|
|
|
/*
|
|
|
|
* (C) Copyright David Gibson <dwg@au1.ibm.com>, IBM Corporation. 2007.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
|
|
* License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
|
|
|
* USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "dtc.h"
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
#ifdef TRACE_CHECKS
|
|
|
|
#define TRACE(c, ...) \
|
|
|
|
do { \
|
|
|
|
fprintf(stderr, "=== %s: ", (c)->name); \
|
|
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
|
|
fprintf(stderr, "\n"); \
|
|
|
|
} while (0)
|
|
|
|
#else
|
|
|
|
#define TRACE(c, fmt, ...) do { } while (0)
|
|
|
|
#endif
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
enum checklevel {
|
|
|
|
IGNORE = 0,
|
|
|
|
WARN = 1,
|
|
|
|
ERROR = 2,
|
|
|
|
};
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
enum checkstatus {
|
|
|
|
UNCHECKED = 0,
|
|
|
|
PREREQ,
|
|
|
|
PASSED,
|
|
|
|
FAILED,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct check;
|
|
|
|
|
|
|
|
typedef void (*tree_check_fn)(struct check *c, struct node *dt);
|
|
|
|
typedef void (*node_check_fn)(struct check *c, struct node *dt, struct node *node);
|
|
|
|
typedef void (*prop_check_fn)(struct check *c, struct node *dt,
|
|
|
|
struct node *node, struct property *prop);
|
|
|
|
|
|
|
|
struct check {
|
|
|
|
const char *name;
|
|
|
|
tree_check_fn tree_fn;
|
|
|
|
node_check_fn node_fn;
|
|
|
|
prop_check_fn prop_fn;
|
|
|
|
void *data;
|
|
|
|
enum checklevel level;
|
|
|
|
enum checkstatus status;
|
|
|
|
int inprogress;
|
|
|
|
int num_prereqs;
|
|
|
|
struct check **prereq;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define CHECK(nm, tfn, nfn, pfn, d, lvl, ...) \
|
|
|
|
static struct check *nm##_prereqs[] = { __VA_ARGS__ }; \
|
|
|
|
static struct check nm = { \
|
|
|
|
.name = #nm, \
|
|
|
|
.tree_fn = (tfn), \
|
|
|
|
.node_fn = (nfn), \
|
|
|
|
.prop_fn = (pfn), \
|
|
|
|
.data = (d), \
|
|
|
|
.level = (lvl), \
|
|
|
|
.status = UNCHECKED, \
|
|
|
|
.num_prereqs = ARRAY_SIZE(nm##_prereqs), \
|
|
|
|
.prereq = nm##_prereqs, \
|
|
|
|
};
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
#define TREE_CHECK(nm, d, lvl, ...) \
|
|
|
|
CHECK(nm, check_##nm, NULL, NULL, d, lvl, __VA_ARGS__)
|
|
|
|
#define NODE_CHECK(nm, d, lvl, ...) \
|
|
|
|
CHECK(nm, NULL, check_##nm, NULL, d, lvl, __VA_ARGS__)
|
|
|
|
#define PROP_CHECK(nm, d, lvl, ...) \
|
|
|
|
CHECK(nm, NULL, NULL, check_##nm, d, lvl, __VA_ARGS__)
|
|
|
|
#define BATCH_CHECK(nm, lvl, ...) \
|
|
|
|
CHECK(nm, NULL, NULL, NULL, NULL, lvl, __VA_ARGS__)
|
|
|
|
|
|
|
|
#ifdef __GNUC__
|
|
|
|
static inline void check_msg(struct check *c, const char *fmt, ...) __attribute__((format (printf, 2, 3)));
|
|
|
|
#endif
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
static inline void check_msg(struct check *c, const char *fmt, ...)
|
|
|
|
{
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
|
|
|
|
|
|
if ((c->level < WARN) || (c->level <= quiet))
|
|
|
|
return; /* Suppress message */
|
|
|
|
|
|
|
|
fprintf(stderr, "%s (%s): ",
|
|
|
|
(c->level == ERROR) ? "ERROR" : "Warning", c->name);
|
|
|
|
vfprintf(stderr, fmt, ap);
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
#define FAIL(c, ...) \
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
do { \
|
|
|
|
TRACE((c), "\t\tFAILED at %s:%d", __FILE__, __LINE__); \
|
|
|
|
(c)->status = FAILED; \
|
|
|
|
check_msg((c), __VA_ARGS__); \
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
} while (0)
|
|
|
|
|
|
|
|
static void check_nodes_props(struct check *c, struct node *dt, struct node *node)
|
|
|
|
{
|
|
|
|
struct node *child;
|
|
|
|
struct property *prop;
|
|
|
|
|
|
|
|
TRACE(c, "%s", node->fullpath);
|
|
|
|
if (c->node_fn)
|
|
|
|
c->node_fn(c, dt, node);
|
|
|
|
|
|
|
|
if (c->prop_fn)
|
|
|
|
for_each_property(node, prop) {
|
|
|
|
TRACE(c, "%s\t'%s'", node->fullpath, prop->name);
|
|
|
|
c->prop_fn(c, dt, node, prop);
|
|
|
|
}
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
for_each_child(node, child)
|
|
|
|
check_nodes_props(c, dt, child);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int run_check(struct check *c, struct node *dt)
|
|
|
|
{
|
|
|
|
int error = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
assert(!c->inprogress);
|
|
|
|
|
|
|
|
if (c->status != UNCHECKED)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
c->inprogress = 1;
|
|
|
|
|
|
|
|
for (i = 0; i < c->num_prereqs; i++) {
|
|
|
|
struct check *prq = c->prereq[i];
|
|
|
|
error |= run_check(prq, dt);
|
|
|
|
if (prq->status != PASSED) {
|
|
|
|
c->status = PREREQ;
|
|
|
|
check_msg(c, "Failed prerequisite '%s'",
|
|
|
|
c->prereq[i]->name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
if (c->status != UNCHECKED)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (c->node_fn || c->prop_fn)
|
|
|
|
check_nodes_props(c, dt, dt);
|
|
|
|
|
|
|
|
if (c->tree_fn)
|
|
|
|
c->tree_fn(c, dt);
|
|
|
|
if (c->status == UNCHECKED)
|
|
|
|
c->status = PASSED;
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
TRACE(c, "\tCompleted, status %d", c->status);
|
|
|
|
|
|
|
|
out:
|
|
|
|
c->inprogress = 0;
|
|
|
|
if ((c->status != PASSED) && (c->level == ERROR))
|
|
|
|
error = 1;
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Utility check functions
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void check_is_string(struct check *c, struct node *root,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property *prop;
|
|
|
|
char *propname = c->data;
|
|
|
|
|
|
|
|
prop = get_property(node, propname);
|
|
|
|
if (!prop)
|
|
|
|
return; /* Not present, assumed ok */
|
|
|
|
|
|
|
|
if (!data_is_one_string(prop->val))
|
|
|
|
FAIL(c, "\"%s\" property in %s is not a string",
|
|
|
|
propname, node->fullpath);
|
|
|
|
}
|
|
|
|
#define CHECK_IS_STRING(nm, propname, lvl) \
|
|
|
|
CHECK(nm, NULL, check_is_string, NULL, (propname), (lvl))
|
|
|
|
|
|
|
|
static void check_is_cell(struct check *c, struct node *root,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property *prop;
|
|
|
|
char *propname = c->data;
|
|
|
|
|
|
|
|
prop = get_property(node, propname);
|
|
|
|
if (!prop)
|
|
|
|
return; /* Not present, assumed ok */
|
|
|
|
|
|
|
|
if (prop->val.len != sizeof(cell_t))
|
|
|
|
FAIL(c, "\"%s\" property in %s is not a single cell",
|
|
|
|
propname, node->fullpath);
|
|
|
|
}
|
|
|
|
#define CHECK_IS_CELL(nm, propname, lvl) \
|
|
|
|
CHECK(nm, NULL, check_is_cell, NULL, (propname), (lvl))
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
/*
|
|
|
|
* Structural check functions
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void check_duplicate_node_names(struct check *c, struct node *dt,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct node *child, *child2;
|
|
|
|
|
|
|
|
for_each_child(node, child)
|
|
|
|
for (child2 = child->next_sibling;
|
|
|
|
child2;
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
child2 = child2->next_sibling)
|
|
|
|
if (streq(child->name, child2->name))
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
FAIL(c, "Duplicate node name %s",
|
|
|
|
child->fullpath);
|
|
|
|
}
|
|
|
|
NODE_CHECK(duplicate_node_names, NULL, ERROR);
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
static void check_duplicate_property_names(struct check *c, struct node *dt,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property *prop, *prop2;
|
|
|
|
|
|
|
|
for_each_property(node, prop)
|
|
|
|
for (prop2 = prop->next; prop2; prop2 = prop2->next)
|
|
|
|
if (streq(prop->name, prop2->name))
|
|
|
|
FAIL(c, "Duplicate property name %s in %s",
|
|
|
|
prop->name, node->fullpath);
|
|
|
|
}
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
NODE_CHECK(duplicate_property_names, NULL, ERROR);
|
|
|
|
|
|
|
|
#define LOWERCASE "abcdefghijklmnopqrstuvwxyz"
|
|
|
|
#define UPPERCASE "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
|
|
#define DIGITS "0123456789"
|
|
|
|
#define PROPNODECHARS LOWERCASE UPPERCASE DIGITS ",._+*#?-"
|
|
|
|
|
|
|
|
static void check_node_name_chars(struct check *c, struct node *dt,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
int n = strspn(node->name, c->data);
|
|
|
|
|
|
|
|
if (n < strlen(node->name))
|
|
|
|
FAIL(c, "Bad character '%c' in node %s",
|
|
|
|
node->name[n], node->fullpath);
|
|
|
|
}
|
|
|
|
NODE_CHECK(node_name_chars, PROPNODECHARS "@", ERROR);
|
|
|
|
|
|
|
|
static void check_node_name_format(struct check *c, struct node *dt,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
if (strchr(get_unitname(node), '@'))
|
|
|
|
FAIL(c, "Node %s has multiple '@' characters in name",
|
|
|
|
node->fullpath);
|
|
|
|
}
|
|
|
|
NODE_CHECK(node_name_format, NULL, ERROR, &node_name_chars);
|
|
|
|
|
|
|
|
static void check_property_name_chars(struct check *c, struct node *dt,
|
|
|
|
struct node *node, struct property *prop)
|
|
|
|
{
|
|
|
|
int n = strspn(prop->name, c->data);
|
|
|
|
|
|
|
|
if (n < strlen(prop->name))
|
|
|
|
FAIL(c, "Bad character '%c' in property name \"%s\", node %s",
|
|
|
|
prop->name[n], prop->name, node->fullpath);
|
|
|
|
}
|
|
|
|
PROP_CHECK(property_name_chars, PROPNODECHARS, ERROR);
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
static void check_explicit_phandles(struct check *c, struct node *root,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property *prop;
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
struct node *other;
|
|
|
|
cell_t phandle;
|
|
|
|
|
|
|
|
prop = get_property(node, "linux,phandle");
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
if (! prop)
|
|
|
|
return; /* No phandle, that's fine */
|
|
|
|
|
|
|
|
if (prop->val.len != sizeof(cell_t)) {
|
|
|
|
FAIL(c, "%s has bad length (%d) linux,phandle property",
|
|
|
|
node->fullpath, prop->val.len);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
phandle = propval_cell(prop);
|
|
|
|
if ((phandle == 0) || (phandle == -1)) {
|
|
|
|
FAIL(c, "%s has invalid linux,phandle value 0x%x",
|
|
|
|
node->fullpath, phandle);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
other = get_node_by_phandle(root, phandle);
|
|
|
|
if (other) {
|
|
|
|
FAIL(c, "%s has duplicated phandle 0x%x (seen before at %s)",
|
|
|
|
node->fullpath, phandle, other->fullpath);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
node->phandle = phandle;
|
|
|
|
}
|
|
|
|
NODE_CHECK(explicit_phandles, NULL, ERROR);
|
|
|
|
|
|
|
|
static void check_name_properties(struct check *c, struct node *root,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property **pp, *prop = NULL;
|
|
|
|
|
|
|
|
for (pp = &node->proplist; *pp; pp = &((*pp)->next))
|
|
|
|
if (streq((*pp)->name, "name")) {
|
|
|
|
prop = *pp;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!prop)
|
|
|
|
return; /* No name property, that's fine */
|
|
|
|
|
|
|
|
if ((prop->val.len != node->basenamelen+1)
|
|
|
|
|| (memcmp(prop->val.val, node->name, node->basenamelen) != 0))
|
|
|
|
FAIL(c, "\"name\" property in %s is incorrect (\"%s\" instead"
|
|
|
|
" of base node name)", node->fullpath, prop->val.val);
|
|
|
|
|
|
|
|
/* The name property is correct, and therefore redundant. Delete it */
|
|
|
|
*pp = prop->next;
|
|
|
|
free(prop->name);
|
|
|
|
data_free(prop->val);
|
|
|
|
free(prop);
|
|
|
|
}
|
|
|
|
CHECK_IS_STRING(name_is_string, "name", ERROR);
|
|
|
|
NODE_CHECK(name_properties, NULL, ERROR, &name_is_string);
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
/*
|
|
|
|
* Reference fixup functions
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void fixup_phandle_references(struct check *c, struct node *dt,
|
|
|
|
struct node *node, struct property *prop)
|
|
|
|
{
|
|
|
|
struct marker *m = prop->val.markers;
|
|
|
|
struct node *refnode;
|
|
|
|
cell_t phandle;
|
|
|
|
|
|
|
|
for_each_marker_of_type(m, REF_PHANDLE) {
|
|
|
|
assert(m->offset + sizeof(cell_t) <= prop->val.len);
|
|
|
|
|
|
|
|
refnode = get_node_by_ref(dt, m->ref);
|
|
|
|
if (! refnode) {
|
|
|
|
FAIL(c, "Reference to non-existent node or label \"%s\"\n",
|
|
|
|
m->ref);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
phandle = get_node_phandle(dt, refnode);
|
|
|
|
*((cell_t *)(prop->val.val + m->offset)) = cpu_to_be32(phandle);
|
|
|
|
}
|
|
|
|
}
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
CHECK(phandle_references, NULL, NULL, fixup_phandle_references, NULL, ERROR,
|
|
|
|
&duplicate_node_names, &explicit_phandles);
|
|
|
|
|
|
|
|
static void fixup_path_references(struct check *c, struct node *dt,
|
|
|
|
struct node *node, struct property *prop)
|
|
|
|
{
|
|
|
|
struct marker *m = prop->val.markers;
|
|
|
|
struct node *refnode;
|
|
|
|
char *path;
|
|
|
|
|
|
|
|
for_each_marker_of_type(m, REF_PATH) {
|
|
|
|
assert(m->offset <= prop->val.len);
|
|
|
|
|
|
|
|
refnode = get_node_by_ref(dt, m->ref);
|
|
|
|
if (!refnode) {
|
|
|
|
FAIL(c, "Reference to non-existent node or label \"%s\"\n",
|
|
|
|
m->ref);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
path = refnode->fullpath;
|
|
|
|
prop->val = data_insert_at_marker(prop->val, m, path,
|
|
|
|
strlen(path) + 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
CHECK(path_references, NULL, NULL, fixup_path_references, NULL, ERROR,
|
|
|
|
&duplicate_node_names);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Semantic checks
|
|
|
|
*/
|
|
|
|
CHECK_IS_CELL(address_cells_is_cell, "#address-cells", WARN);
|
|
|
|
CHECK_IS_CELL(size_cells_is_cell, "#size-cells", WARN);
|
|
|
|
CHECK_IS_CELL(interrupt_cells_is_cell, "#interrupt-cells", WARN);
|
|
|
|
|
|
|
|
CHECK_IS_STRING(device_type_is_string, "device_type", WARN);
|
|
|
|
CHECK_IS_STRING(model_is_string, "model", WARN);
|
|
|
|
CHECK_IS_STRING(status_is_string, "status", WARN);
|
|
|
|
|
|
|
|
static void fixup_addr_size_cells(struct check *c, struct node *dt,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property *prop;
|
|
|
|
|
|
|
|
node->addr_cells = -1;
|
|
|
|
node->size_cells = -1;
|
|
|
|
|
|
|
|
prop = get_property(node, "#address-cells");
|
|
|
|
if (prop)
|
|
|
|
node->addr_cells = propval_cell(prop);
|
|
|
|
|
|
|
|
prop = get_property(node, "#size-cells");
|
|
|
|
if (prop)
|
|
|
|
node->size_cells = propval_cell(prop);
|
|
|
|
}
|
|
|
|
CHECK(addr_size_cells, NULL, fixup_addr_size_cells, NULL, NULL, WARN,
|
|
|
|
&address_cells_is_cell, &size_cells_is_cell);
|
|
|
|
|
|
|
|
#define node_addr_cells(n) \
|
|
|
|
(((n)->addr_cells == -1) ? 2 : (n)->addr_cells)
|
|
|
|
#define node_size_cells(n) \
|
|
|
|
(((n)->size_cells == -1) ? 1 : (n)->size_cells)
|
|
|
|
|
|
|
|
static void check_reg_format(struct check *c, struct node *dt,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property *prop;
|
|
|
|
int addr_cells, size_cells, entrylen;
|
|
|
|
|
|
|
|
prop = get_property(node, "reg");
|
|
|
|
if (!prop)
|
|
|
|
return; /* No "reg", that's fine */
|
|
|
|
|
|
|
|
if (!node->parent) {
|
|
|
|
FAIL(c, "Root node has a \"reg\" property");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (prop->val.len == 0)
|
|
|
|
FAIL(c, "\"reg\" property in %s is empty", node->fullpath);
|
|
|
|
|
|
|
|
addr_cells = node_addr_cells(node->parent);
|
|
|
|
size_cells = node_size_cells(node->parent);
|
|
|
|
entrylen = (addr_cells + size_cells) * sizeof(cell_t);
|
|
|
|
|
|
|
|
if ((prop->val.len % entrylen) != 0)
|
|
|
|
FAIL(c, "\"reg\" property in %s has invalid length (%d bytes) "
|
|
|
|
"(#address-cells == %d, #size-cells == %d)",
|
|
|
|
node->fullpath, prop->val.len, addr_cells, size_cells);
|
|
|
|
}
|
|
|
|
NODE_CHECK(reg_format, NULL, WARN, &addr_size_cells);
|
|
|
|
|
|
|
|
static void check_ranges_format(struct check *c, struct node *dt,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property *prop;
|
|
|
|
int c_addr_cells, p_addr_cells, c_size_cells, p_size_cells, entrylen;
|
|
|
|
|
|
|
|
prop = get_property(node, "ranges");
|
|
|
|
if (!prop)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (!node->parent) {
|
|
|
|
FAIL(c, "Root node has a \"ranges\" property");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
p_addr_cells = node_addr_cells(node->parent);
|
|
|
|
p_size_cells = node_size_cells(node->parent);
|
|
|
|
c_addr_cells = node_addr_cells(node);
|
|
|
|
c_size_cells = node_size_cells(node);
|
|
|
|
entrylen = (p_addr_cells + c_addr_cells + c_size_cells) * sizeof(cell_t);
|
|
|
|
|
|
|
|
if (prop->val.len == 0) {
|
|
|
|
if (p_addr_cells != c_addr_cells)
|
|
|
|
FAIL(c, "%s has empty \"ranges\" property but its "
|
|
|
|
"#address-cells (%d) differs from %s (%d)",
|
|
|
|
node->fullpath, c_addr_cells, node->parent->fullpath,
|
|
|
|
p_addr_cells);
|
|
|
|
if (p_size_cells != c_size_cells)
|
|
|
|
FAIL(c, "%s has empty \"ranges\" property but its "
|
|
|
|
"#size-cells (%d) differs from %s (%d)",
|
|
|
|
node->fullpath, c_size_cells, node->parent->fullpath,
|
|
|
|
p_size_cells);
|
|
|
|
} else if ((prop->val.len % entrylen) != 0) {
|
|
|
|
FAIL(c, "\"ranges\" property in %s has invalid length (%d bytes) "
|
|
|
|
"(parent #address-cells == %d, child #address-cells == %d, "
|
|
|
|
"#size-cells == %d)", node->fullpath, prop->val.len,
|
|
|
|
p_addr_cells, c_addr_cells, c_size_cells);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
NODE_CHECK(ranges_format, NULL, WARN, &addr_size_cells);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Style checks
|
|
|
|
*/
|
|
|
|
static void check_avoid_default_addr_size(struct check *c, struct node *dt,
|
|
|
|
struct node *node)
|
|
|
|
{
|
|
|
|
struct property *reg, *ranges;
|
|
|
|
|
|
|
|
if (!node->parent)
|
|
|
|
return; /* Ignore root node */
|
|
|
|
|
|
|
|
reg = get_property(node, "reg");
|
|
|
|
ranges = get_property(node, "ranges");
|
|
|
|
|
|
|
|
if (!reg && !ranges)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if ((node->parent->addr_cells == -1))
|
|
|
|
FAIL(c, "Relying on default #address-cells value for %s",
|
|
|
|
node->fullpath);
|
|
|
|
|
|
|
|
if ((node->parent->size_cells == -1))
|
|
|
|
FAIL(c, "Relying on default #size-cells value for %s",
|
|
|
|
node->fullpath);
|
|
|
|
}
|
|
|
|
NODE_CHECK(avoid_default_addr_size, NULL, WARN, &addr_size_cells);
|
|
|
|
|
|
|
|
static void check_obsolete_chosen_interrupt_controller(struct check *c,
|
|
|
|
struct node *dt)
|
|
|
|
{
|
|
|
|
struct node *chosen;
|
|
|
|
struct property *prop;
|
|
|
|
|
|
|
|
chosen = get_node_by_path(dt, "/chosen");
|
|
|
|
if (!chosen)
|
|
|
|
return;
|
|
|
|
|
|
|
|
prop = get_property(chosen, "interrupt-controller");
|
|
|
|
if (prop)
|
|
|
|
FAIL(c, "/chosen has obsolete \"interrupt-controller\" "
|
|
|
|
"property");
|
|
|
|
}
|
|
|
|
TREE_CHECK(obsolete_chosen_interrupt_controller, NULL, WARN);
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
static struct check *check_table[] = {
|
|
|
|
&duplicate_node_names, &duplicate_property_names,
|
|
|
|
&node_name_chars, &node_name_format, &property_name_chars,
|
|
|
|
&name_is_string, &name_properties,
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
&explicit_phandles,
|
|
|
|
&phandle_references, &path_references,
|
|
|
|
|
|
|
|
&address_cells_is_cell, &size_cells_is_cell, &interrupt_cells_is_cell,
|
|
|
|
&device_type_is_string, &model_is_string, &status_is_string,
|
|
|
|
|
|
|
|
&addr_size_cells, ®_format, &ranges_format,
|
|
|
|
|
|
|
|
&avoid_default_addr_size,
|
|
|
|
&obsolete_chosen_interrupt_controller,
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
};
|
|
|
|
|
|
|
|
void process_checks(int force, struct boot_info *bi)
|
|
|
|
{
|
|
|
|
struct node *dt = bi->dt;
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
int i;
|
|
|
|
int error = 0;
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
for (i = 0; i < ARRAY_SIZE(check_table); i++) {
|
|
|
|
struct check *c = check_table[i];
|
|
|
|
|
dtc: Flexible tree checking infrastructure (v2)
dtc: Flexible tree checking infrastructure
Here, at last, is a substantial start on revising dtc's infrastructure
for checking the tree; this is the rework I've been saying was
necessary practically since dtc was first release.
In the new model, we have a table of "check" structures, each with a
name, references to checking functions, and status variables. Each
check can (in principle) be individually switched off or on (as either
a warning or error). Checks have a list of prerequisites, so if
checks need to rely on results from earlier checks to make sense (or
even to avoid crashing) they just need to list the relevant other
checks there.
For now, only the "structural" checks and the fixups for phandle
references are converted to the new mechanism. The rather more
involved semantic checks (which is where this new mechanism will
really be useful) will have to be converted in future patches.
At present, there's no user interface for turning on/off the checks -
the -f option now forces output even if "error" level checks fail.
Again, future patches will be needed to add the fine-grained control,
but that should be quite straightforward with the infrastructure
implemented here.
Also adds a testcase for the handling of bad references, which catches
a bug encountered while developing this patch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
17 years ago
|
|
|
if (c->level != IGNORE)
|
|
|
|
error = error || run_check(c, dt);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (error) {
|
|
|
|
if (!force) {
|
|
|
|
fprintf(stderr, "ERROR: Input tree has errors, aborting "
|
|
|
|
"(use -f to force output)\n");
|
|
|
|
exit(2);
|
|
|
|
} else if (quiet < 3) {
|
|
|
|
fprintf(stderr, "Warning: Input tree has errors, "
|
|
|
|
"output forced\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|