Browse Source
This patch linearises the GIT commit history graph into merge order
which is defined by invariants specified in Documentation/git-rev-list.txt.
The linearisation produced by this patch is superior in an objective sense
to that produced by the existing git-rev-list implementation in that
the linearisation produced is guaranteed to have the minimum number of
discontinuities, where a discontinuity is defined as an adjacent pair of
commits in the output list which are not related in a direct child-parent
relationship.
With this patch a graph like this:
a4 ---
| \ \
| b4 |
|/ | |
a3 | |
| | |
a2 | |
| | c3
| | |
| | c2
| b3 |
| | /|
| b2 |
| | c1
| | /
| b1
a1 |
| |
a0 |
| /
root
Sorts like this:
= a4
| c3
| c2
| c1
^ b4
| b3
| b2
| b1
^ a3
| a2
| a1
| a0
= root
Instead of this:
= a4
| c3
^ b4
| a3
^ c2
^ b3
^ a2
^ b2
^ c1
^ a1
^ b1
^ a0
= root
A test script, t/t6000-rev-list.sh, includes a test which demonstrates
that the linearisation produced by --merge-order has less discontinuities
than the linearisation produced by git-rev-list without the --merge-order
flag specified. To see this, do the following:
cd t
./t6000-rev-list.sh
cd trash
cat actual-default-order
cat actual-merge-order
The existing behaviour of git-rev-list is preserved, by default. To obtain
the modified behaviour, specify --merge-order or --merge-order --show-breaks
on the command line.
This version of the patch has been tested on the git repository and also on the linux-2.6
repository and has reasonable performance on both - ~50-100% slower than the original algorithm.
This version of the patch has incorporated a functional equivalent of the Linus' output limiting
algorithm into the merge-order algorithm itself. This operates per the notes associated
with Linus' commit 337cb3fb8d
.
This version has incorporated Linus' feedback regarding proposed changes to rev-list.c.
(see: [PATCH] Factor out filtering in rev-list.c)
This version has improved the way sort_first_epoch marks commits as uninteresting.
For more details about this change, refer to Documentation/git-rev-list.txt
and http://blackcubes.dyndns.org/epoch/.
Signed-off-by: Jon Seymour <jon.seymour@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
maint


8 changed files with 840 additions and 18 deletions
@ -0,0 +1,693 @@
@@ -0,0 +1,693 @@
|
||||
/* |
||||
* Copyright (c) 2005, Jon Seymour |
||||
* |
||||
* For more information about epoch theory on which this module is based, |
||||
* refer to http://blackcubes.dyndns.org/epoch/. That web page defines |
||||
* terms such as "epoch" and "minimal, non-linear epoch" and provides rationales |
||||
* for some of the algorithms used here. |
||||
* |
||||
*/ |
||||
#include <stdlib.h> |
||||
#include <openssl/bn.h> // provides arbitrary precision integers |
||||
// required to accurately represent fractional |
||||
//mass |
||||
|
||||
#include "cache.h" |
||||
#include "commit.h" |
||||
#include "epoch.h" |
||||
|
||||
struct fraction { |
||||
BIGNUM numerator; |
||||
BIGNUM denominator; |
||||
}; |
||||
|
||||
#define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next) |
||||
|
||||
static BN_CTX *context = NULL; |
||||
static struct fraction *one = NULL; |
||||
static struct fraction *zero = NULL; |
||||
|
||||
static BN_CTX *get_BN_CTX() |
||||
{ |
||||
if (!context) { |
||||
context = BN_CTX_new(); |
||||
} |
||||
return context; |
||||
} |
||||
|
||||
static struct fraction *new_zero() |
||||
{ |
||||
struct fraction *result = xmalloc(sizeof(*result)); |
||||
BN_init(&result->numerator); |
||||
BN_init(&result->denominator); |
||||
BN_zero(&result->numerator); |
||||
BN_one(&result->denominator); |
||||
return result; |
||||
} |
||||
|
||||
static void clear_fraction(struct fraction *fraction) |
||||
{ |
||||
BN_clear(&fraction->numerator); |
||||
BN_clear(&fraction->denominator); |
||||
} |
||||
|
||||
static struct fraction *divide(struct fraction *result, struct fraction *fraction, int divisor) |
||||
{ |
||||
BIGNUM bn_divisor; |
||||
|
||||
BN_init(&bn_divisor); |
||||
BN_set_word(&bn_divisor, divisor); |
||||
|
||||
BN_copy(&result->numerator, &fraction->numerator); |
||||
BN_mul(&result->denominator, &fraction->denominator, &bn_divisor, get_BN_CTX()); |
||||
|
||||
BN_clear(&bn_divisor); |
||||
return result; |
||||
} |
||||
|
||||
static struct fraction *init_fraction(struct fraction *fraction) |
||||
{ |
||||
BN_init(&fraction->numerator); |
||||
BN_init(&fraction->denominator); |
||||
BN_zero(&fraction->numerator); |
||||
BN_one(&fraction->denominator); |
||||
return fraction; |
||||
} |
||||
|
||||
static struct fraction *get_one() |
||||
{ |
||||
if (!one) { |
||||
one = new_zero(); |
||||
BN_one(&one->numerator); |
||||
} |
||||
return one; |
||||
} |
||||
|
||||
static struct fraction *get_zero() |
||||
{ |
||||
if (!zero) { |
||||
zero = new_zero(); |
||||
} |
||||
return zero; |
||||
} |
||||
|
||||
static struct fraction *copy(struct fraction *to, struct fraction *from) |
||||
{ |
||||
BN_copy(&to->numerator, &from->numerator); |
||||
BN_copy(&to->denominator, &from->denominator); |
||||
return to; |
||||
} |
||||
|
||||
static struct fraction *add(struct fraction *result, struct fraction *left, struct fraction *right) |
||||
{ |
||||
BIGNUM a, b, gcd; |
||||
|
||||
BN_init(&a); |
||||
BN_init(&b); |
||||
BN_init(&gcd); |
||||
|
||||
BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX()); |
||||
BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX()); |
||||
BN_mul(&result->denominator, &left->denominator, &right->denominator, get_BN_CTX()); |
||||
BN_add(&result->numerator, &a, &b); |
||||
|
||||
BN_gcd(&gcd, &result->denominator, &result->numerator, get_BN_CTX()); |
||||
BN_div(&result->denominator, NULL, &result->denominator, &gcd, get_BN_CTX()); |
||||
BN_div(&result->numerator, NULL, &result->numerator, &gcd, get_BN_CTX()); |
||||
|
||||
BN_clear(&a); |
||||
BN_clear(&b); |
||||
BN_clear(&gcd); |
||||
|
||||
return result; |
||||
} |
||||
|
||||
static int compare(struct fraction *left, struct fraction *right) |
||||
{ |
||||
BIGNUM a, b; |
||||
|
||||
int result; |
||||
|
||||
BN_init(&a); |
||||
BN_init(&b); |
||||
|
||||
BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX()); |
||||
BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX()); |
||||
|
||||
result = BN_cmp(&a, &b); |
||||
|
||||
BN_clear(&a); |
||||
BN_clear(&b); |
||||
|
||||
return result; |
||||
} |
||||
|
||||
struct mass_counter { |
||||
struct fraction seen; |
||||
struct fraction pending; |
||||
}; |
||||
|
||||
static struct mass_counter *new_mass_counter(struct commit *commit, struct fraction *pending) |
||||
{ |
||||
struct mass_counter *mass_counter = xmalloc(sizeof(*mass_counter)); |
||||
memset(mass_counter, 0, sizeof(*mass_counter)); |
||||
|
||||
init_fraction(&mass_counter->seen); |
||||
init_fraction(&mass_counter->pending); |
||||
|
||||
copy(&mass_counter->pending, pending); |
||||
copy(&mass_counter->seen, get_zero()); |
||||
|
||||
if (commit->object.util) { |
||||
die("multiple attempts to initialize mass counter for %s\n", sha1_to_hex(commit->object.sha1)); |
||||
} |
||||
|
||||
commit->object.util = mass_counter; |
||||
|
||||
return mass_counter; |
||||
} |
||||
|
||||
static void free_mass_counter(struct mass_counter *counter) |
||||
{ |
||||
clear_fraction(&counter->seen); |
||||
clear_fraction(&counter->pending); |
||||
free(counter); |
||||
} |
||||
|
||||
// |
||||
// Finds the base commit of a list of commits. |
||||
// |
||||
// One property of the commit being searched for is that every commit reachable |
||||
// from the base commit is reachable from the commits in the starting list only |
||||
// via paths that include the base commit. |
||||
// |
||||
// This algorithm uses a conservation of mass approach to find the base commit. |
||||
// |
||||
// We start by injecting one unit of mass into the graph at each |
||||
// of the commits in the starting list. Injecting mass into a commit |
||||
// is achieved by adding to its pending mass counter and, if it is not already |
||||
// enqueued, enqueuing the commit in a list of pending commits, in latest |
||||
// commit date first order. |
||||
// |
||||
// The algorithm then preceeds to visit each commit in the pending queue. |
||||
// Upon each visit, the pending mass is added to the mass already seen for that |
||||
// commit and then divided into N equal portions, where N is the number of |
||||
// parents of the commit being visited. The divided portions are then injected |
||||
// into each of the parents. |
||||
// |
||||
// The algorithm continues until we discover a commit which has seen all the |
||||
// mass originally injected or until we run out of things to do. |
||||
// |
||||
// If we find a commit that has seen all the original mass, we have found |
||||
// the common base of all the commits in the starting list. |
||||
// |
||||
// The algorithm does _not_ depend on accurate timestamps for correct operation. |
||||
// However, reasonably sane (e.g. non-random) timestamps are required in order |
||||
// to prevent an exponential performance characteristic. The occasional |
||||
// timestamp inaccuracy will not dramatically affect performance but may |
||||
// result in more nodes being processed than strictly necessary. |
||||
// |
||||
// This procedure sets *boundary to the address of the base commit. It returns |
||||
// non-zero if, and only if, there was a problem parsing one of the |
||||
// commits discovered during the traversal. |
||||
// |
||||
static int find_base_for_list(struct commit_list *list, struct commit **boundary) |
||||
{ |
||||
|
||||
int ret = 0; |
||||
|
||||
struct commit_list *cleaner = NULL; |
||||
struct commit_list *pending = NULL; |
||||
|
||||
*boundary = NULL; |
||||
|
||||
struct fraction injected; |
||||
|
||||
init_fraction(&injected); |
||||
|
||||
for (; list; list = list->next) { |
||||
|
||||
struct commit *item = list->item; |
||||
|
||||
if (item->object.util || (item->object.flags & UNINTERESTING)) { |
||||
die("%s:%d:%s: logic error: this should not have happened - commit %s\n", |
||||
__FILE__, __LINE__, __FUNCTION__, sha1_to_hex(item->object.sha1)); |
||||
} |
||||
|
||||
new_mass_counter(list->item, get_one()); |
||||
add(&injected, &injected, get_one()); |
||||
|
||||
commit_list_insert(list->item, &cleaner); |
||||
commit_list_insert(list->item, &pending); |
||||
} |
||||
|
||||
while (!*boundary && pending && !ret) { |
||||
|
||||
struct commit *latest = pop_commit(&pending); |
||||
|
||||
struct mass_counter *latest_node = (struct mass_counter *) latest->object.util; |
||||
|
||||
if ((ret = parse_commit(latest))) |
||||
continue; |
||||
|
||||
add(&latest_node->seen, &latest_node->seen, &latest_node->pending); |
||||
|
||||
int num_parents = count_parents(latest); |
||||
|
||||
if (num_parents) { |
||||
|
||||
struct fraction distribution; |
||||
struct commit_list *parents; |
||||
|
||||
divide(init_fraction(&distribution), &latest_node->pending, num_parents); |
||||
|
||||
for (parents = latest->parents; parents; parents = parents->next) { |
||||
|
||||
struct commit *parent = parents->item; |
||||
struct mass_counter *parent_node = (struct mass_counter *) parent->object.util; |
||||
|
||||
if (!parent_node) { |
||||
|
||||
parent_node = new_mass_counter(parent, &distribution); |
||||
|
||||
insert_by_date(&pending, parent); |
||||
commit_list_insert(parent, &cleaner); |
||||
|
||||
} else { |
||||
|
||||
if (!compare(&parent_node->pending, get_zero())) { |
||||
insert_by_date(&pending, parent); |
||||
} |
||||
add(&parent_node->pending, &parent_node->pending, &distribution); |
||||
|
||||
} |
||||
} |
||||
|
||||
clear_fraction(&distribution); |
||||
|
||||
} |
||||
|
||||
if (!compare(&latest_node->seen, &injected)) { |
||||
*boundary = latest; |
||||
} |
||||
|
||||
copy(&latest_node->pending, get_zero()); |
||||
|
||||
} |
||||
|
||||
while (cleaner) { |
||||
|
||||
struct commit *next = pop_commit(&cleaner); |
||||
free_mass_counter((struct mass_counter *) next->object.util); |
||||
next->object.util = NULL; |
||||
|
||||
} |
||||
|
||||
if (pending) |
||||
free_commit_list(pending); |
||||
|
||||
clear_fraction(&injected); |
||||
|
||||
return ret; |
||||
|
||||
} |
||||
|
||||
|
||||
// |
||||
// Finds the base of an minimal, non-linear epoch, headed at head, by |
||||
// applying the find_base_for_list to a list consisting of the parents |
||||
// |
||||
static int find_base(struct commit *head, struct commit **boundary) |
||||
{ |
||||
int ret = 0; |
||||
struct commit_list *pending = NULL; |
||||
struct commit_list *next; |
||||
|
||||
commit_list_insert(head, &pending); |
||||
for (next = head->parents; next; next = next->next) { |
||||
commit_list_insert(next->item, &pending); |
||||
} |
||||
ret = find_base_for_list(pending, boundary); |
||||
free_commit_list(pending); |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
// |
||||
// This procedure traverses to the boundary of the first epoch in the epoch |
||||
// sequence of the epoch headed at head_of_epoch. This is either the end of |
||||
// the maximal linear epoch or the base of a minimal non-linear epoch. |
||||
// |
||||
// The queue of pending nodes is sorted in reverse date order and each node |
||||
// is currently in the queue at most once. |
||||
// |
||||
static int find_next_epoch_boundary(struct commit *head_of_epoch, struct commit **boundary) |
||||
{ |
||||
int ret; |
||||
struct commit *item = head_of_epoch; |
||||
|
||||
ret = parse_commit(item); |
||||
if (ret) |
||||
return ret; |
||||
|
||||
if (HAS_EXACTLY_ONE_PARENT(item)) { |
||||
|
||||
// we are at the start of a maximimal linear epoch .. traverse to the end |
||||
|
||||
// traverse to the end of a maximal linear epoch |
||||
while (HAS_EXACTLY_ONE_PARENT(item) && !ret) { |
||||
item = item->parents->item; |
||||
ret = parse_commit(item); |
||||
} |
||||
*boundary = item; |
||||
|
||||
} else { |
||||
|
||||
// otherwise, we are at the start of a minimal, non-linear |
||||
// epoch - find the common base of all parents. |
||||
|
||||
ret = find_base(item, boundary); |
||||
|
||||
} |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
// |
||||
// Returns non-zero if parent is known to be a parent of child. |
||||
// |
||||
static int is_parent_of(struct commit *parent, struct commit *child) |
||||
{ |
||||
struct commit_list *parents; |
||||
for (parents = child->parents; parents; parents = parents->next) { |
||||
if (!memcmp(parent->object.sha1, parents->item->object.sha1, sizeof(parents->item->object.sha1))) |
||||
return 1; |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
// |
||||
// Pushes an item onto the merge order stack. If the top of the stack is |
||||
// marked as being a possible "break", we check to see whether it actually |
||||
// is a break. |
||||
// |
||||
static void push_onto_merge_order_stack(struct commit_list **stack, struct commit *item) |
||||
{ |
||||
struct commit_list *top = *stack; |
||||
if (top && (top->item->object.flags & DISCONTINUITY)) { |
||||
if (is_parent_of(top->item, item)) { |
||||
top->item->object.flags &= ~DISCONTINUITY; |
||||
} |
||||
} |
||||
commit_list_insert(item, stack); |
||||
} |
||||
|
||||
// |
||||
// Marks all interesting, visited commits reachable from this commit |
||||
// as uninteresting. We stop recursing when we reach the epoch boundary, |
||||
// an unvisited node or a node that has already been marking uninteresting. |
||||
// This doesn't actually mark all ancestors between the start node and the |
||||
// epoch boundary uninteresting, but does ensure that they will |
||||
// eventually be marked uninteresting when the main sort_first_epoch |
||||
// traversal eventually reaches them. |
||||
// |
||||
static void mark_ancestors_uninteresting(struct commit *commit) |
||||
{ |
||||
unsigned int flags = commit->object.flags; |
||||
int visited = flags & VISITED; |
||||
int boundary = flags & BOUNDARY; |
||||
int uninteresting = flags & UNINTERESTING; |
||||
|
||||
if (uninteresting || boundary || !visited) { |
||||
commit->object.flags |= UNINTERESTING; |
||||
return; |
||||
|
||||
// we only need to recurse if |
||||
// we are not on the boundary, and, |
||||
// we have not already been marked uninteresting, and, |
||||
// we have already been visited. |
||||
|
||||
// |
||||
// the main sort_first_epoch traverse will |
||||
// mark unreachable all uninteresting, unvisited parents |
||||
// as they are visited so there is no need to duplicate |
||||
// that traversal here. |
||||
// |
||||
// similarly, if we are already marked uninteresting |
||||
// then either all ancestors have already been marked |
||||
// uninteresting or will be once the sort_first_epoch |
||||
// traverse reaches them. |
||||
// |
||||
} |
||||
|
||||
struct commit_list *next; |
||||
|
||||
for (next = commit->parents; next; next = next->next) |
||||
mark_ancestors_uninteresting(next->item); |
||||
} |
||||
|
||||
// |
||||
// Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head |
||||
// into merge order. |
||||
// |
||||
static void sort_first_epoch(struct commit *head, struct commit_list **stack) |
||||
{ |
||||
struct commit_list *parents; |
||||
struct commit_list *reversed_parents = NULL; |
||||
|
||||
head->object.flags |= VISITED; |
||||
|
||||
// |
||||
// parse_commit builds the parent list in reverse order with respect to the order of |
||||
// the git-commit-tree arguments. |
||||
// |
||||
// so we need to reverse this list to output the oldest (or most "local") commits last. |
||||
// |
||||
|
||||
for (parents = head->parents; parents; parents = parents->next) |
||||
commit_list_insert(parents->item, &reversed_parents); |
||||
|
||||
// |
||||
// todo: by sorting the parents in a different order, we can alter the |
||||
// merge order to show contemporaneous changes in parallel branches |
||||
// occurring after "local" changes. This is useful for a developer |
||||
// when a developer wants to see all changes that were incorporated |
||||
// into the same merge as her own changes occur after her own |
||||
// changes. |
||||
// |
||||
|
||||
while (reversed_parents) { |
||||
|
||||
struct commit *parent = pop_commit(&reversed_parents); |
||||
|
||||
if (head->object.flags & UNINTERESTING) { |
||||
// propagates the uninteresting bit to |
||||
// all parents. if we have already visited |
||||
// this parent, then the uninteresting bit |
||||
// will be propagated to each reachable |
||||
// commit that is still not marked uninteresting |
||||
// and won't otherwise be reached. |
||||
mark_ancestors_uninteresting(parent); |
||||
} |
||||
|
||||
if (!(parent->object.flags & VISITED)) { |
||||
if (parent->object.flags & BOUNDARY) { |
||||
|
||||
if (*stack) { |
||||
die("something else is on the stack - %s\n", sha1_to_hex((*stack)->item->object.sha1)); |
||||
} |
||||
|
||||
push_onto_merge_order_stack(stack, parent); |
||||
parent->object.flags |= VISITED; |
||||
|
||||
} else { |
||||
|
||||
sort_first_epoch(parent, stack); |
||||
|
||||
if (reversed_parents) { |
||||
// |
||||
// this indicates a possible discontinuity |
||||
// it may not be be actual discontinuity if |
||||
// the head of parent N happens to be the tail |
||||
// of parent N+1 |
||||
// |
||||
// the next push onto the stack will resolve the |
||||
// question |
||||
// |
||||
(*stack)->item->object.flags |= DISCONTINUITY; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
push_onto_merge_order_stack(stack, head); |
||||
} |
||||
|
||||
// |
||||
// Emit the contents of the stack. |
||||
// |
||||
// The stack is freed and replaced by NULL. |
||||
// |
||||
// Sets the return value to STOP if no further output should be generated. |
||||
// |
||||
static int emit_stack(struct commit_list **stack, emitter_func emitter) |
||||
{ |
||||
unsigned int seen = 0; |
||||
int action = CONTINUE; |
||||
|
||||
while (*stack && (action != STOP)) { |
||||
|
||||
struct commit *next = pop_commit(stack); |
||||
|
||||
seen |= next->object.flags; |
||||
|
||||
if (*stack) { |
||||
action = (*emitter) (next); |
||||
} |
||||
} |
||||
|
||||
if (*stack) { |
||||
free_commit_list(*stack); |
||||
*stack = NULL; |
||||
} |
||||
|
||||
return (action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE; |
||||
} |
||||
|
||||
// |
||||
// Sorts an arbitrary epoch into merge order by sorting each epoch |
||||
// of its epoch sequence into order. |
||||
// |
||||
// Note: this algorithm currently leaves traces of its execution in the |
||||
// object flags of nodes it discovers. This should probably be fixed. |
||||
// |
||||
static int sort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter) |
||||
{ |
||||
struct commit *next = head_of_epoch; |
||||
int ret = 0; |
||||
int action = CONTINUE; |
||||
|
||||
ret = parse_commit(head_of_epoch); |
||||
|
||||
while (next && next->parents && !ret && (action != STOP)) { |
||||
|
||||
struct commit *base = NULL; |
||||
|
||||
if ((ret = find_next_epoch_boundary(next, &base))) |
||||
return ret; |
||||
|
||||
next->object.flags |= BOUNDARY; |
||||
if (base) { |
||||
base->object.flags |= BOUNDARY; |
||||
} |
||||
|
||||
if (HAS_EXACTLY_ONE_PARENT(next)) { |
||||
|
||||
while (HAS_EXACTLY_ONE_PARENT(next) |
||||
&& (action != STOP) |
||||
&& !ret) { |
||||
|
||||
if (next->object.flags & UNINTERESTING) { |
||||
action = STOP; |
||||
} else { |
||||
action = (*emitter) (next); |
||||
} |
||||
|
||||
if (action != STOP) { |
||||
next = next->parents->item; |
||||
ret = parse_commit(next); |
||||
} |
||||
} |
||||
|
||||
} else { |
||||
|
||||
struct commit_list *stack = NULL; |
||||
sort_first_epoch(next, &stack); |
||||
action = emit_stack(&stack, emitter); |
||||
next = base; |
||||
|
||||
} |
||||
|
||||
} |
||||
|
||||
if (next && (action != STOP) && !ret) { |
||||
(*emitter) (next); |
||||
} |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
// |
||||
// Sorts the nodes reachable from a starting list in merge order, we |
||||
// first find the base for the starting list and then sort all nodes in this |
||||
// subgraph using the sort_first_epoch algorithm. Once we have reached the base |
||||
// we can continue sorting using sort_in_merge_order. |
||||
// |
||||
int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter) |
||||
{ |
||||
struct commit_list *stack = NULL; |
||||
struct commit *base; |
||||
|
||||
int ret = 0; |
||||
int action = CONTINUE; |
||||
|
||||
struct commit_list *reversed = NULL; |
||||
|
||||
for (; list; list = list->next) { |
||||
|
||||
struct commit *next = list->item; |
||||
|
||||
if (!(next->object.flags & UNINTERESTING)) { |
||||
if (next->object.flags & DUPCHECK) { |
||||
fprintf(stderr, "%s: duplicate commit %s ignored\n", __FUNCTION__, sha1_to_hex(next->object.sha1)); |
||||
} else { |
||||
next->object.flags |= DUPCHECK; |
||||
commit_list_insert(list->item, &reversed); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (!reversed->next) { |
||||
|
||||
// if there is only one element in the list, we can sort it using |
||||
// sort_in_merge_order. |
||||
|
||||
base = reversed->item; |
||||
|
||||
} else { |
||||
|
||||
// otherwise, we search for the base of the list |
||||
|
||||
if ((ret = find_base_for_list(reversed, &base))) |
||||
return ret; |
||||
|
||||
if (base) { |
||||
base->object.flags |= BOUNDARY; |
||||
} |
||||
|
||||
while (reversed) { |
||||
sort_first_epoch(pop_commit(&reversed), &stack); |
||||
if (reversed) { |
||||
// |
||||
// if we have more commits to push, then the |
||||
// first push for the next parent may (or may not) |
||||
// represent a discontinuity with respect to the |
||||
// parent currently on the top of the stack. |
||||
// |
||||
// mark it for checking here, and check it |
||||
// with the next push...see sort_first_epoch for |
||||
// more details. |
||||
// |
||||
stack->item->object.flags |= DISCONTINUITY; |
||||
} |
||||
} |
||||
|
||||
action = emit_stack(&stack, emitter); |
||||
} |
||||
|
||||
if (base && (action != STOP)) { |
||||
ret = sort_in_merge_order(base, emitter); |
||||
} |
||||
|
||||
return ret; |
||||
} |
@ -0,0 +1,20 @@
@@ -0,0 +1,20 @@
|
||||
#ifndef EPOCH_H |
||||
#define EPOCH_H |
||||
|
||||
|
||||
// return codes for emitter_func |
||||
#define STOP 0 |
||||
#define CONTINUE 1 |
||||
#define DO 2 |
||||
typedef int (*emitter_func) (struct commit *); |
||||
|
||||
int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter); |
||||
|
||||
#define UNINTERESTING (1u<<2) |
||||
#define BOUNDARY (1u<<3) |
||||
#define VISITED (1u<<4) |
||||
#define DISCONTINUITY (1u<<5) |
||||
#define DUPCHECK (1u<<6) |
||||
|
||||
|
||||
#endif /* EPOCH_H */ |
Loading…
Reference in new issue