Often it is useful to both:
- have relatively few packfiles in a repository, and
- avoid having so few packfiles in a repository that we repack its
entire contents regularly
This patch implements a '--geometric=<n>' option in 'git repack'. This
allows the caller to specify that they would like each pack to be at
least a factor times as large as the previous largest pack (by object
count).
Concretely, say that a repository has 'n' packfiles, labeled P1, P2,
..., up to Pn. Each packfile has an object count equal to 'objects(Pn)'.
With a geometric factor of 'r', it should be that:
objects(Pi) > r*objects(P(i-1))
for all i in [1, n], where the packs are sorted by
objects(P1) <= objects(P2) <= ... <= objects(Pn).
Since finding a true optimal repacking is NP-hard, we approximate it
along two directions:
1. We assume that there is a cutoff of packs _before starting the
repack_ where everything to the right of that cut-off already forms
a geometric progression (or no cutoff exists and everything must be
repacked).
2. We assume that everything smaller than the cutoff count must be
repacked. This forms our base assumption, but it can also cause
even the "heavy" packs to get repacked, for e.g., if we have 6
packs containing the following number of objects:
1, 1, 1, 2, 4, 32
then we would place the cutoff between '1, 1' and '1, 2, 4, 32',
rolling up the first two packs into a pack with 2 objects. That
breaks our progression and leaves us:
2, 1, 2, 4, 32
^
(where the '^' indicates the position of our split). To restore a
progression, we move the split forward (towards larger packs)
joining each pack into our new pack until a geometric progression
is restored. Here, that looks like:
2, 1, 2, 4, 32 ~> 3, 2, 4, 32 ~> 5, 4, 32 ~> ... ~> 9, 32
^ ^ ^ ^
This has the advantage of not repacking the heavy-side of packs too
often while also only creating one new pack at a time. Another wrinkle
is that we assume that loose, indexed, and reflog'd objects are
insignificant, and lump them into any new pack that we create. This can
lead to non-idempotent results.
Suggested-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Reviewed-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>