You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1878 lines
47 KiB

#include "builtin.h"
#include "cache.h"
#include "attr.h"
#include "object.h"
#include "blob.h"
#include "commit.h"
#include "tag.h"
#include "tree.h"
#include "delta.h"
#include "pack.h"
#include "csum-file.h"
#include "tree-walk.h"
#include "diff.h"
#include "revision.h"
#include "list-objects.h"
#include "progress.h"
static const char pack_usage[] = "\
git-pack-objects [{ -q | --progress | --all-progress }] \n\
[--max-pack-size=N] [--local] [--incremental] \n\
[--window=N] [--window-memory=N] [--depth=N] \n\
[--no-reuse-delta] [--no-reuse-object] [--delta-base-offset] \n\
[--non-empty] [--revs [--unpacked | --all]*] [--reflog] \n\
[--stdout | base-name] [<ref-list | <object-list]";
struct object_entry {
struct pack_idx_entry idx;
unsigned long size; /* uncompressed size */
struct packed_git *in_pack; /* already in pack */
off_t in_pack_offset;
struct object_entry *delta; /* delta base object */
struct object_entry *delta_child; /* deltified objects who bases me */
struct object_entry *delta_sibling; /* other deltified objects who
* uses the same base as me
*/
void *delta_data; /* cached delta (uncompressed) */
unsigned long delta_size; /* delta data size (uncompressed) */
unsigned int hash; /* name hint hash */
enum object_type type;
enum object_type in_pack_type; /* could be delta */
unsigned char in_pack_header_size;
unsigned char preferred_base; /* we do not pack this, but is available
* to be used as the base object to delta
* objects against.
*/
unsigned char no_try_delta;
};
/*
* Objects we are going to pack are collected in objects array (dynamically
* expanded). nr_objects & nr_alloc controls this array. They are stored
* in the order we see -- typically rev-list --objects order that gives us
* nice "minimum seek" order.
*/
static struct object_entry *objects;
static struct object_entry **written_list;
static uint32_t nr_objects, nr_alloc, nr_result, nr_written;
static int non_empty;
static int no_reuse_delta, no_reuse_object;
static int local;
static int incremental;
static int allow_ofs_delta;
static const char *pack_tmp_name, *idx_tmp_name;
static char tmpname[PATH_MAX];
static const char *base_name;
static int progress = 1;
static int window = 10;
static uint32_t pack_size_limit;
static int depth = 50;
static int pack_to_stdout;
static int num_preferred_base;
static struct progress progress_state;
Custom compression levels for objects and packs Add config variables pack.compression and core.loosecompression , and switch --compression=level to pack-objects. Loose objects will be compressed using core.loosecompression if set, else core.compression if set, else Z_BEST_SPEED. Packed objects will be compressed using --compression=level if seen, else pack.compression if set, else core.compression if set, else Z_DEFAULT_COMPRESSION. This is the "pack compression level". Loose objects added to a pack undeltified will be recompressed to the pack compression level if it is unequal to the current loose compression level by the preceding rules, or if the loose object was written while core.legacyheaders = true. Newly deltified loose objects are always compressed to the current pack compression level. Previously packed objects added to a pack are recompressed to the current pack compression level exactly when their deltification status changes, since the previous pack data cannot be reused. In either case, the --no-reuse-object switch from the first patch below will always force recompression to the current pack compression level, instead of assuming the pack compression level hasn't changed and pack data can be reused when possible. This applies on top of the following patches from Nicolas Pitre: [PATCH] allow for undeltified objects not to be reused [PATCH] make "repack -f" imply "pack-objects --no-reuse-object" Signed-off-by: Dana L. How <danahow@gmail.com> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
static int pack_compression_level = Z_DEFAULT_COMPRESSION;
static int pack_compression_seen;
static unsigned long delta_cache_size = 0;
static unsigned long max_delta_cache_size = 0;
static unsigned long cache_max_small_delta_size = 1000;
static unsigned long window_memory_usage = 0;
static unsigned long window_memory_limit = 0;
/*
* The object names in objects array are hashed with this hashtable,
* to help looking up the entry by object name.
* This hashtable is built after all the objects are seen.
*/
static int *object_ix;
static int object_ix_hashsz;
/*
* Pack index for existing packs give us easy access to the offsets into
* corresponding pack file where each object's data starts, but the entries
* do not store the size of the compressed representation (uncompressed
* size is easily available by examining the pack entry header). It is
* also rather expensive to find the sha1 for an object given its offset.
*
* We build a hashtable of existing packs (pack_revindex), and keep reverse
* index here -- pack index file is sorted by object name mapping to offset;
* this pack_revindex[].revindex array is a list of offset/index_nr pairs
* ordered by offset, so if you know the offset of an object, next offset
* is where its packed representation ends and the index_nr can be used to
* get the object sha1 from the main index.
*/
struct revindex_entry {
off_t offset;
unsigned int nr;
};
struct pack_revindex {
struct packed_git *p;
struct revindex_entry *revindex;
};
static struct pack_revindex *pack_revindex;
static int pack_revindex_hashsz;
/*
* stats
*/
static uint32_t written, written_delta;
static uint32_t reused, reused_delta;
static int pack_revindex_ix(struct packed_git *p)
{
unsigned long ui = (unsigned long)p;
int i;
ui = ui ^ (ui >> 16); /* defeat structure alignment */
i = (int)(ui % pack_revindex_hashsz);
while (pack_revindex[i].p) {
if (pack_revindex[i].p == p)
return i;
if (++i == pack_revindex_hashsz)
i = 0;
}
return -1 - i;
}
static void prepare_pack_ix(void)
{
int num;
struct packed_git *p;
for (num = 0, p = packed_git; p; p = p->next)
num++;
if (!num)
return;
pack_revindex_hashsz = num * 11;
pack_revindex = xcalloc(sizeof(*pack_revindex), pack_revindex_hashsz);
for (p = packed_git; p; p = p->next) {
num = pack_revindex_ix(p);
num = - 1 - num;
pack_revindex[num].p = p;
}
/* revindex elements are lazily initialized */
}
static int cmp_offset(const void *a_, const void *b_)
{
const struct revindex_entry *a = a_;
const struct revindex_entry *b = b_;
return (a->offset < b->offset) ? -1 : (a->offset > b->offset) ? 1 : 0;
}
/*
* Ordered list of offsets of objects in the pack.
*/
static void prepare_pack_revindex(struct pack_revindex *rix)
{
struct packed_git *p = rix->p;
int num_ent = p->num_objects;
int i;
const char *index = p->index_data;
rix->revindex = xmalloc(sizeof(*rix->revindex) * (num_ent + 1));
pack-objects: learn about pack index version 2 Pack index version 2 goes as follows: - 8 bytes of header with signature and version. - 256 entries of 4-byte first-level fan-out table. - Table of sorted 20-byte SHA1 records for each object in pack. - Table of 4-byte CRC32 entries for raw pack object data. - Table of 4-byte offset entries for objects in the pack if offset is representable with 31 bits or less, otherwise it is an index in the next table with top bit set. - Table of 8-byte offset entries indexed from previous table for offsets which are 32 bits or more (optional). - 20-byte SHA1 checksum of sorted object names. - 20-byte SHA1 checksum of the above. The object SHA1 table is all contiguous so future pack format that would contain this table directly won't require big changes to the code. It is also tighter for slightly better cache locality when looking up entries. Support for large packs exceeding 31 bits in size won't impose an index size bloat for packs within that range that don't need a 64-bit offset. And because newer objects which are likely to be the most frequently used are located at the beginning of the pack, they won't pay the 64-bit offset lookup at run time either even if the pack is large. Right now an index version 2 is created only when the biggest offset in a pack reaches 31 bits. It might be a good idea to always use index version 2 eventually to benefit from the CRC32 it contains when reusing pack data while repacking. [jc: with the "oops" fix to keep track of the last offset correctly] Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
index += 4 * 256;
if (p->index_version > 1) {
const uint32_t *off_32 =
(uint32_t *)(index + 8 + p->num_objects * (20 + 4));
const uint32_t *off_64 = off_32 + p->num_objects;
for (i = 0; i < num_ent; i++) {
uint32_t off = ntohl(*off_32++);
if (!(off & 0x80000000)) {
rix->revindex[i].offset = off;
} else {
rix->revindex[i].offset =
((uint64_t)ntohl(*off_64++)) << 32;
rix->revindex[i].offset |=
ntohl(*off_64++);
}
rix->revindex[i].nr = i;
}
} else {
for (i = 0; i < num_ent; i++) {
uint32_t hl = *((uint32_t *)(index + 24 * i));
rix->revindex[i].offset = ntohl(hl);
rix->revindex[i].nr = i;
}
}
pack-objects: learn about pack index version 2 Pack index version 2 goes as follows: - 8 bytes of header with signature and version. - 256 entries of 4-byte first-level fan-out table. - Table of sorted 20-byte SHA1 records for each object in pack. - Table of 4-byte CRC32 entries for raw pack object data. - Table of 4-byte offset entries for objects in the pack if offset is representable with 31 bits or less, otherwise it is an index in the next table with top bit set. - Table of 8-byte offset entries indexed from previous table for offsets which are 32 bits or more (optional). - 20-byte SHA1 checksum of sorted object names. - 20-byte SHA1 checksum of the above. The object SHA1 table is all contiguous so future pack format that would contain this table directly won't require big changes to the code. It is also tighter for slightly better cache locality when looking up entries. Support for large packs exceeding 31 bits in size won't impose an index size bloat for packs within that range that don't need a 64-bit offset. And because newer objects which are likely to be the most frequently used are located at the beginning of the pack, they won't pay the 64-bit offset lookup at run time either even if the pack is large. Right now an index version 2 is created only when the biggest offset in a pack reaches 31 bits. It might be a good idea to always use index version 2 eventually to benefit from the CRC32 it contains when reusing pack data while repacking. [jc: with the "oops" fix to keep track of the last offset correctly] Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
/* This knows the pack format -- the 20-byte trailer
* follows immediately after the last object data.
*/
rix->revindex[num_ent].offset = p->pack_size - 20;
rix->revindex[num_ent].nr = -1;
qsort(rix->revindex, num_ent, sizeof(*rix->revindex), cmp_offset);
}
static struct revindex_entry * find_packed_object(struct packed_git *p,
off_t ofs)
{
int num;
int lo, hi;
struct pack_revindex *rix;
struct revindex_entry *revindex;
num = pack_revindex_ix(p);
if (num < 0)
die("internal error: pack revindex uninitialized");
rix = &pack_revindex[num];
if (!rix->revindex)
prepare_pack_revindex(rix);
revindex = rix->revindex;
lo = 0;
hi = p->num_objects + 1;
do {
int mi = (lo + hi) / 2;
if (revindex[mi].offset == ofs) {
return revindex + mi;
}
else if (ofs < revindex[mi].offset)
hi = mi;
else
lo = mi + 1;
} while (lo < hi);
die("internal error: pack revindex corrupt");
}
static const unsigned char *find_packed_object_name(struct packed_git *p,
off_t ofs)
{
struct revindex_entry *entry = find_packed_object(p, ofs);
return nth_packed_object_sha1(p, entry->nr);
}
static void *delta_against(void *buf, unsigned long size, struct object_entry *entry)
{
unsigned long othersize, delta_size;
enum object_type type;
void *otherbuf = read_sha1_file(entry->delta->idx.sha1, &type, &othersize);
void *delta_buf;
if (!otherbuf)
die("unable to read %s", sha1_to_hex(entry->delta->idx.sha1));
delta_buf = diff_delta(otherbuf, othersize,
buf, size, &delta_size, 0);
if (!delta_buf || delta_size != entry->delta_size)
die("delta size changed");
free(buf);
free(otherbuf);
return delta_buf;
}
/*
* The per-object header is a pretty dense thing, which is
* - first byte: low four bits are "size", then three bits of "type",
* and the high bit is "size continues".
* - each byte afterwards: low seven bits are size continuation,
* with the high bit being "size continues"
*/
static int encode_header(enum object_type type, unsigned long size, unsigned char *hdr)
{
int n = 1;
unsigned char c;
if (type < OBJ_COMMIT || type > OBJ_REF_DELTA)
die("bad type %d", type);
c = (type << 4) | (size & 15);
size >>= 4;
while (size) {
*hdr++ = c | 0x80;
c = size & 0x7f;
size >>= 7;
n++;
}
*hdr = c;
return n;
}
/*
* we are going to reuse the existing object data as is. make
* sure it is not corrupt.
*/
static int check_pack_inflate(struct packed_git *p,
struct pack_window **w_curs,
off_t offset,
off_t len,
unsigned long expect)
{
z_stream stream;
unsigned char fakebuf[4096], *in;
int st;
memset(&stream, 0, sizeof(stream));
inflateInit(&stream);
do {
in = use_pack(p, w_curs, offset, &stream.avail_in);
stream.next_in = in;
stream.next_out = fakebuf;
stream.avail_out = sizeof(fakebuf);
st = inflate(&stream, Z_FINISH);
offset += stream.next_in - in;
} while (st == Z_OK || st == Z_BUF_ERROR);
inflateEnd(&stream);
return (st == Z_STREAM_END &&
stream.total_out == expect &&
stream.total_in == len) ? 0 : -1;
}
static int check_pack_crc(struct packed_git *p, struct pack_window **w_curs,
off_t offset, off_t len, unsigned int nr)
{
const uint32_t *index_crc;
uint32_t data_crc = crc32(0, Z_NULL, 0);
do {
unsigned int avail;
void *data = use_pack(p, w_curs, offset, &avail);
if (avail > len)
avail = len;
data_crc = crc32(data_crc, data, avail);
offset += avail;
len -= avail;
} while (len);
index_crc = p->index_data;
index_crc += 2 + 256 + p->num_objects * (20/4) + nr;
return data_crc != ntohl(*index_crc);
}
static void copy_pack_data(struct sha1file *f,
struct packed_git *p,
struct pack_window **w_curs,
off_t offset,
off_t len)
{
unsigned char *in;
unsigned int avail;
while (len) {
in = use_pack(p, w_curs, offset, &avail);
if (avail > len)
avail = (unsigned int)len;
sha1write(f, in, avail);
offset += avail;
len -= avail;
}
}
static unsigned long write_object(struct sha1file *f,
struct object_entry *entry,
off_t write_offset)
{
unsigned long size;
enum object_type type;
void *buf;
unsigned char header[10];
unsigned char dheader[10];
unsigned hdrlen;
off_t datalen;
enum object_type obj_type;
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
int to_reuse = 0;
/* write limit if limited packsize and not first object */
unsigned long limit = pack_size_limit && nr_written ?
pack_size_limit - write_offset : 0;
/* no if no delta */
int usable_delta = !entry->delta ? 0 :
/* yes if unlimited packfile */
!pack_size_limit ? 1 :
/* no if base written to previous pack */
entry->delta->idx.offset == (off_t)-1 ? 0 :
/* otherwise double-check written to this
* pack, like we do below
*/
entry->delta->idx.offset ? 1 : 0;
compute a CRC32 for each object as stored in a pack The most important optimization for performance when repacking is the ability to reuse data from a previous pack as is and bypass any delta or even SHA1 computation by simply copying the raw data from one pack to another directly. The problem with this is that any data corruption within a copied object would go unnoticed and the new (repacked) pack would be self-consistent with its own checksum despite containing a corrupted object. This is a real issue that already happened at least once in the past. In some attempt to prevent this, we validate the copied data by inflating it and making sure no error is signaled by zlib. But this is still not perfect as a significant portion of a pack content is made of object headers and references to delta base objects which are not deflated and therefore not validated when repacking actually making the pack data reuse still not as safe as it could be. Of course a full SHA1 validation could be performed, but that implies full data inflating and delta replaying which is extremely costly, which cost the data reuse optimization was designed to avoid in the first place. So the best solution to this is simply to store a CRC32 of the raw pack data for each object in the pack index. This way any object in a pack can be validated before being copied as is in another pack, including header and any other non deflated data. Why CRC32 instead of a faster checksum like Adler32? Quoting Wikipedia: Jonathan Stone discovered in 2001 that Adler-32 has a weakness for very short messages. He wrote "Briefly, the problem is that, for very short packets, Adler32 is guaranteed to give poor coverage of the available bits. Don't take my word for it, ask Mark Adler. :-)" The problem is that sum A does not wrap for short messages. The maximum value of A for a 128-byte message is 32640, which is below the value 65521 used by the modulo operation. An extended explanation can be found in RFC 3309, which mandates the use of CRC32 instead of Adler-32 for SCTP, the Stream Control Transmission Protocol. In the context of a GIT pack, we have lots of small objects, especially deltas, which are likely to be quite small and in a size range for which Adler32 is dimed not to be sufficient. Another advantage of CRC32 is the possibility for recovery from certain types of small corruptions like single bit errors which are the most probable type of corruptions. OK what this patch does is to compute the CRC32 of each object written to a pack within pack-objects. It is not written to the index yet and it is obviously not validated when reusing pack data yet either. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
if (!pack_to_stdout)
crc32_begin(f);
obj_type = entry->type;
if (no_reuse_object)
to_reuse = 0; /* explicit */
else if (!entry->in_pack)
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
to_reuse = 0; /* can't reuse what we don't have */
else if (obj_type == OBJ_REF_DELTA || obj_type == OBJ_OFS_DELTA)
/* check_object() decided it for us ... */
to_reuse = usable_delta;
/* ... but pack split may override that */
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
else if (obj_type != entry->in_pack_type)
to_reuse = 0; /* pack has delta which is unusable */
else if (entry->delta)
to_reuse = 0; /* we want to pack afresh */
else
to_reuse = 1; /* we have it in-pack undeltified,
* and we do not need to deltify it.
*/
if (!to_reuse) {
z_stream stream;
unsigned long maxsize;
void *out;
if (!usable_delta) {
buf = read_sha1_file(entry->idx.sha1, &obj_type, &size);
if (!buf)
die("unable to read %s", sha1_to_hex(entry->idx.sha1));
} else if (entry->delta_data) {
size = entry->delta_size;
buf = entry->delta_data;
entry->delta_data = NULL;
obj_type = (allow_ofs_delta && entry->delta->idx.offset) ?
OBJ_OFS_DELTA : OBJ_REF_DELTA;
} else {
buf = read_sha1_file(entry->idx.sha1, &type, &size);
if (!buf)
die("unable to read %s", sha1_to_hex(entry->idx.sha1));
buf = delta_against(buf, size, entry);
size = entry->delta_size;
obj_type = (allow_ofs_delta && entry->delta->idx.offset) ?
OBJ_OFS_DELTA : OBJ_REF_DELTA;
}
/* compress the data to store and put compressed length in datalen */
memset(&stream, 0, sizeof(stream));
deflateInit(&stream, pack_compression_level);
maxsize = deflateBound(&stream, size);
out = xmalloc(maxsize);
/* Compress it */
stream.next_in = buf;
stream.avail_in = size;
stream.next_out = out;
stream.avail_out = maxsize;
while (deflate(&stream, Z_FINISH) == Z_OK)
/* nothing */;
deflateEnd(&stream);
datalen = stream.total_out;
deflateEnd(&stream);
/*
* The object header is a byte of 'type' followed by zero or
* more bytes of length.
*/
hdrlen = encode_header(obj_type, size, header);
if (obj_type == OBJ_OFS_DELTA) {
/*
* Deltas with relative base contain an additional
* encoding of the relative offset for the delta
* base from this object's position in the pack.
*/
off_t ofs = entry->idx.offset - entry->delta->idx.offset;
unsigned pos = sizeof(dheader) - 1;
dheader[pos] = ofs & 127;
while (ofs >>= 7)
dheader[--pos] = 128 | (--ofs & 127);
if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) {
free(out);
free(buf);
return 0;
}
sha1write(f, header, hdrlen);
sha1write(f, dheader + pos, sizeof(dheader) - pos);
hdrlen += sizeof(dheader) - pos;
} else if (obj_type == OBJ_REF_DELTA) {
/*
* Deltas with a base reference contain
* an additional 20 bytes for the base sha1.
*/
if (limit && hdrlen + 20 + datalen + 20 >= limit) {
free(out);
free(buf);
return 0;
}
sha1write(f, header, hdrlen);
sha1write(f, entry->delta->idx.sha1, 20);
hdrlen += 20;
} else {
if (limit && hdrlen + datalen + 20 >= limit) {
free(out);
free(buf);
return 0;
}
sha1write(f, header, hdrlen);
}
sha1write(f, out, datalen);
free(out);
free(buf);
}
else {
struct packed_git *p = entry->in_pack;
Replace use_packed_git with window cursors. Part of the implementation concept of the sliding mmap window for pack access is to permit multiple windows per pack to be mapped independently. Since the inuse_cnt is associated with the mmap and not with the file, this value is in struct pack_window and needs to be incremented/decremented for each pack_window accessed by any code. To faciliate that implementation we need to replace all uses of use_packed_git() and unuse_packed_git() with a different API that follows struct pack_window objects rather than struct packed_git. The way this works is when we need to start accessing a pack for the first time we should setup a new window 'cursor' by declaring a local and setting it to NULL: struct pack_windows *w_curs = NULL; To obtain the memory region which contains a specific section of the pack file we invoke use_pack(), supplying the address of our current window cursor: unsigned int len; unsigned char *addr = use_pack(p, &w_curs, offset, &len); the returned address `addr` will be the first byte at `offset` within the pack file. The optional variable len will also be updated with the number of bytes remaining following the address. Multiple calls to use_pack() with the same window cursor will update the window cursor, moving it from one window to another when necessary. In this way each window cursor variable maintains only one struct pack_window inuse at a time. Finally before exiting the scope which originally declared the window cursor we must invoke unuse_pack() to unuse the current window (which may be different from the one that was first obtained from use_pack): unuse_pack(&w_curs); This implementation is still not complete with regards to multiple windows, as only one window per pack file is supported right now. Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
struct pack_window *w_curs = NULL;
struct revindex_entry *revidx;
off_t offset;
if (entry->delta) {
obj_type = (allow_ofs_delta && entry->delta->idx.offset) ?
OBJ_OFS_DELTA : OBJ_REF_DELTA;
reused_delta++;
}
hdrlen = encode_header(obj_type, entry->size, header);
offset = entry->in_pack_offset;
revidx = find_packed_object(p, offset);
datalen = revidx[1].offset - offset;
if (!pack_to_stdout && p->index_version > 1 &&
check_pack_crc(p, &w_curs, offset, datalen, revidx->nr))
die("bad packed object CRC for %s", sha1_to_hex(entry->idx.sha1));
offset += entry->in_pack_header_size;
datalen -= entry->in_pack_header_size;
if (obj_type == OBJ_OFS_DELTA) {
off_t ofs = entry->idx.offset - entry->delta->idx.offset;
unsigned pos = sizeof(dheader) - 1;
dheader[pos] = ofs & 127;
while (ofs >>= 7)
dheader[--pos] = 128 | (--ofs & 127);
if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit)
return 0;
sha1write(f, header, hdrlen);
sha1write(f, dheader + pos, sizeof(dheader) - pos);
hdrlen += sizeof(dheader) - pos;
} else if (obj_type == OBJ_REF_DELTA) {
if (limit && hdrlen + 20 + datalen + 20 >= limit)
return 0;
sha1write(f, header, hdrlen);
sha1write(f, entry->delta->idx.sha1, 20);
hdrlen += 20;
} else {
if (limit && hdrlen + datalen + 20 >= limit)
return 0;
sha1write(f, header, hdrlen);
}
if (!pack_to_stdout && p->index_version == 1 &&
check_pack_inflate(p, &w_curs, offset, datalen, entry->size))
die("corrupt packed object for %s", sha1_to_hex(entry->idx.sha1));
copy_pack_data(f, p, &w_curs, offset, datalen);
Replace use_packed_git with window cursors. Part of the implementation concept of the sliding mmap window for pack access is to permit multiple windows per pack to be mapped independently. Since the inuse_cnt is associated with the mmap and not with the file, this value is in struct pack_window and needs to be incremented/decremented for each pack_window accessed by any code. To faciliate that implementation we need to replace all uses of use_packed_git() and unuse_packed_git() with a different API that follows struct pack_window objects rather than struct packed_git. The way this works is when we need to start accessing a pack for the first time we should setup a new window 'cursor' by declaring a local and setting it to NULL: struct pack_windows *w_curs = NULL; To obtain the memory region which contains a specific section of the pack file we invoke use_pack(), supplying the address of our current window cursor: unsigned int len; unsigned char *addr = use_pack(p, &w_curs, offset, &len); the returned address `addr` will be the first byte at `offset` within the pack file. The optional variable len will also be updated with the number of bytes remaining following the address. Multiple calls to use_pack() with the same window cursor will update the window cursor, moving it from one window to another when necessary. In this way each window cursor variable maintains only one struct pack_window inuse at a time. Finally before exiting the scope which originally declared the window cursor we must invoke unuse_pack() to unuse the current window (which may be different from the one that was first obtained from use_pack): unuse_pack(&w_curs); This implementation is still not complete with regards to multiple windows, as only one window per pack file is supported right now. Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
unuse_pack(&w_curs);
reused++;
}
if (usable_delta)
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
written_delta++;
written++;
compute a CRC32 for each object as stored in a pack The most important optimization for performance when repacking is the ability to reuse data from a previous pack as is and bypass any delta or even SHA1 computation by simply copying the raw data from one pack to another directly. The problem with this is that any data corruption within a copied object would go unnoticed and the new (repacked) pack would be self-consistent with its own checksum despite containing a corrupted object. This is a real issue that already happened at least once in the past. In some attempt to prevent this, we validate the copied data by inflating it and making sure no error is signaled by zlib. But this is still not perfect as a significant portion of a pack content is made of object headers and references to delta base objects which are not deflated and therefore not validated when repacking actually making the pack data reuse still not as safe as it could be. Of course a full SHA1 validation could be performed, but that implies full data inflating and delta replaying which is extremely costly, which cost the data reuse optimization was designed to avoid in the first place. So the best solution to this is simply to store a CRC32 of the raw pack data for each object in the pack index. This way any object in a pack can be validated before being copied as is in another pack, including header and any other non deflated data. Why CRC32 instead of a faster checksum like Adler32? Quoting Wikipedia: Jonathan Stone discovered in 2001 that Adler-32 has a weakness for very short messages. He wrote "Briefly, the problem is that, for very short packets, Adler32 is guaranteed to give poor coverage of the available bits. Don't take my word for it, ask Mark Adler. :-)" The problem is that sum A does not wrap for short messages. The maximum value of A for a 128-byte message is 32640, which is below the value 65521 used by the modulo operation. An extended explanation can be found in RFC 3309, which mandates the use of CRC32 instead of Adler-32 for SCTP, the Stream Control Transmission Protocol. In the context of a GIT pack, we have lots of small objects, especially deltas, which are likely to be quite small and in a size range for which Adler32 is dimed not to be sufficient. Another advantage of CRC32 is the possibility for recovery from certain types of small corruptions like single bit errors which are the most probable type of corruptions. OK what this patch does is to compute the CRC32 of each object written to a pack within pack-objects. It is not written to the index yet and it is obviously not validated when reusing pack data yet either. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
if (!pack_to_stdout)
entry->idx.crc32 = crc32_end(f);
return hdrlen + datalen;
}
static off_t write_one(struct sha1file *f,
struct object_entry *e,
off_t offset)
{
unsigned long size;
/* offset is non zero if object is written already. */
if (e->idx.offset || e->preferred_base)
return offset;
/* if we are deltified, write out base object first. */
if (e->delta) {
offset = write_one(f, e->delta, offset);
if (!offset)
return 0;
}
e->idx.offset = offset;
size = write_object(f, e, offset);
if (!size) {
e->idx.offset = 0;
return 0;
}
written_list[nr_written++] = e;
/* make sure off_t is sufficiently large not to wrap */
if (offset > offset + size)
die("pack too large for current definition of off_t");
return offset + size;
}
static int open_object_dir_tmp(const char *path)
{
snprintf(tmpname, sizeof(tmpname), "%s/%s", get_object_directory(), path);
return xmkstemp(tmpname);
}
/* forward declaration for write_pack_file */
static int adjust_perm(const char *path, mode_t mode);
static void write_pack_file(void)
{
uint32_t i = 0, j;
struct sha1file *f;
off_t offset, offset_one, last_obj_offset = 0;
struct pack_header hdr;
int do_progress = progress >> pack_to_stdout;
uint32_t nr_remaining = nr_result;
if (do_progress)
start_progress(&progress_state, "Writing %u objects...", "", nr_result);
written_list = xmalloc(nr_objects * sizeof(struct object_entry *));
do {
unsigned char sha1[20];
if (pack_to_stdout) {
f = sha1fd(1, "<stdout>");
} else {
int fd = open_object_dir_tmp("tmp_pack_XXXXXX");
pack_tmp_name = xstrdup(tmpname);
f = sha1fd(fd, pack_tmp_name);
}
hdr.hdr_signature = htonl(PACK_SIGNATURE);
hdr.hdr_version = htonl(PACK_VERSION);
hdr.hdr_entries = htonl(nr_remaining);
sha1write(f, &hdr, sizeof(hdr));
offset = sizeof(hdr);
nr_written = 0;
for (; i < nr_objects; i++) {
last_obj_offset = offset;
offset_one = write_one(f, objects + i, offset);
if (!offset_one)
break;
offset = offset_one;
if (do_progress)
display_progress(&progress_state, written);
}
pack-objects: learn about pack index version 2 Pack index version 2 goes as follows: - 8 bytes of header with signature and version. - 256 entries of 4-byte first-level fan-out table. - Table of sorted 20-byte SHA1 records for each object in pack. - Table of 4-byte CRC32 entries for raw pack object data. - Table of 4-byte offset entries for objects in the pack if offset is representable with 31 bits or less, otherwise it is an index in the next table with top bit set. - Table of 8-byte offset entries indexed from previous table for offsets which are 32 bits or more (optional). - 20-byte SHA1 checksum of sorted object names. - 20-byte SHA1 checksum of the above. The object SHA1 table is all contiguous so future pack format that would contain this table directly won't require big changes to the code. It is also tighter for slightly better cache locality when looking up entries. Support for large packs exceeding 31 bits in size won't impose an index size bloat for packs within that range that don't need a 64-bit offset. And because newer objects which are likely to be the most frequently used are located at the beginning of the pack, they won't pay the 64-bit offset lookup at run time either even if the pack is large. Right now an index version 2 is created only when the biggest offset in a pack reaches 31 bits. It might be a good idea to always use index version 2 eventually to benefit from the CRC32 it contains when reusing pack data while repacking. [jc: with the "oops" fix to keep track of the last offset correctly] Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
/*
* Did we write the wrong # entries in the header?
* If so, rewrite it like in fast-import
*/
if (pack_to_stdout || nr_written == nr_remaining) {
sha1close(f, sha1, 1);
} else {
sha1close(f, sha1, 0);
fixup_pack_header_footer(f->fd, sha1, pack_tmp_name, nr_written);
close(f->fd);
}
if (!pack_to_stdout) {
mode_t mode = umask(0);
umask(mode);
mode = 0444 & ~mode;
idx_tmp_name = write_idx_file(NULL,
(struct pack_idx_entry **) written_list, nr_written, sha1);
snprintf(tmpname, sizeof(tmpname), "%s-%s.pack",
base_name, sha1_to_hex(sha1));
if (adjust_perm(pack_tmp_name, mode))
die("unable to make temporary pack file readable: %s",
strerror(errno));
if (rename(pack_tmp_name, tmpname))
die("unable to rename temporary pack file: %s",
strerror(errno));
snprintf(tmpname, sizeof(tmpname), "%s-%s.idx",
base_name, sha1_to_hex(sha1));
if (adjust_perm(idx_tmp_name, mode))
die("unable to make temporary index file readable: %s",
strerror(errno));
if (rename(idx_tmp_name, tmpname))
die("unable to rename temporary index file: %s",
strerror(errno));
puts(sha1_to_hex(sha1));
}
/* mark written objects as written to previous pack */
for (j = 0; j < nr_written; j++) {
written_list[j]->idx.offset = (off_t)-1;
}
nr_remaining -= nr_written;
} while (nr_remaining && i < nr_objects);
free(written_list);
if (do_progress)
stop_progress(&progress_state);
if (written != nr_result)
die("wrote %u objects while expecting %u", written, nr_result);
/*
* We have scanned through [0 ... i). Since we have written
* the correct number of objects, the remaining [i ... nr_objects)
* items must be either already written (due to out-of-order delta base)
* or a preferred base. Count those which are neither and complain if any.
*/
for (j = 0; i < nr_objects; i++) {
struct object_entry *e = objects + i;
j += !e->idx.offset && !e->preferred_base;
}
if (j)
die("wrote %u objects as expected but %u unwritten", written, j);
}
static int locate_object_entry_hash(const unsigned char *sha1)
{
int i;
unsigned int ui;
memcpy(&ui, sha1, sizeof(unsigned int));
i = ui % object_ix_hashsz;
while (0 < object_ix[i]) {
if (!hashcmp(sha1, objects[object_ix[i] - 1].idx.sha1))
return i;
if (++i == object_ix_hashsz)
i = 0;
}
return -1 - i;
}
static struct object_entry *locate_object_entry(const unsigned char *sha1)
{
int i;
if (!object_ix_hashsz)
return NULL;
i = locate_object_entry_hash(sha1);
if (0 <= i)
return &objects[object_ix[i]-1];
return NULL;
}
static void rehash_objects(void)
{
uint32_t i;
struct object_entry *oe;
object_ix_hashsz = nr_objects * 3;
if (object_ix_hashsz < 1024)
object_ix_hashsz = 1024;
object_ix = xrealloc(object_ix, sizeof(int) * object_ix_hashsz);
memset(object_ix, 0, sizeof(int) * object_ix_hashsz);
for (i = 0, oe = objects; i < nr_objects; i++, oe++) {
int ix = locate_object_entry_hash(oe->idx.sha1);
if (0 <= ix)
continue;
ix = -1 - ix;
object_ix[ix] = i + 1;
}
}
static unsigned name_hash(const char *name)
{
unsigned char c;
unsigned hash = 0;
if (!name)
return 0;
/*
* This effectively just creates a sortable number from the
* last sixteen non-whitespace characters. Last characters
* count "most", so things that end in ".c" sort together.
*/
while ((c = *name++) != 0) {
if (isspace(c))
continue;
hash = (hash >> 2) + (c << 24);
}
return hash;
}
static void setup_delta_attr_check(struct git_attr_check *check)
{
static struct git_attr *attr_delta;
if (!attr_delta)
attr_delta = git_attr("delta", 5);
check[0].attr = attr_delta;
}
static int no_try_delta(const char *path)
{
struct git_attr_check check[1];
setup_delta_attr_check(check);
if (git_checkattr(path, ARRAY_SIZE(check), check))
return 0;
if (ATTR_FALSE(check->value))
return 1;
return 0;
}
static int add_object_entry(const unsigned char *sha1, enum object_type type,
const char *name, int exclude)
{
struct object_entry *entry;
struct packed_git *p, *found_pack = NULL;
off_t found_offset = 0;
int ix;
unsigned hash = name_hash(name);
ix = nr_objects ? locate_object_entry_hash(sha1) : -1;
if (ix >= 0) {
if (exclude) {
entry = objects + object_ix[ix] - 1;
if (!entry->preferred_base)
nr_result--;
entry->preferred_base = 1;
}
return 0;
}
for (p = packed_git; p; p = p->next) {
off_t offset = find_pack_entry_one(sha1, p);
if (offset) {
if (!found_pack) {
found_offset = offset;
found_pack = p;
}
if (exclude)
break;
if (incremental)
return 0;
if (local && !p->pack_local)
return 0;
}
}
if (nr_objects >= nr_alloc) {
nr_alloc = (nr_alloc + 1024) * 3 / 2;
objects = xrealloc(objects, nr_alloc * sizeof(*entry));
}
entry = objects + nr_objects++;
memset(entry, 0, sizeof(*entry));
hashcpy(entry->idx.sha1, sha1);
entry->hash = hash;
if (type)
entry->type = type;
if (exclude)
entry->preferred_base = 1;
else
nr_result++;
if (found_pack) {
entry->in_pack = found_pack;
entry->in_pack_offset = found_offset;
}
if (object_ix_hashsz * 3 <= nr_objects * 4)
rehash_objects();
else
object_ix[-1 - ix] = nr_objects;
if (progress)
display_progress(&progress_state, nr_objects);
if (name && no_try_delta(name))
entry->no_try_delta = 1;
return 1;
}
struct pbase_tree_cache {
unsigned char sha1[20];
int ref;
int temporary;
void *tree_data;
unsigned long tree_size;
};
static struct pbase_tree_cache *(pbase_tree_cache[256]);
static int pbase_tree_cache_ix(const unsigned char *sha1)
{
return sha1[0] % ARRAY_SIZE(pbase_tree_cache);
}
static int pbase_tree_cache_ix_incr(int ix)
{
return (ix+1) % ARRAY_SIZE(pbase_tree_cache);
}
static struct pbase_tree {
struct pbase_tree *next;
/* This is a phony "cache" entry; we are not
* going to evict it nor find it through _get()
* mechanism -- this is for the toplevel node that
* would almost always change with any commit.
*/
struct pbase_tree_cache pcache;
} *pbase_tree;
static struct pbase_tree_cache *pbase_tree_get(const unsigned char *sha1)
{
struct pbase_tree_cache *ent, *nent;
void *data;
unsigned long size;
enum object_type type;
int neigh;
int my_ix = pbase_tree_cache_ix(sha1);
int available_ix = -1;
/* pbase-tree-cache acts as a limited hashtable.
* your object will be found at your index or within a few
* slots after that slot if it is cached.
*/
for (neigh = 0; neigh < 8; neigh++) {
ent = pbase_tree_cache[my_ix];
if (ent && !hashcmp(ent->sha1, sha1)) {
ent->ref++;
return ent;
}
else if (((available_ix < 0) && (!ent || !ent->ref)) ||
((0 <= available_ix) &&
(!ent && pbase_tree_cache[available_ix])))
available_ix = my_ix;
if (!ent)
break;
my_ix = pbase_tree_cache_ix_incr(my_ix);
}
/* Did not find one. Either we got a bogus request or
* we need to read and perhaps cache.
*/
data = read_sha1_file(sha1, &type, &size);
if (!data)
return NULL;
if (type != OBJ_TREE) {
free(data);
return NULL;
}
/* We need to either cache or return a throwaway copy */
if (available_ix < 0)
ent = NULL;
else {
ent = pbase_tree_cache[available_ix];
my_ix = available_ix;
}
if (!ent) {
nent = xmalloc(sizeof(*nent));
nent->temporary = (available_ix < 0);
}
else {
/* evict and reuse */
free(ent->tree_data);
nent = ent;
}
hashcpy(nent->sha1, sha1);
nent->tree_data = data;
nent->tree_size = size;
nent->ref = 1;
if (!nent->temporary)
pbase_tree_cache[my_ix] = nent;
return nent;
}
static void pbase_tree_put(struct pbase_tree_cache *cache)
{
if (!cache->temporary) {
cache->ref--;
return;
}
free(cache->tree_data);
free(cache);
}
static int name_cmp_len(const char *name)
{
int i;
for (i = 0; name[i] && name[i] != '\n' && name[i] != '/'; i++)
;
return i;
}
static void add_pbase_object(struct tree_desc *tree,
const char *name,
int cmplen,
const char *fullname)
{
tree_entry(): new tree-walking helper function This adds a "tree_entry()" function that combines the common operation of doing a "tree_entry_extract()" + "update_tree_entry()". It also has a simplified calling convention, designed for simple loops that traverse over a whole tree: the arguments are pointers to the tree descriptor and a name_entry structure to fill in, and it returns a boolean "true" if there was an entry left to be gotten in the tree. This allows tree traversal with struct tree_desc desc; struct name_entry entry; desc.buf = tree->buffer; desc.size = tree->size; while (tree_entry(&desc, &entry) { ... use "entry.{path, sha1, mode, pathlen}" ... } which is not only shorter than writing it out in full, it's hopefully less error prone too. [ It's actually a tad faster too - we don't need to recalculate the entry pathlength in both extract and update, but need to do it only once. Also, some callers can avoid doing a "strlen()" on the result, since it's returned as part of the name_entry structure. However, by now we're talking just 1% speedup on "git-rev-list --objects --all", and we're definitely at the point where tree walking is no longer the issue any more. ] NOTE! Not everybody wants to use this new helper function, since some of the tree walkers very much on purpose do the descriptor update separately from the entry extraction. So the "extract + update" sequence still remains as the core sequence, this is just a simplified interface. We should probably add a silly two-line inline helper function for initializing the descriptor from the "struct tree" too, just to cut down on the noise from that common "desc" initializer. Signed-off-by: Linus Torvalds <torvalds@osdl.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
struct name_entry entry;
int cmp;
tree_entry(): new tree-walking helper function This adds a "tree_entry()" function that combines the common operation of doing a "tree_entry_extract()" + "update_tree_entry()". It also has a simplified calling convention, designed for simple loops that traverse over a whole tree: the arguments are pointers to the tree descriptor and a name_entry structure to fill in, and it returns a boolean "true" if there was an entry left to be gotten in the tree. This allows tree traversal with struct tree_desc desc; struct name_entry entry; desc.buf = tree->buffer; desc.size = tree->size; while (tree_entry(&desc, &entry) { ... use "entry.{path, sha1, mode, pathlen}" ... } which is not only shorter than writing it out in full, it's hopefully less error prone too. [ It's actually a tad faster too - we don't need to recalculate the entry pathlength in both extract and update, but need to do it only once. Also, some callers can avoid doing a "strlen()" on the result, since it's returned as part of the name_entry structure. However, by now we're talking just 1% speedup on "git-rev-list --objects --all", and we're definitely at the point where tree walking is no longer the issue any more. ] NOTE! Not everybody wants to use this new helper function, since some of the tree walkers very much on purpose do the descriptor update separately from the entry extraction. So the "extract + update" sequence still remains as the core sequence, this is just a simplified interface. We should probably add a silly two-line inline helper function for initializing the descriptor from the "struct tree" too, just to cut down on the noise from that common "desc" initializer. Signed-off-by: Linus Torvalds <torvalds@osdl.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
while (tree_entry(tree,&entry)) {
if (S_ISGITLINK(entry.mode))
continue;
cmp = tree_entry_len(entry.path, entry.sha1) != cmplen ? 1 :
memcmp(name, entry.path, cmplen);
if (cmp > 0)
continue;
if (cmp < 0)
return;
if (name[cmplen] != '/') {
add_object_entry(entry.sha1,
S_ISDIR(entry.mode) ? OBJ_TREE : OBJ_BLOB,
fullname, 1);
return;
}
if (S_ISDIR(entry.mode)) {
struct tree_desc sub;
struct pbase_tree_cache *tree;
const char *down = name+cmplen+1;
int downlen = name_cmp_len(down);
tree_entry(): new tree-walking helper function This adds a "tree_entry()" function that combines the common operation of doing a "tree_entry_extract()" + "update_tree_entry()". It also has a simplified calling convention, designed for simple loops that traverse over a whole tree: the arguments are pointers to the tree descriptor and a name_entry structure to fill in, and it returns a boolean "true" if there was an entry left to be gotten in the tree. This allows tree traversal with struct tree_desc desc; struct name_entry entry; desc.buf = tree->buffer; desc.size = tree->size; while (tree_entry(&desc, &entry) { ... use "entry.{path, sha1, mode, pathlen}" ... } which is not only shorter than writing it out in full, it's hopefully less error prone too. [ It's actually a tad faster too - we don't need to recalculate the entry pathlength in both extract and update, but need to do it only once. Also, some callers can avoid doing a "strlen()" on the result, since it's returned as part of the name_entry structure. However, by now we're talking just 1% speedup on "git-rev-list --objects --all", and we're definitely at the point where tree walking is no longer the issue any more. ] NOTE! Not everybody wants to use this new helper function, since some of the tree walkers very much on purpose do the descriptor update separately from the entry extraction. So the "extract + update" sequence still remains as the core sequence, this is just a simplified interface. We should probably add a silly two-line inline helper function for initializing the descriptor from the "struct tree" too, just to cut down on the noise from that common "desc" initializer. Signed-off-by: Linus Torvalds <torvalds@osdl.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
tree = pbase_tree_get(entry.sha1);
if (!tree)
return;
init_tree_desc(&sub, tree->tree_data, tree->tree_size);
add_pbase_object(&sub, down, downlen, fullname);
pbase_tree_put(tree);
}
}
}
static unsigned *done_pbase_paths;
static int done_pbase_paths_num;
static int done_pbase_paths_alloc;
static int done_pbase_path_pos(unsigned hash)
{
int lo = 0;
int hi = done_pbase_paths_num;
while (lo < hi) {
int mi = (hi + lo) / 2;
if (done_pbase_paths[mi] == hash)
return mi;
if (done_pbase_paths[mi] < hash)
hi = mi;
else
lo = mi + 1;
}
return -lo-1;
}
static int check_pbase_path(unsigned hash)
{
int pos = (!done_pbase_paths) ? -1 : done_pbase_path_pos(hash);
if (0 <= pos)
return 1;
pos = -pos - 1;
if (done_pbase_paths_alloc <= done_pbase_paths_num) {
done_pbase_paths_alloc = alloc_nr(done_pbase_paths_alloc);
done_pbase_paths = xrealloc(done_pbase_paths,
done_pbase_paths_alloc *
sizeof(unsigned));
}
done_pbase_paths_num++;
if (pos < done_pbase_paths_num)
memmove(done_pbase_paths + pos + 1,
done_pbase_paths + pos,
(done_pbase_paths_num - pos - 1) * sizeof(unsigned));
done_pbase_paths[pos] = hash;
return 0;
}
static void add_preferred_base_object(const char *name)
{
struct pbase_tree *it;
int cmplen;
unsigned hash = name_hash(name);
if (!num_preferred_base || check_pbase_path(hash))
return;
cmplen = name_cmp_len(name);
for (it = pbase_tree; it; it = it->next) {
if (cmplen == 0) {
add_object_entry(it->pcache.sha1, OBJ_TREE, NULL, 1);
}
else {
struct tree_desc tree;
init_tree_desc(&tree, it->pcache.tree_data, it->pcache.tree_size);
add_pbase_object(&tree, name, cmplen, name);
}
}
}
static void add_preferred_base(unsigned char *sha1)
{
struct pbase_tree *it;
void *data;
unsigned long size;
unsigned char tree_sha1[20];
if (window <= num_preferred_base++)
return;
data = read_object_with_reference(sha1, tree_type, &size, tree_sha1);
if (!data)
return;
for (it = pbase_tree; it; it = it->next) {
if (!hashcmp(it->pcache.sha1, tree_sha1)) {
free(data);
return;
}
}
it = xcalloc(1, sizeof(*it));
it->next = pbase_tree;
pbase_tree = it;
hashcpy(it->pcache.sha1, tree_sha1);
it->pcache.tree_data = data;
it->pcache.tree_size = size;
}
static void check_object(struct object_entry *entry)
{
if (entry->in_pack) {
struct packed_git *p = entry->in_pack;
Replace use_packed_git with window cursors. Part of the implementation concept of the sliding mmap window for pack access is to permit multiple windows per pack to be mapped independently. Since the inuse_cnt is associated with the mmap and not with the file, this value is in struct pack_window and needs to be incremented/decremented for each pack_window accessed by any code. To faciliate that implementation we need to replace all uses of use_packed_git() and unuse_packed_git() with a different API that follows struct pack_window objects rather than struct packed_git. The way this works is when we need to start accessing a pack for the first time we should setup a new window 'cursor' by declaring a local and setting it to NULL: struct pack_windows *w_curs = NULL; To obtain the memory region which contains a specific section of the pack file we invoke use_pack(), supplying the address of our current window cursor: unsigned int len; unsigned char *addr = use_pack(p, &w_curs, offset, &len); the returned address `addr` will be the first byte at `offset` within the pack file. The optional variable len will also be updated with the number of bytes remaining following the address. Multiple calls to use_pack() with the same window cursor will update the window cursor, moving it from one window to another when necessary. In this way each window cursor variable maintains only one struct pack_window inuse at a time. Finally before exiting the scope which originally declared the window cursor we must invoke unuse_pack() to unuse the current window (which may be different from the one that was first obtained from use_pack): unuse_pack(&w_curs); This implementation is still not complete with regards to multiple windows, as only one window per pack file is supported right now. Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
struct pack_window *w_curs = NULL;
const unsigned char *base_ref = NULL;
struct object_entry *base_entry;
unsigned long used, used_0;
unsigned int avail;
off_t ofs;
unsigned char *buf, c;
buf = use_pack(p, &w_curs, entry->in_pack_offset, &avail);
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
/*
* We want in_pack_type even if we do not reuse delta
* since non-delta representations could still be reused.
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
*/
used = unpack_object_header_gently(buf, avail,
&entry->in_pack_type,
&entry->size);
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
/*
* Determine if this is a delta and if so whether we can
* reuse it or not. Otherwise let's find out as cheaply as
* possible what the actual type and size for this object is.
*/
switch (entry->in_pack_type) {
default:
/* Not a delta hence we've already got all we need. */
entry->type = entry->in_pack_type;
entry->in_pack_header_size = used;
unuse_pack(&w_curs);
return;
case OBJ_REF_DELTA:
if (!no_reuse_delta && !entry->preferred_base)
base_ref = use_pack(p, &w_curs,
entry->in_pack_offset + used, NULL);
entry->in_pack_header_size = used + 20;
break;
case OBJ_OFS_DELTA:
buf = use_pack(p, &w_curs,
entry->in_pack_offset + used, NULL);
used_0 = 0;
c = buf[used_0++];
ofs = c & 127;
while (c & 128) {
ofs += 1;
if (!ofs || MSB(ofs, 7))
die("delta base offset overflow in pack for %s",
sha1_to_hex(entry->idx.sha1));
c = buf[used_0++];
ofs = (ofs << 7) + (c & 127);
}
if (ofs >= entry->in_pack_offset)
die("delta base offset out of bound for %s",
sha1_to_hex(entry->idx.sha1));
ofs = entry->in_pack_offset - ofs;
if (!no_reuse_delta && !entry->preferred_base)
base_ref = find_packed_object_name(p, ofs);
entry->in_pack_header_size = used + used_0;
break;
}
if (base_ref && (base_entry = locate_object_entry(base_ref))) {
/*
* If base_ref was set above that means we wish to
* reuse delta data, and we even found that base
* in the list of objects we want to pack. Goodie!
*
* Depth value does not matter - find_deltas() will
* never consider reused delta as the base object to
* deltify other objects against, in order to avoid
* circular deltas.
*/
entry->type = entry->in_pack_type;
entry->delta = base_entry;
entry->delta_sibling = base_entry->delta_child;
base_entry->delta_child = entry;
unuse_pack(&w_curs);
return;
}
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
if (entry->type) {
/*
* This must be a delta and we already know what the
* final object type is. Let's extract the actual
* object size from the delta header.
*/
entry->size = get_size_from_delta(p, &w_curs,
entry->in_pack_offset + entry->in_pack_header_size);
unuse_pack(&w_curs);
return;
}
/*
* No choice but to fall back to the recursive delta walk
* with sha1_object_info() to find about the object type
* at this point...
*/
unuse_pack(&w_curs);
}
entry->type = sha1_object_info(entry->idx.sha1, &entry->size);
if (entry->type < 0)
die("unable to get type of object %s",
sha1_to_hex(entry->idx.sha1));
}
static int pack_offset_sort(const void *_a, const void *_b)
{
const struct object_entry *a = *(struct object_entry **)_a;
const struct object_entry *b = *(struct object_entry **)_b;
/* avoid filesystem trashing with loose objects */
if (!a->in_pack && !b->in_pack)
return hashcmp(a->idx.sha1, b->idx.sha1);
if (a->in_pack < b->in_pack)
return -1;
if (a->in_pack > b->in_pack)
return 1;
return a->in_pack_offset < b->in_pack_offset ? -1 :
(a->in_pack_offset > b->in_pack_offset);
}
static void get_object_details(void)
{
uint32_t i;
struct object_entry **sorted_by_offset;
sorted_by_offset = xcalloc(nr_objects, sizeof(struct object_entry *));
for (i = 0; i < nr_objects; i++)
sorted_by_offset[i] = objects + i;
qsort(sorted_by_offset, nr_objects, sizeof(*sorted_by_offset), pack_offset_sort);
prepare_pack_ix();
for (i = 0; i < nr_objects; i++)
check_object(sorted_by_offset[i]);
free(sorted_by_offset);
}
static int type_size_sort(const void *_a, const void *_b)
{
const struct object_entry *a = *(struct object_entry **)_a;
const struct object_entry *b = *(struct object_entry **)_b;
if (a->type < b->type)
return -1;
if (a->type > b->type)
return 1;
if (a->hash < b->hash)
return -1;
if (a->hash > b->hash)
return 1;
if (a->preferred_base < b->preferred_base)
return -1;
if (a->preferred_base > b->preferred_base)
return 1;
if (a->size < b->size)
return -1;
if (a->size > b->size)
return 1;
return a > b ? -1 : (a < b); /* newest last */
}
struct unpacked {
struct object_entry *entry;
void *data;
struct delta_index *index;
unsigned depth;
};
static int delta_cacheable(unsigned long src_size, unsigned long trg_size,
unsigned long delta_size)
{
if (max_delta_cache_size && delta_cache_size + delta_size > max_delta_cache_size)
return 0;
if (delta_size < cache_max_small_delta_size)
return 1;
/* cache delta, if objects are large enough compared to delta size */
if ((src_size >> 20) + (trg_size >> 21) > (delta_size >> 10))
return 1;
return 0;
}
/*
* We search for deltas _backwards_ in a list sorted by type and
* by size, so that we see progressively smaller and smaller files.
* That's because we prefer deltas to be from the bigger file
* to the smaller - deletes are potentially cheaper, but perhaps
* more importantly, the bigger file is likely the more recent
* one.
*/
static int try_delta(struct unpacked *trg, struct unpacked *src,
unsigned max_depth)
{
struct object_entry *trg_entry = trg->entry;
struct object_entry *src_entry = src->entry;
unsigned long trg_size, src_size, delta_size, sizediff, max_size, sz;
unsigned ref_depth;
enum object_type type;
void *delta_buf;
/* Don't bother doing diffs between different types */
if (trg_entry->type != src_entry->type)
return -1;
/* We do not compute delta to *create* objects we are not
* going to pack.
*/
if (trg_entry->preferred_base)
return -1;
/*
* We do not bother to try a delta that we discarded
* on an earlier try, but only when reusing delta data.
*/
if (!no_reuse_delta && trg_entry->in_pack &&
trg_entry->in_pack == src_entry->in_pack &&
trg_entry->in_pack_type != OBJ_REF_DELTA &&
trg_entry->in_pack_type != OBJ_OFS_DELTA)
return 0;
/* Let's not bust the allowed depth. */
if (src->depth >= max_depth)
return 0;
/* Now some size filtering heuristics. */
trg_size = trg_entry->size;
if (!trg_entry->delta) {
max_size = trg_size/2 - 20;
ref_depth = 1;
} else {
max_size = trg_entry->delta_size;
ref_depth = trg->depth;
}
max_size = max_size * (max_depth - src->depth) /
(max_depth - ref_depth + 1);
if (max_size == 0)
return 0;
src_size = src_entry->size;
sizediff = src_size < trg_size ? trg_size - src_size : 0;
if (sizediff >= max_size)
return 0;
if (trg_size < src_size / 32)
return 0;
/* Load data if not already done */
if (!trg->data) {
trg->data = read_sha1_file(trg_entry->idx.sha1, &type, &sz);
if (!trg->data)
die("object %s cannot be read",
sha1_to_hex(trg_entry->idx.sha1));
if (sz != trg_size)
die("object %s inconsistent object length (%lu vs %lu)",
sha1_to_hex(trg_entry->idx.sha1), sz, trg_size);
window_memory_usage += sz;
}
if (!src->data) {
src->data = read_sha1_file(src_entry->idx.sha1, &type, &sz);
if (!src->data)
die("object %s cannot be read",
sha1_to_hex(src_entry->idx.sha1));
if (sz != src_size)
die("object %s inconsistent object length (%lu vs %lu)",
sha1_to_hex(src_entry->idx.sha1), sz, src_size);
window_memory_usage += sz;
}
if (!src->index) {
src->index = create_delta_index(src->data, src_size);
if (!src->index) {
static int warned = 0;
if (!warned++)
warning("suboptimal pack - out of memory");
return 0;
}
window_memory_usage += sizeof_delta_index(src->index);
}
delta_buf = create_delta(src->index, trg->data, trg_size, &delta_size, max_size);
if (!delta_buf)
return 0;
if (trg_entry->delta) {
/* Prefer only shallower same-sized deltas. */
if (delta_size == trg_entry->delta_size &&
src->depth + 1 >= trg->depth) {
free(delta_buf);
return 0;
}
}
trg_entry->delta = src_entry;
trg_entry->delta_size = delta_size;
trg->depth = src->depth + 1;
if (trg_entry->delta_data) {
delta_cache_size -= trg_entry->delta_size;
free(trg_entry->delta_data);
trg_entry->delta_data = NULL;
}
if (delta_cacheable(src_size, trg_size, delta_size)) {
trg_entry->delta_data = xrealloc(delta_buf, delta_size);
delta_cache_size += trg_entry->delta_size;
} else
free(delta_buf);
return 1;
}
static unsigned int check_delta_limit(struct object_entry *me, unsigned int n)
{
struct object_entry *child = me->delta_child;
unsigned int m = n;
while (child) {
unsigned int c = check_delta_limit(child, n + 1);
if (m < c)
m = c;
child = child->delta_sibling;
}
return m;
}
static void free_unpacked(struct unpacked *n)
{
window_memory_usage -= sizeof_delta_index(n->index);
free_delta_index(n->index);
n->index = NULL;
if (n->data) {
free(n->data);
n->data = NULL;
window_memory_usage -= n->entry->size;
}
n->entry = NULL;
n->depth = 0;
}
static void find_deltas(struct object_entry **list, int window, int depth)
{
uint32_t i = nr_objects, idx = 0, count = 0, processed = 0;
unsigned int array_size = window * sizeof(struct unpacked);
struct unpacked *array;
int max_depth;
if (!nr_objects)
return;
array = xmalloc(array_size);
memset(array, 0, array_size);
if (progress)
start_progress(&progress_state, "Deltifying %u objects...", "", nr_result);
do {
struct object_entry *entry = list[--i];
struct unpacked *n = array + idx;
int j;
if (!entry->preferred_base)
processed++;
if (progress)
display_progress(&progress_state, processed);
if (entry->delta)
/* This happens if we decided to reuse existing
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
* delta from a pack. "!no_reuse_delta &&" is implied.
*/
continue;
if (entry->size < 50)
continue;
if (entry->no_try_delta)
continue;
free_unpacked(n);
n->entry = entry;
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
while (window_memory_limit &&
window_memory_usage > window_memory_limit &&
count > 1) {
uint32_t tail = (idx + window - count) % window;
free_unpacked(array + tail);
count--;
}
/*
* If the current object is at pack edge, take the depth the
* objects that depend on the current object into account
* otherwise they would become too deep.
*/
max_depth = depth;
if (entry->delta_child) {
max_depth -= check_delta_limit(entry, 0);
if (max_depth <= 0)
goto next;
}
j = window;
while (--j > 0) {
uint32_t other_idx = idx + j;
struct unpacked *m;
if (other_idx >= window)
other_idx -= window;
m = array + other_idx;
if (!m->entry)
break;
if (try_delta(n, m, max_depth) < 0)
break;
}
/* if we made n a delta, and if n is already at max
* depth, leaving it in the window is pointless. we
* should evict it first.
*/
if (entry->delta && depth <= n->depth)
continue;
next:
idx++;
if (count + 1 < window)
count++;
if (idx >= window)
idx = 0;
} while (i > 0);
if (progress)
stop_progress(&progress_state);
for (i = 0; i < window; ++i) {
free_delta_index(array[i].index);
free(array[i].data);
}
free(array);
}
static void prepare_pack(int window, int depth)
{
struct object_entry **delta_list;
uint32_t i;
get_object_details();
if (!window || !depth)
return;
delta_list = xmalloc(nr_objects * sizeof(*delta_list));
for (i = 0; i < nr_objects; i++)
delta_list[i] = objects + i;
qsort(delta_list, nr_objects, sizeof(*delta_list), type_size_sort);
find_deltas(delta_list, window+1, depth);
free(delta_list);
}
static int git_pack_config(const char *k, const char *v)
{
if(!strcmp(k, "pack.window")) {
window = git_config_int(k, v);
return 0;
}
if (!strcmp(k, "pack.windowmemory")) {
window_memory_limit = git_config_ulong(k, v);
return 0;
}
if (!strcmp(k, "pack.depth")) {
depth = git_config_int(k, v);
return 0;
}
Custom compression levels for objects and packs Add config variables pack.compression and core.loosecompression , and switch --compression=level to pack-objects. Loose objects will be compressed using core.loosecompression if set, else core.compression if set, else Z_BEST_SPEED. Packed objects will be compressed using --compression=level if seen, else pack.compression if set, else core.compression if set, else Z_DEFAULT_COMPRESSION. This is the "pack compression level". Loose objects added to a pack undeltified will be recompressed to the pack compression level if it is unequal to the current loose compression level by the preceding rules, or if the loose object was written while core.legacyheaders = true. Newly deltified loose objects are always compressed to the current pack compression level. Previously packed objects added to a pack are recompressed to the current pack compression level exactly when their deltification status changes, since the previous pack data cannot be reused. In either case, the --no-reuse-object switch from the first patch below will always force recompression to the current pack compression level, instead of assuming the pack compression level hasn't changed and pack data can be reused when possible. This applies on top of the following patches from Nicolas Pitre: [PATCH] allow for undeltified objects not to be reused [PATCH] make "repack -f" imply "pack-objects --no-reuse-object" Signed-off-by: Dana L. How <danahow@gmail.com> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
if (!strcmp(k, "pack.compression")) {
int level = git_config_int(k, v);
if (level == -1)
level = Z_DEFAULT_COMPRESSION;
else if (level < 0 || level > Z_BEST_COMPRESSION)
die("bad pack compression level %d", level);
pack_compression_level = level;
pack_compression_seen = 1;
return 0;
}
if (!strcmp(k, "pack.deltacachesize")) {
max_delta_cache_size = git_config_int(k, v);
return 0;
}
if (!strcmp(k, "pack.deltacachelimit")) {
cache_max_small_delta_size = git_config_int(k, v);
return 0;
}
return git_default_config(k, v);
}
static void read_object_list_from_stdin(void)
{
char line[40 + 1 + PATH_MAX + 2];
unsigned char sha1[20];
for (;;) {
if (!fgets(line, sizeof(line), stdin)) {
if (feof(stdin))
break;
if (!ferror(stdin))
die("fgets returned NULL, not EOF, not error!");
if (errno != EINTR)
die("fgets: %s", strerror(errno));
clearerr(stdin);
continue;
}
if (line[0] == '-') {
if (get_sha1_hex(line+1, sha1))
die("expected edge sha1, got garbage:\n %s",
line);
add_preferred_base(sha1);
continue;
}
if (get_sha1_hex(line, sha1))
die("expected sha1, got garbage:\n %s", line);
add_preferred_base_object(line+41);
add_object_entry(sha1, 0, line+41, 0);
}
}
static void show_commit(struct commit *commit)
{
add_object_entry(commit->object.sha1, OBJ_COMMIT, NULL, 0);
}
static void show_object(struct object_array_entry *p)
{
add_preferred_base_object(p->name);
add_object_entry(p->item->sha1, p->item->type, p->name, 0);
}
static void show_edge(struct commit *commit)
{
add_preferred_base(commit->object.sha1);
}
static void get_object_list(int ac, const char **av)
{
struct rev_info revs;
char line[1000];
int flags = 0;
init_revisions(&revs, NULL);
save_commit_buffer = 0;
track_object_refs = 0;
setup_revisions(ac, av, &revs, NULL);
while (fgets(line, sizeof(line), stdin) != NULL) {
int len = strlen(line);
if (line[len - 1] == '\n')
line[--len] = 0;
if (!len)
break;
if (*line == '-') {
if (!strcmp(line, "--not")) {
flags ^= UNINTERESTING;
continue;
}
die("not a rev '%s'", line);
}
if (handle_revision_arg(line, &revs, flags, 1))
die("bad revision '%s'", line);
}
prepare_revision_walk(&revs);
mark_edges_uninteresting(revs.commits, &revs, show_edge);
traverse_commit_list(&revs, show_commit, show_object);
}
static int adjust_perm(const char *path, mode_t mode)
{
if (chmod(path, mode))
return -1;
return adjust_shared_perm(path);
}
int cmd_pack_objects(int argc, const char **argv, const char *prefix)
{
int use_internal_rev_list = 0;
int thin = 0;
uint32_t i;
const char **rp_av;
int rp_ac_alloc = 64;
int rp_ac;
rp_av = xcalloc(rp_ac_alloc, sizeof(*rp_av));
rp_av[0] = "pack-objects";
rp_av[1] = "--objects"; /* --thin will make it --objects-edge */
rp_ac = 2;
git_config(git_pack_config);
Custom compression levels for objects and packs Add config variables pack.compression and core.loosecompression , and switch --compression=level to pack-objects. Loose objects will be compressed using core.loosecompression if set, else core.compression if set, else Z_BEST_SPEED. Packed objects will be compressed using --compression=level if seen, else pack.compression if set, else core.compression if set, else Z_DEFAULT_COMPRESSION. This is the "pack compression level". Loose objects added to a pack undeltified will be recompressed to the pack compression level if it is unequal to the current loose compression level by the preceding rules, or if the loose object was written while core.legacyheaders = true. Newly deltified loose objects are always compressed to the current pack compression level. Previously packed objects added to a pack are recompressed to the current pack compression level exactly when their deltification status changes, since the previous pack data cannot be reused. In either case, the --no-reuse-object switch from the first patch below will always force recompression to the current pack compression level, instead of assuming the pack compression level hasn't changed and pack data can be reused when possible. This applies on top of the following patches from Nicolas Pitre: [PATCH] allow for undeltified objects not to be reused [PATCH] make "repack -f" imply "pack-objects --no-reuse-object" Signed-off-by: Dana L. How <danahow@gmail.com> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
if (!pack_compression_seen && core_compression_seen)
pack_compression_level = core_compression_level;
progress = isatty(2);
for (i = 1; i < argc; i++) {
const char *arg = argv[i];
if (*arg != '-')
break;
if (!strcmp("--non-empty", arg)) {
non_empty = 1;
continue;
}
if (!strcmp("--local", arg)) {
local = 1;
continue;
}
if (!strcmp("--incremental", arg)) {
incremental = 1;
continue;
}
Custom compression levels for objects and packs Add config variables pack.compression and core.loosecompression , and switch --compression=level to pack-objects. Loose objects will be compressed using core.loosecompression if set, else core.compression if set, else Z_BEST_SPEED. Packed objects will be compressed using --compression=level if seen, else pack.compression if set, else core.compression if set, else Z_DEFAULT_COMPRESSION. This is the "pack compression level". Loose objects added to a pack undeltified will be recompressed to the pack compression level if it is unequal to the current loose compression level by the preceding rules, or if the loose object was written while core.legacyheaders = true. Newly deltified loose objects are always compressed to the current pack compression level. Previously packed objects added to a pack are recompressed to the current pack compression level exactly when their deltification status changes, since the previous pack data cannot be reused. In either case, the --no-reuse-object switch from the first patch below will always force recompression to the current pack compression level, instead of assuming the pack compression level hasn't changed and pack data can be reused when possible. This applies on top of the following patches from Nicolas Pitre: [PATCH] allow for undeltified objects not to be reused [PATCH] make "repack -f" imply "pack-objects --no-reuse-object" Signed-off-by: Dana L. How <danahow@gmail.com> Signed-off-by: Junio C Hamano <junkio@cox.net>
18 years ago
if (!prefixcmp(arg, "--compression=")) {
char *end;
int level = strtoul(arg+14, &end, 0);
if (!arg[14] || *end)
usage(pack_usage);
if (level == -1)
level = Z_DEFAULT_COMPRESSION;
else if (level < 0 || level > Z_BEST_COMPRESSION)
die("bad pack compression level %d", level);
pack_compression_level = level;
continue;
}
if (!prefixcmp(arg, "--max-pack-size=")) {
char *end;
pack_size_limit = strtoul(arg+16, &end, 0) * 1024 * 1024;
if (!arg[16] || *end)
usage(pack_usage);
continue;
}
if (!prefixcmp(arg, "--window=")) {
char *end;
window = strtoul(arg+9, &end, 0);
if (!arg[9] || *end)
usage(pack_usage);
continue;
}
if (!prefixcmp(arg, "--window-memory=")) {
if (!git_parse_ulong(arg+16, &window_memory_limit))
usage(pack_usage);
continue;
}
if (!prefixcmp(arg, "--depth=")) {
char *end;
depth = strtoul(arg+8, &end, 0);
if (!arg[8] || *end)
usage(pack_usage);
continue;
}
if (!strcmp("--progress", arg)) {
progress = 1;
continue;
}
if (!strcmp("--all-progress", arg)) {
progress = 2;
continue;
}
if (!strcmp("-q", arg)) {
progress = 0;
continue;
}
if (!strcmp("--no-reuse-delta", arg)) {
no_reuse_delta = 1;
continue;
}
if (!strcmp("--no-reuse-object", arg)) {
no_reuse_object = no_reuse_delta = 1;
continue;
}
if (!strcmp("--delta-base-offset", arg)) {
allow_ofs_delta = 1;
continue;
}
if (!strcmp("--stdout", arg)) {
pack_to_stdout = 1;
continue;
}
if (!strcmp("--revs", arg)) {
use_internal_rev_list = 1;
continue;
}
if (!strcmp("--unpacked", arg) ||
!prefixcmp(arg, "--unpacked=") ||
!strcmp("--reflog", arg) ||
!strcmp("--all", arg)) {
use_internal_rev_list = 1;
if (rp_ac >= rp_ac_alloc - 1) {
rp_ac_alloc = alloc_nr(rp_ac_alloc);
rp_av = xrealloc(rp_av,
rp_ac_alloc * sizeof(*rp_av));
}
rp_av[rp_ac++] = arg;
continue;
}
if (!strcmp("--thin", arg)) {
use_internal_rev_list = 1;
thin = 1;
rp_av[1] = "--objects-edge";
continue;
}
if (!prefixcmp(arg, "--index-version=")) {
char *c;
pack_idx_default_version = strtoul(arg + 16, &c, 10);
if (pack_idx_default_version > 2)
die("bad %s", arg);
if (*c == ',')
pack_idx_off32_limit = strtoul(c+1, &c, 0);
if (*c || pack_idx_off32_limit & 0x80000000)
die("bad %s", arg);
continue;
}
usage(pack_usage);
}
/* Traditionally "pack-objects [options] base extra" failed;
* we would however want to take refs parameter that would
* have been given to upstream rev-list ourselves, which means
* we somehow want to say what the base name is. So the
* syntax would be:
*
* pack-objects [options] base <refs...>
*
* in other words, we would treat the first non-option as the
* base_name and send everything else to the internal revision
* walker.
*/
if (!pack_to_stdout)
base_name = argv[i++];
if (pack_to_stdout != !base_name)
usage(pack_usage);
if (pack_to_stdout && pack_size_limit)
die("--max-pack-size cannot be used to build a pack for transfer.");
if (!pack_to_stdout && thin)
die("--thin cannot be used to build an indexable pack.");
prepare_packed_git();
if (progress)
start_progress(&progress_state, "Generating pack...",
"Counting objects: ", 0);
if (!use_internal_rev_list)
read_object_list_from_stdin();
else {
rp_av[rp_ac] = NULL;
get_object_list(rp_ac, rp_av);
}
if (progress) {
stop_progress(&progress_state);
fprintf(stderr, "Done counting %u objects.\n", nr_objects);
}
if (non_empty && !nr_result)
return 0;
if (progress && (nr_objects != nr_result))
fprintf(stderr, "Result has %u objects.\n", nr_result);
if (nr_result)
prepare_pack(window, depth);
write_pack_file();
pack-objects: finishing touches. This introduces --no-reuse-delta option to disable reusing of existing delta, which is a large part of the optimization introduced by this series. This may become necessary if repeated repacking makes delta chain too long. With this, the output of the command becomes identical to that of the older implementation. But the performance suffers greatly. It still allows reusing non-deltified representations; there is no point uncompressing and recompressing the whole text. It also adds a couple more statistics output, while squelching it under -q flag, which the last round forgot to do. $ time old-git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects.................... real 12m8.530s user 11m1.450s sys 0m57.920s $ time git-pack-objects --stdout >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 138297), reused 178833 (delta 134081) real 0m59.549s user 0m56.670s sys 0m2.400s $ time git-pack-objects --stdout --no-reuse-delta >/dev/null <RL Generating pack... Done counting 184141 objects. Packing 184141 objects..................... Total 184141, written 184141 (delta 134833), reused 47904 (delta 0) real 11m13.830s user 9m45.240s sys 0m44.330s There is one remaining issue when --no-reuse-delta option is not used. It can create delta chains that are deeper than specified. A<--B<--C<--D E F G Suppose we have a delta chain A to D (A is stored in full either in a pack or as a loose object. B is depth1 delta relative to A, C is depth2 delta relative to B...) with loose objects E, F, G. And we are going to pack all of them. B, C and D are left as delta against A, B and C respectively. So A, E, F, and G are examined for deltification, and let's say we decided to keep E expanded, and store the rest as deltas like this: E<--F<--G<--A Oops. We ended up making D a bit too deep, didn't we? B, C and D form a chain on top of A! This is because we did not know what the final depth of A would be, when we checked objects and decided to keep the existing delta. Unfortunately, deferring the decision until just before the deltification is not an option. To be able to make B, C, and D candidates for deltification with the rest, we need to know the type and final unexpanded size of them, but the major part of the optimization comes from the fact that we do not read the delta data to do so -- getting the final size is quite an expensive operation. To prevent this from happening, we should keep A from being deltified. But how would we tell that, cheaply? To do this most precisely, after check_object() runs, each object that is used as the base object of some existing delta needs to be marked with the maximum depth of the objects we decided to keep deltified (in this case, D is depth 3 relative to A, so if no other delta chain that is longer than 3 based on A exists, mark A with 3). Then when attempting to deltify A, we would take that number into account to see if the final delta chain that leads to D becomes too deep. However, this is a bit cumbersome to compute, so we would cheat and reduce the maximum depth for A arbitrarily to depth/4 in this implementation. Signed-off-by: Junio C Hamano <junkio@cox.net>
19 years ago
if (progress)
fprintf(stderr, "Total %u (delta %u), reused %u (delta %u)\n",
written, written_delta, reused, reused_delta);
return 0;
}