/* * Copyright 2020 Google LLC * * Use of this source code is governed by a BSD-style * license that can be found in the LICENSE file or at * https://developers.google.com/open-source/licenses/bsd */ #ifndef BASICS_H #define BASICS_H /* * miscellaneous utilities that are not provided by Git. */ #include "system.h" #include "reftable-basics.h" #ifdef __GNUC__ #define REFTABLE_UNUSED __attribute__((__unused__)) #else #define REFTABLE_UNUSED #endif /* * Initialize the buffer such that it is ready for use. This is equivalent to * using REFTABLE_BUF_INIT for stack-allocated variables. */ void reftable_buf_init(struct reftable_buf *buf); /* * Release memory associated with the buffer. The buffer is reinitialized such * that it can be reused for subsequent operations. */ void reftable_buf_release(struct reftable_buf *buf); /* * Reset the buffer such that it is effectively empty, without releasing the * memory that this structure holds on to. This is equivalent to calling * `reftable_buf_setlen(buf, 0)`. */ void reftable_buf_reset(struct reftable_buf *buf); /* * Trim the buffer to a shorter length by updating the `len` member and writing * a NUL byte to `buf[len]`. Returns 0 on success, -1 when `len` points outside * of the array. */ int reftable_buf_setlen(struct reftable_buf *buf, size_t len); /* * Lexicographically compare the two buffers. Returns 0 when both buffers have * the same contents, -1 when `a` is lexicographically smaller than `b`, and 1 * otherwise. */ int reftable_buf_cmp(const struct reftable_buf *a, const struct reftable_buf *b); /* * Append `len` bytes from `data` to the buffer. This function works with * arbitrary byte sequences, including ones that contain embedded NUL * characters. As such, we use `void *` as input type. Returns 0 on success, * REFTABLE_OUT_OF_MEMORY_ERROR on allocation failure. */ int reftable_buf_add(struct reftable_buf *buf, const void *data, size_t len); /* Equivalent to `reftable_buf_add(buf, s, strlen(s))`. */ int reftable_buf_addstr(struct reftable_buf *buf, const char *s); /* * Detach the buffer from the structure such that the underlying memory is now * owned by the caller. The buffer is reinitialized such that it can be reused * for subsequent operations. */ char *reftable_buf_detach(struct reftable_buf *buf); /* Bigendian en/decoding of integers */ static inline void reftable_put_be16(void *out, uint16_t i) { unsigned char *p = out; p[0] = (uint8_t)((i >> 8) & 0xff); p[1] = (uint8_t)((i >> 0) & 0xff); } static inline void reftable_put_be24(void *out, uint32_t i) { unsigned char *p = out; p[0] = (uint8_t)((i >> 16) & 0xff); p[1] = (uint8_t)((i >> 8) & 0xff); p[2] = (uint8_t)((i >> 0) & 0xff); } static inline void reftable_put_be32(void *out, uint32_t i) { unsigned char *p = out; p[0] = (uint8_t)((i >> 24) & 0xff); p[1] = (uint8_t)((i >> 16) & 0xff); p[2] = (uint8_t)((i >> 8) & 0xff); p[3] = (uint8_t)((i >> 0) & 0xff); } static inline void reftable_put_be64(void *out, uint64_t i) { unsigned char *p = out; p[0] = (uint8_t)((i >> 56) & 0xff); p[1] = (uint8_t)((i >> 48) & 0xff); p[2] = (uint8_t)((i >> 40) & 0xff); p[3] = (uint8_t)((i >> 32) & 0xff); p[4] = (uint8_t)((i >> 24) & 0xff); p[5] = (uint8_t)((i >> 16) & 0xff); p[6] = (uint8_t)((i >> 8) & 0xff); p[7] = (uint8_t)((i >> 0) & 0xff); } static inline uint16_t reftable_get_be16(const void *in) { const unsigned char *p = in; return (uint16_t)(p[0]) << 8 | (uint16_t)(p[1]) << 0; } static inline uint32_t reftable_get_be24(const void *in) { const unsigned char *p = in; return (uint32_t)(p[0]) << 16 | (uint32_t)(p[1]) << 8 | (uint32_t)(p[2]) << 0; } static inline uint32_t reftable_get_be32(const void *in) { const unsigned char *p = in; return (uint32_t)(p[0]) << 24 | (uint32_t)(p[1]) << 16 | (uint32_t)(p[2]) << 8| (uint32_t)(p[3]) << 0; } static inline uint64_t reftable_get_be64(const void *in) { const unsigned char *p = in; return (uint64_t)(p[0]) << 56 | (uint64_t)(p[1]) << 48 | (uint64_t)(p[2]) << 40 | (uint64_t)(p[3]) << 32 | (uint64_t)(p[4]) << 24 | (uint64_t)(p[5]) << 16 | (uint64_t)(p[6]) << 8 | (uint64_t)(p[7]) << 0; } /* * find smallest index i in [0, sz) at which `f(i) > 0`, assuming that f is * ascending. Return sz if `f(i) == 0` for all indices. The search is aborted * and `sz` is returned in case `f(i) < 0`. * * Contrary to bsearch(3), this returns something useful if the argument is not * found. */ size_t binsearch(size_t sz, int (*f)(size_t k, void *args), void *args); /* * Frees a NULL terminated array of malloced strings. The array itself is also * freed. */ void free_names(char **a); /* * Parse a newline separated list of names. `size` is the length of the buffer, * without terminating '\0'. Empty names are discarded. Returns a `NULL` * pointer when allocations fail. */ char **parse_names(char *buf, int size); /* compares two NULL-terminated arrays of strings. */ int names_equal(const char **a, const char **b); /* returns the array size of a NULL-terminated array of strings. */ size_t names_length(const char **names); /* Allocation routines; they invoke the functions set through * reftable_set_alloc() */ void *reftable_malloc(size_t sz); void *reftable_realloc(void *p, size_t sz); void reftable_free(void *p); void *reftable_calloc(size_t nelem, size_t elsize); char *reftable_strdup(const char *str); static inline int reftable_alloc_size(size_t nelem, size_t elsize, size_t *out) { if (nelem && elsize > SIZE_MAX / nelem) return -1; *out = nelem * elsize; return 0; } #define REFTABLE_ALLOC_ARRAY(x, alloc) do { \ size_t alloc_size; \ if (reftable_alloc_size(sizeof(*(x)), (alloc), &alloc_size) < 0) { \ errno = ENOMEM; \ (x) = NULL; \ } else { \ (x) = reftable_malloc(alloc_size); \ } \ } while (0) #define REFTABLE_CALLOC_ARRAY(x, alloc) (x) = reftable_calloc((alloc), sizeof(*(x))) #define REFTABLE_REALLOC_ARRAY(x, alloc) do { \ size_t alloc_size; \ if (reftable_alloc_size(sizeof(*(x)), (alloc), &alloc_size) < 0) { \ errno = ENOMEM; \ (x) = NULL; \ } else { \ (x) = reftable_realloc((x), alloc_size); \ } \ } while (0) static inline void *reftable_alloc_grow(void *p, size_t nelem, size_t elsize, size_t *allocp) { void *new_p; size_t alloc = *allocp * 2 + 1, alloc_bytes; if (alloc < nelem) alloc = nelem; if (reftable_alloc_size(elsize, alloc, &alloc_bytes) < 0) { errno = ENOMEM; return p; } new_p = reftable_realloc(p, alloc_bytes); if (!new_p) return p; *allocp = alloc; return new_p; } #define REFTABLE_ALLOC_GROW(x, nr, alloc) ( \ (nr) > (alloc) && ( \ (x) = reftable_alloc_grow((x), (nr), sizeof(*(x)), &(alloc)), \ (nr) > (alloc) \ ) \ ) #define REFTABLE_ALLOC_GROW_OR_NULL(x, nr, alloc) do { \ size_t reftable_alloc_grow_or_null_alloc = alloc; \ if (REFTABLE_ALLOC_GROW((x), (nr), reftable_alloc_grow_or_null_alloc)) { \ REFTABLE_FREE_AND_NULL(x); \ alloc = 0; \ } else { \ alloc = reftable_alloc_grow_or_null_alloc; \ } \ } while (0) #define REFTABLE_FREE_AND_NULL(p) do { reftable_free(p); (p) = NULL; } while (0) #ifndef REFTABLE_ALLOW_BANNED_ALLOCATORS # define REFTABLE_BANNED(func) use_reftable_##func##_instead # undef malloc # define malloc(sz) REFTABLE_BANNED(malloc) # undef realloc # define realloc(ptr, sz) REFTABLE_BANNED(realloc) # undef free # define free(ptr) REFTABLE_BANNED(free) # undef calloc # define calloc(nelem, elsize) REFTABLE_BANNED(calloc) # undef strdup # define strdup(str) REFTABLE_BANNED(strdup) #endif #define REFTABLE_SWAP(a, b) do { \ void *_swap_a_ptr = &(a); \ void *_swap_b_ptr = &(b); \ unsigned char _swap_buffer[sizeof(a) - 2 * sizeof(a) * (sizeof(a) != sizeof(b))]; \ memcpy(_swap_buffer, _swap_a_ptr, sizeof(a)); \ memcpy(_swap_a_ptr, _swap_b_ptr, sizeof(a)); \ memcpy(_swap_b_ptr, _swap_buffer, sizeof(a)); \ } while (0) /* Find the longest shared prefix size of `a` and `b` */ size_t common_prefix_size(struct reftable_buf *a, struct reftable_buf *b); uint32_t hash_size(enum reftable_hash id); /* * Format IDs that identify the hash function used by a reftable. Note that * these constants end up on disk and thus mustn't change. The format IDs are * "sha1" and "s256" in big endian, respectively. */ #define REFTABLE_FORMAT_ID_SHA1 ((uint32_t) 0x73686131) #define REFTABLE_FORMAT_ID_SHA256 ((uint32_t) 0x73323536) #endif