You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Junio C Hamano 66ec2373fe Merge branch 'ab/fsck-skiplist' 6 years ago
..
repos
.gitignore
Makefile
README t/perf: add infrastructure for measuring sizes 7 years ago
aggregate.perl t/perf: add infrastructure for measuring sizes 7 years ago
bisect_regression t/perf: add scripts to bisect performance regressions 7 years ago
bisect_run_script perf/bisect_run_script: disable codespeed 7 years ago
lib-pack.sh t/perf/lib-pack: use fast-import checkpoint to create packs 7 years ago
min_time.perl
p0000-perf-lib-sanity.sh
p0001-rev-list.sh
p0002-read-cache.sh t/helper: merge test-read-cache into test-tool 7 years ago
p0003-delta-base-cache.sh
p0004-lazy-init-name-hash.sh t/helper: merge test-lazy-init-name-hash into test-tool 7 years ago
p0005-status.sh
p0006-read-tree-checkout.sh
p0007-write-cache.sh t/helper: merge test-write-cache into test-tool 7 years ago
p0071-sort.sh t/helper: merge test-string-list into test-tool 7 years ago
p0100-globbing.sh
p1450-fsck.sh fsck: add a performance test 6 years ago
p1451-fsck-skip-list.sh fsck: add a performance test for skipList 6 years ago
p3400-rebase.sh
p3404-rebase-interactive.sh
p4000-diff-algorithms.sh
p4001-diff-no-index.sh
p4205-log-pretty-formats.sh p4205: add perf test script for pretty log formats 8 years ago
p4211-line-log.sh sha1_file: use strbuf_add() instead of strbuf_addf() 7 years ago
p4220-log-grep-engines.sh
p4221-log-grep-engines-fixed.sh perf: add a comparison test of log --grep regex engines with -F 8 years ago
p5302-pack-index.sh
p5303-many-packs.sh
p5310-pack-bitmaps.sh
p5311-pack-bitmaps-fetch.sh t/perf: add perf tests for fetches from a bitmapped server 7 years ago
p5550-fetch-tags.sh p5550: factor out nonsense-pack creation 7 years ago
p5551-fetch-rescan.sh p5551: add a script to test fetch pack-dir rescans 7 years ago
p7000-filter-branch.sh
p7300-clean.sh
p7519-fsmonitor.sh t/helper: merge test-drop-caches into test-tool 7 years ago
p7810-grep.sh
p7820-grep-engines.sh perf: amend the grep tests to test grep.threads 7 years ago
p7821-grep-engines-fixed.sh perf: amend the grep tests to test grep.threads 7 years ago
perf-lib.sh t/perf: add infrastructure for measuring sizes 7 years ago
run perf/run: add --subsection option 7 years ago

README

Git performance tests
=====================

This directory holds performance testing scripts for git tools. The
first part of this document describes the various ways in which you
can run them.

When fixing the tools or adding enhancements, you are strongly
encouraged to add tests in this directory to cover what you are
trying to fix or enhance. The later part of this short document
describes how your test scripts should be organized.


Running Tests
-------------

The easiest way to run tests is to say "make". This runs all
the tests on the current git repository.

=== Running 2 tests in this tree ===
[...]
Test this tree
---------------------------------------------------------
0001.1: rev-list --all 0.54(0.51+0.02)
0001.2: rev-list --all --objects 6.14(5.99+0.11)
7810.1: grep worktree, cheap regex 0.16(0.16+0.35)
7810.2: grep worktree, expensive regex 7.90(29.75+0.37)
7810.3: grep --cached, cheap regex 3.07(3.02+0.25)
7810.4: grep --cached, expensive regex 9.39(30.57+0.24)

You can compare multiple repositories and even git revisions with the
'run' script:

$ ./run . origin/next /path/to/git-tree p0001-rev-list.sh

where . stands for the current git tree. The full invocation is

./run [<revision|directory>...] [--] [<test-script>...]

A '.' argument is implied if you do not pass any other
revisions/directories.

You can also manually test this or another git build tree, and then
call the aggregation script to summarize the results:

$ ./p0001-rev-list.sh
[...]
$ GIT_BUILD_DIR=/path/to/other/git ./p0001-rev-list.sh
[...]
$ ./aggregate.perl . /path/to/other/git ./p0001-rev-list.sh

aggregate.perl has the same invocation as 'run', it just does not run
anything beforehand.

You can set the following variables (also in your config.mak):

GIT_PERF_REPEAT_COUNT
Number of times a test should be repeated for best-of-N
measurements. Defaults to 3.

GIT_PERF_MAKE_OPTS
Options to use when automatically building a git tree for
performance testing. E.g., -j6 would be useful. Passed
directly to make as "make $GIT_PERF_MAKE_OPTS".

GIT_PERF_MAKE_COMMAND
An arbitrary command that'll be run in place of the make
command, if set the GIT_PERF_MAKE_OPTS variable is
ignored. Useful in cases where source tree changes might
require issuing a different make command to different
revisions.

This can be (ab)used to monkeypatch or otherwise change the
tree about to be built. Note that the build directory can be
re-used for subsequent runs so the make command might get
executed multiple times on the same tree, but don't count on
any of that, that's an implementation detail that might change
in the future.

GIT_PERF_REPO
GIT_PERF_LARGE_REPO
Repositories to copy for the performance tests. The normal
repo should be at least git.git size. The large repo should
probably be about linux.git size for optimal results.
Both default to the git.git you are running from.

You can also pass the options taken by ordinary git tests; the most
useful one is:

--root=<directory>::
Create "trash" directories used to store all temporary data during
testing under <directory>, instead of the t/ directory.
Using this option with a RAM-based filesystem (such as tmpfs)
can massively speed up the test suite.


Naming Tests
------------

The performance test files are named as:

pNNNN-commandname-details.sh

where N is a decimal digit. The same conventions for choosing NNNN as
for normal tests apply.


Writing Tests
-------------

The perf script starts much like a normal test script, except it
sources perf-lib.sh:

#!/bin/sh
#
# Copyright (c) 2005 Junio C Hamano
#

test_description='xxx performance test'
. ./perf-lib.sh

After that you will want to use some of the following:

test_perf_fresh_repo # sets up an empty repository
test_perf_default_repo # sets up a "normal" repository
test_perf_large_repo # sets up a "large" repository

test_perf_default_repo sub # ditto, in a subdir "sub"

test_checkout_worktree # if you need the worktree too

At least one of the first two is required!

You can use test_expect_success as usual. In both test_expect_success
and in test_perf, running "git" points to the version that is being
perf-tested. The $MODERN_GIT variable points to the git wrapper for the
currently checked-out version (i.e., the one that matches the t/perf
scripts you are running). This is useful if your setup uses commands
that only work with newer versions of git than what you might want to
test (but obviously your new commands must still create a state that can
be used by the older version of git you are testing).

For actual performance tests, use

test_perf 'descriptive string' '
command1 &&
command2
'

test_perf spawns a subshell, for lack of better options. This means
that

* you _must_ export all variables that you need in the subshell

* you _must_ flag all variables that you want to persist from the
subshell with 'test_export':

test_perf 'descriptive string' '
foo=$(git rev-parse HEAD) &&
test_export foo
'

The so-exported variables are automatically marked for export in the
shell executing the perf test. For your convenience, test_export is
the same as export in the main shell.

This feature relies on a bit of magic using 'set' and 'source'.
While we have tried to make sure that it can cope with embedded
whitespace and other special characters, it will not work with
multi-line data.

Rather than tracking the performance by run-time as `test_perf` does, you
may also track output size by using `test_size`. The stdout of the
function should be a single numeric value, which will be captured and
shown in the aggregated output. For example:

test_perf 'time foo' '
./foo >foo.out
'

test_size 'output size'
wc -c <foo.out
'

might produce output like:

Test origin HEAD
-------------------------------------------------------------
1234.1 time foo 0.37(0.79+0.02) 0.26(0.51+0.02) -29.7%
1234.2 output size 4.3M 3.6M -14.7%

The item being measured (and its units) is up to the test; the context
and the test title should make it clear to the user whether bigger or
smaller numbers are better. Unlike test_perf, the test code will only be
run once, since output sizes tend to be more deterministic than timings.