You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
267 lines
9.8 KiB
267 lines
9.8 KiB
#ifndef REFS_REF_CACHE_H |
|
#define REFS_REF_CACHE_H |
|
|
|
struct ref_dir; |
|
|
|
/* |
|
* If this ref_cache is filled lazily, this function is used to load |
|
* information into the specified ref_dir (shallow or deep, at the |
|
* option of the ref_store). dirname includes a trailing slash. |
|
*/ |
|
typedef void fill_ref_dir_fn(struct ref_store *ref_store, |
|
struct ref_dir *dir, const char *dirname); |
|
|
|
struct ref_cache { |
|
struct ref_entry *root; |
|
|
|
/* A pointer to the ref_store whose cache this is: */ |
|
struct ref_store *ref_store; |
|
|
|
/* |
|
* Function used (if necessary) to lazily-fill cache. May be |
|
* NULL. |
|
*/ |
|
fill_ref_dir_fn *fill_ref_dir; |
|
}; |
|
|
|
/* |
|
* Information used (along with the information in ref_entry) to |
|
* describe a single cached reference. This data structure only |
|
* occurs embedded in a union in struct ref_entry, and only when |
|
* (ref_entry->flag & REF_DIR) is zero. |
|
*/ |
|
struct ref_value { |
|
/* |
|
* The name of the object to which this reference resolves |
|
* (which may be a tag object). If REF_ISBROKEN, this is |
|
* null. If REF_ISSYMREF, then this is the name of the object |
|
* referred to by the last reference in the symlink chain. |
|
*/ |
|
struct object_id oid; |
|
|
|
/* |
|
* If REF_KNOWS_PEELED, then this field holds the peeled value |
|
* of this reference, or null if the reference is known not to |
|
* be peelable. See the documentation for peel_ref() for an |
|
* exact definition of "peelable". |
|
*/ |
|
struct object_id peeled; |
|
}; |
|
|
|
/* |
|
* Information used (along with the information in ref_entry) to |
|
* describe a level in the hierarchy of references. This data |
|
* structure only occurs embedded in a union in struct ref_entry, and |
|
* only when (ref_entry.flag & REF_DIR) is set. In that case, |
|
* (ref_entry.flag & REF_INCOMPLETE) determines whether the references |
|
* in the directory have already been read: |
|
* |
|
* (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose |
|
* or packed references, already read. |
|
* |
|
* (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose |
|
* references that hasn't been read yet (nor has any of its |
|
* subdirectories). |
|
* |
|
* Entries within a directory are stored within a growable array of |
|
* pointers to ref_entries (entries, nr, alloc). Entries 0 <= i < |
|
* sorted are sorted by their component name in strcmp() order and the |
|
* remaining entries are unsorted. |
|
* |
|
* Loose references are read lazily, one directory at a time. When a |
|
* directory of loose references is read, then all of the references |
|
* in that directory are stored, and REF_INCOMPLETE stubs are created |
|
* for any subdirectories, but the subdirectories themselves are not |
|
* read. The reading is triggered by get_ref_dir(). |
|
*/ |
|
struct ref_dir { |
|
int nr, alloc; |
|
|
|
/* |
|
* Entries with index 0 <= i < sorted are sorted by name. New |
|
* entries are appended to the list unsorted, and are sorted |
|
* only when required; thus we avoid the need to sort the list |
|
* after the addition of every reference. |
|
*/ |
|
int sorted; |
|
|
|
/* The ref_cache containing this entry: */ |
|
struct ref_cache *cache; |
|
|
|
struct ref_entry **entries; |
|
}; |
|
|
|
/* |
|
* Bit values for ref_entry::flag. REF_ISSYMREF=0x01, |
|
* REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are |
|
* public values; see refs.h. |
|
*/ |
|
|
|
/* |
|
* The field ref_entry->u.value.peeled of this value entry contains |
|
* the correct peeled value for the reference, which might be |
|
* null_sha1 if the reference is not a tag or if it is broken. |
|
*/ |
|
#define REF_KNOWS_PEELED 0x10 |
|
|
|
/* ref_entry represents a directory of references */ |
|
#define REF_DIR 0x20 |
|
|
|
/* |
|
* Entry has not yet been read from disk (used only for REF_DIR |
|
* entries representing loose references) |
|
*/ |
|
#define REF_INCOMPLETE 0x40 |
|
|
|
/* |
|
* A ref_entry represents either a reference or a "subdirectory" of |
|
* references. |
|
* |
|
* Each directory in the reference namespace is represented by a |
|
* ref_entry with (flags & REF_DIR) set and containing a subdir member |
|
* that holds the entries in that directory that have been read so |
|
* far. If (flags & REF_INCOMPLETE) is set, then the directory and |
|
* its subdirectories haven't been read yet. REF_INCOMPLETE is only |
|
* used for loose reference directories. |
|
* |
|
* References are represented by a ref_entry with (flags & REF_DIR) |
|
* unset and a value member that describes the reference's value. The |
|
* flag member is at the ref_entry level, but it is also needed to |
|
* interpret the contents of the value field (in other words, a |
|
* ref_value object is not very much use without the enclosing |
|
* ref_entry). |
|
* |
|
* Reference names cannot end with slash and directories' names are |
|
* always stored with a trailing slash (except for the top-level |
|
* directory, which is always denoted by ""). This has two nice |
|
* consequences: (1) when the entries in each subdir are sorted |
|
* lexicographically by name (as they usually are), the references in |
|
* a whole tree can be generated in lexicographic order by traversing |
|
* the tree in left-to-right, depth-first order; (2) the names of |
|
* references and subdirectories cannot conflict, and therefore the |
|
* presence of an empty subdirectory does not block the creation of a |
|
* similarly-named reference. (The fact that reference names with the |
|
* same leading components can conflict *with each other* is a |
|
* separate issue that is regulated by refs_verify_refname_available().) |
|
* |
|
* Please note that the name field contains the fully-qualified |
|
* reference (or subdirectory) name. Space could be saved by only |
|
* storing the relative names. But that would require the full names |
|
* to be generated on the fly when iterating in do_for_each_ref(), and |
|
* would break callback functions, who have always been able to assume |
|
* that the name strings that they are passed will not be freed during |
|
* the iteration. |
|
*/ |
|
struct ref_entry { |
|
unsigned char flag; /* ISSYMREF? ISPACKED? */ |
|
union { |
|
struct ref_value value; /* if not (flags&REF_DIR) */ |
|
struct ref_dir subdir; /* if (flags&REF_DIR) */ |
|
} u; |
|
/* |
|
* The full name of the reference (e.g., "refs/heads/master") |
|
* or the full name of the directory with a trailing slash |
|
* (e.g., "refs/heads/"): |
|
*/ |
|
char name[FLEX_ARRAY]; |
|
}; |
|
|
|
/* |
|
* Return the index of the entry with the given refname from the |
|
* ref_dir (non-recursively), sorting dir if necessary. Return -1 if |
|
* no such entry is found. dir must already be complete. |
|
*/ |
|
int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len); |
|
|
|
struct ref_dir *get_ref_dir(struct ref_entry *entry); |
|
|
|
/* |
|
* Create a struct ref_entry object for the specified dirname. |
|
* dirname is the name of the directory with a trailing slash (e.g., |
|
* "refs/heads/") or "" for the top-level directory. |
|
*/ |
|
struct ref_entry *create_dir_entry(struct ref_cache *cache, |
|
const char *dirname, size_t len, |
|
int incomplete); |
|
|
|
struct ref_entry *create_ref_entry(const char *refname, |
|
const struct object_id *oid, int flag); |
|
|
|
/* |
|
* Return a pointer to a new `ref_cache`. Its top-level starts out |
|
* marked incomplete. If `fill_ref_dir` is non-NULL, it is the |
|
* function called to fill in incomplete directories in the |
|
* `ref_cache` when they are accessed. If it is NULL, then the whole |
|
* `ref_cache` must be filled (including clearing its directories' |
|
* `REF_INCOMPLETE` bits) before it is used, and `refs` can be NULL, |
|
* too. |
|
*/ |
|
struct ref_cache *create_ref_cache(struct ref_store *refs, |
|
fill_ref_dir_fn *fill_ref_dir); |
|
|
|
/* |
|
* Free the `ref_cache` and all of its associated data. |
|
*/ |
|
void free_ref_cache(struct ref_cache *cache); |
|
|
|
/* |
|
* Add a ref_entry to the end of dir (unsorted). Entry is always |
|
* stored directly in dir; no recursion into subdirectories is |
|
* done. |
|
*/ |
|
void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry); |
|
|
|
/* |
|
* Remove the entry with the given name from dir, recursing into |
|
* subdirectories as necessary. If refname is the name of a directory |
|
* (i.e., ends with '/'), then remove the directory and its contents. |
|
* If the removal was successful, return the number of entries |
|
* remaining in the directory entry that contained the deleted entry. |
|
* If the name was not found, return -1. Please note that this |
|
* function only deletes the entry from the cache; it does not delete |
|
* it from the filesystem or ensure that other cache entries (which |
|
* might be symbolic references to the removed entry) are updated. |
|
* Nor does it remove any containing dir entries that might be made |
|
* empty by the removal. dir must represent the top-level directory |
|
* and must already be complete. |
|
*/ |
|
int remove_entry_from_dir(struct ref_dir *dir, const char *refname); |
|
|
|
/* |
|
* Add a ref_entry to the ref_dir (unsorted), recursing into |
|
* subdirectories as necessary. dir must represent the top-level |
|
* directory. Return 0 on success. |
|
*/ |
|
int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref); |
|
|
|
/* |
|
* Find the value entry with the given name in dir, sorting ref_dirs |
|
* and recursing into subdirectories as necessary. If the name is not |
|
* found or it corresponds to a directory entry, return NULL. |
|
*/ |
|
struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname); |
|
|
|
/* |
|
* Start iterating over references in `cache`. If `prefix` is |
|
* specified, only include references whose names start with that |
|
* prefix. If `prime_dir` is true, then fill any incomplete |
|
* directories before beginning the iteration. |
|
*/ |
|
struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache, |
|
const char *prefix, |
|
int prime_dir); |
|
|
|
/* |
|
* Peel the entry (if possible) and return its new peel_status. If |
|
* repeel is true, re-peel the entry even if there is an old peeled |
|
* value that is already stored in it. |
|
* |
|
* It is OK to call this function with a packed reference entry that |
|
* might be stale and might even refer to an object that has since |
|
* been garbage-collected. In such a case, if the entry has |
|
* REF_KNOWS_PEELED then leave the status unchanged and return |
|
* PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID. |
|
*/ |
|
enum peel_status peel_entry(struct ref_entry *entry, int repeel); |
|
|
|
#endif /* REFS_REF_CACHE_H */
|
|
|