Browse Source
* js/patience-diff: bash completions: Add the --patience option Introduce the diff option '--patience' Implement the patience diff algorithm Conflicts: contrib/completion/git-completion.bashmaint
Junio C Hamano
16 years ago
10 changed files with 564 additions and 2 deletions
@ -0,0 +1,168 @@
@@ -0,0 +1,168 @@
|
||||
#!/bin/sh |
||||
|
||||
test_description='patience diff algorithm' |
||||
|
||||
. ./test-lib.sh |
||||
|
||||
cat >file1 <<\EOF |
||||
#include <stdio.h> |
||||
|
||||
// Frobs foo heartily |
||||
int frobnitz(int foo) |
||||
{ |
||||
int i; |
||||
for(i = 0; i < 10; i++) |
||||
{ |
||||
printf("Your answer is: "); |
||||
printf("%d\n", foo); |
||||
} |
||||
} |
||||
|
||||
int fact(int n) |
||||
{ |
||||
if(n > 1) |
||||
{ |
||||
return fact(n-1) * n; |
||||
} |
||||
return 1; |
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
frobnitz(fact(10)); |
||||
} |
||||
EOF |
||||
|
||||
cat >file2 <<\EOF |
||||
#include <stdio.h> |
||||
|
||||
int fib(int n) |
||||
{ |
||||
if(n > 2) |
||||
{ |
||||
return fib(n-1) + fib(n-2); |
||||
} |
||||
return 1; |
||||
} |
||||
|
||||
// Frobs foo heartily |
||||
int frobnitz(int foo) |
||||
{ |
||||
int i; |
||||
for(i = 0; i < 10; i++) |
||||
{ |
||||
printf("%d\n", foo); |
||||
} |
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
frobnitz(fib(10)); |
||||
} |
||||
EOF |
||||
|
||||
cat >expect <<\EOF |
||||
diff --git a/file1 b/file2 |
||||
index 6faa5a3..e3af329 100644 |
||||
--- a/file1 |
||||
+++ b/file2 |
||||
@@ -1,26 +1,25 @@ |
||||
#include <stdio.h> |
||||
|
||||
+int fib(int n) |
||||
+{ |
||||
+ if(n > 2) |
||||
+ { |
||||
+ return fib(n-1) + fib(n-2); |
||||
+ } |
||||
+ return 1; |
||||
+} |
||||
+ |
||||
// Frobs foo heartily |
||||
int frobnitz(int foo) |
||||
{ |
||||
int i; |
||||
for(i = 0; i < 10; i++) |
||||
{ |
||||
- printf("Your answer is: "); |
||||
printf("%d\n", foo); |
||||
} |
||||
} |
||||
|
||||
-int fact(int n) |
||||
-{ |
||||
- if(n > 1) |
||||
- { |
||||
- return fact(n-1) * n; |
||||
- } |
||||
- return 1; |
||||
-} |
||||
- |
||||
int main(int argc, char **argv) |
||||
{ |
||||
- frobnitz(fact(10)); |
||||
+ frobnitz(fib(10)); |
||||
} |
||||
EOF |
||||
|
||||
test_expect_success 'patience diff' ' |
||||
|
||||
test_must_fail git diff --no-index --patience file1 file2 > output && |
||||
test_cmp expect output |
||||
|
||||
' |
||||
|
||||
test_expect_success 'patience diff output is valid' ' |
||||
|
||||
mv file2 expect && |
||||
git apply < output && |
||||
test_cmp expect file2 |
||||
|
||||
' |
||||
|
||||
cat >uniq1 <<\EOF |
||||
1 |
||||
2 |
||||
3 |
||||
4 |
||||
5 |
||||
6 |
||||
EOF |
||||
|
||||
cat >uniq2 <<\EOF |
||||
a |
||||
b |
||||
c |
||||
d |
||||
e |
||||
f |
||||
EOF |
||||
|
||||
cat >expect <<\EOF |
||||
diff --git a/uniq1 b/uniq2 |
||||
index b414108..0fdf397 100644 |
||||
--- a/uniq1 |
||||
+++ b/uniq2 |
||||
@@ -1,6 +1,6 @@ |
||||
-1 |
||||
-2 |
||||
-3 |
||||
-4 |
||||
-5 |
||||
-6 |
||||
+a |
||||
+b |
||||
+c |
||||
+d |
||||
+e |
||||
+f |
||||
EOF |
||||
|
||||
test_expect_success 'completely different files' ' |
||||
|
||||
test_must_fail git diff --no-index --patience uniq1 uniq2 > output && |
||||
test_cmp expect output |
||||
|
||||
' |
||||
|
||||
test_done |
@ -0,0 +1,381 @@
@@ -0,0 +1,381 @@
|
||||
/* |
||||
* LibXDiff by Davide Libenzi ( File Differential Library ) |
||||
* Copyright (C) 2003-2009 Davide Libenzi, Johannes E. Schindelin |
||||
* |
||||
* This library is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* This library is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with this library; if not, write to the Free Software |
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||||
* |
||||
* Davide Libenzi <davidel@xmailserver.org> |
||||
* |
||||
*/ |
||||
#include "xinclude.h" |
||||
#include "xtypes.h" |
||||
#include "xdiff.h" |
||||
|
||||
/* |
||||
* The basic idea of patience diff is to find lines that are unique in |
||||
* both files. These are intuitively the ones that we want to see as |
||||
* common lines. |
||||
* |
||||
* The maximal ordered sequence of such line pairs (where ordered means |
||||
* that the order in the sequence agrees with the order of the lines in |
||||
* both files) naturally defines an initial set of common lines. |
||||
* |
||||
* Now, the algorithm tries to extend the set of common lines by growing |
||||
* the line ranges where the files have identical lines. |
||||
* |
||||
* Between those common lines, the patience diff algorithm is applied |
||||
* recursively, until no unique line pairs can be found; these line ranges |
||||
* are handled by the well-known Myers algorithm. |
||||
*/ |
||||
|
||||
#define NON_UNIQUE ULONG_MAX |
||||
|
||||
/* |
||||
* This is a hash mapping from line hash to line numbers in the first and |
||||
* second file. |
||||
*/ |
||||
struct hashmap { |
||||
int nr, alloc; |
||||
struct entry { |
||||
unsigned long hash; |
||||
/* |
||||
* 0 = unused entry, 1 = first line, 2 = second, etc. |
||||
* line2 is NON_UNIQUE if the line is not unique |
||||
* in either the first or the second file. |
||||
*/ |
||||
unsigned long line1, line2; |
||||
/* |
||||
* "next" & "previous" are used for the longest common |
||||
* sequence; |
||||
* initially, "next" reflects only the order in file1. |
||||
*/ |
||||
struct entry *next, *previous; |
||||
} *entries, *first, *last; |
||||
/* were common records found? */ |
||||
unsigned long has_matches; |
||||
mmfile_t *file1, *file2; |
||||
xdfenv_t *env; |
||||
xpparam_t const *xpp; |
||||
}; |
||||
|
||||
/* The argument "pass" is 1 for the first file, 2 for the second. */ |
||||
static void insert_record(int line, struct hashmap *map, int pass) |
||||
{ |
||||
xrecord_t **records = pass == 1 ? |
||||
map->env->xdf1.recs : map->env->xdf2.recs; |
||||
xrecord_t *record = records[line - 1], *other; |
||||
/* |
||||
* After xdl_prepare_env() (or more precisely, due to |
||||
* xdl_classify_record()), the "ha" member of the records (AKA lines) |
||||
* is _not_ the hash anymore, but a linearized version of it. In |
||||
* other words, the "ha" member is guaranteed to start with 0 and |
||||
* the second record's ha can only be 0 or 1, etc. |
||||
* |
||||
* So we multiply ha by 2 in the hope that the hashing was |
||||
* "unique enough". |
||||
*/ |
||||
int index = (int)((record->ha << 1) % map->alloc); |
||||
|
||||
while (map->entries[index].line1) { |
||||
other = map->env->xdf1.recs[map->entries[index].line1 - 1]; |
||||
if (map->entries[index].hash != record->ha || |
||||
!xdl_recmatch(record->ptr, record->size, |
||||
other->ptr, other->size, |
||||
map->xpp->flags)) { |
||||
if (++index >= map->alloc) |
||||
index = 0; |
||||
continue; |
||||
} |
||||
if (pass == 2) |
||||
map->has_matches = 1; |
||||
if (pass == 1 || map->entries[index].line2) |
||||
map->entries[index].line2 = NON_UNIQUE; |
||||
else |
||||
map->entries[index].line2 = line; |
||||
return; |
||||
} |
||||
if (pass == 2) |
||||
return; |
||||
map->entries[index].line1 = line; |
||||
map->entries[index].hash = record->ha; |
||||
if (!map->first) |
||||
map->first = map->entries + index; |
||||
if (map->last) { |
||||
map->last->next = map->entries + index; |
||||
map->entries[index].previous = map->last; |
||||
} |
||||
map->last = map->entries + index; |
||||
map->nr++; |
||||
} |
||||
|
||||
/* |
||||
* This function has to be called for each recursion into the inter-hunk |
||||
* parts, as previously non-unique lines can become unique when being |
||||
* restricted to a smaller part of the files. |
||||
* |
||||
* It is assumed that env has been prepared using xdl_prepare(). |
||||
*/ |
||||
static int fill_hashmap(mmfile_t *file1, mmfile_t *file2, |
||||
xpparam_t const *xpp, xdfenv_t *env, |
||||
struct hashmap *result, |
||||
int line1, int count1, int line2, int count2) |
||||
{ |
||||
result->file1 = file1; |
||||
result->file2 = file2; |
||||
result->xpp = xpp; |
||||
result->env = env; |
||||
|
||||
/* We know exactly how large we want the hash map */ |
||||
result->alloc = count1 * 2; |
||||
result->entries = (struct entry *) |
||||
xdl_malloc(result->alloc * sizeof(struct entry)); |
||||
if (!result->entries) |
||||
return -1; |
||||
memset(result->entries, 0, result->alloc * sizeof(struct entry)); |
||||
|
||||
/* First, fill with entries from the first file */ |
||||
while (count1--) |
||||
insert_record(line1++, result, 1); |
||||
|
||||
/* Then search for matches in the second file */ |
||||
while (count2--) |
||||
insert_record(line2++, result, 2); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/* |
||||
* Find the longest sequence with a smaller last element (meaning a smaller |
||||
* line2, as we construct the sequence with entries ordered by line1). |
||||
*/ |
||||
static int binary_search(struct entry **sequence, int longest, |
||||
struct entry *entry) |
||||
{ |
||||
int left = -1, right = longest; |
||||
|
||||
while (left + 1 < right) { |
||||
int middle = (left + right) / 2; |
||||
/* by construction, no two entries can be equal */ |
||||
if (sequence[middle]->line2 > entry->line2) |
||||
right = middle; |
||||
else |
||||
left = middle; |
||||
} |
||||
/* return the index in "sequence", _not_ the sequence length */ |
||||
return left; |
||||
} |
||||
|
||||
/* |
||||
* The idea is to start with the list of common unique lines sorted by |
||||
* the order in file1. For each of these pairs, the longest (partial) |
||||
* sequence whose last element's line2 is smaller is determined. |
||||
* |
||||
* For efficiency, the sequences are kept in a list containing exactly one |
||||
* item per sequence length: the sequence with the smallest last |
||||
* element (in terms of line2). |
||||
*/ |
||||
static struct entry *find_longest_common_sequence(struct hashmap *map) |
||||
{ |
||||
struct entry **sequence = xdl_malloc(map->nr * sizeof(struct entry *)); |
||||
int longest = 0, i; |
||||
struct entry *entry; |
||||
|
||||
for (entry = map->first; entry; entry = entry->next) { |
||||
if (!entry->line2 || entry->line2 == NON_UNIQUE) |
||||
continue; |
||||
i = binary_search(sequence, longest, entry); |
||||
entry->previous = i < 0 ? NULL : sequence[i]; |
||||
sequence[++i] = entry; |
||||
if (i == longest) |
||||
longest++; |
||||
} |
||||
|
||||
/* No common unique lines were found */ |
||||
if (!longest) { |
||||
xdl_free(sequence); |
||||
return NULL; |
||||
} |
||||
|
||||
/* Iterate starting at the last element, adjusting the "next" members */ |
||||
entry = sequence[longest - 1]; |
||||
entry->next = NULL; |
||||
while (entry->previous) { |
||||
entry->previous->next = entry; |
||||
entry = entry->previous; |
||||
} |
||||
xdl_free(sequence); |
||||
return entry; |
||||
} |
||||
|
||||
static int match(struct hashmap *map, int line1, int line2) |
||||
{ |
||||
xrecord_t *record1 = map->env->xdf1.recs[line1 - 1]; |
||||
xrecord_t *record2 = map->env->xdf2.recs[line2 - 1]; |
||||
return xdl_recmatch(record1->ptr, record1->size, |
||||
record2->ptr, record2->size, map->xpp->flags); |
||||
} |
||||
|
||||
static int patience_diff(mmfile_t *file1, mmfile_t *file2, |
||||
xpparam_t const *xpp, xdfenv_t *env, |
||||
int line1, int count1, int line2, int count2); |
||||
|
||||
static int walk_common_sequence(struct hashmap *map, struct entry *first, |
||||
int line1, int count1, int line2, int count2) |
||||
{ |
||||
int end1 = line1 + count1, end2 = line2 + count2; |
||||
int next1, next2; |
||||
|
||||
for (;;) { |
||||
/* Try to grow the line ranges of common lines */ |
||||
if (first) { |
||||
next1 = first->line1; |
||||
next2 = first->line2; |
||||
while (next1 > line1 && next2 > line2 && |
||||
match(map, next1 - 1, next2 - 1)) { |
||||
next1--; |
||||
next2--; |
||||
} |
||||
} else { |
||||
next1 = end1; |
||||
next2 = end2; |
||||
} |
||||
while (line1 < next1 && line2 < next2 && |
||||
match(map, line1, line2)) { |
||||
line1++; |
||||
line2++; |
||||
} |
||||
|
||||
/* Recurse */ |
||||
if (next1 > line1 || next2 > line2) { |
||||
struct hashmap submap; |
||||
|
||||
memset(&submap, 0, sizeof(submap)); |
||||
if (patience_diff(map->file1, map->file2, |
||||
map->xpp, map->env, |
||||
line1, next1 - line1, |
||||
line2, next2 - line2)) |
||||
return -1; |
||||
} |
||||
|
||||
if (!first) |
||||
return 0; |
||||
|
||||
while (first->next && |
||||
first->next->line1 == first->line1 + 1 && |
||||
first->next->line2 == first->line2 + 1) |
||||
first = first->next; |
||||
|
||||
line1 = first->line1 + 1; |
||||
line2 = first->line2 + 1; |
||||
|
||||
first = first->next; |
||||
} |
||||
} |
||||
|
||||
static int fall_back_to_classic_diff(struct hashmap *map, |
||||
int line1, int count1, int line2, int count2) |
||||
{ |
||||
/* |
||||
* This probably does not work outside Git, since |
||||
* we have a very simple mmfile structure. |
||||
* |
||||
* Note: ideally, we would reuse the prepared environment, but |
||||
* the libxdiff interface does not (yet) allow for diffing only |
||||
* ranges of lines instead of the whole files. |
||||
*/ |
||||
mmfile_t subfile1, subfile2; |
||||
xpparam_t xpp; |
||||
xdfenv_t env; |
||||
|
||||
subfile1.ptr = (char *)map->env->xdf1.recs[line1 - 1]->ptr; |
||||
subfile1.size = map->env->xdf1.recs[line1 + count1 - 2]->ptr + |
||||
map->env->xdf1.recs[line1 + count1 - 2]->size - subfile1.ptr; |
||||
subfile2.ptr = (char *)map->env->xdf2.recs[line2 - 1]->ptr; |
||||
subfile2.size = map->env->xdf2.recs[line2 + count2 - 2]->ptr + |
||||
map->env->xdf2.recs[line2 + count2 - 2]->size - subfile2.ptr; |
||||
xpp.flags = map->xpp->flags & ~XDF_PATIENCE_DIFF; |
||||
if (xdl_do_diff(&subfile1, &subfile2, &xpp, &env) < 0) |
||||
return -1; |
||||
|
||||
memcpy(map->env->xdf1.rchg + line1 - 1, env.xdf1.rchg, count1); |
||||
memcpy(map->env->xdf2.rchg + line2 - 1, env.xdf2.rchg, count2); |
||||
|
||||
xdl_free_env(&env); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/* |
||||
* Recursively find the longest common sequence of unique lines, |
||||
* and if none was found, ask xdl_do_diff() to do the job. |
||||
* |
||||
* This function assumes that env was prepared with xdl_prepare_env(). |
||||
*/ |
||||
static int patience_diff(mmfile_t *file1, mmfile_t *file2, |
||||
xpparam_t const *xpp, xdfenv_t *env, |
||||
int line1, int count1, int line2, int count2) |
||||
{ |
||||
struct hashmap map; |
||||
struct entry *first; |
||||
int result = 0; |
||||
|
||||
/* trivial case: one side is empty */ |
||||
if (!count1) { |
||||
while(count2--) |
||||
env->xdf2.rchg[line2++ - 1] = 1; |
||||
return 0; |
||||
} else if (!count2) { |
||||
while(count1--) |
||||
env->xdf1.rchg[line1++ - 1] = 1; |
||||
return 0; |
||||
} |
||||
|
||||
memset(&map, 0, sizeof(map)); |
||||
if (fill_hashmap(file1, file2, xpp, env, &map, |
||||
line1, count1, line2, count2)) |
||||
return -1; |
||||
|
||||
/* are there any matching lines at all? */ |
||||
if (!map.has_matches) { |
||||
while(count1--) |
||||
env->xdf1.rchg[line1++ - 1] = 1; |
||||
while(count2--) |
||||
env->xdf2.rchg[line2++ - 1] = 1; |
||||
xdl_free(map.entries); |
||||
return 0; |
||||
} |
||||
|
||||
first = find_longest_common_sequence(&map); |
||||
if (first) |
||||
result = walk_common_sequence(&map, first, |
||||
line1, count1, line2, count2); |
||||
else |
||||
result = fall_back_to_classic_diff(&map, |
||||
line1, count1, line2, count2); |
||||
|
||||
xdl_free(map.entries); |
||||
return result; |
||||
} |
||||
|
||||
int xdl_do_patience_diff(mmfile_t *file1, mmfile_t *file2, |
||||
xpparam_t const *xpp, xdfenv_t *env) |
||||
{ |
||||
if (xdl_prepare_env(file1, file2, xpp, env) < 0) |
||||
return -1; |
||||
|
||||
/* environment is cleaned up in xdl_diff() */ |
||||
return patience_diff(file1, file2, xpp, env, |
||||
1, env->xdf1.nrec, 1, env->xdf2.nrec); |
||||
} |
Loading…
Reference in new issue