You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

406 lines
12 KiB

#!/bin/sh
test_description='git log for a path with Bloom filters'
. ./test-lib.sh
GIT_TEST_COMMIT_GRAPH=0
GIT_TEST_COMMIT_GRAPH_CHANGED_PATHS=0
test_expect_success 'setup test - repo, commits, commit graph, log outputs' '
git init &&
mkdir A A/B A/B/C &&
test_commit c1 A/file1 &&
test_commit c2 A/B/file2 &&
test_commit c3 A/B/C/file3 &&
test_commit c4 A/file1 &&
test_commit c5 A/B/file2 &&
test_commit c6 A/B/C/file3 &&
test_commit c7 A/file1 &&
test_commit c8 A/B/file2 &&
test_commit c9 A/B/C/file3 &&
test_commit c10 file_to_be_deleted &&
git checkout -b side HEAD~4 &&
test_commit side-1 file4 &&
git checkout master &&
git merge side &&
test_commit c11 file5 &&
mv file5 file5_renamed &&
git add file5_renamed &&
git commit -m "rename" &&
rm file_to_be_deleted &&
git add . &&
git commit -m "file removed" &&
bloom: encode out-of-bounds filters as non-empty When a changed-path Bloom filter has either zero, or more than a certain number (commonly 512) of entries, the commit-graph machinery encodes it as "missing". More specifically, it sets the indices adjacent in the BIDX chunk as equal to each other to indicate a "length 0" filter; that is, that the filter occupies zero bytes on disk. This has heretofore been fine, since the commit-graph machinery has no need to care about these filters with too few or too many changed paths. Both cases act like no filter has been generated at all, and so there is no need to store them. In a subsequent commit, however, the commit-graph machinery will learn to only compute Bloom filters for some commits in the current commit-graph layer. This is a change from the current implementation which computes Bloom filters for all commits that are in the layer being written. Critically for this patch, only computing some of the Bloom filters means adding a third state for length 0 Bloom filters: zero entries, too many entries, or "hasn't been computed". It will be important for that future patch to distinguish between "not representable" (i.e., zero or too-many changed paths), and "hasn't been computed". In particular, we don't want to waste time recomputing filters that have already been computed. To that end, change how we store Bloom filters in the "computed but not representable" category: - Bloom filters with no entries are stored as a single byte with all bits low (i.e., all queries to that Bloom filter will return "definitely not") - Bloom filters with too many entries are stored as a single byte with all bits set high (i.e., all queries to that Bloom filter will return "maybe"). These rules are sufficient to not incur a behavior change by changing the on-disk representation of these two classes. Likewise, no specification changes are necessary for the commit-graph format, either: - Filters that were previously empty will be recomputed and stored according to the new rules, and - old clients reading filters generated by new clients will interpret the filters correctly and be none the wiser to how they were generated. Clients will invoke the Bloom machinery in more cases than before, but this can be addressed by returning a NULL filter when all bits are set high. This can be addressed in a future patch. Note that this does increase the size of on-disk commit-graphs, but far less than other proposals. In particular, this is generally more efficient than storing a bitmap for which commits haven't computed their Bloom filters. Storing a bitmap incurs a penalty of one bit per commit, whereas storing explicit filters as above incurs a penalty of one byte per too-large or empty commit. In practice, these boundary commits likely occupy a small proportion of the overall number of commits, and so the size penalty is likely smaller than storing a bitmap for all commits. See, for example, these relative proportions of such boundary commits (collected by SZEDER Gábor): | Percentage of | commit-graph | | | commits modifying | file size | | ├────────┬──────────────┼───────────────────┤ pct. | | 0 path | >= 512 paths | before | after | change | ┌────────────────┼────────┼──────────────┼─────────┼─────────┼───────────┤ | android-base | 13.20% | 0.13% | 37.468M | 37.534M | +0.1741 % | | cmssw | 0.15% | 0.23% | 17.118M | 17.119M | +0.0091 % | | cpython | 3.07% | 0.01% | 7.967M | 7.971M | +0.0423 % | | elasticsearch | 0.70% | 1.00% | 8.833M | 8.835M | +0.0128 % | | gcc | 0.00% | 0.08% | 16.073M | 16.074M | +0.0030 % | | gecko-dev | 0.14% | 0.64% | 59.868M | 59.874M | +0.0105 % | | git | 0.11% | 0.02% | 3.895M | 3.895M | +0.0020 % | | glibc | 0.02% | 0.10% | 3.555M | 3.555M | +0.0021 % | | go | 0.00% | 0.07% | 3.186M | 3.186M | +0.0018 % | | homebrew-cask | 0.40% | 0.02% | 7.035M | 7.035M | +0.0065 % | | homebrew-core | 0.01% | 0.01% | 11.611M | 11.611M | +0.0002 % | | jdk | 0.26% | 5.64% | 5.537M | 5.540M | +0.0590 % | | linux | 0.01% | 0.51% | 63.735M | 63.740M | +0.0073 % | | llvm-project | 0.12% | 0.03% | 25.515M | 25.516M | +0.0050 % | | rails | 0.10% | 0.10% | 6.252M | 6.252M | +0.0027 % | | rust | 0.07% | 0.17% | 9.364M | 9.364M | +0.0033 % | | tensorflow | 0.09% | 1.02% | 7.009M | 7.010M | +0.0158 % | | webkit | 0.05% | 0.31% | 17.405M | 17.406M | +0.0047 % | (where the above increase is determined by computing a non-split commit-graph before and after this patch). Given that these projects are all "large" by commit count, the storage cost by writing these filters explicitly is negligible. In the most extreme example, android-base (which has 494,848 commits at the time of writing) would have its commit-graph increase by a modest 68.4 KB. Finally, a test to exercise filters which contain too many changed path entries will be introduced in a subsequent patch. Suggested-by: SZEDER Gábor <szeder.dev@gmail.com> Suggested-by: Jakub Narębski <jnareb@gmail.com> Helped-by: Derrick Stolee <dstolee@microsoft.com> Helped-by: SZEDER Gábor <szeder.dev@gmail.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
git commit --allow-empty -m "empty" &&
commit-graph: use the "hash version" byte The commit-graph format reserved a byte among the header of the file to store a "hash version". During the SHA-256 work, this was not modified because file formats are not necessarily intended to work across hash versions. If a repository has SHA-256 as its hash algorithm, it automatically up-shifts the lengths of object names in all necessary formats. However, since we have this byte available for adjusting the version, we can make the file formats more obviously incompatible instead of relying on other context from the repository. Update the oid_version() method in commit-graph.c to add a new value, 2, for sha-256. This automatically writes the new value in a SHA-256 repository _and_ verifies the value is correct. This is a breaking change relative to the current 'master' branch since 092b677 (Merge branch 'bc/sha-256-cvs-svn-updates', 2020-08-13) but it is not breaking relative to any released version of Git. The test impact is relatively minor: the output of 'test-tool read-graph' lists the header information, so those instances of '1' need to be replaced with a variable determined by GIT_TEST_DEFAULT_HASH. A more careful test is added that specifically creates a repository of each type then swaps the commit-graph files. The important value here is that the "git log" command succeeds while writing a message to stderr. Helped-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Reviewed-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
git commit-graph write --reachable --changed-paths &&
test_oid_cache <<-EOF
oid_version sha1:1
oid_version sha256:2
EOF
'
bloom: encode out-of-bounds filters as non-empty When a changed-path Bloom filter has either zero, or more than a certain number (commonly 512) of entries, the commit-graph machinery encodes it as "missing". More specifically, it sets the indices adjacent in the BIDX chunk as equal to each other to indicate a "length 0" filter; that is, that the filter occupies zero bytes on disk. This has heretofore been fine, since the commit-graph machinery has no need to care about these filters with too few or too many changed paths. Both cases act like no filter has been generated at all, and so there is no need to store them. In a subsequent commit, however, the commit-graph machinery will learn to only compute Bloom filters for some commits in the current commit-graph layer. This is a change from the current implementation which computes Bloom filters for all commits that are in the layer being written. Critically for this patch, only computing some of the Bloom filters means adding a third state for length 0 Bloom filters: zero entries, too many entries, or "hasn't been computed". It will be important for that future patch to distinguish between "not representable" (i.e., zero or too-many changed paths), and "hasn't been computed". In particular, we don't want to waste time recomputing filters that have already been computed. To that end, change how we store Bloom filters in the "computed but not representable" category: - Bloom filters with no entries are stored as a single byte with all bits low (i.e., all queries to that Bloom filter will return "definitely not") - Bloom filters with too many entries are stored as a single byte with all bits set high (i.e., all queries to that Bloom filter will return "maybe"). These rules are sufficient to not incur a behavior change by changing the on-disk representation of these two classes. Likewise, no specification changes are necessary for the commit-graph format, either: - Filters that were previously empty will be recomputed and stored according to the new rules, and - old clients reading filters generated by new clients will interpret the filters correctly and be none the wiser to how they were generated. Clients will invoke the Bloom machinery in more cases than before, but this can be addressed by returning a NULL filter when all bits are set high. This can be addressed in a future patch. Note that this does increase the size of on-disk commit-graphs, but far less than other proposals. In particular, this is generally more efficient than storing a bitmap for which commits haven't computed their Bloom filters. Storing a bitmap incurs a penalty of one bit per commit, whereas storing explicit filters as above incurs a penalty of one byte per too-large or empty commit. In practice, these boundary commits likely occupy a small proportion of the overall number of commits, and so the size penalty is likely smaller than storing a bitmap for all commits. See, for example, these relative proportions of such boundary commits (collected by SZEDER Gábor): | Percentage of | commit-graph | | | commits modifying | file size | | ├────────┬──────────────┼───────────────────┤ pct. | | 0 path | >= 512 paths | before | after | change | ┌────────────────┼────────┼──────────────┼─────────┼─────────┼───────────┤ | android-base | 13.20% | 0.13% | 37.468M | 37.534M | +0.1741 % | | cmssw | 0.15% | 0.23% | 17.118M | 17.119M | +0.0091 % | | cpython | 3.07% | 0.01% | 7.967M | 7.971M | +0.0423 % | | elasticsearch | 0.70% | 1.00% | 8.833M | 8.835M | +0.0128 % | | gcc | 0.00% | 0.08% | 16.073M | 16.074M | +0.0030 % | | gecko-dev | 0.14% | 0.64% | 59.868M | 59.874M | +0.0105 % | | git | 0.11% | 0.02% | 3.895M | 3.895M | +0.0020 % | | glibc | 0.02% | 0.10% | 3.555M | 3.555M | +0.0021 % | | go | 0.00% | 0.07% | 3.186M | 3.186M | +0.0018 % | | homebrew-cask | 0.40% | 0.02% | 7.035M | 7.035M | +0.0065 % | | homebrew-core | 0.01% | 0.01% | 11.611M | 11.611M | +0.0002 % | | jdk | 0.26% | 5.64% | 5.537M | 5.540M | +0.0590 % | | linux | 0.01% | 0.51% | 63.735M | 63.740M | +0.0073 % | | llvm-project | 0.12% | 0.03% | 25.515M | 25.516M | +0.0050 % | | rails | 0.10% | 0.10% | 6.252M | 6.252M | +0.0027 % | | rust | 0.07% | 0.17% | 9.364M | 9.364M | +0.0033 % | | tensorflow | 0.09% | 1.02% | 7.009M | 7.010M | +0.0158 % | | webkit | 0.05% | 0.31% | 17.405M | 17.406M | +0.0047 % | (where the above increase is determined by computing a non-split commit-graph before and after this patch). Given that these projects are all "large" by commit count, the storage cost by writing these filters explicitly is negligible. In the most extreme example, android-base (which has 494,848 commits at the time of writing) would have its commit-graph increase by a modest 68.4 KB. Finally, a test to exercise filters which contain too many changed path entries will be introduced in a subsequent patch. Suggested-by: SZEDER Gábor <szeder.dev@gmail.com> Suggested-by: Jakub Narębski <jnareb@gmail.com> Helped-by: Derrick Stolee <dstolee@microsoft.com> Helped-by: SZEDER Gábor <szeder.dev@gmail.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
graph_read_expect () {
NUM_CHUNKS=5
cat >expect <<- EOF
commit-graph: use the "hash version" byte The commit-graph format reserved a byte among the header of the file to store a "hash version". During the SHA-256 work, this was not modified because file formats are not necessarily intended to work across hash versions. If a repository has SHA-256 as its hash algorithm, it automatically up-shifts the lengths of object names in all necessary formats. However, since we have this byte available for adjusting the version, we can make the file formats more obviously incompatible instead of relying on other context from the repository. Update the oid_version() method in commit-graph.c to add a new value, 2, for sha-256. This automatically writes the new value in a SHA-256 repository _and_ verifies the value is correct. This is a breaking change relative to the current 'master' branch since 092b677 (Merge branch 'bc/sha-256-cvs-svn-updates', 2020-08-13) but it is not breaking relative to any released version of Git. The test impact is relatively minor: the output of 'test-tool read-graph' lists the header information, so those instances of '1' need to be replaced with a variable determined by GIT_TEST_DEFAULT_HASH. A more careful test is added that specifically creates a repository of each type then swaps the commit-graph files. The important value here is that the "git log" command succeeds while writing a message to stderr. Helped-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Reviewed-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
header: 43475048 1 $(test_oid oid_version) $NUM_CHUNKS 0
num_commits: $1
chunks: oid_fanout oid_lookup commit_metadata bloom_indexes bloom_data
EOF
test-tool read-graph >actual &&
test_cmp expect actual
}
test_expect_success 'commit-graph write wrote out the bloom chunks' '
bloom: encode out-of-bounds filters as non-empty When a changed-path Bloom filter has either zero, or more than a certain number (commonly 512) of entries, the commit-graph machinery encodes it as "missing". More specifically, it sets the indices adjacent in the BIDX chunk as equal to each other to indicate a "length 0" filter; that is, that the filter occupies zero bytes on disk. This has heretofore been fine, since the commit-graph machinery has no need to care about these filters with too few or too many changed paths. Both cases act like no filter has been generated at all, and so there is no need to store them. In a subsequent commit, however, the commit-graph machinery will learn to only compute Bloom filters for some commits in the current commit-graph layer. This is a change from the current implementation which computes Bloom filters for all commits that are in the layer being written. Critically for this patch, only computing some of the Bloom filters means adding a third state for length 0 Bloom filters: zero entries, too many entries, or "hasn't been computed". It will be important for that future patch to distinguish between "not representable" (i.e., zero or too-many changed paths), and "hasn't been computed". In particular, we don't want to waste time recomputing filters that have already been computed. To that end, change how we store Bloom filters in the "computed but not representable" category: - Bloom filters with no entries are stored as a single byte with all bits low (i.e., all queries to that Bloom filter will return "definitely not") - Bloom filters with too many entries are stored as a single byte with all bits set high (i.e., all queries to that Bloom filter will return "maybe"). These rules are sufficient to not incur a behavior change by changing the on-disk representation of these two classes. Likewise, no specification changes are necessary for the commit-graph format, either: - Filters that were previously empty will be recomputed and stored according to the new rules, and - old clients reading filters generated by new clients will interpret the filters correctly and be none the wiser to how they were generated. Clients will invoke the Bloom machinery in more cases than before, but this can be addressed by returning a NULL filter when all bits are set high. This can be addressed in a future patch. Note that this does increase the size of on-disk commit-graphs, but far less than other proposals. In particular, this is generally more efficient than storing a bitmap for which commits haven't computed their Bloom filters. Storing a bitmap incurs a penalty of one bit per commit, whereas storing explicit filters as above incurs a penalty of one byte per too-large or empty commit. In practice, these boundary commits likely occupy a small proportion of the overall number of commits, and so the size penalty is likely smaller than storing a bitmap for all commits. See, for example, these relative proportions of such boundary commits (collected by SZEDER Gábor): | Percentage of | commit-graph | | | commits modifying | file size | | ├────────┬──────────────┼───────────────────┤ pct. | | 0 path | >= 512 paths | before | after | change | ┌────────────────┼────────┼──────────────┼─────────┼─────────┼───────────┤ | android-base | 13.20% | 0.13% | 37.468M | 37.534M | +0.1741 % | | cmssw | 0.15% | 0.23% | 17.118M | 17.119M | +0.0091 % | | cpython | 3.07% | 0.01% | 7.967M | 7.971M | +0.0423 % | | elasticsearch | 0.70% | 1.00% | 8.833M | 8.835M | +0.0128 % | | gcc | 0.00% | 0.08% | 16.073M | 16.074M | +0.0030 % | | gecko-dev | 0.14% | 0.64% | 59.868M | 59.874M | +0.0105 % | | git | 0.11% | 0.02% | 3.895M | 3.895M | +0.0020 % | | glibc | 0.02% | 0.10% | 3.555M | 3.555M | +0.0021 % | | go | 0.00% | 0.07% | 3.186M | 3.186M | +0.0018 % | | homebrew-cask | 0.40% | 0.02% | 7.035M | 7.035M | +0.0065 % | | homebrew-core | 0.01% | 0.01% | 11.611M | 11.611M | +0.0002 % | | jdk | 0.26% | 5.64% | 5.537M | 5.540M | +0.0590 % | | linux | 0.01% | 0.51% | 63.735M | 63.740M | +0.0073 % | | llvm-project | 0.12% | 0.03% | 25.515M | 25.516M | +0.0050 % | | rails | 0.10% | 0.10% | 6.252M | 6.252M | +0.0027 % | | rust | 0.07% | 0.17% | 9.364M | 9.364M | +0.0033 % | | tensorflow | 0.09% | 1.02% | 7.009M | 7.010M | +0.0158 % | | webkit | 0.05% | 0.31% | 17.405M | 17.406M | +0.0047 % | (where the above increase is determined by computing a non-split commit-graph before and after this patch). Given that these projects are all "large" by commit count, the storage cost by writing these filters explicitly is negligible. In the most extreme example, android-base (which has 494,848 commits at the time of writing) would have its commit-graph increase by a modest 68.4 KB. Finally, a test to exercise filters which contain too many changed path entries will be introduced in a subsequent patch. Suggested-by: SZEDER Gábor <szeder.dev@gmail.com> Suggested-by: Jakub Narębski <jnareb@gmail.com> Helped-by: Derrick Stolee <dstolee@microsoft.com> Helped-by: SZEDER Gábor <szeder.dev@gmail.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
graph_read_expect 16
'
# Turn off any inherited trace2 settings for this test.
sane_unset GIT_TRACE2 GIT_TRACE2_PERF GIT_TRACE2_EVENT
sane_unset GIT_TRACE2_PERF_BRIEF
sane_unset GIT_TRACE2_CONFIG_PARAMS
setup () {
rm -f "$TRASH_DIRECTORY/trace.perf" &&
git -c core.commitGraph=false log --pretty="format:%s" $1 >log_wo_bloom &&
GIT_TRACE2_PERF="$TRASH_DIRECTORY/trace.perf" git -c core.commitGraph=true log --pretty="format:%s" $1 >log_w_bloom
}
test_bloom_filters_used () {
log_args=$1
commit-graph: introduce 'get_bloom_filter_settings()' Many places in the code often need a pointer to the commit-graph's 'struct bloom_filter_settings', in which case they often take the value from the top-most commit-graph. In the non-split case, this works as expected. In the split case, however, things get a little tricky. Not all layers in a chain of incremental commit-graphs are required to themselves have Bloom data, and so whether or not some part of the code uses Bloom filters depends entirely on whether or not the top-most level of the commit-graph chain has Bloom filters. This has been the behavior since Bloom filters were introduced, and has been codified into the tests since a759bfa9ee (t4216: add end to end tests for git log with Bloom filters, 2020-04-06). In fact, t4216.130 requires that Bloom filters are not used in exactly the case described earlier. There is no reason that this needs to be the case, since it is perfectly valid for commits in an earlier layer to have Bloom filters when commits in a newer layer do not. Since Bloom settings are guaranteed in practice to be the same for any layer in a chain that has Bloom data, it is sufficient to traverse the '->base_graph' pointer until either (1) a non-null 'struct bloom_filter_settings *' is found, or (2) until we are at the root of the commit-graph chain. Introduce a 'get_bloom_filter_settings()' function that does just this, and use it instead of purely dereferencing the top-most graph's '->bloom_filter_settings' pointer. While we're at it, add an additional test in t5324 to guard against code in the commit-graph writing machinery that doesn't correctly handle a NULL 'struct bloom_filter *'. Co-authored-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
bloom_trace_prefix="statistics:{\"filter_not_present\":${2:-0},\"maybe\""
setup "$log_args" &&
grep -q "$bloom_trace_prefix" "$TRASH_DIRECTORY/trace.perf" &&
test_cmp log_wo_bloom log_w_bloom &&
test_path_is_file "$TRASH_DIRECTORY/trace.perf"
}
test_bloom_filters_not_used () {
log_args=$1
setup "$log_args" &&
! grep -q "statistics:{\"filter_not_present\":" "$TRASH_DIRECTORY/trace.perf" &&
test_cmp log_wo_bloom log_w_bloom
}
for path in A A/B A/B/C A/file1 A/B/file2 A/B/C/file3 file4 file5 file5_renamed file_to_be_deleted
do
for option in "" \
"--all" \
"--full-history" \
"--full-history --simplify-merges" \
"--simplify-merges" \
"--simplify-by-decoration" \
"--follow" \
"--first-parent" \
"--topo-order" \
"--date-order" \
"--author-date-order" \
"--ancestry-path side..master"
do
test_expect_success "git log option: $option for path: $path" '
test_bloom_filters_used "$option -- $path" &&
test_config commitgraph.readChangedPaths false &&
test_bloom_filters_not_used "$option -- $path"
'
done
done
test_expect_success 'git log -- folder works with and without the trailing slash' '
test_bloom_filters_used "-- A" &&
test_bloom_filters_used "-- A/"
'
test_expect_success 'git log for path that does not exist. ' '
test_bloom_filters_used "-- path_does_not_exist"
'
test_expect_success 'git log with --walk-reflogs does not use Bloom filters' '
test_bloom_filters_not_used "--walk-reflogs -- A"
'
test_expect_success 'git log -- multiple path specs does not use Bloom filters' '
test_bloom_filters_not_used "-- file4 A/file1"
'
test_expect_success 'git log -- "." pathspec at root does not use Bloom filters' '
test_bloom_filters_not_used "-- ."
'
test_expect_success 'git log with wildcard that resolves to a single path uses Bloom filters' '
test_bloom_filters_used "-- *4" &&
test_bloom_filters_used "-- *renamed"
'
test_expect_success 'git log with wildcard that resolves to a multiple paths does not uses Bloom filters' '
test_bloom_filters_not_used "-- *" &&
test_bloom_filters_not_used "-- file*"
'
test_expect_success 'setup - add commit-graph to the chain without Bloom filters' '
test_commit c14 A/anotherFile2 &&
test_commit c15 A/B/anotherFile2 &&
test_commit c16 A/B/C/anotherFile2 &&
git commit-graph write --reachable --split --no-changed-paths &&
test_line_count = 2 .git/objects/info/commit-graphs/commit-graph-chain
'
commit-graph: introduce 'get_bloom_filter_settings()' Many places in the code often need a pointer to the commit-graph's 'struct bloom_filter_settings', in which case they often take the value from the top-most commit-graph. In the non-split case, this works as expected. In the split case, however, things get a little tricky. Not all layers in a chain of incremental commit-graphs are required to themselves have Bloom data, and so whether or not some part of the code uses Bloom filters depends entirely on whether or not the top-most level of the commit-graph chain has Bloom filters. This has been the behavior since Bloom filters were introduced, and has been codified into the tests since a759bfa9ee (t4216: add end to end tests for git log with Bloom filters, 2020-04-06). In fact, t4216.130 requires that Bloom filters are not used in exactly the case described earlier. There is no reason that this needs to be the case, since it is perfectly valid for commits in an earlier layer to have Bloom filters when commits in a newer layer do not. Since Bloom settings are guaranteed in practice to be the same for any layer in a chain that has Bloom data, it is sufficient to traverse the '->base_graph' pointer until either (1) a non-null 'struct bloom_filter_settings *' is found, or (2) until we are at the root of the commit-graph chain. Introduce a 'get_bloom_filter_settings()' function that does just this, and use it instead of purely dereferencing the top-most graph's '->bloom_filter_settings' pointer. While we're at it, add an additional test in t5324 to guard against code in the commit-graph writing machinery that doesn't correctly handle a NULL 'struct bloom_filter *'. Co-authored-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
test_expect_success 'use Bloom filters even if the latest graph does not have Bloom filters' '
# Ensure that the number of empty filters is equal to the number of
# filters in the latest graph layer to prove that they are loaded (and
# ignored).
test_bloom_filters_used "-- A/B" 3
'
test_expect_success 'setup - add commit-graph to the chain with Bloom filters' '
test_commit c17 A/anotherFile3 &&
git commit-graph write --reachable --changed-paths --split &&
test_line_count = 3 .git/objects/info/commit-graphs/commit-graph-chain
'
test_bloom_filters_used_when_some_filters_are_missing () {
log_args=$1
bloom: encode out-of-bounds filters as non-empty When a changed-path Bloom filter has either zero, or more than a certain number (commonly 512) of entries, the commit-graph machinery encodes it as "missing". More specifically, it sets the indices adjacent in the BIDX chunk as equal to each other to indicate a "length 0" filter; that is, that the filter occupies zero bytes on disk. This has heretofore been fine, since the commit-graph machinery has no need to care about these filters with too few or too many changed paths. Both cases act like no filter has been generated at all, and so there is no need to store them. In a subsequent commit, however, the commit-graph machinery will learn to only compute Bloom filters for some commits in the current commit-graph layer. This is a change from the current implementation which computes Bloom filters for all commits that are in the layer being written. Critically for this patch, only computing some of the Bloom filters means adding a third state for length 0 Bloom filters: zero entries, too many entries, or "hasn't been computed". It will be important for that future patch to distinguish between "not representable" (i.e., zero or too-many changed paths), and "hasn't been computed". In particular, we don't want to waste time recomputing filters that have already been computed. To that end, change how we store Bloom filters in the "computed but not representable" category: - Bloom filters with no entries are stored as a single byte with all bits low (i.e., all queries to that Bloom filter will return "definitely not") - Bloom filters with too many entries are stored as a single byte with all bits set high (i.e., all queries to that Bloom filter will return "maybe"). These rules are sufficient to not incur a behavior change by changing the on-disk representation of these two classes. Likewise, no specification changes are necessary for the commit-graph format, either: - Filters that were previously empty will be recomputed and stored according to the new rules, and - old clients reading filters generated by new clients will interpret the filters correctly and be none the wiser to how they were generated. Clients will invoke the Bloom machinery in more cases than before, but this can be addressed by returning a NULL filter when all bits are set high. This can be addressed in a future patch. Note that this does increase the size of on-disk commit-graphs, but far less than other proposals. In particular, this is generally more efficient than storing a bitmap for which commits haven't computed their Bloom filters. Storing a bitmap incurs a penalty of one bit per commit, whereas storing explicit filters as above incurs a penalty of one byte per too-large or empty commit. In practice, these boundary commits likely occupy a small proportion of the overall number of commits, and so the size penalty is likely smaller than storing a bitmap for all commits. See, for example, these relative proportions of such boundary commits (collected by SZEDER Gábor): | Percentage of | commit-graph | | | commits modifying | file size | | ├────────┬──────────────┼───────────────────┤ pct. | | 0 path | >= 512 paths | before | after | change | ┌────────────────┼────────┼──────────────┼─────────┼─────────┼───────────┤ | android-base | 13.20% | 0.13% | 37.468M | 37.534M | +0.1741 % | | cmssw | 0.15% | 0.23% | 17.118M | 17.119M | +0.0091 % | | cpython | 3.07% | 0.01% | 7.967M | 7.971M | +0.0423 % | | elasticsearch | 0.70% | 1.00% | 8.833M | 8.835M | +0.0128 % | | gcc | 0.00% | 0.08% | 16.073M | 16.074M | +0.0030 % | | gecko-dev | 0.14% | 0.64% | 59.868M | 59.874M | +0.0105 % | | git | 0.11% | 0.02% | 3.895M | 3.895M | +0.0020 % | | glibc | 0.02% | 0.10% | 3.555M | 3.555M | +0.0021 % | | go | 0.00% | 0.07% | 3.186M | 3.186M | +0.0018 % | | homebrew-cask | 0.40% | 0.02% | 7.035M | 7.035M | +0.0065 % | | homebrew-core | 0.01% | 0.01% | 11.611M | 11.611M | +0.0002 % | | jdk | 0.26% | 5.64% | 5.537M | 5.540M | +0.0590 % | | linux | 0.01% | 0.51% | 63.735M | 63.740M | +0.0073 % | | llvm-project | 0.12% | 0.03% | 25.515M | 25.516M | +0.0050 % | | rails | 0.10% | 0.10% | 6.252M | 6.252M | +0.0027 % | | rust | 0.07% | 0.17% | 9.364M | 9.364M | +0.0033 % | | tensorflow | 0.09% | 1.02% | 7.009M | 7.010M | +0.0158 % | | webkit | 0.05% | 0.31% | 17.405M | 17.406M | +0.0047 % | (where the above increase is determined by computing a non-split commit-graph before and after this patch). Given that these projects are all "large" by commit count, the storage cost by writing these filters explicitly is negligible. In the most extreme example, android-base (which has 494,848 commits at the time of writing) would have its commit-graph increase by a modest 68.4 KB. Finally, a test to exercise filters which contain too many changed path entries will be introduced in a subsequent patch. Suggested-by: SZEDER Gábor <szeder.dev@gmail.com> Suggested-by: Jakub Narębski <jnareb@gmail.com> Helped-by: Derrick Stolee <dstolee@microsoft.com> Helped-by: SZEDER Gábor <szeder.dev@gmail.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
bloom_trace_prefix="statistics:{\"filter_not_present\":3,\"maybe\":6,\"definitely_not\":9"
setup "$log_args" &&
grep -q "$bloom_trace_prefix" "$TRASH_DIRECTORY/trace.perf" &&
test_cmp log_wo_bloom log_w_bloom
}
test_expect_success 'Use Bloom filters if they exist in the latest but not all commit graphs in the chain.' '
test_bloom_filters_used_when_some_filters_are_missing "-- A/B"
'
test_expect_success 'persist filter settings' '
test_when_finished rm -rf .git/objects/info/commit-graph* &&
rm -rf .git/objects/info/commit-graph* &&
GIT_TRACE2_EVENT="$(pwd)/trace2.txt" \
GIT_TRACE2_EVENT_NESTING=5 \
GIT_TEST_BLOOM_SETTINGS_NUM_HASHES=9 \
GIT_TEST_BLOOM_SETTINGS_BITS_PER_ENTRY=15 \
git commit-graph write --reachable --changed-paths &&
grep "{\"hash_version\":1,\"num_hashes\":9,\"bits_per_entry\":15,\"max_changed_paths\":512" trace2.txt &&
GIT_TRACE2_EVENT="$(pwd)/trace2-auto.txt" \
GIT_TRACE2_EVENT_NESTING=5 \
git commit-graph write --reachable --changed-paths &&
grep "{\"hash_version\":1,\"num_hashes\":9,\"bits_per_entry\":15,\"max_changed_paths\":512" trace2-auto.txt
'
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
test_max_changed_paths () {
grep "\"max_changed_paths\":$1" $2
}
bloom: encode out-of-bounds filters as non-empty When a changed-path Bloom filter has either zero, or more than a certain number (commonly 512) of entries, the commit-graph machinery encodes it as "missing". More specifically, it sets the indices adjacent in the BIDX chunk as equal to each other to indicate a "length 0" filter; that is, that the filter occupies zero bytes on disk. This has heretofore been fine, since the commit-graph machinery has no need to care about these filters with too few or too many changed paths. Both cases act like no filter has been generated at all, and so there is no need to store them. In a subsequent commit, however, the commit-graph machinery will learn to only compute Bloom filters for some commits in the current commit-graph layer. This is a change from the current implementation which computes Bloom filters for all commits that are in the layer being written. Critically for this patch, only computing some of the Bloom filters means adding a third state for length 0 Bloom filters: zero entries, too many entries, or "hasn't been computed". It will be important for that future patch to distinguish between "not representable" (i.e., zero or too-many changed paths), and "hasn't been computed". In particular, we don't want to waste time recomputing filters that have already been computed. To that end, change how we store Bloom filters in the "computed but not representable" category: - Bloom filters with no entries are stored as a single byte with all bits low (i.e., all queries to that Bloom filter will return "definitely not") - Bloom filters with too many entries are stored as a single byte with all bits set high (i.e., all queries to that Bloom filter will return "maybe"). These rules are sufficient to not incur a behavior change by changing the on-disk representation of these two classes. Likewise, no specification changes are necessary for the commit-graph format, either: - Filters that were previously empty will be recomputed and stored according to the new rules, and - old clients reading filters generated by new clients will interpret the filters correctly and be none the wiser to how they were generated. Clients will invoke the Bloom machinery in more cases than before, but this can be addressed by returning a NULL filter when all bits are set high. This can be addressed in a future patch. Note that this does increase the size of on-disk commit-graphs, but far less than other proposals. In particular, this is generally more efficient than storing a bitmap for which commits haven't computed their Bloom filters. Storing a bitmap incurs a penalty of one bit per commit, whereas storing explicit filters as above incurs a penalty of one byte per too-large or empty commit. In practice, these boundary commits likely occupy a small proportion of the overall number of commits, and so the size penalty is likely smaller than storing a bitmap for all commits. See, for example, these relative proportions of such boundary commits (collected by SZEDER Gábor): | Percentage of | commit-graph | | | commits modifying | file size | | ├────────┬──────────────┼───────────────────┤ pct. | | 0 path | >= 512 paths | before | after | change | ┌────────────────┼────────┼──────────────┼─────────┼─────────┼───────────┤ | android-base | 13.20% | 0.13% | 37.468M | 37.534M | +0.1741 % | | cmssw | 0.15% | 0.23% | 17.118M | 17.119M | +0.0091 % | | cpython | 3.07% | 0.01% | 7.967M | 7.971M | +0.0423 % | | elasticsearch | 0.70% | 1.00% | 8.833M | 8.835M | +0.0128 % | | gcc | 0.00% | 0.08% | 16.073M | 16.074M | +0.0030 % | | gecko-dev | 0.14% | 0.64% | 59.868M | 59.874M | +0.0105 % | | git | 0.11% | 0.02% | 3.895M | 3.895M | +0.0020 % | | glibc | 0.02% | 0.10% | 3.555M | 3.555M | +0.0021 % | | go | 0.00% | 0.07% | 3.186M | 3.186M | +0.0018 % | | homebrew-cask | 0.40% | 0.02% | 7.035M | 7.035M | +0.0065 % | | homebrew-core | 0.01% | 0.01% | 11.611M | 11.611M | +0.0002 % | | jdk | 0.26% | 5.64% | 5.537M | 5.540M | +0.0590 % | | linux | 0.01% | 0.51% | 63.735M | 63.740M | +0.0073 % | | llvm-project | 0.12% | 0.03% | 25.515M | 25.516M | +0.0050 % | | rails | 0.10% | 0.10% | 6.252M | 6.252M | +0.0027 % | | rust | 0.07% | 0.17% | 9.364M | 9.364M | +0.0033 % | | tensorflow | 0.09% | 1.02% | 7.009M | 7.010M | +0.0158 % | | webkit | 0.05% | 0.31% | 17.405M | 17.406M | +0.0047 % | (where the above increase is determined by computing a non-split commit-graph before and after this patch). Given that these projects are all "large" by commit count, the storage cost by writing these filters explicitly is negligible. In the most extreme example, android-base (which has 494,848 commits at the time of writing) would have its commit-graph increase by a modest 68.4 KB. Finally, a test to exercise filters which contain too many changed path entries will be introduced in a subsequent patch. Suggested-by: SZEDER Gábor <szeder.dev@gmail.com> Suggested-by: Jakub Narębski <jnareb@gmail.com> Helped-by: Derrick Stolee <dstolee@microsoft.com> Helped-by: SZEDER Gábor <szeder.dev@gmail.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
test_filter_not_computed () {
grep "\"key\":\"filter-not-computed\",\"value\":\"$1\"" $2
}
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
test_filter_computed () {
grep "\"key\":\"filter-computed\",\"value\":\"$1\"" $2
}
bloom: encode out-of-bounds filters as non-empty When a changed-path Bloom filter has either zero, or more than a certain number (commonly 512) of entries, the commit-graph machinery encodes it as "missing". More specifically, it sets the indices adjacent in the BIDX chunk as equal to each other to indicate a "length 0" filter; that is, that the filter occupies zero bytes on disk. This has heretofore been fine, since the commit-graph machinery has no need to care about these filters with too few or too many changed paths. Both cases act like no filter has been generated at all, and so there is no need to store them. In a subsequent commit, however, the commit-graph machinery will learn to only compute Bloom filters for some commits in the current commit-graph layer. This is a change from the current implementation which computes Bloom filters for all commits that are in the layer being written. Critically for this patch, only computing some of the Bloom filters means adding a third state for length 0 Bloom filters: zero entries, too many entries, or "hasn't been computed". It will be important for that future patch to distinguish between "not representable" (i.e., zero or too-many changed paths), and "hasn't been computed". In particular, we don't want to waste time recomputing filters that have already been computed. To that end, change how we store Bloom filters in the "computed but not representable" category: - Bloom filters with no entries are stored as a single byte with all bits low (i.e., all queries to that Bloom filter will return "definitely not") - Bloom filters with too many entries are stored as a single byte with all bits set high (i.e., all queries to that Bloom filter will return "maybe"). These rules are sufficient to not incur a behavior change by changing the on-disk representation of these two classes. Likewise, no specification changes are necessary for the commit-graph format, either: - Filters that were previously empty will be recomputed and stored according to the new rules, and - old clients reading filters generated by new clients will interpret the filters correctly and be none the wiser to how they were generated. Clients will invoke the Bloom machinery in more cases than before, but this can be addressed by returning a NULL filter when all bits are set high. This can be addressed in a future patch. Note that this does increase the size of on-disk commit-graphs, but far less than other proposals. In particular, this is generally more efficient than storing a bitmap for which commits haven't computed their Bloom filters. Storing a bitmap incurs a penalty of one bit per commit, whereas storing explicit filters as above incurs a penalty of one byte per too-large or empty commit. In practice, these boundary commits likely occupy a small proportion of the overall number of commits, and so the size penalty is likely smaller than storing a bitmap for all commits. See, for example, these relative proportions of such boundary commits (collected by SZEDER Gábor): | Percentage of | commit-graph | | | commits modifying | file size | | ├────────┬──────────────┼───────────────────┤ pct. | | 0 path | >= 512 paths | before | after | change | ┌────────────────┼────────┼──────────────┼─────────┼─────────┼───────────┤ | android-base | 13.20% | 0.13% | 37.468M | 37.534M | +0.1741 % | | cmssw | 0.15% | 0.23% | 17.118M | 17.119M | +0.0091 % | | cpython | 3.07% | 0.01% | 7.967M | 7.971M | +0.0423 % | | elasticsearch | 0.70% | 1.00% | 8.833M | 8.835M | +0.0128 % | | gcc | 0.00% | 0.08% | 16.073M | 16.074M | +0.0030 % | | gecko-dev | 0.14% | 0.64% | 59.868M | 59.874M | +0.0105 % | | git | 0.11% | 0.02% | 3.895M | 3.895M | +0.0020 % | | glibc | 0.02% | 0.10% | 3.555M | 3.555M | +0.0021 % | | go | 0.00% | 0.07% | 3.186M | 3.186M | +0.0018 % | | homebrew-cask | 0.40% | 0.02% | 7.035M | 7.035M | +0.0065 % | | homebrew-core | 0.01% | 0.01% | 11.611M | 11.611M | +0.0002 % | | jdk | 0.26% | 5.64% | 5.537M | 5.540M | +0.0590 % | | linux | 0.01% | 0.51% | 63.735M | 63.740M | +0.0073 % | | llvm-project | 0.12% | 0.03% | 25.515M | 25.516M | +0.0050 % | | rails | 0.10% | 0.10% | 6.252M | 6.252M | +0.0027 % | | rust | 0.07% | 0.17% | 9.364M | 9.364M | +0.0033 % | | tensorflow | 0.09% | 1.02% | 7.009M | 7.010M | +0.0158 % | | webkit | 0.05% | 0.31% | 17.405M | 17.406M | +0.0047 % | (where the above increase is determined by computing a non-split commit-graph before and after this patch). Given that these projects are all "large" by commit count, the storage cost by writing these filters explicitly is negligible. In the most extreme example, android-base (which has 494,848 commits at the time of writing) would have its commit-graph increase by a modest 68.4 KB. Finally, a test to exercise filters which contain too many changed path entries will be introduced in a subsequent patch. Suggested-by: SZEDER Gábor <szeder.dev@gmail.com> Suggested-by: Jakub Narębski <jnareb@gmail.com> Helped-by: Derrick Stolee <dstolee@microsoft.com> Helped-by: SZEDER Gábor <szeder.dev@gmail.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
test_filter_trunc_empty () {
grep "\"key\":\"filter-trunc-empty\",\"value\":\"$1\"" $2
}
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
test_filter_trunc_large () {
grep "\"key\":\"filter-trunc-large\",\"value\":\"$1\"" $2
}
test_expect_success 'correctly report changes over limit' '
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
git init limits &&
(
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
cd limits &&
mkdir d &&
mkdir d/e &&
for i in $(test_seq 1 2)
do
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
printf $i >d/file$i.txt &&
printf $i >d/e/file$i.txt || return 1
done &&
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
mkdir mode &&
printf bash >mode/script.sh &&
mkdir foo &&
touch foo/bar &&
touch foo.txt &&
git add d foo foo.txt mode &&
git commit -m "files" &&
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
# Commit has 7 file and 4 directory adds
GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=10 \
GIT_TRACE2_EVENT="$(pwd)/trace" \
git commit-graph write --reachable --changed-paths &&
test_max_changed_paths 10 trace &&
test_filter_computed 1 trace &&
test_filter_trunc_large 1 trace &&
for path in $(git ls-tree -r --name-only HEAD)
do
git -c commitGraph.readChangedPaths=false log \
-- $path >expect &&
git log -- $path >actual &&
test_cmp expect actual || return 1
done &&
# Make a variety of path changes
printf new1 >d/e/file1.txt &&
printf new2 >d/file2.txt &&
rm d/e/file2.txt &&
rm -r foo &&
printf text >foo &&
mkdir f &&
printf new1 >f/file1.txt &&
# including a mode-only change (counts as modified)
git update-index --chmod=+x mode/script.sh &&
git add foo d f &&
git commit -m "complicated" &&
# start from scratch and rebuild
rm -f .git/objects/info/commit-graph &&
GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=10 \
GIT_TRACE2_EVENT="$(pwd)/trace-edit" \
git commit-graph write --reachable --changed-paths &&
test_max_changed_paths 10 trace-edit &&
test_filter_computed 2 trace-edit &&
test_filter_trunc_large 2 trace-edit &&
for path in $(git ls-tree -r --name-only HEAD)
do
git -c commitGraph.readChangedPaths=false log \
-- $path >expect &&
git log -- $path >actual &&
test_cmp expect actual || return 1
done &&
# start from scratch and rebuild
rm -f .git/objects/info/commit-graph &&
GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=11 \
GIT_TRACE2_EVENT="$(pwd)/trace-update" \
git commit-graph write --reachable --changed-paths &&
test_max_changed_paths 11 trace-update &&
test_filter_computed 2 trace-update &&
test_filter_trunc_large 0 trace-update &&
for path in $(git ls-tree -r --name-only HEAD)
do
bloom/diff: properly short-circuit on max_changes Commit e3696980 (diff: halt tree-diff early after max_changes, 2020-03-30) intended to create a mechanism to short-circuit a diff calculation after a certain number of paths were modified. By incrementing a "num_changes" counter throughout the recursive ll_diff_tree_paths(), this was supposed to match the number of changes that would be written into the changed-path Bloom filters. Unfortunately, this was not implemented correctly and instead misses simple cases like file modifications. This then does not stop very large changed-path filters from being written (unless they add or remove many files). To start, change the implementation in ll_diff_tree_paths() to instead use the global diff_queue_diff struct's 'nr' member as the count. This is a way to simplify the logic instead of making more mistakes in the complicated diff code. This has a drawback: the diff_queue_diff struct only lists the paths corresponding to blob changes, not their leading directories. Thus, get_or_compute_bloom_filter() needs an additional check to see if the hashmap with the leading directories becomes too large. One reason why this was not caught by test cases was that the test in t4216-log-bloom.sh that was supposed to check this "too many changes" condition only checked this on the initial commit of a repository. The old logic counted these values correctly. Update this test in a few ways: 1. Use GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS to reduce the limit, allowing smaller commits to engage with this logic. 2. Create several interesting cases of edits, adds, removes, and mode changes (in the second commit). By testing both sides of the inequality with the *_MAX_CHANGED_PATHS variable, we can see that the count is exactly correct, so none of these changes are missed or over-counted. 3. Use the trace2 data value filter_found_large to verify that these commits are on the correct side of the limit. Another way to verify the behavior is correct is through performance tests. By testing on my local copies of the Git repository and the Linux kernel repository, I could measure the effect of these short-circuits when computing a fresh commit-graph file with changed-path Bloom filters using the command GIT_TEST_BLOOM_SETTINGS_MAX_CHANGED_PATHS=N time \ git commit-graph write --reachable --changed-paths and reporting the wall time and resulting commit-graph size. For Git, the results are | | N=1 | N=10 | N=512 | |--------|----------------|----------------|----------------| | HEAD~1 | 10.90s 9.18MB | 11.11s 9.34MB | 11.31s 9.35MB | | HEAD | 9.21s 8.62MB | 11.11s 9.29MB | 11.29s 9.34MB | For Linux, the results are | | N=1 | N=20 | N=512 | |--------|----------------|---------------|---------------| | HEAD~1 | 61.28s 64.3MB | 76.9s 72.6MB | 77.6s 72.6MB | | HEAD | 49.44s 56.3MB | 68.7s 65.9MB | 69.2s 65.9MB | Naturally, the improvement becomes much less as the limit grows, as fewer commits satisfy the short-circuit. Reported-by: SZEDER Gábor <szeder.dev@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
git -c commitGraph.readChangedPaths=false log \
-- $path >expect &&
git log -- $path >actual &&
test_cmp expect actual || return 1
done
)
'
bloom: encode out-of-bounds filters as non-empty When a changed-path Bloom filter has either zero, or more than a certain number (commonly 512) of entries, the commit-graph machinery encodes it as "missing". More specifically, it sets the indices adjacent in the BIDX chunk as equal to each other to indicate a "length 0" filter; that is, that the filter occupies zero bytes on disk. This has heretofore been fine, since the commit-graph machinery has no need to care about these filters with too few or too many changed paths. Both cases act like no filter has been generated at all, and so there is no need to store them. In a subsequent commit, however, the commit-graph machinery will learn to only compute Bloom filters for some commits in the current commit-graph layer. This is a change from the current implementation which computes Bloom filters for all commits that are in the layer being written. Critically for this patch, only computing some of the Bloom filters means adding a third state for length 0 Bloom filters: zero entries, too many entries, or "hasn't been computed". It will be important for that future patch to distinguish between "not representable" (i.e., zero or too-many changed paths), and "hasn't been computed". In particular, we don't want to waste time recomputing filters that have already been computed. To that end, change how we store Bloom filters in the "computed but not representable" category: - Bloom filters with no entries are stored as a single byte with all bits low (i.e., all queries to that Bloom filter will return "definitely not") - Bloom filters with too many entries are stored as a single byte with all bits set high (i.e., all queries to that Bloom filter will return "maybe"). These rules are sufficient to not incur a behavior change by changing the on-disk representation of these two classes. Likewise, no specification changes are necessary for the commit-graph format, either: - Filters that were previously empty will be recomputed and stored according to the new rules, and - old clients reading filters generated by new clients will interpret the filters correctly and be none the wiser to how they were generated. Clients will invoke the Bloom machinery in more cases than before, but this can be addressed by returning a NULL filter when all bits are set high. This can be addressed in a future patch. Note that this does increase the size of on-disk commit-graphs, but far less than other proposals. In particular, this is generally more efficient than storing a bitmap for which commits haven't computed their Bloom filters. Storing a bitmap incurs a penalty of one bit per commit, whereas storing explicit filters as above incurs a penalty of one byte per too-large or empty commit. In practice, these boundary commits likely occupy a small proportion of the overall number of commits, and so the size penalty is likely smaller than storing a bitmap for all commits. See, for example, these relative proportions of such boundary commits (collected by SZEDER Gábor): | Percentage of | commit-graph | | | commits modifying | file size | | ├────────┬──────────────┼───────────────────┤ pct. | | 0 path | >= 512 paths | before | after | change | ┌────────────────┼────────┼──────────────┼─────────┼─────────┼───────────┤ | android-base | 13.20% | 0.13% | 37.468M | 37.534M | +0.1741 % | | cmssw | 0.15% | 0.23% | 17.118M | 17.119M | +0.0091 % | | cpython | 3.07% | 0.01% | 7.967M | 7.971M | +0.0423 % | | elasticsearch | 0.70% | 1.00% | 8.833M | 8.835M | +0.0128 % | | gcc | 0.00% | 0.08% | 16.073M | 16.074M | +0.0030 % | | gecko-dev | 0.14% | 0.64% | 59.868M | 59.874M | +0.0105 % | | git | 0.11% | 0.02% | 3.895M | 3.895M | +0.0020 % | | glibc | 0.02% | 0.10% | 3.555M | 3.555M | +0.0021 % | | go | 0.00% | 0.07% | 3.186M | 3.186M | +0.0018 % | | homebrew-cask | 0.40% | 0.02% | 7.035M | 7.035M | +0.0065 % | | homebrew-core | 0.01% | 0.01% | 11.611M | 11.611M | +0.0002 % | | jdk | 0.26% | 5.64% | 5.537M | 5.540M | +0.0590 % | | linux | 0.01% | 0.51% | 63.735M | 63.740M | +0.0073 % | | llvm-project | 0.12% | 0.03% | 25.515M | 25.516M | +0.0050 % | | rails | 0.10% | 0.10% | 6.252M | 6.252M | +0.0027 % | | rust | 0.07% | 0.17% | 9.364M | 9.364M | +0.0033 % | | tensorflow | 0.09% | 1.02% | 7.009M | 7.010M | +0.0158 % | | webkit | 0.05% | 0.31% | 17.405M | 17.406M | +0.0047 % | (where the above increase is determined by computing a non-split commit-graph before and after this patch). Given that these projects are all "large" by commit count, the storage cost by writing these filters explicitly is negligible. In the most extreme example, android-base (which has 494,848 commits at the time of writing) would have its commit-graph increase by a modest 68.4 KB. Finally, a test to exercise filters which contain too many changed path entries will be introduced in a subsequent patch. Suggested-by: SZEDER Gábor <szeder.dev@gmail.com> Suggested-by: Jakub Narębski <jnareb@gmail.com> Helped-by: Derrick Stolee <dstolee@microsoft.com> Helped-by: SZEDER Gábor <szeder.dev@gmail.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
4 years ago
test_expect_success 'correctly report commits with no changed paths' '
git init empty &&
test_when_finished "rm -fr empty" &&
(
cd empty &&
git commit --allow-empty -m "initial commit" &&
GIT_TRACE2_EVENT="$(pwd)/trace.event" \
git commit-graph write --reachable --changed-paths &&
test_filter_computed 1 trace.event &&
test_filter_not_computed 0 trace.event &&
test_filter_trunc_empty 1 trace.event &&
test_filter_trunc_large 0 trace.event
)
'
4 years ago
test_expect_success 'Bloom generation is limited by --max-new-filters' '
(
cd limits &&
test_commit c2 filter &&
test_commit c3 filter &&
test_commit c4 no-filter &&
rm -f trace.event &&
GIT_TRACE2_EVENT="$(pwd)/trace.event" \
git commit-graph write --reachable --split=replace \
--changed-paths --max-new-filters=2 &&
test_filter_computed 2 trace.event &&
test_filter_not_computed 3 trace.event &&
test_filter_trunc_empty 0 trace.event &&
test_filter_trunc_large 0 trace.event
)
'
test_expect_success 'Bloom generation backfills previously-skipped filters' '
# Check specifying commitGraph.maxNewFilters over "git config" works.
test_config -C limits commitGraph.maxNewFilters 1 &&
4 years ago
(
cd limits &&
rm -f trace.event &&
GIT_TRACE2_EVENT="$(pwd)/trace.event" \
git commit-graph write --reachable --changed-paths \
--split=replace &&
4 years ago
test_filter_computed 1 trace.event &&
test_filter_not_computed 4 trace.event &&
test_filter_trunc_empty 0 trace.event &&
test_filter_trunc_large 0 trace.event
)
'
test_expect_success '--max-new-filters overrides configuration' '
git init override &&
test_when_finished "rm -fr override" &&
test_config -C override commitGraph.maxNewFilters 2 &&
(
cd override &&
test_commit one &&
test_commit two &&
rm -f trace.event &&
GIT_TRACE2_EVENT="$(pwd)/trace.event" \
git commit-graph write --reachable --changed-paths \
--max-new-filters=1 &&
test_filter_computed 1 trace.event &&
test_filter_not_computed 1 trace.event &&
test_filter_trunc_empty 0 trace.event &&
test_filter_trunc_large 0 trace.event
)
'
4 years ago
test_expect_success 'Bloom generation backfills empty commits' '
git init empty &&
test_when_finished "rm -fr empty" &&
(
cd empty &&
for i in $(test_seq 1 6)
do
git commit --allow-empty -m "$i"
done &&
# Generate Bloom filters for empty commits 1-6, two at a time.
for i in $(test_seq 1 3)
do
rm -f trace.event &&
GIT_TRACE2_EVENT="$(pwd)/trace.event" \
git commit-graph write --reachable \
--changed-paths --max-new-filters=2 &&
test_filter_computed 2 trace.event &&
test_filter_not_computed 4 trace.event &&
test_filter_trunc_empty 2 trace.event &&
test_filter_trunc_large 0 trace.event
done &&
# Finally, make sure that once all commits have filters, that
# none are subsequently recomputed.
rm -f trace.event &&
GIT_TRACE2_EVENT="$(pwd)/trace.event" \
git commit-graph write --reachable \
--changed-paths --max-new-filters=2 &&
test_filter_computed 0 trace.event &&
test_filter_not_computed 6 trace.event &&
test_filter_trunc_empty 0 trace.event &&
test_filter_trunc_large 0 trace.event
)
'
test_done