git/t/unit-tests/u-reftable-stack.c

1332 lines
38 KiB
C

/*
Copyright 2020 Google LLC
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file or at
https://developers.google.com/open-source/licenses/bsd
*/
#define DISABLE_SIGN_COMPARE_WARNINGS
#include "unit-test.h"
#include "dir.h"
#include "lib-reftable.h"
#include "reftable/merged.h"
#include "reftable/reftable-error.h"
#include "reftable/stack.h"
#include "reftable/table.h"
#include "strbuf.h"
#include "tempfile.h"
#include <dirent.h>
static void clear_dir(const char *dirname)
{
struct strbuf path = REFTABLE_BUF_INIT;
strbuf_addstr(&path, dirname);
remove_dir_recursively(&path, 0);
strbuf_release(&path);
}
static int count_dir_entries(const char *dirname)
{
DIR *dir = opendir(dirname);
int len = 0;
struct dirent *d;
if (!dir)
return 0;
while ((d = readdir(dir))) {
/*
* Besides skipping over "." and "..", we also need to
* skip over other files that have a leading ".". This
* is due to behaviour of NFS, which will rename files
* to ".nfs*" to emulate delete-on-last-close.
*
* In any case this should be fine as the reftable
* library will never write files with leading dots
* anyway.
*/
if (starts_with(d->d_name, "."))
continue;
len++;
}
closedir(dir);
return len;
}
/*
* Work linenumber into the tempdir, so we can see which tests forget to
* cleanup.
*/
static char *get_tmp_template(int linenumber)
{
const char *tmp = getenv("TMPDIR");
static char template[1024];
snprintf(template, sizeof(template) - 1, "%s/stack_test-%d.XXXXXX",
tmp ? tmp : "/tmp", linenumber);
return template;
}
static char *get_tmp_dir(int linenumber)
{
char *dir = get_tmp_template(linenumber);
cl_assert(mkdtemp(dir) != NULL);
return dir;
}
void test_reftable_stack__read_file(void)
{
char *fn = get_tmp_template(__LINE__);
struct tempfile *tmp = mks_tempfile(fn);
int fd = get_tempfile_fd(tmp);
char out[1024] = "line1\n\nline2\nline3";
int n, err;
char **names = NULL;
const char *want[] = { "line1", "line2", "line3" };
cl_assert(fd > 0);
n = write_in_full(fd, out, strlen(out));
cl_assert_equal_i(n, strlen(out));
err = close(fd);
cl_assert(err >= 0);
err = read_lines(fn, &names);
cl_assert(!err);
for (size_t i = 0; names[i]; i++)
cl_assert_equal_s(want[i], names[i]);
free_names(names);
(void) remove(fn);
delete_tempfile(&tmp);
}
static int write_test_ref(struct reftable_writer *wr, void *arg)
{
struct reftable_ref_record *ref = arg;
cl_assert_equal_i(reftable_writer_set_limits(wr,
ref->update_index, ref->update_index), 0);
return reftable_writer_add_ref(wr, ref);
}
static void write_n_ref_tables(struct reftable_stack *st,
size_t n)
{
int disable_auto_compact;
disable_auto_compact = st->opts.disable_auto_compact;
st->opts.disable_auto_compact = 1;
for (size_t i = 0; i < n; i++) {
struct reftable_ref_record ref = {
.update_index = reftable_stack_next_update_index(st),
.value_type = REFTABLE_REF_VAL1,
};
char buf[128];
snprintf(buf, sizeof(buf), "refs/heads/branch-%04"PRIuMAX, (uintmax_t)i);
ref.refname = buf;
cl_reftable_set_hash(ref.value.val1, i, REFTABLE_HASH_SHA1);
cl_assert_equal_i(reftable_stack_add(st,
&write_test_ref, &ref), 0);
}
st->opts.disable_auto_compact = disable_auto_compact;
}
struct write_log_arg {
struct reftable_log_record *log;
uint64_t update_index;
};
static int write_test_log(struct reftable_writer *wr, void *arg)
{
struct write_log_arg *wla = arg;
cl_assert_equal_i(reftable_writer_set_limits(wr,
wla->update_index,
wla->update_index), 0);
return reftable_writer_add_log(wr, wla->log);
}
void test_reftable_stack__add_one(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_buf scratch = REFTABLE_BUF_INIT;
int mask = umask(002);
struct reftable_write_options opts = {
.default_permissions = 0660,
};
struct reftable_stack *st = NULL;
struct reftable_ref_record ref = {
.refname = (char *) "HEAD",
.update_index = 1,
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
struct reftable_ref_record dest = { 0 };
struct stat stat_result = { 0 };
int err;
err = reftable_new_stack(&st, dir, &opts);
cl_assert(!err);
err = reftable_stack_add(st, write_test_ref, &ref);
cl_assert(!err);
err = reftable_stack_read_ref(st, ref.refname, &dest);
cl_assert(!err);
cl_assert(reftable_ref_record_equal(&ref, &dest,
REFTABLE_HASH_SIZE_SHA1));
cl_assert(st->tables_len > 0);
#ifndef GIT_WINDOWS_NATIVE
cl_assert_equal_i(reftable_buf_addstr(&scratch, dir), 0);
cl_assert_equal_i(reftable_buf_addstr(&scratch,
"/tables.list"), 0);
cl_assert_equal_i(stat(scratch.buf, &stat_result), 0);
cl_assert_equal_i((stat_result.st_mode & 0777),
opts.default_permissions);
reftable_buf_reset(&scratch);
cl_assert_equal_i(reftable_buf_addstr(&scratch, dir), 0);
cl_assert_equal_i(reftable_buf_addstr(&scratch, "/"), 0);
/* do not try at home; not an external API for reftable. */
cl_assert(!reftable_buf_addstr(&scratch, st->tables[0]->name));
err = stat(scratch.buf, &stat_result);
cl_assert(!err);
cl_assert_equal_i((stat_result.st_mode & 0777),
opts.default_permissions);
#else
(void) stat_result;
#endif
reftable_ref_record_release(&dest);
reftable_stack_destroy(st);
reftable_buf_release(&scratch);
clear_dir(dir);
umask(mask);
}
void test_reftable_stack__uptodate(void)
{
struct reftable_write_options opts = { 0 };
struct reftable_stack *st1 = NULL;
struct reftable_stack *st2 = NULL;
char *dir = get_tmp_dir(__LINE__);
struct reftable_ref_record ref1 = {
.refname = (char *) "HEAD",
.update_index = 1,
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
struct reftable_ref_record ref2 = {
.refname = (char *) "branch2",
.update_index = 2,
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
/* simulate multi-process access to the same stack
by creating two stacks for the same directory.
*/
cl_assert_equal_i(reftable_new_stack(&st1, dir, &opts), 0);
cl_assert_equal_i(reftable_new_stack(&st2, dir, &opts), 0);
cl_assert_equal_i(reftable_stack_add(st1, write_test_ref,
&ref1), 0);
cl_assert_equal_i(reftable_stack_add(st2, write_test_ref,
&ref2), REFTABLE_OUTDATED_ERROR);
cl_assert_equal_i(reftable_stack_reload(st2), 0);
cl_assert_equal_i(reftable_stack_add(st2, write_test_ref,
&ref2), 0);
reftable_stack_destroy(st1);
reftable_stack_destroy(st2);
clear_dir(dir);
}
void test_reftable_stack__transaction_api(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
struct reftable_addition *add = NULL;
struct reftable_ref_record ref = {
.refname = (char *) "HEAD",
.update_index = 1,
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
struct reftable_ref_record dest = { 0 };
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
reftable_addition_destroy(add);
cl_assert_equal_i(reftable_stack_new_addition(&add, st, 0), 0);
cl_assert_equal_i(reftable_addition_add(add, write_test_ref,
&ref), 0);
cl_assert_equal_i(reftable_addition_commit(add), 0);
reftable_addition_destroy(add);
cl_assert_equal_i(reftable_stack_read_ref(st, ref.refname,
&dest), 0);
cl_assert_equal_i(REFTABLE_REF_SYMREF, dest.value_type);
cl_assert(reftable_ref_record_equal(&ref, &dest,
REFTABLE_HASH_SIZE_SHA1) != 0);
reftable_ref_record_release(&dest);
reftable_stack_destroy(st);
clear_dir(dir);
}
void test_reftable_stack__transaction_with_reload(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_stack *st1 = NULL, *st2 = NULL;
struct reftable_addition *add = NULL;
struct reftable_ref_record refs[2] = {
{
.refname = (char *) "refs/heads/a",
.update_index = 1,
.value_type = REFTABLE_REF_VAL1,
.value.val1 = { '1' },
},
{
.refname = (char *) "refs/heads/b",
.update_index = 2,
.value_type = REFTABLE_REF_VAL1,
.value.val1 = { '1' },
},
};
struct reftable_ref_record ref = { 0 };
cl_assert_equal_i(reftable_new_stack(&st1, dir, NULL), 0);
cl_assert_equal_i(reftable_new_stack(&st2, dir, NULL), 0);
cl_assert_equal_i(reftable_stack_new_addition(&add, st1, 0), 0);
cl_assert_equal_i(reftable_addition_add(add, write_test_ref,
&refs[0]), 0);
cl_assert_equal_i(reftable_addition_commit(add), 0);
reftable_addition_destroy(add);
/*
* The second stack is now outdated, which we should notice. We do not
* create the addition and lock the stack by default, but allow the
* reload to happen when REFTABLE_STACK_NEW_ADDITION_RELOAD is set.
*/
cl_assert_equal_i(reftable_stack_new_addition(&add, st2, 0),
REFTABLE_OUTDATED_ERROR);
cl_assert_equal_i(reftable_stack_new_addition(&add, st2,
REFTABLE_STACK_NEW_ADDITION_RELOAD), 0);
cl_assert_equal_i(reftable_addition_add(add, write_test_ref,
&refs[1]), 0);
cl_assert_equal_i(reftable_addition_commit(add), 0);
reftable_addition_destroy(add);
for (size_t i = 0; i < ARRAY_SIZE(refs); i++) {
cl_assert_equal_i(reftable_stack_read_ref(st2,
refs[i].refname, &ref) , 0);
cl_assert(reftable_ref_record_equal(&refs[i], &ref,
REFTABLE_HASH_SIZE_SHA1) != 0);
}
reftable_ref_record_release(&ref);
reftable_stack_destroy(st1);
reftable_stack_destroy(st2);
clear_dir(dir);
}
void test_reftable_stack__transaction_api_performs_auto_compaction(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_write_options opts = {0};
struct reftable_addition *add = NULL;
struct reftable_stack *st = NULL;
size_t n = 20;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
for (size_t i = 0; i <= n; i++) {
struct reftable_ref_record ref = {
.update_index = reftable_stack_next_update_index(st),
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
char name[100];
snprintf(name, sizeof(name), "branch%04"PRIuMAX, (uintmax_t)i);
ref.refname = name;
/*
* Disable auto-compaction for all but the last runs. Like this
* we can ensure that we indeed honor this setting and have
* better control over when exactly auto compaction runs.
*/
st->opts.disable_auto_compact = i != n;
cl_assert_equal_i(reftable_stack_new_addition(&add,
st, 0), 0);
cl_assert_equal_i(reftable_addition_add(add,
write_test_ref, &ref), 0);
cl_assert_equal_i(reftable_addition_commit(add), 0);
reftable_addition_destroy(add);
/*
* The stack length should grow continuously for all runs where
* auto compaction is disabled. When enabled, we should merge
* all tables in the stack.
*/
if (i != n)
cl_assert_equal_i(st->merged->tables_len, i + 1);
else
cl_assert_equal_i(st->merged->tables_len, 1);
}
reftable_stack_destroy(st);
clear_dir(dir);
}
void test_reftable_stack__auto_compaction_fails_gracefully(void)
{
struct reftable_ref_record ref = {
.refname = (char *) "refs/heads/master",
.update_index = 1,
.value_type = REFTABLE_REF_VAL1,
.value.val1 = {0x01},
};
struct reftable_write_options opts = { 0 };
struct reftable_stack *st;
struct reftable_buf table_path = REFTABLE_BUF_INIT;
char *dir = get_tmp_dir(__LINE__);
int err;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
cl_assert_equal_i(reftable_stack_add(st, write_test_ref,
&ref), 0);
cl_assert_equal_i(st->merged->tables_len, 1);
cl_assert_equal_i(st->stats.attempts, 0);
cl_assert_equal_i(st->stats.failures, 0);
/*
* Lock the newly written table such that it cannot be compacted.
* Adding a new table to the stack should not be impacted by this, even
* though auto-compaction will now fail.
*/
cl_assert(!reftable_buf_addstr(&table_path, dir));
cl_assert(!reftable_buf_addstr(&table_path, "/"));
cl_assert(!reftable_buf_addstr(&table_path,
st->tables[0]->name));
cl_assert(!reftable_buf_addstr(&table_path, ".lock"));
write_file_buf(table_path.buf, "", 0);
ref.update_index = 2;
err = reftable_stack_add(st, write_test_ref, &ref);
cl_assert(!err);
cl_assert_equal_i(st->merged->tables_len, 2);
cl_assert_equal_i(st->stats.attempts, 1);
cl_assert_equal_i(st->stats.failures, 1);
reftable_stack_destroy(st);
reftable_buf_release(&table_path);
clear_dir(dir);
}
static int write_error(struct reftable_writer *wr UNUSED, void *arg)
{
return *((int *)arg);
}
void test_reftable_stack__update_index_check(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
struct reftable_ref_record ref1 = {
.refname = (char *) "name1",
.update_index = 1,
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
struct reftable_ref_record ref2 = {
.refname = (char *) "name2",
.update_index = 1,
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
cl_assert_equal_i(reftable_stack_add(st, write_test_ref,
&ref1), 0);
cl_assert_equal_i(reftable_stack_add(st, write_test_ref,
&ref2), REFTABLE_API_ERROR);
reftable_stack_destroy(st);
clear_dir(dir);
}
void test_reftable_stack__lock_failure(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
int i;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
for (i = -1; i != REFTABLE_EMPTY_TABLE_ERROR; i--)
cl_assert_equal_i(reftable_stack_add(st, write_error,
&i), i);
reftable_stack_destroy(st);
clear_dir(dir);
}
void test_reftable_stack__add(void)
{
struct reftable_write_options opts = {
.exact_log_message = 1,
.default_permissions = 0660,
.disable_auto_compact = 1,
};
struct reftable_stack *st = NULL;
char *dir = get_tmp_dir(__LINE__);
struct reftable_ref_record refs[2] = { 0 };
struct reftable_log_record logs[2] = { 0 };
struct reftable_buf path = REFTABLE_BUF_INIT;
struct stat stat_result;
size_t i, N = ARRAY_SIZE(refs);
int err = 0;
err = reftable_new_stack(&st, dir, &opts);
cl_assert(!err);
for (i = 0; i < N; i++) {
char buf[256];
snprintf(buf, sizeof(buf), "branch%02"PRIuMAX, (uintmax_t)i);
refs[i].refname = xstrdup(buf);
refs[i].update_index = i + 1;
refs[i].value_type = REFTABLE_REF_VAL1;
cl_reftable_set_hash(refs[i].value.val1, i,
REFTABLE_HASH_SHA1);
logs[i].refname = xstrdup(buf);
logs[i].update_index = N + i + 1;
logs[i].value_type = REFTABLE_LOG_UPDATE;
logs[i].value.update.email = xstrdup("identity@invalid");
cl_reftable_set_hash(logs[i].value.update.new_hash, i,
REFTABLE_HASH_SHA1);
}
for (i = 0; i < N; i++)
cl_assert_equal_i(reftable_stack_add(st, write_test_ref,
&refs[i]), 0);
for (i = 0; i < N; i++) {
struct write_log_arg arg = {
.log = &logs[i],
.update_index = reftable_stack_next_update_index(st),
};
cl_assert_equal_i(reftable_stack_add(st, write_test_log,
&arg), 0);
}
cl_assert_equal_i(reftable_stack_compact_all(st, NULL), 0);
for (i = 0; i < N; i++) {
struct reftable_ref_record dest = { 0 };
cl_assert_equal_i(reftable_stack_read_ref(st,
refs[i].refname, &dest), 0);
cl_assert(reftable_ref_record_equal(&dest, refs + i,
REFTABLE_HASH_SIZE_SHA1) != 0);
reftable_ref_record_release(&dest);
}
for (i = 0; i < N; i++) {
struct reftable_log_record dest = { 0 };
cl_assert_equal_i(reftable_stack_read_log(st,
refs[i].refname, &dest), 0);
cl_assert(reftable_log_record_equal(&dest, logs + i,
REFTABLE_HASH_SIZE_SHA1) != 0);
reftable_log_record_release(&dest);
}
#ifndef GIT_WINDOWS_NATIVE
cl_assert_equal_i(reftable_buf_addstr(&path, dir), 0);
cl_assert_equal_i(reftable_buf_addstr(&path, "/tables.list"), 0);
cl_assert_equal_i(stat(path.buf, &stat_result), 0);
cl_assert_equal_i((stat_result.st_mode & 0777), opts.default_permissions);
reftable_buf_reset(&path);
cl_assert_equal_i(reftable_buf_addstr(&path, dir), 0);
cl_assert_equal_i(reftable_buf_addstr(&path, "/"), 0);
/* do not try at home; not an external API for reftable. */
cl_assert(!reftable_buf_addstr(&path, st->tables[0]->name));
err = stat(path.buf, &stat_result);
cl_assert(!err);
cl_assert_equal_i((stat_result.st_mode & 0777),
opts.default_permissions);
#else
(void) stat_result;
#endif
/* cleanup */
reftable_stack_destroy(st);
for (i = 0; i < N; i++) {
reftable_ref_record_release(&refs[i]);
reftable_log_record_release(&logs[i]);
}
reftable_buf_release(&path);
clear_dir(dir);
}
void test_reftable_stack__iterator(void)
{
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
char *dir = get_tmp_dir(__LINE__);
struct reftable_ref_record refs[10] = { 0 };
struct reftable_log_record logs[10] = { 0 };
struct reftable_iterator it = { 0 };
size_t N = ARRAY_SIZE(refs), i;
int err;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
for (i = 0; i < N; i++) {
refs[i].refname = xstrfmt("branch%02"PRIuMAX, (uintmax_t)i);
refs[i].update_index = i + 1;
refs[i].value_type = REFTABLE_REF_VAL1;
cl_reftable_set_hash(refs[i].value.val1, i,
REFTABLE_HASH_SHA1);
logs[i].refname = xstrfmt("branch%02"PRIuMAX, (uintmax_t)i);
logs[i].update_index = i + 1;
logs[i].value_type = REFTABLE_LOG_UPDATE;
logs[i].value.update.email = xstrdup("johndoe@invalid");
logs[i].value.update.message = xstrdup("commit\n");
cl_reftable_set_hash(logs[i].value.update.new_hash, i,
REFTABLE_HASH_SHA1);
}
for (i = 0; i < N; i++)
cl_assert_equal_i(reftable_stack_add(st,
write_test_ref, &refs[i]), 0);
for (i = 0; i < N; i++) {
struct write_log_arg arg = {
.log = &logs[i],
.update_index = reftable_stack_next_update_index(st),
};
cl_assert_equal_i(reftable_stack_add(st,
write_test_log, &arg), 0);
}
reftable_stack_init_ref_iterator(st, &it);
reftable_iterator_seek_ref(&it, refs[0].refname);
for (i = 0; ; i++) {
struct reftable_ref_record ref = { 0 };
err = reftable_iterator_next_ref(&it, &ref);
if (err > 0)
break;
cl_assert(!err);
cl_assert(reftable_ref_record_equal(&ref, &refs[i],
REFTABLE_HASH_SIZE_SHA1) != 0);
reftable_ref_record_release(&ref);
}
cl_assert_equal_i(i, N);
reftable_iterator_destroy(&it);
cl_assert_equal_i(reftable_stack_init_log_iterator(st, &it), 0);
reftable_iterator_seek_log(&it, logs[0].refname);
for (i = 0; ; i++) {
struct reftable_log_record log = { 0 };
err = reftable_iterator_next_log(&it, &log);
if (err > 0)
break;
cl_assert(!err);
cl_assert(reftable_log_record_equal(&log, &logs[i],
REFTABLE_HASH_SIZE_SHA1) != 0);
reftable_log_record_release(&log);
}
cl_assert_equal_i(i, N);
reftable_stack_destroy(st);
reftable_iterator_destroy(&it);
for (i = 0; i < N; i++) {
reftable_ref_record_release(&refs[i]);
reftable_log_record_release(&logs[i]);
}
clear_dir(dir);
}
void test_reftable_stack__log_normalize(void)
{
struct reftable_write_options opts = {
0,
};
struct reftable_stack *st = NULL;
char *dir = get_tmp_dir(__LINE__);
struct reftable_log_record input = {
.refname = (char *) "branch",
.update_index = 1,
.value_type = REFTABLE_LOG_UPDATE,
.value = {
.update = {
.new_hash = { 1 },
.old_hash = { 2 },
},
},
};
struct reftable_log_record dest = {
.update_index = 0,
};
struct write_log_arg arg = {
.log = &input,
.update_index = 1,
};
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
input.value.update.message = (char *) "one\ntwo";
cl_assert_equal_i(reftable_stack_add(st, write_test_log,
&arg), REFTABLE_API_ERROR);
input.value.update.message = (char *) "one";
cl_assert_equal_i(reftable_stack_add(st, write_test_log,
&arg), 0);
cl_assert_equal_i(reftable_stack_read_log(st, input.refname,
&dest), 0);
cl_assert_equal_s(dest.value.update.message, "one\n");
input.value.update.message = (char *) "two\n";
arg.update_index = 2;
cl_assert_equal_i(reftable_stack_add(st, write_test_log,
&arg), 0);
cl_assert_equal_i(reftable_stack_read_log(st, input.refname,
&dest), 0);
cl_assert_equal_s(dest.value.update.message, "two\n");
/* cleanup */
reftable_stack_destroy(st);
reftable_log_record_release(&dest);
clear_dir(dir);
}
void test_reftable_stack__tombstone(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
struct reftable_ref_record refs[2] = { 0 };
struct reftable_log_record logs[2] = { 0 };
size_t i, N = ARRAY_SIZE(refs);
struct reftable_ref_record dest = { 0 };
struct reftable_log_record log_dest = { 0 };
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
/* even entries add the refs, odd entries delete them. */
for (i = 0; i < N; i++) {
const char *buf = "branch";
refs[i].refname = xstrdup(buf);
refs[i].update_index = i + 1;
if (i % 2 == 0) {
refs[i].value_type = REFTABLE_REF_VAL1;
cl_reftable_set_hash(refs[i].value.val1, i,
REFTABLE_HASH_SHA1);
}
logs[i].refname = xstrdup(buf);
/*
* update_index is part of the key so should be constant.
* The value itself should be less than the writer's upper
* limit.
*/
logs[i].update_index = 1;
if (i % 2 == 0) {
logs[i].value_type = REFTABLE_LOG_UPDATE;
cl_reftable_set_hash(logs[i].value.update.new_hash, i, REFTABLE_HASH_SHA1);
logs[i].value.update.email =
xstrdup("identity@invalid");
}
}
for (i = 0; i < N; i++)
cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &refs[i]), 0);
for (i = 0; i < N; i++) {
struct write_log_arg arg = {
.log = &logs[i],
.update_index = reftable_stack_next_update_index(st),
};
cl_assert_equal_i(reftable_stack_add(st,
write_test_log, &arg), 0);
}
cl_assert_equal_i(reftable_stack_read_ref(st, "branch",
&dest), 1);
reftable_ref_record_release(&dest);
cl_assert_equal_i(reftable_stack_read_log(st, "branch",
&log_dest), 1);
reftable_log_record_release(&log_dest);
cl_assert_equal_i(reftable_stack_compact_all(st, NULL), 0);
cl_assert_equal_i(reftable_stack_read_ref(st, "branch",
&dest), 1);
cl_assert_equal_i(reftable_stack_read_log(st, "branch",
&log_dest), 1);
reftable_ref_record_release(&dest);
reftable_log_record_release(&log_dest);
/* cleanup */
reftable_stack_destroy(st);
for (i = 0; i < N; i++) {
reftable_ref_record_release(&refs[i]);
reftable_log_record_release(&logs[i]);
}
clear_dir(dir);
}
void test_reftable_stack__hash_id(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
struct reftable_ref_record ref = {
.refname = (char *) "master",
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "target",
.update_index = 1,
};
struct reftable_write_options opts32 = { .hash_id = REFTABLE_HASH_SHA256 };
struct reftable_stack *st32 = NULL;
struct reftable_write_options opts_default = { 0 };
struct reftable_stack *st_default = NULL;
struct reftable_ref_record dest = { 0 };
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
cl_assert_equal_i(reftable_stack_add(st, write_test_ref,
&ref), 0);
/* can't read it with the wrong hash ID. */
cl_assert_equal_i(reftable_new_stack(&st32, dir,
&opts32), REFTABLE_FORMAT_ERROR);
/* check that we can read it back with default opts too. */
cl_assert_equal_i(reftable_new_stack(&st_default, dir,
&opts_default), 0);
cl_assert_equal_i(reftable_stack_read_ref(st_default, "master",
&dest), 0);
cl_assert(reftable_ref_record_equal(&ref, &dest,
REFTABLE_HASH_SIZE_SHA1) != 0);
reftable_ref_record_release(&dest);
reftable_stack_destroy(st);
reftable_stack_destroy(st_default);
clear_dir(dir);
}
void test_reftable_stack__suggest_compaction_segment(void)
{
uint64_t sizes[] = { 512, 64, 17, 16, 9, 9, 9, 16, 2, 16 };
struct segment min =
suggest_compaction_segment(sizes, ARRAY_SIZE(sizes), 2);
cl_assert_equal_i(min.start, 1);
cl_assert_equal_i(min.end, 10);
}
void test_reftable_stack__suggest_compaction_segment_nothing(void)
{
uint64_t sizes[] = { 64, 32, 16, 8, 4, 2 };
struct segment result =
suggest_compaction_segment(sizes, ARRAY_SIZE(sizes), 2);
cl_assert_equal_i(result.start, result.end);
}
void test_reftable_stack__reflog_expire(void)
{
char *dir = get_tmp_dir(__LINE__);
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
struct reftable_log_record logs[20] = { 0 };
size_t i, N = ARRAY_SIZE(logs) - 1;
struct reftable_log_expiry_config expiry = {
.time = 10,
};
struct reftable_log_record log = { 0 };
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
for (i = 1; i <= N; i++) {
char buf[256];
snprintf(buf, sizeof(buf), "branch%02"PRIuMAX, (uintmax_t)i);
logs[i].refname = xstrdup(buf);
logs[i].update_index = i;
logs[i].value_type = REFTABLE_LOG_UPDATE;
logs[i].value.update.time = i;
logs[i].value.update.email = xstrdup("identity@invalid");
cl_reftable_set_hash(logs[i].value.update.new_hash, i,
REFTABLE_HASH_SHA1);
}
for (i = 1; i <= N; i++) {
struct write_log_arg arg = {
.log = &logs[i],
.update_index = reftable_stack_next_update_index(st),
};
cl_assert_equal_i(reftable_stack_add(st, write_test_log,
&arg), 0);
}
cl_assert_equal_i(reftable_stack_compact_all(st, NULL), 0);
cl_assert_equal_i(reftable_stack_compact_all(st, &expiry), 0);
cl_assert_equal_i(reftable_stack_read_log(st, logs[9].refname,
&log), 1);
cl_assert_equal_i(reftable_stack_read_log(st, logs[11].refname,
&log), 0);
expiry.min_update_index = 15;
cl_assert_equal_i(reftable_stack_compact_all(st, &expiry), 0);
cl_assert_equal_i(reftable_stack_read_log(st, logs[14].refname,
&log), 1);
cl_assert_equal_i(reftable_stack_read_log(st, logs[16].refname,
&log), 0);
/* cleanup */
reftable_stack_destroy(st);
for (i = 0; i <= N; i++)
reftable_log_record_release(&logs[i]);
clear_dir(dir);
reftable_log_record_release(&log);
}
static int write_nothing(struct reftable_writer *wr, void *arg UNUSED)
{
cl_assert_equal_i(reftable_writer_set_limits(wr, 1, 1), 0);
return 0;
}
void test_reftable_stack__empty_add(void)
{
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
char *dir = get_tmp_dir(__LINE__);
struct reftable_stack *st2 = NULL;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
cl_assert_equal_i(reftable_stack_add(st, write_nothing,
NULL), 0);
cl_assert_equal_i(reftable_new_stack(&st2, dir, &opts), 0);
clear_dir(dir);
reftable_stack_destroy(st);
reftable_stack_destroy(st2);
}
static int fastlogN(uint64_t sz, uint64_t N)
{
int l = 0;
if (sz == 0)
return 0;
for (; sz; sz /= N)
l++;
return l - 1;
}
void test_reftable_stack__auto_compaction(void)
{
struct reftable_write_options opts = {
.disable_auto_compact = 1,
};
struct reftable_stack *st = NULL;
char *dir = get_tmp_dir(__LINE__);
size_t i, N = 100;
int err;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
for (i = 0; i < N; i++) {
char name[100];
struct reftable_ref_record ref = {
.refname = name,
.update_index = reftable_stack_next_update_index(st),
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
snprintf(name, sizeof(name), "branch%04"PRIuMAX, (uintmax_t)i);
err = reftable_stack_add(st, write_test_ref, &ref);
cl_assert(!err);
err = reftable_stack_auto_compact(st);
cl_assert(!err);
cl_assert(i < 2 || st->merged->tables_len < 2 * fastlogN(i, 2));
}
cl_assert(reftable_stack_compaction_stats(st)->entries_written <
(uint64_t)(N * fastlogN(N, 2)));
reftable_stack_destroy(st);
clear_dir(dir);
}
void test_reftable_stack__auto_compaction_factor(void)
{
struct reftable_write_options opts = {
.auto_compaction_factor = 5,
};
struct reftable_stack *st = NULL;
char *dir = get_tmp_dir(__LINE__);
size_t N = 100;
int err;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
for (size_t i = 0; i < N; i++) {
char name[20];
struct reftable_ref_record ref = {
.refname = name,
.update_index = reftable_stack_next_update_index(st),
.value_type = REFTABLE_REF_VAL1,
};
xsnprintf(name, sizeof(name), "branch%04"PRIuMAX, (uintmax_t)i);
err = reftable_stack_add(st, &write_test_ref, &ref);
cl_assert(!err);
cl_assert(i < 5 || st->merged->tables_len < 5 * fastlogN(i, 5));
}
reftable_stack_destroy(st);
clear_dir(dir);
}
void test_reftable_stack__auto_compaction_with_locked_tables(void)
{
struct reftable_write_options opts = {
.disable_auto_compact = 1,
};
struct reftable_stack *st = NULL;
struct reftable_buf buf = REFTABLE_BUF_INIT;
char *dir = get_tmp_dir(__LINE__);
int err;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
write_n_ref_tables(st, 5);
cl_assert_equal_i(st->merged->tables_len, 5);
/*
* Given that all tables we have written should be roughly the same
* size, we expect that auto-compaction will want to compact all of the
* tables. Locking any of the tables will keep it from doing so.
*/
cl_assert(!reftable_buf_addstr(&buf, dir));
cl_assert(!reftable_buf_addstr(&buf, "/"));
cl_assert(!reftable_buf_addstr(&buf, st->tables[2]->name));
cl_assert(!reftable_buf_addstr(&buf, ".lock"));
write_file_buf(buf.buf, "", 0);
/*
* When parts of the stack are locked, then auto-compaction does a best
* effort compaction of those tables which aren't locked. So while this
* would in theory compact all tables, due to the preexisting lock we
* only compact the newest two tables.
*/
err = reftable_stack_auto_compact(st);
cl_assert(!err);
cl_assert_equal_i(st->stats.failures, 0);
cl_assert_equal_i(st->merged->tables_len, 4);
reftable_stack_destroy(st);
reftable_buf_release(&buf);
clear_dir(dir);
}
void test_reftable_stack__add_performs_auto_compaction(void)
{
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
char *dir = get_tmp_dir(__LINE__);
size_t i, n = 20;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
for (i = 0; i <= n; i++) {
struct reftable_ref_record ref = {
.update_index = reftable_stack_next_update_index(st),
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
char buf[128];
/*
* Disable auto-compaction for all but the last runs. Like this
* we can ensure that we indeed honor this setting and have
* better control over when exactly auto compaction runs.
*/
st->opts.disable_auto_compact = i != n;
snprintf(buf, sizeof(buf), "branch-%04"PRIuMAX, (uintmax_t)i);
ref.refname = buf;
cl_assert_equal_i(reftable_stack_add(st,
write_test_ref, &ref), 0);
/*
* The stack length should grow continuously for all runs where
* auto compaction is disabled. When enabled, we should merge
* all tables in the stack.
*/
if (i != n)
cl_assert_equal_i(st->merged->tables_len, i + 1);
else
cl_assert_equal_i(st->merged->tables_len, 1);
}
reftable_stack_destroy(st);
clear_dir(dir);
}
void test_reftable_stack__compaction_with_locked_tables(void)
{
struct reftable_write_options opts = {
.disable_auto_compact = 1,
};
struct reftable_stack *st = NULL;
struct reftable_buf buf = REFTABLE_BUF_INIT;
char *dir = get_tmp_dir(__LINE__);
int err;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
write_n_ref_tables(st, 3);
cl_assert_equal_i(st->merged->tables_len, 3);
/* Lock one of the tables that we're about to compact. */
cl_assert(!reftable_buf_addstr(&buf, dir));
cl_assert(!reftable_buf_addstr(&buf, "/"));
cl_assert(!reftable_buf_addstr(&buf, st->tables[1]->name));
cl_assert(!reftable_buf_addstr(&buf, ".lock"));
write_file_buf(buf.buf, "", 0);
/*
* Compaction is expected to fail given that we were not able to
* compact all tables.
*/
err = reftable_stack_compact_all(st, NULL);
cl_assert_equal_i(err, REFTABLE_LOCK_ERROR);
cl_assert_equal_i(st->stats.failures, 1);
cl_assert_equal_i(st->merged->tables_len, 3);
reftable_stack_destroy(st);
reftable_buf_release(&buf);
clear_dir(dir);
}
void test_reftable_stack__compaction_concurrent(void)
{
struct reftable_write_options opts = { 0 };
struct reftable_stack *st1 = NULL, *st2 = NULL;
char *dir = get_tmp_dir(__LINE__);
cl_assert_equal_i(reftable_new_stack(&st1, dir, &opts), 0);
write_n_ref_tables(st1, 3);
cl_assert_equal_i(reftable_new_stack(&st2, dir, &opts), 0);
cl_assert_equal_i(reftable_stack_compact_all(st1, NULL), 0);
reftable_stack_destroy(st1);
reftable_stack_destroy(st2);
cl_assert_equal_i(count_dir_entries(dir), 2);
clear_dir(dir);
}
static void unclean_stack_close(struct reftable_stack *st)
{
/* break abstraction boundary to simulate unclean shutdown. */
for (size_t i = 0; i < st->tables_len; i++)
reftable_table_decref(st->tables[i]);
st->tables_len = 0;
REFTABLE_FREE_AND_NULL(st->tables);
}
void test_reftable_stack__compaction_concurrent_clean(void)
{
struct reftable_write_options opts = { 0 };
struct reftable_stack *st1 = NULL, *st2 = NULL, *st3 = NULL;
char *dir = get_tmp_dir(__LINE__);
cl_assert_equal_i(reftable_new_stack(&st1, dir, &opts), 0);
write_n_ref_tables(st1, 3);
cl_assert_equal_i(reftable_new_stack(&st2, dir, &opts), 0);
cl_assert_equal_i(reftable_stack_compact_all(st1, NULL), 0);
unclean_stack_close(st1);
unclean_stack_close(st2);
cl_assert_equal_i(reftable_new_stack(&st3, dir, &opts), 0);
cl_assert_equal_i(reftable_stack_clean(st3), 0);
cl_assert_equal_i(count_dir_entries(dir), 2);
reftable_stack_destroy(st1);
reftable_stack_destroy(st2);
reftable_stack_destroy(st3);
clear_dir(dir);
}
void test_reftable_stack__read_across_reload(void)
{
struct reftable_write_options opts = { 0 };
struct reftable_stack *st1 = NULL, *st2 = NULL;
struct reftable_ref_record rec = { 0 };
struct reftable_iterator it = { 0 };
char *dir = get_tmp_dir(__LINE__);
int err;
/* Create a first stack and set up an iterator for it. */
cl_assert_equal_i(reftable_new_stack(&st1, dir, &opts), 0);
write_n_ref_tables(st1, 2);
cl_assert_equal_i(st1->merged->tables_len, 2);
reftable_stack_init_ref_iterator(st1, &it);
cl_assert_equal_i(reftable_iterator_seek_ref(&it, ""), 0);
/* Set up a second stack for the same directory and compact it. */
err = reftable_new_stack(&st2, dir, &opts);
cl_assert(!err);
cl_assert_equal_i(st2->merged->tables_len, 2);
err = reftable_stack_compact_all(st2, NULL);
cl_assert(!err);
cl_assert_equal_i(st2->merged->tables_len, 1);
/*
* Verify that we can continue to use the old iterator even after we
* have reloaded its stack.
*/
err = reftable_stack_reload(st1);
cl_assert(!err);
cl_assert_equal_i(st1->merged->tables_len, 1);
err = reftable_iterator_next_ref(&it, &rec);
cl_assert(!err);
cl_assert_equal_s(rec.refname, "refs/heads/branch-0000");
err = reftable_iterator_next_ref(&it, &rec);
cl_assert(!err);
cl_assert_equal_s(rec.refname, "refs/heads/branch-0001");
err = reftable_iterator_next_ref(&it, &rec);
cl_assert(err > 0);
reftable_ref_record_release(&rec);
reftable_iterator_destroy(&it);
reftable_stack_destroy(st1);
reftable_stack_destroy(st2);
clear_dir(dir);
}
void test_reftable_stack__reload_with_missing_table(void)
{
struct reftable_write_options opts = { 0 };
struct reftable_stack *st = NULL;
struct reftable_ref_record rec = { 0 };
struct reftable_iterator it = { 0 };
struct reftable_buf table_path = REFTABLE_BUF_INIT, content = REFTABLE_BUF_INIT;
char *dir = get_tmp_dir(__LINE__);
int err;
/* Create a first stack and set up an iterator for it. */
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
write_n_ref_tables(st, 2);
cl_assert_equal_i(st->merged->tables_len, 2);
reftable_stack_init_ref_iterator(st, &it);
cl_assert_equal_i(reftable_iterator_seek_ref(&it, ""), 0);
/*
* Update the tables.list file with some garbage data, while reusing
* our old tables. This should trigger a partial reload of the stack,
* where we try to reuse our old tables.
*/
cl_assert(!reftable_buf_addstr(&content, st->tables[0]->name));
cl_assert(!reftable_buf_addstr(&content, "\n"));
cl_assert(!reftable_buf_addstr(&content, st->tables[1]->name));
cl_assert(!reftable_buf_addstr(&content, "\n"));
cl_assert(!reftable_buf_addstr(&content, "garbage\n"));
cl_assert(!reftable_buf_addstr(&table_path, st->list_file));
cl_assert(!reftable_buf_addstr(&table_path, ".lock"));
write_file_buf(table_path.buf, content.buf, content.len);
cl_assert_equal_i(rename(table_path.buf, st->list_file), 0);
err = reftable_stack_reload(st);
cl_assert_equal_i(err, -4);
cl_assert_equal_i(st->merged->tables_len, 2);
/*
* Even though the reload has failed, we should be able to continue
* using the iterator.
*/
cl_assert_equal_i(reftable_iterator_next_ref(&it, &rec), 0);
cl_assert_equal_s(rec.refname, "refs/heads/branch-0000");
cl_assert_equal_i(reftable_iterator_next_ref(&it, &rec), 0);
cl_assert_equal_s(rec.refname, "refs/heads/branch-0001");
cl_assert(reftable_iterator_next_ref(&it, &rec) > 0);
reftable_ref_record_release(&rec);
reftable_iterator_destroy(&it);
reftable_stack_destroy(st);
reftable_buf_release(&table_path);
reftable_buf_release(&content);
clear_dir(dir);
}
static int write_limits_after_ref(struct reftable_writer *wr, void *arg)
{
struct reftable_ref_record *ref = arg;
cl_assert_equal_i(reftable_writer_set_limits(wr,
ref->update_index, ref->update_index), 0);
cl_assert_equal_i(reftable_writer_add_ref(wr, ref), 0);
return reftable_writer_set_limits(wr, ref->update_index, ref->update_index);
}
void test_reftable_stack__invalid_limit_updates(void)
{
struct reftable_ref_record ref = {
.refname = (char *) "HEAD",
.update_index = 1,
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *) "master",
};
struct reftable_write_options opts = {
.default_permissions = 0660,
};
struct reftable_addition *add = NULL;
char *dir = get_tmp_dir(__LINE__);
struct reftable_stack *st = NULL;
cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0);
reftable_addition_destroy(add);
cl_assert_equal_i(reftable_stack_new_addition(&add, st, 0), 0);
/*
* write_limits_after_ref also updates the update indexes after adding
* the record. This should cause an err to be returned, since the limits
* must be set at the start.
*/
cl_assert_equal_i(reftable_addition_add(add,
write_limits_after_ref, &ref), REFTABLE_API_ERROR);
reftable_addition_destroy(add);
reftable_stack_destroy(st);
clear_dir(dir);
}