#include "cache.h" #include "config.h" #include "csum-file.h" #include "dir.h" #include "lockfile.h" #include "packfile.h" #include "object-store.h" #include "sha1-lookup.h" #include "midx.h" #include "progress.h" #include "trace2.h" #include "run-command.h" #define MIDX_SIGNATURE 0x4d494458 /* "MIDX" */ #define MIDX_VERSION 1 #define MIDX_BYTE_FILE_VERSION 4 #define MIDX_BYTE_HASH_VERSION 5 #define MIDX_BYTE_NUM_CHUNKS 6 #define MIDX_BYTE_NUM_PACKS 8 #define MIDX_HASH_VERSION 1 #define MIDX_HEADER_SIZE 12 #define MIDX_MIN_SIZE (MIDX_HEADER_SIZE + the_hash_algo->rawsz) #define MIDX_MAX_CHUNKS 5 #define MIDX_CHUNK_ALIGNMENT 4 #define MIDX_CHUNKID_PACKNAMES 0x504e414d /* "PNAM" */ #define MIDX_CHUNKID_OIDFANOUT 0x4f494446 /* "OIDF" */ #define MIDX_CHUNKID_OIDLOOKUP 0x4f49444c /* "OIDL" */ #define MIDX_CHUNKID_OBJECTOFFSETS 0x4f4f4646 /* "OOFF" */ #define MIDX_CHUNKID_LARGEOFFSETS 0x4c4f4646 /* "LOFF" */ #define MIDX_CHUNKLOOKUP_WIDTH (sizeof(uint32_t) + sizeof(uint64_t)) #define MIDX_CHUNK_FANOUT_SIZE (sizeof(uint32_t) * 256) #define MIDX_CHUNK_OFFSET_WIDTH (2 * sizeof(uint32_t)) #define MIDX_CHUNK_LARGE_OFFSET_WIDTH (sizeof(uint64_t)) #define MIDX_LARGE_OFFSET_NEEDED 0x80000000 #define PACK_EXPIRED UINT_MAX static char *get_midx_filename(const char *object_dir) { return xstrfmt("%s/pack/multi-pack-index", object_dir); } struct multi_pack_index *load_multi_pack_index(const char *object_dir, int local) { struct multi_pack_index *m = NULL; int fd; struct stat st; size_t midx_size; void *midx_map = NULL; uint32_t hash_version; char *midx_name = get_midx_filename(object_dir); uint32_t i; const char *cur_pack_name; fd = git_open(midx_name); if (fd < 0) goto cleanup_fail; if (fstat(fd, &st)) { error_errno(_("failed to read %s"), midx_name); goto cleanup_fail; } midx_size = xsize_t(st.st_size); if (midx_size < MIDX_MIN_SIZE) { error(_("multi-pack-index file %s is too small"), midx_name); goto cleanup_fail; } FREE_AND_NULL(midx_name); midx_map = xmmap(NULL, midx_size, PROT_READ, MAP_PRIVATE, fd, 0); FLEX_ALLOC_STR(m, object_dir, object_dir); m->fd = fd; m->data = midx_map; m->data_len = midx_size; m->local = local; m->signature = get_be32(m->data); if (m->signature != MIDX_SIGNATURE) die(_("multi-pack-index signature 0x%08x does not match signature 0x%08x"), m->signature, MIDX_SIGNATURE); m->version = m->data[MIDX_BYTE_FILE_VERSION]; if (m->version != MIDX_VERSION) die(_("multi-pack-index version %d not recognized"), m->version); hash_version = m->data[MIDX_BYTE_HASH_VERSION]; if (hash_version != MIDX_HASH_VERSION) die(_("hash version %u does not match"), hash_version); m->hash_len = the_hash_algo->rawsz; m->num_chunks = m->data[MIDX_BYTE_NUM_CHUNKS]; m->num_packs = get_be32(m->data + MIDX_BYTE_NUM_PACKS); for (i = 0; i < m->num_chunks; i++) { uint32_t chunk_id = get_be32(m->data + MIDX_HEADER_SIZE + MIDX_CHUNKLOOKUP_WIDTH * i); uint64_t chunk_offset = get_be64(m->data + MIDX_HEADER_SIZE + 4 + MIDX_CHUNKLOOKUP_WIDTH * i); if (chunk_offset >= m->data_len) die(_("invalid chunk offset (too large)")); switch (chunk_id) { case MIDX_CHUNKID_PACKNAMES: m->chunk_pack_names = m->data + chunk_offset; break; case MIDX_CHUNKID_OIDFANOUT: m->chunk_oid_fanout = (uint32_t *)(m->data + chunk_offset); break; case MIDX_CHUNKID_OIDLOOKUP: m->chunk_oid_lookup = m->data + chunk_offset; break; case MIDX_CHUNKID_OBJECTOFFSETS: m->chunk_object_offsets = m->data + chunk_offset; break; case MIDX_CHUNKID_LARGEOFFSETS: m->chunk_large_offsets = m->data + chunk_offset; break; case 0: die(_("terminating multi-pack-index chunk id appears earlier than expected")); break; default: /* * Do nothing on unrecognized chunks, allowing future * extensions to add optional chunks. */ break; } } if (!m->chunk_pack_names) die(_("multi-pack-index missing required pack-name chunk")); if (!m->chunk_oid_fanout) die(_("multi-pack-index missing required OID fanout chunk")); if (!m->chunk_oid_lookup) die(_("multi-pack-index missing required OID lookup chunk")); if (!m->chunk_object_offsets) die(_("multi-pack-index missing required object offsets chunk")); m->num_objects = ntohl(m->chunk_oid_fanout[255]); m->pack_names = xcalloc(m->num_packs, sizeof(*m->pack_names)); m->packs = xcalloc(m->num_packs, sizeof(*m->packs)); cur_pack_name = (const char *)m->chunk_pack_names; for (i = 0; i < m->num_packs; i++) { m->pack_names[i] = cur_pack_name; cur_pack_name += strlen(cur_pack_name) + 1; if (i && strcmp(m->pack_names[i], m->pack_names[i - 1]) <= 0) die(_("multi-pack-index pack names out of order: '%s' before '%s'"), m->pack_names[i - 1], m->pack_names[i]); } trace2_data_intmax("midx", the_repository, "load/num_packs", m->num_packs); trace2_data_intmax("midx", the_repository, "load/num_objects", m->num_objects); return m; cleanup_fail: free(m); free(midx_name); if (midx_map) munmap(midx_map, midx_size); if (0 <= fd) close(fd); return NULL; } void close_midx(struct multi_pack_index *m) { uint32_t i; if (!m) return; munmap((unsigned char *)m->data, m->data_len); close(m->fd); m->fd = -1; for (i = 0; i < m->num_packs; i++) { if (m->packs[i]) m->packs[i]->multi_pack_index = 0; } FREE_AND_NULL(m->packs); FREE_AND_NULL(m->pack_names); } int prepare_midx_pack(struct repository *r, struct multi_pack_index *m, uint32_t pack_int_id) { struct strbuf pack_name = STRBUF_INIT; struct packed_git *p; if (pack_int_id >= m->num_packs) die(_("bad pack-int-id: %u (%u total packs)"), pack_int_id, m->num_packs); if (m->packs[pack_int_id]) return 0; strbuf_addf(&pack_name, "%s/pack/%s", m->object_dir, m->pack_names[pack_int_id]); p = add_packed_git(pack_name.buf, pack_name.len, m->local); strbuf_release(&pack_name); if (!p) return 1; p->multi_pack_index = 1; m->packs[pack_int_id] = p; install_packed_git(r, p); list_add_tail(&p->mru, &r->objects->packed_git_mru); return 0; } int bsearch_midx(const struct object_id *oid, struct multi_pack_index *m, uint32_t *result) { return bsearch_hash(oid->hash, m->chunk_oid_fanout, m->chunk_oid_lookup, the_hash_algo->rawsz, result); } struct object_id *nth_midxed_object_oid(struct object_id *oid, struct multi_pack_index *m, uint32_t n) { if (n >= m->num_objects) return NULL; hashcpy(oid->hash, m->chunk_oid_lookup + m->hash_len * n); return oid; } static off_t nth_midxed_offset(struct multi_pack_index *m, uint32_t pos) { const unsigned char *offset_data; uint32_t offset32; offset_data = m->chunk_object_offsets + pos * MIDX_CHUNK_OFFSET_WIDTH; offset32 = get_be32(offset_data + sizeof(uint32_t)); if (m->chunk_large_offsets && offset32 & MIDX_LARGE_OFFSET_NEEDED) { if (sizeof(off_t) < sizeof(uint64_t)) die(_("multi-pack-index stores a 64-bit offset, but off_t is too small")); offset32 ^= MIDX_LARGE_OFFSET_NEEDED; return get_be64(m->chunk_large_offsets + sizeof(uint64_t) * offset32); } return offset32; } static uint32_t nth_midxed_pack_int_id(struct multi_pack_index *m, uint32_t pos) { return get_be32(m->chunk_object_offsets + pos * MIDX_CHUNK_OFFSET_WIDTH); } static int nth_midxed_pack_entry(struct repository *r, struct multi_pack_index *m, struct pack_entry *e, uint32_t pos) { uint32_t pack_int_id; struct packed_git *p; if (pos >= m->num_objects) return 0; pack_int_id = nth_midxed_pack_int_id(m, pos); if (prepare_midx_pack(r, m, pack_int_id)) die(_("error preparing packfile from multi-pack-index")); p = m->packs[pack_int_id]; /* * We are about to tell the caller where they can locate the * requested object. We better make sure the packfile is * still here and can be accessed before supplying that * answer, as it may have been deleted since the MIDX was * loaded! */ if (!is_pack_valid(p)) return 0; if (p->num_bad_objects) { uint32_t i; struct object_id oid; nth_midxed_object_oid(&oid, m, pos); for (i = 0; i < p->num_bad_objects; i++) if (hasheq(oid.hash, p->bad_object_sha1 + the_hash_algo->rawsz * i)) return 0; } e->offset = nth_midxed_offset(m, pos); e->p = p; return 1; } int fill_midx_entry(struct repository * r, const struct object_id *oid, struct pack_entry *e, struct multi_pack_index *m) { uint32_t pos; if (!bsearch_midx(oid, m, &pos)) return 0; return nth_midxed_pack_entry(r, m, e, pos); } /* Match "foo.idx" against either "foo.pack" _or_ "foo.idx". */ static int cmp_idx_or_pack_name(const char *idx_or_pack_name, const char *idx_name) { /* Skip past any initial matching prefix. */ while (*idx_name && *idx_name == *idx_or_pack_name) { idx_name++; idx_or_pack_name++; } /* * If we didn't match completely, we may have matched "pack-1234." and * be left with "idx" and "pack" respectively, which is also OK. We do * not have to check for "idx" and "idx", because that would have been * a complete match (and in that case these strcmps will be false, but * we'll correctly return 0 from the final strcmp() below. * * Technically this matches "fooidx" and "foopack", but we'd never have * such names in the first place. */ if (!strcmp(idx_name, "idx") && !strcmp(idx_or_pack_name, "pack")) return 0; /* * This not only checks for a complete match, but also orders based on * the first non-identical character, which means our ordering will * match a raw strcmp(). That makes it OK to use this to binary search * a naively-sorted list. */ return strcmp(idx_or_pack_name, idx_name); } int midx_contains_pack(struct multi_pack_index *m, const char *idx_or_pack_name) { uint32_t first = 0, last = m->num_packs; while (first < last) { uint32_t mid = first + (last - first) / 2; const char *current; int cmp; current = m->pack_names[mid]; cmp = cmp_idx_or_pack_name(idx_or_pack_name, current); if (!cmp) return 1; if (cmp > 0) { first = mid + 1; continue; } last = mid; } return 0; } int prepare_multi_pack_index_one(struct repository *r, const char *object_dir, int local) { struct multi_pack_index *m; struct multi_pack_index *m_search; int config_value; static int env_value = -1; if (env_value < 0) env_value = git_env_bool(GIT_TEST_MULTI_PACK_INDEX, 0); if (!env_value && (repo_config_get_bool(r, "core.multipackindex", &config_value) || !config_value)) return 0; for (m_search = r->objects->multi_pack_index; m_search; m_search = m_search->next) if (!strcmp(object_dir, m_search->object_dir)) return 1; m = load_multi_pack_index(object_dir, local); if (m) { m->next = r->objects->multi_pack_index; r->objects->multi_pack_index = m; return 1; } return 0; } static size_t write_midx_header(struct hashfile *f, unsigned char num_chunks, uint32_t num_packs) { unsigned char byte_values[4]; hashwrite_be32(f, MIDX_SIGNATURE); byte_values[0] = MIDX_VERSION; byte_values[1] = MIDX_HASH_VERSION; byte_values[2] = num_chunks; byte_values[3] = 0; /* unused */ hashwrite(f, byte_values, sizeof(byte_values)); hashwrite_be32(f, num_packs); return MIDX_HEADER_SIZE; } struct pack_info { uint32_t orig_pack_int_id; char *pack_name; struct packed_git *p; unsigned expired : 1; }; static int pack_info_compare(const void *_a, const void *_b) { struct pack_info *a = (struct pack_info *)_a; struct pack_info *b = (struct pack_info *)_b; return strcmp(a->pack_name, b->pack_name); } struct pack_list { struct pack_info *info; uint32_t nr; uint32_t alloc; struct multi_pack_index *m; struct progress *progress; unsigned pack_paths_checked; }; static void add_pack_to_midx(const char *full_path, size_t full_path_len, const char *file_name, void *data) { struct pack_list *packs = (struct pack_list *)data; if (ends_with(file_name, ".idx")) { display_progress(packs->progress, ++packs->pack_paths_checked); if (packs->m && midx_contains_pack(packs->m, file_name)) return; ALLOC_GROW(packs->info, packs->nr + 1, packs->alloc); packs->info[packs->nr].p = add_packed_git(full_path, full_path_len, 0); if (!packs->info[packs->nr].p) { warning(_("failed to add packfile '%s'"), full_path); return; } if (open_pack_index(packs->info[packs->nr].p)) { warning(_("failed to open pack-index '%s'"), full_path); close_pack(packs->info[packs->nr].p); FREE_AND_NULL(packs->info[packs->nr].p); return; } packs->info[packs->nr].pack_name = xstrdup(file_name); packs->info[packs->nr].orig_pack_int_id = packs->nr; packs->info[packs->nr].expired = 0; packs->nr++; } } struct pack_midx_entry { struct object_id oid; uint32_t pack_int_id; time_t pack_mtime; uint64_t offset; }; static int midx_oid_compare(const void *_a, const void *_b) { const struct pack_midx_entry *a = (const struct pack_midx_entry *)_a; const struct pack_midx_entry *b = (const struct pack_midx_entry *)_b; int cmp = oidcmp(&a->oid, &b->oid); if (cmp) return cmp; if (a->pack_mtime > b->pack_mtime) return -1; else if (a->pack_mtime < b->pack_mtime) return 1; return a->pack_int_id - b->pack_int_id; } static int nth_midxed_pack_midx_entry(struct multi_pack_index *m, struct pack_midx_entry *e, uint32_t pos) { if (pos >= m->num_objects) return 1; nth_midxed_object_oid(&e->oid, m, pos); e->pack_int_id = nth_midxed_pack_int_id(m, pos); e->offset = nth_midxed_offset(m, pos); /* consider objects in midx to be from "old" packs */ e->pack_mtime = 0; return 0; } static void fill_pack_entry(uint32_t pack_int_id, struct packed_git *p, uint32_t cur_object, struct pack_midx_entry *entry) { if (!nth_packed_object_oid(&entry->oid, p, cur_object)) die(_("failed to locate object %d in packfile"), cur_object); entry->pack_int_id = pack_int_id; entry->pack_mtime = p->mtime; entry->offset = nth_packed_object_offset(p, cur_object); } /* * It is possible to artificially get into a state where there are many * duplicate copies of objects. That can create high memory pressure if * we are to create a list of all objects before de-duplication. To reduce * this memory pressure without a significant performance drop, automatically * group objects by the first byte of their object id. Use the IDX fanout * tables to group the data, copy to a local array, then sort. * * Copy only the de-duplicated entries (selected by most-recent modified time * of a packfile containing the object). */ static struct pack_midx_entry *get_sorted_entries(struct multi_pack_index *m, struct pack_info *info, uint32_t nr_packs, uint32_t *nr_objects) { uint32_t cur_fanout, cur_pack, cur_object; uint32_t alloc_fanout, alloc_objects, total_objects = 0; struct pack_midx_entry *entries_by_fanout = NULL; struct pack_midx_entry *deduplicated_entries = NULL; uint32_t start_pack = m ? m->num_packs : 0; for (cur_pack = start_pack; cur_pack < nr_packs; cur_pack++) total_objects += info[cur_pack].p->num_objects; /* * As we de-duplicate by fanout value, we expect the fanout * slices to be evenly distributed, with some noise. Hence, * allocate slightly more than one 256th. */ alloc_objects = alloc_fanout = total_objects > 3200 ? total_objects / 200 : 16; ALLOC_ARRAY(entries_by_fanout, alloc_fanout); ALLOC_ARRAY(deduplicated_entries, alloc_objects); *nr_objects = 0; for (cur_fanout = 0; cur_fanout < 256; cur_fanout++) { uint32_t nr_fanout = 0; if (m) { uint32_t start = 0, end; if (cur_fanout) start = ntohl(m->chunk_oid_fanout[cur_fanout - 1]); end = ntohl(m->chunk_oid_fanout[cur_fanout]); for (cur_object = start; cur_object < end; cur_object++) { ALLOC_GROW(entries_by_fanout, nr_fanout + 1, alloc_fanout); nth_midxed_pack_midx_entry(m, &entries_by_fanout[nr_fanout], cur_object); nr_fanout++; } } for (cur_pack = start_pack; cur_pack < nr_packs; cur_pack++) { uint32_t start = 0, end; if (cur_fanout) start = get_pack_fanout(info[cur_pack].p, cur_fanout - 1); end = get_pack_fanout(info[cur_pack].p, cur_fanout); for (cur_object = start; cur_object < end; cur_object++) { ALLOC_GROW(entries_by_fanout, nr_fanout + 1, alloc_fanout); fill_pack_entry(cur_pack, info[cur_pack].p, cur_object, &entries_by_fanout[nr_fanout]); nr_fanout++; } } QSORT(entries_by_fanout, nr_fanout, midx_oid_compare); /* * The batch is now sorted by OID and then mtime (descending). * Take only the first duplicate. */ for (cur_object = 0; cur_object < nr_fanout; cur_object++) { if (cur_object && oideq(&entries_by_fanout[cur_object - 1].oid, &entries_by_fanout[cur_object].oid)) continue; ALLOC_GROW(deduplicated_entries, *nr_objects + 1, alloc_objects); memcpy(&deduplicated_entries[*nr_objects], &entries_by_fanout[cur_object], sizeof(struct pack_midx_entry)); (*nr_objects)++; } } free(entries_by_fanout); return deduplicated_entries; } static size_t write_midx_pack_names(struct hashfile *f, struct pack_info *info, uint32_t num_packs) { uint32_t i; unsigned char padding[MIDX_CHUNK_ALIGNMENT]; size_t written = 0; for (i = 0; i < num_packs; i++) { size_t writelen; if (info[i].expired) continue; if (i && strcmp(info[i].pack_name, info[i - 1].pack_name) <= 0) BUG("incorrect pack-file order: %s before %s", info[i - 1].pack_name, info[i].pack_name); writelen = strlen(info[i].pack_name) + 1; hashwrite(f, info[i].pack_name, writelen); written += writelen; } /* add padding to be aligned */ i = MIDX_CHUNK_ALIGNMENT - (written % MIDX_CHUNK_ALIGNMENT); if (i < MIDX_CHUNK_ALIGNMENT) { memset(padding, 0, sizeof(padding)); hashwrite(f, padding, i); written += i; } return written; } static size_t write_midx_oid_fanout(struct hashfile *f, struct pack_midx_entry *objects, uint32_t nr_objects) { struct pack_midx_entry *list = objects; struct pack_midx_entry *last = objects + nr_objects; uint32_t count = 0; uint32_t i; /* * Write the first-level table (the list is sorted, * but we use a 256-entry lookup to be able to avoid * having to do eight extra binary search iterations). */ for (i = 0; i < 256; i++) { struct pack_midx_entry *next = list; while (next < last && next->oid.hash[0] == i) { count++; next++; } hashwrite_be32(f, count); list = next; } return MIDX_CHUNK_FANOUT_SIZE; } static size_t write_midx_oid_lookup(struct hashfile *f, unsigned char hash_len, struct pack_midx_entry *objects, uint32_t nr_objects) { struct pack_midx_entry *list = objects; uint32_t i; size_t written = 0; for (i = 0; i < nr_objects; i++) { struct pack_midx_entry *obj = list++; if (i < nr_objects - 1) { struct pack_midx_entry *next = list; if (oidcmp(&obj->oid, &next->oid) >= 0) BUG("OIDs not in order: %s >= %s", oid_to_hex(&obj->oid), oid_to_hex(&next->oid)); } hashwrite(f, obj->oid.hash, (int)hash_len); written += hash_len; } return written; } static size_t write_midx_object_offsets(struct hashfile *f, int large_offset_needed, uint32_t *perm, struct pack_midx_entry *objects, uint32_t nr_objects) { struct pack_midx_entry *list = objects; uint32_t i, nr_large_offset = 0; size_t written = 0; for (i = 0; i < nr_objects; i++) { struct pack_midx_entry *obj = list++; if (perm[obj->pack_int_id] == PACK_EXPIRED) BUG("object %s is in an expired pack with int-id %d", oid_to_hex(&obj->oid), obj->pack_int_id); hashwrite_be32(f, perm[obj->pack_int_id]); if (large_offset_needed && obj->offset >> 31) hashwrite_be32(f, MIDX_LARGE_OFFSET_NEEDED | nr_large_offset++); else if (!large_offset_needed && obj->offset >> 32) BUG("object %s requires a large offset (%"PRIx64") but the MIDX is not writing large offsets!", oid_to_hex(&obj->oid), obj->offset); else hashwrite_be32(f, (uint32_t)obj->offset); written += MIDX_CHUNK_OFFSET_WIDTH; } return written; } static size_t write_midx_large_offsets(struct hashfile *f, uint32_t nr_large_offset, struct pack_midx_entry *objects, uint32_t nr_objects) { struct pack_midx_entry *list = objects, *end = objects + nr_objects; size_t written = 0; while (nr_large_offset) { struct pack_midx_entry *obj; uint64_t offset; if (list >= end) BUG("too many large-offset objects"); obj = list++; offset = obj->offset; if (!(offset >> 31)) continue; hashwrite_be32(f, offset >> 32); hashwrite_be32(f, offset & 0xffffffffUL); written += 2 * sizeof(uint32_t); nr_large_offset--; } return written; } static int write_midx_internal(const char *object_dir, struct multi_pack_index *m, struct string_list *packs_to_drop, unsigned flags) { unsigned char cur_chunk, num_chunks = 0; char *midx_name; uint32_t i; struct hashfile *f = NULL; struct lock_file lk; struct pack_list packs; uint32_t *pack_perm = NULL; uint64_t written = 0; uint32_t chunk_ids[MIDX_MAX_CHUNKS + 1]; uint64_t chunk_offsets[MIDX_MAX_CHUNKS + 1]; uint32_t nr_entries, num_large_offsets = 0; struct pack_midx_entry *entries = NULL; struct progress *progress = NULL; int large_offsets_needed = 0; int pack_name_concat_len = 0; int dropped_packs = 0; int result = 0; midx_name = get_midx_filename(object_dir); if (safe_create_leading_directories(midx_name)) { UNLEAK(midx_name); die_errno(_("unable to create leading directories of %s"), midx_name); } if (m) packs.m = m; else packs.m = load_multi_pack_index(object_dir, 1); packs.nr = 0; packs.alloc = packs.m ? packs.m->num_packs : 16; packs.info = NULL; ALLOC_ARRAY(packs.info, packs.alloc); if (packs.m) { for (i = 0; i < packs.m->num_packs; i++) { ALLOC_GROW(packs.info, packs.nr + 1, packs.alloc); packs.info[packs.nr].orig_pack_int_id = i; packs.info[packs.nr].pack_name = xstrdup(packs.m->pack_names[i]); packs.info[packs.nr].p = NULL; packs.info[packs.nr].expired = 0; packs.nr++; } } packs.pack_paths_checked = 0; if (flags & MIDX_PROGRESS) packs.progress = start_progress(_("Adding packfiles to multi-pack-index"), 0); else packs.progress = NULL; for_each_file_in_pack_dir(object_dir, add_pack_to_midx, &packs); stop_progress(&packs.progress); if (packs.m && packs.nr == packs.m->num_packs && !packs_to_drop) goto cleanup; entries = get_sorted_entries(packs.m, packs.info, packs.nr, &nr_entries); for (i = 0; i < nr_entries; i++) { if (entries[i].offset > 0x7fffffff) num_large_offsets++; if (entries[i].offset > 0xffffffff) large_offsets_needed = 1; } QSORT(packs.info, packs.nr, pack_info_compare); if (packs_to_drop && packs_to_drop->nr) { int drop_index = 0; int missing_drops = 0; for (i = 0; i < packs.nr && drop_index < packs_to_drop->nr; i++) { int cmp = strcmp(packs.info[i].pack_name, packs_to_drop->items[drop_index].string); if (!cmp) { drop_index++; packs.info[i].expired = 1; } else if (cmp > 0) { error(_("did not see pack-file %s to drop"), packs_to_drop->items[drop_index].string); drop_index++; missing_drops++; i--; } else { packs.info[i].expired = 0; } } if (missing_drops) { result = 1; goto cleanup; } } /* * pack_perm stores a permutation between pack-int-ids from the * previous multi-pack-index to the new one we are writing: * * pack_perm[old_id] = new_id */ ALLOC_ARRAY(pack_perm, packs.nr); for (i = 0; i < packs.nr; i++) { if (packs.info[i].expired) { dropped_packs++; pack_perm[packs.info[i].orig_pack_int_id] = PACK_EXPIRED; } else { pack_perm[packs.info[i].orig_pack_int_id] = i - dropped_packs; } } for (i = 0; i < packs.nr; i++) { if (!packs.info[i].expired) pack_name_concat_len += strlen(packs.info[i].pack_name) + 1; } if (pack_name_concat_len % MIDX_CHUNK_ALIGNMENT) pack_name_concat_len += MIDX_CHUNK_ALIGNMENT - (pack_name_concat_len % MIDX_CHUNK_ALIGNMENT); hold_lock_file_for_update(&lk, midx_name, LOCK_DIE_ON_ERROR); f = hashfd(lk.tempfile->fd, lk.tempfile->filename.buf); FREE_AND_NULL(midx_name); if (packs.m) close_midx(packs.m); cur_chunk = 0; num_chunks = large_offsets_needed ? 5 : 4; written = write_midx_header(f, num_chunks, packs.nr - dropped_packs); chunk_ids[cur_chunk] = MIDX_CHUNKID_PACKNAMES; chunk_offsets[cur_chunk] = written + (num_chunks + 1) * MIDX_CHUNKLOOKUP_WIDTH; cur_chunk++; chunk_ids[cur_chunk] = MIDX_CHUNKID_OIDFANOUT; chunk_offsets[cur_chunk] = chunk_offsets[cur_chunk - 1] + pack_name_concat_len; cur_chunk++; chunk_ids[cur_chunk] = MIDX_CHUNKID_OIDLOOKUP; chunk_offsets[cur_chunk] = chunk_offsets[cur_chunk - 1] + MIDX_CHUNK_FANOUT_SIZE; cur_chunk++; chunk_ids[cur_chunk] = MIDX_CHUNKID_OBJECTOFFSETS; chunk_offsets[cur_chunk] = chunk_offsets[cur_chunk - 1] + nr_entries * the_hash_algo->rawsz; cur_chunk++; chunk_offsets[cur_chunk] = chunk_offsets[cur_chunk - 1] + nr_entries * MIDX_CHUNK_OFFSET_WIDTH; if (large_offsets_needed) { chunk_ids[cur_chunk] = MIDX_CHUNKID_LARGEOFFSETS; cur_chunk++; chunk_offsets[cur_chunk] = chunk_offsets[cur_chunk - 1] + num_large_offsets * MIDX_CHUNK_LARGE_OFFSET_WIDTH; } chunk_ids[cur_chunk] = 0; for (i = 0; i <= num_chunks; i++) { if (i && chunk_offsets[i] < chunk_offsets[i - 1]) BUG("incorrect chunk offsets: %"PRIu64" before %"PRIu64, chunk_offsets[i - 1], chunk_offsets[i]); if (chunk_offsets[i] % MIDX_CHUNK_ALIGNMENT) BUG("chunk offset %"PRIu64" is not properly aligned", chunk_offsets[i]); hashwrite_be32(f, chunk_ids[i]); hashwrite_be32(f, chunk_offsets[i] >> 32); hashwrite_be32(f, chunk_offsets[i]); written += MIDX_CHUNKLOOKUP_WIDTH; } if (flags & MIDX_PROGRESS) progress = start_progress(_("Writing chunks to multi-pack-index"), num_chunks); for (i = 0; i < num_chunks; i++) { if (written != chunk_offsets[i]) BUG("incorrect chunk offset (%"PRIu64" != %"PRIu64") for chunk id %"PRIx32, chunk_offsets[i], written, chunk_ids[i]); switch (chunk_ids[i]) { case MIDX_CHUNKID_PACKNAMES: written += write_midx_pack_names(f, packs.info, packs.nr); break; case MIDX_CHUNKID_OIDFANOUT: written += write_midx_oid_fanout(f, entries, nr_entries); break; case MIDX_CHUNKID_OIDLOOKUP: written += write_midx_oid_lookup(f, the_hash_algo->rawsz, entries, nr_entries); break; case MIDX_CHUNKID_OBJECTOFFSETS: written += write_midx_object_offsets(f, large_offsets_needed, pack_perm, entries, nr_entries); break; case MIDX_CHUNKID_LARGEOFFSETS: written += write_midx_large_offsets(f, num_large_offsets, entries, nr_entries); break; default: BUG("trying to write unknown chunk id %"PRIx32, chunk_ids[i]); } display_progress(progress, i + 1); } stop_progress(&progress); if (written != chunk_offsets[num_chunks]) BUG("incorrect final offset %"PRIu64" != %"PRIu64, written, chunk_offsets[num_chunks]); finalize_hashfile(f, NULL, CSUM_FSYNC | CSUM_HASH_IN_STREAM); commit_lock_file(&lk); cleanup: for (i = 0; i < packs.nr; i++) { if (packs.info[i].p) { close_pack(packs.info[i].p); free(packs.info[i].p); } free(packs.info[i].pack_name); } free(packs.info); free(entries); free(pack_perm); free(midx_name); return result; } int write_midx_file(const char *object_dir, unsigned flags) { return write_midx_internal(object_dir, NULL, NULL, flags); } void clear_midx_file(struct repository *r) { char *midx = get_midx_filename(r->objects->odb->path); if (r->objects && r->objects->multi_pack_index) { close_midx(r->objects->multi_pack_index); r->objects->multi_pack_index = NULL; } if (remove_path(midx)) { UNLEAK(midx); die(_("failed to clear multi-pack-index at %s"), midx); } free(midx); } static int verify_midx_error; static void midx_report(const char *fmt, ...) { va_list ap; verify_midx_error = 1; va_start(ap, fmt); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); va_end(ap); } struct pair_pos_vs_id { uint32_t pos; uint32_t pack_int_id; }; static int compare_pair_pos_vs_id(const void *_a, const void *_b) { struct pair_pos_vs_id *a = (struct pair_pos_vs_id *)_a; struct pair_pos_vs_id *b = (struct pair_pos_vs_id *)_b; return b->pack_int_id - a->pack_int_id; } /* * Limit calls to display_progress() for performance reasons. * The interval here was arbitrarily chosen. */ #define SPARSE_PROGRESS_INTERVAL (1 << 12) #define midx_display_sparse_progress(progress, n) \ do { \ uint64_t _n = (n); \ if ((_n & (SPARSE_PROGRESS_INTERVAL - 1)) == 0) \ display_progress(progress, _n); \ } while (0) int verify_midx_file(struct repository *r, const char *object_dir, unsigned flags) { struct pair_pos_vs_id *pairs = NULL; uint32_t i; struct progress *progress; struct multi_pack_index *m = load_multi_pack_index(object_dir, 1); verify_midx_error = 0; if (!m) return 0; progress = start_progress(_("Looking for referenced packfiles"), m->num_packs); for (i = 0; i < m->num_packs; i++) { if (prepare_midx_pack(r, m, i)) midx_report("failed to load pack in position %d", i); display_progress(progress, i + 1); } stop_progress(&progress); for (i = 0; i < 255; i++) { uint32_t oid_fanout1 = ntohl(m->chunk_oid_fanout[i]); uint32_t oid_fanout2 = ntohl(m->chunk_oid_fanout[i + 1]); if (oid_fanout1 > oid_fanout2) midx_report(_("oid fanout out of order: fanout[%d] = %"PRIx32" > %"PRIx32" = fanout[%d]"), i, oid_fanout1, oid_fanout2, i + 1); } progress = start_sparse_progress(_("Verifying OID order in MIDX"), m->num_objects - 1); for (i = 0; i < m->num_objects - 1; i++) { struct object_id oid1, oid2; nth_midxed_object_oid(&oid1, m, i); nth_midxed_object_oid(&oid2, m, i + 1); if (oidcmp(&oid1, &oid2) >= 0) midx_report(_("oid lookup out of order: oid[%d] = %s >= %s = oid[%d]"), i, oid_to_hex(&oid1), oid_to_hex(&oid2), i + 1); midx_display_sparse_progress(progress, i + 1); } stop_progress(&progress); /* * Create an array mapping each object to its packfile id. Sort it * to group the objects by packfile. Use this permutation to visit * each of the objects and only require 1 packfile to be open at a * time. */ ALLOC_ARRAY(pairs, m->num_objects); for (i = 0; i < m->num_objects; i++) { pairs[i].pos = i; pairs[i].pack_int_id = nth_midxed_pack_int_id(m, i); } progress = start_sparse_progress(_("Sorting objects by packfile"), m->num_objects); display_progress(progress, 0); /* TODO: Measure QSORT() progress */ QSORT(pairs, m->num_objects, compare_pair_pos_vs_id); stop_progress(&progress); progress = start_sparse_progress(_("Verifying object offsets"), m->num_objects); for (i = 0; i < m->num_objects; i++) { struct object_id oid; struct pack_entry e; off_t m_offset, p_offset; if (i > 0 && pairs[i-1].pack_int_id != pairs[i].pack_int_id && m->packs[pairs[i-1].pack_int_id]) { close_pack_fd(m->packs[pairs[i-1].pack_int_id]); close_pack_index(m->packs[pairs[i-1].pack_int_id]); } nth_midxed_object_oid(&oid, m, pairs[i].pos); if (!fill_midx_entry(r, &oid, &e, m)) { midx_report(_("failed to load pack entry for oid[%d] = %s"), pairs[i].pos, oid_to_hex(&oid)); continue; } if (open_pack_index(e.p)) { midx_report(_("failed to load pack-index for packfile %s"), e.p->pack_name); break; } m_offset = e.offset; p_offset = find_pack_entry_one(oid.hash, e.p); if (m_offset != p_offset) midx_report(_("incorrect object offset for oid[%d] = %s: %"PRIx64" != %"PRIx64), pairs[i].pos, oid_to_hex(&oid), m_offset, p_offset); midx_display_sparse_progress(progress, i + 1); } stop_progress(&progress); free(pairs); return verify_midx_error; } int expire_midx_packs(struct repository *r, const char *object_dir, unsigned flags) { uint32_t i, *count, result = 0; struct string_list packs_to_drop = STRING_LIST_INIT_DUP; struct multi_pack_index *m = load_multi_pack_index(object_dir, 1); struct progress *progress = NULL; if (!m) return 0; count = xcalloc(m->num_packs, sizeof(uint32_t)); if (flags & MIDX_PROGRESS) progress = start_progress(_("Counting referenced objects"), m->num_objects); for (i = 0; i < m->num_objects; i++) { int pack_int_id = nth_midxed_pack_int_id(m, i); count[pack_int_id]++; display_progress(progress, i + 1); } stop_progress(&progress); if (flags & MIDX_PROGRESS) progress = start_progress(_("Finding and deleting unreferenced packfiles"), m->num_packs); for (i = 0; i < m->num_packs; i++) { char *pack_name; display_progress(progress, i + 1); if (count[i]) continue; if (prepare_midx_pack(r, m, i)) continue; if (m->packs[i]->pack_keep) continue; pack_name = xstrdup(m->packs[i]->pack_name); close_pack(m->packs[i]); string_list_insert(&packs_to_drop, m->pack_names[i]); unlink_pack_path(pack_name, 0); free(pack_name); } stop_progress(&progress); free(count); if (packs_to_drop.nr) result = write_midx_internal(object_dir, m, &packs_to_drop, flags); string_list_clear(&packs_to_drop, 0); return result; } struct repack_info { timestamp_t mtime; uint32_t referenced_objects; uint32_t pack_int_id; }; static int compare_by_mtime(const void *a_, const void *b_) { const struct repack_info *a, *b; a = (const struct repack_info *)a_; b = (const struct repack_info *)b_; if (a->mtime < b->mtime) return -1; if (a->mtime > b->mtime) return 1; return 0; } static int fill_included_packs_all(struct multi_pack_index *m, unsigned char *include_pack) { uint32_t i; for (i = 0; i < m->num_packs; i++) include_pack[i] = 1; return m->num_packs < 2; } static int fill_included_packs_batch(struct repository *r, struct multi_pack_index *m, unsigned char *include_pack, size_t batch_size) { uint32_t i, packs_to_repack; size_t total_size; struct repack_info *pack_info = xcalloc(m->num_packs, sizeof(struct repack_info)); for (i = 0; i < m->num_packs; i++) { pack_info[i].pack_int_id = i; if (prepare_midx_pack(r, m, i)) continue; pack_info[i].mtime = m->packs[i]->mtime; } for (i = 0; batch_size && i < m->num_objects; i++) { uint32_t pack_int_id = nth_midxed_pack_int_id(m, i); pack_info[pack_int_id].referenced_objects++; } QSORT(pack_info, m->num_packs, compare_by_mtime); total_size = 0; packs_to_repack = 0; for (i = 0; total_size < batch_size && i < m->num_packs; i++) { int pack_int_id = pack_info[i].pack_int_id; struct packed_git *p = m->packs[pack_int_id]; size_t expected_size; if (!p) continue; if (open_pack_index(p) || !p->num_objects) continue; expected_size = (size_t)(p->pack_size * pack_info[i].referenced_objects); expected_size /= p->num_objects; if (expected_size >= batch_size) continue; packs_to_repack++; total_size += expected_size; include_pack[pack_int_id] = 1; } free(pack_info); if (total_size < batch_size || packs_to_repack < 2) return 1; return 0; } int midx_repack(struct repository *r, const char *object_dir, size_t batch_size, unsigned flags) { int result = 0; uint32_t i; unsigned char *include_pack; struct child_process cmd = CHILD_PROCESS_INIT; struct strbuf base_name = STRBUF_INIT; struct multi_pack_index *m = load_multi_pack_index(object_dir, 1); if (!m) return 0; include_pack = xcalloc(m->num_packs, sizeof(unsigned char)); if (batch_size) { if (fill_included_packs_batch(r, m, include_pack, batch_size)) goto cleanup; } else if (fill_included_packs_all(m, include_pack)) goto cleanup; argv_array_push(&cmd.args, "pack-objects"); strbuf_addstr(&base_name, object_dir); strbuf_addstr(&base_name, "/pack/pack"); argv_array_push(&cmd.args, base_name.buf); strbuf_release(&base_name); cmd.git_cmd = 1; cmd.in = cmd.out = -1; if (start_command(&cmd)) { error(_("could not start pack-objects")); result = 1; goto cleanup; } for (i = 0; i < m->num_objects; i++) { struct object_id oid; uint32_t pack_int_id = nth_midxed_pack_int_id(m, i); if (!include_pack[pack_int_id]) continue; nth_midxed_object_oid(&oid, m, i); xwrite(cmd.in, oid_to_hex(&oid), the_hash_algo->hexsz); xwrite(cmd.in, "\n", 1); } close(cmd.in); if (finish_command(&cmd)) { error(_("could not finish pack-objects")); result = 1; goto cleanup; } result = write_midx_internal(object_dir, m, NULL, flags); m = NULL; cleanup: if (m) close_midx(m); free(include_pack); return result; }