|
|
/* Extended regular expression matching and search library. |
|
|
Copyright (C) 2002-2006, 2010 Free Software Foundation, Inc. |
|
|
This file is part of the GNU C Library. |
|
|
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
|
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or |
|
|
modify it under the terms of the GNU Lesser General Public |
|
|
License as published by the Free Software Foundation; either |
|
|
version 2.1 of the License, or (at your option) any later version. |
|
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful, |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
|
Lesser General Public License for more details. |
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public |
|
|
License along with the GNU C Library; if not, write to the Free |
|
|
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
|
|
02110-1301 USA. */ |
|
|
|
|
|
static void re_string_construct_common (const char *str, int len, |
|
|
re_string_t *pstr, |
|
|
RE_TRANSLATE_TYPE trans, int icase, |
|
|
const re_dfa_t *dfa) internal_function; |
|
|
static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, |
|
|
const re_node_set *nodes, |
|
|
unsigned int hash) internal_function; |
|
|
static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, |
|
|
const re_node_set *nodes, |
|
|
unsigned int context, |
|
|
unsigned int hash) internal_function; |
|
|
|
|
|
#ifdef GAWK |
|
|
#undef MAX /* safety */ |
|
|
static int |
|
|
MAX(size_t a, size_t b) |
|
|
{ |
|
|
return (a > b ? a : b); |
|
|
} |
|
|
#endif |
|
|
|
|
|
/* Functions for string operation. */ |
|
|
|
|
|
/* This function allocate the buffers. It is necessary to call |
|
|
re_string_reconstruct before using the object. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len, |
|
|
RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) |
|
|
{ |
|
|
reg_errcode_t ret; |
|
|
int init_buf_len; |
|
|
|
|
|
/* Ensure at least one character fits into the buffers. */ |
|
|
if (init_len < dfa->mb_cur_max) |
|
|
init_len = dfa->mb_cur_max; |
|
|
init_buf_len = (len + 1 < init_len) ? len + 1: init_len; |
|
|
re_string_construct_common (str, len, pstr, trans, icase, dfa); |
|
|
|
|
|
ret = re_string_realloc_buffers (pstr, init_buf_len); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
|
|
|
pstr->word_char = dfa->word_char; |
|
|
pstr->word_ops_used = dfa->word_ops_used; |
|
|
pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
|
|
pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; |
|
|
pstr->valid_raw_len = pstr->valid_len; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* This function allocate the buffers, and initialize them. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_string_construct (re_string_t *pstr, const char *str, int len, |
|
|
RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) |
|
|
{ |
|
|
reg_errcode_t ret; |
|
|
memset (pstr, '\0', sizeof (re_string_t)); |
|
|
re_string_construct_common (str, len, pstr, trans, icase, dfa); |
|
|
|
|
|
if (len > 0) |
|
|
{ |
|
|
ret = re_string_realloc_buffers (pstr, len + 1); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
} |
|
|
pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
|
|
|
|
|
if (icase) |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (dfa->mb_cur_max > 1) |
|
|
{ |
|
|
while (1) |
|
|
{ |
|
|
ret = build_wcs_upper_buffer (pstr); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
if (pstr->valid_raw_len >= len) |
|
|
break; |
|
|
if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) |
|
|
break; |
|
|
ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
} |
|
|
} |
|
|
else |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
build_upper_buffer (pstr); |
|
|
} |
|
|
else |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (dfa->mb_cur_max > 1) |
|
|
build_wcs_buffer (pstr); |
|
|
else |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
{ |
|
|
if (trans != NULL) |
|
|
re_string_translate_buffer (pstr); |
|
|
else |
|
|
{ |
|
|
pstr->valid_len = pstr->bufs_len; |
|
|
pstr->valid_raw_len = pstr->bufs_len; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Helper functions for re_string_allocate, and re_string_construct. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_string_realloc_buffers (re_string_t *pstr, int new_buf_len) |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (pstr->mb_cur_max > 1) |
|
|
{ |
|
|
wint_t *new_wcs; |
|
|
|
|
|
/* Avoid overflow in realloc. */ |
|
|
const size_t max_object_size = MAX (sizeof (wint_t), sizeof (int)); |
|
|
if (BE (SIZE_MAX / max_object_size < new_buf_len, 0)) |
|
|
return REG_ESPACE; |
|
|
|
|
|
new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); |
|
|
if (BE (new_wcs == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
pstr->wcs = new_wcs; |
|
|
if (pstr->offsets != NULL) |
|
|
{ |
|
|
int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len); |
|
|
if (BE (new_offsets == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
pstr->offsets = new_offsets; |
|
|
} |
|
|
} |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
if (pstr->mbs_allocated) |
|
|
{ |
|
|
unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, |
|
|
new_buf_len); |
|
|
if (BE (new_mbs == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
pstr->mbs = new_mbs; |
|
|
} |
|
|
pstr->bufs_len = new_buf_len; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
|
|
|
static void |
|
|
internal_function |
|
|
re_string_construct_common (const char *str, int len, re_string_t *pstr, |
|
|
RE_TRANSLATE_TYPE trans, int icase, |
|
|
const re_dfa_t *dfa) |
|
|
{ |
|
|
pstr->raw_mbs = (const unsigned char *) str; |
|
|
pstr->len = len; |
|
|
pstr->raw_len = len; |
|
|
pstr->trans = trans; |
|
|
pstr->icase = icase ? 1 : 0; |
|
|
pstr->mbs_allocated = (trans != NULL || icase); |
|
|
pstr->mb_cur_max = dfa->mb_cur_max; |
|
|
pstr->is_utf8 = dfa->is_utf8; |
|
|
pstr->map_notascii = dfa->map_notascii; |
|
|
pstr->stop = pstr->len; |
|
|
pstr->raw_stop = pstr->stop; |
|
|
} |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
|
|
|
/* Build wide character buffer PSTR->WCS. |
|
|
If the byte sequence of the string are: |
|
|
<mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> |
|
|
Then wide character buffer will be: |
|
|
<wc1> , WEOF , <wc2> , WEOF , <wc3> |
|
|
We use WEOF for padding, they indicate that the position isn't |
|
|
a first byte of a multibyte character. |
|
|
|
|
|
Note that this function assumes PSTR->VALID_LEN elements are already |
|
|
built and starts from PSTR->VALID_LEN. */ |
|
|
|
|
|
static void |
|
|
internal_function |
|
|
build_wcs_buffer (re_string_t *pstr) |
|
|
{ |
|
|
#ifdef _LIBC |
|
|
unsigned char buf[MB_LEN_MAX]; |
|
|
assert (MB_LEN_MAX >= pstr->mb_cur_max); |
|
|
#else |
|
|
unsigned char buf[64]; |
|
|
#endif |
|
|
mbstate_t prev_st; |
|
|
int byte_idx, end_idx, remain_len; |
|
|
size_t mbclen; |
|
|
|
|
|
/* Build the buffers from pstr->valid_len to either pstr->len or |
|
|
pstr->bufs_len. */ |
|
|
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
|
|
for (byte_idx = pstr->valid_len; byte_idx < end_idx;) |
|
|
{ |
|
|
wchar_t wc; |
|
|
const char *p; |
|
|
|
|
|
remain_len = end_idx - byte_idx; |
|
|
prev_st = pstr->cur_state; |
|
|
/* Apply the translation if we need. */ |
|
|
if (BE (pstr->trans != NULL, 0)) |
|
|
{ |
|
|
int i, ch; |
|
|
|
|
|
for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
|
|
{ |
|
|
ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; |
|
|
buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; |
|
|
} |
|
|
p = (const char *) buf; |
|
|
} |
|
|
else |
|
|
p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; |
|
|
mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
|
|
if (BE (mbclen == (size_t) -2, 0)) |
|
|
{ |
|
|
/* The buffer doesn't have enough space, finish to build. */ |
|
|
pstr->cur_state = prev_st; |
|
|
break; |
|
|
} |
|
|
else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0)) |
|
|
{ |
|
|
/* We treat these cases as a singlebyte character. */ |
|
|
mbclen = 1; |
|
|
wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
|
|
if (BE (pstr->trans != NULL, 0)) |
|
|
wc = pstr->trans[wc]; |
|
|
pstr->cur_state = prev_st; |
|
|
} |
|
|
|
|
|
/* Write wide character and padding. */ |
|
|
pstr->wcs[byte_idx++] = wc; |
|
|
/* Write paddings. */ |
|
|
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
|
|
pstr->wcs[byte_idx++] = WEOF; |
|
|
} |
|
|
pstr->valid_len = byte_idx; |
|
|
pstr->valid_raw_len = byte_idx; |
|
|
} |
|
|
|
|
|
/* Build wide character buffer PSTR->WCS like build_wcs_buffer, |
|
|
but for REG_ICASE. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
build_wcs_upper_buffer (re_string_t *pstr) |
|
|
{ |
|
|
mbstate_t prev_st; |
|
|
int src_idx, byte_idx, end_idx, remain_len; |
|
|
size_t mbclen; |
|
|
#ifdef _LIBC |
|
|
char buf[MB_LEN_MAX]; |
|
|
assert (MB_LEN_MAX >= pstr->mb_cur_max); |
|
|
#else |
|
|
char buf[64]; |
|
|
#endif |
|
|
|
|
|
byte_idx = pstr->valid_len; |
|
|
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
|
|
|
|
|
/* The following optimization assumes that ASCII characters can be |
|
|
mapped to wide characters with a simple cast. */ |
|
|
if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) |
|
|
{ |
|
|
while (byte_idx < end_idx) |
|
|
{ |
|
|
wchar_t wc; |
|
|
|
|
|
if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) |
|
|
&& mbsinit (&pstr->cur_state)) |
|
|
{ |
|
|
/* In case of a singlebyte character. */ |
|
|
pstr->mbs[byte_idx] |
|
|
= toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); |
|
|
/* The next step uses the assumption that wchar_t is encoded |
|
|
ASCII-safe: all ASCII values can be converted like this. */ |
|
|
pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; |
|
|
++byte_idx; |
|
|
continue; |
|
|
} |
|
|
|
|
|
remain_len = end_idx - byte_idx; |
|
|
prev_st = pstr->cur_state; |
|
|
mbclen = __mbrtowc (&wc, |
|
|
((const char *) pstr->raw_mbs + pstr->raw_mbs_idx |
|
|
+ byte_idx), remain_len, &pstr->cur_state); |
|
|
if (BE (mbclen + 2 > 2, 1)) |
|
|
{ |
|
|
wchar_t wcu = wc; |
|
|
if (iswlower (wc)) |
|
|
{ |
|
|
size_t mbcdlen; |
|
|
|
|
|
wcu = towupper (wc); |
|
|
mbcdlen = wcrtomb (buf, wcu, &prev_st); |
|
|
if (BE (mbclen == mbcdlen, 1)) |
|
|
memcpy (pstr->mbs + byte_idx, buf, mbclen); |
|
|
else |
|
|
{ |
|
|
src_idx = byte_idx; |
|
|
goto offsets_needed; |
|
|
} |
|
|
} |
|
|
else |
|
|
memcpy (pstr->mbs + byte_idx, |
|
|
pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); |
|
|
pstr->wcs[byte_idx++] = wcu; |
|
|
/* Write paddings. */ |
|
|
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
|
|
pstr->wcs[byte_idx++] = WEOF; |
|
|
} |
|
|
else if (mbclen == (size_t) -1 || mbclen == 0) |
|
|
{ |
|
|
/* It is an invalid character or '\0'. Just use the byte. */ |
|
|
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
|
|
pstr->mbs[byte_idx] = ch; |
|
|
/* And also cast it to wide char. */ |
|
|
pstr->wcs[byte_idx++] = (wchar_t) ch; |
|
|
if (BE (mbclen == (size_t) -1, 0)) |
|
|
pstr->cur_state = prev_st; |
|
|
} |
|
|
else |
|
|
{ |
|
|
/* The buffer doesn't have enough space, finish to build. */ |
|
|
pstr->cur_state = prev_st; |
|
|
break; |
|
|
} |
|
|
} |
|
|
pstr->valid_len = byte_idx; |
|
|
pstr->valid_raw_len = byte_idx; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
else |
|
|
for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) |
|
|
{ |
|
|
wchar_t wc; |
|
|
const char *p; |
|
|
offsets_needed: |
|
|
remain_len = end_idx - byte_idx; |
|
|
prev_st = pstr->cur_state; |
|
|
if (BE (pstr->trans != NULL, 0)) |
|
|
{ |
|
|
int i, ch; |
|
|
|
|
|
for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
|
|
{ |
|
|
ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; |
|
|
buf[i] = pstr->trans[ch]; |
|
|
} |
|
|
p = (const char *) buf; |
|
|
} |
|
|
else |
|
|
p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; |
|
|
mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
|
|
if (BE (mbclen + 2 > 2, 1)) |
|
|
{ |
|
|
wchar_t wcu = wc; |
|
|
if (iswlower (wc)) |
|
|
{ |
|
|
size_t mbcdlen; |
|
|
|
|
|
wcu = towupper (wc); |
|
|
mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st); |
|
|
if (BE (mbclen == mbcdlen, 1)) |
|
|
memcpy (pstr->mbs + byte_idx, buf, mbclen); |
|
|
else if (mbcdlen != (size_t) -1) |
|
|
{ |
|
|
size_t i; |
|
|
|
|
|
if (byte_idx + mbcdlen > pstr->bufs_len) |
|
|
{ |
|
|
pstr->cur_state = prev_st; |
|
|
break; |
|
|
} |
|
|
|
|
|
if (pstr->offsets == NULL) |
|
|
{ |
|
|
pstr->offsets = re_malloc (int, pstr->bufs_len); |
|
|
|
|
|
if (pstr->offsets == NULL) |
|
|
return REG_ESPACE; |
|
|
} |
|
|
if (!pstr->offsets_needed) |
|
|
{ |
|
|
for (i = 0; i < (size_t) byte_idx; ++i) |
|
|
pstr->offsets[i] = i; |
|
|
pstr->offsets_needed = 1; |
|
|
} |
|
|
|
|
|
memcpy (pstr->mbs + byte_idx, buf, mbcdlen); |
|
|
pstr->wcs[byte_idx] = wcu; |
|
|
pstr->offsets[byte_idx] = src_idx; |
|
|
for (i = 1; i < mbcdlen; ++i) |
|
|
{ |
|
|
pstr->offsets[byte_idx + i] |
|
|
= src_idx + (i < mbclen ? i : mbclen - 1); |
|
|
pstr->wcs[byte_idx + i] = WEOF; |
|
|
} |
|
|
pstr->len += mbcdlen - mbclen; |
|
|
if (pstr->raw_stop > src_idx) |
|
|
pstr->stop += mbcdlen - mbclen; |
|
|
end_idx = (pstr->bufs_len > pstr->len) |
|
|
? pstr->len : pstr->bufs_len; |
|
|
byte_idx += mbcdlen; |
|
|
src_idx += mbclen; |
|
|
continue; |
|
|
} |
|
|
else |
|
|
memcpy (pstr->mbs + byte_idx, p, mbclen); |
|
|
} |
|
|
else |
|
|
memcpy (pstr->mbs + byte_idx, p, mbclen); |
|
|
|
|
|
if (BE (pstr->offsets_needed != 0, 0)) |
|
|
{ |
|
|
size_t i; |
|
|
for (i = 0; i < mbclen; ++i) |
|
|
pstr->offsets[byte_idx + i] = src_idx + i; |
|
|
} |
|
|
src_idx += mbclen; |
|
|
|
|
|
pstr->wcs[byte_idx++] = wcu; |
|
|
/* Write paddings. */ |
|
|
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
|
|
pstr->wcs[byte_idx++] = WEOF; |
|
|
} |
|
|
else if (mbclen == (size_t) -1 || mbclen == 0) |
|
|
{ |
|
|
/* It is an invalid character or '\0'. Just use the byte. */ |
|
|
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; |
|
|
|
|
|
if (BE (pstr->trans != NULL, 0)) |
|
|
ch = pstr->trans [ch]; |
|
|
pstr->mbs[byte_idx] = ch; |
|
|
|
|
|
if (BE (pstr->offsets_needed != 0, 0)) |
|
|
pstr->offsets[byte_idx] = src_idx; |
|
|
++src_idx; |
|
|
|
|
|
/* And also cast it to wide char. */ |
|
|
pstr->wcs[byte_idx++] = (wchar_t) ch; |
|
|
if (BE (mbclen == (size_t) -1, 0)) |
|
|
pstr->cur_state = prev_st; |
|
|
} |
|
|
else |
|
|
{ |
|
|
/* The buffer doesn't have enough space, finish to build. */ |
|
|
pstr->cur_state = prev_st; |
|
|
break; |
|
|
} |
|
|
} |
|
|
pstr->valid_len = byte_idx; |
|
|
pstr->valid_raw_len = src_idx; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Skip characters until the index becomes greater than NEW_RAW_IDX. |
|
|
Return the index. */ |
|
|
|
|
|
static int |
|
|
internal_function |
|
|
re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc) |
|
|
{ |
|
|
mbstate_t prev_st; |
|
|
int rawbuf_idx; |
|
|
size_t mbclen; |
|
|
wint_t wc = WEOF; |
|
|
|
|
|
/* Skip the characters which are not necessary to check. */ |
|
|
for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; |
|
|
rawbuf_idx < new_raw_idx;) |
|
|
{ |
|
|
wchar_t wc2; |
|
|
int remain_len = pstr->len - rawbuf_idx; |
|
|
prev_st = pstr->cur_state; |
|
|
mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, |
|
|
remain_len, &pstr->cur_state); |
|
|
if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) |
|
|
{ |
|
|
/* We treat these cases as a single byte character. */ |
|
|
if (mbclen == 0 || remain_len == 0) |
|
|
wc = L'\0'; |
|
|
else |
|
|
wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); |
|
|
mbclen = 1; |
|
|
pstr->cur_state = prev_st; |
|
|
} |
|
|
else |
|
|
wc = (wint_t) wc2; |
|
|
/* Then proceed the next character. */ |
|
|
rawbuf_idx += mbclen; |
|
|
} |
|
|
*last_wc = (wint_t) wc; |
|
|
return rawbuf_idx; |
|
|
} |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|
|
|
/* Build the buffer PSTR->MBS, and apply the translation if we need. |
|
|
This function is used in case of REG_ICASE. */ |
|
|
|
|
|
static void |
|
|
internal_function |
|
|
build_upper_buffer (re_string_t *pstr) |
|
|
{ |
|
|
int char_idx, end_idx; |
|
|
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
|
|
|
|
|
for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) |
|
|
{ |
|
|
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; |
|
|
if (BE (pstr->trans != NULL, 0)) |
|
|
ch = pstr->trans[ch]; |
|
|
if (islower (ch)) |
|
|
pstr->mbs[char_idx] = toupper (ch); |
|
|
else |
|
|
pstr->mbs[char_idx] = ch; |
|
|
} |
|
|
pstr->valid_len = char_idx; |
|
|
pstr->valid_raw_len = char_idx; |
|
|
} |
|
|
|
|
|
/* Apply TRANS to the buffer in PSTR. */ |
|
|
|
|
|
static void |
|
|
internal_function |
|
|
re_string_translate_buffer (re_string_t *pstr) |
|
|
{ |
|
|
int buf_idx, end_idx; |
|
|
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
|
|
|
|
|
for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) |
|
|
{ |
|
|
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; |
|
|
pstr->mbs[buf_idx] = pstr->trans[ch]; |
|
|
} |
|
|
|
|
|
pstr->valid_len = buf_idx; |
|
|
pstr->valid_raw_len = buf_idx; |
|
|
} |
|
|
|
|
|
/* This function re-construct the buffers. |
|
|
Concretely, convert to wide character in case of pstr->mb_cur_max > 1, |
|
|
convert to upper case in case of REG_ICASE, apply translation. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_string_reconstruct (re_string_t *pstr, int idx, int eflags) |
|
|
{ |
|
|
int offset = idx - pstr->raw_mbs_idx; |
|
|
if (BE (offset < 0, 0)) |
|
|
{ |
|
|
/* Reset buffer. */ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (pstr->mb_cur_max > 1) |
|
|
memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
pstr->len = pstr->raw_len; |
|
|
pstr->stop = pstr->raw_stop; |
|
|
pstr->valid_len = 0; |
|
|
pstr->raw_mbs_idx = 0; |
|
|
pstr->valid_raw_len = 0; |
|
|
pstr->offsets_needed = 0; |
|
|
pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
|
|
: CONTEXT_NEWLINE | CONTEXT_BEGBUF); |
|
|
if (!pstr->mbs_allocated) |
|
|
pstr->mbs = (unsigned char *) pstr->raw_mbs; |
|
|
offset = idx; |
|
|
} |
|
|
|
|
|
if (BE (offset != 0, 1)) |
|
|
{ |
|
|
/* Should the already checked characters be kept? */ |
|
|
if (BE (offset < pstr->valid_raw_len, 1)) |
|
|
{ |
|
|
/* Yes, move them to the front of the buffer. */ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (BE (pstr->offsets_needed, 0)) |
|
|
{ |
|
|
int low = 0, high = pstr->valid_len, mid; |
|
|
do |
|
|
{ |
|
|
mid = (high + low) / 2; |
|
|
if (pstr->offsets[mid] > offset) |
|
|
high = mid; |
|
|
else if (pstr->offsets[mid] < offset) |
|
|
low = mid + 1; |
|
|
else |
|
|
break; |
|
|
} |
|
|
while (low < high); |
|
|
if (pstr->offsets[mid] < offset) |
|
|
++mid; |
|
|
pstr->tip_context = re_string_context_at (pstr, mid - 1, |
|
|
eflags); |
|
|
/* This can be quite complicated, so handle specially |
|
|
only the common and easy case where the character with |
|
|
different length representation of lower and upper |
|
|
case is present at or after offset. */ |
|
|
if (pstr->valid_len > offset |
|
|
&& mid == offset && pstr->offsets[mid] == offset) |
|
|
{ |
|
|
memmove (pstr->wcs, pstr->wcs + offset, |
|
|
(pstr->valid_len - offset) * sizeof (wint_t)); |
|
|
memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); |
|
|
pstr->valid_len -= offset; |
|
|
pstr->valid_raw_len -= offset; |
|
|
for (low = 0; low < pstr->valid_len; low++) |
|
|
pstr->offsets[low] = pstr->offsets[low + offset] - offset; |
|
|
} |
|
|
else |
|
|
{ |
|
|
/* Otherwise, just find out how long the partial multibyte |
|
|
character at offset is and fill it with WEOF/255. */ |
|
|
pstr->len = pstr->raw_len - idx + offset; |
|
|
pstr->stop = pstr->raw_stop - idx + offset; |
|
|
pstr->offsets_needed = 0; |
|
|
while (mid > 0 && pstr->offsets[mid - 1] == offset) |
|
|
--mid; |
|
|
while (mid < pstr->valid_len) |
|
|
if (pstr->wcs[mid] != WEOF) |
|
|
break; |
|
|
else |
|
|
++mid; |
|
|
if (mid == pstr->valid_len) |
|
|
pstr->valid_len = 0; |
|
|
else |
|
|
{ |
|
|
pstr->valid_len = pstr->offsets[mid] - offset; |
|
|
if (pstr->valid_len) |
|
|
{ |
|
|
for (low = 0; low < pstr->valid_len; ++low) |
|
|
pstr->wcs[low] = WEOF; |
|
|
memset (pstr->mbs, 255, pstr->valid_len); |
|
|
} |
|
|
} |
|
|
pstr->valid_raw_len = pstr->valid_len; |
|
|
} |
|
|
} |
|
|
else |
|
|
#endif |
|
|
{ |
|
|
pstr->tip_context = re_string_context_at (pstr, offset - 1, |
|
|
eflags); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (pstr->mb_cur_max > 1) |
|
|
memmove (pstr->wcs, pstr->wcs + offset, |
|
|
(pstr->valid_len - offset) * sizeof (wint_t)); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
if (BE (pstr->mbs_allocated, 0)) |
|
|
memmove (pstr->mbs, pstr->mbs + offset, |
|
|
pstr->valid_len - offset); |
|
|
pstr->valid_len -= offset; |
|
|
pstr->valid_raw_len -= offset; |
|
|
#if DEBUG |
|
|
assert (pstr->valid_len > 0); |
|
|
#endif |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
/* No, skip all characters until IDX. */ |
|
|
int prev_valid_len = pstr->valid_len; |
|
|
|
|
|
if (BE (pstr->offsets_needed, 0)) |
|
|
{ |
|
|
pstr->len = pstr->raw_len - idx + offset; |
|
|
pstr->stop = pstr->raw_stop - idx + offset; |
|
|
pstr->offsets_needed = 0; |
|
|
} |
|
|
#endif |
|
|
pstr->valid_len = 0; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (pstr->mb_cur_max > 1) |
|
|
{ |
|
|
int wcs_idx; |
|
|
wint_t wc = WEOF; |
|
|
|
|
|
if (pstr->is_utf8) |
|
|
{ |
|
|
const unsigned char *raw, *p, *end; |
|
|
|
|
|
/* Special case UTF-8. Multi-byte chars start with any |
|
|
byte other than 0x80 - 0xbf. */ |
|
|
raw = pstr->raw_mbs + pstr->raw_mbs_idx; |
|
|
end = raw + (offset - pstr->mb_cur_max); |
|
|
if (end < pstr->raw_mbs) |
|
|
end = pstr->raw_mbs; |
|
|
p = raw + offset - 1; |
|
|
#ifdef _LIBC |
|
|
/* We know the wchar_t encoding is UCS4, so for the simple |
|
|
case, ASCII characters, skip the conversion step. */ |
|
|
if (isascii (*p) && BE (pstr->trans == NULL, 1)) |
|
|
{ |
|
|
memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
|
|
/* pstr->valid_len = 0; */ |
|
|
wc = (wchar_t) *p; |
|
|
} |
|
|
else |
|
|
#endif |
|
|
for (; p >= end; --p) |
|
|
if ((*p & 0xc0) != 0x80) |
|
|
{ |
|
|
mbstate_t cur_state; |
|
|
wchar_t wc2; |
|
|
int mlen = raw + pstr->len - p; |
|
|
unsigned char buf[6]; |
|
|
size_t mbclen; |
|
|
|
|
|
if (BE (pstr->trans != NULL, 0)) |
|
|
{ |
|
|
int i = mlen < 6 ? mlen : 6; |
|
|
while (--i >= 0) |
|
|
buf[i] = pstr->trans[p[i]]; |
|
|
} |
|
|
/* XXX Don't use mbrtowc, we know which conversion |
|
|
to use (UTF-8 -> UCS4). */ |
|
|
memset (&cur_state, 0, sizeof (cur_state)); |
|
|
mbclen = __mbrtowc (&wc2, (const char *) p, mlen, |
|
|
&cur_state); |
|
|
if (raw + offset - p <= mbclen |
|
|
&& mbclen < (size_t) -2) |
|
|
{ |
|
|
memset (&pstr->cur_state, '\0', |
|
|
sizeof (mbstate_t)); |
|
|
pstr->valid_len = mbclen - (raw + offset - p); |
|
|
wc = wc2; |
|
|
} |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
if (wc == WEOF) |
|
|
pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; |
|
|
if (wc == WEOF) |
|
|
pstr->tip_context |
|
|
= re_string_context_at (pstr, prev_valid_len - 1, eflags); |
|
|
else |
|
|
pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) |
|
|
&& IS_WIDE_WORD_CHAR (wc)) |
|
|
? CONTEXT_WORD |
|
|
: ((IS_WIDE_NEWLINE (wc) |
|
|
&& pstr->newline_anchor) |
|
|
? CONTEXT_NEWLINE : 0)); |
|
|
if (BE (pstr->valid_len, 0)) |
|
|
{ |
|
|
for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) |
|
|
pstr->wcs[wcs_idx] = WEOF; |
|
|
if (pstr->mbs_allocated) |
|
|
memset (pstr->mbs, 255, pstr->valid_len); |
|
|
} |
|
|
pstr->valid_raw_len = pstr->valid_len; |
|
|
} |
|
|
else |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
{ |
|
|
int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; |
|
|
pstr->valid_raw_len = 0; |
|
|
if (pstr->trans) |
|
|
c = pstr->trans[c]; |
|
|
pstr->tip_context = (bitset_contain (pstr->word_char, c) |
|
|
? CONTEXT_WORD |
|
|
: ((IS_NEWLINE (c) && pstr->newline_anchor) |
|
|
? CONTEXT_NEWLINE : 0)); |
|
|
} |
|
|
} |
|
|
if (!BE (pstr->mbs_allocated, 0)) |
|
|
pstr->mbs += offset; |
|
|
} |
|
|
pstr->raw_mbs_idx = idx; |
|
|
pstr->len -= offset; |
|
|
pstr->stop -= offset; |
|
|
|
|
|
/* Then build the buffers. */ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (pstr->mb_cur_max > 1) |
|
|
{ |
|
|
if (pstr->icase) |
|
|
{ |
|
|
reg_errcode_t ret = build_wcs_upper_buffer (pstr); |
|
|
if (BE (ret != REG_NOERROR, 0)) |
|
|
return ret; |
|
|
} |
|
|
else |
|
|
build_wcs_buffer (pstr); |
|
|
} |
|
|
else |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
if (BE (pstr->mbs_allocated, 0)) |
|
|
{ |
|
|
if (pstr->icase) |
|
|
build_upper_buffer (pstr); |
|
|
else if (pstr->trans != NULL) |
|
|
re_string_translate_buffer (pstr); |
|
|
} |
|
|
else |
|
|
pstr->valid_len = pstr->len; |
|
|
|
|
|
pstr->cur_idx = 0; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
static unsigned char |
|
|
internal_function __attribute ((pure)) |
|
|
re_string_peek_byte_case (const re_string_t *pstr, int idx) |
|
|
{ |
|
|
int ch, off; |
|
|
|
|
|
/* Handle the common (easiest) cases first. */ |
|
|
if (BE (!pstr->mbs_allocated, 1)) |
|
|
return re_string_peek_byte (pstr, idx); |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (pstr->mb_cur_max > 1 |
|
|
&& ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) |
|
|
return re_string_peek_byte (pstr, idx); |
|
|
#endif |
|
|
|
|
|
off = pstr->cur_idx + idx; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (pstr->offsets_needed) |
|
|
off = pstr->offsets[off]; |
|
|
#endif |
|
|
|
|
|
ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
/* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I |
|
|
this function returns CAPITAL LETTER I instead of first byte of |
|
|
DOTLESS SMALL LETTER I. The latter would confuse the parser, |
|
|
since peek_byte_case doesn't advance cur_idx in any way. */ |
|
|
if (pstr->offsets_needed && !isascii (ch)) |
|
|
return re_string_peek_byte (pstr, idx); |
|
|
#endif |
|
|
|
|
|
return ch; |
|
|
} |
|
|
|
|
|
static unsigned char |
|
|
internal_function __attribute ((pure)) |
|
|
re_string_fetch_byte_case (re_string_t *pstr) |
|
|
{ |
|
|
if (BE (!pstr->mbs_allocated, 1)) |
|
|
return re_string_fetch_byte (pstr); |
|
|
|
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (pstr->offsets_needed) |
|
|
{ |
|
|
int off, ch; |
|
|
|
|
|
/* For tr_TR.UTF-8 [[:islower:]] there is |
|
|
[[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip |
|
|
in that case the whole multi-byte character and return |
|
|
the original letter. On the other side, with |
|
|
[[: DOTLESS SMALL LETTER I return [[:I, as doing |
|
|
anything else would complicate things too much. */ |
|
|
|
|
|
if (!re_string_first_byte (pstr, pstr->cur_idx)) |
|
|
return re_string_fetch_byte (pstr); |
|
|
|
|
|
off = pstr->offsets[pstr->cur_idx]; |
|
|
ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
|
|
|
|
|
if (! isascii (ch)) |
|
|
return re_string_fetch_byte (pstr); |
|
|
|
|
|
re_string_skip_bytes (pstr, |
|
|
re_string_char_size_at (pstr, pstr->cur_idx)); |
|
|
return ch; |
|
|
} |
|
|
#endif |
|
|
|
|
|
return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; |
|
|
} |
|
|
|
|
|
static void |
|
|
internal_function |
|
|
re_string_destruct (re_string_t *pstr) |
|
|
{ |
|
|
#ifdef RE_ENABLE_I18N |
|
|
re_free (pstr->wcs); |
|
|
re_free (pstr->offsets); |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
if (pstr->mbs_allocated) |
|
|
re_free (pstr->mbs); |
|
|
} |
|
|
|
|
|
/* Return the context at IDX in INPUT. */ |
|
|
|
|
|
static unsigned int |
|
|
internal_function |
|
|
re_string_context_at (const re_string_t *input, int idx, int eflags) |
|
|
{ |
|
|
int c; |
|
|
if (BE (idx < 0, 0)) |
|
|
/* In this case, we use the value stored in input->tip_context, |
|
|
since we can't know the character in input->mbs[-1] here. */ |
|
|
return input->tip_context; |
|
|
if (BE (idx == input->len, 0)) |
|
|
return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF |
|
|
: CONTEXT_NEWLINE | CONTEXT_ENDBUF); |
|
|
#ifdef RE_ENABLE_I18N |
|
|
if (input->mb_cur_max > 1) |
|
|
{ |
|
|
wint_t wc; |
|
|
int wc_idx = idx; |
|
|
while(input->wcs[wc_idx] == WEOF) |
|
|
{ |
|
|
#ifdef DEBUG |
|
|
/* It must not happen. */ |
|
|
assert (wc_idx >= 0); |
|
|
#endif |
|
|
--wc_idx; |
|
|
if (wc_idx < 0) |
|
|
return input->tip_context; |
|
|
} |
|
|
wc = input->wcs[wc_idx]; |
|
|
if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) |
|
|
return CONTEXT_WORD; |
|
|
return (IS_WIDE_NEWLINE (wc) && input->newline_anchor |
|
|
? CONTEXT_NEWLINE : 0); |
|
|
} |
|
|
else |
|
|
#endif |
|
|
{ |
|
|
c = re_string_byte_at (input, idx); |
|
|
if (bitset_contain (input->word_char, c)) |
|
|
return CONTEXT_WORD; |
|
|
return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; |
|
|
} |
|
|
} |
|
|
|
|
|
/* Functions for set operation. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_node_set_alloc (re_node_set *set, int size) |
|
|
{ |
|
|
/* |
|
|
* ADR: valgrind says size can be 0, which then doesn't |
|
|
* free the block of size 0. Harumph. This seems |
|
|
* to work ok, though. |
|
|
*/ |
|
|
if (size == 0) |
|
|
{ |
|
|
memset(set, 0, sizeof(*set)); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
set->alloc = size; |
|
|
set->nelem = 0; |
|
|
set->elems = re_malloc (int, size); |
|
|
if (BE (set->elems == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_node_set_init_1 (re_node_set *set, int elem) |
|
|
{ |
|
|
set->alloc = 1; |
|
|
set->nelem = 1; |
|
|
set->elems = re_malloc (int, 1); |
|
|
if (BE (set->elems == NULL, 0)) |
|
|
{ |
|
|
set->alloc = set->nelem = 0; |
|
|
return REG_ESPACE; |
|
|
} |
|
|
set->elems[0] = elem; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_node_set_init_2 (re_node_set *set, int elem1, int elem2) |
|
|
{ |
|
|
set->alloc = 2; |
|
|
set->elems = re_malloc (int, 2); |
|
|
if (BE (set->elems == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
if (elem1 == elem2) |
|
|
{ |
|
|
set->nelem = 1; |
|
|
set->elems[0] = elem1; |
|
|
} |
|
|
else |
|
|
{ |
|
|
set->nelem = 2; |
|
|
if (elem1 < elem2) |
|
|
{ |
|
|
set->elems[0] = elem1; |
|
|
set->elems[1] = elem2; |
|
|
} |
|
|
else |
|
|
{ |
|
|
set->elems[0] = elem2; |
|
|
set->elems[1] = elem1; |
|
|
} |
|
|
} |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_node_set_init_copy (re_node_set *dest, const re_node_set *src) |
|
|
{ |
|
|
dest->nelem = src->nelem; |
|
|
if (src->nelem > 0) |
|
|
{ |
|
|
dest->alloc = dest->nelem; |
|
|
dest->elems = re_malloc (int, dest->alloc); |
|
|
if (BE (dest->elems == NULL, 0)) |
|
|
{ |
|
|
dest->alloc = dest->nelem = 0; |
|
|
return REG_ESPACE; |
|
|
} |
|
|
memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); |
|
|
} |
|
|
else |
|
|
re_node_set_init_empty (dest); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to |
|
|
DEST. Return value indicate the error code or REG_NOERROR if succeeded. |
|
|
Note: We assume dest->elems is NULL, when dest->alloc is 0. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, |
|
|
const re_node_set *src2) |
|
|
{ |
|
|
int i1, i2, is, id, delta, sbase; |
|
|
if (src1->nelem == 0 || src2->nelem == 0) |
|
|
return REG_NOERROR; |
|
|
|
|
|
/* We need dest->nelem + 2 * elems_in_intersection; this is a |
|
|
conservative estimate. */ |
|
|
if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) |
|
|
{ |
|
|
int new_alloc = src1->nelem + src2->nelem + dest->alloc; |
|
|
int *new_elems = re_realloc (dest->elems, int, new_alloc); |
|
|
if (BE (new_elems == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
dest->elems = new_elems; |
|
|
dest->alloc = new_alloc; |
|
|
} |
|
|
|
|
|
/* Find the items in the intersection of SRC1 and SRC2, and copy |
|
|
into the top of DEST those that are not already in DEST itself. */ |
|
|
sbase = dest->nelem + src1->nelem + src2->nelem; |
|
|
i1 = src1->nelem - 1; |
|
|
i2 = src2->nelem - 1; |
|
|
id = dest->nelem - 1; |
|
|
for (;;) |
|
|
{ |
|
|
if (src1->elems[i1] == src2->elems[i2]) |
|
|
{ |
|
|
/* Try to find the item in DEST. Maybe we could binary search? */ |
|
|
while (id >= 0 && dest->elems[id] > src1->elems[i1]) |
|
|
--id; |
|
|
|
|
|
if (id < 0 || dest->elems[id] != src1->elems[i1]) |
|
|
dest->elems[--sbase] = src1->elems[i1]; |
|
|
|
|
|
if (--i1 < 0 || --i2 < 0) |
|
|
break; |
|
|
} |
|
|
|
|
|
/* Lower the highest of the two items. */ |
|
|
else if (src1->elems[i1] < src2->elems[i2]) |
|
|
{ |
|
|
if (--i2 < 0) |
|
|
break; |
|
|
} |
|
|
else |
|
|
{ |
|
|
if (--i1 < 0) |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
id = dest->nelem - 1; |
|
|
is = dest->nelem + src1->nelem + src2->nelem - 1; |
|
|
delta = is - sbase + 1; |
|
|
|
|
|
/* Now copy. When DELTA becomes zero, the remaining |
|
|
DEST elements are already in place; this is more or |
|
|
less the same loop that is in re_node_set_merge. */ |
|
|
dest->nelem += delta; |
|
|
if (delta > 0 && id >= 0) |
|
|
for (;;) |
|
|
{ |
|
|
if (dest->elems[is] > dest->elems[id]) |
|
|
{ |
|
|
/* Copy from the top. */ |
|
|
dest->elems[id + delta--] = dest->elems[is--]; |
|
|
if (delta == 0) |
|
|
break; |
|
|
} |
|
|
else |
|
|
{ |
|
|
/* Slide from the bottom. */ |
|
|
dest->elems[id + delta] = dest->elems[id]; |
|
|
if (--id < 0) |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
/* Copy remaining SRC elements. */ |
|
|
memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int)); |
|
|
|
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Calculate the union set of the sets SRC1 and SRC2. And store it to |
|
|
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_node_set_init_union (re_node_set *dest, const re_node_set *src1, |
|
|
const re_node_set *src2) |
|
|
{ |
|
|
int i1, i2, id; |
|
|
if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) |
|
|
{ |
|
|
dest->alloc = src1->nelem + src2->nelem; |
|
|
dest->elems = re_malloc (int, dest->alloc); |
|
|
if (BE (dest->elems == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
} |
|
|
else |
|
|
{ |
|
|
if (src1 != NULL && src1->nelem > 0) |
|
|
return re_node_set_init_copy (dest, src1); |
|
|
else if (src2 != NULL && src2->nelem > 0) |
|
|
return re_node_set_init_copy (dest, src2); |
|
|
else |
|
|
re_node_set_init_empty (dest); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) |
|
|
{ |
|
|
if (src1->elems[i1] > src2->elems[i2]) |
|
|
{ |
|
|
dest->elems[id++] = src2->elems[i2++]; |
|
|
continue; |
|
|
} |
|
|
if (src1->elems[i1] == src2->elems[i2]) |
|
|
++i2; |
|
|
dest->elems[id++] = src1->elems[i1++]; |
|
|
} |
|
|
if (i1 < src1->nelem) |
|
|
{ |
|
|
memcpy (dest->elems + id, src1->elems + i1, |
|
|
(src1->nelem - i1) * sizeof (int)); |
|
|
id += src1->nelem - i1; |
|
|
} |
|
|
else if (i2 < src2->nelem) |
|
|
{ |
|
|
memcpy (dest->elems + id, src2->elems + i2, |
|
|
(src2->nelem - i2) * sizeof (int)); |
|
|
id += src2->nelem - i2; |
|
|
} |
|
|
dest->nelem = id; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Calculate the union set of the sets DEST and SRC. And store it to |
|
|
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
internal_function |
|
|
re_node_set_merge (re_node_set *dest, const re_node_set *src) |
|
|
{ |
|
|
int is, id, sbase, delta; |
|
|
if (src == NULL || src->nelem == 0) |
|
|
return REG_NOERROR; |
|
|
if (dest->alloc < 2 * src->nelem + dest->nelem) |
|
|
{ |
|
|
int new_alloc = 2 * (src->nelem + dest->alloc); |
|
|
int *new_buffer = re_realloc (dest->elems, int, new_alloc); |
|
|
if (BE (new_buffer == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
dest->elems = new_buffer; |
|
|
dest->alloc = new_alloc; |
|
|
} |
|
|
|
|
|
if (BE (dest->nelem == 0, 0)) |
|
|
{ |
|
|
dest->nelem = src->nelem; |
|
|
memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Copy into the top of DEST the items of SRC that are not |
|
|
found in DEST. Maybe we could binary search in DEST? */ |
|
|
for (sbase = dest->nelem + 2 * src->nelem, |
|
|
is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) |
|
|
{ |
|
|
if (dest->elems[id] == src->elems[is]) |
|
|
is--, id--; |
|
|
else if (dest->elems[id] < src->elems[is]) |
|
|
dest->elems[--sbase] = src->elems[is--]; |
|
|
else /* if (dest->elems[id] > src->elems[is]) */ |
|
|
--id; |
|
|
} |
|
|
|
|
|
if (is >= 0) |
|
|
{ |
|
|
/* If DEST is exhausted, the remaining items of SRC must be unique. */ |
|
|
sbase -= is + 1; |
|
|
memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int)); |
|
|
} |
|
|
|
|
|
id = dest->nelem - 1; |
|
|
is = dest->nelem + 2 * src->nelem - 1; |
|
|
delta = is - sbase + 1; |
|
|
if (delta == 0) |
|
|
return REG_NOERROR; |
|
|
|
|
|
/* Now copy. When DELTA becomes zero, the remaining |
|
|
DEST elements are already in place. */ |
|
|
dest->nelem += delta; |
|
|
for (;;) |
|
|
{ |
|
|
if (dest->elems[is] > dest->elems[id]) |
|
|
{ |
|
|
/* Copy from the top. */ |
|
|
dest->elems[id + delta--] = dest->elems[is--]; |
|
|
if (delta == 0) |
|
|
break; |
|
|
} |
|
|
else |
|
|
{ |
|
|
/* Slide from the bottom. */ |
|
|
dest->elems[id + delta] = dest->elems[id]; |
|
|
if (--id < 0) |
|
|
{ |
|
|
/* Copy remaining SRC elements. */ |
|
|
memcpy (dest->elems, dest->elems + sbase, |
|
|
delta * sizeof (int)); |
|
|
break; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
/* Insert the new element ELEM to the re_node_set* SET. |
|
|
SET should not already have ELEM. |
|
|
return -1 if an error has occurred, return 1 otherwise. */ |
|
|
|
|
|
static int |
|
|
internal_function |
|
|
re_node_set_insert (re_node_set *set, int elem) |
|
|
{ |
|
|
int idx; |
|
|
/* In case the set is empty. */ |
|
|
if (set->alloc == 0) |
|
|
{ |
|
|
if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1)) |
|
|
return 1; |
|
|
else |
|
|
return -1; |
|
|
} |
|
|
|
|
|
if (BE (set->nelem, 0) == 0) |
|
|
{ |
|
|
/* We already guaranteed above that set->alloc != 0. */ |
|
|
set->elems[0] = elem; |
|
|
++set->nelem; |
|
|
return 1; |
|
|
} |
|
|
|
|
|
/* Realloc if we need. */ |
|
|
if (set->alloc == set->nelem) |
|
|
{ |
|
|
int *new_elems; |
|
|
set->alloc = set->alloc * 2; |
|
|
new_elems = re_realloc (set->elems, int, set->alloc); |
|
|
if (BE (new_elems == NULL, 0)) |
|
|
return -1; |
|
|
set->elems = new_elems; |
|
|
} |
|
|
|
|
|
/* Move the elements which follows the new element. Test the |
|
|
first element separately to skip a check in the inner loop. */ |
|
|
if (elem < set->elems[0]) |
|
|
{ |
|
|
idx = 0; |
|
|
for (idx = set->nelem; idx > 0; idx--) |
|
|
set->elems[idx] = set->elems[idx - 1]; |
|
|
} |
|
|
else |
|
|
{ |
|
|
for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) |
|
|
set->elems[idx] = set->elems[idx - 1]; |
|
|
} |
|
|
|
|
|
/* Insert the new element. */ |
|
|
set->elems[idx] = elem; |
|
|
++set->nelem; |
|
|
return 1; |
|
|
} |
|
|
|
|
|
/* Insert the new element ELEM to the re_node_set* SET. |
|
|
SET should not already have any element greater than or equal to ELEM. |
|
|
Return -1 if an error has occurred, return 1 otherwise. */ |
|
|
|
|
|
static int |
|
|
internal_function |
|
|
re_node_set_insert_last (re_node_set *set, int elem) |
|
|
{ |
|
|
/* Realloc if we need. */ |
|
|
if (set->alloc == set->nelem) |
|
|
{ |
|
|
int *new_elems; |
|
|
set->alloc = (set->alloc + 1) * 2; |
|
|
new_elems = re_realloc (set->elems, int, set->alloc); |
|
|
if (BE (new_elems == NULL, 0)) |
|
|
return -1; |
|
|
set->elems = new_elems; |
|
|
} |
|
|
|
|
|
/* Insert the new element. */ |
|
|
set->elems[set->nelem++] = elem; |
|
|
return 1; |
|
|
} |
|
|
|
|
|
/* Compare two node sets SET1 and SET2. |
|
|
return 1 if SET1 and SET2 are equivalent, return 0 otherwise. */ |
|
|
|
|
|
static int |
|
|
internal_function __attribute ((pure)) |
|
|
re_node_set_compare (const re_node_set *set1, const re_node_set *set2) |
|
|
{ |
|
|
int i; |
|
|
if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) |
|
|
return 0; |
|
|
for (i = set1->nelem ; --i >= 0 ; ) |
|
|
if (set1->elems[i] != set2->elems[i]) |
|
|
return 0; |
|
|
return 1; |
|
|
} |
|
|
|
|
|
/* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ |
|
|
|
|
|
static int |
|
|
internal_function __attribute ((pure)) |
|
|
re_node_set_contains (const re_node_set *set, int elem) |
|
|
{ |
|
|
unsigned int idx, right, mid; |
|
|
if (set->nelem <= 0) |
|
|
return 0; |
|
|
|
|
|
/* Binary search the element. */ |
|
|
idx = 0; |
|
|
right = set->nelem - 1; |
|
|
while (idx < right) |
|
|
{ |
|
|
mid = (idx + right) / 2; |
|
|
if (set->elems[mid] < elem) |
|
|
idx = mid + 1; |
|
|
else |
|
|
right = mid; |
|
|
} |
|
|
return set->elems[idx] == elem ? idx + 1 : 0; |
|
|
} |
|
|
|
|
|
static void |
|
|
internal_function |
|
|
re_node_set_remove_at (re_node_set *set, int idx) |
|
|
{ |
|
|
if (idx < 0 || idx >= set->nelem) |
|
|
return; |
|
|
--set->nelem; |
|
|
for (; idx < set->nelem; idx++) |
|
|
set->elems[idx] = set->elems[idx + 1]; |
|
|
} |
|
|
|
|
|
|
|
|
/* Add the token TOKEN to dfa->nodes, and return the index of the token. |
|
|
Or return -1, if an error has occurred. */ |
|
|
|
|
|
static int |
|
|
internal_function |
|
|
re_dfa_add_node (re_dfa_t *dfa, re_token_t token) |
|
|
{ |
|
|
if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) |
|
|
{ |
|
|
size_t new_nodes_alloc = dfa->nodes_alloc * 2; |
|
|
int *new_nexts, *new_indices; |
|
|
re_node_set *new_edests, *new_eclosures; |
|
|
re_token_t *new_nodes; |
|
|
|
|
|
/* Avoid overflows in realloc. */ |
|
|
const size_t max_object_size = MAX (sizeof (re_token_t), |
|
|
MAX (sizeof (re_node_set), |
|
|
sizeof (int))); |
|
|
if (BE (SIZE_MAX / max_object_size < new_nodes_alloc, 0)) |
|
|
return -1; |
|
|
|
|
|
new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); |
|
|
if (BE (new_nodes == NULL, 0)) |
|
|
return -1; |
|
|
dfa->nodes = new_nodes; |
|
|
new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc); |
|
|
new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc); |
|
|
new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); |
|
|
new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); |
|
|
if (BE (new_nexts == NULL || new_indices == NULL |
|
|
|| new_edests == NULL || new_eclosures == NULL, 0)) |
|
|
return -1; |
|
|
dfa->nexts = new_nexts; |
|
|
dfa->org_indices = new_indices; |
|
|
dfa->edests = new_edests; |
|
|
dfa->eclosures = new_eclosures; |
|
|
dfa->nodes_alloc = new_nodes_alloc; |
|
|
} |
|
|
dfa->nodes[dfa->nodes_len] = token; |
|
|
dfa->nodes[dfa->nodes_len].constraint = 0; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
dfa->nodes[dfa->nodes_len].accept_mb = |
|
|
(token.type == OP_PERIOD && dfa->mb_cur_max > 1) || token.type == COMPLEX_BRACKET; |
|
|
#endif |
|
|
dfa->nexts[dfa->nodes_len] = -1; |
|
|
re_node_set_init_empty (dfa->edests + dfa->nodes_len); |
|
|
re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); |
|
|
return dfa->nodes_len++; |
|
|
} |
|
|
|
|
|
static inline unsigned int |
|
|
internal_function |
|
|
calc_state_hash (const re_node_set *nodes, unsigned int context) |
|
|
{ |
|
|
unsigned int hash = nodes->nelem + context; |
|
|
int i; |
|
|
for (i = 0 ; i < nodes->nelem ; i++) |
|
|
hash += nodes->elems[i]; |
|
|
return hash; |
|
|
} |
|
|
|
|
|
/* Search for the state whose node_set is equivalent to NODES. |
|
|
Return the pointer to the state, if we found it in the DFA. |
|
|
Otherwise create the new one and return it. In case of an error |
|
|
return NULL and set the error code in ERR. |
|
|
Note: - We assume NULL as the invalid state, then it is possible that |
|
|
return value is NULL and ERR is REG_NOERROR. |
|
|
- We never return non-NULL value in case of any errors, it is for |
|
|
optimization. */ |
|
|
|
|
|
static re_dfastate_t * |
|
|
internal_function |
|
|
re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, |
|
|
const re_node_set *nodes) |
|
|
{ |
|
|
unsigned int hash; |
|
|
re_dfastate_t *new_state; |
|
|
struct re_state_table_entry *spot; |
|
|
int i; |
|
|
if (BE (nodes->nelem == 0, 0)) |
|
|
{ |
|
|
*err = REG_NOERROR; |
|
|
return NULL; |
|
|
} |
|
|
hash = calc_state_hash (nodes, 0); |
|
|
spot = dfa->state_table + (hash & dfa->state_hash_mask); |
|
|
|
|
|
for (i = 0 ; i < spot->num ; i++) |
|
|
{ |
|
|
re_dfastate_t *state = spot->array[i]; |
|
|
if (hash != state->hash) |
|
|
continue; |
|
|
if (re_node_set_compare (&state->nodes, nodes)) |
|
|
return state; |
|
|
} |
|
|
|
|
|
/* There are no appropriate state in the dfa, create the new one. */ |
|
|
new_state = create_ci_newstate (dfa, nodes, hash); |
|
|
if (BE (new_state == NULL, 0)) |
|
|
*err = REG_ESPACE; |
|
|
|
|
|
return new_state; |
|
|
} |
|
|
|
|
|
/* Search for the state whose node_set is equivalent to NODES and |
|
|
whose context is equivalent to CONTEXT. |
|
|
Return the pointer to the state, if we found it in the DFA. |
|
|
Otherwise create the new one and return it. In case of an error |
|
|
return NULL and set the error code in ERR. |
|
|
Note: - We assume NULL as the invalid state, then it is possible that |
|
|
return value is NULL and ERR is REG_NOERROR. |
|
|
- We never return non-NULL value in case of any errors, it is for |
|
|
optimization. */ |
|
|
|
|
|
static re_dfastate_t * |
|
|
internal_function |
|
|
re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, |
|
|
const re_node_set *nodes, unsigned int context) |
|
|
{ |
|
|
unsigned int hash; |
|
|
re_dfastate_t *new_state; |
|
|
struct re_state_table_entry *spot; |
|
|
int i; |
|
|
if (nodes->nelem == 0) |
|
|
{ |
|
|
*err = REG_NOERROR; |
|
|
return NULL; |
|
|
} |
|
|
hash = calc_state_hash (nodes, context); |
|
|
spot = dfa->state_table + (hash & dfa->state_hash_mask); |
|
|
|
|
|
for (i = 0 ; i < spot->num ; i++) |
|
|
{ |
|
|
re_dfastate_t *state = spot->array[i]; |
|
|
if (state->hash == hash |
|
|
&& state->context == context |
|
|
&& re_node_set_compare (state->entrance_nodes, nodes)) |
|
|
return state; |
|
|
} |
|
|
/* There are no appropriate state in `dfa', create the new one. */ |
|
|
new_state = create_cd_newstate (dfa, nodes, context, hash); |
|
|
if (BE (new_state == NULL, 0)) |
|
|
*err = REG_ESPACE; |
|
|
|
|
|
return new_state; |
|
|
} |
|
|
|
|
|
/* Finish initialization of the new state NEWSTATE, and using its hash value |
|
|
HASH put in the appropriate bucket of DFA's state table. Return value |
|
|
indicates the error code if failed. */ |
|
|
|
|
|
static reg_errcode_t |
|
|
register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, |
|
|
unsigned int hash) |
|
|
{ |
|
|
struct re_state_table_entry *spot; |
|
|
reg_errcode_t err; |
|
|
int i; |
|
|
|
|
|
newstate->hash = hash; |
|
|
err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
return REG_ESPACE; |
|
|
for (i = 0; i < newstate->nodes.nelem; i++) |
|
|
{ |
|
|
int elem = newstate->nodes.elems[i]; |
|
|
if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) |
|
|
if (re_node_set_insert_last (&newstate->non_eps_nodes, elem) < 0) |
|
|
return REG_ESPACE; |
|
|
} |
|
|
|
|
|
spot = dfa->state_table + (hash & dfa->state_hash_mask); |
|
|
if (BE (spot->alloc <= spot->num, 0)) |
|
|
{ |
|
|
int new_alloc = 2 * spot->num + 2; |
|
|
re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, |
|
|
new_alloc); |
|
|
if (BE (new_array == NULL, 0)) |
|
|
return REG_ESPACE; |
|
|
spot->array = new_array; |
|
|
spot->alloc = new_alloc; |
|
|
} |
|
|
spot->array[spot->num++] = newstate; |
|
|
return REG_NOERROR; |
|
|
} |
|
|
|
|
|
static void |
|
|
free_state (re_dfastate_t *state) |
|
|
{ |
|
|
re_node_set_free (&state->non_eps_nodes); |
|
|
re_node_set_free (&state->inveclosure); |
|
|
if (state->entrance_nodes != &state->nodes) |
|
|
{ |
|
|
re_node_set_free (state->entrance_nodes); |
|
|
re_free (state->entrance_nodes); |
|
|
} |
|
|
re_node_set_free (&state->nodes); |
|
|
re_free (state->word_trtable); |
|
|
re_free (state->trtable); |
|
|
re_free (state); |
|
|
} |
|
|
|
|
|
/* Create the new state which is independ of contexts. |
|
|
Return the new state if succeeded, otherwise return NULL. */ |
|
|
|
|
|
static re_dfastate_t * |
|
|
internal_function |
|
|
create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
|
|
unsigned int hash) |
|
|
{ |
|
|
int i; |
|
|
reg_errcode_t err; |
|
|
re_dfastate_t *newstate; |
|
|
|
|
|
newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
|
|
if (BE (newstate == NULL, 0)) |
|
|
return NULL; |
|
|
err = re_node_set_init_copy (&newstate->nodes, nodes); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
{ |
|
|
re_free (newstate); |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
newstate->entrance_nodes = &newstate->nodes; |
|
|
for (i = 0 ; i < nodes->nelem ; i++) |
|
|
{ |
|
|
re_token_t *node = dfa->nodes + nodes->elems[i]; |
|
|
re_token_type_t type = node->type; |
|
|
if (type == CHARACTER && !node->constraint) |
|
|
continue; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
newstate->accept_mb |= node->accept_mb; |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|
|
|
/* If the state has the halt node, the state is a halt state. */ |
|
|
if (type == END_OF_RE) |
|
|
newstate->halt = 1; |
|
|
else if (type == OP_BACK_REF) |
|
|
newstate->has_backref = 1; |
|
|
else if (type == ANCHOR || node->constraint) |
|
|
newstate->has_constraint = 1; |
|
|
} |
|
|
err = register_state (dfa, newstate, hash); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
{ |
|
|
free_state (newstate); |
|
|
newstate = NULL; |
|
|
} |
|
|
return newstate; |
|
|
} |
|
|
|
|
|
/* Create the new state which is depend on the context CONTEXT. |
|
|
Return the new state if succeeded, otherwise return NULL. */ |
|
|
|
|
|
static re_dfastate_t * |
|
|
internal_function |
|
|
create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
|
|
unsigned int context, unsigned int hash) |
|
|
{ |
|
|
int i, nctx_nodes = 0; |
|
|
reg_errcode_t err; |
|
|
re_dfastate_t *newstate; |
|
|
|
|
|
newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
|
|
if (BE (newstate == NULL, 0)) |
|
|
return NULL; |
|
|
err = re_node_set_init_copy (&newstate->nodes, nodes); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
{ |
|
|
re_free (newstate); |
|
|
return NULL; |
|
|
} |
|
|
|
|
|
newstate->context = context; |
|
|
newstate->entrance_nodes = &newstate->nodes; |
|
|
|
|
|
for (i = 0 ; i < nodes->nelem ; i++) |
|
|
{ |
|
|
re_token_t *node = dfa->nodes + nodes->elems[i]; |
|
|
re_token_type_t type = node->type; |
|
|
unsigned int constraint = node->constraint; |
|
|
|
|
|
if (type == CHARACTER && !constraint) |
|
|
continue; |
|
|
#ifdef RE_ENABLE_I18N |
|
|
newstate->accept_mb |= node->accept_mb; |
|
|
#endif /* RE_ENABLE_I18N */ |
|
|
|
|
|
/* If the state has the halt node, the state is a halt state. */ |
|
|
if (type == END_OF_RE) |
|
|
newstate->halt = 1; |
|
|
else if (type == OP_BACK_REF) |
|
|
newstate->has_backref = 1; |
|
|
|
|
|
if (constraint) |
|
|
{ |
|
|
if (newstate->entrance_nodes == &newstate->nodes) |
|
|
{ |
|
|
newstate->entrance_nodes = re_malloc (re_node_set, 1); |
|
|
if (BE (newstate->entrance_nodes == NULL, 0)) |
|
|
{ |
|
|
free_state (newstate); |
|
|
return NULL; |
|
|
} |
|
|
if (re_node_set_init_copy (newstate->entrance_nodes, nodes) |
|
|
!= REG_NOERROR) |
|
|
return NULL; |
|
|
nctx_nodes = 0; |
|
|
newstate->has_constraint = 1; |
|
|
} |
|
|
|
|
|
if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) |
|
|
{ |
|
|
re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); |
|
|
++nctx_nodes; |
|
|
} |
|
|
} |
|
|
} |
|
|
err = register_state (dfa, newstate, hash); |
|
|
if (BE (err != REG_NOERROR, 0)) |
|
|
{ |
|
|
free_state (newstate); |
|
|
newstate = NULL; |
|
|
} |
|
|
return newstate; |
|
|
}
|
|
|
|