825 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
			
		
		
	
	
			825 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
| /*
 | |
|  * Various trivial helper wrappers around standard functions
 | |
|  */
 | |
| #include "git-compat-util.h"
 | |
| #include "abspath.h"
 | |
| #include "parse.h"
 | |
| #include "gettext.h"
 | |
| #include "strbuf.h"
 | |
| #include "trace2.h"
 | |
| 
 | |
| #ifdef HAVE_RTLGENRANDOM
 | |
| /* This is required to get access to RtlGenRandom. */
 | |
| #define SystemFunction036 NTAPI SystemFunction036
 | |
| #include <ntsecapi.h>
 | |
| #undef SystemFunction036
 | |
| #endif
 | |
| 
 | |
| static int memory_limit_check(size_t size, int gentle)
 | |
| {
 | |
| 	static size_t limit = 0;
 | |
| 	if (!limit) {
 | |
| 		limit = git_env_ulong("GIT_ALLOC_LIMIT", 0);
 | |
| 		if (!limit)
 | |
| 			limit = SIZE_MAX;
 | |
| 	}
 | |
| 	if (size > limit) {
 | |
| 		if (gentle) {
 | |
| 			error("attempting to allocate %"PRIuMAX" over limit %"PRIuMAX,
 | |
| 			      (uintmax_t)size, (uintmax_t)limit);
 | |
| 			return -1;
 | |
| 		} else
 | |
| 			die("attempting to allocate %"PRIuMAX" over limit %"PRIuMAX,
 | |
| 			    (uintmax_t)size, (uintmax_t)limit);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| char *xstrdup(const char *str)
 | |
| {
 | |
| 	char *ret = strdup(str);
 | |
| 	if (!ret)
 | |
| 		die("Out of memory, strdup failed");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void *do_xmalloc(size_t size, int gentle)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (memory_limit_check(size, gentle))
 | |
| 		return NULL;
 | |
| 	ret = malloc(size);
 | |
| 	if (!ret && !size)
 | |
| 		ret = malloc(1);
 | |
| 	if (!ret) {
 | |
| 		if (!gentle)
 | |
| 			die("Out of memory, malloc failed (tried to allocate %lu bytes)",
 | |
| 			    (unsigned long)size);
 | |
| 		else {
 | |
| 			error("Out of memory, malloc failed (tried to allocate %lu bytes)",
 | |
| 			      (unsigned long)size);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| #ifdef XMALLOC_POISON
 | |
| 	memset(ret, 0xA5, size);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *xmalloc(size_t size)
 | |
| {
 | |
| 	return do_xmalloc(size, 0);
 | |
| }
 | |
| 
 | |
| static void *do_xmallocz(size_t size, int gentle)
 | |
| {
 | |
| 	void *ret;
 | |
| 	if (unsigned_add_overflows(size, 1)) {
 | |
| 		if (gentle) {
 | |
| 			error("Data too large to fit into virtual memory space.");
 | |
| 			return NULL;
 | |
| 		} else
 | |
| 			die("Data too large to fit into virtual memory space.");
 | |
| 	}
 | |
| 	ret = do_xmalloc(size + 1, gentle);
 | |
| 	if (ret)
 | |
| 		((char*)ret)[size] = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *xmallocz(size_t size)
 | |
| {
 | |
| 	return do_xmallocz(size, 0);
 | |
| }
 | |
| 
 | |
| void *xmallocz_gently(size_t size)
 | |
| {
 | |
| 	return do_xmallocz(size, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xmemdupz() allocates (len + 1) bytes of memory, duplicates "len" bytes of
 | |
|  * "data" to the allocated memory, zero terminates the allocated memory,
 | |
|  * and returns a pointer to the allocated memory. If the allocation fails,
 | |
|  * the program dies.
 | |
|  */
 | |
| void *xmemdupz(const void *data, size_t len)
 | |
| {
 | |
| 	return memcpy(xmallocz(len), data, len);
 | |
| }
 | |
| 
 | |
| char *xstrndup(const char *str, size_t len)
 | |
| {
 | |
| 	char *p = memchr(str, '\0', len);
 | |
| 	return xmemdupz(str, p ? p - str : len);
 | |
| }
 | |
| 
 | |
| int xstrncmpz(const char *s, const char *t, size_t len)
 | |
| {
 | |
| 	int res = strncmp(s, t, len);
 | |
| 	if (res)
 | |
| 		return res;
 | |
| 	return s[len] == '\0' ? 0 : 1;
 | |
| }
 | |
| 
 | |
| void *xrealloc(void *ptr, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (!size) {
 | |
| 		free(ptr);
 | |
| 		return xmalloc(0);
 | |
| 	}
 | |
| 
 | |
| 	memory_limit_check(size, 0);
 | |
| 	ret = realloc(ptr, size);
 | |
| 	if (!ret)
 | |
| 		die("Out of memory, realloc failed");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *xcalloc(size_t nmemb, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unsigned_mult_overflows(nmemb, size))
 | |
| 		die("data too large to fit into virtual memory space");
 | |
| 
 | |
| 	memory_limit_check(size * nmemb, 0);
 | |
| 	ret = calloc(nmemb, size);
 | |
| 	if (!ret && (!nmemb || !size))
 | |
| 		ret = calloc(1, 1);
 | |
| 	if (!ret)
 | |
| 		die("Out of memory, calloc failed");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void xsetenv(const char *name, const char *value, int overwrite)
 | |
| {
 | |
| 	if (setenv(name, value, overwrite))
 | |
| 		die_errno(_("could not setenv '%s'"), name ? name : "(null)");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xopen() is the same as open(), but it die()s if the open() fails.
 | |
|  */
 | |
| int xopen(const char *path, int oflag, ...)
 | |
| {
 | |
| 	mode_t mode = 0;
 | |
| 	va_list ap;
 | |
| 
 | |
| 	/*
 | |
| 	 * va_arg() will have undefined behavior if the specified type is not
 | |
| 	 * compatible with the argument type. Since integers are promoted to
 | |
| 	 * ints, we fetch the next argument as an int, and then cast it to a
 | |
| 	 * mode_t to avoid undefined behavior.
 | |
| 	 */
 | |
| 	va_start(ap, oflag);
 | |
| 	if (oflag & O_CREAT)
 | |
| 		mode = va_arg(ap, int);
 | |
| 	va_end(ap);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		int fd = open(path, oflag, mode);
 | |
| 		if (fd >= 0)
 | |
| 			return fd;
 | |
| 		if (errno == EINTR)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((oflag & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
 | |
| 			die_errno(_("unable to create '%s'"), path);
 | |
| 		else if ((oflag & O_RDWR) == O_RDWR)
 | |
| 			die_errno(_("could not open '%s' for reading and writing"), path);
 | |
| 		else if ((oflag & O_WRONLY) == O_WRONLY)
 | |
| 			die_errno(_("could not open '%s' for writing"), path);
 | |
| 		else
 | |
| 			die_errno(_("could not open '%s' for reading"), path);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int handle_nonblock(int fd, short poll_events, int err)
 | |
| {
 | |
| 	struct pollfd pfd;
 | |
| 
 | |
| 	if (err != EAGAIN && err != EWOULDBLOCK)
 | |
| 		return 0;
 | |
| 
 | |
| 	pfd.fd = fd;
 | |
| 	pfd.events = poll_events;
 | |
| 
 | |
| 	/*
 | |
| 	 * no need to check for errors, here;
 | |
| 	 * a subsequent read/write will detect unrecoverable errors
 | |
| 	 */
 | |
| 	poll(&pfd, 1, -1);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xread() is the same a read(), but it automatically restarts read()
 | |
|  * operations with a recoverable error (EAGAIN and EINTR). xread()
 | |
|  * DOES NOT GUARANTEE that "len" bytes is read even if the data is available.
 | |
|  */
 | |
| ssize_t xread(int fd, void *buf, size_t len)
 | |
| {
 | |
| 	ssize_t nr;
 | |
| 	if (len > MAX_IO_SIZE)
 | |
| 		len = MAX_IO_SIZE;
 | |
| 	while (1) {
 | |
| 		nr = read(fd, buf, len);
 | |
| 		if (nr < 0) {
 | |
| 			if (errno == EINTR)
 | |
| 				continue;
 | |
| 			if (handle_nonblock(fd, POLLIN, errno))
 | |
| 				continue;
 | |
| 		}
 | |
| 		return nr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xwrite() is the same a write(), but it automatically restarts write()
 | |
|  * operations with a recoverable error (EAGAIN and EINTR). xwrite() DOES NOT
 | |
|  * GUARANTEE that "len" bytes is written even if the operation is successful.
 | |
|  */
 | |
| ssize_t xwrite(int fd, const void *buf, size_t len)
 | |
| {
 | |
| 	ssize_t nr;
 | |
| 	if (len > MAX_IO_SIZE)
 | |
| 		len = MAX_IO_SIZE;
 | |
| 	while (1) {
 | |
| 		nr = write(fd, buf, len);
 | |
| 		if (nr < 0) {
 | |
| 			if (errno == EINTR)
 | |
| 				continue;
 | |
| 			if (handle_nonblock(fd, POLLOUT, errno))
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		return nr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xpread() is the same as pread(), but it automatically restarts pread()
 | |
|  * operations with a recoverable error (EAGAIN and EINTR). xpread() DOES
 | |
|  * NOT GUARANTEE that "len" bytes is read even if the data is available.
 | |
|  */
 | |
| ssize_t xpread(int fd, void *buf, size_t len, off_t offset)
 | |
| {
 | |
| 	ssize_t nr;
 | |
| 	if (len > MAX_IO_SIZE)
 | |
| 		len = MAX_IO_SIZE;
 | |
| 	while (1) {
 | |
| 		nr = pread(fd, buf, len, offset);
 | |
| 		if ((nr < 0) && (errno == EAGAIN || errno == EINTR))
 | |
| 			continue;
 | |
| 		return nr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| ssize_t read_in_full(int fd, void *buf, size_t count)
 | |
| {
 | |
| 	char *p = buf;
 | |
| 	ssize_t total = 0;
 | |
| 
 | |
| 	while (count > 0) {
 | |
| 		ssize_t loaded = xread(fd, p, count);
 | |
| 		if (loaded < 0)
 | |
| 			return -1;
 | |
| 		if (loaded == 0)
 | |
| 			return total;
 | |
| 		count -= loaded;
 | |
| 		p += loaded;
 | |
| 		total += loaded;
 | |
| 	}
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| ssize_t write_in_full(int fd, const void *buf, size_t count)
 | |
| {
 | |
| 	const char *p = buf;
 | |
| 	ssize_t total = 0;
 | |
| 
 | |
| 	while (count > 0) {
 | |
| 		ssize_t written = xwrite(fd, p, count);
 | |
| 		if (written < 0)
 | |
| 			return -1;
 | |
| 		if (!written) {
 | |
| 			errno = ENOSPC;
 | |
| 			return -1;
 | |
| 		}
 | |
| 		count -= written;
 | |
| 		p += written;
 | |
| 		total += written;
 | |
| 	}
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| ssize_t pread_in_full(int fd, void *buf, size_t count, off_t offset)
 | |
| {
 | |
| 	char *p = buf;
 | |
| 	ssize_t total = 0;
 | |
| 
 | |
| 	while (count > 0) {
 | |
| 		ssize_t loaded = xpread(fd, p, count, offset);
 | |
| 		if (loaded < 0)
 | |
| 			return -1;
 | |
| 		if (loaded == 0)
 | |
| 			return total;
 | |
| 		count -= loaded;
 | |
| 		p += loaded;
 | |
| 		total += loaded;
 | |
| 		offset += loaded;
 | |
| 	}
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| int xdup(int fd)
 | |
| {
 | |
| 	int ret = dup(fd);
 | |
| 	if (ret < 0)
 | |
| 		die_errno("dup failed");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xfopen() is the same as fopen(), but it die()s if the fopen() fails.
 | |
|  */
 | |
| FILE *xfopen(const char *path, const char *mode)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		FILE *fp = fopen(path, mode);
 | |
| 		if (fp)
 | |
| 			return fp;
 | |
| 		if (errno == EINTR)
 | |
| 			continue;
 | |
| 
 | |
| 		if (*mode && mode[1] == '+')
 | |
| 			die_errno(_("could not open '%s' for reading and writing"), path);
 | |
| 		else if (*mode == 'w' || *mode == 'a')
 | |
| 			die_errno(_("could not open '%s' for writing"), path);
 | |
| 		else
 | |
| 			die_errno(_("could not open '%s' for reading"), path);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| FILE *xfdopen(int fd, const char *mode)
 | |
| {
 | |
| 	FILE *stream = fdopen(fd, mode);
 | |
| 	if (!stream)
 | |
| 		die_errno("Out of memory? fdopen failed");
 | |
| 	return stream;
 | |
| }
 | |
| 
 | |
| FILE *fopen_for_writing(const char *path)
 | |
| {
 | |
| 	FILE *ret = fopen(path, "w");
 | |
| 
 | |
| 	if (!ret && errno == EPERM) {
 | |
| 		if (!unlink(path))
 | |
| 			ret = fopen(path, "w");
 | |
| 		else
 | |
| 			errno = EPERM;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void warn_on_inaccessible(const char *path)
 | |
| {
 | |
| 	warning_errno(_("unable to access '%s'"), path);
 | |
| }
 | |
| 
 | |
| int warn_on_fopen_errors(const char *path)
 | |
| {
 | |
| 	if (errno != ENOENT && errno != ENOTDIR) {
 | |
| 		warn_on_inaccessible(path);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| FILE *fopen_or_warn(const char *path, const char *mode)
 | |
| {
 | |
| 	FILE *fp = fopen(path, mode);
 | |
| 
 | |
| 	if (fp)
 | |
| 		return fp;
 | |
| 
 | |
| 	warn_on_fopen_errors(path);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int xmkstemp(char *filename_template)
 | |
| {
 | |
| 	int fd;
 | |
| 	char origtemplate[PATH_MAX];
 | |
| 	strlcpy(origtemplate, filename_template, sizeof(origtemplate));
 | |
| 
 | |
| 	fd = mkstemp(filename_template);
 | |
| 	if (fd < 0) {
 | |
| 		int saved_errno = errno;
 | |
| 		const char *nonrelative_template;
 | |
| 
 | |
| 		if (strlen(filename_template) != strlen(origtemplate))
 | |
| 			filename_template = origtemplate;
 | |
| 
 | |
| 		nonrelative_template = absolute_path(filename_template);
 | |
| 		errno = saved_errno;
 | |
| 		die_errno("Unable to create temporary file '%s'",
 | |
| 			nonrelative_template);
 | |
| 	}
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| /* Adapted from libiberty's mkstemp.c. */
 | |
| 
 | |
| #undef TMP_MAX
 | |
| #define TMP_MAX 16384
 | |
| 
 | |
| int git_mkstemps_mode(char *pattern, int suffix_len, int mode)
 | |
| {
 | |
| 	static const char letters[] =
 | |
| 		"abcdefghijklmnopqrstuvwxyz"
 | |
| 		"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
| 		"0123456789";
 | |
| 	static const int num_letters = ARRAY_SIZE(letters) - 1;
 | |
| 	static const char x_pattern[] = "XXXXXX";
 | |
| 	static const int num_x = ARRAY_SIZE(x_pattern) - 1;
 | |
| 	char *filename_template;
 | |
| 	size_t len;
 | |
| 	int fd, count;
 | |
| 
 | |
| 	len = strlen(pattern);
 | |
| 
 | |
| 	if (len < num_x + suffix_len) {
 | |
| 		errno = EINVAL;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (strncmp(&pattern[len - num_x - suffix_len], x_pattern, num_x)) {
 | |
| 		errno = EINVAL;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Replace pattern's XXXXXX characters with randomness.
 | |
| 	 * Try TMP_MAX different filenames.
 | |
| 	 */
 | |
| 	filename_template = &pattern[len - num_x - suffix_len];
 | |
| 	for (count = 0; count < TMP_MAX; ++count) {
 | |
| 		int i;
 | |
| 		uint64_t v;
 | |
| 		if (csprng_bytes(&v, sizeof(v)) < 0)
 | |
| 			return error_errno("unable to get random bytes for temporary file");
 | |
| 
 | |
| 		/* Fill in the random bits. */
 | |
| 		for (i = 0; i < num_x; i++) {
 | |
| 			filename_template[i] = letters[v % num_letters];
 | |
| 			v /= num_letters;
 | |
| 		}
 | |
| 
 | |
| 		fd = open(pattern, O_CREAT | O_EXCL | O_RDWR, mode);
 | |
| 		if (fd >= 0)
 | |
| 			return fd;
 | |
| 		/*
 | |
| 		 * Fatal error (EPERM, ENOSPC etc).
 | |
| 		 * It doesn't make sense to loop.
 | |
| 		 */
 | |
| 		if (errno != EEXIST)
 | |
| 			break;
 | |
| 	}
 | |
| 	/* We return the null string if we can't find a unique file name.  */
 | |
| 	pattern[0] = '\0';
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int git_mkstemp_mode(char *pattern, int mode)
 | |
| {
 | |
| 	/* mkstemp is just mkstemps with no suffix */
 | |
| 	return git_mkstemps_mode(pattern, 0, mode);
 | |
| }
 | |
| 
 | |
| int xmkstemp_mode(char *filename_template, int mode)
 | |
| {
 | |
| 	int fd;
 | |
| 	char origtemplate[PATH_MAX];
 | |
| 	strlcpy(origtemplate, filename_template, sizeof(origtemplate));
 | |
| 
 | |
| 	fd = git_mkstemp_mode(filename_template, mode);
 | |
| 	if (fd < 0) {
 | |
| 		int saved_errno = errno;
 | |
| 		const char *nonrelative_template;
 | |
| 
 | |
| 		if (!filename_template[0])
 | |
| 			filename_template = origtemplate;
 | |
| 
 | |
| 		nonrelative_template = absolute_path(filename_template);
 | |
| 		errno = saved_errno;
 | |
| 		die_errno("Unable to create temporary file '%s'",
 | |
| 			nonrelative_template);
 | |
| 	}
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some platforms return EINTR from fsync. Since fsync is invoked in some
 | |
|  * cases by a wrapper that dies on failure, do not expose EINTR to callers.
 | |
|  */
 | |
| static int fsync_loop(int fd)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	do {
 | |
| 		err = fsync(fd);
 | |
| 	} while (err < 0 && errno == EINTR);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int git_fsync(int fd, enum fsync_action action)
 | |
| {
 | |
| 	switch (action) {
 | |
| 	case FSYNC_WRITEOUT_ONLY:
 | |
| 		trace2_counter_add(TRACE2_COUNTER_ID_FSYNC_WRITEOUT_ONLY, 1);
 | |
| 
 | |
| #ifdef __APPLE__
 | |
| 		/*
 | |
| 		 * On macOS, fsync just causes filesystem cache writeback but
 | |
| 		 * does not flush hardware caches.
 | |
| 		 */
 | |
| 		return fsync_loop(fd);
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_SYNC_FILE_RANGE
 | |
| 		/*
 | |
| 		 * On linux 2.6.17 and above, sync_file_range is the way to
 | |
| 		 * issue a writeback without a hardware flush. An offset of
 | |
| 		 * 0 and size of 0 indicates writeout of the entire file and the
 | |
| 		 * wait flags ensure that all dirty data is written to the disk
 | |
| 		 * (potentially in a disk-side cache) before we continue.
 | |
| 		 */
 | |
| 
 | |
| 		return sync_file_range(fd, 0, 0, SYNC_FILE_RANGE_WAIT_BEFORE |
 | |
| 						 SYNC_FILE_RANGE_WRITE |
 | |
| 						 SYNC_FILE_RANGE_WAIT_AFTER);
 | |
| #endif
 | |
| 
 | |
| #ifdef fsync_no_flush
 | |
| 		return fsync_no_flush(fd);
 | |
| #endif
 | |
| 
 | |
| 		errno = ENOSYS;
 | |
| 		return -1;
 | |
| 
 | |
| 	case FSYNC_HARDWARE_FLUSH:
 | |
| 		trace2_counter_add(TRACE2_COUNTER_ID_FSYNC_HARDWARE_FLUSH, 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * On macOS, a special fcntl is required to really flush the
 | |
| 		 * caches within the storage controller. As of this writing,
 | |
| 		 * this is a very expensive operation on Apple SSDs.
 | |
| 		 */
 | |
| #ifdef __APPLE__
 | |
| 		return fcntl(fd, F_FULLFSYNC);
 | |
| #else
 | |
| 		return fsync_loop(fd);
 | |
| #endif
 | |
| 	default:
 | |
| 		BUG("unexpected git_fsync(%d) call", action);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int warn_if_unremovable(const char *op, const char *file, int rc)
 | |
| {
 | |
| 	int err;
 | |
| 	if (!rc || errno == ENOENT)
 | |
| 		return 0;
 | |
| 	err = errno;
 | |
| 	warning_errno("unable to %s '%s'", op, file);
 | |
| 	errno = err;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int unlink_or_msg(const char *file, struct strbuf *err)
 | |
| {
 | |
| 	int rc = unlink(file);
 | |
| 
 | |
| 	assert(err);
 | |
| 
 | |
| 	if (!rc || errno == ENOENT)
 | |
| 		return 0;
 | |
| 
 | |
| 	strbuf_addf(err, "unable to unlink '%s': %s",
 | |
| 		    file, strerror(errno));
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int unlink_or_warn(const char *file)
 | |
| {
 | |
| 	return warn_if_unremovable("unlink", file, unlink(file));
 | |
| }
 | |
| 
 | |
| int rmdir_or_warn(const char *file)
 | |
| {
 | |
| 	return warn_if_unremovable("rmdir", file, rmdir(file));
 | |
| }
 | |
| 
 | |
| static int access_error_is_ok(int err, unsigned flag)
 | |
| {
 | |
| 	return (is_missing_file_error(err) ||
 | |
| 		((flag & ACCESS_EACCES_OK) && err == EACCES));
 | |
| }
 | |
| 
 | |
| int access_or_warn(const char *path, int mode, unsigned flag)
 | |
| {
 | |
| 	int ret = access(path, mode);
 | |
| 	if (ret && !access_error_is_ok(errno, flag))
 | |
| 		warn_on_inaccessible(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int access_or_die(const char *path, int mode, unsigned flag)
 | |
| {
 | |
| 	int ret = access(path, mode);
 | |
| 	if (ret && !access_error_is_ok(errno, flag))
 | |
| 		die_errno(_("unable to access '%s'"), path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| char *xgetcwd(void)
 | |
| {
 | |
| 	struct strbuf sb = STRBUF_INIT;
 | |
| 	if (strbuf_getcwd(&sb))
 | |
| 		die_errno(_("unable to get current working directory"));
 | |
| 	return strbuf_detach(&sb, NULL);
 | |
| }
 | |
| 
 | |
| int xsnprintf(char *dst, size_t max, const char *fmt, ...)
 | |
| {
 | |
| 	va_list ap;
 | |
| 	int len;
 | |
| 
 | |
| 	va_start(ap, fmt);
 | |
| 	len = vsnprintf(dst, max, fmt, ap);
 | |
| 	va_end(ap);
 | |
| 
 | |
| 	if (len < 0)
 | |
| 		BUG("your snprintf is broken");
 | |
| 	if (len >= max)
 | |
| 		BUG("attempt to snprintf into too-small buffer");
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| void write_file_buf(const char *path, const char *buf, size_t len)
 | |
| {
 | |
| 	int fd = xopen(path, O_WRONLY | O_CREAT | O_TRUNC, 0666);
 | |
| 	if (write_in_full(fd, buf, len) < 0)
 | |
| 		die_errno(_("could not write to '%s'"), path);
 | |
| 	if (close(fd))
 | |
| 		die_errno(_("could not close '%s'"), path);
 | |
| }
 | |
| 
 | |
| void write_file(const char *path, const char *fmt, ...)
 | |
| {
 | |
| 	va_list params;
 | |
| 	struct strbuf sb = STRBUF_INIT;
 | |
| 
 | |
| 	va_start(params, fmt);
 | |
| 	strbuf_vaddf(&sb, fmt, params);
 | |
| 	va_end(params);
 | |
| 
 | |
| 	strbuf_complete_line(&sb);
 | |
| 
 | |
| 	write_file_buf(path, sb.buf, sb.len);
 | |
| 	strbuf_release(&sb);
 | |
| }
 | |
| 
 | |
| void sleep_millisec(int millisec)
 | |
| {
 | |
| 	poll(NULL, 0, millisec);
 | |
| }
 | |
| 
 | |
| int xgethostname(char *buf, size_t len)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the full hostname doesn't fit in buf, POSIX does not
 | |
| 	 * specify whether the buffer will be null-terminated, so to
 | |
| 	 * be safe, do it ourselves.
 | |
| 	 */
 | |
| 	int ret = gethostname(buf, len);
 | |
| 	if (!ret)
 | |
| 		buf[len - 1] = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int is_empty_or_missing_file(const char *filename)
 | |
| {
 | |
| 	struct stat st;
 | |
| 
 | |
| 	if (stat(filename, &st) < 0) {
 | |
| 		if (errno == ENOENT)
 | |
| 			return 1;
 | |
| 		die_errno(_("could not stat %s"), filename);
 | |
| 	}
 | |
| 
 | |
| 	return !st.st_size;
 | |
| }
 | |
| 
 | |
| int open_nofollow(const char *path, int flags)
 | |
| {
 | |
| #ifdef O_NOFOLLOW
 | |
| 	return open(path, flags | O_NOFOLLOW);
 | |
| #else
 | |
| 	struct stat st;
 | |
| 	if (lstat(path, &st) < 0)
 | |
| 		return -1;
 | |
| 	if (S_ISLNK(st.st_mode)) {
 | |
| 		errno = ELOOP;
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return open(path, flags);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int csprng_bytes(void *buf, size_t len)
 | |
| {
 | |
| #if defined(HAVE_ARC4RANDOM) || defined(HAVE_ARC4RANDOM_LIBBSD)
 | |
| 	/* This function never returns an error. */
 | |
| 	arc4random_buf(buf, len);
 | |
| 	return 0;
 | |
| #elif defined(HAVE_GETRANDOM)
 | |
| 	ssize_t res;
 | |
| 	char *p = buf;
 | |
| 	while (len) {
 | |
| 		res = getrandom(p, len, 0);
 | |
| 		if (res < 0)
 | |
| 			return -1;
 | |
| 		len -= res;
 | |
| 		p += res;
 | |
| 	}
 | |
| 	return 0;
 | |
| #elif defined(HAVE_GETENTROPY)
 | |
| 	int res;
 | |
| 	char *p = buf;
 | |
| 	while (len) {
 | |
| 		/* getentropy has a maximum size of 256 bytes. */
 | |
| 		size_t chunk = len < 256 ? len : 256;
 | |
| 		res = getentropy(p, chunk);
 | |
| 		if (res < 0)
 | |
| 			return -1;
 | |
| 		len -= chunk;
 | |
| 		p += chunk;
 | |
| 	}
 | |
| 	return 0;
 | |
| #elif defined(HAVE_RTLGENRANDOM)
 | |
| 	if (!RtlGenRandom(buf, len))
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| #elif defined(HAVE_OPENSSL_CSPRNG)
 | |
| 	int res = RAND_bytes(buf, len);
 | |
| 	if (res == 1)
 | |
| 		return 0;
 | |
| 	if (res == -1)
 | |
| 		errno = ENOTSUP;
 | |
| 	else
 | |
| 		errno = EIO;
 | |
| 	return -1;
 | |
| #else
 | |
| 	ssize_t res;
 | |
| 	char *p = buf;
 | |
| 	int fd, err;
 | |
| 	fd = open("/dev/urandom", O_RDONLY);
 | |
| 	if (fd < 0)
 | |
| 		return -1;
 | |
| 	while (len) {
 | |
| 		res = xread(fd, p, len);
 | |
| 		if (res < 0) {
 | |
| 			err = errno;
 | |
| 			close(fd);
 | |
| 			errno = err;
 | |
| 			return -1;
 | |
| 		}
 | |
| 		len -= res;
 | |
| 		p += res;
 | |
| 	}
 | |
| 	close(fd);
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| uint32_t git_rand(void)
 | |
| {
 | |
| 	uint32_t result;
 | |
| 
 | |
| 	if (csprng_bytes(&result, sizeof(result)) < 0)
 | |
| 		die(_("unable to get random bytes"));
 | |
| 
 | |
| 	return result;
 | |
| }
 |