &root_tree, t->root, 0); |
|
} |
|
|
|
struct notes_tree **load_notes_trees(struct string_list *refs) |
|
{ |
|
struct string_list_item *item; |
|
int counter = 0; |
|
struct notes_tree **trees; |
|
trees = xmalloc((refs->nr+1) * sizeof(struct notes_tree *)); |
|
for_each_string_list_item(item, refs) { |
|
struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree)); |
|
init_notes(t, item->string, combine_notes_ignore, 0); |
|
trees[counter++] = t; |
|
} |
|
trees[counter] = NULL; |
|
return trees; |
|
} |
|
|
|
void init_display_notes(struct display_notes_opt *opt) |
|
{ |
|
char *display_ref_env; |
|
int load_config_refs = 0; |
|
display_notes_refs.strdup_strings = 1; |
|
|
|
assert(!display_notes_trees); |
|
|
|
if (!opt || opt->use_default_notes > 0 || |
|
(opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) { |
|
string_list_append(&display_notes_refs, default_notes_ref()); |
|
display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT); |
|
if (display_ref_env) { |
|
string_list_add_refs_from_colon_sep(&display_notes_refs, |
|
display_ref_env); |
|
load_config_refs = 0; |
|
} else |
|
load_config_refs = 1; |
|
} |
|
|
|
git_config(notes_display_config, &load_config_refs); |
|
|
|
if (opt) { |
|
struct string_list_item *item; |
|
for_each_string_list_item(item, &opt->extra_notes_refs) |
|
string_list_add_refs_by_glob(&display_notes_refs, |
|
item->string); |
|
} |
|
|
|
display_notes_trees = load_notes_trees(&display_notes_refs); |
|
string_list_clear(&display_notes_refs, 0); |
|
} |
|
|
|
int add_note(struct notes_tree *t, const unsigned char *object_sha1, |
|
const unsigned char *note_sha1, combine_notes_fn combine_notes) |
|
{ |
|
struct leaf_node *l; |
|
|
|
if (!t) |
|
t = &default_notes_tree; |
|
assert(t->initialized); |
|
t->dirty = 1; |
|
if (!combine_notes) |
|
combine_notes = t->combine_notes; |
|
l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node)); |
|
hashcpy(l->key_sha1, object_sha1); |
|
hashcpy(l->val_sha1, note_sha1); |
|
return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes); |
|
} |
|
|
|
int remove_note(struct notes_tree *t, const unsigned char *object_sha1) |
|
{ |
|
struct leaf_node l; |
|
|
|
if (!t) |
|
t = &default_notes_tree; |
|
assert(t->initialized); |
|
hashcpy(l.key_sha1, object_sha1); |
|
hashclr(l.val_sha1); |
|
note_tree_remove(t, t->root, 0, &l); |
|
if (is_null_sha1(l.val_sha1)) /* no note was removed */ |
|
return 1; |
|
t->dirty = 1; |
|
return 0; |
|
} |
|
|
|
const unsigned char *get_note(struct notes_tree *t, |
|
const unsigned char *object_sha1) |
|
{ |
|
struct leaf_node *found; |
|
|
|
if (!t) |
|
t = &default_notes_tree; |
|
assert(t->initialized); |
|
found = note_tree_find(t, t->root, 0, object_sha1); |
|
return found ? found->val_sha1 : NULL; |
|
} |
|
|
|
int for_each_note(struct notes_tree *t, int flags, each_note_fn fn, |
|
void *cb_data) |
|
{ |
|
if (!t) |
|
t = &default_notes_tree; |
|
assert(t->initialized); |
|
return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data); |
|
} |
|
|
|
int write_notes_tree(struct notes_tree *t, unsigned char *result) |
|
{ |
|
struct tree_write_stack root; |
|
struct write_each_note_data cb_data; |
|
int ret; |
|
|
|
if (!t) |
|
t = &default_notes_tree; |
|
assert(t->initialized); |
|
|
|
/* Prepare for traversal of current notes tree */ |
|
root.next = NULL; /* last forward entry in list is grounded */ |
|
strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */ |
|
root.path[0] = root.path[1] = '\0'; |
|
cb_data.root = &root; |
|
cb_data.next_non_note = t->first_non_note; |
|
|
|
/* Write tree objects representing current notes tree */ |
|
ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES | |
|
FOR_EACH_NOTE_YIELD_SUBTREES, |
|
write_each_note, &cb_data) || |
|
write_each_non_note_until(NULL, &cb_data) || |
|
tree_write_stack_finish_subtree(&root) || |
|
write_sha1_file(root.buf.buf, root.buf.len, tree_type, result); |
|
strbuf_release(&root.buf); |
|
return ret; |
|
} |
|
|
|
void prune_notes(struct notes_tree *t, int flags) |
|
{ |
|
struct note_delete_list *l = NULL; |
|
|
|
if (!t) |
|
t = &default_notes_tree; |
|
assert(t->initialized); |
|
|
|
for_each_note(t, 0, prune_notes_helper, &l); |
|
|
|
while (l) { |
|
if (flags & NOTES_PRUNE_VERBOSE) |
|
printf("%s\n", sha1_to_hex(l->sha1)); |
|
if (!(flags & NOTES_PRUNE_DRYRUN)) |
|
remove_note(t, l->sha1); |
|
l = l->next; |
|
} |
|
} |
|
|
|
void free_notes(struct notes_tree *t) |
|
{ |
|
if (!t) |
|
t = &default_notes_tree; |
|
if (t->root) |
|
note_tree_free(t->root); |
|
free(t->root); |
|
while (t->first_non_note) { |
|
t->prev_non_note = t->first_non_note->next; |
|
free(t->first_non_note->path); |
|
free(t->first_non_note); |
|
t->first_non_note = t->prev_non_note; |
|
} |
|
free(t->ref); |
|
memset(t, 0, sizeof(struct notes_tree)); |
|
} |
|
|
|
/* |
|
* Fill the given strbuf with the notes associated with the given object. |
|
* |
|
* If the given notes_tree structure is not initialized, it will be auto- |
|
* initialized to the default value (see documentation for init_notes() above). |
|
* If the given notes_tree is NULL, the internal/default notes_tree will be |
|
* used instead. |
|
* |
|
* (raw != 0) gives the %N userformat; otherwise, the note message is given |
|
* for human consumption. |
|
*/ |
|
static void format_note(struct notes_tree *t, const unsigned char *object_sha1, |
|
struct strbuf *sb, const char *output_encoding, int raw) |
|
{ |
|
static const char utf8[] = "utf-8"; |
|
const unsigned char *sha1; |
|
char *msg, *msg_p; |
|
unsigned long linelen, msglen; |
|
enum object_type type; |
|
|
|
if (!t) |
|
t = &default_notes_tree; |
|
if (!t->initialized) |
|
init_notes(t, NULL, NULL, 0); |
|
|
|
sha1 = get_note(t, object_sha1); |
|
if (!sha1) |
|
return; |
|
|
|
if (!(msg = read_sha1_file(sha1, &type, &msglen)) || type != OBJ_BLOB) { |
|
free(msg); |
|
return; |
|
} |
|
|
|
if (output_encoding && *output_encoding && |
|
!is_encoding_utf8(output_encoding)) { |
|
char *reencoded = reencode_string(msg, output_encoding, utf8); |
|
if (reencoded) { |
|
free(msg); |
|
msg = reencoded; |
|
msglen = strlen(msg); |
|
} |
|
} |
|
|
|
/* we will end the annotation by a newline anyway */ |
|
if (msglen && msg[msglen - 1] == '\n') |
|
msglen--; |
|
|
|
if (!raw) { |
|
const char *ref = t->ref; |
|
if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) { |
|
strbuf_addstr(sb, "\nNotes:\n"); |
|
} else { |
|
if (starts_with(ref, "refs/")) |
|
ref += 5; |
|
if (starts_with(ref, "notes/")) |
|
ref += 6; |
|
strbuf_addf(sb, "\nNotes (%s):\n", ref); |
|
} |
|
} |
|
|
|
for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) { |
|
linelen = strchrnul(msg_p, '\n') - msg_p; |
|
|
|
if (!raw) |
|
strbuf_addstr(sb, " "); |
|
strbuf_add(sb, msg_p, linelen); |
|
strbuf_addch(sb, '\n'); |
|
} |
|
|
|
free(msg); |
|
} |
|
|
|
void format_display_notes(const unsigned char *object_sha1, |
|
struct strbuf *sb, const char *output_encoding, int raw) |
|
{ |
|
int i; |
|
assert(display_notes_trees); |
|
for (i = 0; display_notes_trees[i]; i++) |
|
format_note(display_notes_trees[i], object_sha1, sb, |
|
output_encoding, raw); |
|
} |
|
|
|
int copy_note(struct notes_tree *t, |
|
const unsigned char *from_obj, const unsigned char *to_obj, |
|
int force, combine_notes_fn combine_notes) |
|
{ |
|
const unsigned char *note = get_note(t, from_obj); |
|
const unsigned char *existing_note = get_note(t, to_obj); |
|
|
|
if (!force && existing_note) |
|
return 1; |
|
|
|
if (note) |
|
return add_note(t, to_obj, note, combine_notes); |
|
else if (existing_note) |
|
return add_note(t, to_obj, null_sha1, combine_notes); |
|
|
|
return 0; |
|
} |
|
|
|
void expand_notes_ref(struct strbuf *sb) |
|
{ |
|
if (starts_with(sb->buf, "refs/notes/")) |
|
return; /* we're happy */ |
|
else if (starts_with(sb->buf, "notes/")) |
|
strbuf_insert(sb, 0, "refs/", 5); |
|
else |
|
strbuf_insert(sb, 0, "refs/notes/", 11); |
|
}
|
|
|